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Abstract
An intensive line of research on fixed parameter tractability of integer programming
is focused on exploiting the relation between the sparsity of a constraint matrix A
and the norm of the elements of its Graver basis. In particular, integer programming
is fixed parameter tractable when parameterized by the primal tree-depth and the
entry complexity of A, and when parameterized by the dual tree-depth and the entry
complexity of A; both these parameterization imply that A is sparse, in particular, the
number of its non-zero entries is linear in the number of columns or rows, respectively.
We study preconditioners transforming a given matrix to a row-equivalent sparse
matrix if it exists and provide structural results characterizing the existence of a sparse
row-equivalent matrix in terms of the structural properties of the associated column
matroid. In particular, our results imply that the �1-norm of theGraver basis is bounded
by a function of the maximum �1-norm of a circuit of A. We use our results to design
a parameterized algorithm that constructs a matrix row-equivalent to an input matrix
A that has small primal/dual tree-depth and entry complexity if such a row-equivalent
matrix exists. Our results yield parameterized algorithms for integer programming
when parameterized by the �1-norm of the Graver basis of the constraint matrix,
when parameterized by the �1-norm of the circuits of the constraint matrix, when
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parameterized by the smallest primal tree-depth and entry complexity of a matrix
row-equivalent to the constraint matrix, and when parameterized by the smallest dual
tree-depth and entry complexity of a matrix row-equivalent to the constraint matrix.

Keywords Integer programming · Width parameters · Matroids · Graver basis ·
Tree-depth · Fixed parameter tractability

Mathematics Subject Classification 90C10 · 05B35 · 90C27

1 Introduction

Integer programming is a problem of fundamental importance in combinatorial opti-
mization with many theoretical and practical applications. From the computational
complexity point of view, integer programming is very hard: it is one of the 21 prob-
lems shown to be NP-complete in the original paper on NP-completeness by Karp
[37] and remains NP-complete even when the entries of the constraint matrix are zero
and one only. On the positive side, Kannan and Lenstra [35, 45] showed that integer
programming is polynomially solvable in fixed dimension, i.e., with a fixed number
of variables. Another prominent tractable case is when the constraint matrix is totally
unimodular, i.e., all determinants of its submatrices are equal to 0 or±1, in which case
all vertices of the feasible region are integral and so linear programming algorithms
can be applied.

Integer programming (IP) is known to be tractable for instanceswhere the constraint
matrix of an input instance enjoys a certain block structure. The two most important
cases are the cases of 2-stage IPs due to Hemmecke and Schultz [27], further investi-
gated in particular in [1, 13, 31, 39, 40, 44], and n-fold IPs introduced by De Loera et
al. [15] and further investigated in particular in [11, 12, 19, 26, 34, 44]. IPs of this kind
appear in various contexts, see e.g. [32, 41, 42, 48]. These (theoretical) tractability
results complement well a vast number of empirical results demonstrating tractability
of instances with a block structure, e.g. [2–4, 22, 23, 38, 49–51].

There tractability results on IPs with sparse constraint matrices can be unified
and generalized using depth and width parameters of graphs derived from constraint
matrices. Ganian andOrdyniak [24] initiated this line of study by showing that IPswith
bounded primal tree-depth tdP (A) of a constraint matrix A and bounded coefficients
of the constraint matrix A and the right hand side b can be solved efficiently. Levin,
Onn and the second author [44] widely generalized this result by showing that IPs with
bounded ‖A‖∞ and bounded primal tree-depth tdP (A) or dual tree-depth tdD(A) of
the constraint matrix A can be solved efficiently; such IPs include 2-stage IPs, n-fold
IPs, and their generalizations.

Most of the existing algorithms for IPs assume that the input matrix is already
given in its sparse form. This is a substantial drawback as existing algorithms cannot
be applied to instances that are not sparse but can be transformed to an equivalent
sparse instance. For example, the matrix in the left below, whose dual tree-depth is 5,
can be transformed by elementary row operations to the matrix with dual tree-depth
2 given in the right; a formal definition of tree-depth is given in Sect. 2.1, however,
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just the visual appearance of the two matrices indicates which is likely to be more
amenable to algorithmic techniques.

⎛
⎜⎜⎜⎜⎝

2 2 1 2 1 3 1
2 1 1 1 2 1 1
2 2 2 2 2 2 1
2 1 1 2 2 1 1
2 2 1 2 1 3 2

⎞
⎟⎟⎟⎟⎠

→

⎛
⎜⎜⎜⎜⎝

2 1 0 1 1 2 1
0 1 1 0 0 1 0
1 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 2 0 1

⎞
⎟⎟⎟⎟⎠

This transformation is an example of a preconditioner that transforms an instance of
integer programming to an equivalent one that is more amenable to existing methods
for solving integer programming and whose existence we investigate in this paper.

Preconditioning a problem to make it computationally simpler is a ubiquitous pre-
processing step in mathematical programming solvers. An interesting link between
matroid theory and preconditioners to sparsity of matrices was exhibited by Chan and
Cooper together with the second, third and fourth authors [8, 9]. In particular, they
proved the following structural characterization of matrices that are row-equivalent,
i.e., can be transformed by elementary row operations, to amatrix with small dual tree-
depth: a matrix is row-equivalent to one with small dual tree-depth if and only if the
column matroid of the matrix has small contraction∗-depth (see Theorem 1 below).
In this paper, we further explore this uncharted territory by providing a structural
characterization of matrices row-equivalent to matrices with small primal tree-depth,
designing efficient algorithms for finding preconditioners with respect to both primal
and dual tree-depth, and relating complexity of circuits and Graver basis of constraint
matrices.

1.1 Our contribution

We now describe the results presented in this paper in detail. We opted not to interrupt
the presentation of our results with various notions, some of which may be standard
for some readers, and rather collect all definitions in a single section—Sect. 2. We
remark that the primal tree-depth of a matrix A is a structural parameter that measures
the complexity of interaction between the columns of A, and the dual tree-depth of a
matrix A measures the complexity of interaction between the rows of A.

1.1.1 Characterization of depth parameters

Observe that the column matroid of the matrix is preserved by row operations, i.e.,
the column matroid of row-equivalent matrices is the same. The main structural result
of [8, 9] is the following characterization of the existence of a row-equivalent matrix
with small dual tree-depth in terms of the structural parameter of the column matroid
[8, Theorem 1]. We remark that the term branch-depth was used in [8, 9] in line with
the terminology from [36] but as there is a competing notion of branch-depth [16], we
decided to use a different name for this depth parameter throughout the paper to avoid
confusion.
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Theorem 1 For every non-zero matrix A, it holds that the smallest dual tree-depth
of a matrix row-equivalent to A is equal to the contraction∗-depth of M(A), i.e.,
td∗

D(A) = c*d(A).

We discover structural characterizations of the existence of a row-equivalent matrix
with small primal tree-depth and the existence of a row-equivalent matrix with small
incidence tree-depth.

Theorem 2 For every matrix A, it holds that the smallest primal tree-depth of a matrix
row-equivalent to A is equal to the deletion-depth of M(A), i.e., td∗

P (A) = dd(A).

Theorem 3 For every matrix A, it holds that the smallest incidence tree-depth of a
matrix row-equivalent to A is equal to contraction∗-deletion-depth of M(A) increased
by one, i.e., td∗

I (A) = c*dd(A) + 1.

1.1.2 Interplay of circuit and graver basis complexity

Graver bases play an essential role in designing efficient algorithms for integer pro-
gramming. We show that the maximum �1-norm of a circuit of a matrix A and the
maximum �1-norm of an element of the Graver basis of A, which are denoted by c1(A)

and g1(A), respectively, are functionally equivalent.

Theorem 4 There exists a function f1 : N → N such that the following holds for every
rational matrix A with dim ker A > 0:

c1(A) ≤ g1(A) ≤ f1(c1(A)).

The parameter c1(A) can be related to dual tree-depth and entry complexity as
follows (we have opted throughout the paper to use entry complexity rather than
‖A‖∞ as this permits to formulate our results for rational matrices rather than integral
matrices, which is occasionally more convenient).

Theorem 5 Every rationalmatrix Awith dim ker A > 0 is row-equivalent to a rational
matrix A′ with tdD(A′) ≤ c1(A)2 and ec(A′) ≤ 2�log2(c1(A) + 1)	.

Our results together with Theorem 9 imply that the following statements are equiv-
alent for every rational matrix A:

– The �1-norm of every circuit of A, i.e., c1(A), is bounded.
– The �1-norm of every element of the Graver basis of A, i.e., g1(A), is bounded.
– The matrix A is row-equivalent to a matrix with bounded dual tree-depth and
bounded entry complexity.

– The contraction∗-depth of the matroid M(A) is bounded, and the matrix A is row-
equivalent to a matrix with bounded entry complexity (with any dual tree-depth).
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1.1.3 Algorithms to compute matrices with small depth parameters

We also construct parameterized algorithms for transforming an input matrix to a row-
equivalent matrix with small tree-depth and entry complexity if one exists. First, we
design a parameterized algorithm for computing a row-equivalent matrix with small
primal tree-depth and small entry complexity if one exists.

Theorem 6 There exists a function f : N2 → N and a fixed parameter algorithm for
the parameterization by d and e that for a given rational matrix A:

– either outputs that A is not row-equivalent to a matrix with primal tree-depth at
most d and entry complexity at most e, or

– outputs a matrix A′ that is row-equivalent to A, its primal tree-depth is at most d
and entry complexity is at most f (d, e).

The following algorithm for computing a row-equivalent matrix with small dual
tree-depth was presented in [8, 9].

Theorem 7 There exists a function f : N
2 → N and a fixed parameter algorithm

for the parameterization by d and e that for a given rational matrix A with entry
complexity at most e:

– either outputs that A is not row-equivalent to a matrix with dual tree-depth at most
d, or

– outputs a matrix A′ that is row-equivalent to A, its dual tree-depth is at most d
and entry complexity is at most f (d, e).

Weimprove the algorithmby replacing the parameterizationby the entry complexity
of an input matrix with the parameterization by the entry complexity of the to be
constructedmatrix.Note that if amatrix A has entry complexity e and is row-equivalent
to a matrix with dual tree-depth d, then Theorem 7 yields that A is row-equivalent to
a matrix with dual tree-depth d and entry complexity bounded by a function of d and
e. Hence, the algorithm given below applies to a wider set of input matrices than the
algorithm from Theorem 7.

Theorem 8 There exists a function f : N2 → N and a fixed parameter algorithm for
the parameterization by d and e that, for a given rational matrix A:

– either outputs that A is not row-equivalent to a matrix with dual tree-depth at most
d and entry complexity at most e, or

– outputs a matrix A′ that is row-equivalent to A, its dual tree-depth is at most d
and entry complexity is at most f (d, e).

We point out the following difference between the cases of primal and dual tree-
depth. As mentioned, if a matrix A has entry complexity e and is row-equivalent to a
matrix with dual tree-depth d, then A is row-equivalent to amatrix with dual tree-depth
d and entry complexity bounded by a function of d and e. However, the same is not
true in the case of primal tree-depth. The entry complexity of every matrix with primal
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tree-depth equal to one that is row-equivalent to the following matrix A is linear in
the number of rows of A, quite in a contrast to the case of dual tree-depth.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 0 0 · · · 0 0 0 0
0 1 2 0 · · · 0 0 0 0
0 0 1 2 · · · 0 0 0 0
...

...
. . .

. . .
...

...
...

...
. . .

. . .
...

...

0 0 0 0 · · · 1 2 0 0
0 0 0 0 · · · 0 1 2 0
0 0 0 0 · · · 0 0 1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1.1.4 Fixed parameter algorithms for integer programming

One of the open problems in the area, e.g. discussed during the Dagstuhl workshop
19041 “New Horizons in Parameterized Complexity”, has been whether integer pro-
gramming is fixed parameter tractable when parameterized by g1(A), i.e., by the
�1-norm of an element of the Graver basis of the constraint matrix A. Our results on
the interplay of dual tree-depth, the circuit complexity and theGraver basis complexity
of a matrix yield an affirmative answer. The existence of appropriate preconditioners
that we establish in this paper implies that integer programming is fixed parameter
tractable when parameterized by

• g1(A), i.e., the �1-norm of the Graver basis of the constraint matrix,
• c1(A), i.e., the �1-norm of the circuits of the constraint matrix,
• td∗

P (A) and ec(A), i.e., the smallest primal tree-depth and entry complexity of a
matrix row-equivalent to the constraint matrix, and

• td∗
D(A) and ec(A), i.e., the smallest dual tree-depth and entry complexity of a

matrix row-equivalent to the constraint matrix.

We believe that our new tractability results significantly enhance the toolbox of
tractable IPs as the nature of our tractability conditions substantially differ from
prevalent block-structured sparsity-based tractability conditions. The importance of
availability of various forms of tractable IPs can bewitnessed byn-fold IPs,whichwere
shown fixed-parameter tractable in [26], and, about a decade later, their applications
have become ubiquitous, see e.g. [6, 7, 10, 11, 28, 32, 33, 42, 43].

1.1.5 Hardness results

As our algorithmic results involve computing depth decompositions of matroids for
various depth parameters in a parameterizedway, we establish computational hardness
of these parameters in Theorem 12, primarily for the sake of completeness of our
exposition. In particular, computing the followingmatroid parameters is NP-complete:

• deletion-depth,
• contraction-depth,
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• contraction-deletion-depth,
• contraction∗-depth, and
• contraction∗-deletion-depth.

2 Preliminaries

In this section, we fix the notation used throughout the paper. We start with general
notation and we then fix the notation related to graphs, matrices and matroids.

The set of all positive integers is denoted by N and the set of the first k positive
integers by [k]. If A is a linear space, we write dim A for its dimension. If K is a
subspace of A, the quotient space A/K is the linear space of the dimension dim A −
dim K that consists of cosets of A given by K with the natural operations of addition
and scalar multiplication; see e.g. [25] for further details. The quotient space A/K
can be associated with a linear subspace of A of dimension dim A − dim K formed
by exactly a single vector from each coset of A given by K ; we will often view the
quotient space as such a subspace of A and write w + K for the coset containing a
vector w. For example, if A is R3 and K is the linear space generated by (0, 0, 1),
A/K can be associated with (or viewed as) the 2-dimensional space formed by vectors
(x, y, 0), x, y ∈ R.

2.1 Graphs

All graphs considered in this paper are loopless simple graphs unless stated otherwise.
If G is a graph, then we write V (G) and E(G) for the vertex set and the edge set of G,
respectively. IfW is a subset of vertices of a graphG, thenG \W is the graph obtained
by removing the vertices of W (and all edges incident with them), and G[W ] is the
graph obtained by removing all vertices not contained in W (and all edges incident
with them). If F is a subset of edges of a graph G, then G \ F is the graph obtained by
removing the edges contained in F and G/F is the graph obtained by contracting all
edges contained in F and removing resulting loops and parallel edges (while keeping
one edge from each group of parallel edges).

We next define the graph parameter tree-depth, which is the central graph parameter
in this paper. The height of a rooted tree is the maximum number of vertices on a path
from the root to a leaf, and the height of a rooted forest, i.e., a graph whose each
component is a rooted tree, is the maximum height of its components. The depth of
a rooted tree is the maximum number of edges on a path from the root to a leaf, and
the depth of a rooted forest is the maximum depth of its components. Note that the
height and the depth of a rooted tree always differ by one; we use both notions to avoid
cumbersome way of expressing that would otherwise require adding or subtracting
one. The closure cl(F) of a rooted forest F is the graph obtained by adding edges from
each vertex to all its descendants. Finally, the tree-depth td(G) of a graph G is the
minimum height of a rooted forest F such that the closure cl(F) of the rooted forest F
contains G as a subgraph. See Fig. 1 for an example. It can be shown that the path-
width, and so the tree-width, of any graph is at most its tree-depth decreased by one;
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Fig. 1 A rooted forest F consisting of a single tree and its closure cl(F), which shows that tree-depth of
the depicted graph G is (at most) four

see e.g. [14] for a more detailed discussion of the relation of tree-depth, path-width
and tree-width, and their algorithmic applications.

2.2 Matroids

We next review basic definitions from matroid theory; we refer to the book of Oxley
[46] for detailed exposition. A hereditary collection of subsets of a set is a collection
closed under taking subsets; in particular, every non-empty hereditary collection of
subsets contains the empty set. A matroid M is a pair (X , I), where I is a non-empty
hereditary collection of subsets of X that satisfies the augmentation axiom, i.e., if
X ′ ∈ I, X ′′ ∈ I and |X ′| < |X ′′|, then there exists an element x ∈ X ′′ \ X ′ such
that X ′ ∪ {x} ∈ I. The set X is the ground set of M and the sets contained in I
are referred to as independent. We often refer to elements of the ground set of M
to as elements of the matroid M , and if e is an element of (the ground set of) M ,
we also write e ∈ M . Two important examples of matroids are vector matroids and
graphic matroids. A vector matroid is a matroid whose ground set is formed by vectors
and independent sets are precisely sets of linearly independent vectors (note that the
augmentation axiom follows from the Steinitz exchange lemma). A graphic matroid
is a matroid whose ground set is formed by edges of a graph and independent sets are
precisely acyclic sets of edges, i.e., sets not containing a cycle.

The rank of a subset X ′ of the ground set X , which is denoted by rM (X ′)or simply by
r(X ′) ifM is clear from the context, is themaximumsize of an independent subset of X ′
(it can be shown that all maximal independent subsets of X ′ have the same cardinality);
the rank of the matroid M , which is denoted by r(M), is the rank of its ground set.
Note that in the case of vector matroids, the rank of X ′ is exactly the dimension of
linear space generated by X ′. A basis of a matroid M is a maximal independent subset
of the ground set of M and a circuit is a minimal subset of the ground set of M that
is not independent. In particular, if X ′ is a circuit of M , then r(X ′) = |X ′| − 1 and
every proper subset of X ′ is independent. An element x of a matroid M is a loop if
r({x}) = 0, an element x is a bridge if it is contained in every basis of M , and two
elements x and x ′ are parallel if r({x}) = r({x ′}) = r({x, x ′}) = 1. Note that in
the case of vector matroids, two non-loop elements are parallel if and only if they
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are non-zero multiple of each other. If M is a matroid with ground set X , the dual
matroid, which is denoted by M∗, is the matroid with the same ground set X such
that X ′ ⊆ X is independent in M∗ if and only if rM (X \ X ′) = r(M); in particular,
rM∗(X ′) = rM (X \ X ′) + |X ′| − r(M) for every X ′ ⊆ X .

For a field F, we say that a matroid M is F-representable if every element of M
can be assigned a vector from F

r(M) in such a way that a subset of the ground set of
M is independent if and only if the set of assigned vectors is linearly independent. In
particular, an element of M is a loop if and only if it is assigned the zero vector and
two non-loop elements of M are parallel if and only if they are non-zero multiples
of each other. Such an assignment of vectors of Fr(M) to the elements of M is an
F-representation of M . Clearly, a matroid M is F-representable if and only if it is
isomorphic to the vector matroid given by its F-representation.Matroids representable
over the 2-element field are referred to as binary matroids. We say that a matroid M
is F-represented if the matroid M is given by its F-representation. If a particular field
F is not relevant in the context, we just say that a matroid M is represented to express
that it is given by its representation.

Let M be a matroid with a ground set X . The matroid kM for k ∈ N is the matroid
obtained from M by introducing k − 1 parallel elements to each non-loop element
and k − 1 additional loops for each loop; informally speaking, every element of M
is “cloned” to k copies. Note that a subset X ′ of the elements of kM is independent
if and only if it does not contains two clones of the same element and the set of the
elements of M corresponding to those contained in X ′ is independent. Observe that
if M is a vector matroid, then kM is the vector matroid obtained by adding k − 1
copies of each vector forming M . Similarly, if M is a graphic matroid associated with
a graph G, then kM is the graphic matroid obtained from the graph G by duplicating
each edge k − 1 times.

If X ′ ⊆ X , then the restriction of M to X ′, which is denoted by M
[
X ′], is the

matroid with the ground set X ′ such that a subset of X ′ is independent in M
[
X ′] if

and only if it is independent in M . In particular, the rank of M
[
X ′] is rM (X ′). For

example, if M is a graphic matroid associated with a graph G, then the restriction of
M to X ′ is the graphic matroid associated with the spanning subgraph of G with edge
set X ′. The matroid obtained from M by deleting X ′ is the restriction of M to X \ X ′
and is denoted by M \ X ′.

The contraction of M by X ′, which is denoted by M/X ′, is the matroid with the
ground set X \ X ′ such that a subset X ′′ of X \ X ′ is independent in M/X ′ if and
only if rM (X ′′ ∪ X ′) = |X ′′| + rM (X ′). If X ′ is a single element set and e is its only
element, we write M \ e and M/e instead of M \ {e} and M/{e}, respectively. If M
is a graphic matroid associated with a graph G and e is an edge of G, then M/e is the
graphic matroid associated with the graph obtained from G by contracting the edge
e (while keeping all resulting loops and parallel edges). If an F-representation of M
is given and X ′ is a subset of the ground set of M , then an F-representation of M/X ′
can be obtained from the F-representation of M by considering the representation in
the quotient space by the linear hull of the vectors representing the elements of X ′.
This leads us to the following definition: if M is an F-represented matroid and A is a
linear subspace of Fr(M), then the matroid M/A is the F-represented matroid with the
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representation of M in the quotient space by A. Note that the ground sets of M and
M/A are the same, in particular, M and M/A have the same number of elements.

A matroid M is connected if every two distinct elements of M are contained in a
common circuit. We remark that the property of being contained in a common circuit
is transitive [46, Proposition 4.1.2], i.e., if the pair of elements e and e′ is contained in
a common circuit and the pair e′ and e′′ is also contained in a common circuit, then the
pair e and e′′ is also contained in a common circuit. If M is an F-represented matroid
with at least two elements, then M is connected if and only if M has no loops and there
do not exist two non-trivial linear spaces A and B of Fr(M) such that A ∩ B contains
the zero vector only and every element of M is contained in A or B (the linear space
F
r(M) would be the direct sum of the linear spaces A and B). Also observe that if M

is a graphic matroid associated with a graph G, then the matroid M is connected if
and only if the graph G is 2-connected.

A component of a matroid M is an inclusion-wise maximal connected restriction of
M ; a component is trivial if it consists of a single loop, and it is non-trivial otherwise.
If M is a vector matroid, then each non-trivial component of M can be associated with
a linear space such that each element of M is contained in one of the linear spaces and
the linear hull of all elements of M is the direct sum of the linear spaces. We often
identify components of a matroid M with their element sets. Using this identification,
it holds that a subset X ′ of a ground set of a matroidM is a component ofM if and only
if X ′ is a component of M∗ (we use this equivalence to prove some of our hardness
results in Sect. 6). We remark that (M∗)∗ = M for every matroid M , and if e is an
element of a matroid M , then (M/e)∗ = M∗ \ e and (M\e)∗ = M∗/e.

2.3 Matrices

In this section, we define notation related to matrices. If F is a field, we write Fm×n for
the set of matrices withm rows and n columns over the fieldF. If A is a rational matrix,
the entry complexity ec(A) is the maximum length of a binary encoding of its entries,
i.e., the maximum of �log2(|p| + 1)	 + �(log2 |q| + 1)	 taken over all entries p/q of
A (where p and q are always assumed to be coprime). If A is an integral matrix, then
ec(A) = �(log ‖A‖∞). Throughout the paper, we use the entry complexity rather than
the �∞-norm of matrices as this permits formulating our results for rational matrices
rather than integral matrices only.

A rational matrix A is z-integral for z ∈ Q if every entry of A is an integral multiple
of z. We say that two matrices A and A′ are row-equivalent if one can be obtained
from another by elementary row operations, i.e., by repeatedly adding a multiple of
one row to another and multiplying a row by a non-zero element. Observe that if A
and A′ are row-equivalent matrices, then their kernels are the same. For a matrix A,
we define M(A) to be the represented matroid whose elements are the columns of A.
Again, if matrices A and A′ are row-equivalent, then the matroids M(A) and M(A′)
are the same.

If A is a matrix, the primal graph of A is the graph whose vertices are columns
of A and two vertices are adjacent if there exists a row having non-zero elements
in the two columns associated with the vertices; the dual graph of A is the graph
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Fig. 2 The primal graph, the dual graph and the incidence graph of the depicted matrix A

whose vertices are rows of A and two vertices are adjacent if there exists a column
having non-zero elements in the two associated rows; the incidence graph of A is the
bipartite graph with one part formed by rows of A and the other part by columns of A
and two vertices are adjacent if the entry in the associated row and in the associated
column is non-zero. See Fig. 2 for an example. The primal tree-depth of A, denoted by
tdP (A), is the tree-depth of the primal graph of A, the dual tree-depth of A, denoted
by tdD(A), is the tree-depth of the dual graph of A, and the incidence tree-depth of
A, denoted by tdI (A), is the tree-depth of the incidence graph of A. Finally, td∗

P (A) is
the smallest primal tree-depth of a matrix row-equivalent to A, td∗

D(A) is the smallest
dual tree-depth of a matrix row-equivalent to A, and td∗

I (A) is the smallest incidence
tree-depth of a matrix row-equivalent to A.

A circuit of a rational matrix A is a support-wise minimal integral vector contained
in the kernel of A such that all its entries are coprime; the set of circuits of A is denoted
by C(A). Note that a set X of columns is a circuit in the matroid M(A) if and only
if C(A) contains a vector with the support exactly equal to X . We write c1(A) for
the maximum �1-norm of a circuit of A and c∞(A) for the maximum �∞-norm of a
circuit of A. Note if A and A′ are row-equivalent rational matrices, then C(A) = C(A′)
and so the parameters c1(·) and c∞(·) are invariant under elementary row operations.
Following the notation from [21], we write κ̇A for the least common multiple of the
entries of the circuits of A. Observe that there exists a function f : N → N such that
κ̇A ≤ f (c∞(A)) for every matrix A.

If x and y are two d-dimensional vectors, we write x � y if |xi | ≤ |yi | for all
i ∈ [d] and x and y are in the same orthant, i.e., xi and yi have the same sign (or one or
both are zero) for all i ∈ [d]. The Graver basis of a matrix A, denoted by G(A), is the
set of the �-minimal non-zero elements of the integer kernel kerZ(A). We use g1(A)

and g∞(A) for the Graver basis of A analogously to the set of circuits, i.e., g1(A) is
the maximum �1-norm of a vector in G(A) and g∞(A) is the maximum �∞-norm of a
vector in G(A). Again, the parameters g1(·) and g∞(·) are invariant under elementary
row operations as the Graver bases of row-equivalent matrices are the same. Note that
every circuit of a matrix A belongs to the Graver basis of A, i.e., C(A) ⊆ G(A), and
so it holds that c1(A) ≤ g1(A) and c∞(A) ≤ g∞(A) for every matrix A.

The existence of efficient algorithms for integer programming with of constraint
matrices A with bounded primal and dual tree-depth is closely linked to bounds on
the norm of elements of the Graver basis of A. In particular, Koutecký, Levin and Onn
[44] established the following.
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Fig. 3 A deletion-tree and a contraction-tree of the depicted binary matroid M , which is also the graphic
matroid associated with the depicted graph

Theorem 9 There exist functions fP , fD : N
2 → N such that the following

holds for every rational matrix A: g∞(A) ≤ fP (tdP (A), ec(A)) and g1(A) ≤
fD(tdD(A), ec(A)).

2.4 Matroid depth parameters

We now define matroid depth parameters that will be of importance further. We start
with the notion of deletion-depth and contraction-depth, which were introduced by
DeVos, Kwon and Oum [16].

The deletion-depth of a matroid M , denoted by dd(M), is defined recursively as
follows:

– If M has a single element, then dd(M) = 1.
– If M is not connected, then dd(M) is the maximum deletion-depth of a component
of M .

– Otherwise, dd(M) = 1 + min
e∈M dd(M \ e), i.e., dd(M) is 1 plus the minimum

deletion-depth of M \ e where the minimum is taken over all elements e of M .

A sequence of deletions of elements witnessing that the deletion-depth of a matroid M
is dd(M) can be visualized by a rooted tree, which we call a deletion-tree, defined as
follows. IfM has a single element, then the deletion-tree ofM consists of a single vertex
labeled with the single element of M . If M is not connected, then the deletion-tree is
obtained by identifying the roots of deletion-trees of the components of M . Otherwise,
there exists an element e of the matroid M such that dd(M) = dd(M \ e) + 1 and
the deletion-tree of M is obtained from the deletion-tree of M \ e by adding a new
vertex adjacent to the root of the deletion-tree of M \ e, changing the root of the tree
to the newly added vertex and labeling the edge incident with it with the element
e. See Fig. 3 for an example. Observe that the height of the deletion-tree is equal to
the deletion-depth of M . In what follows, we consider deletion-trees that need not
to be of optimal height, i.e., its edges can be labeled by a sequence of elements that
decomposes a matroid M in a way described in the definition of the deletion-depth
but its height is larger than dd(M). In this more general setting, the deletion-depth of
a matroid M is the smallest height of a deletion-tree of M .

The contraction-depth of a matroid M , denoted by cd(M), is defined recursively
as follows:

– If M has a single element, then cd(M) = 1.
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Fig. 4 A binary matroid M of
rank four given by its
representation and a tree T as in
the definition of the
contraction∗-depth

– If M is not connected, then cd(M) is the maximum contraction-depth of a com-
ponent of M .

– Otherwise, cd(M) = 1 + min
e∈M cd(M/e), i.e., cd(M) is 1 plus the minimum

contraction-depth of M/e where the minimum is taken over all elements e of
M .

It is not hard to show that dd(M) = cd(M∗) and cd(M) = dd(M∗) for every matroid
M . We define a contraction-tree analogously to a deletion-tree; the contraction-depth
of a matroid M is the smallest height of a contraction-tree of M (an example is given
in Fig. 3).

We next introduce the contraction-deletion-depth; this parameter was studied
under the name type in [17], however, we decided to adopt the name contraction-
deletion-depth from [16], which we find to better fit the context considered here. The
contraction-deletion-depth of a matroid M , denoted by cdd(M), is defined recursively
as follows:

– If M has a single element, then cdd(M) = 1.
– If M is not connected, then cdd(M) is the maximum contraction-deletion-depth
of a component of M .

– Otherwise, cdd(M) = 1 + min
e∈M min{cdd(M \ e), cdd(M/e)}, i.e., cdd(M) is 1

plus the smaller among the minimum contraction-deletion-depth of the matroid
M \ e and the minimum contraction-deletion-depth of the matroid M/e where
both minima are taken over all elements e of M .

Observe that it holds that cdd(M) = cdd(M∗), cdd(M) ≤ dd(M) and cdd(M) ≤
cd(M) for every matroid M .

One of the key parameters in our setting is that of contraction∗-depth; this parameter
was introduced under the name branch-depth in [36] and further studied in [8] but
we decided to use a different name to avoid a possible confusion with the notion of
branch-depth introduced in [16].We first introduce the parameter for general matroids,
and then present an equivalent definition for represented matroids, which is more
convenient to work in our setting. The contraction∗-depth of a matroid M , denoted
by c*d(M), is the smallest depth of a rooted tree T with exactly r(M) edges with the
following property: there exists a function f from the ground set of M to the leaves
of T such that for every subset X of the ground set of M the total number of edges
contained in paths from the root to vertices of X is at least r(X). An example is given
in Fig. 4.
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There is an alternative definition of the parameter for represented matroids, which
also justifies the name that we use for the parameter. The contraction∗-depth of a
represented matroid M can be defined recursively as follows:

– If M has rank zero, then c*d(M) = 0.
– If M is not connected, then c*d(M) is the maximum contraction∗-depth of a com-
ponent of M .

– Otherwise, c*d(M) is 1 plus theminimum contraction∗-depth of amatroid obtained
from the matroid M by factoring along an arbitrary one-dimensional subspace.

As the contraction in the definition is allowed to be by an arbitrary one-dimensional
subspace, not only by a subspace generated by an element of M , it follows that
c*d(M) ≤ cd(M).

The sequence of such contractions can be visualized by a contraction∗-tree that is
defined in the sameway as a contraction-tree except that one-vertex trees are associated
withmatroids of rank zero (rather thanmatroids consisting of a single element) and the
edges are labeled by one-dimensional subspaces. If each one-dimensional subspace
that is the label of an edge of the tree is generated by an element of the matroid
M , we say that the contraction∗-tree is principal and we view the edges of the tree
as labeled by the corresponding elements of M . Note that the minimum depth of a
principal contraction∗-tree of amatroidM is an upper bound on its contraction∗-depth,
however, in general, the contraction∗-depth of a matroid M can be smaller than the
minimum depth of a principal contraction∗-tree of M . We point out that the notions of
principal contraction∗-trees and contraction-trees differ in a subtle but important way.
For example, if M is a vector matroid of rank one containing a single element e, its
only contraction-tree consists of a root labeled by ewhile its only contraction∗-tree has
a root and a leaf adjacent to it and the edge joining them is labeled with (the subspace
generated by) e. However, if M is a vector matroid of rank one containing two parallel
elements e and e′, any contraction-tree and any contraction∗-tree of M has depth one.
Still, the minimum depth of a principal contraction∗-tree of M is either cd(M) − 1 or
cd(M).

Kardoš et al. [36] established the connection between the contraction∗-depth and
the existence of a long circuit, which is described in Theorem 10 below; Theorem 10
implies that cd(M) ≤ k2 + 1 where k is the size of the largest circuit of M .

Theorem 10 Let M be a matroid and k the size of its largest circuit. It holds that
log2 k ≤ c*d(M) ≤ k2. Moreover, there exists a polynomial-time algorithm that for an
input oracle-given matroid M outputs a principal contraction∗-tree of depth at most
k2.

We next introduce the parameter of contraction∗-deletion-depth, which we believe
to have not been yet studied previously, butwhich is particularly relevant in our context.
To avoid unnecessary technical issues, we introduce the parameter for represented
matroids only. The contraction∗-deletion-depth of a represented matroid M , denoted
by c*dd(M), is defined recursively as follows:

– If M has rank zero, then c*dd(M) = 0;
– if M has a single non-loop element, then c*dd(M) = 1.

123



Characterization of matrices with bounded graver bases…

– If M is not connected, then c*dd(M) is the maximum contraction∗-deletion-depth
of a component of M .

– Otherwise, c*dd(M) is 1 plus the smaller among the minimum contraction∗-
deletion-depth of the matroid M \e, where the minimum is taken over all elements
of M , and the minimum contraction∗-deletion-depth of a matroid obtained from
M by factoring along an arbitrary one-dimensional subspace.

Observe that c*dd(M) ≤ cdd(M) and c*dd(M) ≤ c*d(M) for every matroid M .
Finally, if A is a matrix, the deletion-depth, contraction-depth, etc. of A is the

corresponding parameter of the vector matroid M(A) formed by the columns of A,
and we write dd(A), cd(A), etc. for the deletion-depth, contraction-depth, etc. of the
matrix A. Observe that the deletion-depth, contraction-depth etc. of a matrix A is
invariant under elementary row operations as elementary row operations preserve the
matroid M(A).

3 Structural results

In this section, we prove our structural results concerning optimal primal tree-depth
and optimal incidence tree-depth of a matrix. We start with presenting an algorithm,
which uses a deletion-tree of the matroid associated with a given matrix to construct
a row-equivalent matrix with small primal tree-depth.

Lemma 1 There exists a polynomial-time algorithm that for an input matrix A and a
deletion-tree of M(A) with height d outputs a matrix A′ row-equivalent to A such that
tdP (A′) ≤ d.

Proof We establish the existence of the algorithm by proving that tdP (A′) ≤ d in a
constructive (algorithmic) way. Fix a matrix A and a deletion-tree T of M(A) with
height d.

Let X be the set of non-zero columns that are labels of the vertices of T . We show
that the columns contained in X form a basis of the column space of the matrix A.
As the matroid obtained from M(A) by deleting the labels of the edges of T has no
component of size two or more, the columns contained in X are linearly independent.
Suppose that there exists a non-zero column x that is not a linear combination of the
columns contained in X , and choose among all such columns the label of an edge
e as far from the root of T as possible. Since the element x does not form its own
component in the matroid obtained from M by deleting the labels of all edges on the
path from the root to e (excluding e), x is a linear combination of the labels of the
vertices and edges of the subtree of T delimited by e. This implies that either x is a
linear combination of the columns in X or there is a label of an edge of this subtree
that is not a linear combination of the columns in X contrary to the choice of x . We
conclude that X is a basis of the column space of A. In particular, unless A is the zero
matrix, the set X is non-empty.

Let A′ be the matrix obtained from A by elementary row operations such that
the submatrix of A′ induced by the columns of X is the unit matrix and with some
additional zero rows; note that the set X is determined by the input deletion-tree and
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Fig. 5 A binarymatrix A, a deletion-tree of the matroidM(A) and the matrix A′ as in the proof of Lemma 1.
Note that X = {a, b, f }

so the matrix A′ depends on the deletion-tree. See Fig. 5 for an example. This finishes
the construction of A′ and, in particular, the description of the algorithm to produce
the output matrix A′. To complete the proof, it remains to show that the primal tree-
depth of A′ is at most d, i.e., the correctness of the algorithm. This will be proven by
induction on the number of columns of an input matrix A.

The base of the induction is the case when A has a single column. In this case,
the primal tree-depth of A′ is one and the tree T is a single vertex labeled with the
only column of A, and so its height is one. We next present the induction step. First
observe that every label of a vertex of T is either in X or a loop in M(A) (recall that
only non-zero columns of A are included to X ), and every label of an edge e is a linear
combination of labels of the vertices in the subtree delimited by e.

Suppose that the root of T has a label and let x be one of its labels; note that x is
either a loop or a bridge in the matroid M(A). Let B be the matrix obtained from A
by deleting the column x , and let T ′ be the deletion-tree of M(B) obtained from T by
removing the label x from the root. Let B ′ be the matrix produced by the algorithm
described above for B and T ′. If x is a loop, then the matrix A′ is the matrix B ′
extended by a zero column with possibly permuted rows, and if x is a bridge (and so
x ∈ X ), then the matrix A′ is, possibly after permuting rows, the matrix B ′ extended
by a unit vector such that its non-zero entry is the only non-zero entry in its row. In
either case, the vertex associated with the column x is isolated in the primal graph of
A′, and it follows that tdP (A′) = tdP (B ′) ≤ d (the inequality holds by the induction
hypothesis). Hence, we can assume that the root of T has no label.

We next analyze the case that the root of T has a single child and no label. Let
x be the label of the single edge incident with the root of T . Let B be the matrix
obtained from A by deleting the column x , and let T ′ be the deletion-tree of M(B)

obtained from T by deleting the edge incident with the root and rooting the tree at the
remaining vertex of the deleted edge. Let B ′ be the matrix produced by the algorithm
described above for B and T ′; note that the primal tree-depth of B ′ is at most d − 1
by the induction hypothesis. Since B ′ is the submatrix of A′ formed by the columns
different from x (possibly after permuting rows), the primal tree-depth of A′ is at most
tdP (B ′) + 1 = d.

The final case to analyze is the case when the root of T has k ≥ 2 children (in
addition to having no label). Let T1, . . . , Tk be the k subtrees of T delimited by the k
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edges incident with the root of T , let Y1, . . . ,Yk be the labels of the vertices and edges
of these subtrees, and let B1, . . . , Bk be the submatrices of A formed by the columns
contained in Y1, . . . ,Yk . Observe that Ti is a deletion-tree of the matroid M(Bi ) for
i = 1, . . . , k, and the matrix B ′

i produced by the algorithm described above for Bi
and Ti is the submatrix of A′ formed by the columns contained in Yi (possibly after
permuting rows). Since the support of the columns contained in Yi contains only the
unit entries of the columns of A′ contained in X ∩ Yi , the primal graph of A′ contains
no edge joining a column of Yi and a column of Y j for i �= j . It follows that the primal
tree-depth of A′ is at most the maximum primal tree-depth of Bi , which is at most d
by the induction hypothesis. It follows that tdP (A′) ≤ d as desired. The proof of the
correctness of the algorithm is now completed and so is the proof of the lemma. ��

We are now ready to establish the link between the optimal primal tree-depth and
the deletion-depth of the matroid associated with the matrix.

Proof of Theorem 2 Fix a matrix A. By Lemma 1, it holds that td∗
P (A) ≤ dd(A) as

there exists a deletion-tree of the matroid M(A) with height dd(A). So, we focus on
proving that dd(A) ≤ td∗

P (A).Wewill show that everymatrix B satisfies that dd(B) ≤
tdP (B); this implies that dd(A) ≤ tdP (A′) for every matrix A′ row-equivalent to A
as dd(A) = dd(A′) and so implies that dd(A) ≤ td∗

P (A).
The proof that dd(B) ≤ tdP (B) proceeds by induction on the number of columns.

If B has a single column, then both dd(B) and tdP (B) are equal to one. We next
present the induction step. We first consider the case when the matroid M(B) is not
connected. Let B1, . . . , Bk be the submatrices of B formed by columns corresponding
to the components of M(B); note that some of the submatrices may consist of a single
zero column (if M(B) has a loop). The definition of the deletion-depth implies that
dd(B) is the maximum among dd(B1), . . . , dd(Bk). On the other hand, the primal
tree-depth of each of the matrices Bi is at most the primal tree-depth of the matrix
B as the primal graph of Bi is a subgraph of the primal graph of B. It follows that
dd(Bi ) ≤ tdP (B), which implies that dd(B) ≤ tdP (B).

We next assume that thematroidM(B) is connected and claim that the primal graph
of B must also be connected. Suppose that the primal graph of B is not connected, i.e.,
there exists a partition of rows of B into R1 and R2 and a partition of the columns into
C1 and C2, such that for each i = 1, 2, the support of each column in Ci is contained
in Ri . Therefore, for any dependent set of columns of B, either its subset formed by
columns contained in C1 is dependent, or its subset formed by by columns contained
in C2 is dependent, or both these subsets are dependent. It follows that the support of
every circuit of M(B) is fully contained in either C1 or C2; in particular, no there is
no circuit of M(B) containing a column from C1 and a column from C2. This implies
that M(B) is not connected. Hence, the primal graph of B must be connected.

Since the primal graph of B is connected, there exists a column such that the matrix
B ′ obtained by deleting this column satisfies that tdP (B ′) = tdP (B)−1. The induction
assumption yields that dd(B ′) ≤ tdP (B) − 1 and the definition of the deletion-depth
yields that the deletion-depth ofM(B) is atmost the deletion-depth ofM(B ′) increased
by one. This implies that dd(B) = dd(M(B)) ≤ tdP (B) as desired. ��
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Before proceeding with our structural result concerning incidence tree-depth, we
use the structural results presented in Lemma 1 and Theorem 2 to get a parameterized
algorithm for computing an optimal primal tree-depth of a matrix over a finite field.

Corollary 1 There exists a fixed parameter algorithm for the parameterization by a
finite field F and an integer d that for an input matrix A over the field F,

– either outputs that td∗
P (A) > d, or

– computes a matrix A′ row-equivalent to A with tdP (A′) ≤ d and also outputs the
associated deletion-tree of M(A) with height tdP (A′).

Proof Wefirst show that the property that amatroidM has deletion depth at most d can
be expressed inmonadic secondorder logic.Recall thatmonadic secondorder formulas
for matroids may contain quantification over elements and subsets of elements of a
matroid, and the predicateψI (·) used to test whether a particular subset is independent
in addition to logic connectives and the equality =, the set inclusion ∈ and the subset
inclusion⊆. In the formulas thatwe present, small letters are used to denote elements of
amatroid and capital letters subsets of the elements.We next present amonadic second
order formula ψd(X) that describes whether the deletion-depth of the restriction of
the matroid M to a subset X of the elements of M is at most d, which would imply the
statement. The following formulaψc(·, ·)describes the existence of a circuit containing
two distinct elements:

ψc(x, y) ≡ (x �= y) ∧ (∃X : x ∈ X ∧ y ∈ X ∧ ¬ψI (X) ∧ ∀z ∈ X : ψI (X \ z) ) .

The next formula ψC (·) describes whether a subset X is a component of a matroid
(recall that the binary relation of two matroid elements being contained in a common
circuit is transitive):

ψC (X) ≡ (∀x, y ∈ X : x �= y ⇒ ψc(x, y) ) ∧ (∀x ∈ X , y /∈ X : ¬ψc(x, y) ) .

The sought formula ψd(·) is defined inductively as follows (we remark that ψd(∅) is
true for all d):

ψ1(X) ≡ ∀x, y ∈ X : x �= y ⇒ ¬ψc(x, y) and

ψd(X) ≡ ∀X ′ ⊆ X : ψC (X ′) ⇒ ∃x ∈ X ′ : ψd−1(X
′ \ {x}) for d ≥ 2.

Hliněný [29, 30] proved that all monadic second order logic properties can be tested
in a fixed parameter way for matroids represented over a finite field F with branch-
width at most d when parameterized by the property, the field F and the branch-width
d. Since the branch-width of a matroid M is at most its deletion-depth, it follows that
testing whether the deletion-depth of an input matroid represented over a finite field
F is at most d is fixed parameter tractable when parameterized by the field F and
the integer d. This establishes the existence of a fixed parameter algorithm deciding
whether td∗

P (A) = dd(M(A)) ≤ d (the equality follows from Theorem 2). To obtain
the algorithm claimed to exist in the statement of the corollary, we need to extend the
algorithm for testing whether the deletion-depth of an input matroid M represented
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over F is at most d to an algorithm that also outputs a deletion-tree of M with height
at most d; this would yield an algorithm for computing A′ by Lemma 1.

We now describe the extension of the algorithm from testing to constructing a
deletion-decomposition tree as a recursive algorithm. Let d be the computed deletion-
depth of an input matroid M . The deletion-depth of an input matroid M is one if
and only if every element of M is a loop or a bridge. Since the latter is easy to
algorithmically test, if d = 1, then the deletion-tree of height one consists of a single
vertex labeled with all elements ofM . If d ≥ 2 and thematroidM is not connected, we
first identify its components, which can be done in polynomial time even in the oracle
model, then proceed recursively with each component of M and eventually merge the
roots of all deletion-trees obtained recursively.

Finally, we discuss the case when d ≥ 2 and the matroid M is connected. We loop
over all elements e of M and test using the monadic second order checking algorithm
of Hliněný [29, 30] whether dd(M \e) ≤ d−1, i.e., whetherψd−1(M \e) is true. Such
an element emust exist (otherwise, the deletion-depth ofM cannot be d) and when e is
found, we recursively apply the algorithm to M \e to obtain a deletion-tree T of M \e
with height d−1. Note that there is a single recursive call as we invoke recursion for a
single element e of thematroidM . The tree T returned by the recursive call is extended
to a deletion-tree of M by introducing a new vertex, joining it by an edge to the root
of T , rerooting the tree to the new vertex, and labeling the new edge with the element
e. This completes the description of the algorithm for constructing a deletion-tree of
height at most d if it exists. Observe that the running time of the described procedure
for constructing a deletion-tree is bounded by the product of the number of elements of
M and the running time of the test whether an input matroid is connected and the test
whether an input matroid satisfies ψ1(·), . . . , ψd(·); in particular, it is fixed parameter
when parameterized by a finite field F and an integer d. ��

We conclude this section by establishing a link between the optimal incidence tree-
depth and the contraction∗-deletion-depth of the matroid associated with the matrix.

Proof of Theorem 3 We prove the equality as two inequalities starting with the inequal-
ity c*dd(A) ≤ td∗

I (A)−1. To prove this inequality, we show that c*dd(A) ≤ tdI (A)−1
holds for every matrix A with m rows and n columns by induction on m + n. The
base of the induction is formed by the cases when all entries of A are zero, n = 1 or
m = 1. If all entries of A are zero, then c*dd(A) = 0 and tdI (A) = 1. If n = 1 and A
is non-zero, then M(A) has a single non-loop element and so c*dd(A) = 1 while the
incidence graph of A is formed by a star and possibly some isolated vertices and so
tdI (A) = 2. Finally, ifm = 1 and A is non-zero, then M(A) has rank 1, so contracting
any non-loop element of M(A) yields a matroid of rank zero and so c*dd(A) = 1. On
the other hand, the incidence graph of A is formed by a star and possibly some isolated
vertices and so tdI (A) = 2.

We now establish the induction step, i.e., we assume that the matrix A is non-
zero, m ≥ 2 and n ≥ 2. First suppose that the matroid M(A) is not connected.
Let X1, . . . , Xk be the components of M(A) and let A1, . . . , Ak be the submatri-
ces of A formed by the columns X1, . . . , Xk , respectively. The definition of the
contraction∗-deletion-depth implies that c*dd(A) is the maximum of c*dd(Ai ). The
induction hypothesis yields that c*dd(Ai ) ≤ tdI (Ai )− 1. Since the incidence graph of
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Ai is a subgraph of the incidence graph of A, it follows that tdI (Ai ) ≤ tdI (A) and so
c*dd(Ai ) ≤ tdI (A) − 1. We conclude that c*dd(A) ≤ tdI (A) − 1.

Next suppose that thematroidM(A) is connected but the incidence graph of A is not
connected. As the columns associated with vertices contained in different components
of the incidence graph of A have disjoint supports, such columns cannot be contained
in the same component of the matroid M(A). Hence, if the incidence graph of A is
not connected despite the matroid M(A) being connected, then the incidence graph
of A consists of a single non-trivial component and isolated vertices associated with
zero rows of A. Let x be one such row and let A′ be the matrix obtained from A
by deleting the row x . Since the matroids M(A) and M(A′) are the same, it holds
that c*dd(A) = c*dd(A′), and since the incidence graph of A is the incidence graph
of A′ with an isolated vertex added, it holds tdI (A) = tdI (A′). Hence, the induction
hypothesis yields that c*dd(A′) ≤ tdI (A′)−1,which implies that c*dd(A) ≤ tdI (A)−1.

Finally, suppose that thematroidM(A) is connected and the incidence graph of A is
also connected. The definition of the tree-depth implies that there exists a vertex w of
the incidence graph whose deletion decreases the tree-depth of the incidence graph by
one. Let A′ be thematrix obtained from A by deleting the row or the column associated
with the vertexw and note that tdI (A′) = tdI (A)−1. If the vertexw is associated with
a column x , the matroid M(A′) is the matroid obtained from M(A) by deleting the
element x . If the vertexw is associated with a row x , the matroid M(A′) is the matroid
obtained from M(A) by contracting by the subspace generated by the unit vector with
the entry in the row x . In either case, the definition of the contraction∗-deletion-depth
implies that c*dd(A) ≤ c*dd(A′) + 1. The induction hypothesis applied to A′ yields
that c*dd(A′) ≤ tdI (A′) − 1, which yields that c*dd(A) ≤ tdI (A′) = tdI (A) − 1.

To complete the proof of the theorem, it remains to show that the inequality td∗
I (A) ≤

c*dd(A)+1 holds for every matrix A. The proof proceeds by induction on the number
n of columns of A. If n = 1 and the only column of A is zero, then the incidence graph
of A is formed by isolated vertices and so td I (A) = 1 while c*dd(A) = 0 since the
rank of M(A) is zero. If n = 1 and the only column of A is not zero, then the incidence
graph of A is formed by a star and possibly some isolated vertices and so tdI (A) = 2
while c*dd(A) = 1. In either case, it holds that td∗

I (A) ≤ tdI (A) = c*dd(A) + 1.
We now establish the induction step. First suppose that the matroid M(A) is not

connected. Let X1, . . . , Xk be the sets of columns forming the components of M(A)

and let A′ be thematrix row-equivalent to A such that there exist sets of rowsY1, . . . ,Yk
such that |Yi | = rM(A)(Xi ) for i = 1, . . . , k and the only columns with non-zero
entries in the rows Yi are those of Xi and all rows not contained in Y1 ∪ · · · ∪ Yk are
zero (such a matrix A′ exists since the matroid M(A) is union of its restrictions to
X1, . . . , Xk). Let A′

i be the submatrix of A′ formed by the rows of Yi and the columns
of Xi . Observe that all entries of the matrix A not contained in one of the matrices
A′
1, . . . , A

′
k are zero. By the induction hypothesis, for every i = 1, . . . , k, there exists a

matrix A′′
i row-equivalent to A

′
i such that td I (A

′′
i ) ≤ c*dd(M(A) [Xi ])+1, in particular,

tdI (A′′
i ) ≤ c*dd(A) + 1. Let A′′ be the matrix obtained from A′ by replacing A′

i with
A′′
i for i = 1, . . . , k. Observe that A′′ is row-equivalent to A′ and so to A. Since

the incidence graph of A′′ is the union of the incidence graphs of A′′
i , i = 1, . . . , k,
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and possibly some isolated vertices (which correspond to zero rows), it follows that
tdI (A′′) ≤ c*dd(A) + 1. Hence, it holds that td∗

I (A) ≤ c*dd(A) + 1.
To complete the proof, we need to consider the case that the matroid M(A) is

connected. The definition of the contraction∗-deletion-depth implies that there exists
an element x of M(A) such that c*dd(M(A)\x) = c*dd(M(A)) − 1 = c*dd(A) − 1
or there exists a one-dimensional subspace such that the contraction by this subspace
yields a matroid M ′ such that c*dd(M ′) = c*dd(M(A)) − 1 = c*dd(A) − 1. In the
former case, let A′ be the matrix obtained from A by deleting the column x . By
the induction hypothesis, there exists a matrix A′′ row-equivalent to A′ such that
tdI (A′′) ≤ c*dd(A′) + 1 = c*dd(A), and let A′′′ be the matrix obtained from A by
the same elementary row operations that A′′ is obtained from A′. Observe that the
incidence graph of A′′ can be obtained from the incidence graph of A′′′ by deleting
the vertex associated with the column x . Hence, tdI (A′′′) ≤ tdI (A′′) + 1. Since A′′′
is row-equivalent to A, it follows that

td∗
I (A) ≤ tdI (A

′′′) ≤ tdI (A
′′) + 1 ≤ c*dd(A) + 1.

We now analyze the latter case, i.e., the case that there exists a one-dimensional
subspace such that the contraction by this subspace yields a matroid M ′ with
c*dd(M ′) = c*dd(A) − 1. Let A′ be the matrix obtained from A by elementary row
operations such that the contracted subspace used to obtain M ′ is generated by the unit
vector with the non-zero entry being its first entry, and let B be the matrix obtained
from A′ by deleting the first row. By the induction hypothesis, there exists a matrix
B ′ row-equivalent to B such that tdI (B ′) ≤ c*dd(A′) + 1 = c*dd(A), and let A′′
be the matrix consisting of the first row of A and the matrix B ′. Observe that A′′ is
row-equivalent to A. Since the incidence graph of B ′ can be obtained from the inci-
dence graph of A′′ by deleting the vertex associated with the first row, it holds that
tdI (A′′) ≤ tdI (B ′) + 1. Hence, it follows that

td∗
I (A) ≤ tdI (A

′′) ≤ tdI (B
′) + 1 ≤ c*dd(A) + 1.

The proof of the theorem is now completed. ��

4 Primal tree-depth

In this section, we present a parameterized algorithm for computing a row-equivalent
matrix with small primal tree-depth and bounded entry complexity if such a matrix
exists.

Proof of Theorem 6 We first find a bound on κ̇B when B is an integer matrix with
tdP (B) ≤ d and ec(B) ≤ e (recall that κ̇B is the least common multiple of the entries
of the circuits of B). Consider such a square invertible matrix C with tdP (C) ≤ d and
ec(C) ≤ e. By the result of Brand, Ordyniak and the second author [5], the maximum
denominator appearing over all entries of C−1 can be bounded by a function of d
and e; in particular, there exists k0 ≤ (2e)d!(d!)d!/2 such that every entry of C−1 is
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1/k-integral for some k ≤ k0. Set κ0 to be the least common multiple of the integers
1, . . . , k0. By [21, Theorem3.8], κ̇B is the smallest integer such that every denominator
of the inverse of every invertible square submatrix of B divides κ̇B . Since the primal
tree-depth of any square submatrix of B at most the primal tree-depth of B, κ̇B divides
κ0 for every matrix B with tdP (B) ≤ d and ec(B) ≤ e. In particular, κ̇B ≤ κ0 for
every matrix B with tdP (B) ≤ d and ec(B) ≤ e.

We next describe the algorithm from the statement of the theorem. Without loss of
generality, we can assume that the rank of the input matrix A is equal to the number
of its rows, in particular, A is non-zero. The algorithm starts with diagonalizing the
square submatrix of the input matrix A formed by an arbitrary basis of the column
space, i.e., performing elementary row operations so that the selected columns form
the identity matrix. The resulting matrix is denoted by AI . If the numerator or the
denominator of any (non-zero) entry of AI does not divide κ0, the algorithm arrives
at the first conclusion of the theorem as every (non-zero) entry of AI is a fraction that
can be obtained by dividing two entries of a circuit of A (indeed, consider the circuit
of the matrix A with support formed by a column x and some of the columns of the
chosen basis, and observe that each entry in the column x is equal to the x-entry of
the circuit divided by one of its other entries). Hence, we assume that both numerator
and denominator of each (non-zero) entry of AI divides κ0 in the rest. The algorithm
multiplies AI by κ0, which yields an integral matrix A0 with entries between −κ2

0 and
κ2
0 .
Let MQ be the column matroid of A0 when viewed as a matrix over rationals and

let Mp be the column matroid of A0 when viewed as a matrix over a p-element field
Fp for a prime p > κ2

0 ; note that such a prime p can be found algorithmically as the
algorithm is parameterized by d and e and κ0 depends on d and e only. Note that the
elements of both matroids MQ and Mp are the columns of the matrix A0, i.e., we can
assume that their ground sets are the same, and the matroid MQ is the column matroid
of A, which is a matrix over rationals.

We now establish the following claim: if A is row-equivalent to a matrix with
primal tree-depth at most d and entry complexity at most e, then the matroids MQ

and Mp are the same. If a set X of columns forms a circuit in MQ, then there exists a
linear combination of the columns of X that has all coefficients integral and coprime,
i.e., not all are divisible by p, and that is equal to the zero vector (in fact, there exist
such coefficients that they all divide κ0 by the definition of κ0); it follows that the
set X is also dependent in Mp. If a set X of columns is independent in MQ, let BI

be an invertible square submatrix of AI formed by the columns X and |X | rows, and
let B0 be the square submatrix of A0 formed by the same rows and columns. By [21,
Lemma 3.3], the matrix B−1

I is 1/κ̇A-integral and the absolute value of both numerator
and denominator of each entry of B−1

I is at most κ̇A. Note that κ̇A divides κ0 (here, we
use the definition of κ0 and the assumption that A is row-equivalent to a matrix with
primal tree-depth at most d and entry complexity at most e) and so the matrix B−1

I
is 1/κ0-integral and the absolute value of both numerator and denominator of each
entry of B−1

I is at most κ0. Let B ′ be the matrix obtained from B−1
I by multiplying

each entry by κ0; note that B ′ is an integer matrix with entries between −κ2
0 and κ2

0 .
The definitions of the matrices BI , B0 and B ′ yield that the product of the matrix B ′
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when viewed as over Fp and the matrix B0 has numerically the same entries as the
matrix (κ0B

−1
I )(κ0BI ), which is a diagonal matrix with all diagonal entries equal to

κ2
0 . Hence, the matrix B0 is full rank (over the field Fp) and so the set X is independent
in Mp.

We now continue the description of the algorithm that is asserted to exist in the
statement of the theorem. As the next step, we apply the algorithm from Corollary 1 to
thematrix A0 viewed as over the fieldFp. If the algorithm determines that the deletion-
depth of A0 is larger than d, we arrive at the first conclusion of the theorem: either
the matroids MQ and Mp are different (and so A is not row-equivalent to a matrix
with primal tree-depth at most d and entry complexity at most e), or the matroids
MQ and Mp are the same but dd(A) = td∗

P (A) > d. If the algorithm determines
that the deletion-depth of A0 is at most d, it also outputs a deletion-tree of Mp with
height at most d. If the output deletion-tree is not valid for the matroid MQ, which
can be verified in polynomial time, the matroids MQ and Mp are different and we
again arrive at the first conclusion of the theorem. If the output deletion-tree is also
a deletion-tree of the matroid MQ, we use the algorithm from Lemma 1 to obtain a
matrix A′ row-equivalent to A such that the primal tree-depth of A′ at most the height
of the deletion-tree, i.e., tdP (A′) ≤ d. As the matrix A′ contains a unit submatrix
formed by m rows and m columns, each (non-zero) entry of A′ is a fraction that can
be obtained by dividing two entries of a circuit of A (as argued earlier). If the absolute
value of the numerator or the denominator of any of these fractions exceeds κ0, then
c∞(A) > κ0 and we again arrive at the first conclusion of the theorem. Otherwise, we
output the matrix A′. Note that the primal tree-depth of A′ is at most d and its entry
complexity is at most 2�log2 (κ0 + 1)	. As κ0 depends on d and e only, the matrix A′
has the properties given in the second conclusion of the theorem. ��

5 Dual tree-depth, circuit complexity and Graver basis

In this section, we link minimum dual tree-depth of a matrix to its circuit complexity,
and also present related algorithmic results. We start with proving Theorem 5; in fact,
we show that a matrix row-equivalent to an input matrix A such that both its dual tree-
depth and entry complexity bounded by a function of c1(A) can be found efficiently.
Note that the algorithmpresented in the next theorem is not afixedparameter algorithm,
i.e., its running time is polynomial in the size of an input matrix.

Theorem 11 There exists a polynomial-time algorithm that for a given rational matrix
A with dim ker A > 0 outputs a row-equivalent matrix A′ such that tdD(A′) ≤ c1(A)2

and ec(A′) ≤ 2�log2(c1(A) + 1)	.
Proof We start with the description of the algorithm from the statement of the theorem.
Let A be the input matrix. We apply the algorithm from Theorem 10 to the matroid
M(A) given by the columns of the matrix A. Let T be the principal contraction∗-tree
output by the algorithm and let X be the set of columns of A that are the labels of
the edges of T , i.e., the elements of M(A) used in the contractions. Observe that the
definition of the contraction∗-depth and the principal contraction∗-tree yields that the
labels of the edges of T form a basis X of M(A) and for every element z of M(A)
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there is a leaf v of T such that z is contained in the linear hull of the labels of the
edges on the path from v to the root of T . Next perform row-operations on the matrix
A in a way that the submatrix formed by the columns of X is an identity matrix (with
additional zero rows if the rank of A is smaller than the number of its rows); let A′
be the resulting matrix; see Fig. 6 for an example. The algorithm outputs the matrix
A′. Note that the running time of the algorithm is indeed polynomial in the size of the
input matrix A.

We next analyze the matrix A′ that is output by the algorithm. Since dim ker A > 0,
thematrix A has at least one circuit. Recall that for every circuitC of thematroidM(A),
there exists a circuit of A whose support is exactly formed by the elements of C . This
implies that every circuit of M(A) contains at most c1(A) elements and so Theorem
10 implies that the depth of the principal contraction∗-tree T is at most c1(A)2.

Let F be a rooted forest obtained from the tree T as follows. For each edge e,
the vertex of e farther from the root is identified with the (unique) row of A′ that is
non-zero in the column that is the label of the edge e (recall that the columns of X
form an identity matrix), and then remove the root of T ; also add an isolated vertex for
each zero row of A′. In this way, we obtain a rooted forest F with vertex set formed
by the rows of A′. Note that the height of F is at most c1(A)2. We will show that the
dual graph of A′ is a subgraph of cl(F). As no column of X contributes any edges to
the dual graph of A′, it is enough to consider columns not contained in X . Let z be a
column of A′ that is not contained in X and let v be a leaf of T such that the column
z of A, which is an element of M(A), is contained in the linear hull of the labels of
the edges on the path from v to the root of T . Hence, the column z of A′ contains
non-zero entries only in the rows with non-zero entries in the columns that are labels
of the edges on the path from v to the root of T . Consequently, all edges contained in
the dual graph of A′ because of non-zero entries in the column z are between vertices
on the path from the vertex v in F to the root of the corresponding tree of F . It follows
that the dual graph of A′ is a subgraph of cl(F) and so its tree-depth is at most the
height of F , i.e., it is at most c1(A)2. We conclude that tdD(A′) ≤ c1(A)2.

It remains to analyze the entry complexity of A′. The entries of A′ in the columns
of X are zero or one. Next consider a column z of A′ that is not contained in X and
consider a circuit c of A′ (and so of A) whose support contains z and some elements
of X (such a circuit exists as the columns of X form a basis of the column space
of A′). Observe that the entries in the column z are equal to −cx/cz (otherwise, c
would not be a circuit of A′). We conclude that the entry complexity of A′ is at most
2�log2(c1(A) + 1)	. ��

We are now ready to prove Theorem 4. Note that the condition dimKerA > 0 in
the statement of the theorem is necessary as otherwise A has no circuit and so c1(A)

is not defined.

Proof of Theorem 4 Consider a rational matrix A with dimKerA > 0. Note that
c1(A) ≤ g1(A) as every circuit of A is also an element of the Graver basis of A.
To prove the existence of the function f1, let fD be the function from Theorem 9 and
note that Theorem 11 implies that g1(A) ≤ fD(c1(A)2, 2�log2(c1(A) + 1)	). ��

We next combine the algorithms from Theorems 7 and 11.
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Fig. 6 A rational matrix A, a principal contraction∗-tree T of the matroid M(A) and the matrix A′ as in
the proof of Theorem 11

Corollary 2 There exists a function f : N → N and a fixed parameter algorithm for
the parameterization by k that for a given rational matrix A:

– either outputs that c1(A) > k, or
– outputs a matrix A′ that is row-equivalent to A, its dual tree-depth is td∗

D(A) and
its entry complexity is at most f (k).

Proof If dim KerA = 0 for an input matrix A, i.e., the rank of A is equal to the
number of the columns, which can be easily verified in polynomial time, then A is
row-equivalent to the unit matrix possibly with some zero rows added, i.e., to a matrix
with dual tree-depth one and entry complexity one. If dim KerA > 0, we apply the
algorithm from Theorem 11 to get a matrix A′ row-equivalent to A that has properties
given in the statement of Theorem 11. If the dual tree-depth of A′ is larger than k2

or the entry complexity of A′ is larger than 2�log2(k + 1)	, then c1(A) > k (by
Theorem 11) and we arrive at the first conclusion. Otherwise, we apply the algorithm
from Theorem 7 with parameters d = k2 and e = 2�log2(k+1)	 to compute a matrix
A′′ row-equivalent to A′ and so to A such that the dual tree-depth of A′′ is td∗

D(A) and
the entry complexity of A′′ is bounded by a function of k only. ��

Finally, the previous corollary together with Theorem 9 yields the parameterized
algorithm for testing whether an input matrix is row-equivalent to a matrix with small
dual tree-depth and small entry complexity as given in Theorem 8.

Proof of Theorem 8 Let fD be the function from the statement of Theorem 9 and set

k = fD(d, e); note fD(d, e) ≤ 22
(d log e)O(1)

by Eisenbrand et al. [20]. Apply the
algorithm from Corollary 2 with the parameter k to an input matrix A. If the algorithm
reports that c1(A) > k, then A is not row-equivalent to a matrix with dual tree-depth
at most d and entry complexity at most e. If the algorithm outputs a matrix A′ and
tdD(A′) > d, then td∗

D(A) > d and so the matrix A is not row-equivalent to a matrix
with dual tree-depth at most d. Otherwise, the dual tree-depth of A′ is at most d and
its entry complexity is bounded by f (k) = f ( fD(d, e)) where f (·) is the function
from Corollary 2, i.e., the entry complexity of A′ is bounded by a function of d and e
only as required. ��
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6 Computational hardness of depth parameters

In this section, we complement our algorithmic results by establishing computational
hardness of matroid depth parameters that we have discussed in this paper. The hard-
ness results apply even when the input matroid is given by its representation over a
fixed (finite or infinite) field.

We start with defining a matroid MF(G) derived from a graph G. Fix a field F.
For a graph G, we define an F-represented matroid MF(G) as follows. The matroid
MF(G) contains |V (G)| + |E(G)| elements, each corresponding to a vertex or an
edge of G. We associate each element of MF(G) with a vector of FV (G). An element
of MF(G) corresponding to a vertex w of G is represented by ew and an element of
MF(G) corresponding to an edge ww′ of G is represented by ew − ew′ or ew′ − ew (an
arbitrary of the two vectors can be chosen as the choice does not affect the matroid).

We next define a graphG/A for a graphG and a linear subspace A of FV (G). LetW
be the subset of vertices of V (G) such that ew ∈ A for w ∈ W , and let F be the set of
edges ww′ of G such that neither w nor w′ is contained in W and A contains a vector
ew + αew′ for a non-zero element α ∈ F. The graph G/A is obtained by deleting all
vertices of W and then contracting a maximal acyclic subset of edges contained in F
(the remaining edges of F become loops and so get removed); note that we use an
acyclic subset of edges for contraction so that the resulting graph is well-defined.

The next lemma relates the number of components of the matroid MF(G)/A and
the number of components of the graph G/A for a graph G and a linear subspace A
of FV (G).

Lemma 2 Let G be a graph, F a field and A a linear subspace of FV (G). The number
of components of MF(G)/A is at most the number of components of the graph G/A.

Proof Fix a graph G, a field F and a linear subspace of FV (G). Let W and F be the
subsets of vertices and edges of G as in the definition of G/A, respectively. Let A′
be the linear subspace of FV (G) generated by the vectors ew, w ∈ W , and the vectors
ew + αew′ ∈ A for ww′ ∈ F ; clearly, A′ is a subspace of A. Note that the sets W and
F defined with respect to A would be the same if defined with respect to A′, and so
the graphs G/A and G/A′ are the same. We next describe an F-representation of the
matroid MF(G)/A′ using vectors of FV (G/A′). The matroid MF(G) contains elements
corresponding to vertices and to edges of G. Consider a vertex w of V (G). If w ∈ W ,
then the element corresponding to w is a loop in MF(G)/A′ and so represented by
the zero vector. If w /∈ W , then the element corresponding to w is represented by the
vector eu where u is the vertex of G/A′ that the vertex w was contracted to. Next
consider an edge ww′ of G.

– If both w and w′ belong to W , then the element corresponding to ww′ is a loop in
MF(G)/A′ and so represented by the zero vector.

– If exactly one ofw andw′ belong toW , sayw ∈ W andw′ /∈ W , then the element
corresponding toww′ is represented by the vector eu where u is the vertex ofG/A′
that the vertex w′ was contracted to.

– If neither w nor w′ belongs to W and ew − ew′ ∈ A′ (and so ww′ ∈ F), then the
element corresponding to ww′ is a loop in MF(G)/A′ and so represented by the
zero vector.
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– If neither w nor w′ belongs to W , ew − ew′ /∈ A′ but ww′ ∈ F , then the element
corresponding toww′ is represented by the vector eu where u is the vertex ofG/A′
that the vertex w (and so the vertex w′) was contracted to.

– Finally, if neitherw norw′ belongs toW andww′ /∈ F , the element corresponding
to ww′ is the vector αeu + α′eu′ where u is the vertex of G/A′ that the vertex w

was contracted to, u′ is the vertex of G/A′ that the vertex w′ was contracted to,
and the vector αeu + α′eu′ corresponds to the vector ew − ew′ in F

V (G)/A′; note
that uu′ is an edge of G/A′ and both coefficients α and α′ are non-zero.

It is straightforward to verify that the just described representation is indeed a repre-
sentation of the matroid MF(G)/A′; note that each non-loop element of MF(G)/A′ is
associated to a vertex or an edge of G/A′ and each vertex or an edge of G/A′ with at
least one (but possibly more) non-loop element of MF(G)/A′.

We now analyze the matroid MF(G)/A. The matroid MF(G)/A can be viewed as
the matroid (MF(G)/A′)/(A/A′). Observe that the definition of A′ implies that any
non-loop element of MF(G)/A′ is non-loop in MF(G)/A. Also observe that the space
A/A′ viewed as a subspace ofFV (G/A′) does not contain a vector ew forw ∈ V (G/A′)
or a vector ew + αew′ for a non-zero α ∈ F such that ww′ is an edge of E(G/A′).
In particular, the support of every vector of A/A′ is at least two and if the support
has size two, then it does not correspond to an edge of E(G/A′). It follows that
if ww′ is an edge of E(G/A′), x is an element of MF(G)/A′ associated with the
vertex w, x ′ is an element of MF(G)/A′ associated with the vertex w′, and x ′′ is
an element of MF(G)/A′ associated with the edge ww′, then the elements x , x ′ and
x ′′ form a circuit of (MF(G)/A′)/(A/A′). Since the relation of being contained in a
common circuit is transitive, it follows that all elements of MF(G)/A′ corresponding
to the vertices and the edges of the same component of G/A′ are contained in the
same component of (MF(G)/A′)/(A/A′). In particular, the number of components of
the matroid (MF(G)/A′)/(A/A′) is at most the number of components of the graph
G/A′. Since the graphs G/A and G/A′ are the same and the matroids MF(G)/A and
(MF(G)/A′)/(A/A′) are also the same, the lemma follows. ��

We next link the existence of a balanced independent set in a bipartite graph to the
contraction∗-depth of a suitably defined matroid. We remark that the idea of using a
bipartite graph with cliques added between the vertices of its parts was used in [47]
to establish that computing tree-depth of a graph is NP-complete.

Lemma 3 Let G be a bipartite graph with parts X and Y , let F be a field, and let
k be an integer. Let G ′ be the graph obtained from G by adding all edges between
the vertices of X and between the vertices of Y . The following three statements are
row-equivalent.

– The graph G has an independent set containing k elements of X and k elements
of Y .

– The contraction∗-depth of MF(G ′) is at most |X | + |Y | − k.
– The contraction-depth of the matroid 2MF(G ′) is at most |X | + |Y | − k + 1.

Proof Fix a bipartite graph G with parts X and Y , a field F and an integer k. We first
show that if G has an independent set containing k elements of X and k elements of
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Y , then the contraction∗-depth of MF(G ′) is at most |X |+|Y |−k and the contraction-
depth of 2MF(G ′) is at most |X | + |Y | − k + 1. Let W be such an independent set
and let W ′ be the set containing all elements ew of MF(G ′) such that w /∈ W . Note
that |W ′| = |X | + |Y | − 2k. The matroid MF(G ′)/W ′ is the matroid obtained from
MF(G ′[W ]) by adding

– a loop for every edge with both end vertices not contained in W , and
– an element represented by ew for every edge joining a vertex w ∈ W to a vertex
not contained in W .

In particular, the matroid MF(G ′)/W ′ has two non-trivial components, each of rank
k, and so the contraction∗-depth of MF(G ′) is at most |W ′| + k = |X | + |Y | − k.
Similarly, the matroid (2MF(G ′))/W ′ is the matroid obtained from 2MF(G ′[W ]) by
adding

– a loop for every vertex not contained in W ,
– two loops for every edge with both end vertices not contained in W , and
– two elements represented by ew for every edge joining a vertex w ∈ W to a vertex
not contained in W .

Since the matroid (2MF(G ′))/W ′ has two non-trivial components, each of rank k, its
contraction-depth is at most |W ′| + k + 1 = |X | + |Y | − k + 1 (note that any rank r
matroid has contraction-depth at most r + 1).

We next argue that if the contraction∗-depth of MF(G ′) is at most |X | + |Y | − k
or the contraction-depth of 2MF(G ′) is at most |X | + |Y | − k + 1, then there exists a
subsetW of V (G) = V (G ′) that is independent in G, |W ∩ X | ≥ k and |W ∩Y | ≥ k.
To do so, we first show that there is no linear subspace A such that MF(G ′)/A would
have more than two components. Consider a linear subspace A of FV (G ′) such that the
matroid MF(G ′)/A is not connected. By Lemma 2, the graph G ′/A is disconnected.
Since the graph G ′/A cannot have more than two components (one is formed by some
of the vertices of X and another by some of the vertices of Y ), it follows that the
graph G ′/A has exactly two components and so the matroid MF(G ′)/A has exactly
two components, too.

If the contraction∗-depth of MF(G ′) is at most |X | + |Y | − k, there exists a linear
subspace A of FV (G ′) such that the matroid MF(G ′)/A is not connected and the rank
of each of its two components is at most |X | + |Y | − k − dim A. We will prove that
the existence of such A is also implied by the assumption that the contraction-depth of
2MF(G ′) is at most |X |+ |Y |− k+1. We next use that the matroid (2MF(G ′))/F has
at most two non-trivial components for every subset F of the elements of 2MF(G ′). If
the contraction-depth of 2MF(G ′) is at most |X |+|Y |−k+1, then there exists a subset
F of the elements of 2MF(G ′) such that the matroid (2MF(G ′))/F is not connected
and the rank of each of its two components is at most |X | + |Y | − k − rank F (as the
contraction-depth of each of its two components is the rank of the component increased
by one because each element is parallel to at least one other element). It follows that
there exists a linear subspace A of FV (G ′), which is the hull of the vectors representing
the elements of the set F as above, such that the matroid MF(G ′)/A is not connected
and the rank of each of its two components is at most |X | + |Y | − k − dim A. We
conclude that if the contraction∗-depth of MF(G ′) is at most |X | + |Y | − k or if the
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contraction-depth of 2MF(G ′) is at most |X | + |Y | − k + 1, then there exists a linear
subspace A of FV (G ′) such that the matroid MF(G ′)/A is not connected and the rank
of each of its two components is at most |X | + |Y | − k − dim A.

It remains to show that the existence of a subspace A of F
V (G ′) such that the

matroid MF(G ′)/A is not connected and the rank of each of its two components is at
most |X | + |Y | − k − dim A implies that there exists an independent set containing
k elements of X and k elements of Y . Fix such a subspace A. Let W be the set of
vertices w such that ew is contained in A and let AW be the subspace of A generated
by the vectors ew, w ∈ W . Since G ′/A is not connected, the graph G ′ \ W is also
not connected (recall that G ′/A is obtained by removing the vertices of W and then
contracting some edges). By Lemma 2 the matroid MF(G ′)/AW is also not connected.
Since the space AW is a subspace of A, the rank of each component of MF(G ′)/AW

is larger by at most dim A − dim AW compared to the corresponding component of
MF(G ′)/A. Hence, the rank of each of the two components of MF(G ′)/AW is at most
|X |+ |Y |− k−dim AW = |X |+ |Y |− k−|W |. It follows that each component of the
graph G ′/AW = G ′ \W contains at most |X |+ |Y |− k −|W | vertices. Since the sum
of the sizes of the two components of G ′ \ W is |X | + |Y | − |W |, each component of
G ′ \W has at least k vertices. In addition, the vertex set of each component of G ′ \W
is either a subset of X or a subset of Y , which implies that there is no edge joining a
vertex of X \ W and a vertex of Y \ W and both sets X\W and Y\W have at least k
vertices. Hence, the graph G has an independent set containing k elements of X and
k elements of Y (such an independent set is a subset of V (G) \ W ). ��

We are now ready to state our hardness result.

Theorem 12 For every field F, each of the following five decision problems, whose
input is an F-represented matroid M and an integer d, is NP-complete:

– Is the contraction-depth of M at most d?
– Is the contraction∗-depth of M at most d?
– Is the contraction-deletion-depth of M at most d?
– Is the contraction∗-deletion-depth of M at most d?
– Is the deletion-depth of M at most d?

Proof It is NP-complete to decide for a bipartite graph G with parts X and Y and an
integer k whether there exist k-element subsets X ′ ⊆ X and Y ′ ⊆ Y such that X ′ ∪ Y ′
is independent [47]. For an input bipartite graph G, let G ′ be the graph obtained from
G by adding all edges between the vertices of X and between the vertices of Y . We
claim that the existence of such subsets X ′ and Y ′ is equivalent to each of the following
four statements:

– The matroid 2MF(G ′) has contraction-depth at most |X | + |Y | − k + 1.
– The matroid MF(G ′) has contraction∗-depth at most |X | + |Y | − k.
– The matroid (|V (G ′)| + 1)MF(G ′) has contraction-deletion-depth at most |X | +

|Y | − k + 1.
– The matroid (|V (G ′)| + 1)MF(G ′) has contraction∗-deletion-depth at most |X | +

|Y | − k.
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The equivalences to the first and second statements follow directly from Lemma 3.
Since the rank of the matroid (|V (G ′)| + 1)MF(G ′) is |G ′|, its contraction-deletion-
depth is at most |G ′| + 1 and its contraction∗-deletion-depth is at most |G ′|. As each
element of thematroid (|V (G ′)|+1)MF(G ′) is parallel to (at least) |V (G ′)| elements of
the matroid, it follows that the contraction-deletion-depth of MF(G ′) is the same as its
contraction-depth and its contraction∗-deletion-depth is the same as its contraction∗-
depth. Lemma 3 now implies the equivalence of the third and fourth statements. As
the matroids 2MF(G ′), MF(G ′) and (|V (G ′)| + 1)MF(G ′) can be easily constructed
from the input graph G in time polynomial in |V (G)|, the NP-completeness of the
first four problems listed in the statement of the theorem follows.

For an F-represented matroid M , it is easy to construct an F-represented matroid
M∗ that is dual to M in time polynomial in the number of the elements of M [46,
Chapter 2]. Since the contraction-depth of M is equal to the deletion-depth of M∗, it
follows that thefifth problem listed in the statement of the theorem is alsoNP-complete.

��

7 Concluding remarks

We would like to conclude with addressing three natural questions related to the work
presented in this paper.

In Sect. 5, we have given a structural characterization of matrices A with g1(A)

bounded by showing that g1(A) is bounded if and only if A is row-equivalent to a
matrix with small dual tree-depth and small entry complexity. Unfortunately, a similar
(if and only if) characterization of matrices A with g∞(A) bounded does not seem to
be in our reach.

Problem 1 Find a structural characterization of matrices A with g∞(A) bounded.

In view of Theorem 9, it may be tempting to think that such a characterization can
involvematriceswith bounded incidence tree-depth as if amatrix A has boundedprimal
tree-depth or it has bounded dual tree-depth, then g∞(A) is bounded. However, the
following matrix A has incidence tree-depth equal to 4 and yet g∞(A) grows with the
number t of its columns; in particular, the vector (t − 1, 1, 1, . . . , 1) is an element of
its Graver basis as it can be readily verified. We remark that a similar matrix was used
by Eiben et al. [18] in their NP-completeness argument.

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 −1 −1 · · · −1 −1
0 1 −1 0 · · · 0 0
0 1 0 −1 · · · 0 0
...

...
...

. . .
...

0 1 0 0 · · · −1 0
0 1 0 0 · · · 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

In Sect. 3, we have given structural characterizations of matrices that are row-
equivalent to a matrix with small primal tree-depth or small incidence tree-depth,
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which complements the characterization of matrices row-equivalent to a matrix with
small dual tree-depth from [8, 9]. We have also presented fixed parameter algorithms
(Theorems 6 and 8) for finding such a row-equivalent matrix with bounded entry com-
plexity if one exists; both of these algorithms are based on fixed parameter algorithms
for finding deletion-depth decompositions and contraction∗-depth decompositions of
matroids over finite fields, which are presented in Corollary 1 in the case of deletion-
depth and in [8, 9] in the case of contraction∗-depth.We believe that similar techniques
would lead to a fixed parameter algorithm for contraction∗-deletion-depth decomposi-
tions of matroids represented over a finite field (note that contraction∗-deletion-depth
does not have an obvious description in monadic second order logic and so the algo-
rithmic results of Hliněný [29, 30] do not readily apply in this setting). However, it is
unclear whether such an algorithm would yield a fixed parameter algorithm for ratio-
nal matrices as we do not have structural results on the circuits of rational matrices
with small incidence tree-depth, which would reduce the case of rational matrices to
those over finite fields.

Another natural question is whether the upper bound on the depth of the principal
contraction∗-tree given in Theorem 10, which is quadratic in the length of the longest
circuit of a represented matroid, can be improved. However, this turns out to be impos-
sible as we now argue. Since the minimum depth of a principal contraction∗-tree of a
matroid M differs from cd(M), i.e. the minimum height of a contraction-tree of M ,
by at most one, it is enough to construct a sequence of matroids Mn such that

– the length of the longest circuit of Mn is is at most O(n), and
– the contraction-depth of Mn is at least �(n2).

Hence, the quadratic dependence of the minimum depth in Theorem 10 is optimal up
to a constant factor. Still, it can be the case that the bound on the contraction∗-depth
can be improved.

The matroids Mn are the graphic matroids of graphs Gn , which are constructed
inductively. To facilitate the induction we will require slightly stronger properties.
Each of the graphs Gn contains two distinguished vertices, denoted by rn and bn , and
the following holds:

1. The length of any path in Gn between the vertices rn and bn is between n and 2n.
2. The length of any circuit in Mn is at most 4n.
3. The contraction-depth of Mn is at least

(n
2

)
.

If n = 1, we set G1 to be the two-vertex graph formed by two parallel edges, and
r1 and b1 are chosen as the two vertices of G1. Note that the graph G1 and the matroid
M1 = M(G1) has the properties (7), (7), and (7). To obtain Gn , we start with a cycle
of length 2n and choose any two vertices at distance n to be rn and bn . This cycle
containing the vertices rn and bn will be referred to as the root cycle. We then add n
copies of Gn−1, connect the vertex rn−1 in each copy to the vertex rn , and connect the
vertex bn−1 in each copy to bn . The construction is illustrated in Fig. 7.

Assuming that the matroid Mn−1 and the graph Gn−1 have the properties (7), (7),
and (7), and we will show that the matroid Mn and the graph Gn also have these
properties.
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Fig. 7 The construction of the graph Gn . The vertices rn and rn−1 are drawn red while bn and bn−1 are
drawn blue

We start with showing that Gn has the property (7). Indeed, a path from rn to bn is
either contained in the root cycle or consists of a path between rn−1 and bn−1 in one
of the copies of Gn−1, whose length is between n− 1 and 2(n− 1), together with two
edges joining rn−1 to rn and bn−1 to bn . In either of the cases, the length of the path
is between n and 2n as required.

Having established the property (7), we prove the property (7). Any circuit of the
matroid Mn corresponds to a cycle in the graph Gn , thus we can simply investigate the
lengths of cycles in Gn . First observe that a cycle of Gn contains either both vertices
rn and bn or neither of them. Every cycle containing rn and bn consists of two paths
between rn and bn and so its length is at most 4n, and every cycle containing neither
rn nor bn is contained entirely within a copy of Gn−1 and so its length is at most
4(n − 1) ≤ 4n.

Finally, we argue that contraction-depth ofMn is at least
(n
2

)
. Recall that contracting

an element of Mn corresponds to contracting the associated edge in the graph Gn , and
components of a graphicmatroid correspond to blocks, i.e.,maximal 2-edge-connected
components, of an associated graph. Since the length of any path between rn to bn is
at least n, until at least n edge contractions are performed in graph Gn , the vertices
rn and bn are distinct and are contained in the same block. Hence, after n − 1 edge
contractions followed by deleting all blocks not containing the vertices rn and bn
(if such blocks appear), the graph still contains an intact copy Gn−1. It follows that
cd(Mn) ≥ (n− 1)+ cd(Mn−1), which implies that cd(Mn) ≥ (n− 1)+ (n−1

2

) = (n
2

)
.
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