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Abstract
Recently, semidefinite programming performance estimation has been employed as a
strong tool for theworst-case performance analysis of first ordermethods. In this paper,
we derive new non-ergodic convergence rates for the alternating direction method
of multipliers (ADMM) by using performance estimation. We give some examples
which show the exactness of the given bounds. We also study the linear and R-linear
convergence of ADMM in terms of dual objective. We establish that ADMM enjoys
a global linear convergence rate if and only if the dual objective satisfies the Polyak–
Łojasiewicz (PŁ) inequality in the presence of strong convexity. In addition, we give
an explicit formula for the linear convergence rate factor. Moreover, we study the
R-linear convergence of ADMM under two scenarios.
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1 Introduction

We consider the optimization problem

min
(x,z)∈Rn×Rm

f (x) + g(z),

s. t. Ax + Bz = b, (1)

where f : Rn → R∪{∞} and g : Rm → R∪{∞} are closed proper convex functions,
0 �= A ∈ R

r×n , 0 �= B ∈ R
r×m and b ∈ R

r . Moreover, we assume that (x�, z�) is
an optimal solution of problem (1) and λ� is its corresponding Lagrange multipliers.
Moreover, we denote the value of f and g at x� and z� with f � and g�, respectively.

Problem (1) appears naturally (or after variable splitting) in many applications in
statistics, machine learning and image processing to name but a few [9, 23, 29, 42].
The most common method for solving problem (1) is the alternating direction method
of multipliers (ADMM). ADMM is a dual based approach that exploits separable
structure and it may be described as follows.

Algorithm 1 ADMM
Set N and t > 0 (step length), pick λ0, z0.
For k = 1, 2, . . . , N perform the following step:
1. xk ∈ argmin f (x) + 〈λk−1, Ax〉 + t

2 ‖Ax + Bzk−1 − b‖2
2. zk ∈ argmin g(z) + 〈λk−1, Bz〉 + t

2 ‖Axk + Bz − b‖2
3. λk = λk−1 + t(Axk + Bzk − b).

ADMM was first proposed in [14, 16] for solving nonlinear variational problems.
We refer the interested reader to [17] for a historical review of ADMM. The popularity
of ADMM is due to its capability to be implemented parallelly and hence can handle
large-scale problems [9, 22, 34, 45]. For example, it is used for solving inverse prob-
lems governed by partial differential equation forward models [32], and distributed
energy resource coordinations [30], to mention but a few.

The convergence of ADMM has been investigated extensively in the literature and
there exist many convergence results. However, different performance measures have
been used for the computation of convergence rate; see [13, 18, 19, 24, 28, 29, 35,
44]. In this paper, we consider the dual objective value as a performance measure.

Throughout the paper, we assume that each subproblem in steps 1 and 2 of Algo-
rithm 1 attains its minimum. The Lagrangian function of problem (1) may be written
as

L(x, z, λ) = f (x) + g(z) + 〈λ, Ax + Bz − b〉, (2)

and the dual objective of problem (1) is also defined as

D(λ) = min
(x,z)∈Rn×Rm

f (x) + g(z) + 〈λ, Ax + Bz − b〉.
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The exact worst-case convergence rate of ADMM

We assume throughout the paper that strong duality holds for problem (1), that is

max
λ∈Rr

D(λ) = min
Ax+Bz=b

f (x) + g(z).

Note that we have strong duality when both functions f and g are real-valued. For
extended convex functions, strong duality holds under some mild conditions; see e.g.
[4, Chapter 15].

Some common performance measures for the analysis of ADMM are as follows,

– Objective value:
∣
∣ f (x N ) + g(zN ) − f � − g�

∣
∣;

– Primal and dual feasibility:
∥
∥Ax N + BzN − b

∥
∥ and

∥
∥AT B(zN − zN−1)

∥
∥;

– Dual objective value: D(λ�) − D(λN );
– Distance between (x N , zN , λN ) and a saddle points of problem (2).

Note that the mathematical expressions are written in a non-ergodic sense for conve-
nience. Eachmeasure is useful inmonitoring the progress and convergence ofADMM.
The objective value is the most commonly used performance measure for the anal-
ysis of algorithms in convex optimization [4, 5, 37]. As mentioned earlier, ADMM
is a dual based method and it may be interpreted as a proximal method applied to
the dual problem; see [5, 29] for further discussions and insights. Thus, a natural
performance measure for ADMM would be dual objective value. In this study, we
investigate the convergence rate of ADMM in terms of dual objective value and feasi-
bility. It worth noting that most performance measures may be analyzed through the
framework developed in Sect. 2.

Regarding dual objective value, the following convergence rate is known in the
literature. This theorem holds for strongly convex functions f and g; recall that f is
called strongly convex with modulus μ ≥ 0 if the function f − μ

2 ‖ · ‖2 is convex.
Theorem 1 [19, Theorem 1] Let f and g be strongly convex with moduli μ1 > 0 and

μ2 > 0, respectively. If t ≤ 3

√

μ1μ
2
2

λmax(AT A)λ2max(BT B)
, then

D(λ�) − D(λN ) ≤ ‖λ1 − λ�‖2
2t(N − 1)

. (3)

In this study we establish that Algorithm 1 has the convergence rate of O( 1
N ) in

terms of dual objective value without assuming the strong convexity of g. Under this
setting, we also prove that Algorithm 1 has the convergence rate of O( 1

N ) in terms
of primal and dual residuals. Moreover, we show that the given bounds are exact.
Furthermore, we study the linear and R-linear convergence.

1.1 Outline of our paper

Our paper is structured as follows. We present the semidefinite programming (SDP)
performance estimationmethod in Sect. 2, and we develop the performance estimation
to handle dual based methods including ADMM. In Sect. 3, we derive some new non-
asymptotic convergence rates by using performance estimation for ADMM in terms of
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dual function, primal and dual residuals. Furthermore, we show that the given bounds
are tight by providing some examples. In Sect. 4 we proceed with the study of the
linear convergence of ADMM. We establish that ADMM enjoys a linear convergence
if and only if the dual function satisfies the PŁ inequality when the objective function
is strongly convex. Furthermore, we investigate the relation between the PŁ inequality
and common conditions used by scholars to prove the linear convergence. Section5
is devoted to the R-linear convergence. We prove that ADMM is R-linear convergent
under two new scenarios which are weaker than the existing ones in the literature.

1.2 Terminology and notation

In this subsection we review some definitions and concepts from convex analysis.
The interested reader is referred to the classical text by Rockafellar [41] for more
information. The n-dimensional Euclidean space is denoted by R

n . We use 〈·, ·〉 and
‖ · ‖ to denote the Euclidean inner product and norm, respectively. The column vector
ei represents the i-th standard unit vector and I stands for the identity matrix. For
a matrix A, Ai, j denotes its (i, j)-th entry, and AT represents the transpose of A.
The notation A � 0 means the matrix A is symmetric positive semidefinite. We use
λmax(A) and λmin(A) to denote the largest and the smallest eigenvalue of symmetric
matrix A, respectively. Moreover, the seminorm ‖ · ‖A is defined as ‖x‖A = ‖Ax‖ for
any A ∈ R

m×n ; see [26, Section 5.2] for more discussion.
Suppose that f : Rn → (−∞,∞] is an extended convex function. The function f

is called closed if its epi-graph is closed, that is {(x, r) : f (x) ≤ r} is a closed subset
of Rn+1. The function f is said to be proper if there exists x ∈ R

n with f (x) < ∞.
We denote the set of proper and closed convex functions on R

n by F0(R
n). The

subgradients of f at x is denoted and defined as

∂ f (x) = {ξ : f (y) ≥ f (x) + 〈ξ, y − x〉,∀y ∈ R
n}.

We call a differentiable function f L-smooth if for any x1, x2 ∈ R
n ,

‖∇ f (x1) − ∇ f (x2)‖ ≤ L‖x1 − x2‖ ∀x1, x2 ∈ R
n .

Definition 1 Let f : Rn → (−∞,∞] be a closed proper function and let A ∈ R
m×n .

We say f is c-strongly convex relative to ‖.‖A if the function f − c
2‖.‖2A is convex.

In the rest of the section, we assume that A ∈ R
m×n . It is seen that any μ-strongly

convex function is μ

λmax(AT A)
-strongly convex relative to ‖.‖A. However, its converse

does not necessarily hold unless A has full column rank. Hence, the assumption of
strong convexity relative to ‖.‖A for a given matrix A is weaker compared to the
assumption of strong convexity. For further details on the strong convexity in relation
to a given function, we refer the reader to [3, 33]. We denote the set of c-strongly
convex functions relative to ‖.‖A on Rn by F A

c (Rn). We denote the distance function
to the set X by dX (x) := inf y∈X ‖y − x‖.

In the following sections we derive some new convergence rates for ADMM by
using performance estimation. The main idea of performance estimation is based on
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interpolablity. Let I be an index set and let {(xi ; gi ; f i )}i∈I ⊆ R
n × R

n × R. A set
{(xi ; ξ i ; f i )}i∈I is called F A

c -interpolable if there exists f ∈ F A
c (Rn) with

f (xi ) = f i , ξ i ∈ ∂ f (xi ) i ∈ I.

The next theorem gives necessary and sufficient conditions for F A
c -interpolablity.

Theorem 2 Let c ∈ [0,∞) and let I be an index set. The set {(xi ; ξ i ; f i )}i∈I ⊆
R

n × R
n × R is F A

c -interpolable if and only if for any i, j ∈ I, we have

c
2

∥
∥
∥xi − x j

∥
∥
∥

2

A
≤ f i − f j −

〈

ξ j , xi − x j
〉

. (4)

Moreover, {(xi ; ξ i ; f i )}i∈I is F0-interpolable and L-smooth if and only if for any
i, j ∈ I, we have

1
2L

∥
∥
∥gi − g j

∥
∥
∥

2 ≤ f i − f j −
〈

g j , xi − x j
〉

. (5)

Proof Theargument is analogous to that of [46,Theorem4].The triple {(xi ; ξ i ; f i )}i∈I
is F A

c -interpolable if and only if the triple {(xi ; ξ i − cAT Axi ; f i − c
2‖xi‖2A)}i∈I is

F0-interpolable. By [46, Theorem 1], {(xi ; ξ i − cAT Axi ; f i − c
2‖xi‖2A)}i∈I is F0-

interpolable if and only if

f i − c
2

∥
∥
∥xi
∥
∥
∥

2

A
≥ f j − c

2

∥
∥
∥x j
∥
∥
∥

2

A
−
〈

ξ j − cAT Ax j , xi − x j
〉

which implies inequality (4). The second part follows directly from [46, Theorem 4].
��

Note that any convex function is 0-strongly convex relative to A. Let f ∈ F0(R
n).

The conjugate function f ∗ : Rn → (−∞,∞] is defined as f ∗(y) = supx∈Rn 〈y, x〉−
f (x). We have the following identity

ξ ∈ ∂ f (x) ⇔ x ∈ ∂ f ∗(ξ). (6)

Let f ∈ F0(R
n) be μ-strongly convex. The function f is μ-strongly convex if and

only if f ∗ is 1
μ
-smooth. Moreover, ( f ∗)∗ = f .

By using conjugate functions, the dual of problem (1) may be written as

D(λ) = min
(x,z)∈Rn×Rm

f (x) + g(z) + 〈λ, Ax + Bz − b〉
= −〈λ, b〉 − f ∗(−AT λ) − g∗(−BT λ). (7)

By the optimality conditions for the dual problem, we get

b − Ax� − Bz� = 0, (8)
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for some x� ∈ ∂ f ∗(−AT λ�) and z� ∈ ∂g∗(−BT λ�). Equation (8) with (6) imply that
(x�, z�) is an optimal solution to problem (1).

The optimality conditions for the subproblems of Algorithm 1 may be written as

0 ∈ ∂ f (xk) + AT λk−1 + t AT
(

Axk + Bzk−1 − b
)

,

0 ∈ ∂g(zk) + BT λk−1 + t BT
(

Axk + Bzk − b
)

. (9)

As λk = λk−1 + t(Axk + Bzk − b), we get

0 ∈ ∂ f (xk) + AT λk + t AT B
(

zk−1 − zk
)

, 0 ∈ ∂g(zk) + BT λk . (10)

So, (xk, zk) is optimal for dual objective at λk if and only if AT B
(

zk−1 − zk
) = 0.

We call AT B
(

zk−1 − zk
)

dual residual.

2 Performance estimation

In this section, we develop the performance estimation for ADMM. The performance
estimation method introduced by Drori and Teboulle [12] is an SDP-based method for
the analysis of first ordermethods. Since then,many scholars employed this strong tool
to derive the worst case convergence rate of different iterative methods; see [2, 27, 43,
46] and the references therein. Moreover, Gu and Yang [20] employed performance
estimation to study the extension of the dual step length for ADMM. Note that while
there are some similarities between ourwork and [20] in using performance estimation,
the formulations and results are different.

Theworst-case convergence rate of Algorithm 1with respect to dual objective value
may be cast as the following abstract optimization problem,

max D(λ�) − D(λN )

s. t.{xk, zk, λk}N
1 is generated by Algorithm 1w.r.t. f , g, A, B, b, λ0, z0, t

(x�, z�)is an optimal solution with Lagrangian multipliers λ�

‖λ0 − λ�‖2 + t2
∥
∥
∥z0 − z�

∥
∥
∥

2

B
= Δ

f ∈ F A
c1(R

n), g ∈ F B
c2(R

m)

λ0 ∈ R
r , z0 ∈ R

m, A ∈ R
r×n, B ∈ R

r×m, b ∈ R
r , (11)

where f , g, A, B, b, z0, λ0, x�, z�, λ� are decision variables and N , t, c1, c2,Δ are
the given parameters. Note that problem (11) will be unbounded unless we impose
some initial condition. We regard boundedness of ‖λ0 − λ�‖2 + t2

∥
∥z0 − z�

∥
∥
2
B as an

initial condition. The boundedness of t−1‖λ0 − λ�‖2 + t
∥
∥z0 − z�

∥
∥
2
B is commonly

used for the convergence analysis of ADMM; see e.g. [9, 29]. We opt to utilize the
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positive multiplication of this criterion for notational convenience as t is a fixed pos-
itive constant in Algorithm 1. Moreover, we use this measure to establish R-linear
convergence in terms of dual objective; see Sect. 5 for more discussion.

Note that D(λ�) = f � + g� and (x̃, z̃) ∈ argmin f (x)+ g(z)+〈λN , Ax + Bz −b〉
if and only if

ξ̃ + AT λN = 0, η̃ + BT λN = 0, (12)

for some ξ̃ ∈ ∂ f (x̃) and η̃ ∈ ∂g(z̃). It is worth noting that a point x̃ satisfying these
conditions exists, as function f is strongly convex relative to A. In addition, one may
consider z̃ = zN by virtue of (10). For the sake of notational convenience,we introduce
x N+1 = x̃ and ξ N+1 = ξ̃ . The reader should bear in mind that x N+1 is not generated
by Algorithm 1. Therefore,

D(λN ) = f (x N+1) + g(zN ) +
〈

λN , Ax N+1 + BzN − b
〉

for some x N+1 with −AT λN ∈ ∂ f (x N+1).
By using Theorem 2 to replace the conditions f ∈ F A

c1(R
n), and g ∈ F B

c2(R
m)

by finite interpolation conditions, and by using the optimality conditions (9), problem
(11) may be reformulated as a finite dimensional optimization problem, through the
performance estimation technique:

max f � + g� −
(

f N+1 + gN +
〈

λN , Ax N+1 + BzN − b
〉)

s. t. {(xk; ξ k; f k)}N+1
1 ∪ {(x�; ξ�; f �)} satisfy interpolation constraints (4)

{(zk; ηk; gk)}N
0 ∪ {(z�; η�; g�)} satisfy interpolation constraints (4)

(x�, z�) is an optimal solution with Lagrangian multipliers λ�

‖λ0 − λ�‖2 + t2
∥
∥
∥z0 − z�

∥
∥
∥

2

B
= Δ

ξ k = t AT b − t AT Axk − t AT Bzk−1 − AT λk−1, k ∈ {1, . . . , N }
ηk = t BT b − t BT Axk − t BT Bzk − BT λk−1, k ∈ {1, . . . , N }
λk = λk−1 + t(Axk + Bzk − b), k ∈ {1, . . . , N }
ξ N+1 + AT λN = 0

λ0 ∈ R
r , z0 ∈ R

m, A ∈ R
r×n, B ∈ R

r×m, b ∈ R
r . (13)

In problem (13), A, B, {xk; ξ k; f k}N+1
1 , {(x�; ξ�; f �)}, {λk}N

0 , {zk; ηk; gk}N
0 ,

{(z�; η�; g�)}, λ�, b are decision variables. To handle problem (13), without loss of
generality, we assume that the matrix

(

A B
)

has full row rank. Note this assumption
does not appear in our arguments in the following sections. In addition, we introduce
some new variables. As problem (1) is invariant under translation of (x, z), we may
assume without loss of generality that b = 0 and (x�, z�) = (0, 0). In addition, due

to the full row rank of the matrix
(

A B
)

, we may assume that λ0 = (A B
)
(

x†

z†

)

and
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λ� = (A B
)
(

x̄
z̄

)

for some x̄, x†, z̄, z†. So,

ξ� = −AT Ax̄ − AT Bz̄ ∈ ∂ f (0), η� = −BT Ax̄ − BT Bz̄ ∈ ∂g(0),

and D(λ�) = f � + g�.
By using equality constraints of problem (13) and the newly introduced variables,

we have for k ∈ {1, . . . , N }

λk = (Ax† + Bz†) +
k
∑

i=1

t(Axi + Bzi ),

− (AT Ax† + AT Bz†)

−
k−1
∑

i=1

t(AT Axi + AT Bzi ) − t AT Axk − t AT Bzk−1 ∈ ∂ f (xk),

− (BT Ax† + BT Bz†) −
k
∑

i=1

t(BT Axi + BT Bzi ) ∈ ∂g(zk). (14)

Hence, problem (13) may be written as

max f � + g� − f N+1 − gN −
〈

Ax† + Bz† +
N
∑

i=1

t(Axi + Bzi ), Ax N+1 + BzN

〉

s. t. c1
2

∥
∥
∥xk − x j

∥
∥
∥

2

A
≤
〈

Ax† + Bz† +
k−1
∑

i=1

t(Axi + Bzi ) + t Axk + t Bzk−1, A(x j − xk )

〉

+

f j − f k , k ∈ {1, . . . , N }, j ∈ {1, . . . , N + 1},
c1
2

∥
∥
∥x N+1 − x j

∥
∥
∥

2

A
≤
〈

Ax† + Bz† +
N
∑

i=1

t(Axi + Bzi ), A
(

x j − x N+1
)
〉

+

f j − f N+1, j ∈ {1, . . . , N },
c2
2

∥
∥
∥zk − z j

∥
∥
∥

2

B
≤
〈

Ax† + Bz† +
k
∑

i=1

t(Axi + Bzi ), B
(

z j − zk
)
〉

+

g j − gk , j, k ∈ {1, . . . , N },
c1
2

∥
∥
∥xk
∥
∥
∥

2

A
≤ f k − f � +

〈

Ax̄ + Bz̄, Axk
〉

, k ∈ {1, . . . , N + 1},

c1
2

∥
∥
∥xk
∥
∥
∥

2

A
≤ −

〈

Ax† + Bz† +
k−1
∑

i=1

t(Axi + Bzi ) + t Axk + t Bzk−1, Axk

〉

+

f � − f k , k ∈ {1, . . . , N },
c1
2

∥
∥
∥x N+1

∥
∥
∥

2

A
≤ f � − f N+1 −

〈

Ax† + Bz† +
N
∑

i=1

t(Axi + Bzi ), Ax N+1

〉

,

c2
2

∥
∥
∥zk
∥
∥
∥

2

B
≤ gk − g� +

〈

Ax̄ + Bz̄, Bzk
〉

, k ∈ {1, . . . , N },
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c2
2

∥
∥
∥zk
∥
∥
∥

2

B
≤ g� − gk −

〈

Ax† + Bz† +
k
∑

i=1

t(Axi + Bzi ), Bzk

〉

, k ∈ {1, . . . , N },
∥
∥
∥Ax† + Bz† − (Ax̄ + Bz̄)

∥
∥
∥

2 + t2
∥
∥
∥z0
∥
∥
∥

2

B
= Δ,

x† ∈ R
n , z0, z† ∈ R

m , A ∈ R
r×n , B ∈ R

r×m . (15)

In problem (15), A, B, {xk; f k}N+1
1 , {zk; gk}N

1 , x†, z†, x̄, f �, z̄, g�, z0 are decision
variables. By using the Gram matrix method, problem (15) may be relaxed as a
semidefinite program as follows. Let

U = (x† x1 . . . x N+1 x̄
)

, V = (z† z0 . . . zN z̄
)

.

By introducing matrix variable

Y = (AU BV
)T (AU BV

)

,

problem (15) may be relaxed as the following SDP,

max f � + g� − f N+1 − gN − tr(LoY )

s. t. tr(L f
i, j Y ) ≤ f i − f j , i, j ∈ {1, . . . , N + 1, �}

tr(Lg
i, j Y ) ≤ gi − g j , i, j ∈ {1, . . . , N , �}

tr(L0Y ) = Δ

Y � 0, (16)

where the constant matrices L f
i, j , Lg

i, j , Lo, L0 are determined according to the con-
straints of problem (15). In the following sections, we present some new convergence
results that are derived by solving this kind of formulation.

3 Worst-case convergence rate

In this section, we provide new convergence rates for ADMM with respect to some
performancemeasures.Beforeweget to the theoremsweneed to present some lemmas.

Lemma 1 Let N ≥ 4 and t, c ∈ R. Let E(t, c) be (N +1)× (N +1) symmetric matrix
given by
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E(t, c) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2c 0 0 0 . . . 0 0 . . . 0 t − c
0 α2 β2 0 . . . 0 0 . . . 0 −t
0 β2 α3 β3 . . . 0 0 . . . 0 t
...

...
...

...
...

...
...

...
...

...

0 0 0 0 . . . αk βk . . . 0 t
...

...
...

...
...

...
...

...
...

...

0 0 0 0 . . . 0 0 . . . αN βN

t − c −t t t . . . t t . . . βN αN+1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where

αk =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

6c − 5t, k = 2

2
(

2k2 − 3k + 1
)

c − (4k − 1) t, 3 ≤ k ≤ N − 1

2N (N − 1)c − (2N + 1)t, k = N

2Nc − (N + 1)t, k = N + 1,

βk =
{

2kt − (2k2 − k − 1)c, 2 ≤ k ≤ N − 1

3t − 2(N − 1)c, k = N ,

and k denotes row number. If c > 0 is given, then

[0, c] ⊆ {t : E(t, c) � 0}.

Proof As {t : E(t, c) � 0} is a convex set, it suffices to prove the positive semidef-
initeness of E(0, c) and E(c, c). Since E(0, c) is diagonally dominant, it is positive
semidefinite. Now, we establish that the matrix K = E(1, 1) is positive definite. To
this end, we show that all leading principal minors of K are positive. To compute the
leading principal minors, we perform the following elementary row operations on K :

(i) Add the second row to the third row;
(ii) Add the second row to the last row;
(iii) Add the third row to the forth row;
(iv) For i = 4 : N − 1

– Add i − th row to (i + 1) − th row;
– Add 3−i

2i2−3i−1
times of i − th row to the last row;

(v) Add N−1
3N−5 times of N − th row to (N + 1) − th row.

It is seen that Kk−1,k + Kk,k = −Kk+1,k for 2 ≤ k ≤ N − 1. Hence, by performing
these operations, we get an upper triangular matrix J with diagonal

Jk,k =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2, k = 1

2k2 − 3k − 1, 2 ≤ k ≤ N − 1

3N − 5, k = N

N − 2 − (N−1)2

3N−5 −∑N−1
i=4

(i−3)2

2i2−3i−1
, k = N + 1.
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The exact worst-case convergence rate of ADMM

It is seen all first N diagonal elements of J are positive. We show that JN+1,N+1 is
also positive. For i ≥ 4 we have

(i−3)2

2i2−3i−1
≤ (i−1)2+4

2(i−1)2
≤ 1

2 + 2
(i−1)(i−2) . (17)

So,

2N2−9N+9
3N−5 −

N−1
∑

i=4

(i−3)2

2i2−3i−1
≥ (N−2)(N2−5N+10)

2N (3N−5) > 0,

which implies JN+1,N+1 > 0. Since we add a factor of i − th row to j − th row with
i < j , all leading principal minors of matrices K and J are the same. Hence K is
positive definite. As E(c, c) = cK , one can infer the positive definiteness of E(c, c)
and the proof is complete. ��

In the upcoming lemma, we establish a valid inequality for ADMM that will be
utilized in all the subsequent results presented in this section.

Lemma 2 Let f ∈ F A
c1(R

n), g ∈ F0(R
m) and x� = 0, z� = 0. Suppose that ADMM

with the starting points λ0 and z0 generates {(xk; zk; λk)}. If N ≥ 4 and v ∈ R
r , then

N 〈λN , Ax N + BzN 〉 − 〈λN + t Ax N + t BzN−1, Ax N − v〉 + 〈λ0 + t Ax1 + t Bz0, Ax1 − v〉
+ 1

2t

∥
∥
∥λ

0 − λ�
∥
∥
∥

2 − 1
2t

∥
∥
∥λ

N − λ�
∥
∥
∥

2 + t
2

∥
∥
∥z0
∥
∥
∥

2

B
− t
〈

Ax1 − Ax2 + (N + 1)Ax N + BzN , v
〉

− t
N
∑

k=3

〈Axk , v〉 + t(N−1)
2 ‖v‖2 − c1

2

∥
∥
∥x1
∥
∥
∥

2

A
+

N
∑

k=2

αk
2

∥
∥
∥xk
∥
∥
∥

2

A
+

N−1
∑

k=2

βk 〈Axk , Axk+1〉

+ t N 〈BzN−1, Ax N − v〉 + t〈Ax N , BzN 〉 − t(N−1)2
2

∥
∥
∥zN − zN−1

∥
∥
∥

2

B
− t N2

2

∥
∥
∥Ax N + BzN

∥
∥
∥

2

− t
∥
∥
∥x2
∥
∥
∥

2

A
+ f (x1) − f (x N ) + N

(

f (x N ) − f � + g(x N ) − g�
)

≥ 0, (18)

where

αk =
{

(4k − 1) t − 2
(

2k2 − 3k + 1
)

c1, 2 ≤ k ≤ N − 1,

(4N + 1) t − (2N 2 − 5N + 3
)

c1, k = N ,

βk =
(

2k2 − k − 1
)

c1 − 2kt .

Proof To establish the desired inequality, we demonstrate its validity by summing a
series of valid inequalities. To simplify the notation, let f k = f (xk) and gk = g(zk)
for k ∈ {1, . . . , N }. Note that b = 0 because x� = 0, z� = 0. By (4) and (9), we get
the following inequality

N−1
∑

k=1

(k2 − 1)

(

f k+1 − f k +
〈

λk−1 + t Axk + t Bzk−1, A(xk+1 − xk )
〉

− c1
2

∥
∥
∥xk+1 − xk

∥
∥
∥

2

A

)

+
N−1
∑

k=1

(k2 − k)

(

f k − f k+1 +
〈

λk + t Axk+1 + t Bzk , A(xk − xk+1)
〉

− c1
2

∥
∥
∥xk+1 − xk

∥
∥
∥

2

A

)
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+
N
∑

k=1

(

f k − f � +
〈

λ�, Axk
〉

− c1
2

∥
∥
∥xk
∥
∥
∥

2

A

)

+
N−1
∑

k=1

k2
(

gk − gk+1 +
〈

λk+1, B(zk − zk+1)
〉)

+
N−1
∑

k=1

(k2 + k)
(

gk+1 − gk +
〈

λk , B(zk+1 − zk )
〉)

+
N
∑

k=1

(

gk − g� +
〈

λ�, Bzk
〉)

+ t
2

∥
∥
∥Ax1 + Bz0 − v

∥
∥
∥

2 ≥ 0.

As λk = λk−1 + t Axk + t Bzk , the inequality can be expressed as

N−1
∑

k=1

(k2 − 1)

(〈

t Axk + t Bzk−1, A(xk+1 − xk )
〉

− c1
2

∥
∥
∥xk+1 − xk

∥
∥
∥

2

A

)

+
N−1
∑

k=1

(k2 − 1)
(〈

λk , Axk+1
〉

−
〈

λk−1, Axk
〉

−
〈

t Axk + t Bzk , Axk+1
〉)

+
N−1
∑

k=1

(k2 − k)

(〈

t Axk+1 + t Bzk , A(xk − xk+1)
〉

− c1
2

∥
∥
∥xk+1 − xk

∥
∥
∥

2

A

)

+
N−1
∑

k=1

(k2 − k)
(〈

λk−1, Axk
〉

−
〈

λk , Axk+1
〉

+
〈

t Axk + t Bzk , Axk
〉)

+
N−1
∑

k=1

(k2 + k)
(〈

λk , Bzk+1
〉

−
〈

λk−1, Bzk
〉

−
〈

t Axk + t Bzk , Bzk
〉)

+
N−1
∑

k=1

k2
( 〈

λk−1, Bzk
〉

−
〈

λk , Bzk+1
〉

+
〈

t Axk + t Bzk + t Axk+1 + t Bzk+1, Bzk
〉

−
〈

t Axk+1 + t Bzk+1, Bzk+1
〉 )

+
N
∑

k=1

(〈

λ�, Axk + Bzk
〉

− c1
2

∥
∥
∥xk
∥
∥
∥

2

A

)

+ t
2

∥
∥
∥Bz0

∥
∥
∥

2

+ t
2

∥
∥
∥Ax1 − v

∥
∥
∥

2 + t
〈

Ax1 − v, Bz0
〉

+ f 1 − f N + N ( f N − f � + gN − g�) ≥ 0.

After performing some algebraic manipulations, we obtain

N 〈λN−1, Ax N + BzN 〉 − 〈λN−1, Ax N 〉 + 〈λ0, Ax1〉 −
N−1
∑

k=0

〈λk − λ�, Axk+1 + Bzk+1〉

+ t
2

∥
∥
∥Ax1 − v

∥
∥
∥

2 + t
2

∥
∥
∥Bz0

∥
∥
∥

2 + t
〈

Ax1 − v, Bz0
〉

− t(N2 − 3N + 1)〈Ax N , BzN−1〉

− t
N−1
∑

k=1

(

(k − 1)2‖Axk‖2 − (k2 − k)〈Axk , Axk+1〉 − (k2 − 1)〈Axk+1, Bzk−1〉
)

− t
N−1
∑

k=1

(

(k2 − k + 1)‖Bzk‖2 + (−k2 + k + 1)〈Axk , Bzk 〉 − k2〈Bzk , Bzk+1〉
)

− t
N−1
∑

k=2

(

(2k2 − 3k)〈Axk , Bzk−1〉
)

− t(N − 1)2‖BzN ‖2 − t(N2 − 3N + 2)‖Ax N ‖2

− t(N − 1)2〈Ax N , BzN 〉 −
N−1
∑

k=1

(

(2k2 − k − 1) c1
2

∥
∥
∥xk+1 − xk

∥
∥
∥

2

A
+ c1

2

∥
∥
∥xk+1

∥
∥
∥

2

A

)

− c1
2

∥
∥
∥x1
∥
∥
∥

2

A
+ f 1 − f N + N ( f N − f � + gN − g�) ≥ 0.
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By using λN−1 = λN − t Ax N − t BzN and

2〈λk − λ�, Axk+1 + Bzk+1〉 = 1
t ‖λk+1 − λ�‖2

− 1
t ‖λk − λ�‖2 − t‖Axk+1 + Bzk+1‖2,

we get

N 〈λN , Ax N + BzN 〉 − 〈λN + t Ax N + t BzN−1, Ax N − v〉 + 〈λ0 + t Ax1 + t Bz0, Ax1 − v〉
+ 1

2t

∥
∥
∥λ

0 − λ�
∥
∥
∥

2 − 1
2t

∥
∥
∥λ

N − λ�
∥
∥
∥

2 + t
2

∥
∥
∥z0
∥
∥
∥

2

B
− t
〈

Ax1 − Ax2 + (N + 1)Ax N + BzN , v
〉

− t
N
∑

k=3

〈

Axk , v
〉

− t
2

N−1
∑

k=2

∥
∥
∥(k − 1)Bzk−1 − (k − 1)Bzk + k Axk − (k + 1)Axk+1 + v

∥
∥
∥

2

+ t(N−1)
2 ‖v‖2 − c1

2

∥
∥
∥x1
∥
∥
∥

2

A
− 2t

∥
∥
∥x2
∥
∥
∥

2

A
+ 1

2

N−1
∑

k=2

(

(4k − 1) t − 2
(

2k2 − 3k + 1
)

c1
) ∥
∥
∥xk
∥
∥
∥

2

A

+
N−1
∑

k=2

((

2k2 − k − 1
)

c1 − 2kt
)

〈Axk , Axk+1〉 +
((

2N + 1
2

)

t −
(

N2 − 5
2 N + 3

2

)

c1
) ∥
∥
∥x N

∥
∥
∥

2

A

+ t N
〈

BzN−1, Ax N − v
〉

+ t
〈

Ax N , BzN
〉

− t(N−1)2
2

∥
∥
∥zN − zN−1

∥
∥
∥

2

B

− t N2

2

∥
∥
∥Ax N + BzN

∥
∥
∥

2 + f 1 − f N + N
(

f N − f � + gN − g�
)

≥ 0,

which implies the desired inequality. ��

We may now prove the main result of this section.

Theorem 3 Let f ∈ F A
c1(R

n) and g ∈ F0(R
m) with c1 > 0. If t ≤ c1 and N ≥ 4,

then

D(λ�) − D(λN ) ≤ ‖λ0 − λ�‖2 + t2
∥
∥z0 − z�

∥
∥
2
B

4Nt
. (19)

Proof Asdiscussed inSect. 2,wemay assume that x� = 0 and z� = 0.By (12),wehave
D(λN ) = f (x̂ N )+g(zN )+ 〈λN , Ax̂ N + BzN

〉

for some x̂ N with−AT λN ∈ ∂ f (x̂ N ).
By employing (4) and (9), we obtain

N
(

g(x N ) − g� + 〈λ�, BzN 〉
)

+ (N − 1)

(

f (x N ) − f � + 〈λ�, Ax N 〉 − c1
2

∥
∥
∥x N

∥
∥
∥

2

A

)

+
(

f (x̂ N ) − f (x1) +
〈

λ0 + t Ax1 + t Bz0, Ax̂ N − Ax1
〉

− c1
2

∥
∥
∥x̂ N − x1

∥
∥
∥

2

A

)

+ (2N − 2)

(

f (x̂ N ) − f (x N ) +
〈

λN − t BzN + t BzN−1, Ax̂ N − Ax N
〉

− c1
2

∥
∥
∥x̂ N − x N

∥
∥
∥

2

A

)

+
(

f (x̂ N ) − f � + 〈λ�, Ax̂ N 〉 − c1
2

∥
∥
∥x̂ N

∥
∥
∥

2

A

)

≥ 0. (20)
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By substituting v with Ax̂ N in inequality (18) and summing it with (20), we get the
following inequality after performing some algebraic manipulations

2N
(

f (x̂ N ) + g(x N ) +
〈

λN , Ax̂ N + BzN
〉

− f � − g�
)

+ 1
2t

∥
∥
∥λ

0 − λ�
∥
∥
∥

2 + t
2

∥
∥
∥z0
∥
∥
∥

2

B

− 1
2t

∥
∥
∥λ

N − λ� + t(N − 1)Ax N + t Ax̂ N + t N BzN
∥
∥
∥

2

− t
2

∥
∥
∥(N − 1)(BzN−1 − BzN ) + t Ax N − t Ax̂ N

∥
∥
∥

2

− 1
2 tr
(

E(t, c1)
(

Ax1 . . . Ax̂ N
)T (

Ax1 . . . Ax̂ N
)) ≥ 0, (21)

where the positive semidefinite matrix E(t, c1) is given in Lemma 1. As the inner
product of positive semidefinite matrices is non-negative, inequality (21) implies that

2N
(

D(λ�) − D(λN )
)

≤ 1
2t

∥
∥
∥λ

0 − λ�
∥
∥
∥

2 + t
2

∥
∥
∥z0
∥
∥
∥

2

B
,

and the proof is complete. ��
In comparison with Theorem 1, we could get a new convergence rate when only

f is strongly convex, i.e. g does not need to be strongly convex. Also, the constant
does not depend on λ1. One important question concerning bound (19) is its tightness,
that is, if there is an optimization problem which attains the given convergence rate. It
turns out that the bound (19) is exact. The following example demonstrates this point.

Example 1 Suppose that c1 > 0, N ≥ 4 and t ∈ (0, c1]. Let f , g : R → R be given
as follows,

f (x) = 1
2 |x | + c1

2 x2, g(z) = 1
2 max

{ N−1
N

(

z − 1
2Nt

)− 1
2Nt ,−z

}

.

Consider the optimization problem

min
(x,z)∈R×R

f (x) + g(z),

s. t. x + z = 0,

It is seen that A = B = I in this problem. Note that (x�, z�) = (0, 0)with Lagrangian
multiplier λ� = 1

2 is an optimal solution and the optimal value is zero. One can check
that Algorithm 1with initial point λ0 = −1

2 and z0 = 0 generates the following points,

xk = 0 k ∈ {1, . . . , N }
zk = 1

2Nt k ∈ {1, . . . , N }
λk = −1

2 + k
2N k ∈ {1, . . . , N }.
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At λN , we have D(λN ) = −1
4Nt = −‖λ0−λ�‖2+t2

∥
∥z0−z�

∥
∥
2
B

4Nt , which shows the tightness
of bound (19).

One important factor concerning dual-based methods that determines the efficiency
of an algorithm is primal and dual feasibility (residual) convergence rates. In what
follows, we study this subject under the setting of Theorem 3. The next theorem gives
a convergence rate in terms of primal residual under the setting of Theorem 3.

Theorem 4 Let f ∈ F A
c1(R

n) and g ∈ F0(R
m) with c1 > 0. If t ≤ c1 and N ≥ 4,

then

∥
∥
∥Ax N + BzN − b

∥
∥
∥ ≤

√

‖λ0 − λ�‖2 + t2
∥
∥z0 − z�

∥
∥
2
B

t N
. (22)

Proof The argument is similar to that used in the proof of Theorem 3. By setting
v = Ax N in (18), one can infer the following inequality

N
〈

λN , Ax N + BzN
〉

+
〈

λ0 + t Ax1 + t Bz0, Ax1 − Ax N
〉

+ 1
2t

∥
∥
∥λ

0 − λ�
∥
∥
∥

2 + t
2

∥
∥
∥z0
∥
∥
∥

2

B

− t
〈

Ax1 − Ax2, Ax N
〉

+ t(N−1)
2

∥
∥
∥Ax N

∥
∥
∥

2 − t
N
∑

k=3

〈

Axk , Ax N
〉

− c1
2

∥
∥
∥x1
∥
∥
∥

2

A
− t
∥
∥
∥x2
∥
∥
∥

2

A

+
N−1
∑

k=2

((

2k − 1
2

)

t −
(

2k2 − 3k + 1
)

c1
) ∥
∥
∥xk
∥
∥
∥

2

A
+
((

3
2 N − 3

2

)

t −
(

N2 − 5
2 N + 3

2

)

c1
) ∥
∥
∥x N

∥
∥
∥

2

A

+
N−1
∑

k=2

((

2k2 − k − 1
)

c1 − 2kt
)

〈Axk , Axk+1〉 − t(N−1)2
2

∥
∥
∥zN − zN−1

∥
∥
∥

2

B

− t N2

2

∥
∥
∥Ax N + BzN

∥
∥
∥

2 + f (x1) − f (x N ) + N
(

f (x N ) − f � + g(x N ) − g�
)

≥ 0. (23)

By employing (4) and (9), we have

N

(

f � − f (x N ) − 〈λN + BzN−1 − BzN , Ax N 〉 − c1
2

∥
∥
∥x N

∥
∥
∥

2

A

)

+
(

f (x N ) − f 1 +
〈

λ0 + t Ax1 + t Bz0, Ax N − Ax1
〉

− c1
2

∥
∥
∥x N − x1

∥
∥
∥

2

A

)

+ N
(

g� − g(x N ) − 〈λN , BzN 〉
)

≥ 0. (24)

By summing (23) and (24), we obtain

1
2t

∥
∥
∥λ

0 − λ�
∥
∥
∥

2 + t
2

∥
∥
∥z0
∥
∥
∥

2

B
− t(N−1)2

2

∥
∥
∥zN−1 − zN + N

(N−1)2
x N
∥
∥
∥

2

B

− t N2

2

∥
∥
∥Ax N + BzN

∥
∥
∥

2 − 1
2 tr
(

D(t, c1)
(

Ax1 . . . Ax N
)T (

Ax1 . . . Ax N
)) ≥ 0,

(25)
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where the matrix D(t, c1) is as follows,

D(t, c1) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2c1 0 0 0 . . . 0 0 . . . 0 t − c1
0 α2 β2 0 . . . 0 0 . . . 0 −t
0 β2 α3 β3 . . . 0 0 . . . 0 t
...

...
...

...
...

...
...

...
...

...

0 0 0 0 . . . αk βk . . . 0 t
...

...
...

...
...

...
...

...
...

...

0 0 0 0 . . . 0 0 . . . αN−1 βN−1
t − c1 −t t t . . . t t . . . βN−1 αN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

and

αk =

⎧

⎪⎪⎨

⎪⎪⎩

6c1 − 5t, k = 2

2
(

2k2 − 3k + 1
)

c1 − (4k − 1) t, 3 ≤ k ≤ N − 1,
(

2N 2 − 4N + 4
)

c1 −
(

3N − 5 + N2

(N−1)2

)

t, k = N ,

βk = 2kt −
(

2k2 − k − 1
)

c1, 2 ≤ k ≤ N − 1

As thematrix D(t, c1) is positive semidefinite, seeAppendixA, inequality (25) implies
that

t N2

2

∥
∥
∥Ax N + BzN

∥
∥
∥

2 ≤ 1
2t

∥
∥
∥λ

0 − λ�
∥
∥
∥

2 + t
2

∥
∥
∥z0
∥
∥
∥

2

B
,

and the proof is complete. ��
The following example shows the exactness of bound (22).

Example 2 Let c1 > 0, N ≥ 4 and t ∈ (0, c1]. Consider functions f , g : R → R

given by the formulae follows,

f (x) = 1
2 |x | + c1

2 x2,

g(z) = max
{( 1

2 − 1
N

) (

z − 1
Nt

)

, 1
2

( 1
Nt − z

)}

.

We formulate the following optimization problem,

min
(x,z)∈R×R

f (x) + g(z),

s. t. Ax + Bz = 0,

where A = B = I . One can verify that (x�, z�) = (0, 0) with Lagrangian multiplier
λ� = 1

2 is an optimal solution. Algorithm 1 with initial point λ0 = −1
2 and z0 = 0

generates the following points,

xk = 0 k ∈ {1, . . . , N }
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The exact worst-case convergence rate of ADMM

zk = 1
Nt k ∈ {1, . . . , N }

λk = 2k−N
2N k ∈ {1, . . . , N }.

At iteration N , we have ‖Ax N + BzN ‖ = 1
t N =

√

‖λ0−λ�‖2+t2‖z0−z�‖2
B

t N , which shows
the tightness of bound (22).

In what follows, we study the convergence rate of ADMM in terms of resid-
ual dual. To this end, we investigate the convergence rate of {B

(

zk−1 − zk
)} as

∥
∥AT B

(

zk−1 − zk
)∥
∥ ≤ ‖A‖ ∥∥zk−1 − zk

∥
∥

B . The next theorem provides a convergence
rate for the aforementioned sequence.

Theorem 5 Let f ∈ F A
c1(R

n) and g ∈ F0(R
m) with c1 > 0. If t ≤ c1 and N ≥ 4,

then

∥
∥
∥zN − zN−1

∥
∥
∥

B
≤
√

‖λ0 − λ�‖2 + t2
∥
∥z0 − z�

∥
∥
2
B

(N − 1)t
. (26)

Proof Similar to the proof of Theorem 3, by setting v = Ax N in (18) for N − 1
iterations, one can infer the following inequality

(N − 1)〈λN−1, Ax N−1 + BzN−1〉 + 1
2t ‖λ0 − λ�‖2 − 1

2t ‖λN−1 − λ�‖2

+ t
2

∥
∥
∥z0
∥
∥
∥

2

B
− 〈λN−1 + t Ax N−1 + t BzN−2, Ax N−1 − Ax N 〉 + t(N−2)

2 ‖x N ‖2A
+ 〈λ0 + t Ax1 + t Bz0, Ax1 − Ax N 〉 − t

〈

Ax1 − Ax2 + N Ax N−1 + BzN−1, Ax N
〉

+ 1

2

N−2
∑

k=2

(

(4k − 1) t − 2
(

2k2 − 3k + 1
)

c1
) ∥
∥
∥xk
∥
∥
∥

2

A
+ t〈Ax N−1, BzN−1〉

+
N−2
∑

k=2

((

2k2 − k − 1
)

c1 − 2kt
)

〈Axk , Axk+1〉 + t(N − 1)〈BzN−2, Ax N−1 − Ax N 〉

+ 1

2

(

(4N − 3) t −
(

2N2 − 9N + 10
)

c1
) ∥
∥
∥x N−1

∥
∥
∥

2

A
− t
∥
∥
∥x2
∥
∥
∥

2

A
− c1

2

∥
∥
∥x1
∥
∥
∥

2

A

− t(N−2)2
2

∥
∥
∥zN−1 − zN−2

∥
∥
∥

2

B
− t(N−1)2

2 ‖Ax N−1 + BzN−1‖2 − t
N−1
∑

k=3

〈Axk , Ax N 〉

+ f (x1) − f (x N−1) + (N − 1)( f (x N−1) − f � + g(x N−1) − g�) ≥ 0. (27)

By using (4) and (9), we have

(N2 − 3N + 2)

(

f (x N−1) − f (x N ) +
〈

λN−1 + t Ax N + t BzN−1, A
(

x N−1 − x N
)〉

− c1
2

∥
∥
∥x N − x N−1

∥
∥
∥

2

A

)

+
(

f (x N ) − f (x1) +
〈

λ0 + t Ax1 + t Bz0, A
(

x N − x1
) 〉

− c1
2 ‖x N − x1‖2A

)

+ N (N − 1)
(

g(zN ) − g(zN−1) +
〈

λN−1, B
(

zN − zN−1
)〉)

+ (N2 − 3N + 1)

(

f (x N ) − f (x N−1) +
〈

λN−1 − t BzN−1 + t BzN−2, A
(

x N − x N−1
) 〉
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− c1
2 ‖x N − x N−1‖2A

)

+ (N − 1)
(

g� − g(zN ) −
〈

λN−1 + t Ax N + t BzN , BzN
〉)

+ (N − 1)

(

f � − f (x N−1) −
〈

λN−1 − t BzN−1 + t BzN−2, Ax N−1
〉

− c1
2 ‖x N−1‖2A

)

+ (N − 1)2
(

g(zN−1) − g(zN ) +
〈

λN−1 + t Ax N + BzN , B
(

zN−1 − zN
)〉)

≥ 0. (28)

By summing (27) and (28), we obtain

1
2t

∥
∥
∥λ

0 − λ�
∥
∥
∥

2 + t
2

∥
∥
∥z0
∥
∥
∥

2

B
− (N2−1)t

2

∥
∥
∥

N
N+1 Ax N + BzN

∥
∥
∥

2

− t(N − 1)2

2

∥
∥
∥zN − zN−1

∥
∥
∥

2

B

− (N−2)2t
2

∥
∥
∥
∥

BzN−2 − BzN−1 + N−1
N−2 Ax N−1 −

(

1 − 1
(N−2)2

)

Ax N
∥
∥
∥
∥

2

− 1
2 tr
(

F(t, c1)
(

Ax1 . . . Ax N
)T (

Ax1 . . . Ax N
)) ≥ 0,

where the matrix F(t, c1) is as follows,

F(t, c1) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2c1 0 0 0 . . . 0 0 . . . 0 t − c1
0 α2 β2 0 . . . 0 0 . . . 0 −t
0 β2 α3 β3 . . . 0 0 . . . 0 t
...

...
...

...
...

...
...

...
...

...

0 0 0 0 . . . αk βk . . . 0 t
...

...
...

...
...

...
...

...
...

...

0 0 0 0 . . . 0 0 . . . αN−1 βN−1
t − c1 −t t t . . . t t . . . βN−1 αN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

and

αk =

⎧

⎪⎪⎨

⎪⎪⎩

6c1 − 5t, k = 2

2
(

2k2 − 3k + 1
)

c1 − (4k − 1) t, 3 ≤ k ≤ N − 1,
(

2N 2 − 6N + 4
)

c1 − 2
(

N + 1
(N−2)2

− 2
N+1 − 3

)

t, k = N ,

βk =
{

2kt − (2k2 − k − 1
)

c1, 2 ≤ k ≤ N − 2,

(N + 1
2−N − 1)t − (2N 2 − 6N + 3)c1, k = N − 1,

The rest of the proof proceeds analogously to the proof of Theorem 4. ��

The following example shows the tightness of this bound.

Example 3 Assume that c1 > 0, N ≥ 4 and t ∈ (0, c1] are given, and f , g : R → R

are defined by,
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f (x) = 1
2 max

{

− N+1
N−1 x, x

}

+ c1
2 x2,

g(z) = 1
2 max

{
1

t(N−1) − z, N−3
N−1

(

z − 1
t(N−1)

)}

.

Consider the optimization problem

min
(x,z)∈R×R

f (x) + g(z),

s. t. Ax + Bz = 0.

where A = B = I . The point (x�, z�) = (0, 0) with Lagrangian multiplier λ� = 1
2

is an optimal solution. After performing N iterations of Algorithm 1 with setting
λ0 = −1

2 and z0 = 0, we have

xk = 0, k ∈ {1, . . . , N },

zk =
{

1
t(N−1) , k ∈ {1, . . . , N − 1},
0, k = N ,

λk =
{

2k+1−N
2(N−1) , k ∈ {1, . . . , N − 1},
1
2 , k = N .

It can be seen that
∥
∥AT B

(

zN − zN−1
)∥
∥ = 1

(N−1)t =
√

‖λ0−λ�‖2+t2‖z0−z�‖2
B

(N−1)t , which
shows that the bound is tight.

Theorems 3 and 4 address the case that f is strongly convex relative to ‖.‖A and
g is convex. Based on numerical results by solving performance estimation problems
including (15) we conjecture, under the assumptions of Theorem 3, if g is c2-strongly
convex relative to ‖.‖B , Algorithm 1 enjoys the following convergence rates

D(λ�) − D(λN ) ≤ ‖λ0 − λ�‖2 + t2‖z0 − z�‖2B
4Nt + 2c1c2

c1+c2

,

∥
∥
∥Ax N + BzN − b

∥
∥
∥ ≤

√

‖λ0 − λ�‖2 + t2‖z0 − z�‖2B
Nt + c1c2

c1+c2

.

We have verified these conjectures numerically for many specific values of the param-
eters. Nevertheless, we could not manage to guess a closed-form formula for the
residual dual in this case.

4 Linear convergence of ADMM

In this section we study the linear convergence of ADMM. The linear convergence
of ADMM has been addressed by some authors and some conditions for linear con-
vergence have been proposed, see [11, 21, 22, 25, 31, 38, 47]. Two common types
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of assumptions employed for proving the linear convergence of ADMM are error
bound property and L-smoothness. To the best knowledge of authors, most scholars
investigated the linear convergence of the sequence {(xk, zk, λk)} to a saddle point
and there is no result in terms of dual objective value for ADMM. In line with the
previous section, we study the linear convergence in terms of dual objective value and
we derive some formulas for linear convergence rate by using performance estimation.
It is noteworthy to mention that the term "Q-linear convergence" is also employed to
describe the linear convergence in the literature.

As mentioned earlier, error bound property is used by scholars for establishing the
linear convergence; see e.g. [21, 25, 31, 40, 47]. Let

Da(λ) := min f (x) + g(z) + 〈λ, Ax + Bz − b〉 + a
2‖Ax + Bz − b‖2, (29)

stands for augmented dual objective for the given a > 0 and Λ� denotes the optimal
solution set of the dual problem. Note that the function Da is an 1

a -smooth function
on its domain without assuming strong convexity; see [25, Lemma 2.2].

Definition 2 The function Da is said to satisfy the error bound property if we have

dΛ�(λ) ≤ τ‖∇Da(λ)‖, λ ∈ R
r , (30)

for some τ > 0.

Hong et al. [25] established the linear convergence by employing the error bound
property (30).

Recently, some scholars established the linear convergence of gradient methods for
L-smooth convex functions by replacing strong convexity with some mild conditions,
see [1, 7, 36] and references therein. Inspired by these results, we prove the linear
convergence of ADMM by using the so-called PŁ inequality. It is worth noting that
we employ the nonsmooth version of the PŁ inequality introduced in [6]. Concerning
differentiability of dual objective, by (7), we have

b − A∂ f ∗(−AT λ) − B∂g∗(−BT λ) ⊆ ∂ (−D(λ)) . (31)

Note that inclusion (31) holds as an equality under some mild conditions, see e.g. [4,
Chapter 3].

Definition 3 The function D is said to satisfy the PŁ inequality if there exists an
L p > 0 such that for any λ ∈ R

r we have

D(λ�) − D(λ) ≤ 1
2L p

‖ξ‖2, ξ ∈ ∂ (−D(λ)) . (32)

Note that if f and g are strongly convex, then −D is an L-smooth convex function

with L ≤ λmax(AT A)
μ1

+ λmax(BT B)
μ2

. In this setting, we have L p ≤ λmax(AT A)
μ1

+ λmax(BT B)
μ2

.
This follows from the duality between smoothness and strong convexity and
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‖∇D(λ) − ∇D(ν)‖ ≤
∥
∥
∥∇ f ∗(−AT λ) − ∇ f ∗(−AT ν)

∥
∥
∥

A

+
∥
∥
∥∇g∗(−BT λ) − ∇g∗(−BT ν)

∥
∥
∥

B

≤ 1
μ1

∥
∥
∥AT λ − AT ν

∥
∥
∥

A
+ 1

μ2

∥
∥
∥BT λ − BT ν

∥
∥
∥

B

≤
(

λmax(AT A)
μ1

+ λmax(BT B)
μ2

)

‖λ − ν‖ .

In the next proposition, we show that definitions (30) and (32) are equivalent.

Proposition 1 Let La = 1
a denote the Lipschitz constant of ∇Da, where Da is given

in (29). Suppose that (31) holds as equality.

(i) If Da satisfies the error bound (30), then D satisfies the PŁ inequality (32) with
L p = 1

Laτ 2
.

(ii) If D satisfies the PŁ inequality (32), then Da satisfies the error bound (30) with
τ = L p

1+aL p
.

Proof First we prove i). Suppose λ ∈ R
r and ξ ∈ b− A∂ f ∗(−AT λ)− B∂g∗(−BT λ).

By identity (6), we have ξ = b − Ax̄ − Bz̄ for some (x̄, z̄) ∈ argmin f (x) + g(z) +
〈λ, Ax + Bz − b〉. Due to the smoothness of Da and (30), we get

Da(λ�) − Da(ν) ≤ Laτ 2

2 ‖∇Da(ν)‖2, ν ∈ R
r , (33)

where λ� ∈ Λ� with dΛ� = ‖ν − λ�‖. Suppose that ν̄ = λ − a(Ax̄ + Bz̄ − b). As we
assume strong duality, we have Da(λ�) = D(λ�). By the definitions of x̄, ȳ, we get

(x̄, z̄) ∈ argmin f (x) + g(z) + 〈ν̄, Ax + Bz − b〉 + a
2‖Ax + Bz − b‖2.

By [25, Lemma 2.1], we have∇Da(ν̄) = Ax̄ + Bz̄ −b. This equality with (33) imply

D(λ�) − D(λ) ≤ Da(λ�) − Da(ν̄) ≤ Laτ 2

2 ‖Ax̄ + Bz̄ − b‖2,

and the proof of i) is complete.
Now we establish i i). Let λ be in the domain of ∇Da . By [25, Lemma 2.1], we have
∇Da(λ) = Ax̄ + Bz̄ − b for some (x̄, z̄) ∈ argmin f (x) + g(z) + 〈λ, Ax + Bz −
b〉 + a

2‖Ax + Bz − b‖2, which implies that

0 ∈ ∂ f (x̄) + AT (λ + a(Ax̄ + Bz̄ − b)) , 0 ∈ ∂g(z̄) + BT (λ + a(Ax̄ + Bz̄ − b)) .

(34)

Supposing ν = λ+a(Ax̄ + Bz̄−b). By (34), one can infer that D(ν) = f (x̄)+g(z̄)+
〈ν, Ax̄ + Bz̄ − b〉. In addition, (6) implies that b − Ax̄ − Bz̄ ∈ b − A∂ f ∗(−AT ν) −
B∂g∗(−BT ν). By the PŁ inequality, we have

1
2L p

‖Ax̄ + Bz̄ − b‖2 ≥ D(λ�) − D(ν) = Da(λ�) − Da(λ) − a
2 ‖Ax̄ + Bz̄ − b‖2 ,
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where the equality follows from D(ν) = Da(λ) + a
2 ‖Ax̄ + Bz̄ − b‖2 and Da(λ�) =

D(λ�). Hence,

Da(λ�) − Da(λ) ≤
(

1
2L p

+ a
2

)

‖∇Da(λ)‖2.

This inequality says that Da satisfies the PŁ inequality. On the other hand, the PŁ
inequality implies the error bound with the same constant, see [7], and the proof is
complete. ��

In what follows, we employ performance estimation to derive a linear convergence
rate forADMMin terms of dual objectivewhen the PŁ inequality holds. To this end,we

compare the value of dual problem in two consecutive iterations, that is, D(λ�)−D(λ2)

D(λ�)−D(λ1)
.

The following optimization problem gives the worst-case convergence rate,

max D(λ�)−D(λ2)

D(λ�)−D(λ1)

s. t. {x2, z2, λ2} is generated by Algorithm 1 w.r.t. f , g, A, B, b, λ1, z1

(x�, z�) is an optimal solution and its Lagrangian multipliers is λ�

D satisfies the PŁ inequality

f ∈ F A
c1(R

n), g ∈ F B
c2(R

n)

λ1 ∈ R
r , z1 ∈ R

m, A ∈ R
r×n, B ∈ R

r×m, b ∈ R
r . (35)

Analogous to our discussion in Sect. 2, we may assume without loss of generality

b = 0, λ1 = (A B
)
(

x†

z†

)

and λ� = (A B
)
(

x̄
z̄

)

for some x̄, x†, z̄, z†. In addition, we

assume that x̂1 ∈ argmin f (x)+〈λ1, Ax〉 and x̂2 ∈ argmin f (x)+〈λ2, Ax〉. Hence,

D(λ1) = f (x̂1) + g(z1) + 〈λ1, Ax̂1 + Bz1〉,
D(λ2) = f (x̂2) + g(z2) + 〈λ2, Ax̂2 + Bz2〉,

and

− AT λ1 ∈ ∂ f (x̂1), −BT λ1 ∈ ∂g(z1),

− AT λ2 ∈ ∂ f (x̂2), −BT λ2 ∈ ∂g(z2). (36)

Moreover, by (36) and (31), we get

−Ax̂1 − Bz1 ∈ ∂
(

−D(λ1)
)

, −Ax̂2 − Bz2 ∈ ∂
(

−D(λ2)
)

.

On the other hand, λ2 = λ1 + t Ax2 + t Bz2. Therefore, by using Theorem 2, problem
(35) may be relaxed as follows,
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max
f � + g� − f̂ 2 − g2 − 〈Ax† + Bz† + t Ax2 + t Bz2, Ax̂2 + Bz2〉

f � + g� − f̂ 1 − g1 − 〈Ax† + Bz†, Ax̂1 + Bz1〉
s. t.

{ (

x̂1, −AT Ax† − AT Bz†, f̂ 1
)

,
(

x2, −AT Ax† − AT Bz† − t AT Ax2 − t AT Bz1, f 2
)

,

(

x̂2,−AT Ax† − AT Bz† − t AT Ax2 − t AT Bz2, f̂ 2
)

,
(

0, −AT Ax̄ − AT Bz̄, f �
) }

satisfy interpolation constraints (4)
{ (

z1, −BT Ax† − BT Bz†, g1
)

,
(

z2, −BT Ax† − BT Bz† − t BT Ax2 − t BT Bz2, g2
)

,

(

0, −BT Az̄ − BT Bz̄, g�
) }

satisfy interpolation constraints (4)

f ∗ + g∗ − f̂ 1 − g1 −
〈

Ax† + Bz†, Ax̂1 + Bz1
〉

≤ 1
2L p

∥
∥
∥Ax̂1 + Bz1

∥
∥
∥

2

f ∗ + g∗ − f̂ 2 − g2 −
〈

Ax† + Bz† + t Ax2 + t Bz2, Ax̂2 + Bz2
〉

≤ 1
2L p

∥
∥
∥Ax̂2 + Bz2

∥
∥
∥

2

A ∈ R
r×n , B ∈ R

r×m . (37)

By deriving an upper bound for the optimal value of problem (37) in the next theorem,
we establish the linear convergence of ADMM in the presence of the PŁ inequality.

Theorem 6 Let f ∈ F A
c1(R

n) and g ∈ F B
c2(R

m) with c1, c2 > 0, and let D satisfies
the PŁ inequality with L p. Suppose that t ≤ √

c1c2.

(i) If c1 ≥ c2, then

D(λ�) − D(λ2)

D(λ�) − D(λ1)
≤ 2c1c2 − t2

2c1c2 − t2 + L pt
(

4c1c2 − c2t − 2t2
) , (38)

in particular, if t = √
c1c2,

D(λ�) − D(λ2)

D(λ�) − D(λ1)
≤ 1

1 + L p
(

2
√

c1c2 − c2
) .

(ii) If c1 < c2, then

D(λ�) − D(λ2)

D(λ�) − D(λ1)

≤ 4c22 − 2c2
√

c1c2 − t2

4c22 − 2c2
√

c1c2 − t2 + L pt
(

8c22 + 5c2t − 2
√

c1c2
(

1 + t
c1

)

(2c2 + t)
) .

(39)

Proof The argument is based on weak duality. Indeed, by introducing suitable
Lagrangianmultipliers, we establish that the given convergence rates are upper bounds
for problem (37). First, we prove (i). Assume that α denotes the right hand side of
inequality (38). As 2c1c2 − t2 > 0 and 4c1c2 − c2t − 2t2 > 0, we have 0 < α < 1.
With some algebra, one can show that
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f � + g� − f̂ 2 − g2 − 〈Ax† + Bz† + t Ax2 + t Bz2, Ax̂2 + Bz2〉
− α

(

f � + g� − f̂ 1 − g1 − 〈Ax† + Bz†, Ax̂1 + Bz1〉
)

+ α

(

f̂ 2 − f̂ 1 + 〈Ax† + Bz†, Ax̂2 − Ax̂1〉 − c1
2

∥
∥
∥x̂2 − x̂1

∥
∥
∥

2

A

)

+ α

(

f 2 − f̂ 2 + 〈Ax† + Bz† + t Ax2 + t Bz2, Ax2 − Ax̂2〉 − c1
2

∥
∥
∥x2 − x̂2

∥
∥
∥

2

A

)

+ α

(

f̂ 2 − f 2 + 〈Ax† + Bz† + t Ax2 + t Bz1, Ax̂2 − Ax2〉 − c1
2

∥
∥
∥x̂2 − x2

∥
∥
∥

2

A

)

+ α

(

g2 − g1 + 〈Ax† + Bz†, Bz2 − Bz1〉 − c2
2

∥
∥
∥z2 − z1

∥
∥
∥

2

B

)

+ (1 − α)
(

− f � − g� +
〈

Ax† + Bz† + t Ax2 + t Bz2, Ax̂2 + Bz2
〉

+ f̂ 2 + g2

+ 1
2L p

∥
∥
∥Ax̂2 + Bz2

∥
∥
∥

2 ) = −c1α
2

∥
∥
∥x̂1 − x̂2

∥
∥
∥

2

A
− c2α

2

∥
∥
∥Bz1 − Bz2 + t

c2
Ax2 − t

c2
Ax̂2

∥
∥
∥

2

− α(c1 − t2
2c2

)

∥
∥
∥
∥

Ax2 + tc2
2c1c2−t2

Bz2 − tc2−2c1c2+t2

t2−2c1c2
Ax̂2

∥
∥
∥
∥

2
.

Hence, we get

f � + g� − f̂ 2 − g2 − 〈Ax† + Bz† + t Ax2 + t Bz2, Ax̂2 + Bz2〉
≤ α

(

f � + g� − f̂ 1 − g1 − 〈Ax† + Bz†, Ax̂1 + Bz1〉
)

for any feasible point of problem (35) and the proof of the first part is complete. For (i i),
we proceed analogously to the proof of (i), but with different Lagrange multipliers.
Let β denote the right hand side of inequality (39), i.e.

β = 4c22 − 2c2
√

c1c2 − t2

4c22 − 2c2
√

c1c2 − t2 + L pt
(

8c22 + 5c2t − 2
√

c1c2
(

1 + t
c1

)

(2c2 + t)
) .

It is seen that 0 < β < 1. By doing some calculus, we have

f � + g� − f̂ 2 − g2 − 〈Ax† + Bz† + t Ax2 + t Bz2, Ax̂2 + Bz2〉
− β

(

f � + g� − f̂ 1 − g1 − 〈Ax† + Bz†, Ax̂1 + Bz1〉
)

+ β

(

f̂ 2 − f̂ 1 + 〈Ax† + Bz†, Ax̂2 − Ax̂1〉 − c1
2

∥
∥
∥x̂2 − x̂1

∥
∥
∥

2

A

)

+
√

c2
c1

β

(

f 2 − f̂ 2 + 〈Ax† + Bz† + t Ax2 + t Bz2, Ax2 − Ax̂2〉 − c1
2

∥
∥
∥x2 − x̂2

∥
∥
∥

2

A

)

+
√

c2
c1

β

(

f̂ 2 − f 2 + 〈Ax† + Bz† + t Ax2 + t Bz1, Ax̂2 − Ax2〉 − c1
2

∥
∥
∥x̂2 − x2

∥
∥
∥

2

A

)

+
√

c2
c1

β

(

g2 − g1 + 〈Ax† + Bz†, Bz2 − Bz1〉 − c2
2

∥
∥
∥z2 − z1

∥
∥
∥

2

B

)

+
(√

c2
c1

− 1
)

β

(

g1 − g2 + 〈Ax† + Bz† + t Ax2 + t Bz2, Bz1 − Bz2〉
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− c2
2

∥
∥
∥z1 − z2

∥
∥
∥

2

B

)

+ (1 − β)
(− f � − g� +

〈

Ax† + Bz† + t Ax2 + t Bz2, Ax̂2 + Bz2
〉

+ f̂ 2 + g2 + 1
2L p

∥
∥
∥Ax̂2 + Bz2

∥
∥
∥

2 )

= − c1β
2

∥
∥
∥x̂1 − x̂2

∥
∥
∥

2

A
− (√c1c2β

)
∥
∥
∥
∥

Ax2 −
(

1 − t

2
√

c1c2

)

Ax̂2 + t

2
√

c1c2
Bz1
∥
∥
∥
∥

2

−
(

β − 1

2L p
+ βt

(

1 − t

4
√

c1c2

))∥
∥
∥
∥

Ax̂2 −
⎛

⎝

βL p

(

−2c2
√

c1c2 + 4c22 − t2
)

−βL pt2 + 2
√

c1c2(2βL pt + β − 1)

⎞

⎠

1
2

Bz1

+
(

2
(

2βc2L p (t + c2) + √
c1c2

(

β − βL pc2 − 1
))

−βL pt2 + 2
√

c1c2(2βL pt + β − 1)

) 1
2

Bz2
∥
∥
∥
∥

2
.

The rest of the proof is similar to that of the former case. ��
We computed the bounds in Theorem 6 by selecting suitable Lagrangianmultipliers

and solving the semidefinite formulation of problem (37) by hand. The semidefinite
formulation is formed analogous to problem (16). Note that the optimal value of
problem (37) may be smaller than the bounds introduced in Theorem 6. Indeed, our
aim was to provide a concrete mathematical proof for the linear convergence rate.
However, the linear convergence rate factor is not necessarily tight. Needless to say that
the optimal value of problem (37) also does not necessarily give the tight convergence
factor as it is just a relaxation of problem (35).

Recently the authors showed that the PŁ inequality is necessary and sufficient
conditions for the linear convergence of the gradient methodwith constant step lengths
for L-smooth function; see[1, Theorem 5]. In what follows, we establish that the PŁ
inequality is a necessary condition for the linear convergence of ADMM. Firstly, we
present a lemma that is very useful for our proof.

Lemma 3 Let f ∈ F A
c1(R

n) and g ∈ F B
c2(R

m). Consider Algorithm 1. If (x̂1, z1) ∈
argmin f (x) + g(z) + 〈λ1, Ax + Bz − b〉, then

〈Ax̂1 + Bz1 − b, Ax2 + Bz2 − b〉 ≤
∥
∥
∥Ax̂1 + Bz1 − b

∥
∥
∥

2
. (40)

Proof Without loss of generality we assume that c1 = c2 = 0. By optimality condi-
tions, we have

f (x̂1) − 〈λ1, Ax2 − Ax̂1〉 ≤ f (x2), g(z1) − 〈λ1, Bz2 − Bz1〉 ≤ g(z2),

f (x2) − 〈λ1 + t(Ax2 + Bz1 − b), Ax̂1 − Ax2〉 ≤ f (x̂1),

g(z2) − 〈λ1 + t(Ax2 + Bz2 − b), Bz1 − Bz2〉 ≤ g(z1).

By using these inequities, we get

0 ≤ 1
t

(

f (x2) − f (x̂1) +
〈

λ1, Ax2 − Ax̂1
〉)

+ 1
t

(

g(z2) − g(z1) +
〈

λ1, Bz2 − Bz1
〉)
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+ 1
t

(

f (x̂1) − f (x2) +
〈

λ1 + t(Ax2 + Bz1 − b), Ax̂1 − Ax2
〉)

+ 1
t

(

g(z1) − g(z2) +
〈

λ1 + t(Ax2 + Bz2 − b), Bz1 − Bz2
〉)

=
∥
∥
∥Ax̂1 + Bz1 − b

∥
∥
∥

2 −
〈

Ax̂1 + Bz1 − b, Ax2 + Bz2 − b
〉

− 3
4

∥
∥
∥B
(

z1 − z2
)∥
∥
∥

2

−
∥
∥
∥A
(

x̂1 − x2
)

+ 1
2 B
(

z1 − z2
)∥
∥
∥

2
.

Hence, we have

〈Ax̂1 + Bz1 − b, Ax2 + Bz2 − b〉
∥
∥Ax̂1 + Bz1 − b

∥
∥
2 ≤ 1,

which completes the proof. ��
The next theorem establishes that the PŁ inequality is a necessary condition for the

linear convergence of ADMM.

Theorem 7 Let f ∈ F A
c1(R

n), g ∈ F B
c2(R

m) and let (31) hold as equality. If Algo-
rithm 1 is linearly convergent with respect to the dual objective value, then D satisfies
the PŁ inequality.

Proof Consider λ1 ∈ R
r and ξ ∈ b − A∂ f ∗(−AT λ1) − B∂g∗(−BT λ1). Hence,

ξ = b − Ax̂1 − Bz1 for some (x̂1, z1) ∈ argmin f (x) + g(z) + 〈λ, Ax + Bz − b〉.
If one sets z0 = z1 and λ0 = λ1 − t(Ax̂1 + Bz1 − b) in Algorithm 1, the algorithm
may generate λ1. As Algorithm 1 is linearly convergent, there exist γ ∈ [0, 1) with

D(λ�) − D(λ2) ≤ γ
(

D(λ�) − D(λ1)
)

.

So, we have

(1 − γ )
(

D(λ�) − D(λ1)
)

≤ D(λ2) − D(λ1) ≤
〈

Ax̂1 + Bz1 − b, λ2 − λ1
〉

,

where the last inequality follows from the concavity of the function D. Since λ2−λ1 =
t(Ax2 + Bz2 − b), Lemma 3 implies that

D(λ�) − D(λ1) ≤ t
1−γ

‖ξ‖2,

so D satisfies the PŁ inequality. ��
Another assumption used in the literature for establishing linear convergence is L-

smoothness; see for example [10, 11, 15, 38]. Deng et al. [11] show that the sequence
{(xk, zk, λk)} is convergent linearly to a saddle point under Scenario 1 and 2 given in
Table 1.
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Table 1 Scenarios leading to linear convergence rates

Scenario Strong convexity Lipschitz continuity Full row rank

1 f , g ∇ f A

2 f , g ∇ f , ∇g –

3 f ∇ f , ∇g BT

It is worth mentioning that Scenario 1 or Scenario 2 implies strong convexity of
the dual objective function and therefore the PŁ inequality is implied, see [1]. Hence,
Theorem 6 implies the linear convergence in terms of dual value under Scenario 1
or Scenario 2. Deng et al. [11] studied the linear convergence under Scenario 3, but
they just proved the linear convergence of the sequence {(xk, Bzk, λk)}. In the next
section, we investigate the R-linear convergence without assuming L-smoothness of
f . Indeed, we establish the R-linear convergence when f is strongly convex, g is
L-smooth and B has full row rank.

Note that the PŁ inequality does not imply necessarily Scenario 1 or Scenario 2.
Indeed, consider the following optimization problem,

min f (x) + g(z),

s. t. x + z = 0,

x, z ∈ R
n,

where f (x) = 1
2‖x‖2 +‖x‖1 and g(z) = 1

2‖z‖2 +‖z‖1. With some algebra, one may
show that D(λ) =∑n

i=1 h(λi ) with

h(s) =

⎧

⎪⎨

⎪⎩

−(s − 1)2, s > 1

0, |s| ≤ 1

−(s + 1)2, s < −1.

Hence, the PŁ inequality holds for L p = 1
2 while neither f nor g is L-smooth.

Asmentioned earlier the performance estimation problem including the PŁ inequal-
ity at finite set of points is a relaxation for computing the worst-case convergence rate.
Contrary to Theorem 6, we could not manage to prove the linear convergence of primal
and dual residuals under the assumptions of Theorem 6 by employing performance
estimation.

5 R-linear convergence of ADMM

This section focuses on examining the linear convergence rate for ADMM from a
weaker convergence rate perspective than Q-linear which is already studied in Sect. 4.
This concept is known as R-linear convergence where R stands for root [39]. Recall
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that ADMM enjoys R-linear convergence in terms of dual objective value if there
exists sequence {sk} ⊆ R+ such that

D(λ�) − D(λN ) ≤ sk,

and sk tends Q-linearly to zero. It is easily seen that the linear convergence implies R-
linear convergence. For an extensive discussion of convergence rates see [39, Section
A.2] or [8, Section 1.5].

We investigate the R-linear convergence under the following scenarios:

– (S1): f ∈ F A
c1(R

n) is L-smooth with c1 > 0 and A has full row rank;
– (S2): f ∈ F A

c1(R
n) with c1 > 0, g is L-smooth and B has full row rank.

Under these scenarios, we could not manage to find a value of q within the range
[0, 1) that satisfies the inequality:

D(λ�) − D(λN+1) ≤ q
(

D(λ�) − D(λN )
)

.

As a result, we turn our attention towards studying the R-linear convergence.
Our technique for proving the R-linear convergence is based on establishing the

linear convergence of the sequence {V k} given by

V k = ‖λk − λ�‖2 + t2
∥
∥
∥zk − z�

∥
∥
∥

2

B
. (41)

Note that V k is called Lyapunov function for ADMMand it decreases in each iteration;
see [9]. It is worth noting Q-linear and R-linear convergence of ADMM have been
studied under similar scenarios for some performance measures, see e.g. [10, 15, 38].
However, to the best of knowledge, no existing results in the literature address the dual
objective and V k under Scenario (S1) and (S2).

First we consider the case that f is L-smooth and c1-strongly convex relative to A.
The following proposition establishes the linear convergence of {V k}.
Proposition 2 Let f ∈ F A

c1(R
n) be L-smooth with c1 > 0, g ∈ F0(R

m) and let A has

full row rank. If t <
√

c1L
λmin(AAT )

, then

V k+1 ≤
(

1 − 2c1t
c1d+2c1t+t2

)

V k, (42)

where d = L
λmin(AAT )

.

Proof We may assume without loss of generality that x�, z� and b are zero; see our
discussion in Sect. 2. By optimality conditions, we have

∇ f (xk+1) = −AT
(

λk + t Axk+1 + t Bzk
)

, ηk = −BT λk+1,

∇ f (x�) = −AT λ�, η� = −BT λ�,
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for some ηk ∈ ∂g(zk+1) and η� ∈ ∂g(z�). Let α = 2t
c21d2+2c1dt2−4c21 t2+t4

. By Theo-

rem 2, we get

α
(

t2 + c1d
)2
(

f (xk+1) − f � +
〈

λ�, Axk+1
〉

− 1
2L

∥
∥
∥AT

(

λk + t Axk+1 + t Bzk − λ�
)∥
∥
∥

2
)

+ 2αt2
(

c1d + t2
)(

f � − f (xk+1) − c1
2

∥
∥
∥xk+1

∥
∥
∥

2

A
−
〈

λk + t Axk+1 + t Bzk , Axk+1
〉)

+ 2t
(

g(zk+1) − g� +
〈

λ�, Bzk+1
〉)

+ 2t
(

g� − g(zk+1) −
〈

λk+1, Bzk+1
〉)

+ α
(

c21d2 − t4
)(

f � − f (xk+1) −
〈

λk + t Axk+1 + t Bzk , Axk+1
〉

− 1
2L

∥
∥
∥AT

(

λk + t Axk+1 + t Bzk − λ�
)∥
∥
∥

2
)

≥ 0.

As ‖AT λ‖2 ≥ L
d ‖λ‖2 and λk+1 = λk + t Axk+1 + t Bzk+1, we obtain the following

inequality after performing some algebraic manipulations

(

1 − 2ct
cd+2ct+t2

)(∥
∥
∥λ

k − λ�
∥
∥
∥

2 + t2
∥
∥
∥Bzk

∥
∥
∥

2
)

−
(∥
∥
∥λ

k+1 − λ�
∥
∥
∥

2 + t2
∥
∥
∥Bzk+1

∥
∥
∥

2
)

− 2αc21t
∥
∥
∥λ

k − λ� + t2+2c1t+c1d
2c1

Axk+1 + t2+c1d
2c1

Bzk
∥
∥
∥

2 ≥ 0.

The above inequality implies that

V k+1 ≤
(

1 − 2c1t
c1d+2c1t+t2

)

V k,

and the proof is complete. ��
Note that one can improve bound (42) under the assumptions of Proposition 2 and

the μ-strong convexity of f by employing the following known inequality

1

2
(

1−μ
L

)

(
1
L ‖∇ f (x) − ∇ f (y)‖2 + μ ‖x − y‖2 − 2μ

L 〈∇ f (x) − ∇ f (y), x − y〉
)

≤ f (y) − f (x) − 〈∇ f (x), y − x〉 .

Indeed, we employed the given inequality but we could not manage to obtain a closed
form formula for the convergence rate. The next theorem establishes the R-linear
convergence of ADMM in terms of dual objective value under the assumptions of
Proposition 2.

Theorem 8 Let N ≥ 4 and let A has full row rank. Suppose that f ∈ F A
c1(R

n) is

L-smooth with c1 > 0 and g ∈ F0(R
m). If t < min{c1,

√
c1L

λmin(AAT )
}, then

D(λ�) − D(λN ) ≤ ρ
(

1 − 2c1t
c1d+2c1t+t2

)N
,

where d = L
λmin(AAT )

and ρ = V 0

16t

(

1 − 2c1t
c1d+2c1t+t2

)−4
.
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Proof By Theorem 3 and Proposition 2, one can infer the following inequalities,

D(λ�) − D(λN ) ≤ V N−4

16t

≤ V 0

16t

(

1 − 2c1t
c1d+2c1t+t2

)N−4
,

which shows the desired inequality. ��
In the sequel, we investigate the R-linear convergence under the hypotheses of

scenario (S2). The next proposition shows the linear convergence of {V k}.
Proposition 3 Let f ∈ F A

c1(R
n) with c1 > 0 and let g ∈ F0(R

m) be L-smooth.

Suppose that B has full row rank and k ≥ 1. If t ≤ min{ c1
2 , L

2λmin(B BT )
}, then

V k+1 ≤
(

L
L+tλmin(B BT )

)2
V k . (43)

Proof Analogous to the proof of Proposition 2, we assume that x� = 0, z� = 0 and
b = 0. Due to the optimality conditions, we have

ξ k+1 = −AT
(

λk + t Axk+1 + t Bzk
)

, ξ� = −AT λ�,

∇g(zk) = −BT λk, ∇g(zk+1) = −BT λk+1, ∇g(z�) = −BT λ�,

for some ξ k+1 ∈ ∂ f (xk+1) and ξ� ∈ ∂ f (x�). Suppose that d = L
λmin(B BT )

and

α = 2dt
d+t . By Theorem 2, we obtain

α
(

d2 + t2
)

d2 − t2

(

f � − f (xk+1) −
〈

λk + t Axk+1 + t Bzk, Axk+1
〉

− c1
2

∥
∥
∥xk+1

∥
∥
∥

2

A

)

× α
(

d2 + t2
)

d2 − t2

(

f (xk+1) − f (x�) +
〈

λ�, Axk+1
〉

− c1
2

∥
∥
∥xk+1

∥
∥
∥

2

A

)

+ α

(

g(zk+1) − g� +
〈

λ�, Bzk+1
〉

− 1
2L

∥
∥
∥BT

(

λ� − λk+1
)∥
∥
∥

2
)

+ α

(

g� − g(zk+1) −
〈

λk+1, Bzk+1
〉

− 1
2L

∥
∥
∥BT

(

λ� − λk+1
)∥
∥
∥

2
)

+ α

(

g(zk) − g(zk+1) +
〈

λk+1, Bzk − Bzk+1
〉

− 1
2L

∥
∥
∥BT

(

λk+1 − λk
)∥
∥
∥

2
)

+ α

(

g(zk+1) − g(zk) +
〈

λk, Bzk+1 − Bzk
〉

− 1
2L

∥
∥
∥BT

(

λk+1 − λk
)∥
∥
∥

2
)

≥ 0.

By employing ‖BT λ‖2 ≥ L
d ‖λ‖2 and λk+1 = λk + t Axk+1 + t Bzk+1, the aforemen-

tioned inequality can be expressed as follows after some algebraic manipulation,

−α2

4

∥
∥
∥
∥
∥

(

2t2

d2 − dt

)

Axk+1 + Bzk − (1 + t
d

)

Bzk+1

∥
∥
∥
∥
∥

2

−
2t
(

d2 + t2
) (

cd2 − dt(c + t) − t3
)

(

d2 − t2
)2
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×
∥
∥
∥Axk+1

∥
∥
∥

2 − α2

4d2

∥
∥
∥
∥
∥
λk − λ� +

(

2d2 − (d − t)2

d − t

)

Axk+1 + (d + t) Bzk+1

∥
∥
∥
∥
∥

2

+
(

d
d+t

)2
(∥
∥
∥λ

k − λ�
∥
∥
∥

2 + t2
∥
∥
∥Bzk

∥
∥
∥

2
)

−
(∥
∥
∥λ

k+1 − λ�
∥
∥
∥

2 + t2
∥
∥
∥Bzk+1

∥
∥
∥

2
)

≥ 0.

Hence, we have

V k+1 ≤
(

d
d+t

)2
V k,

and the proof is complete. ��
As the sequence {V k} is not increasing [9, Convergence Proof], we have V 1 ≤ V 0.

Thus, by using Theorem 3 and Proposition 3, one can infer the following theorem.

Theorem 9 Let f ∈ F A
c1(R

n) with c1 > 0 and let g ∈ F0(R
m) be L-smooth. Assume

that N ≥ 5 and B has full row rank. If t < min{ c1
2 , L

2λmin(B BT )
}, then

D(λ�) − D(λN ) ≤ ρ
(

L
L+tλmin(B BT )

)2N
, (44)

where ρ = V 0

16t

(
L

L+tλmin(B BT )

)−10
.

In the same line, one can infer the R-linear convergence in terms of primal and dual
residuals under the assumptions of Theorems 8 and 9. In this section, we proved the
linear convergence of {V k} under two scenarios (S1) and (S2). By (7), it is readily
seen that function −D is strongly convex under the hypotheses of both scenarios (S1)
and (S2). Therefore, both scenarios imply the PŁ inequality. One may wonder that if
the PŁ inequality and the strong convexity of f imply the linear of {V k}. By using
performance estimation, we could not establish such an implication.

As mentioned above, function −D under both scenarios are μ-strongly convex.
Hence, the optimal solution set of the dual problem is unique and one can infer the R-
linear convergence of λN by using Theorem 8 (Theorem 9) and the known inequality,

μ
2

∥
∥
∥λ

N − λ�
∥
∥
∥

2 ≤ D(λ�) − D(λN ).

6 Concluding remarks

In this paper we developed performance estimation framework to handle dual-based
methods. Thanks to this framework, we could obtain some tight convergence rates
for ADMM. This framework may be exploited for the analysis of other variants of
ADMM in the ergodic and non-ergodic sense. Moreover, similarly to [27], one can
apply this framework for introducing and analyzing new accelerated ADMMvariants.
Moreover, most results hold for any arbitrary positive step length, t , but we managed
to get closed form formulas for some interval of positive numbers.
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A Appendix

Lemma 4 Let N ≥ 4 and t, c1 ∈ R. Let D(t, c1) be N × N symmetric matrix given
in Theorem 4. If c1 > 0 is given, then

[0, c1] ⊆ {t : D(t, c1) � 0}.

Proof The argument proceeds in the samemanner as in Lemma 1. Due to the convexity
of {t : D(t, c1) � 0}, is sufficient to establish the positive semidefiniteness of D(0, c1)
and D(c1, c1). As D(0, c1) is diagonally dominant, it is positive semidefinite. Next,
we proceed to demonstrate the positive definiteness of the matrix K = D(1, 1) by
computing its leading principal minors. One can show that the claim holds for N = 4.
So we investigate N ≥ 5. To accomplish this, we perform the following elementary
row operations on matrix D:

(i) Add the second row to the third row;
(ii) Add the second row to the last row;
(iii) Add the third row to the forth row;
(iv) For i = 4 : N − 2

– Add i − th row to (i + 1) − th row;
– Add 3−i

2i2−3i−1
times of i − th row to the last row;

(v) Add 2N2−8N+9
2N2−7N+4

times of (N − 1) − th row to N − th row.

By executing these operations, we transform K into an upper triangular matirx J with
diagonal

Jk,k =

⎧

⎪⎨

⎪⎩

2, k = 1

2k2 − 3k − 1, 2 ≤ k ≤ N − 1

2N 2−7N +8− N2

(N−1)2
− (2N2−8N+9)2

2N2−7N+4
−∑N−2

i=4
(i−3)2

2i2−3i−1
, k = N .
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It is seen all first (N − 1) diagonal elements of J are positive. We show that JN ,N is
also positive. By using inequality (17), we get

2N 2 − 7N + 8 − N 2

(N − 1)2
− (2N 2 − 8N + 9)2

2N 2 − 7N + 4
−

N−2
∑

i=4

(i − 3)2

2i2 − 3i − 1

≥ 2N 2 − 7N + 8 − 25
16 − (2N 2 − 8N + 9) − N−5

2 − 1 + 2
N−3 ≥ N

2 − 17
16 > 0,

for N ≥ 5, which implies JN ,N > 0. Hence, D(c1, c1) � 0 and the proof is complete.
��
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