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Abstract
We consider the weighted k-set packing problem, where, given a collection S of sets,
each of cardinality at most k, and a positive weight function w : S → Q>0, the task
is to find a sub-collection of S consisting of pairwise disjoint sets of maximum total
weight. As this problem does not permit a polynomial-time o( k

log k )-approximation
unless P = N P (Hazan et al. in Comput Complex 15:20–39, 2006. https://doi.org/
10.1007/s00037-006-0205-6), most previous approaches rely on local search. For
twenty years, Berman’s algorithm SquareImp (Berman, in: Scandinavian workshop on
algorithm theory, Springer, 2000. https://doi.org/10.1007/3-540-44985-X_19), which
yields a polynomial-time k+1

2 + ε-approximation for any fixed ε > 0, has remained
unchallenged. Only recently, it could be improved to k+1

2 − 1
63,700,993 by Neuwohner

(38th International symposium on theoretical aspects of computer science (STACS
2021), Leibniz international proceedings in informatics (LIPIcs), 2021. https://doi.org/
10.4230/LIPIcs.STACS.2021.53). In her paper, she showed that instances for which
the analysis of SquareImp is almost tight are “close to unweighted” in a certain sense.
But for the unit weight variant, the best known approximation guarantee is k+1

3 + ε

(Fürer and Yu in International symposium on combinatorial optimization, Springer,
2014. https://doi.org/10.1007/978-3-319-09174-7_35). Using this observation as a
starting point, we conduct a more in-depth analysis of close-to-tight instances of
SquareImp. This finally allows us to generalize techniques used in the unweighted
case to the weighted setting. In doing so, we obtain approximation guarantees of k+εk

2 ,
where limk→∞ εk = 0. On the other hand, we prove that this is asymptotically best
possible in that local improvements of logarithmically bounded size cannot produce
an approximation ratio below k

2 .

This is the full version of the paper [18], which appeared as an extended abstract in the proceedings of
IPCO 2022.
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1 Introduction

For a positive integer k, the weighted k-Set Packing problem is defined as follows:
Given a family S of sets each of size at most k together with a positive weight function
w : S → Q>0, the task is to find a sub-collection A of S of maximum weight such
that the sets in A are pairwise disjoint. For k ≤ 2, the weighted k-Set Packing problem
reduces to the Maximum Weight Matching problem by adding dummy elements to
sets of cardinality less than two. The Maximum Weight Matching problem is known
to be solvable in polynomial time [8].

For k ≥ 3, the weighted k-Set Packing problem is N P-hard since it generalizes
the optimization variant of the N P-complete 3-Dimensional Matching problem [14].
In addition, Hazan, Safra and Schwartz [12] have shown that there cannot even be

a polynomial-time o
(

k
log k

)
-approximation for the weighted k-Set Packing problem

unless P = N P .
On the positive side, a simple greedy algorithm yields an approximation guarantee

of k (see for example [5]). In order to improve on this, the technique that has proven
most successful so far is local search. The basic idea is to startwith an arbitrary solution
(e.g. the empty one) and to iteratively improve the current solution by applying some
sort of local modifications until no more of these exist.

More precisely, given a feasible solution A to the weighted k-Set Packing problem,
we call a collection X ⊆ S \ A consisting of pairwise disjoint sets a local improvement
of A of size |X | if

w(X) > w({a ∈ A : ∃x ∈ X : a ∩ x 
= ∅}),

that is, if replacing the collection of sets in A that intersect sets in X by the sets in X
increases the weight of the solution. Note that whenever A is sub-optimum and A∗ is a
solution of maximumweight, then A∗ \ A defines a local improvement of A. However,
if one aims at designing a polynomial-time algorithm, it is of course infeasible to check
subsets of S of arbitrarily large size.

1.1 The unit weight case

For the special case of unit weights, Hurkens and Schrijver [13] showed that local
improvements of arbitrarily large but constant size result in approximation guarantees
arbitrarily close to k

2 . Their paper also provides matching lower bound examples
proving their result to be tight. Since then, a lot of progress has been made regarding
the special case where w ≡ 1, which we will also refer to as the unweighted k-Set
Packing problem. In 1995, at the cost of a quasi-polynomial running time, Halldórsson
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The limits of local search for weighted k-set packing

[11] achieved an approximation factor of k+2
3 by applying local improvements of size

logarithmic in the total number of sets. Cygan, Grandoni and Mastrolilli [7] managed
to get down to an approximation factor of k+1

3 + ε, still with a quasi-polynomial
running time.

The first polynomial-time algorithm improving on the result by Hurkens and Schri-
jver [13] was obtained by Sviridenko and Ward [21] in 2013. By combining color
coding with the algorithm presented in [11], they achieved an approximation ratio of
k+2
3 . This result was further improved to k+1

3 + ε for any fixed ε > 0 by Cygan [6],
obtaining a polynomial running time doubly exponential in 1

ε
. The best approxima-

tion algorithm for the unweighted k-Set Packing problem in terms of performance
ratio and running time is due to Fürer and Yu [10] from 2014. They achieve the same
approximation guarantee as Cygan [6], but a running time only singly exponential in
1
ε2
. Moreover, they show that their result is best possible in that there exist arbitrarily

large instances that feature solutions that do not permit any local improvement of size

o(|S| 15 ), but that are by a factor of k+1
3 smaller than the optimum.

1.2 General weights and theMWIS in (k+1)-claw free graphs

In the weighted setting, much less is known. Arkin and Hassin [2] have shown that
unlike the unit weight case, local improvements of constant size cannot produce an
approximation ratio better than k − 1 for general weights. Both papers improving on
this deal with a more general problem, theMaximumWeight Independent Set problem
(MWIS) in k + 1-claw free graphs [3, 5]:

For d ≥ 1, a d-claw C [3] is defined to be a star consisting of one center node and
a set TC of d talons connected to it. An undirected graph is said to be d-claw free if
none of its induced subgraphs form a d-claw.

For d ≤ 3, the MWIS in d-claw free graphs can be solved in polynomial time (see
[15, 19] for the unweighted, [16] for the weighted variant), while for d ≥ 4, again no
o( d

log d )-approximation algorithm is possible unless P = N P [12].
Given an undirected graph G = (V , E) and an independent set A ⊆ V , we call an

independent set X ⊆ V \ A a local improvement of A if the weight of X exceeds the
weight of its neighborhood in A. Using this definition, most of the previous results for
the (weighted or unweighted) k-Set Packing problem also apply to the more general
context of the MWIS in k + 1-claw free graphs. However, it is not known how to get
down to a polynomial (instead of quasi-polynomial) running time for the algorithms
in [6, 21] and [10] since there is no obvious equivalent to applying color coding to the
underlying universe.

By considering the conflict graph GS associated with an instance of the weighted
k-Set Packing problem, we obtain a weight preserving one-to-one correspondence
between feasible solutions to the weighted k-Set Packing problem and independent
sets in GS . The vertices of GS are given by the sets in S and are equipped with the
respective weights. The edges represent non-empty set intersections. To see thatGS is
indeed k+1-claw free, observe that the set corresponding to the center of a k+1-claw
in GS would need to intersect each of the k + 1 pairwise disjoint sets corresponding
to the talons. But this contradicts the fact that its cardinality is bounded by k.

123



M. Neuwohner

Thefirst significant improvement over the approximation guarantee of k achievedby
the greedy approach for theMWIS in k+1-claw free graphs wasmade by Chandra and
Halldórsson [5]. In each iteration, their algorithm BestImp picks a certain type of local
improvement that maximizes the ratio between the total weight of the vertices added
to and removed from the current solution. By further scaling and truncating the weight
function to ensure a polynomial number of iterations, Chandra and Halldórsson [5]
obtain a 2(k+1)

3 + ε-approximation algorithm for the MWIS in k+1-claw free graphs.

1.3 Berman’s algorithm SquareImp

For 20 years, Berman’s algorithm SquareImp [3] has been the state-of-the-art for
both the MWIS in k + 1-claw free graphs and the weighted k-Set Packing problem.
SquareImp proceeds by iteratively applying local improvements of the squared weight
function that arise as sets of talons of claws in G, until no more exist. In doing so,
SquareImp achieves an approximation ratio of k+1

2 , leading to a polynomial-time
k+1
2 + ε-approximation algorithm for both the MWIS in k + 1-claw free graphs and

the weighted k-Set Packing problem for any fixed ε > 0.
Berman [3] also provides an example for w ≡ 1 showing that his analysis of

SquareImp is tight. As the example uses unit weights, he concludes that applying
the same type of local improvement algorithm for a different power of the weight
function does not provide further improvements. However, as also implied by the
result in [13], while no small improvements forming the set of talons of a claw in
the input graph exist in the tight example given by Berman [3], once this additional
condition is dropped, improvements of small constant size can be found quite easily.
This observation is the basis of a recent paper by Neuwohner [17], who managed to
obtain an approximation guarantee slightly below k+1

2 by taking into account a broader
class of local improvements, namely all improvements of the squared weight function
of size at most k2 + k.

2 Our contribution

The main result of this paper is the following theorem:

Theorem 1 There exists a polynomial-time algorithm that obtains approximation
guarantees of k+εk

2 for the weighted k-Set Packing problem for k ≥ 3, where
0 ≤ εk ≤ 1 for all k ≥ 3 and limk→∞ εk = 0.

In order to prove Theorem 1, it will be convenient to phrase our algorithm and most
of our results in terms of the more general MWIS in k + 1-claw free graphs instead of
the weighted k-Set Packing problem. In fact, the algorithm we propose also yields a
quasi-polynomial time k+εk

2 -approximation for the MWIS in k + 1-claw free graphs,
but to get down to a polynomial running time, we exploit the additional structure (the
conflict graph of) an instance of the weighted k-Set Packing problem features.

The algorithm LogImpwe propose builds on Berman’s algorithm SquareImp in that
it also searches for local improvements with respect to the squared weight function
that constitute the set of talons of a claw in the input graph, as well as an additional
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The limits of local search for weighted k-set packing

type of improvement of up to logarithmic size (again with respect to the squared
weight function). In particular, we can apply Berman’s analysis of SquareImp to our
algorithm. Following [17], we show that whenever Berman’s analysis of SquareImp
is close to being tight, the instance is locally unweighted in the sense that almost
every time that a vertex from the solution chosen by SquareImp and a vertex from
any optimum solution share an edge, their weights must be very similar. While [17]
merely focuses on one of the two major steps in Berman’s analysis, we consider both
of them, allowing us to derive much stronger statements concerning the structure of
instances where SquareImp does not do much better than a k+1

2 -approximation. In
particular, we are able to transfer techniques that are used in the state-of-the-art works
on the unweighted k-Set Packing problem [6, 10] to a setting where weights are locally
similar. This idea gives rise to the precise notion of a local improvement of logarithmic
size we consider and is the main ingredient towards Theorem 1.

We further prove the approximation guarantees stated in Theorem 1 to be asymp-
totically best possible by showing that a local improvement algorithm that, for an
arbitrarily chosen, but fixed parameter α ∈ R, starts with the empty solution and itera-
tively applies local improvements ofwα of sizeO(log(|S|)) until nomore exist, cannot
produce an approximation guarantee better than k

2 for the weighted k-Set Packing
problem with k ≥ 3.1

Theorem 2 Let k ≥ 3, α ∈ R, 0 < ε < 1 and C > 0. Then for each N0 ∈ N, there
exists an instance (S, w) of the weighted k-Set Packing problem with |S| ≥ N0 and
such that there are feasible solutions A, A∗ ⊆ S with the following two properties:

– There is no local improvement of A of size at most C · log(|S|) with respect to wα ,
that is, there is no disjoint sub-collection X ⊆ S\A of sets such that

|X | ≤ C · log(|S|) and wα(X) > wα({a ∈ A : ∃x ∈ X : a ∩ x 
= ∅}).

– We have w(A∗) ≥ k−ε
2 · w(A).

Theorem 2 significantly extends the state of knowledge in terms of lower bound
examples. Even more importantly, we can finally (at least asymptotically) answer
the long-standing question of how far one can get by using pure local search in the
weighted setting. In doing so, we are also the first ones to port the idea of searching
for local improvements of logarithmic size, which has proven very successful for unit
weights [6, 7, 10, 11, 21], to the weighted setting.

The rest of this paper is organized as follows: Sect. 3 recaps some of the definitions
and main results from [3] that we will employ in the analysis of our local improve-
ment algorithm LogImp in Sect. 4. Section5 then shows how to make LogImp run in
polynomial time by means of color coding. In Sect. 6, we explain our lower bound
construction. Finally, Sect. 7 provides a brief conclusion.

1 Observe that such an algorithm might just pick the solution A from Theorem 2 set by set.
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Algorithm 1: SquareImp [3]
Input: an undirected k + 1-claw free graph G = (V , E), w : V → Q>0
Output: an independent set A ⊆ V

1 A ← ∅
2 while there exists a claw C in G that improves w2(A) do
3 A ← (A \ N (TC , A)) ∪ TC

4 return A

3 Preliminaries

Definition 3 (Neighborhood [3]) Given an undirected graph G = (V , E) and subsets
U ,W ⊆ V of its vertices, we define the neighborhood N (U ,W ) of U in W as
N (U ,W ) := {w ∈ W : ∃u ∈ U : {u, w} ∈ E ∨ u = w}. For u ∈ V and W ⊆ V , we
write N (u,W ) instead of N ({u},W ).

Notation Given w : V → Q and U ⊆ V , we write w2(U ) := ∑
u∈U w2(u).

Definition 4 (Local improvement, claw-shaped improvement [3]) Given an undirected
graph G = (V , E), a weight function w : V → Q>0 and an independent set A ⊆ V ,
we say that a vertex set B ⊆ V improves w2(A)/ is a local improvement of A if B is
independent in G and we have

w2((A \ N (B, A)) ∪ B) > w2(A).

We define a 0-claw to consist of a single talon and an empty center. For a d-claw C in
G with d ≥ 0, we say that C improves w2(A) if TC does and call TC a claw-shaped
improvement in this case.

Note that in contrast to the introduction, we do not require a local improvement B
to be disjoint from A anymore. However, it is not hard to see that B defines a local/
claw-shaped improvement of A if and only if B \ A does. Further observe that an
independent set B improves A if and only if we have w2(B) > w2(N (B, A)).

Using the notation introduced above, Berman’s algorithm SquareImp [3] can now
be formulated as in Algorithm 1.

As all weights are positive, every v /∈ A such that A∪{v} is independent constitutes
the talon of a 0-claw improvingw2(A), so the algorithm returns amaximal independent
set.

Theorem 5 ([3]) Let k ≥ 3, let G = (V , E) be a k + 1-claw free graph and let
w : V → Q>0. Let further A ⊆ V be independent such that no claw improves A, and
let A∗ be an independent set of maximum weight in G.

Then w(A∗) ≤ k+1
2 · w(A).

In particular, Theorem 5 implies that SquareImp obtains an approximation guarantee
of k+1

2 . The main idea of the proof of Theorem 5 presented in [3] is to charge the
vertices in A for preventing adjacent vertices in an optimum solution A∗ from being
included into A. The latter is done by spreading the weight of the vertices in A∗ among
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The limits of local search for weighted k-set packing

their neighbors in the maximal independent set A in such a way that no vertex in A
receives more than k+1

2 times its own weight. The suggested distribution of weights
proceeds in two steps:

First, each vertex u ∈ A∗ invokes costs of w(v)
2 at each v ∈ N (u, A).

In a second step, each u ∈ A∗ sends the remaining amount of w(u) − w(N (u,A))
2 to

a heaviest neighbor it possesses in A, which is captured by the following definition of
charges:

Definition 6 (Charges [3]) For each u ∈ A∗, pick a vertex v ∈ N (u, A) of maximum
weight and call it n(u) (recall that A is maximal).

For u ∈ A∗ and v ∈ A, define

charge(u, v) :=
{

w(u) − w(N (u,A))
2 , if v = n(u)

0, otherwise
.

Definition 6 directly implies the following statement.

Proposition 7 In the situation of Theorem 5, we have

w(A∗) =
∑
u∈A∗

∑
v∈N (u,A)

w(v)

2
︸ ︷︷ ︸
weight distributed in step 1

+
∑
u∈A∗

charge(u, n(u))

︸ ︷︷ ︸
weight distributed in step 2

.

In order to prove Theorem 5, it suffices to see that each vertex v ∈ A receives at
most k+1

2 times its own weight. To prove this, we analyze the two steps of the weight
distribution separately and show that in the first step, each v ∈ A has to pay at most
k
2 · w(v), while in the second step, the total charges v has to pay can be bounded by
w(v)
2 . In doing so, we roughly follow [3], but introduce some new notation that we will

need later for the analysis of our improved algorithm.
Looking at the first step of the weight distribution, the total weight a vertex v ∈ A

receives equals

∑
u∈N (v,A∗)

w(v)

2
= |N (v, A∗)|

2
· w(v) = k

2
· w(v) − k − |N (v, A∗)|

2
· w(v).

In particular, we can bound the total weight distributed in the first step by

∑
u∈A∗

∑
v∈N (u,A)

w(v)

2
= k

2
· w(A) −

∑
v∈A

k − |N (v, A∗)|
2

· w(v). (1)

Proposition 8 further bounds the right-hand side by k
2 · w(A) as claimed.

Proposition 8 In the situation of Theorem 5, we have |N (v, A∗)| ≤ k for every v ∈ A.

123



M. Neuwohner

Proof As G is k + 1-claw free, no vertex v ∈ A \ A∗ can have more than k neighbors
in the independent set A∗. Moreover, if v ∈ A ∩ A∗, then N (v, A∗) = {v} and
|N (v, A∗)| = 1 ≤ k. ��
The weight distributed in the second step equals

∑
u∈A∗

charge(u, n(u)) =
∑
v∈A

∑
u∈A∗:v=n(u)

charge(u, v).

Our next goal is to show that the total amount of charges a vertex v ∈ A has to
pay is bounded by w(v)

2 . To this end, we need to exploit the fact that when SquareImp
terminates, there is no improving claw centered at v. Suppose that wewant to construct
an improving claw C centered at v and consider adding u ∈ N (v, A∗) to its set TC
of talons. On the one hand, this increases w2(TC ) by w2(u). On the other hand,
w2(N (TC , A)) may also increase by up to w2(N (u, A) \ {v}) (if our claw should be
centered at v, we have to pay for v anyways). In case w2(u) > w2(N (u, A)\{v}), we
surely want to add u to our claw, otherwise, we may choose not to. This is captured
by the definition of the contribution:

Definition 9 (Contribution [17]) Define a contribution map contr : A∗ × A → Q≥0
by setting

contr(u, v) :=
{
max

{
0, w2(u)−w2(N (u,A)\{v})

w(v)

}
, if v ∈ N (u, A)

0, otherwise
.

The fact that there is no improving claw directly implies that the total contribution to
v ∈ A is bounded by w(v), which is the statement of Proposition 10.

Proposition 10 In the situation of Theorem 5, we have

∑
u∈A∗:n(u)=v

contr(u, v) ≤
∑
u∈A∗

contr(u, v) ≤ w(v)

for every v ∈ A. In particular,
∑

u∈A∗ contr(u, n(u)) ≤ w(A).

Proof For v ∈ A∗, the independence of both A and A∗ implies

{u ∈ A∗ : contr(u, v) > 0} ⊆ N (v, A∗) = {v} = N (v, A)

and, hence,

∑
u∈A∗

contr(u, v) ≤ contr(v, v) = max

{
0,

w2(v) − w2(N (v, A) \ {v})
w(v)

}
= w(v).

Assume towards a contradiction that there is v ∈ A \ A∗ such that

∑
u∈A∗

contr(u, v) > w(v).
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Then

T := {u ∈ A∗ : contr(u, v) > 0} ⊆ N (v, A∗)

forms the set of talons of a claw centered at v. As w(v) > 0, we obtain

w2(v) < w(v) ·
∑
u∈A∗

contr(u, v) = w(v) ·
∑
u∈T

contr(u, v)

=
∑
u∈T

w2(u) − w2(N (u, A) \ {v}) ≤ w2(T ) − w2(N (T , A) \ {v}).

Hence,w2(N (T , A)) < w2(T ), contradicting the fact that no claw improvesw2(A).��

We will further show that for all u ∈ A∗, we have

2 · charge(u, n(u)) ≤ contr(u, n(u)).

This implies that
∑

u∈A∗:v=n(u) charge(u, n(u)) ≤ w(v)
2 for every v ∈ A as claimed.

However, for the analysis of our algorithm, where we are not only interested in the
statement of Theorem 5 itself, but would also like to know when this is close to being
tight, it is more convenient to write

∑
u∈A∗

∑
v∈A

charge(u, v) =
∑
u∈A∗

charge(u, n(u))

= 1

2
·
∑
u∈A∗

contr(u, n(u)) −
∑
u∈A∗

[
1

2
· contr(u, n(u)) − charge(u, n(u))

]

Prop. 10≤ w(A)

2
−
∑
u∈A∗

[
1

2
· contr(u, n(u)) − charge(u, n(u))

]
, (2)

and show that the total slack
∑

u∈A∗
[ 1
2 · contr(u, n(u)) − charge(u, n(u))

]
we have

in this estimate is non-negative. This is taken care of by Definition 11 and Lemma 12.

Definition 11 (Slack) In the situation of Theorem 5, for u ∈ A∗, we define

slack(u) := 1

2
· contr(u, n(u)) − charge(u, n(u)).

Lemma 12 In the situation of Theorem 5, we have slack(u) ≥ 0 for every u ∈ A∗.

We prove Lemma 13, a slightly stronger statement which we will need again at a later
point. It directly implies Lemma 12 since all weights are strictly positive, meaning
that we can divide the inequality 2 · slack(u) · w(v) ≥ 0 by 2 · w(v).
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Lemma 13 Let u ∈ A∗ and let v := n(u). Then

2 · slack(u) · w(v) ≥ (w(u) − w(v))2

+
∑

y∈N (v,A)\{v}
(w(v) − w(y)) · w(y)

≥ (w(u) − w(v))2 + (w(N (u, A)) − w(v)) · (w(v)

− max
y∈N (u,A)\{v} w(y))

≥ (w(u) − w(v))2 ≥ 0,

where max ∅ := 0.

Proof We have

2 · slack(u) · w(v)

= (contr(u, v) − 2 · charge(u, v)) · w(v)

≥ w2(u) − w2(N (u, A) \ {v}) − 2 · w(u) · w(v) + w(N (u, A)) · w(v)

= (w(u) − w(v))2 + (w(N (u, A)) − w(v)) · w(v) − w2(N (u, A) \ {v})
= (w(u) − w(v))2 +

∑
y∈N (u,A)\{v}

(w(v) − w(y)) · w(y)

≥ (w(u) − w(v))2 + (w(N (u, A)) − w(v)) · (w(v) − max
y∈N (u,A)\{v} w(y))

≥ (w(u) − w(v))2 ≥ 0.

Then penultimate inequality follows since v = n(u) ∈ N (u, A) is ofmaximumweight
and all weights are positive. ��
We have now assembled all ingredients to prove Theorem 14, which in particular
implies Theorem 5.

Theorem 14 Let k ≥ 3, let G = (V , E) be a k + 1-claw free graph and let w : V →
Q>0. Let further A ⊆ V be independent such that no claw improves A, and let A∗ be
an independent set of maximum weight in G. Then

w(A∗) ≤ k

2
· w(A) + 1

2
·
∑
v∈A

∑
u∈A∗:v=n(u)

contr(u, v)

−
∑
v∈A

k − |N (v, A∗)|
2

· w(v) −
∑
u∈A∗

slack(u)

≤ k + 1

2
· w(A)

−
∑
v∈A

k − |N (v, A∗)|
2

· w(v) −
∑
u∈A∗

slack(u) ≤ k + 1

2
· w(A).
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Algorithm 2: LogImp
Input: an undirected k + 1-claw free graph G = (V , E), w : V → Q>0
Output: an independent set A ⊆ V

1 A ← ∅
2 while there exists a claw-shaped or circular local improvement X of w2(A) do
3 A ← (A \ N (X , A)) ∪ X

4 return A

Proof

w(A∗) Prop. 7=
∑
u∈A∗

∑
v∈N (u,A)

w(v)

2
+
∑
u∈A∗

charge(u, n(u))

(1)= k

2
· w(A) −

∑
v∈A

k − |N (v, A∗)|
2

· w(v) +
∑
u∈A∗

charge(u, n(u))

Def . 11= k

2
· w(A) −

∑
v∈A

k − |N (v, A∗)|
2

· w(v)

+
∑
u∈A∗

(
1

2
· contr(u, n(u)) − slack(u)

)

= k

2
· w(A) + 1

2
·
∑
v∈A

∑
u∈A∗:v=n(u)

contr(u, v)

−
∑
v∈A

k − |N (v, A∗)|
2

· w(v) −
∑
u∈A∗

slack(u)

Prop. 10≤ k + 1

2
· w(A) −

∑
v∈A

k − |N (v, A∗)|
2

· w(v) −
∑
u∈A∗

slack(u)

Prop. 8≤
Lem. 12

k + 1

2
· w(A).

��
This concludes the analysis of SquareImp.

4 Our algorithm LogImp

In this section, we introduce our algorithm LogImp for the MWIS in k + 1-claw free
graphs and analyze its performance ratio.

LogImp (Algorithm 2) is a local search algorithm that starts with the empty solu-
tion, and then iteratively checks for the existence of improving claws as in Berman’s
algorithm SquareImp and another type of local improvement, which we call circular.
It corresponds to a cycle of logarithmically bounded size in a certain auxiliary graph.
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Definition 15 Let G = (V , E) be a k + 1-claw free graph, let w : V → Q>0 and let
A ⊆ V be independent.

Let further twomaps n : {u ∈ V : |N (u, A)| ≥ 1} → Amapping u to an element of
N (u, A) of maximum weight, and n2 : {u ∈ V : |N (u, A)| ≥ 2} → A mapping u to
an element of N (u, A) \ {n(u)} of maximum weight be given. We call an independent
set X ⊆ {u ∈ V \A : |N (u, A)| ≥ 1} a circular improvement if
(i) ∃U ⊆ X s.t. |U | ≤ 8 · �log(|V |)�, each u ∈ U has at least two neighbors in A

and C := (
⋃

u∈U {n(u), n2(u)}, {eu = {n(u), n2(u)}, u ∈ U }) is a cycle.
(ii) If we let Yv := {x ∈ X \U : n(x) = v}, then X = U ∪⋃v∈V (C) Yv .
(iii) For every u ∈ U , we have

w2(u) + 1

2
·
⎛
⎝ ∑

z∈Yn(u)

w2(z) +
∑

z∈Yn2(u)

w2(z)

⎞
⎠

>
w2(n(u)) + w2(n2(u))

2
+ w2(N (u, A) \ {n(u), n2(u)})

+ 1

2
·
⎛
⎝ ∑

z∈Yn(u)

w2(N (z, A) \ {n(u)}) +
∑

z∈Yn2(u)

w2(N (z, A) \ {n2(u)})
⎞
⎠ .

Proposition 16 If X is a circular improvement and U, C and Yv, v ∈ V (C) are as
in Definition 15, then we have |Yv| ≤ k for all v ∈ V (C). In particular, we obtain
|X | ≤ 8 · (k + 1) · �log(|V |)�.
Proof As X is independent and Yv ⊆ N (v, V \ A) by definition of Yv and the map n,
we know that for every v ∈ V (C), Yv constitutes the set of talons of a claw centered
at v, provided it is non-empty. Hence, |Yv| ≤ k for all v ∈ V (C). In particular, we
obtain

|X | = |U | +
∑

v∈V (C)

|Yv| ≤ |U | + k · |V (C)| = (k + 1) · |U | ≤ 8 · (k + 1) · �log(|V |)�,

where |U | = |V (C)| follows by definition of C . ��
Proposition 17 Every circular improvement X satisfies w2(X) > w2(N (X , A)) and,
thus, constitutes a local improvement.

Proof Let X be a circular improvement and let U , C and Yv, v ∈ V (C) as in
Definition 15. We compute

w2(X) = w2(U ) +
∑

v∈V (C)

w2(Yv)
(∗)=
∑
u∈U⎡

⎣w2(u) + 1

2
·
⎛
⎝ ∑

z∈Yn(u)

w2(z) +
∑

z∈Yn2(u)

w2(z)

⎞
⎠
⎤
⎦
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(iii)
>
∑
u∈U

[
w2(n(u)) + w2(n2(u))

2
+ w2(N (u, A) \ {n(u), n2(u)})

]

+ 1

2
·
∑
u∈U

⎡
⎣ ∑
z∈Yn(u)

w2(N (z, A) \ {n(u)}) +
∑

z∈Yn2(u)

w2(N (z, A) \ {n2(u)})
⎤
⎦

(∗)=
∑

v∈V (C)

⎡
⎣w2(v) +

∑
z∈Yv

w2(N (z, A) \ {v})
⎤
⎦+

∑
u∈U

w2(N (u, A) \ {n(u), n2(u)}))

≥ w2(V (C)) +
∑

v∈V (C)

w2(N (Yv, A) \ V (C)) +
∑
u∈U

w2(N (u, A) \ V (C))

≥ w2(N (X , A)).

The equations labeled (∗) follow from the fact that

C =
(⋃
u∈U

{n(u), n2(u)}, {eu = {n(u), n2(u)}, u ∈ U }
)

forms a cycle, meaning that each v ∈ V (C) occurs exactly twice among all of the sets
{n(u), n2(u)}, u ∈ U . ��
The intuition behind Definition 15 is the following: Similar to the state-of-the-art
algorithm by Fürer and Yu [10] for the unweighted case, we build up an auxiliary
graph H on the vertex set A, where each vertex u ∈ V \A with at least two neighbors
in A induces an edge between its two heaviest ones n(u) and n2(u). The backbone of
our circular improvement is given by a cycle C of logarithmic size in H . Additionally,
for each v ∈ V (C), we can add some additional vertices u with n(u) = v that
contribute a positive amount to v. Now, we want to cover for the weight of each
v ∈ V (C) ⊆ N (X , A) by using the vertices corresponding to the two incident edges
in C as well as the contributions from the vertices in Yv . More precisely, for each edge
induced by u ∈ U , we would like w2(u), together with half of the contributions to
n(u) and n2(u), to be able to pay for all neighbors of u in A other than n(u) and n2(u),
as well as half of n(u) and n2(u), which is precisely the constraint (iii).

When LogImp terminates, there cannot be any further improving claw, so we can
apply the analysis of SquareImp presented in Sect. 3 to our algorithm. Similar to [17],
the key idea in analyzing LogImp is the following: Either the analysis of SquareImp is
far enough from being tight to achieve the desired approximation ratio, or the instance
at hand bears a certain structure that allows us to derive the existence of a circular
improvement. But this contradicts the termination criterion of LogImp.

The remainder of this section is dedicated to the proof of Theorem 18, which
bounds the approximation guarantee obtained by LogImp. In Sect. 5, we then derive
our main result, Theorem 1, by showing how to implement each iteration of LogImp in
polynomial time, provided the input graph is the conflict graph of an (explicitly given)
instance of the weighted k-Set Packing problem, and by explaining how to obtain a
polynomial number of iterations by scaling and truncating the weight function.
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Theorem 18 For k ≥ 3, LogImp yields a k+δk
2 -approximation for the MWIS in k +

1-claw free graphs, where

δk :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, k = 3

1 − 2 · 10−4 · (k − 3.59), 4 ≤ k ≤ 2153

0.57 + 1.55
k , 2154 ≤ k ≤ 5007

40.25√
k

+ 3.59
k , k > 5007

. (3)

We have limk→∞ δk = 0 and a simple calculation shows δk ∈ (0, 1) for all k ≥ 4.
We further point out that for k ≥ 4, we obtain an approximation guarantee strictly
better than the ratio of k+1

2 obtained by SquareImp, but also than the improvement to
k+1
2 − 1

63,700,993 (or k+1
2 − 1

63,700,992 + ε, to be precise) by Neuwohner [17].
For k = 3, Theorem 18 is implied by Theorem 5. To see why LogImp cannot yield

an improvement over the approximation gurantee of k+1
2 for k = 3, consider a graph

G that consists of a cycle of even length 2m the vertices of which alternately belong
to the solution A that LogImp may find vertex by vertex and an optimum solution
A∗. Moreover, each vertex from A has an additional neighbor from A∗ of degree 1.
All weights are 1. As the maximum degree in G equals 3, G is clearly 4-claw free.
Furthermore, G is (isomorphic to) the conflict graph of the instance of the weighted
3-Set Packing problem we obtain by identifying each vertex with its set of incident
edges.

We have w(A∗) = |A∗| = 2 ·m = 2 · |A| = 3+1
2 ·w(A). It is not hard to see that no

claw improves A.2 But for m ≥ 40, there also is no circular improvement because the
set U from Definition 15 would need to consist of all vertices from A∗ that have two
neighbors in A. But there are m such vertices and since |V | = 3 · m ≥ 120, we have
m = |V |

3 > 8 · (log(|V |) + 1). Hence, there exists no circular improvement, either.
Now, we deal with the case k ≥ 4. We introduce two auxiliary constants ε′

k and
ε̃k and we consider vertex weights to be “close” if they differ by a factor of at most

1 ±
√

ε′
k . Moreover, for a vertex v ∈ A, ε̃k · w(v) constitutes a threshold telling us

whether the total contribution to v should be regarded as small or large. We choose
our constants to be

ε′
k :=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

10−3, 4 ≤ k ≤ 2153

5·
(
1−18·10− 3

2

)

k , 2154 ≤ k ≤ 5007
5
k , 5007 < k

and ε̃k := 18 ·
√

ε′
k . (4)

Our choices of ε′
k , ε̃k and δk satisfy a bunch of inequalities that pop up during our

analysis and are listed in Sect. 4.4. However, the main intuition the reader should have

about them is that 0 < ε′
k �

√
ε′
k < ε̃k < δk < 1.

2 By symmetry, one can, for example, just pick one vertex from A as a potential center and check all 8
subsets of its neighbors in A∗ = V \ A.
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For the analysis, we fix an instance (G, w) of the MWIS in k + 1-claw free graphs
consisting of a k + 1-claw free graph G = (V , E) and a positive weight function
w : V → Q>0. Denote the solution returned by LogImp when applied to (G, w) by
A, and let A∗ be an optimum solution for this instance. Finally, fix two maps n and n2
according to Definition 15. We point out that A is maximal when LogImp terminates
since there is no claw-shaped improvement. This implies that the domain of n is V .

4.1 Classification of vertices from A∗

We now provide a classification of the vertices in A∗ that helps us to understand the
structural properties of near-tight instances.

Definition 19 Let u ∈ A∗. We call u contributive if

slack(u) ≥ ε′
k

10
· w(N (u, A)).

If u is not contributive, but

w(u)

w(n(u))
∈
[
1 −

√
ε′
k, 1 +

√
ε′
k

]
and w(N (u, A)) ≤

(
1 +

√
ε′
k

)
· w(n(u)),

we call u single. Finally, if u is neither contributive nor single, and |N (u, A)| ≥ 2,

w(u)

w(n(u))
∈
[
1 −

√
ε′
k, 1 +

√
ε′
k

]
,
w(n2(u))

w(n(u))
∈
[
1 −

√
ε′
k, 1

]
, and

w(N (u, A)) < (2 + ε′
k) · w(u), we call u double.

For a contributive vertex u, we gain a constant fraction of the weight of its neighbor-
hood in A in our bound on w(A∗) (cf. Theorem 14). For a single vertex u, the heaviest
neighbor n(u) of u in A has almost the same weight as u and makes up almost all of
N (u, A) in terms of weight. Single vertices correspond to vertices of degree 1 to A in
the unit weight case.

For a double vertex u, its two heaviest neighbors in A, n(u) and n2(u), have roughly
the same weight as u and make up most of N (u, A). Double vertices can be thought
of as having degree 2 to A.

Lemma 20 Each u ∈ A∗ is single, double, or contributive.

Proof Pick u ∈ A∗ and let v := n(u).
Case 1: w(N (u, A)) ≥ (2 + ε′

k) · w(u).
By non-negativity of the contribution, we obtain

2 · slack(u) = contr(u, v) − 2 · charge(u, v) ≥ 0 − (2 · w(u) − w(N (u, A)))

= w(N (u, A)) ·
(
1 − 2 · w(u)

w(N (u, A))

)
≥ w(N (u, A)) ·

(
1 − 2

2 + ε′
k

)
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= ε′
k

2 + ε′
k

· w(N (u, A))
(19)≥ ε′

k

5
· w(N (u, A)).

This implies that u is contributive.
Case 2:w(N (u, A)) < (2+ ε′

k) ·w(u). If u is contributive, we are done, so assume
that this is not the case. In particular,

slack(u) <
ε′
k

10
· w(N (u, A)) < ε′

k · 2 + ε′
k

10
· w(u)

(19)≤ ε′
k

4
· w(u).

We further claim that w(v) ≥ w(u)
2 , implying

slack(u) <
ε′
k

2
· w(v). (5)

Indeed, if we had w(v) <
w(u)
2 , then Lemma 13 would yield

slack(u) ≥ (w(u) − w(v))2

2 · w(v)
>

w(u)
2 · w(v)

2 · w(v)
= w(u)

4

(19)
>

ε′
k

4
· w(u),

a contradiction. By combining (5), multiplied with 2 ·w(v), and Lemma 13, we obtain

(w(u) − w(v))2 + (w(N (u, A)) − w(v)) · (w(v) − max
y∈N (u,A)\{v} w(y)) < ε′

k · w2(v).

Note that both summands on the left hand side are non-negative since real squares
are non-negative, all weights are positive, and v = n(u) ∈ N (u, A) is of maximum
weight. In particular, both

ε′
k · w2(v) ≥ (w(u) − w(v))2 and (6)

ε′
k · w2(v) ≥ (w(N (u, A)) − w(v)) · (w(v) − max

y∈N (u,A)\{v} w(y)) (7)

need to hold. From (6), we can infer that |w(u) − w(v)| ≤
√

ε′
k · w(v), which in turn

implies that

w(u)

w(v)
∈
[
1 −

√
ε′
k, 1 +

√
ε′
k

]
. (8)

In addition to that, (7) tells us that at least one of the two inequalities

√
ε′
k · w(v) ≥ w(N (u, A)) − w(v) or (9)

√
ε′
k · w(v) ≥ w(v) − max

y∈N (u,A)\{v} w(y) (10)
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must hold. If we have (9), then together with (8) and our assumption that u is not
contributive, we may conclude that u is single. Thus, we are left with the case where
u is neither contributive nor single, and (10) applies. The fact that ε′

k < 1 by (19),
together with w(v) > 0, implies that N (u, A) \ {v} 
= ∅, so let v2 := n2(u). Then

w(v) − w(v2) ≤
√

ε′
k · w(v) and, hence,

(
1 −

√
ε′
k

)
· w(v) ≤ w(v2) ≤ w(v) by

maximality of w(v) in N (u, A). Thus, together with (8) and our case assumption
w(N (u, A)) < (2 + ε′

k) · w(u), all conditions for u being double are fulfilled. ��

4.2 Missing, profitable and helpful vertices

We now discuss the role the different types of vertices in A∗ play in our analysis.
We start by recalling that in the first step of the weight distribution in the analysis
of SquareImp, each v ∈ A pays |N (v, A∗)| · w(v)

2 , which we bound by k · w(v)
2 . In

particular, if the number of neighbors of v in A∗ happens to be less than k (we say that
v has k − |N (v, A∗)| missing neighbors in this case), we gain w(v)

2 for each missing
neighbor of v.

We partition the neighbors a vertex v ∈ A has in A∗ into those that are helpful to v,
and those that are profitable for v. While helpful vertices are those vertices that would
be considered neighbors of v in an unweighted approximation of our instance, and
that help us to construct local improvements of logarithmic size, profitable vertices
are the remaining neighbors that in some sense keep the instance from being close to
unweighted and hence, tight. Therefore, they improve the analysis (i.e. our bound on
w(A∗) profits from these).

Definition 21 Let u ∈ A∗ and v ∈ N (u, A). We say that u is helpful to v if

– u is single and v = n(u), or if
– u is double and v ∈ {n(u), n2(u)}.

Otherwise, we call u profitable for v. Moreover, for u ∈ A∗, we define

help(u) := {v ∈ N (u, A) : u is helpful to v},

and for v ∈ A, we let helped(v) := {u ∈ A∗ : v ∈ help(u)}.
One can show that for each profitable neighbor that a vertex v ∈ A possesses in A∗,
we gain a constant fraction of w(v) in bounding w(A∗). Intuitively, this is because v

increases slack(u) for every profitable neighbor u of v. Lemma 22 formalizes the way
missing and profitable neighbors improve our bound on w(A∗).

Lemma 22

w(A∗) ≤ k

2
· w(A) + 1

2
·
∑
v∈A

∑
u∈A∗:v=n(u)

contr(u, v)

−
∑
v∈A

(k − |helped(v)|)︸ ︷︷ ︸
# missing or profitable

neighbors of v

· ε
′
k

10
· w(v)
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Note that Proposition 10 tells us that
∑

u∈A∗:v=n(u) contr(u, v) ≤ w(v) for v ∈ A.
To prove Lemma 22, we provide a lower bound on the slack of a vertex in A∗ (see
Lemma 23). Then, we distribute the slack among the vertices in N (u, A) \ help(u)

proportional to their weight.

Lemma 23 Let u ∈ A∗. Then slack(u) ≥ ε′
k
10 · w(N (u, A)\help(u)).

Proof of Lemma 22, assuming Lemma 23 We calculate

∑
v∈A

k − |N (v, A∗)|
2

· w(v) +
∑
u∈A∗

slack(u)

(19)≥
∑
v∈A

(k − |N (v, A∗)|) · ε′
k

10
· w(v) +

∑
u∈A∗

ε′
k

10
· w(N (u, A) \ help(u))

=
∑
v∈A

(k − |N (v, A∗)|) · ε′
k

10
· w(v) +

∑
u∈A∗

∑
v∈N (u,A)\help(u)

ε′
k

10
· w(v)

=
∑
v∈A

(k − |N (v, A∗)|) · ε′
k

10
· w(v)

+
∑
v∈A

(|N (v, A∗)| − |helped(v)|) · ε′
k

10
· w(v)

=
∑
v∈A

(k − |helped(v)|) · ε′
k

10
· w(v).

By Theorem 14, we, hence, obtain

w(A∗) ≤ k

2
· w(A) + 1

2
·
∑
v∈A

∑
u∈A∗:
v=n(u)

contr(u, v)

−
∑
v∈A

k − |N (v, A∗)|
2

· w(v) −
∑
u∈A∗

slack(u)

≤ k

2
· w(A) + 1

2
·
∑
v∈A

∑
u∈A∗:
v=n(u)

contr(u, v)

−
∑
v∈A

(k − |helped(v)|) · ε′
k

10
· w(v).

��
Proof of Lemma 23 By Lemma 20, its suffices to verify the statement for the three
cases where u is contributive, double, or single, respectively.

Case 1: u is contributive. Then slack(u) ≥ ε′
k
10 · w(N (u, A)) by definition.
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Case 2: u is double. Let v1 := n(u) and v2 := n2(u). Then help(u) = {v1, v2}. By
Lemma 13, we calculate

2 · slack(u) · w(v1) ≥ (w(u) − w(v1))
2 +

∑
y∈N (u,A)\{v1}

(w(v1) − w(y)) · w(y)

≥
∑

y∈N (u,A)\{v1,v2}
(w(v1) − w(y)) · w(y)

≥
∑

y∈N (u,A)\{v1,v2}
(w(v1) − w(N (u, A) \ {v1, v2})) · w(y)

= (w(v1) − w(N (u, A) \ {v1, v2})) · w(N (u, A) \ {v1, v2})
= (w(v1) − w(N (u, A) \ {v1, v2})) · w(N (u, A) \ help(u)).

(11)

The second and third inequality follow from the facts that all weights are positive and
that v1 is of maximum weight in N (u, A). As u is double, we further know that

w(N (u, A) \ {v1, v2}) = w(N (u, A)) − w(v1) − w(v2)

≤ (2 + ε′
k) · w(u) − w(v1) −

(
1 −

√
ε′
k

)
· w(v1)

≤ (2 + ε′
k) ·

(
1 +

√
ε′
k

)
· w(v1) − w(v1) −

(
1 −

√
ε′
k

)
· w(v1)

=
(

ε′
k ·
(
1 +

√
ε′
k

)
+ 3 ·

√
ε′
k

)
· w(v1).

Plugging this into (11) yields

slack(u) ≥ 1

2
·
(
1 − ε′

k ·
(
1 +

√
ε′
k

)
− 3 ·

√
ε′
k

)
·

w(N (u, A) \ help(u))
(20)≥ ε′

k

10
· w(N (u, A) \ help(u)).

Case 3: u is single.

Letv1 := n(u). Thenhelp(u) = N (u, A)\{v1} andw(N (u, A)) ≤ (1+
√

ε′
k)·w(v1)

by definition of single. By Lemma 13, we obtain

2 · slack(u) · w(v1)

≥ (w(u) − w(v1))
2 + (w(v1) − max

y∈N (u,A)\{v1}
w(y)) · w(N (u, A) \ {v1})

≥ (w(u) − w(v1))
2 + (w(v1) − w(N (u, A) \ {v1})) · w(N (u, A) \ {v1})

= (w(u) − w(v1))
2 + (2 · w(v1) − w(N (u, A))) · w(N (u, A) \ {v1})

≥
(
1 −

√
ε′
k

)
· w(v1) · w(N (u, A) \ {v1})
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=
(
1 −

√
ε′
k

)
· w(v1) · w(N (u, A) \ help(u)).

Division by 2 · w(v1) > 0 yields

slack(u) ≥
1 −

√
ε′
k

2
· w(N (u, A) \ help(u))

(20)≥ ε′
k

10
· w(N (u, A) \ help(u))

as claimed. ��

4.3 Local improvements of logarithmic size

While missing and profitable neighbors improve our bound on w(A∗), our goal is to
use helpful neighbors towards a local improvement of logarithmic size. In order to get
a better idea of what we are aiming at, we take a brief detour and recapitulate how
these vertices are handled in the unit weight case. In [10], an auxiliary graph GA is
constructed, the vertices of which correspond to the vertices in the current solution
A. Each vertex from an optimum solution A∗ with exactly one neighbor in A creates
a loop on that neighbor, while a vertex from A∗ with exactly two neighbors in A
results in an edge connecting these. Now, it is not hard to see that there is a one-
to-one correspondence between local improvements only featuring vertices from A∗
with degree one or two to A, and subgraphs of GA with more edges than vertices. A
minimal such subgraph is called a binocular [4]. Now, a result by Berman and Fürer
[4] comes into play:

Lemma 24 ([4]) Let s ∈ N>0 and let G = (V , E) be a graph with |E | ≥ s+1
s · |V |.

Then G contains a binocular with at most 4 · s · �log(|V |)� vertices.
In particular, Lemma 24 implies the existence of a cycle of logarithmically bounded
size. Moreover, if the number of vertices from A∗ of degree 1 or 2 to A exceeds
(1 + ε) · |A|, one can find local improvements of size O( 1

ε
· log(|A|)), which is one

of the key ingredients of the result in [10].
We would like to port this approach to our weighted setting where vertex weights

are locally similar. If we could ensure that for each double vertex u, its squared weight
is at least as large as the average squared weight of its neighbors n(u) and n2(u), plus
the squared weight of the neighbors of u in A other than n(u) and n2(u), then we
would be done since in a binocular, every vertex has degree at least two, and there
is at least one vertex of degree more than two. However, this need not be the case in
general, and even if we only lose an ε′

k fraction of the weight of each vertex involved,
the total loss might be arbitrarily large if we consider improvements of logarithmic
size. In order to overcome this issue, we have to make sure that locally, we have some
additional vertices with a positive contribution to the endpoints of the edges that we
can add to guarantee that we can make up for the slight inaccuracies caused by the
weight differences. This idea is captured by the following definition.

Definition 25 (Tv and B) For v ∈ A, let

Tv := {u ∈ A∗ : n(u) = v ∧ contr(u, v) > 0}.
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The limits of local search for weighted k-set packing

(Note that Tv ⊆ N (v, A∗) and that n(u) = v for all u ∈ Tv , implying that the sets
(Tv)v∈A are pairwise disjoint.) We define

B :=
⎧⎨
⎩v ∈ A :

∑
u∈Tv

contr(u, v) > ε̃k · w(v)

⎫⎬
⎭ .

For a vertex v ∈ B, we can use the contributions of the vertices in Tv to cover for the
inaccuracies caused by local weight differences as discussed before. In order to make
sure that the neighborhood of our local improvement in A features sufficiently many
vertices from B, we will only allow edges in our auxiliary graph that have at least
one endpoint in B. The idea is that then each (sufficiently short) cycle in our auxiliary
graph gives rise to a circular improvement by choosing Yv := Tv\U for v ∈ B, and
Yv := ∅ otherwise, where U denotes the set of vertices from V \ A inducing the
edges of the cycle. To find such a cycle, we need to see that the weighted sum of
the number of incident edges (induced by helpful vertices) of vertices in B is large
enough. Lemma 26 tells us that if

∑
v∈B

w(v) · |helped(v)| ≤
⎛
⎜⎝ 5

2 ·
(
1 −

√
ε′
k

) + 1

⎞
⎟⎠ · w(A),

then we reach the desired approximation guarantee of k+δk
2 stated in Theorem 18. On

the other hand, Lemma 27 shows that if this condition is not fulfilled, we can indeed
find a circular improvement, contradicting the termination criterion of LogImp. This
then concludes the analysis.

Lemma 26 If

∑
v∈B

w(v) · |helped(v)| ≤
⎛
⎜⎝ 5

2 ·
(
1 −

√
ε′
k

) + 1

⎞
⎟⎠ · w(A),

then w(A∗) ≤ k+δk
2 · w(A) holds.

Proof For v ∈ A, we get
∑

u∈A∗:v=n(u) contr(u, v) = ∑
u∈Tv

contr(u, v) by non-
negativity of the contribution. For v ∈ A \ B, we have

∑
u∈A∗:
v=n(u)

contr(u, v) =
∑
u∈Tv

contr(u, v) ≤ ε̃k · w(v),

while for v ∈ B, Proposition 10 tells us that

∑
u∈A∗:
v=n(u)

contr(u, v) =
∑
u∈Tv

contr(u, v) ≤ w(v).
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By Lemma 22, we obtain

w(A∗) ≤ k

2
· w(A) + 1

2
·
∑
v∈A

∑
u∈A∗:v=n(u)

contr(u, v)

−
∑
v∈A

(k − |helped(v)|) · ε′
k

10
· w(v)

≤ k

2
· w(A) + ε̃k

2
· w(A \ B) + 1

2
· w(B) −

∑
v∈A

(k − |helped(v)|) · ε′
k

10
· w(v)

[1] Prop. 8≤ k + ε̃k

2
· w(A) + 1 − ε̃k

2
· w(B) −

∑
v∈B

(k − |helped(v)|) · ε′
k

10
· w(v)

= k + ε̃k

2
· w(A) +

(
1 − ε̃k

2
− k · ε′

k

10

)
· w(B) + ε′

k

10
·
∑
v∈B

w(v) · |helped(v)|

≤
⎛
⎜⎝k + ε̃k

2
+ ε′

k

10
·
⎛
⎜⎝ 5

2 ·
(
1 −

√
ε′
k

) + 1

⎞
⎟⎠

⎞
⎟⎠ · w(A)

+
(
1 − ε̃k

2
− k · ε′

k

10

)
· w(B).

If
(
1−ε̃k
2 − k·ε′

k
10

)
≥ 0, usingw(B) ≤ w(A) as B ⊆ A, the latter can be upper bounded

by

⎛
⎜⎝k + 1

2
− ε′

k

10
·
⎛
⎜⎝k − 5

2 ·
(
1 −

√
ε′
k

) − 1

⎞
⎟⎠

⎞
⎟⎠ · w(A)

(19)≤
⎛
⎝k + 1

2
− ε′

k

10
·
⎛
⎝k − 5

2 ·
(
1 − 10− 3

2

) − 1

⎞
⎠
⎞
⎠ · w(A).

On the other hand, if
(
1−ε̃k
2 − k·ε′

k
10

)
≤ 0, we obtain an upper bound of

⎛
⎜⎝k + ε̃k

2
+ ε′

k

10
·
⎛
⎜⎝ 5

2 ·
(
1 −

√
ε′
k

) + 1

⎞
⎟⎠

⎞
⎟⎠ · w(A)

(19)≤
⎛
⎝k + ε̃k

2
+ ε′

k

10
·
⎛
⎝ 5

2 ·
(
1 − 10− 3

2

) + 1

⎞
⎠
⎞
⎠ · w(A)
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since w(B) ≥ 0. For 4 ≤ k ≤ 2153, we have

1 − ε̃k

2
− k · ε′

k

10

(4)≥ 1

2
− 9 · 10− 3

2 − 2153 · 10−4 > 0.215395 − 0.2153 > 0.

Hence,

w(A∗) ≤
⎛
⎝k + 1

2
− ε′

k

10
·
⎛
⎝k − 5

2 ·
(
1 − 10− 3

2

) − 1

⎞
⎠
⎞
⎠ · w(A)

(4)= k

2
· w(A) + 1

2
·
⎛
⎝1 − 10−3

5
·
⎛
⎝k − 5

2 ·
(
1 − 10− 3

2

) − 1

⎞
⎠
⎞
⎠ · w(A)

<
k

2
· w(A) + 1

2
·
(
1 − 2 · 10−4 · (k − 3.59)

)
· w(A)

(3)= k + δk

2
· w(A).

For 2154 ≤ k ≤ 5007, we obtain ε̃k = 18 ·
√

ε′
k

(19)≤ 18 · 10− 3
2 , which implies

1 − ε̃k

2
− k · ε′

k

10

(4)≥ 1 − 18 · 10− 3
2

2
− 1 − 18 · 10− 3

2

2
= 0.

Thus, we may conclude that

w(A∗) ≤

⎛
⎜⎜⎝
k + 1

2
− ε′

k
10

·

⎛
⎜⎜⎝k − 5

2 ·
(
1 − 10− 3

2

) − 1

⎞
⎟⎟⎠

⎞
⎟⎟⎠ · w(A)

= k

2
· w(A) + 1

2
·

⎛
⎜⎜⎝1 − ε′

k · k
5

+ ε′
k · k
5

·

⎛
⎜⎜⎝

5

2 ·
(
1 − 10− 3

2

) + 1

⎞
⎟⎟⎠ · 1

k

⎞
⎟⎟⎠ · w(A)

(4)= k

2
· w(A)

+ 1

2
·

⎛
⎜⎜⎝18 · 10− 3

2 +
(
1 − 18 · 10− 3

2

)
·

⎛
⎜⎜⎝

5

2 ·
(
1 − 10− 3

2

) + 1

⎞
⎟⎟⎠ · 1

k

⎞
⎟⎟⎠ · w(A)

<
k

2
· w(A) + 1

2
·
(
0.57 + 1.55

k

)
· w(A)

(3)= k + δk

2
· w(A).

Finally, for k > 5007, we have

1 − ε̃k

2
− k · ε′

k

10
(4)= 1 − ε̃k

2
− k · 5

k

10
= − ε̃k

2
< 0,
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so

w(A∗) ≤
⎛
⎝k + ε̃k

2
+ ε′

k

10
·
⎛
⎝ 5

2 ·
(
1 − 10− 3

2

) + 1

⎞
⎠
⎞
⎠ · w(A)

(4)= k

2
· w(A) + 1

2
·
⎛
⎝18 ·

√
5

k
+
⎛
⎝ 5

2 ·
(
1 − 10− 3

2

) + 1

⎞
⎠ · 1

k

⎞
⎠ · w(A)

<
k

2
· w(A) + 1

2
·
(
40.25√

k
+ 3.59

k

)
· w(A)

(3)= k + δk

2
· w(A).

This concludes the proof. ��
Lemma 27 If

∑
v∈B

w(v) · |helped(v)| >

⎛
⎜⎝ 5

2 ·
(
1 −

√
ε′
k

) + 1

⎞
⎟⎠ · w(A),

then there exists a circular improvement.

To prove Lemma 27, we first state Lemma 28, which tells us that any graph in
which the average degree is by some constant factor larger than 2 contains a cycle of
logarithmically bounded size. It is implied by the proof of Lemma 3.1 in [4].

Lemma 29 then provides a generalization to a setting where we are given positive
vertex weights and only have a bound on the average weighted degree, but know that
the weights of neighboring vertices can only differ by a constant factor.

We employ it in our proof of Lemma 27 to derive the existence of a cycle of
logarithmically bounded size in a certain auxiliary graph, which then gives rise to a
circular improvement.

Lemma 28 Let s ∈ N>0 and let G = (V , E) be an undirected graph with |V | ≥ 2
such that |E | ≥ s+1

s · |V |. Then G contains a cycle of size at most 2 · s · �log(|V |)�.
Lemma 29 Let G = (V , E) be an undirected graph with |V | ≥ 2 equipped with
positive vertex weights w : V (G) → Q>0.

Let further α ≥ 1 such that for every edge {u, v} ∈ E(G), we have

α−1 · w(u) ≤ w(v) ≤ α · w(u),

and let s ∈ N such that

∑
v∈V

w(v) · |δ(v)| ≥ s + 1

s
· 2 · α ·

∑
v∈V

w(v),

where δ(v) denotes the set of incident edges of v in G. Then G contains a cycle of
length at most 2 · s · �log(|V |)�.
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The limits of local search for weighted k-set packing

Proof If G contains a loop, we are done since log(|V |) ≥ log(2) = 1, so assume that
this is not the case. By Lemma 28, it suffices to show that G contains a non-empty
subgraph G ′ with |E(G ′)| ≥ s+1

s · |V (G ′)|. Note that each such subgraph satisfies
|V (G ′)| ≥ 2 by our assumption that G does not contain any loop. Let wmax :=
maxv∈V w(v). For x ∈ (0,∞), let V≥x := {v ∈ V : w(v) ≥ x} be the set of vertices
of weight at least x , and let G≥x := (V≥x , E≥x ) := G[V≥x ] denote the subgraph of
G induced by V≥x . Observe that by definition of wmax , V≥x 
= ∅ for x ∈ (0, wmax ).
We claim that there is x ∈ (0, wmax ) such that |E≥x | ≥ s+1

s · |V≥x |. Assume towards
a contradiction that this were not the case, i.e.

∀x ∈ (0, wmax ) : |E≥x | <
s + 1

s
· |V≥x |. (12)

By our assumption on α, we know that for every x ∈ (0,∞) and every v ∈ V≥α·x , the
neighborhood of v in G is contained in V≥x . Hence, we obtain

∀x ∈ (0, wmax ) : 2 · |E≥x | =
∑

v∈V≥x

|δ(v) ∩ E≥x | ≥
∑

v∈V≥α·x
|δ(v)|. (13)

This yields

2 · s + 1

s
·
∑
v∈V

w(v) ≤
∑
v∈V

α−1 · w(v) · |δ(v)| =
∑
v∈V

|δ(v)| ·
∫ α−1·w(v)

0
1 dx

α≥1=
∑
v∈V

|δ(v)| ·
∫ wmax

0
1α−1·w(v)≥x dx =

∑
v∈V

|δ(v)| ·
∫ wmax

0
1w(v)≥α·x dx

=
∫ wmax

0

∑
v∈V

1w(v)≥α·x · |δ(v)| dx =
∫ wmax

0

∑
v∈V≥α·x

|δ(v)| dx

(13)≤
∫ wmax

0
2 · |E≥x | dx

(12)
<

∫ wmax

0
2 · s + 1

s
· |V≥x | dx

= 2 · s + 1

s
·
∫ wmax

0

∑
v∈V

1w(v)≥x dx = 2 · s + 1

s
·
∑
v∈V

∫ wmax

0
1w(v)≥x dx

= 2 · s + 1

s
·
∑
v∈V

w(v),

i.e. 2 · s+1
s · ∑v∈V w(v) < 2 · s+1

s · ∑v∈V w(v), a contradiction. Note that when
applying (12) in the fourth line, we indeed inherit the strict inequality because both
|E≥x | and |V≥x | are constant on the interval (0,minv∈V w(v)) of positive length. ��
Proof of Lemma 27 Let v ∈ B. We show that there is at most one vertex u ∈ N (v, A∗)
such that u is single and v = n(u). Observe that for each such vertex u, we have

contr(u, v) · w(v) ≥ w2(u) − w2(N (u, A) \ {v})
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≥
(
1 −

√
ε′
k

)2

· w2(v) −
(√

ε′
k · w(v)

)2

=
(
1 − 2

√
ε′
k

)
· w2(v)

(22)
>

w2(v)

2
,

so contr(u, v) >
w(v)
2 . But by Proposition 10, the total contribution to v ∈ B ⊆ A is

boundedbyw(v) since there is no claw-shaped improvementwhenLogImp terminates.
Hence, there can be at most one such vertex u since the contribution is non-negative.

Moreover, recall that v ∈ help(u) if and only if u is single and v = n(u), or u is
double and v ∈ {n(u), n2(u)}. As a consequence, we obtain

∑
v∈B

w(v) · |{u ∈ N (v, A∗) : udouble, v ∈ {n(u), n2(u)}}|

=
∑
v∈B

w(v) · |{u ∈ N (v, A∗) : v ∈ help(u), unot single}|

≥
∑
v∈B

w(v) · (|helped(v)| − 1)

>

⎛
⎜⎝ 5

2 ·
(
1 −

√
ε′
k

) + 1

⎞
⎟⎠ · w(A) − w(B) ≥ 5

2 ·
(
1 −

√
ε′
k

) · w(A).

Now, we want to apply Lemma 29. We consider the following graph G∗:

– V (G∗) := A
– E(G∗) := {{n(u), n2(u)} : uis double ∧ {n(u), n2(u)} ∩ B 
= ∅}

The vertex weights are given by w. By definition of being double, we can choose

α :=
(
1 −

√
ε′
k

)−1
. Then

∑
v∈V (G∗)

w(v) · |δG∗(v)| ≥
∑
v∈B

w(v) · |δG∗(v)|

≥
∑
v∈B

w(v) · |{u ∈ N (v, A∗) : udouble, v ∈ {n(u), n2(u)}}|

>
5

2 ·
(
1 −

√
ε′
k

) · w(A) = 5

2
· α · w(A) = 4 + 1

4
· 2 · α · w(V (G∗)).

In particular, as G∗ does not contain any loops by definition, we must have |V (G∗)| ≥
2. Hence, we can apply Lemma 29 to obtain a cycle C of size at most 8 · �log(|A|)� ≤
8 · �log(|V (G)|)�. We need to see how to get a circular local improvement out of C .
To this end, denote the set of vertices from A∗ corresponding to the edges of C byUe,
and define

X := Ue ∪
⋃

v∈V (C)∩B

Tv.
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Then X ⊆ A∗ is independent. Let e = {n(u), n2(u)} ∈ E(C) and let {v, z} := e such
that v ∈ B (and we do not make any assumptions on whether or not z ∈ B). This is
possible since every edge of G∗ and hence of C must intersect B by definition. We
claim that

w2(u) + 1

2
· w2(Tv \Ue) >

w2(v) + w2(z)

2
+ w2(N (u, A) \ {v, z})

+ 1

2
·
∑

x∈Tv\Ue

w2(N (x, A) \ {v}). (14)

We have
∑

x∈Tv
w2(x)−w2(N (x, A)\{v}) ≥ ε̃k ·w2(v) by definition of B and Tv and

the contribution. Moreover, we know that each vertex x ∈ Tv ∩Ue satisfies n(x) = v

since it is in Tv , and is double since it is in Ue. Hence,

w2(x) − w2(N (x, A) \ {v}) ≤ w2(x) − w2(n2(x))

≤
(
1 +

√
ε′
k

)2

· w2(v) −
(
1 −

√
ε′
k

)2

· w2(v) = 4 ·
√

ε′
k · w2(v).

Next, as the edge in E(C) that x ∈ Tv ∩Ue induces is {n(x), n2(x)} = {v, n2(x)},
this edge must be incident to v. But in the cycle C , v has exactly two incident edges.
Therefore, |Tv ∩Ue| ≤ 2 and

∑
x∈Tv\Ue

w2(x) − w2(N (x, A) \ {v}) ≥
(

ε̃k − 8
√

ε′
k

)
· w2(v)

(4)≥ 0. (15)

We have e = {n(u), n2(u)} = {v, z}, which implies

w(v) ≥ min{w(n(u)), w(n2(u))} = w(n2(u)).

As u is double, we either get w(n2(u)) ≤ w(n(u)) ≤ w(u) and, hence,

w2(v) + w2(z)

2
= w2(n(u)) + w2(n2(u))

2
≤ w2(u),

or

w(u) < w(n(u)) ≤ 1

1 −
√

ε′
k

· w(u)
(21)≤

(
1 + 2

√
ε′
k

)
· w(u)

and

(
1 −

√
ε′
k

)
· w(u) <

(
1 −

√
ε′
k

)
· w(n(u)) ≤ w(n2(u)) ≤ w(n(u)),
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leading to

w(v)2 + w(z)2

2
= w(n(u))2 + w(n2(u))2

2
≤

2 + 8 ·
√

ε′
k + 8ε′

k

2
· w2(u)

= w2(u) +
(
4
√

ε′
k + 4ε′

k

)
· w2(u) ≤ w2(u) +

4
√

ε′
k + 4ε′

k
(
1 −

√
ε′
k

)2 · w2(v).

Hence, the weaker inequality

w(v)2 + w(z)2

2
≤ w2(u) +

4
√

ε′
k + 4ε′

k
(
1 −

√
ε′
k

)2 · w2(v) (16)

holds in either case. Additionally, as

w(v) ≥ w(n2(u)) ≥
(
1 −

√
ε′
k

)
· w(n(u)) ≥

1 −
√

ε′
k

1 +
√

ε′
k

· w(u) ≥
(
1 −

√
ε′
k

)2

· w(u)

and w(N (u, A)) ≤ (2 + ε′
k) · w(u) by definition of double, we get

w2(N (u, A) \ {v, z}) = w2(N (u, A) \ {n(u), n2(u)})
≤ (w(N (u, A)) − w(n(u)) − w(n2(u)))2 (17)

≤
(
2 + ε′

k −
(
1 −

√
ε′
k

)
−
(
1 −

√
ε′
k

)2
)2

· w2(u)

=
(
3
√

ε′
k

)2

· w2(u) = 9 · ε′
k · w2(u) ≤ 9 · ε′

k · w2(v)
(
1 −

√
ε′
k

)4 (18)

This gives

w2(u) + 1

2

∑
x∈Tv\Ue

w2(x) − w2(N (x, A) \ {v})

(15)≥ w2(u) + ε̃k

2
· w2(v) − 4

√
ε′
k · w2(v)

(16),(18)≥ w2(v) + w2(z)

2
+ w2(N (u, A) \ {v, z}) + ε̃k

2
· w2(v)

−
⎛
⎜⎝4
√

ε′
k +

4
√

ε′
k + 4ε′

k
(
1 −

√
ε′
k

)2 + 9ε′
k(

1 −
√

ε′
k

)4

⎞
⎟⎠ · w2(v)
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>
w2(v) + w2(z)

2
+ w2(N (u, A) \ {v, z}),

where the last strict inequality follows from (23) and w(v) > 0 since weights are
positive. This proves our claim (14).

Moreover, we have |Ue| = |E(C)| ≤ 8 · �log(|V (G)|)�. Hence, choosingU := Ue

and Yv := Tv\Ue for v ∈ V (C) ∩ B and Yv := ∅ for v ∈ V (C) \ B, we see that
our local improvement is circular by (14) and (15), provided it is a subset of V \A.
To this end, note that V (C) ⊆ A\A∗ since vertices in A ∩ A∗ are only adjacent to
themselves in A∗, and, hence, isolated in G∗. As a consequence, as all vertices in
X = Ue ∪ ⋃

v∈V (C)∩B Tv are adjacent to some v ∈ V (C) ⊆ A\A∗, they cannot
be contained in A∗ ∩ A either, because in this case, they could only be adjacent to
themselves in A and in particular not to a vertex in A\A∗. Hence, X ⊆ A∗\A ⊆ V \A
defines a circular improvement. ��

4.4 Conditions satisfied by our choices of �̃k,�′
k and ık

The following constraints can be easily verified by plugging in our choices of ε̃k , ε′
k

and δk . Due to page limit, we omit the calculations.

0 < ε′
k ≤ 10−3 <

1

20
(19)

1 −
√

ε′
k

2
≥ 1

2
·
(
1 − ε′

k ·
(
1 +

√
ε′
k

)
− 3 ·

√
ε′
k

)
≥ ε′

k

10
(20)

1

1 −
√

ε′
k

≤ 1 + 2 ·
√

ε′
k (21)

1

2
< 1 − 2

√
ε′
k (22)

8 ·
√

ε′
k ≤ 8

√
ε′
k +

8
√

ε′
k + 8ε′

k
(
1 −

√
ε′
k

)2 + 18ε′
k(

1 −
√

ε′
k

)4 < ε̃k (23)

5 A polynomial running time

In this section, we complete the proof of Theorem 1 by showing how to obtain a poly-
nomial running time for (conflict graphs of) instances of the weighted k-Set Packing
problem. In doing so, Lemma 30, whichwe prove in Sect. 5.1, guarantees a polynomial
number of iterations, while Lemma 31 tells us that we can implement each iteration
of LogImp in polynomial time. We prove it in Sect. 5.2.

Lemma 30 Let k ≥ 3 and denote the approximation guarantee that LogImp achieves
for the MWIS in k + 1-claw free graphs by ρ. Given an instance (G, w) of the MWIS
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in k + 1-claw free graphs and N ∈ N>0, we can, in polynomial time, compute an
induced subgraph G ′ of G and a weight functionw′ with the following two properties:
– When applied to (G ′, w′), LogImp terminates after a number of iterations that is
polynomial in |V (G)| and N.

– The output of LogImp on (G ′, w′) yields an N
N−1 · ρ-approximation for the MWIS

on (G, w).

Lemma 31 There is an algorithm, which, given a family S consisting of sets each of
cardinality at most k, a positive weight function w : S → Q>0 and A ⊆ S such that
the sets in A are pairwise disjoint, in polynomial time either returns a claw-shaped or
circular improvement X of A in GS , or decides that none exists.

Proof of Theorem 1 For k = 3, we can, for example, run the polynomial time k+1
2 −

1
63,700,993 -approximation algorithm for the MWIS in k + 1-claw free graphs given in

[17], yielding ε3 = 1 − 2
63,700,993 . Now, let k ≥ 4. Theorem 18 tells us that LogImp

achieves an approximation guarantee of k+δk
2 for the MWIS in k+1-claw free graphs,

where δk ∈ (0, 1) and limk→∞ δk = 0. Define

Nk := max

{
(k + 1)2 + 1,

⌈
k + 1

1 − δk

⌉
+ 1

}
.

This is a constant that only depends on k, but not on the input instance. We can obtain
an Nk

Nk−1 · k+δk
2 -approximation for the weighted k-Set Packing problem by

• computing the conflict graph GS of a given instance (S, w),
• applying Lemma 30 to obtain an induced subgraph G ′ of GS (which equals the
conflict graph of the corresponding sub-instance of S) and a weight function w′
and

• finally running LogImp on (G ′, w′).
By Lemmas 30 and 31, we can perform each of these steps in polynomial time.
Concerning the approximation guarantee, we have

Nk

Nk − 1
· k + δk

2
=
(
1 + 1

Nk − 1

)
· k + δk

2
= k

2
+ 1

2
·
(

δk + k + δk

Nk − 1

)
= k + εk

2
,

where εk := δk + 1
Nk−1 · (k + δk). Then δk ∈ (0, 1) and our choice of Nk imply

0 ≤ εk ≤ δk + 1

Nk − 1
· (k + 1) ≤ δk + 1 − δk = 1.

Moreover,

εk ≤ δk + 1

Nk − 1
· (k + 1) ≤ δk + 1

(k + 1)2
· (k + 1) ≤ δk + 1

k + 1
,

and limk→∞ δk = 0 implies limk→∞ εk = 0. This concludes the proof of Theorem 1.
��
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5.1 A polynomial number of iterations

Proof of Lemma 30 Let G = (V , E). We first apply the greedy algorithm, which con-
siders the vertices ofG by decreasingweight and picks every vertex that is not adjacent
to an already chosen one. Denote the solution it returns by A′. It is known that A′ is a
k-approximate solution to the MWIS in (G, w) (see for example [5]). Now, we con-
struct a weight function ws from w by re-scaling it such that ws(A′) = N · |V | holds.
Then A′ also constitutes a k-approximate solution to the MWIS in (G, ws). Next, we
define w′ by w′(v) := �ws(v)� and obtain G ′ by deleting vertices with w′(v) = 0,
which does not change the weight of an optimum solution (w.r.t. w′). Consider a run
of LogImp on (G ′, w′) and denote the solution that LogImp maintains by A. As w′
is positive and integral, we know that w′2(A) must increase by at least 1 in every
iteration except for the last one. On the other hand, at each point, we must have

w′2(A) ≤ w2
s (A) ≤ (ws(A))2 ≤ (k · ws(A

′))2 = k2 · N 2 · |V |2,

which bounds the total number of iterations by k2 · N 2 · |V |2 + 1. Finally, if A now
denotes the solution LogImp returns and A∗ is an independent set in G of maximum
weight with respect to w (and ws), we know that

ρ · ws(A) ≥ ρ · w′(A) ≥ w′(A∗) ≥ ws(A
∗) − |A∗| ≥ ws(A

∗) − |V | ≥ N − 1

N
· ws(A

∗),

so ws(A∗) ≤ N
N−1 · ρ · ws(A) and thus, also w(A∗) ≤ N

N−1 · ρ · w(A). ��

5.2 A polynomial running time per iteration

This section is dedicated to the proof of Lemma 31, which consists of two parts.
First, Proposition 32 tells us that we can search for a claw-shaped improvement in
polynomial time (for general k + 1-claw free graphs). Then, Lemma 33 makes sure
that for conflict graphs of instances of the weighted k-Set Packing problem, we can
also find a circular improvement, or decide that none exists, in polynomial time.

Proposition 32 Given a k+1-claw free graph G = (V , E), a positive weight function
w : V → Q>0 andan independent set A ⊆ V ,wecan, in polynomial time (considering
k a constant), either return a claw-shaped improvement, or decide that none exists.

Proof We can check for the existence of a claw-shaped improvement in polynomial
time by looping over all O((|V | + 1)k) = O(|V |k) subsets X of V of size at most
k. For each of them, we can check in polynomial time whether it is independent and
whether it is claw-shaped (either |X | = 1 or all vertices in X have a common neighbor
in A). Finally, we can check whether w2(X) > w2(N (X , A)) in polynomial time. ��

It is not hard to see that we can search for a circular improvement in quasi-
polynomial time. By Proposition 16, there are

O
(
(|V | + 1)8·(k+1)·�log(|V |)�) = O

(
|V |8·(k+1)·(log(|V |)+1)

)
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many possible choices for X and we can check in polynomial time whether a given
one constitutes a circular improvement. More precisely, we can first check whether X
is independent, and then try all of the at most

2|X | ≤ 28·(k+1)·(log(|V |)+1) = (2 · |V |)8·(k+1)

possible choices for U ⊆ X with |U | ≤ 8 · �log(|V |)�. For each choice of U , we
can check in polynomial time whether each vertex in U has at least two neighbors
in A, and if so, compute V (C) (cf. Def. 15). Then, the partition into the sets Yv is
uniquely determined by the map n, although it might happen that for some vertex
x ∈ X\U , n(x) is not contained in V (C), meaning that our choice of X and U does
not meet the requirements of Definition 15. Finally, we can check the condition (iii)
from Definition 15 in polynomial time.

For the general case of the MWIS in k + 1-claw free graphs, it is not clear whether
and how one can, in polynomial time, either find a circular improvement X , or decide
that none exists. However, for the weighted k-Set Packing problem, which is the main
application we have in mind, we will show in the remainder of this section how to
perform this task in polynomial time. Fur this purpose, we employ the color coding
technique similar as in [10] (but in a much simpler way).

Lemma 33 There is an algorithm, which, given a family S consisting of sets each of
cardinality at most k, a positive weight function w : S → Q>0 and A ⊆ S such
that the sets in A are pairwise disjoint and there is no claw-shaped improvement
of A in GS , in polynomial time (considering k a constant) either returns a circular
improvement X of A in GS , or decides that none exists.

The remainder of this section is dedicated to the proof of Lemma 33. To simplify
notation, we identify a set S ∈ S and its corresponding vertex in the k + 1-claw free
conflict graph GS =: G =: (V , E).

In order to search for a circular improvement, we first compute two maps n :
V \ A → A mapping u to an element of N (u, A) of maximum weight, and n2 :
{u ∈ V \A : |N (u, A)| ≥ 2} → A mapping u to an element of N (u, A) \ {n(u)} of
maximum weight. These maps are guaranteed to exist since the assumption that there
is no claw-shaped improvement implies that A constitutes a maximal independent set
in GS . n and n2 can be easily computed in polynomial time. We define an auxiliary
multi-graph H as follows:

The vertices of H are pairs (v,Y ), where v ∈ A and Y ⊆ {u ∈ V \ A : n(u) = v}
is an independent set of cardinality at most k. Then for each v ∈ A, there are at

most
∑k

i=0 |V |i = |V |k+1−1
|V |−1 ∈ O(|V |k) many possible choices for Y , so we have

|V (H)| ∈ O(|V |k+1).
As far as the set of edges is concerned, for each u ∈ {x ∈ V \A : |N (x, A)| ≥ 2}

and each pair of vertices (n(u),Y1), (n2(u),Y2) ∈ V (H) such that

w2(u) + 1

2
·
∑
x∈Y1

w2(x) + 1

2
·
∑
x∈Y2

w2(x)
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>
w2(n(u)) + w2(n2(u))

2
+ w2(N (u, A) \ {n(u), n2(u)})

+ 1

2
·
∑
x∈Y1

w2(N (x, A) \ {n(u)}) + 1

2
·
∑
x∈Y2

w2(N (x, A) \ {n2(u)}),

and {u}, Y1 and Y2 are pairwise disjoint and their union is independent, we add a copy
of the edge {(n(u),Y1), (n2(u),Y2)} to the multi-set E(H). We say that this edge
is induced by u. As we have as most |V | many possible choices for u and O(|V |k)
possibilities to choose each of Y1 and Y2, we get |E(H)| ∈ O(|V |2k+1).

For convenience, let μ : E(H) → V \ A such that e ∈ E(H) is induced by the
vertex μ(e).

We claim that there is a correspondence between circular improvements and cycles
C̄ in H of length at most 8 · �log(|V |)� such that for every v ∈ A, there is at most one
set Y with (v,Y ) ∈ V (C̄) and such that {μ(e), e ∈ E(C̄)} ∪⋃(v,Y )∈V (C̄) Y defines
an independent set a.k.a. a disjoint sub-family of S, and the union is disjoint. More
precisely, we prove the following statement:

Proposition 34 An independent set X ⊆ V \ A constitutes a circular improvement if
and only if there is a cycle C̄ in H of length at most 8 · �log(|V |)� such that for every
v ∈ A, there is at most one set Y with (v,Y ) ∈ V (C̄) and such that

X = {μ(e), e ∈ E(C̄)} ∪
⋃

(v,Y )∈V (C̄)

Y

and the union is disjoint.

Proof First, assume that X is a circular improvement. Then X constitutes an indepen-
dent set. Let U , C and Yv, v ∈ V (C) be as in Definition 15. By (ii) and (iii) and since
X is independent, we have ēu := {(n(u),Yn(u)), (n2(u),Yn2(u))} ∈ E(H) for every
u ∈ U , and μ(ēu) = u. By (i), C̄ := ({(v,Yv), v ∈ V (C)}, {ēu, u ∈ U }) yields a
cycle in H of length at most 8 · �log(|V |)�. By construction, for every v ∈ A, there is
at most one set Y with (v,Y ) ∈ V (C̄) and we have

X = U ∪
⋃

v∈V (C)

Yv = {μ(e), e ∈ E(C̄)} ∪
⋃

(v,Y )∈V (C̄)

Y .

By definition of the sets Yv, v ∈ V (C), this union is disjoint.
Now, let X ⊆ V \ A be independent and let C̄ be a cycle in H as described in the

proposition. DefineU := {μ(e) : e ∈ E(C̄)}. Then |U | ≤ 8 ·�log(|V |)�. By definition
of H ,

C :=
(⋃
u∈U

{n(u), n2(u)}, {eu = {n(u), n2(u)}, u ∈ U }
)

is a closed edge sequence because it arises from C̄ by projecting every vertex (v,Y ) ∈
V (C̄) to its first component. As for every v ∈ A, there is at most one set Y with
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(v,Y ) ∈ V (C̄), C is a cycle, so condition (i) from Definition 15 holds. Moreover, as
for every (v,Y ) ∈ V (C̄), we have Y ⊆ {u ∈ V \A : n(u) = v}, we can infer that for
every (v,Y ) ∈ V (C̄), we have Y ∩X\U = {z ∈ X\U : n(z) = v} = Yv . In particular,
X = U ∪ ⋃v∈V (C) Y = U ∪ ⋃v∈V (C) Yv , which yields condition (ii). As the first
union is disjoint, we can further conclude that Y = Yv for all v ∈ V (C). Hence, the
definition of E(H) implies that condition (iii) from Definition 15 is satisfied. ��
It remains to see how to, in polynomial time, find a cycle in H with the properties
described in Prop. 34, or decide that none exists.

First, for each pair of parallel edges in E(H), we can check in polynomial time
whether or not it yields such a cycle, so we can restrict ourselves to cycles of length
at least 3 (and at most 8 · �log(|V |)�) in the following.

To find these, we want to apply the color coding technique. For this purpose, we
introduce the following terminology:

Definition 35 (t-perfect family of hash functions, [1]) For t,m ∈ N with t ≤ m, a
family F ⊆ {1,...,m}{1, . . . , t} of functions mapping {1, . . . ,m} to {1, . . . , t} is called
a t-perfect family of hash functions if for all I ⊆ {1, . . . ,m} of size at most t , there is
f ∈ F with f � I injective.

Theorem 36 (Stated in [1] referring to [20]) For t,m ∈ N with t ≤ m, a t-perfect
family F of hash functions of cardinality 2O(t) · (log(m))2, where each function is
encoded using O(t) + 2 log logm many bits, can be explicitly constructed such that
the query time is constant.

In order to find a cycle C̄ in H of logarithmically bounded size such that each vertex
v ∈ A occurs at most once as the first entry of a vertex (z,Y ) ∈ V (C̄) and X :=
{μ(e), e ∈ E(C̄)} ∪ ⋃

(v,Y )∈V (C̄) Y defines an independent set in G (i.e. a disjoint
family of k-sets) and the union is disjoint, the idea is to color both the vertices in
A and the elements of the k-sets corresponding to the vertices in X , and to replace
the distinctness/disjointness constraints by the stronger property that for each of the
vertices (v,Y ) ∈ V (C̄), v receives a different color, and moreover, the colors of the
elements of the k-sets in X are pairwise distinct. We call a cycle with this property
colorful (see Definition 37). If we only use a logarithmically bounded number of
colors, then we can use dynamic programming to check for the existence of a colorful
cycle. Moreover, we can show that if we pick our colorings from appropriately chosen
families of perfect hash functions (of polynomial size), we can guarantee that for each
cycle C̄ in H meeting the requirements of Prop. 34, there exist colorings from our
families for which C̄ is colorful. This means that by looping over all colorings from
our families and checking for a colorful cycle, we will find a circular improvement, if
one exists.

LetF be a t1 := 8·�log(|V |)� perfect family of hash functionswith domain A ⊆ V .
There exists such a family of size

2O(�log(|V |)�) · log(|V |)2 = |V |O(1) · log(|V |)2 = |V |O(1),

which is polynomial.
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In addition, let G be a t2 := 8 · (k + 1) · k · �log(|V |)�-perfect family of functions
with domain

⋃S, i.e. the underlying universe of the k-Set Packing problem (or, more
precisely, its restriction to the set of elements that appear in at least one set). Clearly,
|⋃S| ≤ k · |S| = k · |V |, so we obtain such a family G of size

2O(k2·�log(|V |)�) · (log(k · |V |))2 = |V |O(k2),

which is polynomial. For each pair of functions ( f , g) ∈ F ×G, we do the following:
For every v = (z,Y ) ∈ V (H), we set

col f (v) := f (z),

meaning that we color v with the color assigned to the vertex z by f . Additionally, we
define

colg(v) := g
(⋃

Y
)

= {g(x) : ∃u ∈ Y : x ∈ u},

i.e. we color v with all of the colors occurring among the elements of the k-sets
represented by the vertices in Y .

Finally, we assign to an edge e = {(v1,Y1), (v2,Y2)} ∈ E(H) the set of colors

colg(e) := g(μ(e)) = {g(x), x ∈ μ(e)},

where we interpret μ(e) as the corresponding k-set.

Definition 37 Following [10], we call a path or cycle P in H colorful if

– The colors col f (v), v ∈ V (P) are pairwise distinct.
– The color sets colg(e), e ∈ E(P) and colg(v), v ∈ V (P) are pairwise disjoint.

Lemma 38 Let C̄ be a cycle of length at least 3 and at most 8 · �log(|V |)� in H. Then
the following are equivalent:

– There exist f ∈ F and g ∈ G for which C̄ is colorful.
– C̄ meets the requirements of Prop. 34.

Proof For a colorful cycle C̄ , the sets of colors assigned (by g) to the (union of)
k-sets in the sets Y , (v,Y ) ∈ V (C̄) and the sets of colors assigned (by g) to the
k-sets μ(e), e ∈ E(C̄) are pairwise disjoint. In particular, the (unions of) k-sets in
the list

⋃
Y , (v,Y ) ∈ V (C̄), μ(e), e ∈ E(C̄) are pairwise disjoint. Moreover, when

constructing H , we made sure that for each (v,Y ) ∈ V (H), Y is independent in GS ,
meaning that the contained k-sets are pairwise disjoint. Hence, the k-sets in X :=⋃

(v,Y )∈V (C̄) Y ∪ {μ(e), e ∈ E(C̄)} are pairwise disjoint and the union is disjoint. In
particular, X constitutes an independent set inGS .Moreover, the colors f (v), (v,Y ) ∈
V (C̄) are pairwise distinct, meaning that for each v ∈ A, there is at most one Y with
(v,Y ) ∈ V (C̄). Hence, C̄ meets the requirements of Prop. 34.

On the other hand, if C̄ satisfies the conditions fromProp. 34, thenwehave |V (C̄)| ≤
8 ·�log(|V |)� = t1 and for each v ∈ A, there is at most one Y such that (v,Y ) ∈ V (C̄).
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Hence, there is f ∈ F that assigns a different color to each one of the vertices
v, (v,Y ) ∈ V (C̄). Moreover, the k-sets contained in the sets Y , (v,Y ) ∈ V (H) and
the k-sets μ(e), e ∈ E(C̄) are pairwise distinct and pairwise disjoint. In addition,
as every set Y with (v,Y ) ∈ V (H) contains at most k k-sets, the total number of
elements from

⋃S contained in the k-sets in the sets Y , (v,Y ) ∈ V (C̄) or the k-sets
μ(e), e ∈ E(C̄) is bounded by

∣∣∣∣∣∣
⋃

(v,Y )∈V (C̄)

⋃
Y ∪

⋃

e∈E(C̄)

μ(e)

∣∣∣∣∣∣
≤ k2 · |V (C̄)| + k · |E(C̄)| ≤ (k + 1) · k · 8 · �log(|V |)� = t2.

Hence, there exists g ∈ G assigning distinct colors to all of these elements. Thus, C̄
is colorful for f and g. ��
As the sizes of F and G are polynomially bounded, Lemma 39 concludes the proof of
Lemma 33.

Lemma 39 Let f ∈ F and g ∈ G. We can, in polynomial time, either find a colorful
cycle C̄ of length at least 3 and at most 8 · �log(|V |)� in H, or decide that none exists.

Proof We observe that there is a colorful cycle C̄ meeting the above size bounds if
and only if there exist an edge e0 = {s, t} ∈ E(H) and a colorful s-t-path P of length
at least 2 and at most 8 · �log(|V |)� − 1 such that colg(e0) and

⋃
e∈E(P) col

g(e) ∪⋃
v∈V (P) col

g(v) are disjoint. For s, t ∈ V (H), C f ⊆ {1, . . . , t1}, Cg ⊆ {1, . . . , t2}
and i ∈ {0, . . . , 8 · �log |V |� − 1}, we define the Boolean value Path(s, t,C f ,Cg, i)
to be true if and only if there exists a colorful s-t-path P of length i with

{col f (v), v ∈ V (P)} = C f and
⋃

e∈E(P)

colg(e) ∪
⋃

v∈V (P)

colg(v) = Cg.

We apply dynamic programming to compute these values in order of non-decreasing
i , and we use backlinks to be able to retrace a corresponding path for each value that
is set to true. The total number of values we have to compute is bounded by

|V (H)|2 · 2t1 · 2t2 · 8 · log�|V |�
∈ O(|V |2(k+1) · 28·�log(|V |)� · 28·k·(k+1)·�log(|V |)� · 8 · �log |V |�) = |V |O(k2),

which is polynomial bounded. Hence, it suffices to show how to, in poly-
nomial time, determine Path(s, t,C f ,Cg, i), provided that all of the values
Path(s′, t ′,C f ,′ ,Cg,′ , i ′) with i ′ < i are already known to us. We have
Path(s, t,C f ,Cg, 0) = true if and only if s = t , C f = {col f (s)} and Cg = colg(s).
For i ≥ 1, we observe that Path(s, t,C f ,Cg, i) = true if and only if col f (s) ∈ C f

and there exists an edge e = {s, v} ∈ E(H) such that colg(s) ∩ colg(e) = ∅,
colg(s)∪colg(e) ⊆ Cg and Path(v, t,C f \{col f (s)},Cg\(colg(s)∪colg(e)), i−1) =
true. We can check this in polynomial time. ��
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6 The lower bound

In this section, we show that our result is asymptotically best possible in the sense of
Theorem 2.

Theorem 2 Let k ≥ 3, α ∈ R, 0 < ε < 1 and C > 0. Then for each N0 ∈ N, there
exists an instance (S, w) of the weighted k-Set Packing problem with |S| ≥ N0 and
such that there are feasible solutions A, A∗ ⊆ S with the following two properties:

– There is no local improvement of A of size at most C · log(|S|) with respect to wα ,
that is, there is no disjoint sub-collection X ⊆ S\A of sets such that

|X | ≤ C · log(|S|) and wα(X) > wα({a ∈ A : ∃x ∈ X : a ∩ x 
= ∅}).

– We have w(A∗) ≥ k−ε
2 · w(A).

Proof For α ≤ 0, we can just choose the weights in A to be arbitrarily small. Hence,
we can assume α > 0. Now, there is a result by Erdős and Sachs [9] telling us that
for every N1 ≥ N0, there is a k-regular graph H on |V (H)| ≥ N1 vertices such that
the girth of H , i.e. the minimum length of a cycle in H , is at least log(|V (H)|)

log(k−1) − 1.
Consider the graph G with vertex set V (G) := V (H) ∪ E(H) and edge set E(G) :=
{{v, e} : v ∈ e ∈ E(H)}, i.e. each edge of H is connected via edges in G to both
of its endpoints. We define S := {δG(x), x ∈ V (G)}, where δG(x) is the set of
incident edges of x in G. By k-regularity of H , |δG(v)| = k ≥ 3 for v ∈ V (H)

and |δG(e)| = 2 for e ∈ E(H), so each element of S has cardinality at most k. By
definition, G is simple, so no two vertices share more than one edge. As all degrees
are at least two, the sets δG(x), x ∈ V (G) are pairwise distinct. Finally, V (H) and
E(H) constitute independent sets in G, implying that A := {δG(v), v ∈ V (H)} and
A∗ := {δG(e), e ∈ E(H)} each consist of pairwise disjoint sets. We define positive

weights on S by setting w(δG(v)) := 1 for v ∈ V (H) and w(δG(e)) := (1 − ε̄)
1
α ,

where ε̄ > 0 is chosen such that 1
ε̄

∈ N and (1 − ε̄)
1
α ≥ 1 − ε

k . By k-regularity of H ,
|A∗| = |E(H)| = k

2 · |V (H)| = k
2 · |A|, so w(A∗) ≥ k−ε

2 · w(A). To see that there is
no local improvement X ⊆ S \ A of wα(A) with

|X | ≤ C · log(|S|) = C · log(|V (G)|) = C · log
(
k + 2

2
· |V (H)|

)
,

we observe that X being a local improvement would imply

|X | >
1

1 − ε̄
· |{y ∈ A : ∃x ∈ X : y ∩ x 
= ∅}|

by our choice of weights. But the sets from A that X intersects are precisely the
sets δG(v) for those vertices v ∈ V (H) that are endpoints of edges e ∈ E(H) with
δG(e) ∈ X . Hence, we have found a subgraph J of H with

C · log
(
k + 2

2
· |V (H)|

)
≥ |X | = |E(J )| >

1

1 − ε̄
· |V (J )| ≥ (1 + ε̄) · |V (J )|,
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which implies the existence of a cycle of length 2
ε̄

· �log(C · log( k+2
2 · |V (H)|))� by

Lemma 28. But as a function of |V (H)|, this grows asymptotically slower than our
lower bound of log(|V (H)|)

log(k−1) − 1 on the girth, resulting in a contradiction for N1 and,
hence, |V (H)| chosen large enough. ��

7 Conclusion

In this paper, we have seen how to use local search to approximate the weighted k-
Set Packing problem with an approximation ratio that gets arbitrarily close to k

2 as k
approaches infinity. At the cost of a quasi-polynomial running time, this result applies
to the more general setting of theMaximumWeight Independent Set problem in k+1-
claw free graphs.Moreover, we have seen that our result is asymptotically best possible
in the sense that for every α ∈ R, a local improvement algorithm for the weighted
k-Set Packing problem that considers local improvements of wα of logarithmically
bounded size cannot produce an approximation guarantee better than k

2 .
As a consequence, our paper seems to conclude the story of (pure) local improve-

ment algorithms for both the MWIS in k + 1-claw free graphs and the weighted k-Set
Packing problem. Hence, the search for new techniques beating the threshold of k

2 is
one of the next goals for research in this area.
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