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Abstract
We consider the convex quadratic optimization problem inRn with indicator variables
and arbitrary constraints on the indicators.We show that a convexhull description of the
associatedmixed-integer set in an extended spacewith a quadratic number of additional
variables consists of an (n + 1) × (n + 1) positive semidefinite constraint (explicitly
stated) and linear constraints. In particular, convexification of this class of problems
reduces to describing a polyhedral set in an extended formulation. While the vertex
representation of this polyhedral set is exponential and an explicit linear inequality
descriptionmay not be readily available in general, we derive a compact mixed-integer
linear formulation whose solutions coincide with the vertices of the polyhedral set.We
also give descriptions in the original space of variables: we provide a description based
on an infinite number of conic-quadratic inequalities, which are “finitely generated.”
In particular, it is possible to characterize whether a given inequality is necessary to
describe the convex hull. The new theory presented here unifies several previously
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established results, and paves the way toward utilizing polyhedral methods to analyze
the convex hull of mixed-integer nonlinear sets.

Mathematics Subject Classification 90C11 · 90C25

1 Introduction

Given a symmetric positive semidefinite matrix Q ∈ R
n×n , vectors a, b ∈ R

n and
set Z ⊆ {0, 1}n , consider the mixed-integer quadratic optimization (MIQO) problem
with indicator variables

min a�x + b�z + 1
2 t (1a)

(MIQO) s.t. x�Qx ≤ t (1b)

xi (1 − zi ) = 0, i = 1, . . . , n (1c)

x ∈ R
n, z ∈ Z , t ∈ R, (1d)

and the associated mixed-integer nonlinear set

X =
{
(x, z, t) ∈ R

n × Z × R : t ≥ x�Qx, x ◦ (e − z) = 0
}

,

where e denotes a vector of ones, and x ◦ (e − z) is the Hadamard product of vectors
x and e − z. There has recently been an increasing interest in problem (1) due to
its statistical applications: the nonlinear term (1b) is used to model a quadratic loss
function, as in regression, while Z represents logical conditions on the support of the
variables x . For example, given model matrix F ∈ R

m×n and responses β ∈ R
m ,

setting a = −β�F , Q = F�F , b = 0 and Z = {
z ∈ {0, 1}n : ∑n

i=1 zi ≤ r
}
in (1) is

equivalent to the best subset selection problem with a given cardinality r [10, 16]:

min
x,z

‖β − Fx‖22 s.t. x ◦ (e − z) = 0,
n∑

i=1

zi ≤ r . (2)

Other constraints defining Z that have been considered in statistical learning appli-
cations include multicollinearity [10], cycle prevention [28, 30], and hierarchy [12].
Set X arises as a substructure in many other applications, including portfolio opti-
mization [13], optimal control [21], image segmentation [26], signal denoising [9].

A critical step toward solving MIQO effectively is to convexify the set X . Indeed,
the mixed-integer optimization problem (1) is equivalent to the convex optimization
problem

min
x,z,t

{
a�x + b�z + 1

2 t (x, z, t) ∈ cl conv(X)

}
,
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On the convex hull of convex... 705

where conv(X) denotes the convex hull of X and cl conv(X) is the closure of conv(X).
However, problem MIQO is NP-hard even if Z = {0, 1}n [15]. Thus, a simple
description of cl conv(X) is, in general, not possible unless NP= Co-NP .

In practice, one aims to obtain a good convex relaxation of X , which can then be
used either as a standalone method (as is pervasively done in the machine learning
literature), to obtain high-quality solutions via rounding, or in a branch-and-bound
framework. Nonetheless, it is unclear how to determine whether a given relaxation
is good or not. In mixed-integer linear optimization, it is well-understood that facet-
defining inequalities give strong relaxations. However, inMIQO (and, more generally,
inmixed-integer nonlinear optimization problems), cl conv(X) is not a polyhedron and
there is no consensus on how to design good convex relaxations, or even what a good
relaxation should be.

An important class of convex relaxations of X that has received attention in the
literature is obtained by decomposing matrix Q = ∑�

i=1 �i + R, where �i 	 0,
i = 1, . . . , �, are assumed to be “simple" and R 	 0. Then

t ≥ x�Qx ⇐⇒ t ≥
�∑

i=1

τi + x�Rx , and τi ≥ x��i x, ∀i ∈ {1, . . . , �}, (3)

and each constraint τi ≥ x��i x is replaced with a system of inequalities describing
the convex hull of the associated “simple" mixed-integer set. This idea was originally
used in [19], where � = n, (�i )i i = di > 0 and (�i ) jk = 0 otherwise, and constraints
τi ≥ di x2i are strengthened using the perspective relaxation [1, 18, 22], i.e., refor-
mulated as ziτi ≥ di x2i . Similar relaxations based on separable quadratic terms were
considered in [17, 35]. A generalization of the above approach is rank-one decompo-
sition, which lets �i = hi h�

i be a rank-one matrix [5, 6, 33, 34]; in this case, letting

Si = {i ∈ [n] : hi 
= 0}, constraints
(∑

j∈Si z j
)

τi ≥ (h�
i x)

2 can be added to the

formulation. Alternative generalizations of perspective relaxation that have been con-
sidered in the literature include exploiting substructures based on �i where non-zeros
are 2 × 2 matrices [4, 7, 8, 20, 24, 27] or tridiagonal [29].

Convexifications based on decomposition (3) have proven to be strong computation-
ally, and are attractive from a theoretical perspective. The fact that a given formulation
is ideal for the substructure τi ≥ x��i x lends some theoretical weight to the strength
of the convexification. However, approaches based on decomposition (3) have funda-
mental limitations as well. First, they require computing the convex hull description
of a nonlinear mixed-integer set to establish (theoretically) the strength of the relax-
ation, a highly non-trivial task that restricts the classes of matrices �i that can be used.
Second, even if the ideal formulation for the substructure τi ≥ x��i x is available,
the convexification based on such decomposition can still be a poor relaxation of X—
and there is currently no approach to establish the strength of the relaxation without
numerical computations. Third, it is unclear whether the structure of the relaxations
induced by (3) matches the structure of cl conv(X), or if they are overly simple or
complex.
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706 L. Wei et al.

Contributions and outline

In this paper, we close the aforementioned gaps in the literature by characterizing the
structure of cl conv(X). First, in Sect. 2, we review relevant background for the paper.
In Sect. 3,we show that cl conv(X) can be described in a compact extended formulation
with O(n2) additional variables with linear constraints and an (n + 1) × (n + 1)
positive semidefiniteness constraint. In particular, convexification of X in this extended
formulation reduces to describing a base polytope. We use the vertex description of
this base polytope, which is exponential in general. However, we show that the set of
vertices can be represented as the feasible points of a compact mixed-integer linear
formulation (Sect. 5). In Sect. 4, we characterize cl conv(X) in the original space of
variables. While the resulting description has an infinite number of conic quadratic
constraints, we show that cl conv(X) is finitely generated, and thus we establish which
inequalities are necessary to describe cl conv(X)—in precisely the same manner that
facet-defining inequalities are required to describe a polyhedron. We also establish a
relationship between cl conv(X) and relaxations obtained from decompositions (3).
In Sect. 5, we present a mixed-integer linear formulation of the MIQO problem using
the theoretical results in Sect. 3. Finally, in Sect. 6 we conclude the paper with a few
remarks.

We point out that, using standard disjunctive programming techniques [14, 20],
it is possible to obtain a conic quadratic extended formulation of (1), although such
representation typically requires adding O(|Z |n) number of variables and O(|Z |)
nonlinear constraints. Since |Z | is often exponential in n, these formulations are in
general impractical, and therefore their use has been restricted to small instances with
n ≤ 2 [4, 7, 20, 22, 24] or problems with special structures that admit a compact
representation [23]. We argue that the convexifications in this paper are significantly
more tractable: regardless of Z , we require only O(n2) variables instead of O(|Z |n),
and only one nonlinear conic constraint instead ofO(|Z |). Themajor complexity of the
proposed formulations in this paper is the exponential number of linear inequalities,
which can be generated, as needed, using mature mixed-integer linear optimization
techniques.

2 Notation and preliminaries

In this section, we first review the relevant background and introduce the notation used
in the paper.

Definition 1 ([31]) Given a matrix W ∈ R
p×q , its pseudoinverse W † ∈ R

q×p is the
unique matrix satisfying the four properties:

WW †W = W , W †WW † = W †, (WW †)� = (WW †), (W †W )� = W †W .

Clearly, ifW is invertible, thenW−1 = W †. It also readily follows from the definition
that (W †)† = W .
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On the convex hull of convex... 707

We recall the generalized Schur complement, relating pseudoinverses and positive
semidefinite matrices.

Lemma 1 ([3]) Let W =
(
W11 W12

W�
12 W22

)
, with symmetric W11 ∈ R

p×p, symmetric

W22 ∈ R
q×q , and W12 ∈ R

p×q . Then W 	 0 if and only if W11 	 0, W11W
†
11W12 =

W12 and W22 − W�
12W

†
11W12 	 0.

Note that ifW11 � 0, then the second condition of Lemma 1 is automatically satisfied.
Otherwise, this condition is equivalent to the system of equalitiesW11U = W12 having
a solution U ∈ R

p×q .
Let [n] = {1, . . . , n}. Throughout, we use the convention that x2i /zi = 0 if xi =

zi = 0 and x2i /zi = +∞ if zi = 0 and xi 
= 0, i ∈ [n]. For a vector a ∈ R
n ,

‖a‖2 and ‖a‖∞ denote the vector �2-norm and the maximum absolute value among
ai ’s, respectively. Given two matrices V ,W of matching dimensions, let 〈V ,W 〉 =∑

i
∑

j Vi jWi j denote the usual inner product. Given amatrixW ∈ R
n×n , let Tr(W ) =∑n

i=1 Wii denote its trace, and let W−1 denote its inverse, if it exists. Let ‖W‖F and
‖W‖maxdenote the Frobenius norm and the maximum absolute value of entries of
W respectively, and λmax(W ) means the maximum eigenvalue of W . We let col(W )

denote the column space of matrix W . Given a matrix W ∈ R
n×n and S ⊆ [n],

let WS ∈ R
S×S be the submatrix of W induced by S, and let ŴS ∈ R

n×n be the
n × n matrix obtained fromWS by filling the missing entries with zeros, i.e., matrices
subscripted by S without “hat" refer to the lower-dimensional submatrices. For any
two sets S, T ⊂ [n], let WS,T denote the submatrix of W with rows in S and columns
in T . Note that if matrixW � 0, then it can be easily be verified from Definition 1 that
the submatrix of Ŵ †

S indexed by S coincides with W−1
S , and Ŵ †

S is zero elsewhere;

in this case, we abuse notation and write Ŵ−1
S instead of Ŵ †

S . Given S ⊆ [n], let
êS ∈ {0, 1}n be the indicator vector of S. We define πS as the projection onto the
subspace indexed by S and π−1

S (x) as the preimage of x under πS .

Example 1 Let Q =
(
d1 b
b d2

)
with d1, d2 > 0 and d1d2 > b2. Then

Q̂−1
∅ =

(
0 0
0 0

)
, Q̂−1

{1} =
(
1/d1 0
0 0

)
, Q̂−1

{2} =
(
0 0
0 1/d2

)
, and

Q−1
{1,2} = 1

d1d2 − b2

(
d2 −b
−b d1

)
.

3 Convexification in an extended space

In this section, we describe cl conv(X) in an extended space. In Sect. 3.1, we provide
a “canonical" representation of cl conv(X) under the assumption that Q � 0. In
Sect. 3.2, we provide alternative representations of cl conv(X), which can handle
non-invertible matrices Q and may also lead to sparser formulations.
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708 L. Wei et al.

3.1 Canonical representation

Given Q � 0, define the polytope P ⊆ R
n+n2 as

P
def= conv

({
(êS, Q̂

−1
S )

}
êS∈Z

)
.

Proposition 1 below shows how to construct mixed-integer conic formulations of
MIQO using polytope P .

Proposition 1 If Q � 0, then the mixed-integer optimization model

min
x,z,W ,t

a�x + b�z + 1
2 t (4a)

s.t.

(
W x
x� t

)
	 0 (4b)

(z,W ) ∈ P (4c)

z ∈ {0, 1}n (4d)

x ∈ R
n, t ∈ R (4e)

is a valid formulation of problem (1).

Proof Consider a point (x, z, t,W ) satisfying constraints (4b), (4c) with z = êS for
some êS . Constraint (4c) is satisfied if and only if W = Q̂−1

S . Therefore, constraint
(4b) reduces to

⎛
⎝
Q−1

S 0 xS
0 0 x[n]\S
x�
S x�[n]\S t

⎞
⎠ 	 0.

Since the pseudoinverse of matrix W =
(
Q−1

S 0
0 0

)
is W † =

(
QS 0
0 0

)
, we find from

Lemma 1 that constraint (4b) is satisfied if and only if:

• W 	 0, which is automatically satisfied.

• WW †x = x ⇔
(
I 0
0 0

) (
xS

x[n]\S

)
=

(
xS

x[n]\S

)
⇔ x[n]\S = 0. Thus, condition

WW †x = x simply enforces the complementarity constraints x ◦ (e − z) = 0.
• t ≥ x�W †x ⇔ t ≥ x�

S QSxS , which is precisely the nonlinear constraint defining
set X .

Now, it is clear that for any (x, z, t,W ) satisfying constraints (4b), (4c), (4d), it holds
(x, z, t) ∈ X . On the other hand, for any (x, z, t) ∈ X with z = êS for some S ⊂ [n],
we can always letW = Q̂−1

S and similarly, (x, z,W , t) satisfies constraints (4b), (4c),
(4d). ��
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On the convex hull of convex... 709

Note that conditionWW †x = x is used to enforce the complementarity constraints.
We point out that a similar idea was recently used in the context of low-rank optimiza-
tion [11].

Now consider the convex relaxation of (4), obtained by dropping the integrality
constraints z ∈ {0, 1}n :

min
x,z,W ,t

a�x + b�z + 1
2 t (5a)

s.t. (4b), (4c), (4e). (5b)

Theorem 1 Let Q be a positive definite matrix. Then

cl conv(X) = {(z, x, t) ∈ [0, 1]n × R
n+1 | ∃W ∈ R

n×ns.t. (4b), (4c)}.

Consequently, that problem (5) has an optimal solution integral in z.

Proof First observe that constraints (4b),(4c) define a closed convex set. Projecting
out variable t , we find that problem (5) reduces to

min
x,z,W

a�x + b�z + 1
2 x

�W †x (6a)

s.t. WW †x = x (6b)

(z,W ) ∈ P, x ∈ R
n . (6c)

Note that this formulation uses the pseudoinverse of a matrix of variables. Observe
that we omit the constraint W 	 0. Since every extreme point (z̄, W̄ ) of P satisfies
W̄ 	 0, it follows (z,W ) ∈ P already implies W 	 0.

We argue that for any fixed (z,W ) ∈ P , setting x = −Wa is optimal for (6). Using
equality (6b), we replace the term a�x in the objective with a�WW †x . Since the
problem is convex in x , from KKT conditions we find that any point x satisfying

WW †x = x (7a)

∃λ ∈ R
n s.t. W †Wa + W †x + λ�(WW † − I ) = 0 (7b)

is optimal. In particular, setting x = −Wa, we find that (7b) is satisfied with λ = 0,
and (7a) is satisfied since WW †x = −WW †Wa = −Wa = x .

Substituting x = −Wa in the relaxed problem, we obtain

min
z,W

− 1
2a

�Wa + b�z (8a)

s.t. (z,W ) ∈ P. (8b)

Since the objective − 1
2 〈aa�,W 〉 + b�z is linear in (z,W ) and P is a polytope, there

exists an optimal solution (z∗,W ∗) that is an extreme point of P , and in particular
there exists êS ∈ Z such that z∗ = êS and W ∗ = Q̂−1

S . ��
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710 L. Wei et al.

Remark 1 The convexification for the case where Q is tridiagonal [29] is precisely in
the form given in Theorem 1, where the polyhedron P is described with a compact
extended formulation. ��

3.1.1 Bivariate quadratic functions

Consider set

X2×2=
{
(x, z, t) ∈ R

2×{0, 1}n×R : t ≥ d1x
2
1 − 2x1x2 + d2x

2
2 , x◦(e − z)=0

}
,

where d1d2 > 1, d1, d2 > 0. Set X2×2 corresponds (after scaling) to a generic strictly
convex quadratic function of two variables.We now illustrate Theorem1 by computing

an extended formulation of cl conv(X2×2), that is, for Q =
(
d1 −1
−1 d2

)
. Let � :=

d1d2 − 1 > 0 be the determinant of Q.

Proposition 2 The closure of the convex hull of X2×2 is

cl conv(X2×2) =
{
(x, z, t) ∈ R

5 : ∃W ∈ R
2×2 such that

(
W11 W12 x1
W12 W22 x2
x1 x2 t

)
	 0,

0 ≤ z1 ≤ 1, 0 ≤ z2 ≤ 1, d1W11 = W12 + z1, d2W22 = z2 + W12,

W12 ≥ 0, �W12 ≥ −1 + z1 + z2, �W12 ≤ z1, �W12 ≤ z2

}
.

Proof Polyhedron P is the convex hull of the four points given in Table 1.
Note that equalities W11 = 1

d1
(z1 + W12) and W22 = 1

d2
(z2 + W12) are valid.

Letting w = W12 and projecting out variables W11 and W22, we find that

W =
(

1
d1
z1 0
0 1

d2
z2

)
+

(
1/d1 1
1 1/d2

)
w. (9)

Also note that w = 1
�
min{z1, z2}, and the convex hull of

{
(z1, z2, w) ∈ {0, 1}2 ×

R | w = 1
�
min{z1, z2}

}
is described by the following inequalities:

w ≥ 0, w ≥ 1

�
(−1 + z1 + z2), w ≤ 1

�
z2, w ≤ 1

�
z1, 0 ≤ z1, z2 ≤ 1 (10)

Then, (9) and (10) describe the polyhedron P . ��
Conic quadratic disjunctive programming representations of cl conv(X2×2) have

been used in the literature [4]; explicit representations of cl conv
(X2×2 ∩ {(x, z, t) : x ≥ 0}) in the original space of variables have been given [8, 24],
and descriptions of the rank-one case d1d2 = 1 were given in [5]. A description of
cl conv (X2×2 ∩ {(x, z, t) : � ≤ x ≤ u}) in a conic quadratic extended formulation is
given in [20] via disjunctive programming. This formulation can be easily adapted to
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On the convex hull of convex... 711

Table 1 Extreme points of P
corresponding to set X2×2

z1 z2 W

0 0

(
0 0
0 0

)

1 0

(
1/d1 0
0 0

)

0 1

(
0 0
0 1/d2

)

1 1 1
�

(
d2 1
1 d1

)

the case with no bounds (considered here), and requires three additional variables and
three conic quadratic constraints. In Proposition 2,we give an alternative description of
cl conv(X2×2) using three additional variables, a compact 3× 3 positive semidefinite
constraint, and linear inequalities.

Remark 2 Since P is not full-dimensional, we require only one additional variable
w (instead of three) for conic representation of cl conv(X2×2) via the constraints
0 ≤ z ≤ 1, (10), and

⎛
⎝

(1/d1)(z1 + w) w x1
w (1/d2)(z2 + w) x2
x1 x2 t

⎞
⎠ 	 0.

��

Remark 3 The matrix representation (9) suggests an interesting connection between
cl conv(X2×2) and McCormick envelopes. Indeed, from Table 1, we see that

W =
(
1/d1 0
0 0

)
z1 +

(
0 0
0 1/d2

)
z2 + 1

�

(
1/d1 1
1 1/d2

)
z1z2.

Moreover, the usual McCormick envelopes of the bilinear term z1z2, given by
max{0,−1+ z1 + z2} ≤ z1z2 ≤ min{z1, z2}, are sufficient to characterize the convex
hull. ��

3.1.2 Quadratic functions with “choose-one" constraints

Given Q � 0, consider set

XC1=
{
(x, z, t) ∈ R

n×{0, 1}n× R : t ≥ x�Qx, x ◦ (e − z) = 0,
n∑

i=1

zi ≤ 1

}
·

Set XC1 arises, for example, in regression problems with multicollinearity constraints
[10]: given a set J of features that are collinear, constraints

∑
i∈J zi ≤ 1 are used to

ensure that at most one such feature is chosen.

123



712 L. Wei et al.

The closure of the convex hull of XC1 is [see, e.g.,20, 33]

cl conv(XC1) =
{
(x, z, t) ∈ R

n × R
n+ × R : t ≥

n∑
i=1

Qii x
2
i /zi ,

n∑
i=1

zi ≤ 1

}
·

We now give an alternative derivation of this result using our technique. Polyhedron
P is the convexhull ofn+1points: point (0, 0) andpoints {(ê{i}, Q̂−1

{i} )}ni=1. It can easily
be seen that P is described by constraintsWi j = 0 whenever i 
= j ,Wii = zi/Qii for
i ∈ [n], and constraints z ≥ 0,

∑n
i=1 zi ≤ 1. In particular, constraint (4b) reduces to

⎛
⎜⎜⎜⎜⎜⎝

z1/Q11 0 . . . 0 x1
0 z2/Q22 . . . 0 x2
...

...
. . .

...
...

0 0 0 zn/Qnn xn
x1 x2 . . . xn t

⎞
⎟⎟⎟⎟⎟⎠

	 0,

which by Lemma 1 is equivalent to

t ≥
n∑

i=1

Qii x
2
i /zi , zi/Qii ≥ 0,

and xi = 0 if zi/Qii = 0, ∀i ∈ [n]. Note that the second condition is the comple-
mentarity constraint, which is already included in the constraint t ≥ ∑n

i=1 Qii x2i /zi

(since zi = 0 and xi > 0 implies
x2i
zi

= +∞).

3.2 Factorable representation

A (possibly low-rank) matrix Q ∈ R
n×n is positive semidefinite if and only if there

exists some F ∈ R
n×k such that Q = FF�. Then, letting u = F�x , one can

rewrite x�Qx as x�FF�x = u�u. Matrix F may be immediately available when
formulating the problem, or may be obtained through a Cholesky decomposition or
eigendecomposition of Q. Such a factorization is often employed by solvers, since it
results in simpler (separable) nonlinear terms, and inmany situationsmatrix F is sparse
as well. In this section, we discuss representations of cl conv(X) amenable to such
factorizations of Q. While the proofs of the propositions of this section are similar to
those in Sect. 3.1, additional care is required to handle unbounded problems (1) arising
from a rank-deficient Q.

Given F ∈ R
n×k , define FS ∈ R

S×k as the submatrix of F corresponding to the
rows indexed by S, and let F̂S ∈ R

n×k be the matrix obtained by filling the missing
entries with zeros. Define the polytope PF ⊆ R

n+k2 as

PF = conv

({
(êS, F̂

†
S F̂S)

}
êS∈Z

)
·
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Remark 4 For any S ⊆ [n], matrix F̂†
S F̂S is an orthogonal projection matrix (sym-

metric and idempotent), and in particular (F̂†
S F̂S)

† = F̂†
S F̂S . These properties can be

easily verified from Definition 1. Since all eigenvalues of an orthogonal projection
matrix are either 0 or 1, it also follows that F̂†

S F̂S 	 0. ��
Proposition 3 If Q = FF�, then the mixed-integer optimization model

min
x,z,W ,t

a�x + b�z + 1
2 t (11a)

s.t.

(
W F�x
x�F t

)
	 0 (11b)

(z,W ) ∈ PF (11c)

z ∈ {0, 1}n, x ◦ (e − z) = 0 (11d)

x ∈ R
n, t ∈ R (11e)

is a valid formulation of problem (1).

Proof Consider a point (x, z, t) ∈ X with z = êS for some êS ∈ Z . Constraint (11d)
is trivially satisfied. Constraint (11c) is satisfied if and only if W = F̂†

S F̂S . Note that

in any feasible solution, xi = 0 whenever i /∈ S, and in particular F�x = F̂�
S x . From

Lemma 1, we find that constraint (11b) is satisfied if and only if (recall properties in
Remark 4):

• F̂†
S F̂S 	 0, which is automatically satisfied.

• F̂†
S F̂S(F̂

†
S F̂S)

†F�x = F�x . We find that

F̂†
S F̂S(F̂

†
S F̂S)

† F̂�
S x = F̂†

S F̂S F̂
†
S F̂S F̂

�
S x = F̂†

S F̂S F̂
�
S x = F̂

�
S (F̂†

S )� F̂�
S x = F̂�

S x,

and, therefore, this condition is satisfied as well.
• t ≥ x�FW †F�x ⇔ t ≥ x�

S F̂S(F̂
†
S F̂S)

† F̂�
S xS = x�

S F̂S F̂
†
S F̂S F̂�

S xS =
x�
S F̂S F̂�

S xS , which is precisely the nonlinear constraint defining set X and is
thus satisfied.

��
While the proofs of Propositions 1 and 3 are similar in spirit, we highlight a critical

difference. In the proof of Proposition 1, with the assumption Q � 0, constraints
WW †x = x enforce the complementarity constraints x ◦ (e − z) = 0, and therefore,
such constraints are excluded in (4). In contrast, in the proof of Proposition 3, with
Q potentially of low-rank, constraints WW †F�x = F�x alone are not sufficient to
enforce x ◦ (e− z) = 0, and therefore, they are included in (11) and are used to prove
the validity of the mixed-integer formulation. Indeed, if there exist êS ∈ Z and x̄ ∈ R

n

such that x̄S 
= 0, x̄[n]\S = 0 and F� x̄ = 0, then for any (x, z, t) ∈ X we find that

lim
λ→0+(1 − λ)(x, z, t) + λ((1/λ)x̄, êS, 0) = (x + x̄, z, t) ∈ cl conv(X).
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In particular, the point (x + x̄, z, t), which may not satisfy the complementarity con-
straints, cannot be separated from cl conv(X), or any closed relaxation. On the other
hand, if matrix Q is full-rank, then F� x̄ = 0 �⇒ x̄ = 0 (as shown in the proof of
Proposition 1); therefore, the complementarity constraints are enforced by the conic
constraint.

Recall that πS : Rn → R
S is the projection onto the subspace indexed by S. Now

we consider the natural convex relaxation of (11) by dropping constraint (11d), and
show that it is ideal under certain technical conditions over F and the set Z , as stated
in Theorem 2 below.

Theorem 2 Let Q = FF�, where F ∈ R
n×k is a full-column rank matrix satisfying

col(F) = ⋂
êS∈Z π−1

S (col(FS)). Then

cl conv(X) = {(z, x, t) ∈ [0, 1]n × R
n+1 | ∃W ∈ R

k×k s.t. (11b), (11c)}.

Proof Clearly, constraints (11b),(11c) define a closed convex set. Consider the two
optimization problems:

min a�x + b�z + 1
2 t (12a)

s.t. (x, z, t) ∈ cl conv(X), (12b)

and

min a�x + b�z + 1
2 t (13a)

s.t.

(
W F�x
x�F t

)
� 0, (13b)

(z,W ) ∈ PF , x ∈ R
n, t ∈ R. (13c)

It suffices to show that problem (12) and (13) always attain the same optimal value.
Consider the following two cases:

• FF†a 
= a: In other words, a is not in the column space of F , i.e., a /∈ col(F).
In this case, by the condition col(F) = ⋂

êS∈Z π−1
S (col(FS)), there exists one

êS ∈ Z such that aS /∈ col(FS). Then, let z be such that zi = 1, ∀i ∈ S.
Since aS /∈ col(FS), there exists x such that xi = 0 for all i ∈ [n]\S, xS is in the
orthogonal complement of FS and a�

S xS < 0. Clearly, z and x satisfy the constraint
xi (1−zi ) = 0 for all i = 1, . . . , n. Complementarity holds forλx forλ > 0 aswell.
Since, by construction, x�FF�x = 0, the objective b�z+λ〈a, x〉+λ2(x�FF�x)
tends to −∞ for (λx, z) as λ → ∞. Thus problem (12) is unbounded and since
problem (13) is a convex relaxation of (12), problem (13) is unbounded as well.

• FF†a = a: For problem (13), we can project out t using the relation

(
W F�x
x�F t

)
� 0 iff WW †F�x = F�x and t ≥ x�FW †F�x .
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Therefore, problem (13) is equivalent to

min a�x + b�z + 1
2 x

�FW †F�x (14a)

s.t. WW †F�x = F�x (14b)

(z,W ) ∈ PF , x ∈ R
n . (14c)

Since FF†a = a, we can write a�x = (F†a)�F�x . Define ã = F†a, then
a�x = ã�F�x . Substituting F�x with a new variable u ∈ R

k and since F has full
column rank, problem (14) is equivalent to

min b�z + ã�u + 1
2u

�W †u (15a)

s.t. WW †u = u (15b)

(z,W ) ∈ PF , u ∈ R
k . (15c)

Using identical arguments as in the proof of Theorem 1, we find that there exists
êS ∈ Z such that (u∗, z∗,W ∗) = (−F̂†

S F̂Sã, êS, F̂
†
S F̂S) is optimal for (15). We now

construct an optimal solution for (14). Let x∗ be defined as x∗
S = −(F†

S )�F†
S aS

and x∗[n]\S = 0, and observe that (x∗, z∗) is feasible for (12), with objective∑
i∈S bi − 1

2‖F†
S aS‖22. Substituting W ∗ = F̂†

S F̂S , the optimal value of problem (13)

equals
∑

i∈S bi − 1
2‖F†

S FSF†a‖22. Note that both α1 = F†a and α2 = F†
S aS satisfy

the equation FSα = aS and thus α1 − α2 is orthogonal to the row space of FS which
means F†

S FSα1 = F†
S FSα2 = α2. Hence, we conclude that the optimal values of

problem (12) and problem (13) coincide. ��

Remark 5 From the first case analysis of the proof of Theorem 2, one sees that
the technical condition col(F) = ⋂

êS∈Z π−1
S (col(FS)) is equivalent to stating that

the mixed-integer optimization problem and the proposed convex relaxation are
unbounded at the same time. The condition is automatically satisfied if e ∈ Z .
Moreover, if matrix Q is rank-one, then this condition is equivalent to the nonde-
composability condition on Z given in [34]. If it fails to hold, the convexification
presented is still valid but may be weak: the convex relaxation may be unbounded
even if the mixed-integer optimization problem is bounded. We provide an example
illustrating this phenomenon in Sect. 3.2.3. ��

Remark 6 An immediate consequence of Theorem 2 is that if matrix Q is rank-
deficient, i.e., k < n, then the extended formulation describing cl conv(X) is simpler
than the full rank case, i.e., it has fewer additional variables and lower-dimensional
conic constraints. ��

We now illustrate Theorem 2 by providing an alternative proof of the main result
of [5] using our unifying framework.
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3.2.1 Rank-one quadratic functions

Consider the rank-one set

XR1 =
{
(x, z, t) ∈ R

n × {0, 1}n × R : t ≥
(
h�x

)2
, x ◦ (e − z) = 0

}
,

where we assume hi 
= 0 for all i ∈ [n].
Proposition 4 ([5]) The closure of the convex hull of XR1 is

cl conv(XR1) =
{
(x, z, t) ∈ R

2n+1 :
(
min{1, e�z} h�x

h�x t

)
	 0, 0 ≤ z ≤ e

}
.

Proof In the case of a rank-one function, we have F = h and W ∈ R
1. Note that the

pseudoinverse of vector ĥS is given by

ĥ†S =
{
0 if ĥS = 0

ĥ�
S /(ĥ�

S ĥS) otherwise,

and, in particular, we find that ĥ†SĥS = 1 if S 
= ∅, and ĥ†SĥS = 0 other-

wise. Thus, ĥ†SĥS = max{z1, . . . , zn}, and PF is described by the linearization
0 ≤ W ≤ min{1, e�z}. Projecting out variable W , we arrive at the result. ��

We discuss generalizations of XR1 with arbitrary constraints on the indicator vari-
ables in Sect. 4.

3.2.2 An example with a rank-two quadratic function

In order to illustrate how convexification methods for polyhedra can be directly uti-
lized to convexify the mixed-integer nonlinear set X , we consider a special rank-two
quadratic function with three variables and the associated set

X3 =
{
(x, z, t) ∈ R

3 × {0, 1}3 × R : t ≥ (x1 + x2 + x3)
2 + x23 , x ◦ (e − z) = 0

}
.

In this case, Q = FF� with F� =
(
1 1 1
0 0 1

)
. The extreme points of PF are given in

Table 2. Using PORTA [32] to switch from the extreme point representation of PF to
its facial description, we obtain the closure of the convex hull of X3:

cl conv(X3) =
{
(x, z, t) ∈ R

7 : ∃W ∈ R
2×2 such that

(
W11 W12 x1 + x2 + x3
W12 W22 x3

x1 + x2 + x3 x3 t

)
	 0,
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Table 2 Extreme points of PF
corresponding to set X3

z F̂�
S F̂†

S F̂†
S F̂S

(0, 0, 0)

(
0 0 0
0 0 0

) (
0 0 0
0 0 0

) (
0 0
0 0

)

(0, 0, 1)

(
0 0 1
0 0 1

) (
0 0 1/2
0 0 1/2

) (
1/2 1/2
1/2 1/2

)

(0, 1, 0)

(
0 1 0
0 0 0

) (
0 1 0
0 0 0

) (
1 0
0 0

)

(0, 1, 1)

(
0 1 1
0 0 1

) (
0 1 0
0 −1 1

) (
1 0
0 1

)

(1, 0, 0)

(
1 0 0
0 0 0

) (
1 0 0
0 0 0

) (
1 0
0 0

)

(1, 0, 1)

(
1 0 1
0 0 1

) (
1 0 0

−1 0 1

) (
1 0
0 1

)

(1, 1, 0)

(
1 1 0
0 0 0

) (
1/2 1/2 0
0 0 0

) (
1 0
0 0

)

(1, 1, 1)

(
1 1 1
0 0 1

) (
1/2 1/2 0

−1/2 −1/2 1

) (
1 0
0 1

)

z3 = W12 + W22, 0 ≤ W12 ≤ W22 ≤ W11,

z3 + max{z1, z2} ≤ W11 + W22 ≤ z1 + z2 + z3,

W11 + 2W12 + W22 ≤ 1 + z3

}
.

3.2.3 An example where the technical condition fails

Consider the set

XC1
R1 =

{
(x, z, t) ∈ R

n×{0, 1}n×R : t ≥
(
h�x

)2
, x ◦ (e − z) = 0,

n∑
i=1

zi ≤ 1

}

with hi 
= 0 for i ∈ [n]. In this case, F = h and col(F{i}) = R and
π−1
S (col(F{i})) = R

n . Thus,
⋂

êS∈Z π−1
S (col(FS)) = R

n , while col(F) = {x ∈
R
n : x = λh for some λ ∈ R}, and the technical assumption is not satisfied.
The relaxation induced by (11b), (11c), (11e), which is constructed as outlined in

Proposition 4, results in the set induced by bound constraints 0 ≤ z ≤ 1, e�z ≤ 1 and
t ≥ (h�x)2/(e�z). Moreover, the corresponding optimization problem

min
x,z

a�x + b�z + (h�x)2/(e�z) s.t. e�z ≤ 1, x ∈ R
n, z ∈ [0, 1]n

is unbounded unless a ∈ col(F).
In contrast, cl conv(XC1

R1) is described via constraint t ≥ ∑n
i=1 h

2
i x

2
i /zi [33, 34]

(similar to the result described in Sect. 3.1.2), and the corresponding optimization
problem is always bounded.
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4 Convexification in the original space

We now turn our attention to describing cl conv(X) in the original space of variables.
The discussion of this section is based on projecting out the matrix variable W in
the canonical description of cl conv(X) given in Theorem 1 for Q � 0. Identical
arguments hold for the representation in Theorem 2 for low-rank matrices.

Suppose that a minimal description of polyhedron P is given by the facet-defining
inequalities

〈�i ,W 〉 − γ �
i z ≤ βi , i = 1, . . . ,m1, (16)

and equalities

〈�i ,W 〉 − γ �
i z = βi , i = m1 + 1, . . . ,m,

where �i ∈ R
n×n, βi ∈ R and γi ∈ R

n . Theorem 3 describes cl conv(X) in the
original space of variables. Note that, in practice, a complete description of P may
not be explicitly available, in which case one can use a partial description to derive
valid inequalities.

Before we give the description in the original space, we define a set of feasible
coefficients used to derive the inequalities. Let

Y def=
{
y ∈ R

m1+ × R
m−m1 :

m∑
i=1

�i yi 	 0,
m∑
i=1

Tr(�i )yi ≤ 1

}
.

Theorem 3 If Q � 0, point (x, z, t) ∈ cl conv(X) if and only if z ∈ conv(Z), t ≥ 0
and

t ≥ x� (∑m
i=1 �i yi

)
x

y�β + (∑m
i=1 yiγi

)�
z
, ∀y ∈ Y, (17)

or equivalently,

t ≥ max
y∈Y

x� (∑m
i=1 �i yi

)
x

y�β + (∑m
i=1 yiγi

)�
z
· (18)

Proof A point (x, z, t) ∈ cl conv(X) if and only if

0 ≥ min
W ,λ

λ

s.t. 〈�i ,W 〉 ≤ βi + γ �
i z, i = 1, . . . ,m1

〈�i ,W 〉 = βi + γ �
i z, i = m1 + 1, . . . ,m

W − xx�/t + λI 	 0, λ ≥ 0.
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Strong duality holds since there exists (z,W ) ∈ P that satisfies the facet-defining
inequalities strictly, and we can always increase λ to find a strictly feasible solution to
the aboveminimization problem. Substituting V = W −xx�/t+λI , the optimization
problem simplifies to

0 ≥ min
V ,λ

λ

s.t. − 〈�i , V 〉 + λTr(�i ) ≥ −βi − γ �
i z + 〈�i , xx

�/t〉, i = 1, . . . ,m1

(yi )

− 〈�i , V 〉 + λTr(�i ) = −βi − γ �
i z + 〈�i , xx

�/t〉, i = m1 + 1, . . . ,m

V 	 0, λ ≥ 0. (yi )

Letting y ∈ R
m1+ ×R

m−m1 denote the dual variables, we find the equivalent repre-
sentation

0 ≥ max
y∈Rm1+ ×R

m−m1

m∑
i=1

yi
(
−βi − γ �

i z + 〈�i , xx
�/t〉

)
(20a)

s.t. −
m∑
i=1

yi�i � 0,
m∑
i=1

Tr(�i )yi ≤ 1. (20b)

In particular, inequality (20a) is valid for any fixed feasible y. Multiplying both sides
of the inequality by t , we find the equivalent conic quadratic representation

t

⎛
⎝y�β +

(
m∑
i=1

yiγi

)�
z

⎞
⎠ ≥ 〈

m∑
i=1

yi�i , xx
�〉. (21)

Note that validity of inequalities (21) implies that y�β + (∑m
i=1 yiγi

)�
z ≥ 0 for

any primal feasible z and dual feasible y; dividing both sides of the inequality by
y�β + (∑m

i=1 yiγi
)�

z, the theorem is proven. ��
Note that even if inequalities (16) are not facet-definingor are insufficient to describe

P , the corresponding inequalities (23) are still valid for cl conv(X).
We also state the analogous result for low-rank matrices, without proof, where

(�i , γi , βi ), i ∈ [m] defines PF .
Theorem 4 Let Q = FF�, where F ∈ R

n×k is a full-column rank matrix satisfying
col(F) = ⋂

êS∈Z π−1
S (col(FS)). Then point (x, z, t) ∈ cl conv(X) if and only if

z ∈ conv(Z), t ≥ 0 and

t ≥ x�F
(∑m

i=1 �i yi
)
F�x

y�β + (∑m
i=1 yiγi

)�
z
, ∀y ∈ Y, (22)

123



720 L. Wei et al.

or equivalently,

t ≥ max
y∈Y

x�F
(∑m

i=1 �i yi
)
F�x

y�β + (∑m
i=1 yiγi

)�
z
· (23)

We now illustrate Theorem 3 for the set X2×2 discussed in Sect. 3.1.1.

Example 2 (Description of cl conv(X2×2) in the original space) From Proposition 2,
we find that for X2×2, a minimal description of polyhedron P is given by the bound
constraints 0 ≤ z ≤ 1 and

〈(
1 −1/(2d1)

−1/(2d1) 0

)
,W

〉
− (1/d1)z1 = 0 (y1)

〈(
0 −1/(2d2)

−1/(2d2) 1

)
,W

〉
− (1/d2)z2 = 0 (y2)

〈(
0 −1/2

−1/2 0

)
,W

〉
≤ 0 (y3)

〈(
0 −1/2

−1/2 0

)
,W

〉
+ (1/�)z1 + (1/�)z2 ≤ 1/� (y4)

〈(
0 1/2
1/2 0

)
,W

〉
− (1/�)z1 ≤ 0 (y5)

〈(
0 1/2
1/2 0

)
,W

〉
− (1/�)z2 ≤ 0. (y6)

Then, an application of Theorem 3 yields the inequality

t ≥ max
y∈R6+

y1x21 + y2x22 + (−y1/d1 − y2/d2 − y3 − y4 + y5 + y6)x1x2
(1/�)y4 + (y1/d1 − y4/� + y5/�)z1 + (y2/d2 − y4/� + y6/�)z2

(24a)

s.t. 4y1y2 ≥ (−y1/d1 − y2/d2 − y3 − y4 + y5 + y6)
2, y1 + y2 ≤ 1. (24b)

Note that variables y1, y2 are originally free as dual variables for equality constraints,
however, the nonnegativity constraints are imposed due to the positive definiteness
constraint in Y . In Appendix A we provide an independent verification that inequality
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(24) is indeed valid, and reduces to the quadratic inequality t ≥ d1x21 + d2x22 − 2x1x2
at integral z. ��

From Theorem 3, we see that cl conv(X) can be described by an infinite number
of fractional quadratic/affine inequalities (23). More importantly, the convex hull is
finitely generated: the infinite number of quadratic and affine functions are obtained
from conic combinations of a finite number of base matrices �i and vectors (γi , βi ),
which correspond precisely to the minimal description of P . To solve the resulting
semi-infinite problem in practice, one can employ a delayed cut generation scheme,
where at each iteration, the problem with a subset of inequalities (22) is solved to
obtain (x̄, z̄). Then, the separation problem to find a maximum violated inequality
(i.e., y) at (t̄, x̄, z̄), if it exists, is a convex optimization problem given by the inner
maximization problem in (23).

Example 3 (Rank-one function with constraints) Given Z ⊆ {0, 1}n , consider the set

X Z
R1 =

{
(x, z, t) ∈ R

n × Z × R : t ≥
(
h�x

)2
, x ◦ (e − z) = 0

}
,

that is, a rank-one function with arbitrary constraints on the indicator variables z
defined by Z . As discussed in the proof of Proposition 4, PF ⊆ R

n+1 with one
additional variableW ∈ R

1 which, at integer points, is given byW = max{z1, . . . , zn}.
For simplicity, assume that 0 ∈ Z , and that both conv(Z) and conv(Z\{0}) are full-
dimensional. Finally, consider all facet-defining inequalities of conv(Z \ {0}) of the
form γ �

i z ≥ 1 (that is, inequalities that cut off point 0), for i = 1, . . . ,m. Now
consider the inequalities

W ≤ γ �
i z, ∀i ∈ [m]. (25)

First, observe that inequalities (25) are valid for PF : given z ∈ Z , if z = 0, then
W = 0; otherwise, z ∈ Z\{0} �⇒ γ �

i z ≥ 1 = W . Second, note that inequalities
(25) are facet-defining for PF . Indeed, given i ∈ [m], consider the face Zi = {z ∈
conv(Z\{0}) : γ �

i z = 1} of conv(Z \ {0}): since conv(Z \ {0}) is full-dimensional
and γ �

i z ≥ 1 is facet-defining, there are n affinely independent points {z j }nj=1 such

that z j ∈ Zi . Thus, we find that points (z j , 1)nj=1 and (0, 0) are (n + 1)-affinely
independent points satisfying (25) at equality. Moreover, one can easily verify that
inequality W ≤ 1 is facet-defining as well. Thus, from (23) (adapted to the factorable
representation discussed in Sect. 3.2), we conclude that the inequality

t ≥ max
y∈Rm+1+

{ (∑m
i=0 yi

)
(h�x)2

y0 + ∑m
i=1 yi (γ

�
i z)

s.t.
m∑
i=0

yi ≤ 1

}
(26)

is valid for cl conv(X Z
R1). Moreover, an optimal solution to optimization problem

(26) corresponds to setting yi = 1 for i ∈ argmini∈[m]{γ �
i z}, and we conclude that

inequalities t ≥ (h�x)2 and t ≥ (h�x)2/(γ �
i z), i ∈ [m] are valid for cl conv(X Z

R1).
Indeed, as shown in [34], these inequalities along with z ∈ conv(Z) fully describe
cl conv(X Z

R1) (when a nondecomposability condition holds). ��
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Connection with decompositionmethods

From Theorem 3, we see that the convex hull, X , is obtained by adding conic

quadratic inequalities t ≥ x�(
∑m

i=1 �i yi)x

y�β+(
∑m

i=1 yiγi)
�z

with simpler quadratic structure x��i x

(corresponding to inequalities describing P). In particular, the intuition is similar to
convexifications obtained from decompositions (3). We now show how the theory pre-
sented in this paper sheds light on the strength of the aforementioned decompositions.

Suppose inequalities (16), which we repeat for convenience:

〈�i ,W 〉 − γ �
i z ≤ βi , i = 1, . . . ,m, (27)

are valid for P and, additionally,�i 	 0 for all i ∈ [m]. Since P is not full-dimensional
in general, positive semidefiniteness conditions may not be as restrictive as they ini-
tially seem.

Example 4 (Description of cl conv(X2×2), continued) None of the matrices in the
facets of P for cl conv(X2×2) given in Example 2 are positive semidefinite. Nonethe-
less, the inequalities below also describe P (we abuse notation and encode using
variables y how each inequality is obtained):

〈(
1 −1/d1

−1/d1 d2/d1

)
,W

〉
− (1/d1)(z1 + z2) = 0 (y1 + (d2/d1)y2)

〈(
d1/d2 −1/d2
−1/d2 1

)
,W

〉
− (1/d2)(z1 + z2) = 0 (y2 + (d1/d2)y1)

〈(
d1/2 −1
−1 d2/2

)
,W

〉
− (1/2)(z1 + z2) ≤ 0 (y3 + (d1/2)y1 + (d2/2)y2)

〈(
d1/2 −1
−1 d2/2

)
,W

〉
+ (1/� − 1/2)z1 + (1/� − 1/2)z2 ≤ 1/�

(y4 + (d1/2)y1 + (d2/2)y2)

〈(
d1 0
0 0

)
,W

〉
− (d1d2/�)z1 ≤ 0 (y5 + d1y1)

〈(
0 0
0 d2

)
,W

〉
− (d1d2/�)z2 ≤ 0 (y6 + d2y2).
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In particular, the last two inequalities satisfy positive semidefiniteness. Moreover, the
relaxation of the first two equalities obtained by replacing them with inequalities also
satisfies positive semidefiniteness. Finally, if Q is sufficiently diagonally dominant
and d1d2 ≥ 4, then the third and fourth inequalities satisfy positive semidefiniteness
as well. ��

Now suppose that in (23), we fix yi = λ/(βi + γ �
i z), where λ is small enough to

ensure that constraint
∑m

i=1 Tr(�i )yi ≤ 1 is satisfied. Then inequality (23) reduces to

mt ≥
m∑
i=1

x��i x

βi + γ �
i z

,

which is precisely the relaxations obtained from (3). We make the following two
important observations.
Observation 1 Relaxations obtained by fixing a given decomposition (3) [19, 20] are,
in general, insufficient to describe cl conv(X). Indeed, from Theorem 3, describing
cl conv(X) requires one inequality per extreme point of the region Y , whereas a given
decomposition corresponds to a single point in this region.
Observation 2 On the other hand, the strong “optimal” or “dynamic” relaxations [5,
17, 35], where the decomposition is not fixed but instead is chosen dynamically, are
excessive to describe cl conv(X). Indeed, they are of the form (23) for every possible
(rank-one, 2×2, remainder) matrix, and are not finitely generated; whereas, our results
imply that the necessary inequalities are finitely generated.

We conclude this section with an analysis of rank-one decompositions, where we
assume for simplicity that Q � 0: given a subset T ⊆ 2[n], rank-one relaxations are
given by

t ≥
∑
T∈T

(ĥ�
T x)

2

ê�
T z

+ x�Rx, (28)

where R = Q − ∑
T∈T ĥT ĥ�

T 	 0, and ĥT ∈ R
n are given vectors that are zero

in entries not indexed by T . Relaxation (28) can be interpreted as a decomposition
obtained from valid inequalities for P of the form

〈ĥT ĥ�
T ,W 〉 ≤ γ ê�

T z, (29)

where γ ≥ 0. Note that inequality (29) is valid for P if

γ ≥ max
êS∈Z

1

|S ⋂
T | 〈ĥT ĥ

�
T , Q̂−1

S 〉. (30)

Proposition 5 If γ = maxêS∈Z
1

|S ⋂
T | 〈ĥT ĥ�

T , Q̂−1
S 〉, then inequality (29) defines a

face of P of dimension at least dim(P0) + 1, where

P0 = {(z,W ) ∈ P : zT = 0 and WT = 0} .
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Proof There are dim(P0) + 1 affinely independent points in P0, and all satisfy (29)
at equality. Letting S∗ ∈ argmaxêS∈Z

1
|S ⋂

T | 〈ĥT ĥ�
T , Q̂−1

S 〉, we find that (êS∗ , Q̂−1
S∗ ) is

an additional affinely independent point satisfying (29) at equality. ��
Note that if optimization problem (30) has multiple optimal solutions, then one can
find additional affinely independent points. In particular, (29) is guaranteed to define a
high dimensional face of P if |T | is small. Indeed, inequalities (29) were found to be
particularly effective computationally if T = {T ⊆ [n] : |T | ≤ κ} for some small κ

[5], although a theoretical justification of this observation has been missing until now.

Remark 7 (Descriptionof cl conv(X2×2), continued)Consider again the facet-defining
inequalities given in Example 4. The last two inequalities correspond to a rank-one
strengthening with |T | = 1, which leads to relaxations of X2×2 similar to the per-
spective relaxation. Thus, we may argue that the perspective relaxation is required to
describe cl conv(X2×2). ��

5 Amixed-integer linear formulation for P

The polyhedron P can (in theory) be studied using standard methods from mixed-
integer linear optimization. However, the vertex representation of P is often not
convenient, as most techniques require that the polyhedron be described explicitly
via linear inequalities. Thus, in this section, we present such a mixed-integer linear
formulation for the vertices of polytope P when the Hessian matrix Q is positive
definite.

First, we describe the linear equalities necessary for P . Throughout this section,
for ease of exposition, for a given S ⊆ [n], we permute the rows and columns of Q
such that indices in S appear first.

Proposition 6 For any (z,W ) ∈ P,

∑
k

QikWki = zi , ∀i ∈ [n]. (31)

Proof For any S ⊆ [n], (êS, Q̂−1
S ) ∈ P , we have

Q̂−1
S Q =

(
Q−1

S 0
0 0

)(
QS QS,[n]\S

Q�
S,[n]\S Q[n]\S

)
=

(
I|S| Q−1

S QS,[n]\S
0 0

)
. (32)

Observe that the i th diagonal entry of Q̂−1
S Q is one if i ∈ S and zero otherwise. Since

at all extreme points of P we have z = êS andW = Q̂−1
S for some S ⊆ [n], it follows

that (WQ)i i = (Q̂−1
S Q)i i = zi . ��

Since P satisfies n linearly independent equalities, we immediately get insights
into the dimension of P .
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Corollary 1 The dimension of P is at most n(n + 1)/2. If Qi j 
= 0 for all i, j ∈ [n]
and Z = {0, 1}n, then this bound is tight.

Proof Polyhedron P has n + n2 variables, but symmetry constraints Wi j = Wji

and equalities (31) imply the upper bound on the dimension. If Qi j 
= 0 for all
i, j ∈ [n], the set of points (ê{i, j}, Q−1

{i, j})i 
= j and (êi , Q
−1
{i} )i∈[n] are n(n + 1)/2

affinely independent points of P , because each point is the unique one satisfying
Wi j 
= 0. Together with point (0, 0), where 0 represents the null matrix, we find the
required n(n + 1)/2 + 1 affinely independent points in P . ��

From Corollary 1, we see that (under mild conditions) there are no other equalities
in the description of P . In order to construct a mixed-integer linear formulation for
the vertices of P , we will use big-M constraints. Lemmas 2 and 3 are necessary to
identify valid bounds for coefficients M .

Lemma 2 For any S ⊆ [n], Q−1 	 Q̂−1
S and ‖Q̂−1

S ‖max ≤ λmax(Q−1).

Proof To prove Q−1 	 Q̂−1
S for S ⊆ [n], it suffices to show I 	 Q1/2 Q̂−1

S Q1/2.
Since switching the order of matrix multiplication does not change the set of nonzero
eigenvalues, the nonzero eigenvalues of Q1/2 Q̂−1

S Q1/2 coincide with those of Q̂−1
S Q.

From (32) one sees that Q̂−1
S Q =

(
I|S| Q−1

S QS,[n]\S
0 0

)
is an upper triangular matrix,

which has a maximum eigenvalue of one. Then we conclude that I 	 Q1/2 Q̂−1
S Q1/2

and thus Q−1 	 Q̂−1
S .

For the second part, it follows that for i ∈ [n], (Q̂−1
S )i i ≤ Q−1

i i ≤ λmax(Q−1).

Since Q̂−1
S 	 0, for any i, j ∈ [n], (Q̂−1

S )2i j ≤ (Q̂−1
S )i i (Q̂

−1
S ) j j . As λmax(Q−1)

gives a uniform bound on the diagonal elements of Q̂−1
S , λmax(Q−1) also bounds the

absolute value of the off-diagonal elements of Q̂−1
S . ��

Next, we define

M
def= λmax(Q

−1)max
i∈[n]

{‖Q[n],{i}‖2
}

(33)

and prove that M provides a bound for the off-diagonal elements of Q̂−1
S Q for any

S ⊆ [n] in the following lemma.

Lemma 3 For any S ⊆ [n], the off-diagonals of Q̂−1
S Q are bounded by M.

Proof Note that Q̂−1
S Q =

(
I|S| Q−1

S QS,[n]\S
0 0

)
. For any j /∈ S,

‖Q−1
S QS,{ j}‖∞ ≤ ‖Q−1

S QS,{ j}‖2 ≤ λmax(Q
−1
S )‖QS,{ j}‖2

= λmax(Q̂
−1
S )‖QS,{ j}‖2 ≤ λmax(Q

−1)‖Q[n],{ j}‖2,

where the last inequality follows from Lemma 2. ��
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One canmake a few observations about P = {(êS, Q̂−1
S )}êS∈Z . Note that at extreme

points of P , W = Q̂−1
S for some S. Thus, for any extreme point (z,W ) ∈ P , Wi j is

nonzero only if zi = z j = 1. Moreover, for any S ⊆ [n], (êS, Q̂−1
S ) ∈ P , QQ̂−1

S =
QW =

(
I|S| 0

Q�
S,[n]\SQ

−1
S 0

)
, and the off-diagonal entries in the i th row of QW are

all zeros if i ∈ S. These two observations lead to the formulation in the following
proposition.

Proposition 7 The extreme points of P are described as

{
(êS, Q̂

−1
S )êS∈Z

}
=

{
(z,W ) ∈ Z × R

n×n |
n∑

k=1

QikWki = zi , ∀i ∈ [n],

− M(1 − zi ) ≤
n∑

k=1

QikWkj ≤ M(1 − zi ), ∀i 
= j,

|Wi j | ≤ λmax(Q
−1)min{zi , z j }, ∀i, j ∈ [n]

}
.

Proof For any z = êS ∈ Z , the constraint

|Wi j | ≤ λmax(Q
−1)min{zi , z j }, ∀i, j ∈ [n],

implies that Wi j = 0 if either i or j is not in S. For i ∈ S, we have

n∑
k=1

QikWki = 1 (34)

n∑
k=1

QikWkj = 0, ∀ j 
= i . (35)

Inequalities (34) and (35) imply that
(
QS QS,[n]\S

) (
WS

W�
S,[n]\S

)
= I . SinceWS,[n]\S =

0, we have QSWS = I and W = Q̂−1
S . Therefore, QQ̂−1

S =
(

I 0
Q�

S,[n]\SQ
−1
S 0

)
. It is

clear that the off-diagonal elements in the i th row are all zero if i ∈ S, otherwise (if
i /∈ S) they are bounded by M according to Lemma 3. In other words, constraints

− M(1 − zi ) ≤
n∑

k=1

QikWkj ≤ M(1 − zi ), ∀ j 
= i

hold. Moreover, thanks to Lemma 2, the constraints

|Wi j | ≤ λmax(Q
−1)min{zi , z j }, ∀i, j ∈ [n] (36)
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hold at W = Q̂−1
S and z = êS as well. ��

Proposition 7 allows us to give a mixed-integer linear formulation for the MIQO
problem (1). Substituting the mixed-integer linear representation of P in Proposition
7 in the equivalent MIQO formulation (8), we arrive at:

min
z,W

− 1

2
a�Wa + b�z (37a)

s.t.
n∑

k=1

QikWki = zi , ∀i ∈ [n] (37b)

(MILO) − M(1 − zi ) ≤
n∑

k=1

QikWkj ≤ M(1 − zi ), ∀i 
= j (37c)

|Wi j | ≤ λmax(Q
−1)min{zi , z j }, ∀i, j ∈ [n] (37d)

z ∈ Z , (37e)

where M is defined in (33). MILO is the first polynomial-size explicit mixed-integer
linear formulation given for (1).

We point out that the mixed-integer representation of P in Proposition 7 relies on
big-M constraints and, therefore, it is not a strong formulation. Nonetheless, advanced
mixed-integer linear optimization solvers have a plethora of built-in techniques to
improve such formulations. Preliminary computations using Gurobi indicate the fol-
lowing findings:

(1) The natural relaxation of (37) is very weak and, therefore, (37) results in worse
performance than alternative (nonlinear) formulations for problem (1) in most
cases.

(2) In some cases, however, and notablywhen thematrix Q is sparse, Gurobi improves
the relaxation in presolve to the point where the problems are solved at the root
node, faster than existing formulations for (1). This situation illustrates that (in
some cases) existingmethods can improve evenweak relaxations, whereas similar
improvements are not currently available for nonlinear formulations.

Detailed computational results are presented in Appendix B. Overall, the results
illustrate the potential benefits of reducing convexification to describing a polyhedral
set, but also indicate that much work remains to be done for deriving better relaxations
of P .

6 Conclusion

In this paper, we first describe the convex hull of the epigraph of a convex quadratic
function with indicators in an extended space, which is given by one semi-definite
constraint, and an exponential system of linear inequalities defining the convex hull
of a polytope, P (or PF ). We then derive the convex hull description in the original
space as a semi-infinite conic quadratic program. Furthermore, we give a compact
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mixed-integer linear representation of the vertices of the polytope P that results in
the first compact mixed-integer linear formulation of MIQO problems. While this
is a weak formulation, our preliminary computational experience indicates that for
a class of sparse problems, off-the-shelf solvers are able to take advantage of the
developments in MILO to improve the formulation substantially and it is competitive
if not better than state-of-the-art approaches. To translate our theoretical developments
into effective practicalmethods, it is crucial to exploit the structure of P . In our ongoing
work, we explore the case when Q is a Stieltjes matrix for which P has a nice structure
that allows us to use our results directly without resorting to the MILO formulation.
Our results provide a unifying framework for several convex relaxations of MIQO
problems in the literature and can also be used to evaluate their strength.
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Appendix A. Validity of inequalities (24)

Herewe directly check the validity of the inequalities in Example 2, which are repeated
for convenience.

t ≥ max
y∈R6+

y1x21 + y2x22 + (−y1/d1 − y2/d2 − y3 − y4 + y5 + y6)x1x2
(1/�)y4 + (y1/d1 − y4/� + y5/�)z1 + (y2/d2 − y4/� + y6/�)z2

s.t. 4y1y2 ≥ (−y1/d1 − y2/d2 − y3 − y4 + y5 + y6)
2, y1 + y2 ≤ 1.

If z1 = z2 = x1 = x2 = 0, then the inequality reduces to t ≥ 0. If z1 = 1 and
z2 = x2 = 0, the inequality reduces to

t ≥ max
y∈R2+

y1x21
y1/d1 + y5/�

·

The inequality can be maximized by setting y6 = y1/d1 and y2 = y3 = y4 = y5 = 0,
and reduces to t ≥ d1x21 . The case z2 = 1, z1 = x1 = 0 is identical.
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Finally, if z1 = z2 = 1, then the inequality reduces to

t ≥ max
y∈R6+

y1x21 + y2x22 + (−y1/d1 − y2/d2 − y3 − y4 + y5 + y6)x1x2
y1/d1 + y2/d2 − y4/� + y5/� + y6/�

· (38)

Note that we can assume, without loss of generality, that y3 = 0 (otherwise, if
y3 > 0, one can increase y4 and reduce y3 to obtain a feasible solution with better
objective value). Let ȳ = y4 − y5 − y6. With these simplifications, (38) reduces to

t ≥ max
y1x21 + y2x22 + (−y1/d1 − y2/d2 − ȳ)x1x2

y1/d1 + y2/d2 − ȳ/�
(39a)

s.t. 4y1y2 ≥ (−y1/d1 − y2/d2 − ȳ)2, y1 + y2 ≤ 1 (39b)

y1, y2 ≥ 0, ȳ free. (39c)

By taking the derivative of the objective with respect to ȳ, we conclude that (for
fixed values of y1 and y2) the objective is monotone, and thus ȳ may be assumed
to be set at a bound. In particular, the rotated cone constraint holds at equality, and
ȳ = −y1/d1 − y2/d2 ± 2

√
y1y2. Thus, problem (39) further reduces to

t ≥ �max
y1x21 + y2x22 ± 2

√
y1y2x1x2

y1d2 + y2d1 ± 2
√
y1y2

(40a)

s.t. y1 + y2 ≤ 1 (40b)

y1, y2 ≥ 0 (40c)

Substitute ȳ1 = ±√
y1 and ȳ2 = ±√

y2. By multiplying by (ȳ21d2 + ȳ22d1 +
2 ȳ1 ȳ2)/(t�) ≥ 0 on both sides of the inequality, we find that (40) is satisfied if and
only if ∀ȳ1, ȳ2 ∈ R satisfying ȳ1 + ȳ2 ≤ 1, it holds

〈(
d2/� − x21/t 1/� − x1x2/t
1/� − x1x2/t d1/� − x22/t

)
,

(
ȳ21 ȳ1 ȳ2
ȳ1 ȳ2 ȳ22

)〉
≥ 0,

which in turn holds if and only if

(
d2/� − x21/t 1/� − x1x2/t
1/� − x1x2/t d1/� − x22/t

)
	 0 ⇐⇒

⎛
⎝

t x1 x2
x1 d2/� 1/�
x2 1/� d1/�

⎞
⎠ 	 0

⇐⇒ t ≥ d1x
2
1 − 2x1x2 + d2x

2
2 .

Appendix B. Numerical Experiments

FormulationMILO provides one way of utilizing Theorem 1 for general problems for
which an explicit linear description of P is not available. In this section, we discuss
the practical effectiveness of MILO to solve problem (1). First, in Sect. B.1, we test
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MILO on best subset selection problems (2). As MILO is a weak formulation due to
big-M constraints, it is often outperformed by alternative formulations to solve MIQO
problems in the literature. Then, in Sect. B.2, we test the formulations on a class of
graphical models which result in MIQO problems where matrix Q is sparse. It turns
out advanced optimization solvers are able to substantially improve the relaxation, and
MILO is competitive against the usual alternatives for this class of problems.

We compare MILO with the following alternative formulations:
Natural:

The natural reformulation, where we replace the nonconvex constraint xi (1− zi ) =
0 in (1) with |xi | ≤ 5‖x∗‖∞zi , where x∗ denotes the optimal solution of the prob-
lem without binary variables or cardinality constraints. Observe that 5‖x∗‖∞ is not
guaranteed to be a valid bound on |xi |, thus this formulation may produce suboptimal
solutions for (1).
PerspS: The perspective reformulation [2, 14, 18, 22]wherewe extract a diagonal term
diag(δ) from Q with δ ∈ R

n+ and add the perspective constraints si zi ≥ x2i , ∀i ∈ [n].
For numerical stability, it is common to add bounds on the variables with the perspec-
tive reformulation [28, 30, 35]. Overall, the perspective reformulation we compare
with is as follows:

min
z,x,s

1

2
x� (Q − diag(δ)) x + a�x + 1

2

n∑
i=1

δi si + b�z (41a)

s.t. si zi ≥ x2i , ∀i ∈ [n] (41b)

|xi | ≤ λmax(Q
−1)‖a‖2zi , ∀i ∈ [n] (41c)

z ∈ Z . (41d)

The validity of the bound λmax(Q−1)‖a‖2 comes from the fact that for any subset
S ⊂ [n], the unconstrained optimal solution in the reduced space equals Q−1

S aS whose
infinity norm is bounded by λmax(Q−1)‖a‖2 by a similar argument as Lemma 3. In
[10], a similar bound on the maximum absolute value of the continuous variables is
proposed, and the bound we use may be seen as a relaxation that is easy to compute
and works for an arbitrary Z . The vector δ is chosen as the one which gives the highest
lower bound of the perspective relaxation (41) by solving the SDP model in [35] with
MOSEK 10. We also tested other methods for diagonal decomposition [18, 19, 35];
but we only present the results with PerspS.

In all experiments, Z is defined by a cardinality constraint, i.e., Z = {z ∈
{0, 1}n | ∑n

i=1 zi ≤ r}, where r = kn for a given sparsity parameter 0 < k ≤ 1,
and b = 0. The mixed-integer optimization problems are solved by Gurobi 9.0 on
a laptop with Intel(R) Core(TM) i7-8750H 2.20 GHz and 32 GB RAM. We set the
time limit to 30min, and we use the default values of the Gurobi parameters. When
tackling mixed-integer second-order conic problems (PerspS), Gurobi automatically
decides between solving the continuous relaxation of (41) or using an outer linear
approximation for the rotated cone constraints (41b).
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Table 3 Benchmark datasets dataset m n

Housing 506 13

Diabetes 442 11

Servo 167 19

AutoMPG 392 25

B.1. Best subset selection

In this section, we solve the best subset selection problem (2) with varying k on the
benchmark datasets in Table 3, available from the UCI machine learning repository.1

The performance measures considered are solution time in seconds (for PerspS, we
include the time for solving the SDP problem in the total solution time), the number
of nodes explored (denoted as #node), and the initial percentage optimality gap of the
continuous relaxation (denoted as %gap). We also record the optimality gaps attained
at the root node after presolve for MILO, under the %gap column (in parentheses).
Denoting the optimal objective value of a continuous relaxation by LB and the exact
optimal value (or the best upper bound) byOPT, the initial optimality gap is calculated
as % gap = 100 ×OPT−LB

OPT . For instances that hit the time limit, we report the average
end gap in parentheses.

Table 4 shows the performance of the different formulations on these benchmark
datasets. We observe that the relaxation quality of MILO is poor, with optimality gaps
well above 100% (in the range of 103 − 107%). Indeed, even though the objective of
(2) has a trivial lower bound of 0, the objective values produced by the continuous
relaxation of MILO are in all cases negative. The bad relaxation quality leads to large
numbers of branch-and-bound nodes and solution times. However, for the special case
of k = 0.1 on the first three datasets, Gurobi is able to close almost all the gap at the
root node and solve the problems with little or no branching. Thus, while the results
clearly indicate that at the moment—in the context of a general MIQO—standard
methods are better than the MILO formulation, in some cases, solvers might be able
to exploit the polyhedrality of MILO. In the next section, we present experiments
showcasing this phenomenon.

B.2. Inference with graphical models

Given a graph G = (V , E), we consider the following MIQO problem

min
z,x

∑
i∈V

1

σ 2 (yi − xi )
2 +

∑
(i, j)∈E

(xi − x j )
2 (42a)

s.t. xi (1 − zi ) = 0 ∀i ∈ [n] (42b)
n∑

i=1

zi ≤ k|V |. (42c)

1 https://archive.ics.uci.edu/ml/datasets.php.
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Problem (42) arises in the sparse inference problem of a two-dimensional Gaussian
Markov random field (GMRF), see [29] for an in-depth discussion.

The graph G we consider in our experiment is a two-dimensional 10 × 10 grid.
The corresponding Hessian matrix Q in problem (42) is sparse: each row has

at most five nonzero entries (including the diagonal element). We use the random
instances from [25], available at https://sites.google.com/usc.edu/gomez/data, where
yi = xi +N (0, σ ) is a noisy observation of x , and there are three randomly sampled
3 × 3 blocks of x to be nonzero. Note that σ affects both the noise level of y and the
diagonal dominance of Q in (42), with small noise values σ resulting in problems with
larger diagonal dominance. We test on σ = 0.1, 0.2, 0.3, 0.4, 0.5 and sparsity levels
k = 0.1, 0.2, 0.3, 0.4, 0.5. For each σ , we use five randomly generated instances and
report the average statistics.

Table 5 summarizes the results. Similar to the experiments reported in Sect. B.1,
the continuous relaxation of MILO is the worst among the three formulations, with
gaps well over 100%. However, in this case, Gurobi closes virtually all optimality gap
in all the instances, and the problems are solved very fast with at most one branch-
and-bound node. The overall performance is significantly better than using the natural
MIQO formulation, and very close to and in some cases (e.g., σ = 0.5, k > 0.1) faster
than perspective reformulation for these instances.
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