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Abstract
This paper studies several solution paths of sparse quadratic minimization problems
as a function of the weighing parameter of the bi-objective of estimation loss versus
solution sparsity. Three such paths are considered: the “�0-path” where the discontinu-
ous �0-function provides the exact sparsity count; the “�1-path” where the �1-function
provides a convex surrogate of sparsity count; and the “capped �1-path”where the non-
convex nondifferentiable capped �1-function aims to enhance the �1-approximation.
Serving different purposes, each of these three formulations is different from each
other, both analytically and computationally. Our results deepen the understanding of
(old and new) properties of the associated paths, highlight the pros, cons, and tradeoffs
of these sparse optimization models, and provide numerical evidence to support the
practical superiority of the capped �1-path. Our study of the capped �1-path is inter-
esting in its own right as the path pertains to computable directionally stationary (=
strongly locally minimizing in this context, as opposed to globally optimal) solutions
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of a parametric nonconvex nondifferentiable optimization problem.Motivated by clas-
sical parametric quadratic programming theory and reinforced by modern statistical
learning studies, both casting an exponential perspective in fully describing such solu-
tion paths, we also aim to address the question of whether some of them can be fully
traced in strongly polynomial time in the problem dimensions. A major conclusion of
this paper is that a path of directional stationary solutions of the capped �1-regularized
problemoffers interesting theoretical properties and practical compromise between the
�0-path and the �1-path. Indeed, while the �0-path is computationally prohibitive and
greatly handicapped by the repeated solution ofmixed-integer nonlinear programs, the
quality of �1-path, in terms of the two criteria—loss and sparsity—in the estimation
objective, is inferior to the capped �1-path; the latter can be obtained efficiently by a
combination of a parametric pivoting-like scheme supplemented by an algorithm that
takes advantage of the Z-matrix structure of the loss function.

Keywords Sparse optimization · Solution paths · Strong polynomiality · Surrogate
sparsity functions

Mathematics Subject Classification 90C20, 90C26, 90C31, 90C33, 62J07

1 Introduction

We study and compare different approaches for sparse quadratic minimization [31]
with a Stieltjes matrix [4] and bounded variables. In particular, given vectors q ∈ R

n ,
� ∈ R

n−, u ∈ R
n+, p ∈ R

n++ a Stieltjes (i.e., a symmetric M-)matrix Q ∈ R
n×n and a

regularization parameter γ ∈ R+, we consider:

• The �0-problem

f0(γ ) � minimum
� ≤x ≤ u

q�x + 1
2 x

�Qx
︸ ︷︷ ︸

denoted q(x)

+γ

n
∑

i=1

pi | xi |0, (1)

where the univariate �0-function | t |0 �
{

1 if t �= 0
0 if t = 0

for t ∈ R is the indicator

function of sparsity.
• For an additional scalar δ > 0, the �1-problem

f1(γ ) � minimum
� ≤x ≤ u

q�x + 1
2 x

�Qx + γ

n
∑

i=1

pi
| xi |
δ

; (2)

see also (8).
• For δ > 0 as above, the (nonconvex) capped �1-problem

fcap(γ ) � minimum
� ≤x ≤ u

q�x + 1
2 x

�Qx + γ

n
∑

i=1

pi min

( | xi |
δ

, 1

)

. (3)
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Comparing solution paths of sparse... 519

In general, an M-matrix is a real square matrix with nonpositive off-diagonal
elements (i.e., a Z-matrix) and whose principal minors are all positive; there are
many equivalent characterizations of this class of matrices; see [9, 18].

Problem (1) is the exact formulation of the sparsity optimization problem of practical
interest; (2) is a popular convexification of this discrete problem; and (3) attempts
to enhance the sparsity of the solution of the convex approximation. There has been
an extensive literature in solving problems (1)–(3) for a given value of the parameter
γ . In contrast, the parametric versions of the three problems constitute the focus
of this paper. In other words, we focus on computing f0(γ ), f1(γ ) or fcap(γ ) for
all values of γ ≥ 0 (i.e., the complete paths and not just at discrete values) and
their corresponding “solutions”; for the nonconvex nondifferentiable problem (3), the
analysis and computation of a (strongly) locally minimizing solution path will be a
highlight of our study. In contrast to widely-used grid search, studying the entire paths
for �0-type problems is a relatively unexplored topic in themathematical programming
literature, and we present a study on this in the current paper.

1.1 Motivation

Problems (1)–(3) arise in sparse inference problems with Gaussian Markov random
fields (GMRFs). Specifically, we consider a special class of GMRF models know as
Besag models [11], which are widely used in the literature [12, 13, 28, 33, 37, 42]
to model spatio-temporal processes including image restoration and computer vision,
disease mapping, and evolution of financial instruments. Given an undirected graph
G = (V , E) with vertex set V and edge set E , where edges encode adjacency rela-
tionships, consider a multivariate random variable X ∈ R

|V | indexed by the vertices
of G with probability distribution

p(X) ∝ exp

⎛

⎝−
∑

(i, j)∈E

1

di j
(Xi − X j )

2

⎞

⎠ .

Such probability distribution encodes the prior belief that adjacent variables have
similar values. The values of X cannot be observed directly, but rather some noisy
observations y of X are available, where yi = Xi + εi , with εi ∼ N (0, σ 2

i ). Figure1
depicts a sample GMRF commonly used to model spatial processes, where edges
correspond to horizontal and vertical adjacency.
In this case, the maximum a posteriori estimate of the true values of X can be found
by solving the optimization problem

minimize
x

∑

i∈V

1

σ 2
i

( yi − xi )
2 +

∑

(i, j)∈E

1

di j

(

xi − x j
)2

. (4)

Instead of problem (4) (which can be solved in closed form), we consider the situ-
ation where the random variable is also assumed to be sparse [6]. For example, few
pixels in an image may be salient from the background, few geographic locations
may be affected by an epidemic, or the underlying value of a financial instrument
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Fig. 1 Two-dimensional GMRF

may change sparingly over time. Moreover, models such as (4) with sparsity have
also been proposed to estimate precision matrices of time-varying Gaussian processes
[24]. In all cases, the sparsity prior can be included in model (4) with the inclusion
of the �0 term γ

∑n
i=1 pi | xi |0, or an approximation such as the �1 or capped �1,

resulting in an optimization problem with a Stieltjes matrix of the form (1)–(3). Since
the true sparsity of the underlying statistical process is rarely known a priori, one is
interested in solving (1)–(3) for all values of γ , and then using either cross-validation
or information criteria [2, 39] to select the best alternative.

1.2 Summary of contributions and outline of paper

While the parametric version of problem (2) has been studied in the literature [23, 40],
there is a paucity of research concerning the parametric problems (1) and (3). This is
not surprising, due to the nonconvex structure of the optimization problems. A major
contribution of the present work is to fill this gap and to highlight the benefits brought
by the Z-property of the matrix Q. These contributions are of two kinds: analytical
and computational. From an analytical perspective, we show in particular that in the
special case where the variable x is nonnegatively constrained, the functions f0, f1 and
fcap can be described compactly using at most n + 1 concave functions. In contrast,
if Q is not Stieltjes and x is free, the description of these value functions may require
an exponential number of simpler functions.
From a computational perspective, for each fixed δ > 0, we propose an algorithm to
compute a possibly discontinuous solution path of strongly locally optimal objective
values of the capped �1-problem:

flocmin(γ ) ∈ loc-minimum
� ≤x ≤ u

q�x + 1
2 x

�Qx + γ

n
∑

i=1

pi min

( | xi |
δ

, 1

)

. (5)
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There are several major contributions of this study from a mathematical programming
perspective that deserve to be highlighted: (a) this study addresses a stationary solution
path of a parameter-dependent capped �1 regularized quadratic optimization problem,
which in this case, coincides with a path of (strongly) locally optimal solutions; (b)
interesting properties of this stationary (= locmin) solution path are revealed in the
study, in particular, its discontinuity and the fast restoration of a stationary solution
at a discontinuous point; and (c) an extensive set of computational results provide
strong evidence to support the benefits of this nonconvex nonsmooth regularizer in
practical sparse optimization. Taken together, the analytical and computational results
provide evidence demonstrating the benefits of the capped �1-regularizer in the class
of parametric sparse optimization problems studied in this paper.
At this point, it would be useful to mention that while there are other approximations
of the �0-function such as the minimax concave penalty mcp function [45], and the
smoothly clipped absolute deviation scad function [25], we have chosen the capped
�1-regularizer because it is a piecewise linear function, resulting in the parametric
problem (3) being of the parametric linear-quadratic, albeit nonconvex, kind whose
(stationary) solution path can be traced out in finite time. In general, a multivariate
piecewise linear-quadratic function differs from a piecewise quadratic function in that
each “piece” of the former function is a polyhedron whereas no such polyhedrality is
required for the latter [21, Sect. 4.4.2]. In the present context, the piecewise property
is due to the univariate regularizer of the �0-function and is thus much simpler. Never-
theless, with the former mcp and scad regularizers, the computational task of tracing
the entire solution path as defined by the same γ -parameterization as in (3) cannot
be accomplished exactly or in finite time, because the regularizers lead to parame-
terization of a quadratic term, resulting in a parameterized problem whose solution
path is piecewise smooth with complicated changed points that cannot be computed
exactly during the tracing process. A method that circumvents the parameterization
of the quadratic term for the mcp regularizer is described in [45].
The rest of the paper is organized as follows. In Sect. 2 we present some relevant
background for the paper. In Sect. 3we reviewknown results concerning the parametric
versions of problems (1)–(3), and in Sect. 4 we prove the new analytical results.
In Sects. 5 and 6 we discuss the computation of the local minimum path given by
flocmin(γ ); in Sect. 7 we specialize the methods to the nonnegative case x ≥ 0;
and in Sect. 8 we illustrate the performance of the proposed method via numerical
experiments.
Notation:We follow the standard notation of submatrices and subvectors indexed by
subsets of [n] � {1, · · · , n}; for instance, if α and β are two such index sets, then
Qαβ is the submatrix of Q with rows and columns indexed by elements in α and β,
respectively. If α (β) is the full set [n], then we write Q•β (Qα•, respectively) for Qαβ .
Similar definition applies to a subvector qα of q. For two vectors x and y of the same
dimension, min(x, y) is the vector of componentwise minima of x and y.
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2 Some details of the problem setting

The basic problem with exact sparsity is (1), where the following blanket assumption
is made unless otherwise specified:

• 0 < min(−�i , ui ) ≤ max(−�i , ui ) < ∞ for all i ∈ [n].
The results in this paper can easily be generalized to the case where some or all of
the bounds �i and ui are ±∞, respectively (as in many machine learning applications
that are unconstrained problems), and also to the case where some bounds are equal to
zero (so that the corresponding variables are sign-restricted). In order to avoid some
inessential discussion, we focus on the above conditions on the bounds, although we
will devote Sects. 4 and 7 to address the case where �i = 0 for all i ∈ [n].
Due to the disjunctive (thus discontinuous) nature of the �0-function, there are many
proposals to approximate the �0-function by continuous functions; most prominent
among these in the statistics literature is the family of folded concave functions [1, 26,
34]. In turn, simplest in this family are the weighted �1 and capped �1-functions; the
latter functions employ a (sufficiently small) scalar δ > 0 satisfying the condition

0 < δ < min
1≤i≤n

min(−�i , ui ). (6)

We restrict δ to satisfy this condition for the sake of simplifying some discussion.
These regularizers lead to the approximated problems (2) and (3). Parameter γ is
a weight between the quadratic loss function and the variable sparsity, the scalar δ

controls the approximation of the �0-function by the convex absolute-value function,
or the truncation of the latter. Subsequently, we devote Sect. 7 to the nonnegatively
constrained capped �1-problem:

minimize
0≤ x ≤ u

q�x + 1
2 x

�Qx + γ

n
∑

i=1

pi min
( xi

δ
, 1
)

, (7)

where the nonnegativity restriction enables a strongly polynomial complexity of the
parametric method for tracing a (directional stationary) solution path of the problem.
Problem (2) is equivalent, via an obvious re-definition of the tuplet (q, Q, �, u), to the
problem

minimize
� ′ ≤ x ′ ≤ u ′ ( x ′ )�q ′ + 1

2 (x ′)�Q ′x ′ + γ

n
∑

i=1

| x ′
i |, (8)

where the weights associated with the absolute-value term are all equal. Such a trans-
formation is not possible for the nonconvex problems (1) and (3).
For fixed (γ, δ) > 0, the 3 problems (1), (2), and (3) are quite different structurally:

• (1) is a discontinuous minimization problem that can be formulated as either a
mixed-integer program [6, 22, 41] or a quadratic program with linear complemen-
tarity constraints [7, 27];
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• (2) is a convex, bounded-variable, piecewise linear-quadratic program [20] that is
solvable by a strongly polynomially bounded algorithm [29], which we refer as
the GHPAlgorithm, where GHP refers to the last names of the authors of the latter
reference.

• as a special coupled nonconvex nondifferentiable optimization problem [21], (3) is
a piecewise linear-quadratic program [20], whose localminimizers are computable
by the same GHP Algorithm.

When specialized to (3), the GHP Algorithm consists of outer loops each composed
of inner iterations. Initialized with the index set S = [n], each outer loop computes
a “directional stationary” solution (see Sect. 5 for a formal definition) of a fixed-sign
version of the problem where variables indexed by a current set S are constrained to
be nonnegative while those not in S are nonpositive. Each inner loop (which is not
needed for the �1-problem (2)) accomplishes this task by breaking up the pointwise
minimum function and solves a sequence of convex quadratic programs. By exploiting
the Z-structure of the matrix Q, both loops have a monotonic property that results in a
strongly polynomial complexity of the overall algorithm for computing a directional
stationary solution (= strong local minimum) of (3) (and an optimal solution in the
case of (2) due to its convexity). A noteworthy remark about the GHP Algorithm as
presented in [29] is that it is initialized with the full index set [n]; most importantly, if
an “almost dstat” solution is available, as is in the problem of tracing a solution path
to be introduced next, then one would want to modify the algorithm to take advantage
of the available candidate solution. Details of the motivation and description of the
“modified GHP Algorithm” are presented in Sect. 6.

Solution paths

Unlike the case of a fixed γ > 0, there is to date a lack of a systematic study of a
solution path of either problem (1) or (3) for all positive values of γ . In contrast, the
earliest study of the parametric “LASSO path”, i.e., the problem (2) with a general
symmetric positive (semi)definite matrix Q appears to be the paper [23] followed by
[40]. TheLARS algorithm therein is like a classical parametric quadratic programming
algorithm in the optimization literature [14] although the LASSO structure is explicitly
exploited. Its complexity is in general exponential in the number of variables due to
the possible exponential number of breakpoints of the solution path [35].
A parametric study of the exact �0-problem (1) with equal weights (pi = 1 for all
i ∈ [n]) can be found in [38], where the piecewise affine property of the path is
established; the description of this path involves in general the solution of a linear
number of fixed-cardinality variable selection problems. Similar ideas of enumerating
all n + 1 cardinalities are commonly used in the literature [10, 19]. However, there
is a scarcity of efficient techniques for the case of unequal weights. Methods for
multiobjective optimization, often designed in the context of mixed-integer linear
optimization, often call for solving a large sequence of mixed-integer programs [15,
16]. Naturally, suchmethods may perform poorly if a large number of calls to a mixed-
integer optimization solver are necessary, particularly in the context of mixed-integer
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524 Z. He et al.

nonlinear optimization, since each problem is comparatively more difficult than for
the linear case.
A parametric study of �p-regularized “critical path” (0 < p < 1) connecting the origin
to a given “local minimizer” of the problem is done in [44]. The construction of such
a “piecewise smooth” function involves following a smooth path between breakpoints
by solving a system of parametric nonlinear equations and a heuristic scheme to switch
between two breakpoints. In general, a nonlinear regularizer such as the �p-function
will lead to nonlinear equations and following the solution path of such equations can
be accomplished at best only approximately; this is in contrast to following a piecewise
affine path induced by the �1- and capped �1-regularizers. Note that the �p-regularized
problem is strongly NP-hard for fixed value of the regularization parameter [17], thus
tracing the exact parametric path is certainly difficult.
Unlike the parametric �0- and �1-paths, as we have mentioned before, there is to date
no study of the solution path of the capped �1-regularized problem. As it turns out, a
careful study of the latter path has significant practical benefits from a computational
optimization perspective and also from a statistical point of view; this manifestation
of the capped �1-path is supported by the numerical results in Sect. 8.
We first summarize the theoretical results of our study, whose detailed proofs will be
the subject of subsequent sections where the un-defined terms will be clarified.

• The optimal objective value function f0(γ ) of the exact �0-problem is concave,
nondecreasing, and piecewise affine with possibly exponentially many pieces of
linearity; the evaluation of f0(γ ) for each fixed γ > 0 requires solving a mixed-
integer quadratic program. While it is known that when the weights pi are all
equal, the optimal objective value:

f =
0 (γ ) � minimum

� ≤x ≤ u
q�x + 1

2 x
�Qx + γ

n
∑

i=1

| xi |0

has no more than n+1 pieces of linearity [38], subsequently, in Sect. 4 we give an
example to show that the more general path f0(γ ) can indeed have an exponential
number of affine pieces if Q is not an M-matrix. Such an example seems to be
new in the literature. Nonetheless, we show that, if Q is an M-matrix and �i = 0
for i ∈ [n], then f0(γ ) (with unequal weights) has at most n + 1 affine pieces.

• The optimal objective value function f1(γ ) of the �1-problem is concave,
nondecreasing, once continuously differentiable, and piecewise linear-quadratic
composed of finitely many quadratic functions over an exponential number of
non-overlapping intervals. The evaluation of f1(γ ) for each fixed γ > 0 can be
accomplished by a strongly polynomially bounded algorithm. The reference [35]
contains a class of �1-regularized problems where the number of smooth pieces
of the solution path is exponential; yet Q in these problems cannot be a Z-matrix.
While it remains an open question to date whether the number of such pieces of the
solution path is an exponential or polynomial function of n when Q is a Stieltjes
matrix, there are cases [29, Sect. 6] where this number is linear in n.

• For each fixed δ > 0, the optimal objective value function fcap(γ ) of the (noncon-
vex) capped �1-problem is concave, nondecreasing, and piecewise linear-quadratic
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with possibly exponentially many quadratic pieces; the evaluation of fcap(γ ) for
each fixed γ > 0 can be accomplished by solving an exponential number of con-
vex quadratic programs. However, if Q is an M-matrix and �i = 0 for i ∈ [n],
a similar polynomiality property on the number of smooth pieces of the �0 and
�1-solution path can be proved for the capped �1-problem. To be specific, in this
case, fcap(γ ) has at most O

(

n2
)

quadratic pieces, based on a very loose count.
• Since the capped �1-regularizer is nonconvex, we may be interested in a local
minimum path whose computation may be significantly less demanding than the
computation of the global minimum path fcap(γ ). To this end, we propose a finite
algorithm to compute a path of locally optimal objective values of (5) via its
directional stationary points. This algorithm has a strongly polynomial complexity
when the lower bounds �i = 0 for all i ∈ [n]. Computationally, this solution path
of local minima has many benefits over the previous paths of global minima that
we will demonstrate via numerical computations.

3 Paths of global minimum objectives: enhanced known results

The results presented in the section are either known or easy consequences of more
general results.We include them for the sake of completeness and also for comparative
purposes among themselves and with the results in subsequent sections. Throughout
this section, the Z-property of the matrix Q is not always needed, but positive defi-
niteness of Q is still in place. The first result concerns the path of the �0-problem.

Proposition 1 Let Q ∈ R
n×n be symmetric positive definite. The function f0 :

[0,∞) → R is concave, nondecreasing, and piecewise affine with possibly expo-
nentially many pieces of linearity. The function f =

0 with all the pi ’s equal has no more
than n + 1 pieces of linearity.

Proof The concavity of f0 requires no proof since the objective function in (1) is a
linear function in γ for fixed x . The nondecreasing property of f0 is fairly obvious
too. The proof of the piecewise property consists of three steps:

• Step 1: We claim that

f0(γ ) = minimum
S ⊆ [ n ] v(S) + γ

∑

i∈S
pi where

{

v(S) � minimum
� ≤ x ≤ u

q�x + 1
2 x

�Qx

subjectto xi = 0, ∀ i /∈ S.

(9)

Indeed, if x̄ ∈ argmin
� ≤x ≤ u

q�x + 1
2 x

�Qx + γ

n
∑

i=1

pi | xi |0, then

f0(γ ) = v(supp(x̄)) + γ
∑

i∈supp(x̄)

pi ≥ minimum
S ⊆[ n ] v(S) + γ

∑

i∈S
pi ,

where supp(x̄) � {i | x̄i �= 0} is the “support” of the vector x̄ . To prove the reverse
inequality, let Smin be aminimizing index set of the right-hand subset-minimization
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problem. If x̂ is the unique minimizer of v(Smin), then

v(Smin) + γ
∑

i∈Smin

pi ≥ q� x̂ + 1
2 x̂

�Qx̂ + γ

n
∑

i=1

pi | x̂i |0 ≥ f0(γ ),

where the inequality holds because some components x̂i for i ∈ Smin may equal
to zero in addition to those not in Smin. Hence (9) holds.

• Step 2: For each S ⊆ [ n ], γ �→ v(S) + γ
∑

i∈S pi is an affine function in γ

with slope
∑

i∈S pi and intercept v(S). Thus f0(γ ) is the pointwise minimum of
finitely many affine functions, and hence is itself concave and piecewise affine.

• Step 3: When all the pi ’s are equal to one, then
∑

i∈S pi = card(S), where “card”
denotes the “cardinality of”. Hence, we have the following simplified expression:

f =
0 (γ ) = minimum

0≤ k ≤n
( vk + γ k ), where

{

vk � minimum
S ⊆[ n ] v(S)

subjectto card(S) = k.

This is enough to establish that f =
0 (γ ) is a piecewise affine function in γ with at most

n + 1 pieces of linearity. ��
The next two results concern the �1-regularized path.

Proposition 2 Let Q ∈ R
n×n be symmetric positive definite. The function f1 :

[0,∞) → R is concave, nondecreasing, once continuously differentiable, and piece-
wise linear-quadratic; the latter means that there exists a finite partition:

0 � γ0 < γ1 < · · · , < γK < γK+1 � ∞, (10)

of the interval [ 0,∞ ) such that on each subinterval [ γk, γk+1 ] for k = 0, 1, · · · , K,
f1(γ ) is a quadratic function in γ . Moreover, f ′

1 (γ ) = 1
δ

∑n
i=1 pi | x̄1i (γ ) | is a

piecewise affine function in γ , where x̄1(γ ) is the unique minimizer of the value
function f1(γ ).

Proof For the piecewise property, it suffices to note that with the signed decomposition
of the variable x = x+ − x−, where x ± ≥ 0, we have

f1(γ ) = minimum
x±

[(

q
−q

)

+ γ

δ

(

p
p

)]� (
x+
x−
)

+ 1
2

(

x+
x−
)� [

Q −Q
−Q Q

](

x+
x−
)

subjectto � ≤ x+ − x− ≤ u and x± ≥ 0,

where the right-hand minimization is a standard convex quadratic program in the vari-
ables x±. As such, the claimed piecewise property of f1(γ ) follows fromknown results
for parametric convex quadratic programming. The once continuous differentiability
of f1(γ ) is due to the uniqueness and continuity of the optimal solution to the value
function f1(γ ). The derivative formula for f ′

1 (γ ) is an immediate consequence of the
well-known Danskin Theorem of parameter-dependent optimization problems. ��
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Proposition 3 [29, Theorem 18] If Q is a Stieltjes matrix, the nonnegatively con-
strained path:

f +
1 (γ ) � minimum

0≤x ≤ u
q�x + 1

2 x
�Qx + γ

n
∑

i=1

pi
| xi |
δ

has a linear number (at most 2n + 1) of quadratic pieces on [ 0,∞ ). ��
The final result in this section concerns the capped �1-solution path.

Proposition 4 Let Q ∈ R
n×n be symmetric positive definite. The function fcap :

[ 0,∞ ) → R is concave, nondecreasing, and piecewise linear-quadratic.

Proof Similarly to the proof of Proposition 1, we first show that

fcap(γ ) = minimum
S ⊆[ n ] v̂S(γ ), (11)

where

v̂S(γ ) � minimum
� ≤ x ≤ u

q�x + 1
2 x

�Qx + γ

[

∑

i∈S
pi

| xi |
δ

+
∑

i /∈S
pi

]

subjectto | xi | ≤ δ, ∀ i ∈ S.

Indeed, let x̄ ∈ argmin
� ≤ x ≤ u

q�x + 1
2 x

�Qx + γ
[
∑n

i=1 pi min
( | xi |

δ
, 1
) ]

and Scap �

{ i | | x̄i | ≤ δ }. Then for any x ∈ [ �, u ] satisfying | xi | ≤ δ for all i ∈ Scap, we
have

q�x + 1
2 x

�Qx + γ

⎡

⎣

∑

i∈Scap
pi

| xi |
δ

+
∑

i /∈Scap
pi

⎤

⎦

≥ q�x + 1
2 x

�Qx + γ

[

n
∑

i=1

pi min

( | xi |
δ

, 1

)
]

≥ q� x̄ + 1
2 x̄

�Qx̄ + γ

[

n
∑

i=1

pi min

( | x̄i |
δ

, 1

)
]

= q� x̄ + 1
2 x̄

�Qx̄ + γ

⎡

⎣

∑

i∈Scap
pi

| x̄i |
δ

+
∑

i /∈Scap
pi

⎤

⎦ .

Since x is an arbitrary feasible solution to the minimization problem of v̂Scap(γ ), it
follows that x̄ is an optimal solution to the latter minimization problem. Hence, we
deduce

minimum
S ⊆[ n ] v̂S(γ ) ≤ v̂Scap(γ ) = fcap(γ ).
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The reverse inequality can be proved in the sameway as that in Proposition 1. Thus (11)
holds. Since each value function v̂S(γ ) is concave and piecewise linear-quadratic and
since fcap(γ ) is the pointwiseminimumof these value functions, it follows that fcap(γ )

is piecewise quadratic; i.e., there exist finitely many quadratic functions {gi (γ )}Ii=1
for some positive integer I such that fcap(γ ) ∈ { gi (γ ) }Ii=1 for all γ ∈ [0,∞).
Finally, the piecewise linear-quadratic property of fcap(γ ) follows from the fact that
every univariate piecewise quadatic function on the (nonnegative) real line must be
piecewise linear-quadratic. In turn this fact can be proved as follows.Any twoquadratic

functions cross at most at 2 points; thus I such quadratic functions have at most

(

I
2

)

cross points. Arranging these breakpoints in a nondecreasing order yields a desired
partition (10) of the interval [ 0,∞) into finitely many intervals within each of which
fcap(γ ) is a quadratic function. ��

4 Paths of global minimum objectives: new results

In general, singly parametric optimization problems may contain an exponential num-
ber of breakpoints. This is indeed the case for general lasso regression, as demonstrated
in [35]. However, as stated in Proposition 3, the solution path of the �1-regularized
problem has a linear number of breakpoints if Q is a Stieltjes matrix and the variables
are restricted to be nonnegative. In this section we show that analogous results hold
as well for the �0- and capped �1-problem. Moreover, as we discuss in Sect. 7, the
solution path of local minimizers of the capped �1-problem also has a linear number
of smooth pieces under similar assumptions.
First, to show that the solution path of the �0-problem with unequal weights is non-
trivial, we give a class of problems below for which the path f0(γ ) has an exponential
number of breakpoints; thus such a path is quite different from the one with equal
weights.

Example 5 Let Q � c I + q q� where c > 0, I is the identity matrix, qi is such that
q2i = 2 i , and pi = q2i for all i = 1, · · · , n. We make a preliminary remark about the
choice of the pair (q, p): namely, for every pair of subsets S �= S ′ of [n],

∑

i∈S
pi = ‖ qS‖22 �=

∑

i∈S′
pi = ‖ qS′ ‖22.

Let each ui = −�i be such that �S ≤ −[ QSS ]−1qS ≤ uS for all subsets S of [n].
With these bounds, using the well-known Sherman-Morrison formula [30], we have

v(S) = − 1
2 q

�
S [ QSS ]−1qS = − 1

2 q
�
S

(

c IS + qS q
�
S

)−1
qS

= − 1
2 q

�
S

(

1

c
IS − qS q�

S

c ( c + ‖ qS ‖22 )

)

qS = c

2 ( c + ‖ qS ‖22 )
− 1

2
,
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where v(S) is defined in (9). Hence,

f0(γ ) = minimum
S ⊆[ n ] v(S) + γ

∑

i∈S
pi

= minimum
S ⊆[ n ]

[

c

2 ( c + ‖ qS ‖22 )
+ γ ( c + ‖ qS ‖22 )

]

− γ c − 1

2
.

The univariate convex function t(> 0) �→ c

2 t
+ γ t attains its unique minimum at

t =
√

c

2 γ
with the minimum value equal to

√
2 γ c. When γ is such that

√

c

2 γ
=

c+ ‖ qSγ ‖22, or equivalently, when γ = c

2 ( c + ‖ qSγ ‖22 )2
for some subset Sγ of [n],

then Sγ is the unique minimizing subset S in f0(γ ). Thus

f0(γ ) = c

2 ( c + ‖ qSγ ‖22 )
− 1

2
+ γ ‖ qSγ ‖22, when γ = c

2 ( c + ‖ qSγ ‖22 )2
.

The important point in this derivation of f0(γ ) is that as γ ranges over the nonneg-
ative real line, the family { Sγ } will range over all 2n subsets S of [n], producing 2n

breakpoints of the path f0(γ ). ��
Now consider the optimization problem with nonnegative variables

f +
0 (γ ) � minimum

0≤x ≤ u
q�x + 1

2 x
�Qx + γ

n
∑

i=1

pi | xi |0, (12)

where Q is a Stieltjes matrix. The key to showing the linear number of pieces of
f +
0 is a support monotonicity property of the solutions to (12) that is asserted in the

first part of the next result. Roughly speaking, this property says that the supports
of the solutions corresponding to each piece are nested; in other words, if a variable
“becomes positive", it never becomes zero again as γ ↓ 0.

Proposition 6 Let 0 ≤ γ1 < γ2 and p ∈ R
n++. Let xk be an optimal solution of (12)

corresponding to value γk , k = 1, 2. Then supp(x2) ⊆ supp(x1). Thus f +
0 (γ ) has at

most n + 1 affine pieces.

Proof Write [n] = S c ∪ S+ where

S c �
{

i ∈ [n] | x1i x
2
i = 0

}

and S+ �
{

i ∈ [n] | x1i > 0 and x2i > 0
}

.

Define �̃ � min{x1, x2}. Then for k = 1, 2,

f +
0 (γk) = minimum

�̃ ≤ x ≤ u
q�x + 1

2 x
�Qx + γk

n
∑

i=1

pi | xi |0,

123



530 Z. He et al.

where the equality holds since the optimal solutions xk for (12) are still feasible.
With the change of variables y = x − �̃, the right-hand optimization problem can be
rewritten as

f +
0 (γk) − Ck = minimum

0≤y ≤ ũ
g(y; γk) � q̃�y + 1

2 y�Qy + γk
∑

i∈Sc
pi | yi |0,

where Ck is a certain constant, q̃ � q + Q�̃ and ũ � u − �̃. Note that the optimal
solutions yk = xk − �̃ satisfy the complementary condition y1i y

2
i = 0 for all i ∈ [n].

Thus, |y1i + y2i |0 = |y1i |0 + |y2i |0. Moreover, since Q is a Z-matrix and y1 and y2

are both nonnegative, we have (y1)�Qy2 = ∑

i �= j Qi j y1i y
2
j ≤ 0. Furthermore, the

minimum value g(yk; γk) is nonpositive, since the zero vector is feasible. Hence,

g(y1; γ1) ≤ g(y1 + y2; γ1) (by optimality)

= q̃�(y1 + y2) + 1
2 (y

1 + y2)�Q(y1 + y2) + γ1
∑

i∈S c

pi | y1i + y2i |0
= g(y1; γ1) + g(y2; γ2) + (y1)�Qy2 + (γ1 − γ2)

∑

i∈S c

pi | y2i |0
≤ g(y1; γ1) (all summands are nonpositive).

Consequently, (γ1 − γ2)
∑

i∈Sc pi |y2i |0 = 0, i.e. x2i = y2i = 0 for all i ∈ S c. Hence,
supp(x(γ )) is nested for any optimal solution x(γ ) to (12). Applying this nested
property to the representation (9) yields a piecewise affine representation of f +

0 (γ )

over a partition (10) of the interval [ 0,∞ ) (with K ≤ n) and a corresponding family
{Sk}Kk=0 of index subsets of [n] such that supp(x(γ )) = Sk for all γ ∈ ( γk, γk+1 ) for
k = 0, 1, · · · , K ; i.e.,

f +
0 (γ ) = v(Sk) + γ

⎛

⎝

∑

i∈Sk
pi

⎞

⎠ ∀ γ ∈ ( γk, γk+1 ),

which is an affine function over the kth interval. ��
Next consider the capped �1-problem with nonnegative variables

f +
cap(γ ) � minimum

0≤x ≤ u
q�x + 1

2 x
�Qx + γ

n
∑

i=1

pi min

{ | xi |
δ

, 1

}

, (13)

where Q is a Stieltjes matrix. With the alternative definition suppcap(x) � {i : xi > δ}
and two modified index subsets S< and S>, the proof of the next result is similar to
that of the previous proposition. For clarity, we provide the complete proof, which
employs an important property [29, Proposition 14] of an optimal solution of (13);
namely no component of such a solution is equal to δ.
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Proposition 7 Let 0 ≤ γ1 < γ2 and p ∈ R
n++. Let xk be an optimal solution of (13)

corresponding to value γk , k = 1, 2. Then suppcap(x
2) ⊆ suppcap(x

1). Thus, f +
cap(γ )

has at most 2n2 + 3n + 1 pieces.

Proof Without loss of generality, assume δ = 1. Write [n] = S< ∪ S> where

S< �
{

i ∈ [n] | x1i ≤ 1 or x2i ≤ 1
}

and S> �
{

i ∈ [n] : x1i > 1 and x2i > 1
}

.

Define �̃ � min{x1, x2}. Since no component of an optimal solution of (13) is equal
to 1, it follows that �̃i < 1 for all i ∈ S<. For k = 1, 2, we have

f +
cap(γk) = minimum

�̃ ≤ x ≤ u
q�x + 1

2
x�Qx + γk

n
∑

i=1

pi min {xi , 1} .

With the change of variables y = x − �̃, the right-hand optimization problem can be
rewritten as

f +
cap(γk) − Ck = minimum

0≤ y ≤ ũ
g(y; γk) � q̃�y + 1

2
y�Qy + γk

∑

i∈S<

pi min
{

yi , 1 − �̃i

}

,

(14)

where Ck, k = 1, 2 is a certain constant, q̃ � q + Q�̃ and ũ � u − �̃. The optimal
solution yk = xk − �̃ satisfies the complementary condition y1i y

2
i = 0 for all i ∈ [n].

Hence, we deduce that for i ∈ S<, min
{

y1i + y2i , 1 − �̃i

}

= min
{

y1i , 1 − �̃i

}

+
min

{

y2i , 1 − �̃i

}

. As before, we have (y1)�Qy2 ≤ 0 and g(yk; γk) ≤ 0. Together,

these yield (γ1 − γ2)
∑

i∈S<
pi min

{

y2i , 1 − �̃i

}

= 0; thus y2i = 0 for all i ∈ S<.

Since for i ∈ S<, �̃i < 1, we deduce that x2i = y2i + �̃i < 1 and the first assertion of
the proposition follows.

Similar to the proof of Proposition 1, we deduce the existence of a partition (10) of
the interval [ 0,∞ ) with K ≤ n and a corresponding family {Sk}Kk=0 of index subsets
of [n] such that

f +
cap(γ ) =

⎡

⎢

⎢

⎢

⎣

minimum
x

q�x + 1
2 x

�Qx + γ

n
∑

i=1

pi min { xi , 1 }
subjectto 0 ≤ xi ≤ 1, i /∈ Sk
and 1 ≤ xi ≤ ui , i ∈ Sk

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

minimum
x

q�x + 1
2 x

�Qx + γ
∑

i /∈Sk
pi xi

subjectto 0 ≤ xi ≤ 1, i /∈ Sk
and 1 ≤ xi ≤ ui , i ∈ Sk .

⎤

⎥

⎥

⎦

+γ
∑

i∈Sk
pi ∀ γ ∈ ( γk−1, γk ).
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With the change of variables x ′
i � xi − 1 for i ∈ Sk , we can apply Proposition 3

to deduce that the minimum value function within the square bracket has at most
2n+1 quadratic pieces; since there are at most n+1 such value functions, the second
conclusion in the proposition follows. ��

We next present a special case of the paths f0(γ ) and f1(γ ) for which the number
of breakpoints is linear in the number of variables. This is accomplished by demon-
strating that this case reduces to that of a nonnegatively constrained path to which
Propositions 1 and 3, respectively, are applicable. Specifically, consider the following
problems

minimize
( x,y ) ∈Rn+m

q�x + r�y + 1
2

(

x
y

)� [ Q R
R� P

](

x
y

)

+γ

δ

⎡

⎣

n
∑

i=1

pi | xi |0 +
m
∑

j=1

p ′
j | y j |0

⎤

⎦

subjectto � ≤ x ≤ u and 0 ≤ y ≤ v, (15)

and

minimize
( x,y ) ∈Rn+m

q�x + r�y + 1
2

(

x
y

)� [

Q R
R� P

] (

x
y

)

+γ

δ

⎡

⎣

n
∑

i=1

pi | xi | +
m
∑

j=1

p ′
j y j

⎤

⎦

subjectto � ≤ x ≤ u and 0 ≤ y ≤ v, (16)

where q ∈ R
n−, r ∈ R

m , M �
[

Q R
R� P

]

is a Stieltjes matrix, p ∈ R
n++ and p ′ ∈ R

m++
are positive vectors. The special feature of these problems is that the variables are of
two kinds: the sign-unrestricted variable x and the nonnegative variable y. The vector
q (associated with the sign-unrestricted variable x) is nonpositive, while the vector r
associated with the nonnegative variable y is not signed.

Proposition 8 Let M be a Stieltjes matrix and q ≤ 0. For any pair (γ, δ) with γ ≥ 0
and δ > 0, if (x̄, ȳ) is an optimal solution of either (15) or (16), then x̄ ≥ 0.

Proof Let α � { i | x̄i < 0 } and β � [ n ] \ α. By the optimality of x̄ , we have

qα + Qαα x̄α + Qαβ x̄β + Rα• ȳ ≥ 0 if x̄ is optimal for (15)

qα + Qαα x̄α + Qαβ x̄β + Rα• ȳ − γ

δ
pα ≥ 0 if x̄ is optimal for (16).

Suppose x̄ is optimal for (16). Since Q is an M-matrix, [ Qαα ]−1 is nonnegative, it
follows that

[ Qαα ]
−1
[

qα + Qαβ x̄β + Rα• ȳ − γ

δ
pα

]

+ x̄α ≥ 0,
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which is a contradiction because the left-hand side is negative if α �= ∅. An identical
argument holds if x̄ is optimal for (15). ��
Remark 9 Consider problem (1) with the additional assumption that q ≤ 0. In the
motivational discussion of Sect. 1.1, this case corresponds to settings where the data
vector y is known to be nonnegative. From Propositions 6 and 8, we find that in
such cases f0(γ ) has at most n + 1 affine pieces. Moreover, in [4], it is shown that
such problems can be solved in strongly polynomial time for fixed γ . Taken together,
it means that problem (1) with q ≤ 0 and Stieltjes matrix Q is a rare example of
�0-problem with unequal weights whose entire solution path can be computed in
strongly polynomial time. Nonetheless, we point out that a simple application of the
aforementioned ideaswould result in a prohibitive complexity of approximatelyO(n7)
to compute the solution path.

5 The (Strong) local-minimum path flocmin(�)

Starting in this section, we study the path of local minima of the capped �1-problem
(3). As mentioned before, this study of the “solution” path of a parameter dependent
nonconvex nondifferentiable optimization problem is a novel contribution of ourwork.
In particular, in this section, we show that every non-constant local-minimum path of
(3) is discontinuous provided that δ is small enough.
The starting point of the study is a known fact [20] that, for a given pair (γ, δ) > 0,
every directional stationary point of the piecewise linear-quadratic program (3), which
we repeat for ease for reference:

minimize
� ≤x ≤ u

θγ (x) � q�x + 1
2 x

�Qx + γ

n
∑

i=1

pi min

( | xi |
δ

, 1

)

(17)

is a strong local minimizer.Moreover, there are only finitelymany of theseminimizers.
In turn, such a directional stationary (abbreviated as dstat) solution is, by definition, a
feasible vector x̄ in [ �, u ] � { x ∈ R

n | � ≤ x ≤ u } satisfying θ ′
γ (x̄; x − x̄) ≥ 0

for all x ∈ [ �, u ], where θ ′
γ (x̄; v) is the directional derivative of the objective function

θγ (x) at x̄ along the direction v:

θ ′
γ (x̄; v) = ( q + Qx̄ )�v +

γ

δ

⎡

⎣

∑

i∈A δ
<(x̄)

pi sign(x̄i ) vi

+
∑

i∈A δ=(x̄)

pi min( sign(x̄i ) vi , 0 ) +
∑

i∈A δ
0 (x̄)

pi | vi |
⎤

⎥

⎦ ,

where for a nonzero scalar t , sign(t) �
{

1 if t > 0
−1 if t < 0; and
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A δ
<(x̄) � { i | 0 < | x̄i | < δ } , A δ

0 (x̄) � { i | x̄i = 0 } , and

A δ=(x̄) � { i | | x̄i | = δ } .

Such a vector has the following characterization [29, Proposition 1]. We recall the
sign setting of the lower and upper bound vectors � < 0 and u > 0, respectively.

Proposition 10 Let Q be symmetric positive definite. For every γ > 0, a feasible
vector x̄ ∈ [ �, u ] is a dstat solution of (17) if and only if the following conditions
(a)–(f) hold:

(a) | x̄i | �= δ for all i = 1, · · · , n;

(b) ( q + Qx̄ )i + γ
pi
δ
sign(x̄i ) = 0 for all i such that i ∈ A δ

<(x̄);

(c) ( q + Qx̄ )i = 0 for all i such that δ < | x̄i | and �i < x̄i < ui ;

(d) | ( q + Qx̄ )i | ≤ γ
pi
δ

for all i such that x̄i = 0;

(e) ( q + Qx̄ )i ≥ 0 for all i such that x̄i = �i .
(f) ( q + Qx̄ )i ≤ 0 for all i such that x̄i = ui . ��
An immediate consequence of the above characterization is the following special
property for γ > 0 sufficiently large.

Corollary 11 Let Q be symmetric positive definite. For every δ satisfying (6), there
exists γ > 0 such that for every γ ≥ γ , if x̄ is a dstat solution of (17), then for every
i = 1, · · · , n, either x̄i = 0 or |x̄i | > δ.

Proof The set of dstat points must be bounded independently of the parameter γ .
Hence, conditions (a) and (b) in Proposition 10 yield that there does not exist a com-
ponent i such that 0 < | x̄i | ≤ δ, provided that γ > 0 is sufficiently large. ��
With the above results, we can establish that with an additional, very mild stipulation
on the scalar δ > 0, there is at most one continuous path of dstat solutions of the
problem (17) for γ ≥ 0.

Proposition 12 Let Q be symmetric positive definite. Let x̄0 � argminx ∈ [ �,u ] q(x)

and S0 �
{

i | x̄0i = 0
}

. Let also

0 < δ < min

(

min
i /∈S0

| x̄0i |, min
1≤i≤n

min(−�i , ui )

)

.

Let {x̄(γ )}γ≥0 be a path of dstat solutions of the problem (17). If this path is continuous,
then x̄(γ ) = x̄0 for all γ ≥ 0. Thus, for all δ > 0 sufficiently small, any non-constant
locmin path of (3) must be discontinuous.

Proof Note that x̄(0) = x̄0. Consider an arbitrary component i . Suppose x̄0i = 0. Then
wemust have | x̄i (γ ) | < δ for allγ ≥ 0.Otherwise,wehave | x̄i (γ ) | > δ > 0 = x̄i (0)
for some γ > 0. Thus by continuity of the path x̄(•), there exists γ ′ ∈ ( 0, γ ) such
that | x̄i (γ ′) | = δ, which contradicts the stationarity property (a) in Proposition 10.
Suppose instead | x̄0i | > δ. Then we must have | x̄i (γ ) | > δ for all γ ≥ 0 by the
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same continuity argument. Therefore, it follows that the path x̄(•) has the property
that | x̄i (γ ) | < δ for all γ ≥ 0 and all i ∈ S0 while | x̄i (γ ) | > δ for all γ ≥ 0 and all
i /∈ S0. Thus for every γ ≥ 0, x̄(γ ) is a dstat solution of the restricted problem:

minimize
� ≤ x ≤ u

θγ (x) � q�x + 1
2 x

�Qx + γ
∑

i∈S0

pi
δ

| xi | + γ
∑

i /∈S0
pi

subjectto | xi | ≤ δ, ∀ i ∈ S0
and | xi | ≥ δ, ∀ i /∈ S0,

(18)

that contains the nonconvex bound constraint: | xi | ≥ δ for i /∈ S0. Nevertheless,
since x̄(γ ) satisfy these nonconvex bound constraints strictly, the objective function
of (18) is convex, and x̄(γ ) is a dstat solution of this problem, it follows that x̄(γ ) is
a global minimizer of (18). To show that x̄(γ ) is a constant, we claim that x̄(γ ) = x̄0

for all γ ≥ 0. Indeed, if x̄(γ ) �= x̄0, then

θγ (x̄0) = q� x̄0 + 1
2 ( x̄0 )�Qx̄0 + γ

∑

i /∈S0
pi by definition of θγ (x̄0)

< q� x̄(γ ) + 1
2 x̄(γ )�Qx̄(γ ) + γ

∑

i /∈S0
pi

by the unique optimality of x̄0

for θ0 on [ �, u ]

≤ q� x̄(γ ) + 1
2 x̄(γ )�Qx̄(γ ) + γ

∑

i∈S0

pi
δ

| x̄i (γ ) | + γ
∑

i /∈S0
pi this is obvious

= θγ (x̄(γ )) ≤ θγ (x̄0) by definition of θγ (x̄(γ )) and the optimality of x̄(γ ).

This contradiction establishes the constancy of the path {x̄(γ )}γ≥0 provided that it is
continuous. The remaining statements of the proposition require no proof. ��
The discontinuity of a path of strong local minima of the capped �1-regularized prob-
lem (17) makes the task of tracing this path not easy. The numerical tracing of such
a path starts by letting γ be sufficiently large so that x = 0 is a dstat solution of
(17). In general, the tracing procedure is divided into two parts: continuous tracing
by parametric pivoting via condensed matrix operations, and dstat recovery at a dis-
continuous point by a modification of the GHP algorithm [29] sketched in Sect. 2 that
was designed for a fixed γ . Details are presented in the next section.

6 Computing a (discontinuous) locmin path of (17)

Conditions (b)–(f) in Proposition 10 suggest the classification of the components of
a vector x to facilitate the verification of its directional stationarity. Specifically, let
(

α0, α±
<, α±

>, α�, αu
)

be a tuple of index sets partitioning {1, · · · , n}, based onwhich
we set xi = 0 for all i ∈ α0, xi = �i for all i ∈ α�, and xi = ui for all i ∈ αu ; we
then solve for the variables (x±

α<
, x±

α>
) from the equations in conditions (b) and (c);

obtaining

(

x±
α<

(γ )

x±
α>

(γ )

)

= −
(

q̄±
α<

q̄±
α>

)

− γ

(

p̄±
α<

p̄±
α>

)

, where
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⎡

⎢

⎢

⎣

q̄+
α<

| p̄+
α<

q̄−
α<

| p̄−
α<

q̄+
α>

| p̄+
α>

q̄−
α>

| p̄−
α>

⎤

⎥

⎥

⎦

�

⎡

⎢

⎢

⎣

Qα+
<α+

<
Qα+

<α−
<

Qα+
<α+

>
Qα+

<α−
>

Qα−
<α+

<
Qα−

<α−
<

Qα−
<α+

>
Qα−

<α−
>

Qα+
>α+

<
Qα+

>α−
<

Qα+
>α+

>
Qα+

>α−
>

Qα−
>α+

<
Qα−

>α−
<

Qα−
>α+

>
Qα−

>α−
>

⎤

⎥

⎥

⎦

−1

⎡

⎢

⎢

⎢

⎢

⎢

⎣

qα+
<

+ Qα+
<α�

�α�
+ Qα+

<αu
uαu | pα+

<

δ

qα−
<

+ Qα−
<α�

�α�
+ Qα−

<αu
uαu | − pα−

<

δ
qα+

>
+ Qα+

>α�
�α�

+ Qα+
>αu

uαu | 0
qα−

>
+ Qα−

>α�
�α�

+ Qα−
>αu

uαu | 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (19)

Also define the remaining components:

⎡

⎣

q̄α0 | p̄α0

q̄α�
| p̄α�

q̄αu | p̄αu

⎤

⎦ �

⎡

⎢

⎣

qα0 + Qα0α�
�α�

+ Qα0αu uαu | pα0

δ
qα�

+ Qα�α�
�α�

+ Qα�αu uαu | 0
qαu + Qαuα�

�α�
+ Qαuαu uαu | 0

⎤

⎥

⎦

−
⎡

⎣

Qα0α
+
<

Qα0α
−
<

Qα0α
+
>

Qα0α
−
>

Qα�α
+
<

Qα�α
−
<

Qα�α
+
>

Qα�α
−
>

Qαuα
+
<

Qαuα
−
<

Qαuα
+
>

Qαuα
−
>

⎤

⎦

⎡

⎢

⎢

⎣

q̄α+
<

| p̄α+
<

q̄α−
<

| p̄α−
<

q̄α+
>

| p̄α+
>

q̄α−
>

| p̄α−
>

⎤

⎥

⎥

⎦

.

We have the following result that requires no proof.

Corollary 13 Let Q be symmetric positive definite, (γ, δ)>0, and
(

α0, α±
<, α±

>, α�,

αu
)

be a tuple of index sets partitioning {1, · · · , n}. With
(

x±
α<

(γ ), x±
α>

(γ )
)

given by

(19), the vector x̄(γ ) �
(

0α0 , x
±
α<

(γ ), x±
α>

(γ ), �α�
, uαu

)

is a dstat solution of (3)
if

• 0 < xα+
<
(γ ) < δ 1α+

<
;

• uα+
>

> xα+
>
(γ ) > δ 1α+

>
;

• 0 > xα−
<
(γ ) > −δ 1α−

<
;

• �α−
>

< xα−
>
(γ ) < −δ 1α−

>
;

• 0 ≤ q̄α0 + γ p̄α0 ≤ γ
2 pα0

δ
;

• q̄α�
+ γ p̄α�

≥ 0; and q̄αu + γ p̄αu ≤ 0. ��

6.1 Continuous tracing

Suppose that a dstat solution x̄(γ0) is available at a given value γ0. Associated with
this solution is the index tuple

(

α0, α±
<, α±

>, α�, αu
)

defined by the solution x̄(γ0):
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α+
< � { i | 0 < x̄i (γ0) < δ } , α−

< � { i | 0 > x̄i (γ0) > −δ } ,

α+
> � { i | ui > x̄i (γ0) > δ } , α−

> � { i | �i < x̄i (γ0) < −δ }
α0 � { i | x̄i (γ0) = 0 } , α� � { i | x̄i (γ0) = �i } , and αu � { i | x̄i (γ0) = ui } .

(20)

As in parametric linear programming, we determine the smallest and largest value of
γ (denoted by γ and γ , respectively) so that the associated vector x̄(γ ) corresponding
to this tuple of index sets

(

α0, α±
<, α±

>, α�, αu
)

remains a dstat solution for all values
of γ such that γ < γ < γ .We accomplish this by some standard ratio tests tomaintain
the conditions in Corollary 13 [remark: the min/max over an empty set is taken to be
±∞, respectively]:

γ � max

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

max
i∈α+

< : p̄i>0

−q̄i − δ

p̄i
︸ ︷︷ ︸

Case 1↓

; max
i∈α+

> : p̄i<0

q̄i + δ

− p̄i
︸ ︷︷ ︸

Case 2↓

; max
i∈α−

< : p̄i<0

q̄i − δ

− p̄i
︸ ︷︷ ︸

Case 3↓

; max
i∈α−

> : p̄i>0

−q̄i + δ

p̄i
︸ ︷︷ ︸

Case 4↓

;

max
i∈α+

< : p̄i<0

q̄i
− p̄i

︸ ︷︷ ︸

Case 5↓

; max
i∈α−

< : p̄i>0

−q̄i
p̄i

︸ ︷︷ ︸

Case 6↓

; max
i∈α+

> : p̄i>0

−q̄i − ui
p̄i

︸ ︷︷ ︸

Case 7↓

; max
i∈α−

> : p̄i<0

q̄i + �i

− p̄i
︸ ︷︷ ︸

Case 8↓

;

max
i∈α0 : p̄i>0

−q̄i
p̄i

︸ ︷︷ ︸

Case 9↓

; max
i∈α0 : p̄i<2pi /δ

q̄i
2pi/δ − p̄i

︸ ︷︷ ︸

Case 10↓

max
i∈αu : p̄i<0

q̄i
− p̄i

︸ ︷︷ ︸

Case 11↓

; max
i∈α� : p̄i>0

−q̄i
p̄i

︸ ︷︷ ︸

Case 12↓

;

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

≤ γ0 ≤ min

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

min
i∈α+

< : p̄i<0

q̄i + δ

− p̄i
︸ ︷︷ ︸

Case 1↑

; min
i∈α+

> : p̄i>0

−q̄i − δ

p̄i
︸ ︷︷ ︸

Case 2↑

; min
i∈α−

< : p̄i>0

−q̄i + δ

p̄i
︸ ︷︷ ︸

Case 3↑

; min
i∈α−

> : p̄i<0

q̄i − δ

− p̄i
︸ ︷︷ ︸

Case 4↑

;

min
i∈α+

< : p̄i>0

−q̄i
p̄i

︸ ︷︷ ︸

Case 5↑

; min
i∈α−

< : p̄i<0

q̄i
− p̄i

︸ ︷︷ ︸

Case 6↑

; min
i∈α+

> : p̄i<0

q̄i + ui
− p̄i

︸ ︷︷ ︸

Case 7↑

; min
i∈α−

> : p̄i>0

−q̄i − �i

p̄i
︸ ︷︷ ︸

Case 8↑

;

min
i∈α0 : p̄i<0

q̄i
− p̄i

︸ ︷︷ ︸

Case 9↑

; min
i∈α0 : p̄i>2pi /δ

−q̄i
p̄i − 2pi/δ

︸ ︷︷ ︸

Case 10↑

min
i∈αu : p̄i>0

−q̄i
p̄i

︸ ︷︷ ︸

Case 11↑

; min
i∈α� : p̄i<0

q̄i
− p̄i

︸ ︷︷ ︸

Case 12↑

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

� γ .

Depending on whether we want to trace the path to the left or right of the interval
[

γ , γ
]

, we determine the maximum/minimum ratio in the two end points of this

interval, respectively, and update the index tuple
(

α0, α±
<, α±

>, α�, αu
)

accordingly.
This is essentially parametric pivoting implemented via matrix operations as in the
revised simplex method. Since we started the tracing procedure from very large values
of γ , we devote our subsequent discussion to always moving beyond the left endpoint
of the interval.
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Decreasing γ beyond its current value.At the value γ , we make the following transfer
of a maximizing index imax depending on which case imax corresponds to:

• Case 1↓ through 4↓: the absolute value of the variable ximax has reached the critical
value δ, which invalidates the dstat property of the current vector at γ . In this
case, we can in principle apply the GHP Algorithm to recover a dstat solution at
γ . Nevertheless, since we already have on hand an “almost dstat” solution, i.e.,
one that satisfies the conditions in Corollary 13 at γ but has a component with
absolute value equal to δ, we will subsequently propose a modification of the GHP
Algorithm that takes advantage of this availability. After the restoration, we let
γ0 ← γ and repeat the above procedure to continue the decrease of γ beyond the
current γ .

• Case 5↓ and 6↓: the variable ximax has reached the value zero; transfer the index
imax from α±

< , respectively, to α0 and repeat the above procedure to continue the
decrease of γ ;

• Case 7↓: the variable ximax has reached the upper bound uimax ; transfer the index
imax from α+

> to αu and repeat the above procedure to continue the decrease of γ .
• Case 8↓: the variable ximax has reached the lower bound �imax ; transfer the index
imax from α−

> to α� and repeat the above procedure to continue the decrease of γ ;
• Case 9↓: the variable ximax is becoming positive; transfer imax from α0 to α+

< and
repeat the above procedure to continue the decrease of γ ;

• Case 10↓: the variable ximax is becoming negative; transfer imax from α0 to α−
< and

repeat the above procedure to continue the decrease of γ ;
• Case 11↓: the variable ximax is decreasing below its upper bound; transfer imax
from αu to α+

> and repeat the above procedure to continue the decrease of γ ;
• Case 12↓: the variable ximax is increasing above its lower bound; transfer imax from

α� to α−
> and repeat the above procedure to continue the decrease of γ ;

Notice that if one of the first four cases occurs, there is a discontinuity of the path
of dstat points at the value γ ; in all other cases, the path of dstat points will remain
continuous beyond γ until the next discontinuity occurs.

Monotonicity of objective values. On the closed interval
[

γ , γ
]

, the function x̄(γ )

defined in Corollary 13 with the tuple of index sets
(

α0, α±
<, α±

>, α�, αu
)

given by
(20) is linear in γ ; moreover, for every γ in the open interval, none of the components
of x̄(γ ) satisfies |x̄i (γ )| = δ; thus x̄(γ ) is a dstat (thus strongly locally optimal), but
not necessarily globally optimal solution of the problem (17). Nevertheless, x̄(γ ) has
a restricted optimality property as asserted in the proof of the following result, based
on which it follows that the objective value θγ (x(γ )) of (17) along this line segment
of the dstat path has certain monotonicity properties.

Proposition 14 Let Q be symmetric positive definite. On the interval I �
[

γ , γ
]

,

the following statements hold:

• θγ (x̄(γ )) � q� x̄(γ ) + 1
2 x̄(γ )�Qx̄(γ ) + γ

∑n
i=1 pi min

( | x̄i (γ ) |
δ

, 1
)

is non-

decreasing in γ ;

• ∑n
i=1 pi min

( | x̄i (γ ) |
δ

, 1

)

is nonincreasing in γ ;
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• q(x̄(γ )) = q� x̄(γ ) + 1
2 x̄(γ )�Qx̄(γ ) is nondecreasing in γ ;

Suppose that the path {x̄(γ ) | γ ∈ I} has the property that | x̄i (γ ) | < δ ⇒
x̄i (γ ) = 0 for all i = 1, · · · , n, then the following two additional statements hold:

• the combined �0-objective q� x̄(γ ) + 1
2 x̄(γ )�Qx̄(γ ) + γ

∑n
i=1 pi | x̄i (γ ) |0 is

nondecreasing in γ ;
• the �0-regularizer

∑n
i=1 pi | x̄i (γ ) |0 is nonincreasing in γ .

Proof The proof is based on a restricted optimality property of the path {x̄(γ )} for
γ ∈ I; namely, for all such γ , x̄(γ ) is the unique optimal solution of the program:

minimize
� ≤ x ≤ u

θγ (x) � q�x + 1
2 x

�Qx + γ

n
∑

i=1

pi min

( | xi |
δ

, 1

)

subjectto | xi | ≤ δ, ∀ i ∈ α±
< ∪ α0

xi ≥ δ, ∀ i ∈ α+
> ∪ αu

and xi ≤ −δ, ∀ i ∈ α−
> ∪ α�,

whose objective on the feasible set, denoted S(γ0), is equal to the sum of the convex
function̂θγ (x) plus a constant:

θγ (x) = q�x + 1
2 x

�Qx + γ

⎡

⎣

∑

i∈α±
< ∪α0

pi
δ

| xi |
⎤

⎦

︸ ︷︷ ︸

denoted̂θγ (x)

+ γ

⎡

⎣

∑

i∈α±
>

pi +
∑

i∈αu

pi +
∑

i∈α�

pi

⎤

⎦

︸ ︷︷ ︸

constant

, x ∈ S(γ0).

This stated (restricted) optimality of x̄(γ ) follows from the dstat conditions in Corol-
lary 13 for γ in the open interval, and by continuity of the conditions at the two end
points ofI; the uniqueness of x̄(γ ) is due to the strict convexity of̂θγ (x).Moreover, the
restricted optimal objective value f 0

rcap(γ ) � minimumx∈S(γ0) θγ (x) is concave, non-

decreasing, and continuously differentiable on the interval
(

γ , γ
)

. Hence, θγ (x̄(γ ))

is nondecreasing in γ ; moreover, ( f 0
rcap )′(γ ) = ∑n

i=1 pi min

( | x̄i (γ ) |
δ

, 1

)

is

nonincreasing, by the concavity of f 0
rcap(γ ). To show that q(x̄(γ )) � q� x̄(γ ) +

1
2 x̄(γ )�Qx̄(γ ) is nondecreasing in γ , it suffices to observe that for γ > γ ′ in the
interval I, we have

q(x̄(γ ′)) + γ ′
n
∑

i=1

pi min

( | x̄i (γ ′) |
δ

, 1

)

= θγ ′(x̄(γ ′))
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≤ θγ ′(x̄(γ )) = q(x̄(γ )) + γ ′
n
∑

i=1

pi min

( | x̄i (γ ) |
δ

, 1

)

≤ q(x̄(γ )) + γ ′
n
∑

i=1

pi min

( | x̄i (γ ′) |
δ

, 1

)

,

where the first inequality holds by the optimality of x̄(γ ′) for θγ ′ on S(γ0) and the
second inequality holds by the nonincreasing property of capped �1-term; the above
inequality easily implies the desired nondecreasing property of q(x̄(γ )) in γ ∈ I,
since γ is nonnegative. Finally, under the additional assumption of the path {x̄(γ )},
it follows that min

( | x̄i (γ ) |
δ

, 1

)

= | x̄i (γ ) |0; thus the last two statements of the

proposition are obvious. ��
Remark 15 The monotonicity properties in Proposition 14 are reminiscent of the
same properties in the penalization theory of nonlinear programs; see e.g. [8, part
2, Lemma 9.2.1]. Nevertheless, there is a major difference; namely, each x̄(γ ) is at
best a dstat solution of (17), whereas such a classical result in nonlinear programming
pertains to a global minimizer of the penalized problem. Nevertheless, the proof of the
proposition relies on the global optimality of x̄(γ ) of θγ on the restricted constraint
set S(γ0) for γ in the interval I. ��
If at γ , none of the components of | x̄i (γ ) | are equal to δ (these are Cases 5 through
12), then x̄(γ ) remains a dstat (thus strongy locally optimal) solution of the problem
(17) at γ . If however some component | x̄i (γ ) | = δ, then a restoration of d-stationarity
at γ is needed.

6.2 Recovery of a dstat solution

As mentioned before, we have on hand a value γ and an associated vector x̄ = x̄(γ )

that satisfies the following six conditions obtained by taking the limit γ ↓ γ in the
conditions in Corollary 13:

(D1) ( q + Qx̄ )i + γ sign(x̄i )
pi
δ

= 0 for all i such that 0 < | x̄i | < δ;

(D2) | ( q + Qx̄ )i | ≤ γ
pi
δ

for all i such that x̄i = 0;

(D3) ( q + Qx̄ )i = 0 for all i such that i such that δ < | x̄i | and �i < x̄i < ui ;
(D4) ( q + Qx̄ )i ≥ 0 for all i such that x̄ = �i ;
(D5) ( q + Qx̄ )i ≤ 0 for all i such that x̄ = ui ;

(D61) ( q + Qx̄ )i + γ
pi
δ

= 0 for all i such that x̄i = δ and i ∈ α+
< (Cases 1↓);

(D62) ( q + Qx̄ )i = 0 for all i such that x̄i = δ and i ∈ α+
> (Cases 2↓);

(D63) ( q + Qx̄ )i − γ
pi
δ

= 0 for all i such that x̄i = −δ and i ∈ α−
< (Cases 3↓);

(D64) ( q + Qx̄ )i = 0 for all i such that x̄i = −δ and i ∈ α−
> (Cases 4↓).

A distinguished feature of this vector is that A δ=(x̄) � {i | | x̄i | = δ} �= ∅; thus x̄ is
not a dstat point of (17) at γ . Here the goal is to recover such a point by modifying
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the GHP algorithm so that it can start at x̄ , after which the path of dstat solutions
can be continued, albeit with a discontinuity at γ . When Q has the Z-property, the
restoration of d-stationarity canbe accomplishedwith strongly polynomial complexity.
The idea of the modified algorithm is quite similar to the original version and involves
successively solving convex quadratic programs with bounded variables.
The modification of the GHP algorithm to start at x̄ achieves several goals: (a) the
almost dstationarity of the vector x̄ is expected to expedite the recovery of dstationarity;
(b) running the original GHP Algorithm from scratch could yield a much inferior
dstat path in terms of the two criteria defining the overall objective; for one thing, the
monotonic decreasing property of the objective values (as γ ↓) would be jeopardized
at a discontinuous point; (c) in contrast, the modified GHP Algorithm decreases the
objective values, as demonstrated in Lemma 18; and (d) embedded in the overall path-
tracing procedure, themodifiedGHPAlgorithm plays an important role in the strongly
polynomial complexity of the procedure specialized to the nonnegatively constrained
capped �1-regularized problem; see Theorem 21 in Sect. 7. The first two advantages
will be demonstrated numerically via experimentations in the last section.
In general, given a pair of complementary index subsets of S± of {1, · · · , n} with
the decomposition S± = S±

< ∪ S±
> , where S±

< and S±
> are disjoint (specifically,

S+
< ∩ S+

> = ∅ and S−
< ∩ S−

> = ∅), consider the sign-restricted bounded-variable
quadratic program:

minimize
x

q�x + 1
2 x

�Qx + γ

⎡

⎣

∑

i∈S+
<

pi
δ

xi −
∑

i∈S−
<

pi
δ

xi

⎤

⎦

subjectto 0 ≤ xS+ ≤ uS+ and �S− ≤ xS− ≤ 0

(21)

and let xopt(S±) be its unique optimal solution. Problem (21) for various index sets
is the workhorse of the modified GHP algorithm presented below; the modification
allows the initialization at the non-dstat solution x̄ = x̄(γ ) mentioned above. We
first establish the following result that gives some important properties of the solution
xopt(S±).

Proposition 16 Let Q be symmetric positive definite. The following three statements
(a), (b), and (c) hold for the solution xopt(S±) for any pair of subsets S± ⊆ {1, · · · , n}
with the decomposition S± = S±

< ∪ S±
> into two disjoint subsets:

(a) xopt(S±) is the unique feasible vector x̂ to (21) satisfying

• ( q + Qx̂ )i + γ

{ pi
δ

if i ∈ S+
<

0 if i ∈ S+
>

}

= 0 if i ∈ S+ and 0 < x̂i < ui ;

• ( q + Qx̂ )i + γ

{ pi
δ

if i ∈ S+
<

0 if i ∈ S+
>

}

≤ 0 if i ∈ S+ and x̂i = ui ;

• ( q + Qx̂ )i + γ

{ pi
δ

if i ∈ S+
<

0 if i ∈ S+
>

}

≥ 0 if i ∈ S+ and x̂i = 0;
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• ( q + Qx̂ )i − γ

{ pi
δ

if i ∈ S−
<

0 if i ∈ S−
>

}

= 0 if i ∈ S− and �i < x̂i < 0;

• ( q + Qx̂ )i − γ

{ pi
δ

if i ∈ S−
<

0 if i ∈ S−
>

}

≤ 0 if i ∈ S− and x̂i = 0;

• ( q + Qx̂ )i − γ

{ pi
δ

if i ∈ S−
<

0 if i ∈ S−
>

}

≥ 0 if i ∈ S− and x̂i = �i ;

(b) if the following six index sets associated with x̂ = xopt(S±) are empty:

{

i ∈ S+
< : x̂i ≥ δ

}

,
{

i ∈ S−
< : x̂i ≤ −δ

}

{

i ∈ S+
> : x̂i ≤ δ

}

,
{

i ∈ S−
> : x̂i ≥ −δ

}

{

i ∈ S+
< : x̂i = 0 and ( q + Qx̂ )i − γ

pi
δ

> 0
}

{

i ∈ S−
< : x̂i = 0 and ( q + Qx̂ )i + γ

pi
δ

< 0
}

,

(22)

then xopt(S±) is a dstat point of (17) at γ ;
(c) if Q is additionally a Z-matrix, then xopt(S±) is the componentwise least vector

of the set:

Z(S±) �

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

• 0 ≤ xS+ ≤ uS+ and �S− ≤ xS− ≤ 0

• i ∈ S+ and xi < ui implies ( q + Qx )i + γ

{ pi
δ

if i ∈ S+
<

0 if i ∈ S+
>

}

≥ 0

• i ∈ S− and xi < 0 implies ( q + Qx )i − γ

{ pi
δ

if i ∈ S−
<

0 if i ∈ S−
>

}

≥ 0

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎭

;

Proof Statement (a) provides the optimality conditions of xopt(S±) as a minimizer of
the convex program (21). To prove statement (b), first observe that if the six sets in
(22) are all empty, then no component | xopti (S±) | is equal to δ. Next, comparing the
conditions (b)–(e) in Proposition 10 with the optimality conditions of (21) and taking
into account the emptiness of the sets in (22), we may deduce statement (b) readily.
Finally, statement (c) follows from [36, Theorem 3.1]. ��
The non-dstat vector x̄ = x̄(γ ) on hand has the property that the two sets

{

i | x̄i = 0 and ( q + Qx̄ )i − γ
pi
δ

> 0
}

and
{

i | x̄i = 0 and ( q + Qx̄ )i + γ
pi
δ

< 0
}

are both empty (cf. the last two sets in (22)); this follows from the property (D2) of
x̄ . Using x̄ we define a tuple of index sets (S±

<, S±
>) such that three (to be specified

below) of the six index sets in (22) associated with the optimal solution xopt(S±)

are empty. The goal of the algorithm is to adjust these index sets so that all six of
them are empty, at which point, a dstat solution of (17) at γ is recovered. There are
two versions of the algorithm, which we term the nonincreasing versus nondecrasing
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version, respectively, depending on whether the candidate solution in the algorithm is
(componentwise) nonincreasing or nondecreasing; this monotonicity of the iterates is
due to the least-element characterization of the optimal solution of (21); see part (c)
in Proposition 16.
The nonincreasing version of GHP: Let

S+
< � { i | 0 ≤ x̄i < δ } ; S+

> � { i | δ ≤ x̄i ≤ ui } ;
S−
< � { i | −δ ≤ x̄i < 0 } ; S−

> � { i | �i ≤ x̄i < −δ } .
(23)

In this definition, the left-hand set in line 1 (labelled L1L), the right-hand set in line
2 (labelled L2R), and the set in line 4 (labelled L4) of (22), all associated with x̄ , are
empty; so is the set in line 3; during the algorithm, the former three sets will remain
empty while the latter one may become nonempty.
The nondecreasing version of GHP: Let

S+
< � { i | 0 < x̄i ≤ δ } ; S+

> � { i | δ < x̄i ≤ ui } ;
S−
< � { i | −δ < x̄i ≤ 0 } ; S−

> � { i | �i ≤ x̄i ≤ −δ } .
(24)

In this definition, the right-hand set in line 1 (L1R), the left-hand set in line 2 (L2L),
and the set in line 3 (labelled L3) of (22), all associated with x̄ , are empty; so is the
set in line 4; during the algorithm, the former three sets will remain empty while the
latter one may become nonempty.

Upon examining the optimality conditions of the problem (21), it is not difficult to
see that for the above pairs (S±

<, S±
>), x̄ may not be equal to xopt(S±). The following

lemma provides sufficient conditions for these two vectors to equal.

Lemma 17 The following two statements hold for the pairs (S±
<, S±

>) defined in (23)
and (24).

• If (Aninc) { i | | x̄i | = δ } ⊆ α+
> ∪ α−

< , then x̄ = xopt(S±) for the pair (S±
<, S±

>)

defined in (23).
• If (Andec) { i | | x̄i | = δ } ⊆ α+

< ∪ α−
> , then x̄ = xopt(S±) for the pair (S±

<, S±
>)

defined in (24).

Proof It suffices to compare the optimality conditions of the program (21) in Propo-
sition 16 and the conditions (D1)–(D5) and (D61)–(D64) satisfied by x̄ , and to notice
that these two sets of conditions coincide under the stated assumption in the respective
assertions. ��
To understand the assumptions in the above lemma, we recall that in a well-known
simplex-type parametric pivoting scheme, which is the basis of the continuous trac-
ing routine, it is common to assume a nondegeneracy assumption that stipulates
the uniqueness of the maximizing index. Under this uniqueness assumption, the set
{ i | | x̄i | = δ } is a singleton, say {imax}. In this case, one of the two mutually
exclusive inclusions (Aninc) and (Andec) in Lemma 17 must be satisfied. Depending
on which inclusion is satisfied, we can define the pairs (S±

<, S±
>) accordingly so that

the lemma is applicable. In general, this lemma relaxes the uniqueness requirement
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by postulating that all the maximizing indices of γ are one of two types: either all in
α+

> ∪ α−
< leading to the nonincreasing definition (23); or all in α+

< ∪ α−
> leading to the

nondecreasing definition (24).
The key argument for us to show that theGHP restorationwill obtain a dstat solution

of (17) at the discontinuous γ in linearly many steps is to inductively prove that L1R,
L2L, L3 (resp. L1L, L2R, L4) will remain empty throughout the nondecreasing (resp.
nonincreasing) version of GHP. The induction step of this is proved in Lemma 18,
whereas the base case, i.e., the initial step, follows from Lemma 17. In particular, in
order to satisfy the conditions in Lemma 17 when γ corresponds to Cases 1↓ and
4↓ (resp. Cases 2↓ and 3↓), we should apply the nondecreasing (resp. nonincreasing)
version of modified GHP Algorithm. For simplicity, the discussion below focuses
on the nondecreasing version of the algorithm. All of the analysis on this version
hold symmetrically for its nonincreasing counterpart, which involves an analogous
update of the pair (S±

<, S±
>) in the general iteration. It is also worth noting that the

nondecreasing version is more appropriate to obtain a favorable strongly polynomial
complexity of the overall path-following scheme for the special case of the parametric
capped �1-problem with nonnegative bounds, see Sect. 7. In stating the algorithm
below, we assume that Andec for the vector x̄ = x̄(γ ) is in place.

AlgorithmIIndec:Restoringadstat point of (17) atγ : thenondecreasing version

Initialization. Given are an index tuple (S±
<, S±

>) as in (24) and the unique optimal
solution xopt(S±) = x̄ such that the sets L1R, L2L, and L3 in (22) associated with x̄
are empty.

General iteration. Stop if the sets L1L, L2R, and L4 in (22) associated with x̄ are
empty; in this case, the current x̄ is a desired dstat point of (17) at γ . Otherwise, we
update the index sets by re-assigning the “wrongly assigned” indices:

( S+
< )new �

(

S+
< ∪

{

i ∈ S−
< | x̄i = 0 and ( q + Qx̄ )i + γ

pi
δ

< 0
} )

\ { i ∈ S+
< | x̄i ≥ δ }

( S+
> )new � S+

> ∪ { i ∈ S+
< | x̄i ≥ δ }; ( S−

> )new � S−
> \ { i ∈ S−

> | x̄i ≥ −δ };

( S−
< )new �

(

S−
< \

{

i ∈ S−
< | x̄i = 0 and ( q + Qx̄ )i + γ

pi
δ

< 0
} )

∪ { i ∈ S−
> | x̄i ≥ −δ },

which yield S±
new � (S±

<)new ∪ (S±
>)new. Solve the subproblem (21) with the new

pair
(

S±
<, S±

>

)

new and obtain x̄new � xopt(S±
new). Return to check for termination or

update the index sets and repeat the general iteration. ��

In the lemma below, we show several things under the Z-property of Q: (a) a com-
ponentwise monotonicity of the iterates produced by the algorithm; (b) the persistent
emptiness of the three sets L1R, L2L, and L3 in (22); and (c) a monotonicity property
of the objective function θγ . In turn, the least-element characterization of the optimal
solution xopt(S±) of each problem (21) is crucial for the demonstration. The former
two properties are central to the proof of linear (in n) number of iterations of Algo-
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rithm IIndec; the monotonicity property of θγ is interesting in its own right and extends
Proposition 14 to a discontinuous point on a dstat path.

Lemma 18 Let Q be a Stieltes matrix. Let
(

S±
<, S±

>

)

and
(

S±
<, S±

>

)

new be two tuples
of index sets entering and exiting a general iteration of Algorithm IIndec, respectively;
let x̄ � xopt(S±) and x̄new � xopt(S±

new) be the corresponding optimal solution of
(21). If

(andec) the sets L1R, L2L, and L3 in (22) associated with x̄ are empty, and
(bndec) x̄i > δ for all i ∈ S+

> and x̄i > −δ for all i ∈ S−
< (this is implied by (a)),

then the following five statements hold:
• x̄new ≥ x̄ ;
• strict inequality in x̄new ≥ x̄ holds for a component i for which | x̄i | = δ;
• (x̄new)i > δ for all i ∈ (S+

>)new and (x̄new)i > −δ for all i ∈ (S−
<)new,

• the sets L1R, L2L, and L3 in (22) associated with x̄new remain empty; and
• θγ (x̄new) ≤ θγ (x̄); moreover, strict inequality holds if x̄ has at least one com-
ponent i for which | x̄i | = δ (such as when x̄ is the non-dstat point that initializes
the algorithm).

Proof To show x̄new ≥ x̄ , it suffices to show that x̄new belongs to the set

Z(S±) �

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

• 0 ≤ xS+ ≤ uS+ and �S− ≤ xS− ≤ 0

• i ∈ S+ and xi < ui implies ( q + Qx )i + γ

{ pi
δ

if i ∈ S+
<

0 if i ∈ S+
>

}

≥ 0

• i ∈ S− and xi < 0 implies ( q + Qx )i − γ

{ pi
δ

if i ∈ S−
<

0 if i ∈ S−
>

}

≥ 0

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎭

,

because x̄ is the least element of Z(S±), by part (c) of Proposition 16. The first bulleted
conditions are clear. For the second bulleted condition, let i ∈ S+ and (x̄new)i < ui .
Since S+ = S+

< ∪ S+
> , there are the following two cases:

• i ∈ S+
< : there are two subcases: (a) i ∈ (S+

<)new, or (b) i ∈ (S+
>)new; in both

subcases, since (x̄new)i < ui , we have ( q + Qx̄new )i +γ
pi
δ

≥ 0; thus the second

bulleted condition for x̄new to be in the set Z(S±) holds in this case;
• i ∈ S+

> : then i ∈ (S+
>)new; again since (x̄new)i < ui , we have ( q + Qx̄new )i ≥ 0;

thus x̄new satisfies the second bulleted condition in the set Z(S±).

This completes the proof of the second bulleted condition for x̄new. For the third
bulleted condition, let i ∈ S− and (x̄new)i < 0. Similarly, there are the following
cases:

• i ∈ S−
< : there are two subcases: (a) i ∈ (S+

<)new, or (b) i ∈ (S−
<)new; subcase (a) is

ruled out because (x̄new)i < 0; in subcase (b) we have ( q + Qx̄new )i −γ
pi
δ

≥ 0;

thus x̄new satisfies the third bulleted condition in the set Z(S±);
• i ∈ S−

> : there are two subcases: (a) i ∈ (S−
<)new, or (b) i ∈ (S−

>)new; in both
subcases, since (x̄new)i < 0, we have ( q + Qx̄new )i ≥ 0; thus x̄new satisfies the
third bulleted condition in the set Z(S±).
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In summary,wehaveverified, case by case, that x̄new satisfies all the defining conditions
of Z(S±); the desired nondecreasing conclusion x̄new ≥ x̄ follows. Toprove the second
assertion of the lemma, suppose by contradiction that i is such that (x̄new)i = x̄i
and | x̄i | = δ. Consider first x̄i > 0. Then i ∈ S+

< by assumption (bndec). Hence,
i ∈ (S+

>)new and by optimality of x̄ = xopt(S±) and x̄new = xopt(S±
new), it follows

that

0 = ( q + Qx̄ )i + γ
pi
δ

> ( q + Qx̄new )i = 0,

where the first equality holds by the first optimality property of x̄ for such an index
i ∈ S+

< (seeProposition 16); the strict inequality holds because (x̄new)i = x̄i , x̄new ≥ x̄ ,
and Q has nonpositive off-diagonal entries; and the last equality holds by the same
optimality property of x̄new because i ∈ (S+

>)new. This contradiction completes the
proof of the case where x̄i = δ. The other case is when x̄i = −δ. Then i ∈ S−

> by the
same assumption (b). Hence, i ∈ (S−

<)new, and for similar reasons,

0 = ( q + Qx̄ )i > ( q + Qx̄new )i − γ
pi
δ

= 0.

This contradiction establishes the second assertion of the lemma. The third assertion
follows from assumption (b), the fact that x̄new ≥ x̄ , when a componentwise strict
inequality holds, and the definition of (S+

>)new and (S−
<)new. This also shows that the

two sets L1R and L2L at x̄new are empty. Finally, consider the set L3 at x̄new. Suppose

there is an index i ∈ (S+
<)new such that (x̄new)i = 0 and ( q + Qx̄new )i − γ

pi
δ

> 0.

There are twocases: (a) i ∈ S+
< or (b) i ∈ S−

< ; x̄i = 0 and ( q+Qx̄ )i+γ
pi
δ

< 0. In the

former case, we have 0 = (x̄new)i ≥ x̄i ; hence x̄i = 0. Since x̄ ≤ x̄new and Q has non-

positive off-diagonal entries,we deduce ( q+Qx̄ )i−γ
pi
δ

≥ ( q+Qx̄new )i−γ
pi
δ

>

0. Thus i belongs to the set L3 at x̄ , which is a contradiction. A similar contradiction
can be obtained in the other case. Therefore, the set L3 at x̄new is empty.
To prove the last assertion of the lemma, we compare the updated QP at the pair
(

S±
<, S±

>

)

new:

minimize
x

θγ (x; S±
new) � q�x + 1

2 x
�Qx + γ

⎡

⎣

∑

i∈(S+
< )new

pi
δ

| xi | +
∑

i∈(S−
< )new

pi
δ

| xi |
⎤

⎦

subjectto 0 ≤ xS+
new

≤ uS+
new

and �S−
new

≤ xS−
new

≤ 0

(25)

versus (21), which is the QP at the pair
(

S±
<, S±

>

)

. Notice that x̄ remains feasible to
(25). Hence

θγ (x̄new; S±
new) ≤ θγ (x̄; S±

new);
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we relate these objective values to the original ones θγ (x̄new) and θγ (x̄) with the full
capped �1-regularizer as follows. For an arbitrary vector x , we have

θγ (x) = q�x + 1
2 x

�Qx + γ

n
∑

i=1

pi min

( | xi |
δ

, 1

)

= q�x + 1
2 x

�Qx

+γ

⎡

⎢

⎢

⎢

⎢

⎣

∑

i∈(S+
< )new

pi min

( | xi |
δ

, 1

)

+
∑

i∈(S+
> )new

pi min

( | xi |
δ

, 1

)

+
∑

i∈(S−
< )new

pi min

( | xi |
δ

, 1

)

+
∑

i∈(S−
> )new

pi min

( | xi |
δ

, 1

)

⎤

⎥

⎥

⎥

⎥

⎦

≤ θγ (x; S±
new)

+γ

⎡

⎣

∑

i∈(S+
> )new

pi min

( | xi |
δ

, 1

)

+
∑

i∈(S−
> )new

pi min

( | xi |
δ

, 1

)

⎤

⎦ ,

where the last inequality holds at equality for x = x̄ . Hence,

θγ (x̄new) ≤ θγ (x̄; S±
new)

+γ

⎡

⎣

∑

i∈(S+
> )new

pi min

( | (x̄new)i |
δ

, 1

)

+
∑

i∈(S−
> )new

pi min

( | (x̄new)i |
δ

, 1

)

⎤

⎦

= θγ (x̄)

+γ

⎡

⎢

⎢

⎢

⎢

⎢

⎣

∑

i∈(S+
> )new

pi min

( | (x̄new)i |
δ

, 1

)

+
∑

i∈(S−
> )new

pi min

( | (x̄new)i |
δ

, 1

)

−
⎛

⎝

∑

i∈(S+
> )new

pi min

( | x̄i |
δ

, 1

)

+
∑

i∈(S−
> )new

pi min

( | x̄i |
δ

, 1

)

⎞

⎠

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

For i ∈ (S+
> )new, we have (x̄new)i > δ by the third assertion and x̄i ≥ δ by the

definition of (S+
> )new. Hence for such an i ,

min

( | (x̄new)i |
δ

, 1

)

− min

( | x̄i |
δ

, 1

)

= 0.

For i ∈ (S−
> )new, we have x̄i ≤ (x̄new)i ≤ 0, yielding | x̄i | ≥ | (x̄new)i |. Hence for

such an i , we have

min

( | (x̄new)i |
δ

, 1

)

− min

( | x̄i |
δ

, 1

)

≤ 0

also. Consequently, θγ (x̄new) ≤ θγ (x̄) as desired. Lastly, if θγ (x̄new) = θγ (x̄), then x̄
is also an optimal solution of the strictly convex program (25); hence x̄new = x̄ by the
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uniqueness of the optimal solution of this program. Thus there is no component i for
which | x̄i | = δ. This completes the proof of all assertions of the lemma. ��

Remark I: The nondecreasing property x̄new ≥ x̄ of the iterates is the reason for
terming Algorithm IIndec; this property also accounts for the nonincreasing property
θγ (x̄new) ≤ θγ (x̄) of the objective function θγ . This conflict is somewhat regrettable
and we caution the reader not to be confused by it.
Remark II: Under the parallel assumptions:

(aninc) the sets L1R, L2R, and L4 in (22) associated with x̄ are empty, and
(bninc) x̄i < δ for all i ∈ S+

> and x̄i < −δ for all i ∈ S−
< ,

conclusions similar to those of Lemma 18 hold for the alternative Algorithm IIninc
whose description we have omitted; in particular, we have x̄new ≤ x̄ ; while θγ (x̄new) ≤
θγ (x̄) continues to hold. ��
Based on Lemma 18, we can establish the linear-step termination of Algorithm IIndec
for computing a dstat solution of (17) at γ under the Z- property of Q.

Theorem 19 Let Q be a Stieltjesmatrix. In nomore than 3n iterations, Algorithm IIndec
will compute a dstat solution x̄ end of (17) at γ . Moreover, θγ (x̄ end) < θγ (x̄ beg)

where x̄ beg (with at least one component i for which | x̄ beg
i | = δ) and x̄ end (with

no component i such that | x̄ end
i | = δ) are the beginning and ending iterates of the

algorithm, respectively.

Proof Associated with a given iterate x̄ during the algorithm, the followings describe
all possible transitions of an index i among the tuple of index sets (S±

<, S±
>)

• i ∈ S−
> → (S−

<)new if x̄i ≥ −δ; otherwise i stays in S−
< ;

• i ∈ S−
< → (S+

<)new if x̄i = 0 and ( q + Qx̄ )i + γ
pi
δ

< 0; otherwise i stays in

S−
< ;

• i ∈ S+
< → (S+

>)new if x̄i ≥ δ; otherwise i stays in S+
< ;

• i ∈ S+
> stays in same set.

Several observations can be drawn from the above transitions at each iteration: (a) if
no transition occurs, then the current x̄ must be a desired dstat solution as claimed;
(b) no index will return to the same set once it leaves the set; (c) once an index
reaches the set S+

> , it stays there till the end of the algorithm. Indeed, for (a), it suffices
to check that the sets L1L, L2R, and L4 are empty; this holds because there is no
transition. Combining all these facts, we may conclude that one of the following
two situations must happen: either all indices stay in the same sets without transition
to another set during a particular iteration, or there is at least one transition at every
iteration. Since there are n variables, and it takes atmost 3 (not necessarily consecutive)
transitions to reach the absorbing set S+

> , the 3n-step termination of the algorithm
with a desired dstat solution follows readily. Throughout the algorithm, the objective
values θγ (x̄new) ≤ θγ (x̄) with strict inequality holding if x̄ = x̄ beg, by Lemma 18.

Consequently, we deduce that θγ (x̄ end) < θγ (x̄ beg). ��
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6.3 The overall scheme and its finite termination

We can now summarize the algorithm to trace a dstat (thus strongly locally minimum)
solution path of the capped �1-regularized problem (17). While it is possible to initiate
the algorithm with γ > 0 sufficiently large so that x = 0 is a global minimum of (17)
for all such γ , we employ a simplified initialization with an easily identified γ so that
x = 0 is guaranteed to be a dstat solution only. Even with the former initialization,
the globally minimizing property of the dstat solution is no longer guaranteed as soon
as the algorithm moves past the first critical value γ of the parameter.

Algorithm III: Tracing the entire dstat path of (17).

Initialization. Let α0 = [n] and α±
> = α±

< = α� = αu = ∅. This corresponds to
letting γ > 0 be sufficiently large such that 0 ≤ q + γ

p

δ
≤ 2 γ

p

δ
.

General iteration. Determine the left end-point γ by the ratio test described in Sub-
section 6.1 and let imax be a maximizing index. If γ ≤ 0, then the entire dstat path
on [0,∞) has been traced out; stop. Otherwise, If imax does not occur in cases 1↓
through 4↓, then update the index sets as described in cases 5 through 12 and proceed
to the next set of ratios. Assuming that imax is unique and comes from case 1↓ or 4↓
(resp. case 2↓ or 3↓), define the initial tuple (S±

<, S±
>) by (24) (resp. (23)) and call the

nondecreasing (resp. nonincreasing) version of GHP with this index pair to restore
d-stationarity. Continue the decrease of γ with a new tuple

(

α0, α
±
<, α±

>, α�, αu
)

of
index sets at the termination of the appropriate version of GHP associated with the
restored dstat point at γ . �

Similar to a well-known simplex-type pivoting method, the parametric scheme ter-
minates in a finite number of iterations provided that there are no degenerate pivots.
We state this sufficient condition below in terms of the uniqueness of the maximizing
index imax of γ in the ratio tests at each iteration. Were it not for the discontinuity of
the path that necessitated the restoration of directional stationarity, the proof of this
result would follow from standard arguments. The additional argument takes care of
the latter possibility.

Theorem 20 Let Q be Stieltjes matrix. Suppose the maximizing index imax of γ in the
ratio tests at each iteration of the parametric scheme is unique. Then Algorithm III will
trace a (discontinuous) path of dstat solutions of the capped �1-regularized problem
(17) for all values of γ ≥ 0 in a finite number of iterations.

Proof Associated with each dstat point x̄(γ ) on the path is a tuple τ � ( α0, α±
<, α±

>,

α�, αu ) of index sets partitioning {1, · · · , n} and satisfying the conditions in Corol-
lary 13. Between any two discontinuous breakpoints of this path, say γL < γR, the
θγ -values are nonincreasing (from right to left) (Proposition 14), and at the left dis-
continuous breakpoint γL, the θγ -value strictly decreases (Theorem 19). Now suppose
that a left end-point γ leads to the vector x̄(γ ) that ceases to be dstat, then after the
recovery scheme, there is a restored dstat solution x̄new and an alternate tuple of index
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sets, denoted τnew, at the same γ ; moreover θγ (x̄new) < θγ (x̄(γ )). We claim that this
alternate tuple cannot be the same as those tuples encountered before. Otherwise, say
τnew = τpre corresponding to a value γpre > γ . Applying Corollary 13 to this common

tuple yields a linear function x̂(γ ) consisting of dstat points for all γ ∈
[

γ , γpre

]

with

x̄new = x̂(γpre) = x̄(γpre). Moreover, the ratio test starting at the right end-point γpre
will reach the left end-point γ along a dstat line segment joining x̄(γpre) and x̄new,
skipping the non-dstat point x̄(γ ). This is a contradiction. Therefore, throughout the
parametric steps, including the recovery of directional stationarity at a discontinuous
breakpoint, no index tuple of the kind τ can repeat. Since there are only finitely many
such tuples of index sets, finite termination of the overall scheme follows readily. ��
A caveat in the successful tracing of the complete dstat path of the parametric capped
�1-problem via Algorithm III is noteworthy. Namely, it assumes the uniqueness of
the maximizing index imax, or more generally, the validity of either Aninc or Andec,
when the maximum ratio γ yields a discontinuity of the solution path (with the vector
|x̄(γ )| having a component equal to the critical value δ). In general, the uniqueness
of such a maximizing index in ratio tests can presumably be ensured by a degeneracy
resolution scheme (e.g., a perturbation technique) as done in the finiteness proof of
the simplex method and its parametric extension; in essence such a scheme is in the
background of Theorem 20. Whether it is possible to modify the algorithm without
relying on such a scheme requires further work that will lengthen this already lengthy
paper. Nevertheless, this assumption turns out not needed in the special case discussed
in the next section.

7 The nonnegatively constrained cappled �1-problem

In this section, we consider the following special case of the problem (17) where � = 0
and Q is a Stieltjes matrix:

f +
locmin(γ ) ∈ loc-minimum

0≤x ≤ u
q�x + 1

2 x
�Qx + γ

n
∑

i=1

pi min
( xi

δ
, 1
)

. (26)

In this case, among the index tuple
(

α0, α±
<, α±

>, α�, αu
)

defined by the dstat solution
x̄(γ0) according to (20), for some γ0 > 0, the following two are empty: α−

< = α−
> = ∅

and α� coincides with α0. Moreover, we have

[

p̄+
α<

p̄+
α>

]

= 1

δ

[

Qα+
<α+

<
Qα+

<α+
>

Qα+
>α+

<
Qα+

>α+
>

]−1

︸ ︷︷ ︸

≥0

[

pα+
<

0

]

≥ 0, and

[

p̄α0

p̄αu

]

= 1

δ

[

pα0

0

]

−
[

Qα0α
+
<
Qα0α

+
>

Qαuα
+
<
Qαuα

+
>

]

︸ ︷︷ ︸

≤0

[

p̄+
α<

p̄+
α>

]

≥ 0.

So the twelve ratios in γ reduce to three: Case 1↓, 7↓, and 9↓, respectively,
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γ � max

{

max
i∈α+

< : p̄i>0

−q̄i − δ

p̄i
; max

i∈α+
> : p̄i>0

−q̄i − ui
p̄i

; max
i∈α0 : p̄i>0

−q̄i
p̄i

}

.

The following summarizes the one-way transitions of an index among the remaining
four index sets

(

α0, α
+
<, α+

>, αu
)

during the continuous tracing phase ofAlgorithm III:

α0 → α+
< → α+

> → αu .

There are two important consequences of the above one-way transitions: (a) if the
maximum ratio γ is not such that x̄i (γ ) = δ for some i , then once an index reaches
the index setαu , it will stay there; (b) if a discontinuity is reached by themaximum ratio
γ , then any maximizing index imax (possibly nonunique) can only come from α+

< ; in
other words, the condition Andec is satisfied. Thus, if case (b) occurs, then Algorithm
IIndec can be used to restore dstationarity and its linear termination as asserted by
Theorem 19 is ensured.
We can now complete a refined analysis of the overall Algorithm III for computing a
dstat solution path of the problem (26). For this purpose,weneed to examine the change
of the index sets during the operation of Algorithm IIndec. Let (α0, α

+
<, α+

>, αu)beg
denote the tuple of index sets of the dstat solution that leads to γ which triggers the
application of the latter Algorithm; this tuple yields the initial pair (S+

<, S+
>)beg defined

in (24); specifically,

(S+
<)beg �

{

i | : 0 ≤ x̄i (γ ) ≤ δ
}

= (

α0 ∪ α+
<

)

beg ∪
{

i | : x̄i (γ ) = δ
}

and (S+
>)beg �

{

i | : δ < x̄i (γ ) ≤ ui
}

= (

α+
> ∪ αu

)

beg .

At a general iteration of Algorithm IIndec defined by the pair (S+
<, S+

>), the subproblem
(21) is:

minimize
0≤ x ≤ u

q�x + 1
2 x

�Qx + γ
∑

i∈S+
<

pi
δ

xi , (27)

whose optimal solution we denote xopt. The update of the pair (S+
<, S+

>) is as follows:

(S+
<)new � S+

< \ { i ∈ S+
< | xopti ≥ δ } (S+

>)new � S+
> ∪ { i ∈ S+

< | xopti ≥ δ }.

Thus, the set S+
< is monotonically decreasing and its complement S+

> is monoton-
ically increasing; it follows that at the termination of Algorithm IIndec, a new tuple
(α0, α

+
<, α+

>, αu)end that corresponds to a restored dstat point at γ is obtained such that
(α0 ∪ α+

<)end is a proper subset of (α0 ∪ α+
<)beg. We recall that the parametric Algo-

rithm III is initiated with α0 = [n]; since α0 ∪ α+
< is monotonically nonincreasing

throughout, it follows that in a linear number (in n) of iterations, the entire Algo-
rithm III will terminate with a complete dstat path. We formally state this conclusion
in the theorem below; other than noting that no nondegeneracy assumption is needed,
there is no need for a proof.
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Theorem 21 Let Q be Stieltjes matrix. Specialized to the problem (26), Algorithm III
(without the nondegeneracy assumption) will trace a (discontinuous) path of dstat
solutions for all values of γ ≥ 0 in O(n) iterations. In particular, such a path has O(n)

number of breakpoints, some of which are discontinuous points of the path. ��
The nonnegatively constrained problem (26) is not as special as it seems. In what

follows, we show that a dstat solution of the capped �1-version of the structured
problem (16):

minimize
( x,y )∈Rn+m

(

q
r

)� (
x
y

)

+ 1
2

(

x
y

)� [

Q R
R� P

] (

x
y

)

+

γ

⎡

⎣

n
∑

i=1

pi min

( | xi |
δ

, 1

)

+
m
∑

j=1

p ′
j min

( y j
δ

, 1
)

⎤

⎦

subjectto � ≤ x ≤ u and 0 ≤ y ≤ v,

(28)

must be nonnegative, provided that q ≤ 0. With dstat solutions as the target (thus
applicable to global minimizers too), the result below extends Proposition 8 that per-
tains to the global minimizers of the �0 and �1 problems (15) and (16) to the capped
�1-problem.

Proposition 22 Let

[

Q R
R� P

]

be a Stieltjes matrix and q ≤ 0. If (x̄, ȳ) is a dstat

solution of (28), then x̄ ≥ 0. Conversely, if (x̄ ′, ȳ ′) is a dstat point of the same
objective on the subset [0, u] × [0, v], then (x̄ ′, ȳ ′) is a dstat solution of (28).

Proof For the first assertion, it suffices to note that by Proposition 10, if i is such
that x̄i < 0, then ( q + Qx̄ + Rȳ )i ≥ 0. With this property, the same proof as that
of Proposition 8 can be applied to deduce that x̄ ≥ 0. Conversely, by examining the
conditions in the proposition, it suffices to show that if i is such that x̄ ′

i = 0, then

| q + Qx̄ ′ + Rȳ ′ |i ≤ γ
pi
δ
. By the dstationarity of the pair (x̄ ′, ȳ ′) on [0, u]× [0, v],

we have for such an index i ,

( q + Qx̄ ′ + Rȳ ′ )i + γ
pi
δ

≥ 0.

Since x̄ ′
i = 0, we readily deduce | q + Qx̄ ′ + Rȳ ′ |i = −( q + Qx̄ ′ + Rȳ ′ )i ≤

γ
pi
δ
, where the equality is because (i) q and R are both nonpositive, and (ii) Q has

nonpositive off-diagonal entries. ��

8 Numerical experiments

In this section, we compare the numerical performance of the three solution paths:

• The exact �0-path: this is computed by solving (independently) a sequence of
mixed-integer nonlinear programs determined by the weighted sum method, see
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[3, 16]. Some details of the mixed-integer formulation used to solve (29) (for a
fixed value of γ ) is given in Sect. 8.2. We use the CPLEX solver to solve each
mixed-integer program.

• The �1-path: this is computed by a MATLAB R2017b implementation of the
parametric procedure in [29] when specialized to (2).

• The capped �1-locmin path: this is computed by Algorithm III coded inMATLAB
R2017b.

All the numerical experiments are conducted on a Mac OS X personal computer with
2.3 GHz Intel Core i7 and 8 GB RAM. The reported times are in seconds on this
computer.

8.1 The �1- and capped �1-paths on synthetic problems

To gain some preliminary experience with the relative performance of Algorithm III,
we first carry out a set of experiments on some synthetic �1- and capped �1-problems
with randomly generated data and two dimensions: n = 500 and 5,000. We did not
include the �0-path in this set of experiments because these dimensions are too large
for this exact sparsity path (more details below). Since our next goal is to compare
all three paths on the GMRF problems whose matrix Q is very sparse, we gener-
ate Q in the synthetic problems as a sparse symmetric M-matrix in the following
way. With an overall density of 2/n among the off-diagonal elements, which is the
same as a tridiagonal matrix, these entries are random numbers uniformly sampled
in the interval [−1, 0]. With these off-diagonal elements generated, we add suffi-
ciently large diagonal terms to keep Q positive definite. Additionally, we randomly
generate iid qi ∼ Uniform([−10, 10]) and pi ∼ Uniform([0, 1]) for all i ∈ [n].
The experiments consist of unconstrained and constrained problems; for the latter, we
set −�i = ui = max{ 1110δ, 1

2 |(−Q−1q)i |} for all i ∈ [n] and test several values of
δ ∈ {10, 1, 10−1, 10−4}. The results are summarized in Table 1, where “Bpts.” and
“Dis. Bpts.” stand for the total numbers of break points and discontinuous break points
(i.e., number of GHP restorations). All the statistics are averaged over 10 runs.
From Table 1 we can observe that when δ = 10, hence relatively large, the behavior
of capped �1-path is similar to the �1-path in terms of computational time and number
of break points; moreover, there is no need for dstat restoration in the computation
of the capped �1-path; thus these two paths are comparable. On the other hand, for
the other values of δ, the computation of the capped �1-path requires more time, and
such paths possess more pieces and discontinuous break points. This is consistent
with our previous analysis in Proposition 12, when δ is small, e.g., δ = 10−4, the
only continuous dstat path is a constant one which is x̄(γ ) = x̄0 for all γ ≥ 0,
where x̄0 is the unique optimal solution at γ = 0 which is in general totally dense.

Thus when we start with x̄(γ ) = 0 for γ ≥ max
i∈[n]

∣

∣

∣

∣

δqi
pi

∣

∣

∣

∣
and pivot towards x̄0, the

computed capped �1-path is discontinuous with more discontinuous points when δ

is smaller, requiring substantially more computational times (in one case, more than
10 times than the computed �1-path) depending on the instances with the most time
taken still within 2min on our personal computer (when n = 5, 000 and δ = 10−4).
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Table 1 Summary of tests on parametric �1 and capped �1-solution

n = 500 n = 5000

Unconstrained Unconstrained

Settings Time Bpts. Dis.Bpts Settings Time Bpts. Dis.Bpts

Cap δ = 10−4 1.03 959 479 Cap δ = 10−4 96.48 9568 4783

Cap δ = 10−1 1.17 951 459 Cap δ = 10−1 108.24 9490 4582

Cap δ = 1 0.86 797 297 Cap δ = 1 86.86 7974 2968

Cap δ = 10 0.17 504 0 Cap δ = 10 11.08 5029 0

�1 0.11 504 N/A �1 11.03 5029 N/A

Constrained Constrained

Settings Time Bpts. Dis.Bpts Settings Time Bpts. Dis.Bpts

Cap δ = 10−4 0.74 974 487 Cap δ = 10−4 27.01 9762 4881

Cap δ = 10−1 0.80 965 469 Cap δ = 10−1 30.89 9646 4681

Cap δ = 1 0.75 807 299 Cap δ = 1 38.84 8046 2981

Cap δ = 10 0.22 504 0 Cap δ = 10 11.66 5029 0

�1 δ = 10−4 0.35 989 N/A �1 δ = 10−4 13.13 9886 N/A

�1 δ = 10−1 0.31 978 N/A �1 δ = 10−1 13.64 9763 N/A

�1 δ = 1 0.29 886 N/A �1 δ = 1 15.09 7846 N/A

�1 δ = 10 0.19 504 N/A �1 δ = 10 11.81 5029 N/A

Fig. 2 Quadratic term q(x) as a function of the sparsity ‖x‖0 (unconstrained cases)

However, for the unconstrained cases, the capped �1-paths with small δ (e.g., 10−4)
always achieve better q(x) values than the �1-path and the capped �1-paths with larger
δ when the solutions from these paths have the same sparsity. For the constrained
cases, this phenomenon remains valid when we compare a capped �1-path with its
�1 counterpart under the same δ. To demonstrate this, in Figs. 2 and 3 we plot q(x)
as function of sparsity ‖x‖0 for the paths considered when they are computed from
representative instances in both unconstrained and constrained scenarios.
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Fig. 3 Quadratic term q(x) as a function of the sparsity ‖x‖0 (constrained cases)

These figures confirm that the increased computational times of the capped �1-path
result in higher-quality solutions per the computed q(x)-values. In the next section,
we show more advantages of capped �1-path in the context of the GMRF model.
Note that in our experiments the constrained paths generally take less time to trace
than the unconstrained paths. This is reasonable in that the two major computing
expenses, namely solving linear systems for (19) and discontinuity restorations by
GHP algorithms, are significantly reduced in the constrained cases due to the presence
of sets αu, α� which indicate the elements in the solutions that are equal to upper
and lower bounds. Finally, note that the times reported correspond to computing local
minimizers for all values of γ , and can be interpreted as solvingO(n) fixed parameter
problems for judiciously chosen values of the parameter. The time complexity per
fixed-parameter problem is thus between 1 and 10 milliseconds for the case n =
5000, which is competitive if not better than existing heuristics in the literature [43].
Moreover, for context, in [32] the authors evaluate the solution at 100 discrete values
of γ in a problem with n = 17, 000 in 3 s; while the times reported here a larger by an
order ofmagnitude,we compute the complete path instead of a discrete approximation,
and runtimes of minutes are perfectly acceptable in most situations.

8.2 Results on the GMRF problem

We consider a two-dimensional graphical model as depicted in Fig. 1: given a grid size
p ∈ Z+ (with n = p2), a “spike size" parameter s ∈ Z+, a “spike number" parameter
h ∈ Z+ and a noise parameter σ , we generate the true values of the stochastic process
X ∈ R

p×p as follows. Construct the precision matrix � ∈ R
(s×s)×(s×s) such that

�i j,i j = 4 for all i, j ∈ [s], �i j,(i+1) j = �(i+1) j,i j = −1 for i ∈ [s − 1] and
j ∈ [s], �i j,i( j+1) = �i( j+1),i j = −1 for i ∈ [s] and j ∈ [s − 1], and �i j,k� = 0
otherwise. We use the notation X[i, j],[k,�] to denote the submatrix of X from rows i to
j (inclusive) and columns k to � (inclusive). Initially, X is fully sparse, this is, X = 0.
Then we iteratively repeat h times the following process.
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• Randomly select indexes i ∈ [p + 1 − s] and j ∈ [p + 1 − s], corresponding to
the initial row and column of a spike.

• Sample a Gaussian shock w ∈ R
s×s such that w ∼ N (0,�−1).

• Add shock w to X , this is, X[i,i+s],[ j, j+s] = X[i,i+s],[ j, j+s] + w.

The resulting X is thus mostly sparse, but each non-zero s × s spike is according to
a two-dimensional GMRF. Finally, we sample noisy observations from X , given by
yi j = Xi j + εi j , where εi j ∼ N (0, σ 2) are independent and identically distributed.
The values yi j are the inputs of the �0-optimization problem of interest, given by

f0(γ ) = minimum
x

p
∑

i=1

p
∑

j=1

1

σ 2

(

yi j − xi j
)2 +

p−1
∑

i=1

p
∑

j=1

(

xi j − xi+1, j
)2 +

p
∑

i=1

p−1
∑

j=1

(

xi j − xi, j+1
)2 + γ ‖ x ‖0

where ‖ x ‖0 �
p
∑

i=1

p
∑

j=1

| xi j |0.

(29)

The mixed-integer formulation for solving the above problem for a given value of γ is
based on the following convexification from [5]. The resulting relaxation is stronger
than the perspective relaxation, commonly used in mixed-integer programming [10,
43].

Proposition 23 Let set

X =
⎧

⎨

⎩

(x, z, t) ∈ R
n+ × {0, 1}n × R :

(

n
∑

i=1

xi

)2

≤ t, xi (1 − zi ) = 0, ∀i ∈ [n]
⎫

⎬

⎭

.

Then the closure of the convex hull of X is given by

⎧

⎨

⎩

(x, z, t) ∈ R
n+ × [0, 1]n × R :

(

n
∑

i=1

xi

)2

≤ t min

{

1,
n
∑

i=1

zi

}
⎫

⎬

⎭

.

An application of Proposition 23 to problem (29) yields the mixed-integer second-
order conic formulation:

minimize
x,z,u,v,w,s,t

p
∑

i=1

p
∑

j=1

1

σ 2

(

y2i j − 2 yi j xi j + ui j
)

+
p−1
∑

i=1

p
∑

j=1

vi j

+
p
∑

i=1

p−1
∑

j=1

wi j + γ

p
∑

i=1

p
∑

j=1

zi j

subjectto x2i j ≤ ui j zi j ∀(i, j)
(

xi j − xi+1, j
)2 ≤ vi j si j , si j ≤ zi j + zi+1, j , 0 ≤ si j ≤ 1 ∀ (i, j)

(

xi j − xi, j+1
)2 ≤ wi j ti j , ti j ≤ zi j + zi, j+1, 0 ≤ ti j ≤ 1 ∀ (i, j)

x ∈ R
p×p, z ∈ {0, 1}p×p .
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We compare the three paths on problems with p = 10 (thus 100 variables in total, in
this setting we use h = s = 3), where the �1- and capped �1-paths are obtained from
problem (29) with the �0-regularizer substituted by the �1- and capped �1-regularizer.
In addition, the �1- and capped �1-paths are also testedwith p = 100 (thus 10,000 vari-
ables in total, in this setting we use h = s = 10). The numerical tracing of the �0-path
is handicapped by the challenge of solving nonlinear mixed-integer programs by the
CPLEX solver; on problems with 100 variables, the computation already takes 800s.
Thus, the computation of the exact �0-path on the larger-sized problems is expected
to be prohibitively impractical and thus omitted. The experiments aim to evaluate
the different methods both from an optimization standpoint (computational time and
objective values) and a statistical standpoint (how well can the methods recover the
underlying “true" signal?). Moreover, we are most interested in: (i) confirming the
improved quality of the capped �1-dstat path as a surrogate for the �0-path from an
optimization point of view, and (ii) showing the advantage of the capped �1-path over
the �1-path when applied to hyper-parameter selection for the GMRF maximum a
posteriori inference, namely problem (29) with the appropriate regularizer. Through
these experiments, we can confirm the effectiveness of the capped �1-dstat path as a
practical compromise between the �0-path and the �1-path, remedying the slow com-
putational speed of the former for large-scale problems and improving the solution
quality over the latter without sacrificing solution speed.

Optimization standpoint. Each plot in Fig. 4 shows, for each x corresponding to a
breakpoint in the solution path of a given method, the value of the quadratic term q(x)
as a function of the sparsity ‖x‖0, where each plot corresponds to a single instance. In
the small instances, the solution path of the exact �0-problem always produces the best
solutions, as expected. Moreover, the solution path of the �1-approximation is consis-
tently the worst, and the solution paths of the capped �1-problems gradually increase
in quality as δ decreases (despite the increasing non-convexity of the optimization
problem). In particular, for δ ∈ {10−4, 10−3}, the capped �1-paths are almost indis-
tinguishable from the �0-path, showing that Algorithm III is effective at consistently
finding high-quality local (if not global) minimizers of the associated optimization
problems. In the large instances, while it is not possible to compare with the exact
�0-path, we still observe that the path of the capped �1-method delivers substantially
better solutions than the �1-path. In both small and large instances, the improvements
achieved by the capped �1-formulation over the �1-formulation are particularly pro-
nounced in low signal-to-noise regimes.
Table 2 presents the computational times (in seconds) required to compute the solution
paths. We only report the capped �1-results for δ = 10−4 (averaged over 5 instances)
since this is a preferred choice according to our previous experience. It is worth
mentioning that similar to what is reported in Table 1, capped �1-paths under δ = 10−4

generally requiremore time to compute than the capped �1-paths under larger δ values,
e.g., δ = 10. All methods require more time as the noise (σ ) increases: for the �1-
and capped �1-problems, computational times increase at most by a factor of three,
whereas for the �0-problem, computational times increase by two orders ofmagnitude.
We observe that in small instances, the exact �0-path can be computed in approx-
imately one minute in high signal-to-noise regimes, and under one hour in low
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Fig. 4 Quadratic term q(x) as a function of the sparsity ‖x‖0
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Table 2 Summary of computational times (in seconds)

Method σ = 0.02 σ = 0.1 σ = 0.3 σ = 0.5 σ = 0.7 σ = 1

Small instances n = 100

�0 39.75 76.60 340.80 966.00 1,307.80 1,935.60

capped �1 0.66 1.03 0.45 0.32 0.84 0.92

�1 0.12 0.03 0.02 0.02 0.03 0.06

Large instances n = 10, 000

�0 N/A N/A N/A N/A N/A N/A

capped �1 200.45 376.79 415.13 467.36 509.37 579.95

�1 29.57 29.48 33.57 36.96 38.85 42.17

Table 3 Some key statistics for the GMRF experiments

Small instances n = 100

Settings σ = 0.02 σ = 0.1 σ = 0.3

Supp.Rec. Sig.Rec. Supp.Rec. Sig.Rec. Supp.Rec. Sig.Rec

�0 1.2e0 1.41e−1 4.0e0 5.34e−1 8.8e0 1.06e0

Cap(δ = 10−4) 1.2e0 1.41e−1 4.0e0 5.34e−1 8.8e0 1.06e0

Cap(δ = 10−3) 1.2e0 1.41e−1 4.0e0 5.34e−1 8.8e0 1.06e0

Cap(δ = 10−2) 1.2e0 1.41e−1 4.0e0 5.34e−1 8.8e0 1.06e0

Cap(δ = 10−1) 1.2e0 1.43e−1 4.0e0 5.37e−1 8.8e0 1.07e0

Cap(δ = 100) 1.2e0 1.45e−1 4.0e0 5.41e−1 8.8e0 1.10e0

�1 1.2e0 1.45e−1 3.6e0 5.41e−1 8.8e0 1.10e0

Settings σ = 0.5 σ = 0.7 σ = 1

Supp.Rec. Sig.Rec. Supp.Rec. Sig.Rec. Supp.Rec. Sig.Rec

�0 1.4e1 1.33e0 2.0e1 1.29e0 2.2e1 8.36e−1

Cap(δ = 10−4) 1.4e1 1.33e0 1.9e1 1.26e0 2.2e1 8.18e−1

Cap(δ = 10−3) 1.4e1 1.33e0 1.9e1 1.26e0 2.2e1 8.18e−1

Cap(δ = 10−2) 1.4e1 1.33e0 1.9e1 1.26e0 2.2e1 8.18e−1

Cap(δ = 10−1) 1.5e1 1.34e0 2.0e1 1.26e0 2.2e1 8.18e−1

Cap(δ = 100) 1.5e1 1.42e0 2.0e1 1.27e0 2.2e1 8.23e−1

�1 1.5e1 1.42e0 2.0e1 1.28e0 2.2e1 8.27e−1

Large instances n = 10, 000

Settings σ = 0.02 σ = 0.1 σ = 0.3

Supp.Rec. Sig.Rec. Supp.Rec. Sig.Rec. Supp.Rec. Sig.Rec

�0 N/A N/A N/A N/A N/A N/A

cap(δ = 10−4) 3.7e1 4.63e−1 1.1e2 1.75e0 2.6e2 3.42e0

Cap(δ = 10−3) 3.7e1 4.63e−1 1.1e2 1.75e0 2.6e2 3.42e0
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Table 3 continued

Large instances n = 10, 000

Settings σ = 0.02 σ = 0.1 σ = 0.3

Supp.Rec. Sig.Rec. Supp.Rec. Sig.Rec. Supp.Rec. Sig.Rec

Cap(δ = 10−2) 3.7e1 4.63e−1 1.1e2 1.75e0 2.6e2 3.42e0

Cap(δ = 10−1) 3.7e1 4.67e−1 1.1e2 1.75e0 2.7e2 3.49e0

Cap(δ = 100) 3.6e1 4.68e−1 1.0e2 1.77e0 2.7e2 3.70e0

�1 3.6e1 4.68e−1 1.0e2 1.77e0 2.7e2 3.70e0

Settings σ = 0.5 σ = 0.7 σ = 1

Supp.Rec. Sig.Rec. Supp.Rec. Sig.Rec. Supp.Rec. Sig.Rec

�0 N/A N/A N/A N/A N/A N/A

cap(δ = 10−4) 5.3e2 4.68e0 8.1e2 4.68e0 9.6e2 5.11e0

Cap(δ = 10−3) 5.3e2 4.68e0 8.1e2 4.68e0 9.6e2 5.11e0

Cap(δ = 10−2) 5.4e2 4.68e0 8.3e2 4.68e0 9.6e2 5.11e0

Cap(δ = 10−1) 6.0e2 4.75e0 8.8e2 4.75e0 9.6e2 5.00e0

Cap(δ = 100) 6.3e2 5.20e0 8.9e2 5.20e0 9.6e2 5.07e0

�1 6.3e2 5.20e0 8.9e2 5.20e0 9.6e2 5.07e0

signal-to-noise regimes. Note that, for n = 100, computing the solution path
requires solving approximately 160 nonlinear mixed-integer optimization problems.
Thus, while each problem is solved relatively fast (from under one second to 15s,
depending on the noise), the lack of an integrated parametric scheme results in
large computational times. For reference, computing the exact solution path in
instances with n = 225, σ = 1 requires more than one day, and thus han-
dling instances with n = 10, 000 exactly seems beyond the capabilities of current
solvers.
Computing the local capped �1-path is up to 10 times more expensive than the �1-path,
but four orders-of-magnitude faster than the �0-method in instances with n = 100.
Indeed, solution paths are computed in under one second for n = 100, and in under
10min for n = 10, 000; these are acceptable times in an experimentalmatlab imple-
mentation. Thus, since the capped �1-method also delivers near-optimal solutions, we
conclude that it is amuchmore practical choice than the �0-path in large instanceswith-
out compromising quality. The pure �1-path can be computed very quickly, in under
one minute even in large instances although, as noted previously, the fast computation
comes at the expense of lesser solution quality.

Statistical standpoint. In inference problems with the GMRF model, finding (near-)
optimal solutions of (29) is of secondary importance, and the main goal is to recover
the underlying signal X . In particular, letting x∗(γ ) denote a computed solution of the
three paths for a given value of γ , we evaluate how good x∗(γ ) estimates X using two
metrics:
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Signal recovery:
p
∑

i=1

p
∑

j=1

( x∗
i j (γ ) − Xi j )

2 and

Support recovery:
p
∑

i=1

p
∑

j=1

∣

∣

∣ | x∗
i j (γ ) |0 − | Xi j |0

∣

∣

∣ .

Each plot in Fig. 5 shows, for each computed solution corresponding to a breakpoint in
the solution path of a givenmethod, the value of the signal recovery as a function of the
support recovery. Again, each plot corresponds to a particular random instance. Note
that by computing the solution path, each method produces multiple estimates of the
true signal X , one for each value of the parameter γ (in particular, at the breakpoints of
the respective paths). Moreover, while some such solutions may yield poor estimates
of X (corresponding to situations where γ is mispecified), others may perform well
with respect to the above two metrics; in such cases, a procedure like cross-validation
on the training data may be able to identify the best candidates. In addition to these
plots, we also report the best support and signal recovery results achieved by different
paths (all averaged over 5 instances), see the columns labelled “Supp. Rec.” and “Sig.
Rec.” in Table 3.
From the plots in Fig. 5, we can see that the �1- and capped �1-solution curves are
similar from a statistical standpoint in the small noise regimes: bothmethods are able to
produce solutions that perform well in terms of signal and support recovery, that could
be presumably identified via cross-validation. However, as σ increases, the solutions
produced by each method perform differently from a statistical point of view.

• For the capped �1-method, if the parameter γ is chosen so that the support of
the solutions coincides approximately with the true support, then the resulting
estimators perform well in terms of signal recovery as well. As γ differs from
this critical value, the resulting estimators are worse in terms of both signal and
support recovery.

• For the pure �1-method, if the parameter γ is chosen so that the support of the
solutions coincides approximately with the true support, then the resulting estima-
tors are poor in terms of signal recovery. Similarly, values of γ that result in good
signal recovery often correspond to solutions with poor support recovery. Thus, it
is unclear which value of γ results in the better performance.

The aforementioned results suggest that the path of local minimizers of the capped �1-
formulation is more attractive from a statistical perspective. Indeed, cross-validation
may be able to identify solutions that simultaneously achieve good signal and support
recovery, whereas the pure �1-solution path does not produce any such solutions. Note
that such nice statistical property of the capped �1-paths is also possessed by the �0-
paths, see the plots in Fig. (5a, c, e) which provide additional supporting evidence
in favor of capped �1-path. Finally, we also observe that in general there are several
solutions obtained from the capped �1-path that dominate all �1-solutions in terms
of signal recovery, suggesting that the capped �1-method is preferable when signal
recovery is the main criterion.
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Fig. 5 Signal recovery as a function of support recovery

Additional comments. Referred to as modified GHP initializations, our specific ini-
tialization strategy for GHP restorations via the initial index pairs (23) and (24) is
crucial both theoretically and empirically, by taking advantage of the “almost” dsta-
tionarity of a candidate solution. From the theoretical perspective, this initialization
provides us with key conditions so that the conclusions in the fourth bullet of Lemma
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Fig. 6 Dstat paths with specially initialized GHP vs. naively initialized GHP

18 and Proposition 22 hold. On the other hand, the specialized initialization is also
crucial for us to maintain all the nice properties of the computed capped �1-dstat path
which we have mentioned earlier. As a comparison, we test Algorithm III with the
following initializations in the dstat restoration, which we call naïve GHP initializa-
tions:

nondecreasing version with initialization S−
< = S+

< = S+
> = ∅ and S−

> = [n]
nonincreasing version with initialization S−

< = S−
> = S+

< = ∅, and S+
> = [n].

Note that by [29] these initializations also restore dstat solutions of the capped �1-
problem at a discontinuous break point. To demonstrate how the naïve initializations
could potentially sabotage the judicious selection of the parameter γ in the presence
of a secondary objective, we summarize the behavior of the capped �1-dstat paths
obtained by different GHP initialization strategies, when being tested on the GMRF
problem with n = 100, σ = 0.4, in Fig. 6. More specifically, Fig. 6a contains the
curves of support recovery and sparsity as functions of log(γ ) (details see the legend
therein), whereas Fig. 6b presents the Pareto curves of signal versus support recovery.
As shown in Fig. 6a, the path with the modified GHP initializations attains a dstat
point x∗ achieving the minimum support recovery of 5 at around γ∗ ≈ 10−4. In
contrast, when γ is in the range of 10−3.5 and 10−4.5, the results of the modified
GHP initializations are significantly better than those of the naïve GHP whose best
support recovery is in the mid-50’s, which is 10 times more than the best result from
the modified GHP. The superiority of the modified GHP occurs as early as the first few
dstat restorations. More precisely, when γ is near the right end of the curves in Fig. 6b,
the solution of the naïve GHP path changes from being totally sparse to relatively
dense; thus the overall sparsity of this path has been elevated to a relatively high level
even in the early phase. The consequence of this is that at γ∗ the naïve GHP path
assigns another dstat solution that is far worse than x∗ in both measures considered in
Fig. 6b. This explains why the resulting path from the naïveGHP initialization does not
possess the nice statistical properties as compared to the modified GHP initialization,
as shown in Fig. 6b.
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Conclusion. This paper has studied and compared several solution paths of sparse
quadratic minimization problems with Stieltjes matrices. Old properties of two such
paths (�0 and �1) are reviewed and supplemented with new results along with the
previously un-examined capped �1-path. Numerical experiments on some synthetic
problems and the applied GMRF model demonstrate that the latter discontinuous
path yields superior practical performance on realistically sized problems that are too
large for the �0-path and for which the �1-path is much less desirable. The numerical
computation of the entire capped �1-path is accomplished by a rigorous algorithm that
involves continuous tracing and dstat recovery. Resonating the previous study [29],
the present work has again demonstrated the key role the Z-structure of the quadratic
form plays in the favorable computational complexity of the developed parametric
algorithm.
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