
Mathematical Programming (2023) 202:47–92
https://doi.org/10.1007/s10107-023-01933-9

FULL LENGTH PAPER

Series A

A new perspective on low-rank optimization

Dimitris Bertsimas1 · Ryan Cory-Wright2,3 · Jean Pauphilet4

Received: 12 May 2021 / Accepted: 10 December 2022 / Published online: 18 February 2023
© The Author(s) 2023, corrected publication 2023

Abstract
A key question in many low-rank problems throughout optimization, machine learn-
ing, and statistics is to characterize the convex hulls of simple low-rank sets and
judiciously apply these convex hulls to obtain strong yet computationally tractable
relaxations. We invoke the matrix perspective function—the matrix analog of the per-
spective function—to characterize explicitly the convex hull of epigraphs of simple
matrix convex functions under low-rank constraints. Further, we combine the matrix
perspective functionwith orthogonal projectionmatrices—thematrix analog of binary
variables which capture the row-space of a matrix—to develop a matrix perspective
reformulation technique that reliably obtains strong relaxations for a variety of low-
rank problems, including reduced rank regression, non-negative matrix factorization,
and factor analysis. Moreover, we establish that these relaxations can be modeled via
semidefinite constraints and thus optimized over tractably. The proposed approach
parallels and generalizes the perspective reformulation technique in mixed-integer
optimization and leads to new relaxations for a broad class of problems.
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1 Introduction

Over the past decade, a considerable amount of attention has been devoted to finding
high-quality solutions to low-rank optimization problems, resulting in theoretically
and practically efficient algorithms for problems as disparate as matrix completion,
reduced rank regression, or computer vision. In spite of this progress, almost no equiva-
lent progress has beenmade on developing strong lower bounds for low-rank problems.
Accordingly, this paper proposes a procedure for obtaining novel and strong lower
bounds.

We consider the following low-rank optimization problem:

min
X∈Sn+

〈C, X〉 +�(X)+ μ · Rank(X)

s.t. 〈Ai , X〉 = bi ∀i ∈ [m], X ∈ K, Rank(X) ≤ k, (1)

where C, A1, . . . Am ∈ Sn are n × n symmetric matrices, b1, . . . bm ∈ R are scalars,
[n] denotes the set of running indices {1, ..., n}, Sn+ denotes the n×n positive semidef-
inite cone, and μ ∈ R+, k ∈ N are parameters which controls the complexity of X by
respectively penalizing and constraining its rank. The set K is a proper—i.e., closed,
convex, solid and pointed cone (c.f. [15], Section 2.4.1), and �(X) = tr( f (X)) for
some matrix convex function f ; see formal definitions and assumptions in Sect. 3.

For optimization problems with logical constraints, strong relaxations can be
obtained by formulating them as mixed-integer optimization (MIO) problems and
applying the so-called perspective reformulation technique (see [37, 42]). In this paper,
we develop amatrix analog of the perspective reformulation technique to obtain strong
yet computationally tractable relaxations of low-rank optimization problems of the
form (1).

1.1 Motivating example

In this section, we illustrate our results on a statistical learning example. To emphasize
the analogy with the perspective reformulation technique inMIO, we first consider the
best subset selection problem and review its perspective relaxations. We then consider
a reduced-rank regression problem—the rank-analog of best subset selection—and
provide new relaxations that naturally arise fromourMatrixPerspectiveReformulation
Technique (MPRT).

Best Subset Selection: Given a data matrix X ∈ R
n×p and a response vector y ∈ R

n ,
the �0 − �2 regularized best subset selection problem is to solve (c.f. [3, 6, 7, 9, 65,
78]):

min
w∈Rp

1

2n
‖ y − Xw‖22 +

1

2γ
‖w‖22 + μ‖w‖0, (2)

where μ, γ > 0 are parameters which control w’s sparsity and sensitivity to noise
respectively.
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A new perspective on low-rank optimization 49

Early attempts at solving Problem (2) exactly relied upon weak implicit or big-M
formulations of logical constraints which supply low-quality relaxations and therefore
do not scale well (see [14, 44], for discussions). However, very similar algorithms now
solve these problems to certifiable optimalitywithmillions of features. Perhaps the key
ingredient in modernizing these (previously inefficient) algorithms was invoking the
perspective reformulation technique—a technique for obtaining high-quality convex
relaxations of non-convex sets—first stated in Stubbs’ PhD thesis [73] (see also [21,
74]) and popularized by [1, 37, 42] among others.

Relaxation via the Perspective Reformulation Technique: By applying the perspective
reformulation technique [1, 37, 42] to the term μ‖w‖0 + 1

2γ ‖w‖22, we obtain the
following reformulation:

min
w,ρ∈Rp,z∈{0,1}p

1

2n
‖ y − Xw‖22 +

1

2γ
e�ρ + μ · e�z s.t. ziρi ≥ w2

i ∀i ∈ [p],
(3)

where e denotes a vector of all ones of appropriate dimension.
Interestingly, this formulation can be represented using second-order cones [42,

65] and optimized over efficiently using projected subgradient descent [9]. Moreover,
it reliably supplies near-exact relaxations for most practically relevant cases of best
subset selection [6, 65]. In instances where it is not already tight, one can apply a
refinement of the perspective reformulation technique to the term ‖ y − Xw‖22 and
thereby obtain the following (tighter yet more expensive) relaxation [26]:

min
w∈Rp,z∈[0,1]p,W∈S p

+

1

2n
‖ y‖22 −

1

n
〈 y, Xw〉 + 1

2

〈
W ,

1

γ
I+ 1

n
X�X

〉
+ μ · e�z

s.t. W 
 ww�, ziWi,i ≥ w2
i ∀i ∈ [p]. (4)

Recently, a class of even tighter relaxations were developed by Atamtürk and Gómez
[3, 39, 43]. As they were developed by considering multiple binary variables simul-
taneously and therefore do not, to our knowledge, generalize readily to the low-rank
case (where we often have one low-rank matrix), we do not discuss (nor generalize)
them here.

Reduced Rank Regression: Given m observations of a response vector Y j ∈ R
n and a

predictor X j ∈ R
p, an important problem in high-dimensional statistics is to recover

a low-complexity model which relates X and Y . A popular choice for doing so is to
assume that X,Y are related via Y = Xβ + E, where β ∈ R

p×n is a coefficient
matrix which we assume to be low-rank, E is a matrix of noise, and we require that
the rank of β is small in order that the linear model is parsimonious [57]. Introducing
Frobenius regularization gives rise to the problem:

min
β∈Rp×n

1

2m
‖Y − Xβ‖2F +

1

2γ
‖β‖2F + μ · Rank(β), (5)
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50 D. Bertsimas et al.

where γ, μ > 0 control the robustness to noise and the complexity of the estimator
respectively, and we normalize the ordinary least squares loss by dividing by m, the
number of observations.

Existing attempts at solving this problem generally involve replacing the low-rank
termwith a nuclear norm term [57], which succeeds under some strong assumptions on
the problem data but not in general. Recently, we proposed a new framework to model
rank constraints, using orthogonal projection matrices which satisfy Y2 = Y instead
of binary variables which satisfy z2 = z [11]. By building on this work, in this paper
we propose a generalization of the perspective function to matrix-valued functions
with positive semidefinite arguments and develop a matrix analog of the perspective
reformulation technique from MIO which uses projection matrices instead of binary
variables.

Relaxations via the Matrix Perspective Reformulation Technique: By applying the
matrix perspective reformulation technique (Theorem 1) to the term 1

2γ ‖β‖2F + μ ·
Rank(β), we will prove that the following problem is a valid—and numerically high-
quality—relaxation of (5):

min
β∈Rp×n ,W∈Sn+,θ∈S p

+

1

2m
‖Y − Xβ‖2F +

1

2γ
tr(θ)+ μ · tr(W)

s.t. W � I,

(
θ β

β� W

)

 0. (6)

The analogy between problems (2)–(5) and their relaxations (3)–(6) is striking. The
goal of the present paper is to develop the corresponding theory to support and derive
the relaxation (6). Interestingly, the main argument that led [26] to the improved
relaxation (4) for (2) can be extended to reduced-rank regression. Combined with our
MPRT, it leads to the relaxation:

min
θ∈Sn+,β∈Rp×n ,B∈S p

+,W∈Sn+

1

2m
‖Y‖2F −

1

m
〈Y , Xβ〉 + 1

2

〈
B,

1

γ
I+1

m
X�X

〉
+μ · tr(W)

s.t.

(
B β�
β W

)

 0,W � I. (7)

It is not too hard to see that this is a valid semidefinite relaxation: if W is a rank-
k projection matrix then, by the Schur complement lemma [16, Equation 2.41],
β = βW , and thus the rank of β is at most k. Moreover, if we let B = ββ� in
a solution, we recover a low-rank solution to the original problem1. Actually, as we
show in Sect. 3.3, a similar technique can be applied to any instance of Problem (1),
for which the applications beyond matrix regression are legion.

1 Observe that the constraints in Problem (4) are equivalent to the block matrix constraint(
Diag(z) Diag(w)

Diag(w) W

)

 0. This verifies that the reduced rank regression formulation is indeed a gen-

eralization of [26]’s formulation for sparse regression.
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1.2 Literature review

Three classes of approaches have been proposed for solving Problem (1): (a) heuristics,
which prioritize computational efficiency and obtain typically high-quality solutions
to low-rank problems efficiently but without optimality guarantees (see [59], for a
review); (b) relax-and-round approaches, which balance computational efficiency and
accuracy concerns by relaxing the rank constraint and rounding a solution to the
relaxation to obtain a provably near-optimal low-rank matrix [11, Section 1.2.1]; and
(c) exact approaches, which prioritize accuracy over computational efficiency and
solve Problem (1) exactly in exponential time [11, Section 1.2.1].

Of the three classes of approaches, heuristics currently dominate the literature,
because their superior runtime and memory usage allows them to address larger-scale
problems. However, recent advances in algorithmic theory and computational power
have drastically improved the scalability of exact and approximate methods, to the
point where they can now solve moderately sized problems which are relevant in
practice [11]. Moreover, relaxations of strong exact formulations often give rise to
very efficient heuristics (via tight relaxations of the exact formulation) which outper-
form existing heuristics. This suggests that heuristic approaches may not maintain
their dominance going forward, and motivates the exploration of tight yet affordable
relaxations of low-rank problems.

1.3 Contributions and structure

The main contributions of this paper are twofold. First, we propose a general refor-
mulation technique for obtaining high-quality relaxations of low-rank optimization
problems: introducing an orthogonal projectionmatrix to model a low-rank constraint,
and strengthening the formulation by taking the matrix perspective of an appropriate
substructure of the problem. This technique can be viewed as a generalization of the
perspective reformulation technique for obtaining strong relaxations of sparse or log-
ically constrained problems [10, 37, 42, 43]. Second, by applying this technique, we
obtain explicit characterizations of convex hulls of low-rank sets which frequently
arise in low-rank problems. As the interplay between convex hulls of indicator sets
and perspective functions has engineered algorithms which outperform state-of-the-
art heuristics in sparse linear regression [6, 44] and sparse portfolio selection [10, 80],
we hope that this work will empower similar developments for low-rank problems.

The rest of the paper is structured as follows: In Sect. 2 we supply some back-
ground on perspective functions and review their role in developing tight formulations
of mixed-integer problems. In Sect. 3, we introduce the matrix perspective function
and its properties, extend the function’s definition to allow semidefinite in addition to
positive definite arguments, and propose a matrix perspective reformulation technique
(MPRT) which successfully obtains high-quality relaxations for low-rank problems
which commonly arise in the literature. We also connect the matrix perspective func-
tion to the convex hulls of epigraphs of simple matrix convex functions under rank
constraints. In Sect. 4, we illustrate the utility of this connection by deriving tighter
relaxations of several low-rank problems than are currently available in the literature.
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52 D. Bertsimas et al.

Finally, in Sect. 5, we numerically verify the utility of our approach on reduced rank
regression, D-optimal design and non-negative matrix factorization problems.

Notation: We let nonbold face characters such as b denote scalars, lowercase bold
faced characters such as x denote vectors, uppercase bold faced characters such as X
denote matrices, and calligraphic uppercase characters such as Z denote sets. We let
N denote the set of positive integers. We let e denote a vector of all 1’s, 0 denote a
vector of all 0’s, and I denote the identity matrix. We let Sn+∩R

n×n+ denote the cone of
n × n doubly non-negative matrices, and Cn+ := {UU� : U ∈ R

n×n+ } denote the cone
of n × n completely positive matrices. Finally, we let X† denote the Moore-Penrose
pseudoinverse of a matrix X ; see [13, 47] for general theories of matrix operators.
Less common matrix operators will be defined as they are needed.

2 Background on Perspective Functions

In this section, we review perspective functions and their interplay with tight formu-
lations of logically constrained problems. This prepares the ground for and motivates
our study of matrix perspective functions and their interplay with tight formulations
of low-rank problems. Many of our subsequent results can be viewed as (nontrivial)
generalizations of the results in this section, since a rank constraint is a cardinality
constraint on the singular values.

2.1 Preliminaries

Consider a proper closed convex function f : X → R, where X is a convex subset
of R

n . The perspective function of f is commonly defined for any x ∈ R
n and any

t > 0 as (x, t) �→ t f (x/t). Its closure is defined by continuity for t = 0 and is equal
to (c.f. [46], Proposition IV.2.2.2):

g f (x, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t f (x/t) if t > 0, x/t ∈ X ,

0 if t = 0, x = 0,

f∞(x) if t = 0, x �= 0,

+∞ otherwise,

where f∞ is the recession function of f , as originally stated in [68, p. 67], which is
given by

f∞(x) = lim
t→0

t f
(
x0 − x + x

t

)
= lim

t→+∞
f (x0 + tx)− f (x0)

t
,

for any x0 in the domain of f . That is, f∞(x) is the asymptotic slope of f in the
direction of x.

The perspective function was first investigated by [68], who made the important
observation that f is convex in x if and only if g f is convex in (x, t). Among other
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properties, we have that, for any t > 0, (x, t, s) ∈ epi(g f ) if and only if (x/t, s/t) ∈
epi( f ) [46, Proposition IV.2.2.1]. We refer to the review by [23] for further properties
of perspective functions.

Throughout this work, we refer to g f as the perspective function of f –although
it technically is the closure of the perspective. We also consider a family of convex
functions f which satisfy:

Assumption 1 The function f : X → R is proper, closed, and convex, 0 ∈ X , and
for any x �= 0, f∞(x) = +∞.

The condition f∞(x) = +∞,∀x �= 0 is equivalent to limx→∞ f (x)/‖x‖ = +∞,

and means that, asymptotically, f increases to infinity faster than any affine function.
In particular, it is satisfied if the domain of f is bounded or if f is strictly convex.
Under Assumption 1, the definition of the perspective function of f simplifies to

g f (x, t) =

⎧⎪⎨
⎪⎩
t f (x/t) if t > 0,

0 if t = 0, x = 0,

+∞ otherwise.

(8)

2.2 The perspective reformulation technique

A number of authors have observed that optimization problems over binary and
continuous variables admit tight reformulations involving perspective functions of
appropriate substructures of the problem, since [21], building upon the work of [68,
Theorem 9.8], derived the convex hull of a disjunction of convex constraints. To moti-
vate our study of the matrix perspective function in the sequel, we now demonstrate
that a class of logically-constrained problems admit reformulations in terms of per-
spective functions.We remark that this development bears resemblance to other works
on perspective reformulations including [10, 39, 43].

Consider a logically-constrained problem of the form

min
z∈Z,x∈Rn

c�z + f (x)+�(x) s.t. xi = 0 if zi = 0 ∀i ∈ [n], (9)

where Z ⊆ {0, 1}n , c ∈ R
n is a cost vector, f (·) is a generic convex function which

possibly models convex constraints x ∈ X for a convex set X ⊆ R
n implicitly–by

requiring that g(x) = +∞ if x /∈ X , and �(·) is a regularization function which
satisfies the following assumption:

Assumption 2 (Separability) �(x) = ∑
i∈[n] �i (xi ), where each �i satisfies

Assumption 1.

Since zi is binary, imposing the logical constraint “xi = 0 if zi = 0” plus the term
�i (xi ) in the objective is equivalent to g�(xi , zi ) + (1 − zi )�i (0) in the objective,
where g�i is the perspective function of �i , and thus Problem (9) is equivalent to:
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54 D. Bertsimas et al.

min
z∈Z,x∈Rn

c�z + f (x)+
n∑

i=1

(
g�i (xi , zi )+ (1− zi )�i (0)

)
. (10)

Notably, while Problems (9)–(10) have the same feasible regions, (10) often has sub-
stantially stronger relaxations, as frequently noted in the perspective reformulation
literature [10, 36, 37, 42].

For completeness, we provide a formal proof of equivalence between (9) and (10);
note that a related (although dual, and weaker as it requires �(0) = 0) result can be
found in [10, Theorem 2.5]:

Lemma 1 Suppose (9) attains a finite optimal value. Then, (10) attains the same value.

Proof It suffices to establish that the following equality holds:

g�i (xi , zi )+ (1− zi )�i (0) = �i (xi )+
{
0 if xi = 0 or zi = 1,

+∞ otherwise.

Indeed, this equality shows that any feasible solution to one problem is a feasible
solution to the other with equal cost. We prove this by considering the cases where
zi = 0, zi = 1 separately.

– Suppose zi = 1. Then, g�i (xi , zi ) = zi�i (xi/zi ) = �i (xi ) and xi = zi · xi , so
the result holds.

– Suppose zi = 0. If xi = 0 we have g�i (0, 0) + �i (0) = �i (0), and moreover
the right-hand-side of the equality is certainly �i (0). Alternatively, if xi �= 0 then
both sides equal +∞. ��

In Table 1, we present examples of penalties � for which Assumption 1 holds and
the perspective reformulation technique is applicable. We remind the reader that the
exponential cone is (c.f. [22]):

Kexp={x ∈ R
3 : x1≥ x2 exp(x2/x3), x2 > 0} ∪ {(x1, 0, x3)∈R

3 : x1≥0, x3≤0},

while the power cone is defined for any α ∈ (0, 1) as (c.f. [22]):

Kα
pow =

{
x ∈ R

3 : xα
1 x

1−α
2 ≥ |x3|

}
.

2.3 Perspective cuts

Another computationally useful application of the perspective reformulation technique
has been to derive a class of cutting-planes for MIOs with logical constraints [37].
To motivate our generalization of these cuts to low-rank problems, we now briefly
summarize their main result.
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Table 1 Convex substructures which frequently arise in MIOs and their perspective reformulations. For
conciseness, we give g�(x,z) for z > 0 only, i.e., the first case in (8), g�(x,z) for z = 0 being defined as in
Equation (8)

Penalty �(x) g�(x, z) if z > 0 Formulation

Big-M

{
0 if |x | ≤ M,

+∞ otherwise

{
0 if |x | ≤ Mz

+∞ otherwise
|x | ≤ Mz

Ridge 1
2γ x2 x2/2γ z

min θ

s.t. θ z ≥ 1

2γ
x2

Ridge + Big-M 1
2γ x2, if |x | ≤ M x2/2γ z, if |x | ≤ Mz

min θ

s.t. θ z ≥ 1

2γ
x2, |x | ≤ Mz

Power |x |p , p>1 |x |pz1−p
min θ

s.t. (θ, z, x) ∈ K1/p
pow

Logε + Big-M − log(x + ε),

if 0 ≤ x ≤ M
−z log(x/z + ε),

if x ≤ Mz

min θ

s.t. (x + zε, z,−θ) ∈ Kexp,

x ≤ Mz

Entropy x log x x log(x/z), if x > 0

min θ

s.t. (z, x,−θ) ∈ Kexp,

x ≤ Mz

Softplus+Big-M log(1+ exp(x)),
if |x | ≤ M

z log(1+ exp(x/z)),
if |x | ≤ Mz

min θ

s.t. z ≥ u + v, |x | ≤ Mz,

(u, z,−θ) ∈ Kexp,

(v, z, x − θ) ∈ Kexp

Consider the following problem:

min
z∈Z

min
x∈Rn

c�z + f (x)+
n∑

i=1

�i (xi )

s.t. Ai xi ≤ bi zi ∀i ∈ [n],
(11)

where {xi : Ai xi ≤ 0} = {0}, which implies the set of feasible x is bounded, �i (xi )
is a closed convex function, we take �i (0) = 0 as in [37] for simplicity, and f (x) is
a convex function. Then, letting ρi model the epigraph of �i (xi ) + ci zi and si be a
subgradient of �i at x̄i , i.e., si ∈ ∂�i (x̄i ), we have the following result [37, 42]:

Proposition 1 The following cut

ρi ≥ (ci +�i (x̄i ))zi + si (xi − x̄i zi ) (12)
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56 D. Bertsimas et al.

is valid for the equivalent MINLO:

min
z∈Z

min
x,ρ∈Rn

f (x)+
n∑

i=1

ρi

s.t. Ai xi ≤ bi zi ∀i ∈ [n],
ρi ≥ �i (xi )+ ci zi ∀i ∈ [n].

Remark 1 In the special case where �i (xi ) = x2i , the cut reduces to:

ρi ≥ 2xi x̄i − x̄2i zi + ci zi ∀x̄i . (13)

The class of cutting planes defined in Proposition 1 are commonly referred to as
perspective cuts, because they define a linear lower approximation of the perspective
function of�i (xi ), g�i (xi , zi ). Consequently, Proposition 1 implies that a perspective
reformulation of (11) is equivalent to adding all (infinitelymany) perspective cuts (12).
This may be helpful where the original problem is nonlinear, as a sequence of linear
MIOs can be easier to solve than one nonlinear MIO (see [38], for a comparison).

3 TheMatrix Perspective Function and its Applications

In this section, we generalize the perspective function from vectors to matrices, and
invoke the matrix perspective function to propose a new technique for generating
strong yet efficient relaxations of a diverse family of low-rank problems, which we
call the Matrix Perspective Reformulation Technique (MPRT). Selected background
on matrix analysis (see [13], for a general theory) and semidefinite optimization (see
[77], for a general theory) which we use throughout this section can be found in
Appendix A.

3.1 Amatrix perspective function

To generalize the ideas from the previous section to low-rank constraints, we require
a more expressive transform than the perspective transform, which introduces a single
(scalar) additional degree of freedom and cannot control the eigenvalues of a matrix.
Therefore,we invoke a generalization fromquantummechanics: thematrix perspective
function defined in [27, 28], building upon the work of [29]; see also [24, 54–56] for
a related generalization of perspective functions to perspective functionals.

Definition 1 For a matrix-valued function f : X → Sn+ where X ⊆ Sn is a convex
set, the matrix perspective function of f , g f , is defined as

g f (X,Y) =
{
Y

1
2 f

(
Y− 1

2 XY− 1
2

)
Y

1
2 if Y− 1

2 XY− 1
2 ∈ X ,Y � 0,

∞ otherwise.
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Remark 2 If X and Y commute and f is analytic, then Definition 1 simplifies into
Y f

(
Y−1X

)
, which is the analog of the usual definition of the perspective function

originally stated in [29]. Definition 1, however, generalizes this definition to the case

where X andY do not commute by ensuring thatY− 1
2 XY− 1

2 is nonetheless symmetric,
in a manner reminiscent of the development of interior point methods (see, e.g., [2]).
In particular, if Y is a projection matrix such that X = YX—as occurs for the exact
formulations of the low-rank problems we consider in this paper—then it is safe to
assume that X,Y commute. However, when Y is not a projection matrix, this cannot
be assumed in general.

The matrix perspective function generalizes the definition of the perspective trans-
formation to matrix-valued functions and satisfies analogous properties:

Proposition 2 Let f be a matrix-valued function and g f its matrix perspective func-
tion. Then:

(a) f is matrix convex, i.e.,

t f (X)+ (1− t) f (W) 
 f (tX + (1− t)W) ∀X,W ∈ Sn, t ∈ [0, 1], (14)

if and only if g f is matrix convex in (X,Y).
(b) g f is a positive homogeneous function, i.e., for any μ>0 we have

g f (μX, μY ) = μg f (X,Y). (15)

(c) Let Y � 0 be a positive definite matrix. Then, letting the epigraph of f be denoted
by

epi( f ) := {(X, θ) : X ∈ dom( f ), f (X) � θ}, (16)

we have (X,Y , θ) ∈ epi(g f ) if and only if (Y− 1
2 XY− 1

2 ,Y− 1
2 θY− 1

2 ) ∈ epi( f ).

Proof We prove the claims successively:

(a) This is precisely the main result of [27, Theorem 2.2].

(b) For μ > 0, g f (μX, μY) = μY
1
2 f

(
(μY)− 1

2 μX(μY)− 1
2

)
Y

1
2 = μg f (X,Y).

(c) By generalizing the main result in [15, Chapter 3.2.6], for any Y � 0 we have that

(X,Y , θ) ∈ epi(g f ) ⇐⇒ Y
1
2 f (Y− 1

2 XY− 1
2 )Y

1
2 � θ ,

⇐⇒ f (Y− 1
2 XY− 1

2 ) � Y− 1
2 θY− 1

2 ,

⇐⇒ (Y− 1
2 XY− 1

2 ,Y− 1
2 θY− 1

2 ) ∈ epi( f ). ��
We now specialize our attention to matrix-valued functions defined by a scalar

convex function, as suggested in the introduction.
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3.2 Matrix perspectives of operator functions

From any function ω : R → R, we can define its extension to the set of symmetric
matrices, fω : Sn → Sn as

fω(X) = U Diag(ω(λx
1), . . . , ω(λx

n))U
�, (17)

where X = U Diag(λx
1, . . . , λ

x
n)U

� is an eigendecomposition of X . Functions of this
form are called operator functions (see [13], for a general theory). In particular, one
can show that fω(X) is well-defined (does not depend explicitly on the eigenbasis of
X ,U). Among other examples, takingω(x) = exp(x) (resp. log(x)) provides a matrix
generalization of the exponential (resp. logarithm) function; see Appendix A.1.

Central to our analysis is that we can explicitly characterize the closure of thematrix
perspective of fω under some assumptions on ω, i.e., define by continuity g fω(X,Y)

for rank-deficient matrices Y :

Proposition 3 Consider a function ω : R → R satisfying Assumption 1. Then, the
closure of the matrix perspective of fω is, for any X ∈ Sn, Y ∈ Sn+,

g fω(X,Y) =
{
Y

1
2 fω(Y− 1

2 XY− 1
2 )Y

1
2 if Span(X) ⊆ Span(Y),Y 
 0,

∞ otherwise,

where Y− 1
2 denotes the pseudo-inverse of the square root of Y .

Remark 3 Note that in the expression of g fω above, the matrix Y− 1
2 XY− 1

2 is unam-
biguously defined if and only if Span(X) ⊆ Span(Y) (otherwise, its value depends

on how we define the pseudo-inverse of Y
1
2 outside of its range). Accordingly, in the

remainder of the paper, we omit the condition Span(X) ⊆ Span(Y) whenever the

analytic expression for g fω explicitly involves Y− 1
2 XY− 1

2 .

The proof of Proposition 3 is deferred to Appendix B.1. In the appendix, we also
present an immediate extension where additional constraints, X ∈ X , are imposed on
the argument of fω. As in our prior work [11], we will reformulate the rank constraints
in (1) by introducing a projection matrix Y to encode for the span of X . Naturally, Y
should be rank-deficient.Hence, Proposition 3 ensures that having tr(g fω(X,Y)) < ∞
is a sufficient condition for Y to indeed control Span(X).

To gain intuition on how the matrix perspective function transforms X and Y , we
now provide an interesting connection between the matrix perspective of fω and the
perspective of ω in the case where X and Y commute.

Proposition 4 Consider two matrices X ∈ Sn,Y ∈ Sn+ that commute and such that
Span(X) ⊆ Span(Y). Hence, there exists an orthogonal matrix U which jointly diag-
onalizes X and Y . Let λx

1, . . . , λ
x
n and λ

y
1, . . . , λ

y
n denote the eigenvalues of X and

Y respectively, ordered according to this basis U . Consider an operator function fω
with ω satisfying Assumption 1. Then, we have that:

g fω(X,Y) = U Diag
(
gω(λx

1, λ
y
1), . . . , gω(λx

n, λ
y
n)
)
U�
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Proof By simultaneously diagonalizing X and Y , we get

Y− 1
2 XY− 1

2 = UDiag
(
λx
1/λ

y
1, . . . , λ

x
n/λ

y
n
)
U�,

fω
(
Y− 1

2 XY− 1
2

)
= UDiag

(
ω(λx

1/λ
y
1), . . . , ω(λx

n/λ
y
n)
)
U�,

Y
1
2 fω

(
Y− 1

2 XY− 1
2

)
Y

1
2 = UDiag

(
λ
y
1ω(λx

1/λ
y
1), . . . , λ

y
nω(λx

n/λ
y
n)
)
U�. ��

Note that if Y is a projection matrix such that Span(X) ⊆ Span(Y) then we neces-
sarily have that X = YX = XY and the assumptions of Proposition 4 hold.

In the general case where X and Y do not commute, we cannot simultaneously
diagonalize them and connect g fω with gω. However, we can still project Y onto the
space of matrices that commute with X and obtain the following result when g fω is
matrix convex (proof deferred to Appendix B.2):

Lemma 2 Let X ∈ Sn and Y ∈ Sn+ be matrices, and denote the commutant of X ,
CX :={M : MX = XM}, i.e., the set of matrices which commute with X . For any
matrix M, denote M |X the orthogonal projection of M onto CX . Then, we have that

Y |X ∈ Sn+, and tr
(
Y |X

) = tr (Y) .

Moreover, if Y �→ g fω(X,Y) is matrix convex, then we have

tr
[
g fω(X,Y |X )

] ≤ tr
[
g fω(X,Y)

]
.

3.3 Thematrix perspective reformulation technique

Definition 1 and Proposition 3 supply the necessary language to lay out our Matrix
PerspectiveReformulation Technique (MPRT). Therefore, we now state the technique;
details regarding its implementation will become clearer throughout the paper.

Let us revisit Problem (1), and assume that the term �(X) satisfies the following
properties:

Assumption 3 �(X) = tr ( fω(X)), where ω is a function satisfying Assumption 1
and whose associated operator function, fω, is matrix convex.

Assumption 3 implies that the regularizer can be rewritten as operating on the
eigenvalues of X , λi (X), directly: �(X) = ∑

i∈[n] ω(λi (X)). As we discuss in the
next section, a broad class of functions satisfy this property. For ease of notation, we
refer to fω as f in the remainder of the paper (and accordingly denote by g f its matrix
perspective function).

After letting an orthogonal projection matrix Y model the rank of X—as per [11]—
Problem (1) admits the equivalent mixed-projection reformulation:

min
Y∈Yk

n

min
X∈Sn

〈C, X〉 + μ · tr(Y)+ tr( f (X))

s.t. 〈Ai , X〉 = bi ∀i ∈ [m], X = YX, X ∈ K, (18)
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where Y ∈ Yk
n is the set of n × n orthogonal projection matrices with trace at most k:

Yk
n :=

{
Y ∈ Sn+ : Y2 = Y , tr(Y) ≤ k

}
.

Note that for k ∈ N, the convex hull of Yk
n is given by Conv(Yk

n ) = {Y ∈ Sn+ : Y �
I, tr(Y) ≤ k}, which is a well-studied object in its own right [52, 60–62].

Since Y is an orthogonal projection matrix, imposing the nonlinear constraint X =
YX and introducing the term �(X) = tr( f (X)) in the objective is equivalent to
introducing the following term in the objective:

tr(g f (X,Y))+ (n − tr(Y))ω(0),

where g f is the matrix perspective of f , and thus Problem (18) is equivalent to:

min
Y∈Yk

n

min
X∈Sn

〈C, X〉 + μ · tr(Y)+ tr(g f (X,Y))+ (n − tr(Y))ω(0)

s.t. 〈Ai , X〉 = bi ∀i ∈ [m], X ∈ K. (19)

Let us formally state and verify the equivalence between Problems (18)–(19) via:

Theorem 1 Problems (18)–(19) attain the same optimal objective value.

Proof It suffices to show that for any feasible solution to (18) we can construct a
feasible solution to (19) with an equal or lower cost, and vice versa:

– Let (X,Y) be a feasible solution to (18). Since X = YX ∈ Sn , X and Y commute.
Hence, by Proposition 4, we have (using the same notation as in Proposition 4):

tr
(
g f (X,Y)

) = ∑
i∈[n]

gω

(
λx
i , λ

y
i

) = ∑
i∈[n]

1
{
λ
y
i > 0

}
ω(λx

i ),

where 1
{
λ
y
i > 0

}
is an indicator functionwhichdenoteswhether the i th eigenvalue

of Y (which is either 0 or 1) is strictly positive. Moreover, since X = YX , λy
i =

0 �⇒ λx
i = 0 and

tr ( f (X)) =
∑
i∈[n]

ω(λx
i ) = tr

(
g f (X,Y)

)+ ∑
i∈[n]

1
{
λ
y
i = 0

}
ω(0)

= tr
(
g f (X,Y)

)+ (n − tr(Y))ω(0). (20)

This establishes that (X,Y) is feasible in (19) with the same cost.
– Let (X,Y) be a feasible solution to (19). Then, it follows that X ∈ Span(Y), which
implies that X = YX since Y is a projection matrix. Therefore, (20) holds, which
establishes that (X,Y) is feasible in (18) with the same cost.

��
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Eventually, relaxing Y ∈ Yk
n in Problem (19) supplies as strong—and sometimes

significantly stronger—relaxations than by any other technique we are aware of, as
we explore in Sect. 4.

Remark 4 Note that, based on the proof of Theorem 1, we could replace g f (X,Y) in
(19) by any function g̃(X,Y) such that g f (X,Y) = g̃(X,Y) for X,Y that commute,
with no impact on the objective value. However, it might impact tractability if g̃(X,Y)

is not convex in (X,Y).

Remark 5 Under Assumption 3, the regularization term �(X) penalizes all eigenval-
ues of fω(X) equally. The MPRT can be extended to a wider class of regularization
functions that penalize the largest eigenvaluesmore heavily, at the price of (a significant
amount of) additional notation. For brevity, we lay out this extension in Appendix C.

Theorem 1 only uses the fact that f is an operator function with ω satisfy-
ing Assumption 1, not the fact that f is matrix convex. In other words, (19) is
always an equivalent reformulation of (18). An interesting question is to identify
the set of necessary conditions for the objective of (19) to be convex in (X,Y) –
f being matrix convex is clearly sufficient. The objective in (19) is convex only
as long as tr

(
g f
)
is. Interestingly, this is not equivalent to the convexity of tr( f ).

See Appendix B.3 for a counter-example. It is, however, an open question whether
a weaker notion than matrix convexity could ensure the joint convexity of tr(g f ).
It would also be interesting to investigate the benefits and the tractability of non-
convex penalties (either by having f not matrix convex or ω non-convex), given
the successes of non-convex penalty functions in sparse regression problems [30,
79].

3.4 Convex hulls of low-rank sets and theMPRT

Wenowshow that, for a general class of low-rank sets, applying theMPRT is equivalent
to taking the convex hull of the set. This is significant, because we are not aware of
any general-purpose techniques for taking convex hulls of low-rank sets. Formally,
we have the following result:

Theorem 2 Consider an operator function f = fω satisfying Assumption 3. Let

T = {
X ∈ Sn : tr( f (X))+ μ · Rank(X) ≤ t,Rank(X) ≤ k

}
(21)

be a set where t ∈ R, k ∈ N are fixed. Then, an extended formulation of the convex
hull of T is given by:

T c=
{
(X,Y) ∈ Sn × Conv(Yk

n ) : tr(g f (X,Y))+ μ ·tr(Y)+ (n − tr(Y))ω(0) ≤ t
}

,

(22)

where Conv(Yk
n ) = {Y ∈ Sn+ : Y � I, tr(Y) ≤ k} is the convex hull of trace-k

projection matrices, and g f is the matrix perspective function of f .
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Proof We prove the two directions sequentially:

– Conv (T ) ⊆ T c: let X ∈ T . Then, since the rank of X is at most k, there exists
some Y ∈ Yk

n such that X = YX and tr(Y) = Rank(X). Moreover, by the same
argument as in the proof ofTheorem1, it follows that (20) holds and tr(g f (X,Y))+
μ · tr(Y)+ (n− tr(Y))ω(0) ≤ t , which confirms that (X,Y) ∈ T c. Since T c is a
convex set, we therefore have Conv (T ) ⊆ T c.

– T c ⊆ Conv (T ): let (X,Y) ∈ T c. Denote Y |X the projection of Y onto the set of
matrices that commute with X : {M : XM = MX}. By Lemma 2, we have that
Y |X ∈ Conv(Yk

n ), and tr
(
g f (X,Y |X )

) ≤ tr
(
g f (X,Y)

)
< ∞ so (X,Y |X ) ∈ T c

as well. Hence, without loss of generality, by renaming Y ← Y |X , we can assume
that X and Y commute. Then, it follows from Proposition 4 that the vectors of
eigenvalues of X andY (ordered according to a shared eigenbasisU), (λ(X),λ(Y))

belong to the set

⎧⎨
⎩(x, y) ∈ R

n × [0, 1]n :
∑
i

yi ≤ k,
n∑

i=1

yiω
(
xi
yi

)
+ μ

∑
i

yi +
⎛
⎝n −

∑
i

yi

⎞
⎠ω(0) ≤ t

⎫⎬
⎭ ,

which is the closure of the convex hull of

Uc :=
{

(x, y) ∈ R
n × {0, 1}n :

∑
i

yi ≤ k,
n∑

i=1

ω(xi )+ μ
∑
i

yi ≤ t, xi = 0 if yi = 0 ∀i ∈ [n]
}

,

as proved by [76, Theorem 3] for the case ω(0) = 0. We provide a self-
contained proof of the generalization of this statement to ω(0) �= 0 in Appendix
B.5 (Proposition 8). Let us decompose (λ(X),λ(Y)) into λ(X) = ∑

k αkx(k),
λ(Y) = ∑

k αk y(k), with αk ≥ 0,
∑

k αk = 1, and (x(k), y(k)) ∈ Uc. By defini-
tion,

T (k) := UDiag(x(k))U� ∈ T ,

and X =∑
k αkT (k). Therefore, we have that X ∈ Conv(T ), as required. ��

Remark 6 Since linear optimization problems over convex sets admit extremal optima,
Theorem 2 demonstrates that unconstrained low-rank problems with spectral objec-
tives can be recast as linear semidefinite problems,where the rank constraint is dropped
without loss of optimality. This suggests that work on hidden convexity in low-rank
optimization, i.e., deriving conditions under which low-rank linear optimization prob-
lems admit exact relaxations where the rank constraint is omitted (see, e.g., [12, 62,
75]), could be extended to incorporate spectral functions.

3.5 Examples of thematrix perspective function

Theorem 2 demonstrates that, for spectral functions under low-rank constraints, taking
the matrix perspective is equivalent to taking the convex hull. To highlight the utility
of Theorems 1–2, we therefore supply the perspective functions of some spectral
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Table 2 Analogy between perspectives of scalars and perspectives of matrix convex functions

Perspective of function Matrix perspective of function

Type f (x) : R → R g f (x, t) Ref. f g f Ref.

Quadratic x2 x2/t [4] X�X X�Y†X [11]

Power −xα : 0 < α < 1 −xα t1−α [15] −Xα −Y1/2
(
Y−1/2XY−1/2

)α
Y1/2 [32, 70]

Log − log(x) −t log( xt ) [15] − log(X) −Y
1
2 log

(
Y−

1
2 XY−

1
2

)
Y

1
2 [33]

Entropy x log(x) x log( xt ) [15] X log(X) XY−
1
2 log(Y−

1
2 XY−

1
2 )Y

1
2 [29, 53]

regularization functions which frequently arise in the low-rank matrix literature, and
summarize them in Table 2.We also discuss how these functions and their perspectives
can be efficiently optimized over. Note that all functions introduced in this section are
either matrix convex or the trace of a matrix convex function, and thus supply valid
convex relaxations when used as regularizers for the MPRT.
Spectral constraint: Let ω(x) = 0 if |x | ≤ M , +∞ otherwise. Then,

f (X) =
{
0 if ‖X‖σ ≤ M,

+∞ otherwise,

for X ∈ Sn , where ‖ · ‖σ denotes the spectral norm, i.e., the largest eigenvalue in
absolute magnitude of X . Observe that the condition ‖X‖σ ≤ M can be expressed
via semidefinite constraints−MI � X � MI. The perspective function g f can then
be expressed as

g f (X,Y) =
{
0 if − MY � X � MY ,

+∞ otherwise.

If X and Y commute, g f (X,Y) requires that |λ j (X)| ≤ Mλ j (Y) ∀ j ∈ [n]–the
spectral analog of a big-M constraint. This constraint can be modeled using two
semidefinite cones, and thus handled by semidefinite solvers.
Convex quadratic: For ω(x) = x2, f (X) = X�X . Then, the perspective function g f

is

g f (X,Y) =
{
X�Y†X if Y 
 0,
+∞ otherwise.

Observe that this function’s epigraph is semidefinite-representable. Indeed, by the
Schur complement lemma [16, Equation 2.41], minimizing the trace of g f (X,Y) is
equivalent to solving
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min
θ∈Sn ,Y∈Sn ,X∈Sn

tr(θ) s.t.

(
θ X
X� Y

)

 0.

Interestingly, this perspective function allows us to rewrite the rank-k SVD problem

min
X∈Rn×m

‖X − A‖2F : Rank(X) ≤ k

as a linear optimization problem over the set of orthogonal projection matrices, which
implies that the orthogonal projection constraint can be relaxed to its convex hull
without loss of optimality (since some extremal solution will be optimal for the relax-
ation). This is significant, because while rank-k SVD is commonly thought of as a
non-convex problem which “surprisingly” admits a closed-form solution, the MPRT
shows that it actually admits an exact convex reformulation:

min
X,Y ,θ

1

2
tr(θ)− 〈A, X〉 + 1

2
‖A‖2F s.t. Y � I, tr(Y) ≤ k,

(
θ X
X� Y

)

 0.

Note that, in the above formulation, we extended our results for symmetric matrices
to rectangular matrices X ∈ R

n×m without justification. We rigorously derive this
extension for f (X) = X�X in Appendix D and defer the study of the general case to
future research.

Spectral plus convex quadratic: Let

f (X) =
{
X�X if ‖X‖σ ≤ M,

+∞ otherwise,

for X ∈ Sn . Then, the perspective function g f is

g f (X,Y) =
{
X�Y†X if − MY � X � MY ,

+∞ otherwise.

This can be interpreted as the spectral analog of combining a big-M and a ridge penalty.
Convex quadratic over completely positive cone: Consider the following optimization
problem

min
X∈Sn

X�X s.t. X ∈ Cn+,

where Cn+ = {X : X = UU�,U ∈ R
n×n+ } ⊆ Sn+ denotes the completely positive

cone. Then, by denoting f (X) = X�X and g f its perspective function, we obtain
a valid relaxation by minimizing tr(g f ), which, by the Schur complement lemma
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(see [16, Equation 2.41]), can be reformulated as

min
θ∈Sn ,Y∈Sn ,X∈Sn

tr(θ) s.t.

(
θ X
X� Y

)
∈ S2n+ , X ∈ Cn+.

Unfortunately, this formulation cannot be tractably optimized over, since separating
over the completely positive cone is NP-hard. However, by relaxing the completely
positive cone to the doubly non-negative cone—Sn+ ∩ R

n×n+ —we obtain a tractable
and near-exact relaxation. Indeed, as we shall see in our numerical experiments, com-
bining this relaxation with a state-of-the-art heuristic supplies certifiably near-optimal
solutions in both theory and practice.

Note that we could have obtained an alternative relaxation by instead considering
the perspective of

f (X) =
{
X�X if X ∈ Cn+,

+∞ otherwise.

Remark 7 One can obtain a nearly identical formulation over the copositive cone (c.f.
[17]).

Power: Let2 f (X) = Xα for α ∈ [0, 1] and X ∈ Sn+. The matrix perspective function
is3

g f (X,Y) =
{
Y1/2

(
Y−1/2XY−1/2

)α
Y1/2 if Y− 1

2 XY− 1
2 ∈ Sn+,Y 
 0,

+∞ otherwise.

The expression above can be simplified into XαY1−α when X andY commute and, per
Remark 4, the former expression can be used equivalently for optimization purposes,
even when X and Y do not commute.

Remark 8 (Matrix Power Cone) This function’s hypograph, the matrix power cone,
i.e.,

Kpow,α
mat =

{
(X,Y , θ) ∈ Sn+ × Sn+ × Sn : Y 1−α

2 XαY
1−α
2 
 θ

}

is a closed convex cone which is semidefinite representable for any rational α ∈ [0, 1]
[32, Equation 3]. Consequently, it is a tractable object which successfully models the
matrix power function (and its perspective) and we shall make repeated use of it when
we apply the MPRT to several important low-rank problems in Sect. 3.5.

2 Note that f (X) and its perspective are concave functions; hencewemodel their hypographs, not epigraphs.
3 We only consider the PSD case for notational convenience. However, the symmetric case follows in much
the same manner, after splitting X = X+ − X− : X+, X− 
 0, 〈X+, X−〉 = 0 and replacing X with
X+ + X−.
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Logarithm: Let f (X) = − log(X) be the matrix logarithm function. We have that

g f (X,Y) =
{
−Y

1
2 log

(
Y− 1

2 XY− 1
2

)
Y

1
2 if X,Y � 0,

+∞ otherwise.

Observe that when X and Y commute, g f (X,Y) can be rewritten as Y(log(Y) −
log(X)), whose trace is the (Umegaki) quantum relative entropy function (see [33],
for a general theory). We remark that the domain of log(X) requires that X is full-
rank, which at a first glance makes the use of this function problematic for low-rank
optimization. Accordingly, we consider the ε-logarithm function, i.e., logε(X) =
log(X + εI) for ε > 0, as advocated by [35] in a different context. Background on
matrix exponential and logarithm functions can be found in Appendix A.1.

Observe that tr(log(X)) = log det(X) while tr(g f ) = tr(X(log(X) − log(Y)).
Thus, the matrix logarithm and its trace verify the concavity of the log determinant
function—which has numerous applications in low-rank problems [35] and interior
point methods [67] among others—while the perspective of the matrix logarithm
provides an elementary proof of the convexity of the quantum relative entropy: a task
for which perspective-free proofs are technically demanding [29].

Von Neumann entropy: Let f (X) = X log(X) denote the von Neumann quan-
tum entropy of a density matrix X . Then, its perspective function is g f (X,Y) =
XY− 1

2 log(Y− 1
2 XY− 1

2 )Y
1
2 . When X and Y commute, this perspective can be equiv-

alently written as

g f (X,Y) =
{
X

1
2 log(Y− 1

2 XY− 1
2 )X

1
2 if X,Y � 0,

+∞ otherwise.

Note that various generalizations of the relative entropy for matrices have been pro-
posed in the quantum physics literature [45]. However, these different definitions agree
on the set of commuting matrices, hence can be used interchangeably for optimization
purposes (see Remark 4).

Remark 9 (Quantum relative entropy cone) Note the epigraph of g f , namely,

Kop, rel
mat =

{
(X1, X2, X3) ∈ Sn × Sn++ × Sn++ : X1 
 −X

1
2
2 log(X

− 1
2

2 X3X
− 1

2
2 )X

1
2
2

}
,

is a convex cone which can be approximated using semidefinite cones and optimized
over using either theMatlab packageCVXQuad (see [33]), or optimized over directly
using an interior point method for asymmetric cones [49]4. Consequently, this is a
tractable object which models the matrix logarithm and Von Neumann entropy (and
their perspectives).

Finally, Table 2 relates the matrix perspectives discussed above with their scalar
analogs.
4 Specifically, if we are interested in quantum relative entropy problems where we minimize the trace of
X1, as occurs in the context of theMPRT, wemay achieve this using the domain-driven solver developed by
[49]. However, we are not aware of any IPMs which can currently optimize over the full quantum relative
entropy cone.
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3.6 Matrix perspective cuts

We now generalize the perspective cuts of [37, 42] from vectors to matrices and cardi-
nality to rank constraints. Let us reconsider the previously defined mixed-projection
optimization problem:

min
Y∈Yk

n

min
X∈Sn+

〈C, X〉 + μ · tr(Y)+tr( f (X))

s.t. 〈Ai , X〉 = bi ∀i ∈ [m],X =YX, X ∈ K,

where similarly to [37] we assume that f (0) = 0 to simplify the cut derivation
procedure. Letting θ model the epigraph of f via θ 
 f (X) and S be a subgradient
of f at X̄ , we have:

θ 
 f (X̄)Y + S�(X − X̄Y), (23)

which if f (X) = X2 —as discussed previously—reduces to

θ i 
 X̄(2X − X̄Y),

which is precisely the analog of perspective cuts in the vector case. Note however
that these cuts require semidefinite constraints to impose, which suggests they may
not be as practically useful. For instance, our prior work [11]’s outer-approximation
scheme for low-rank problems has a non-convex QCQOP master problem, which can
only be currently solved using Gurobi, while Gurobi currently does not support
semidefinite constraints.

We remark however that the inner product of Equation (23) with an arbitrary PSD
matrix supplies a valid linear inequality. Two interesting cases of this observation arise
when we take the inner product of the cut with either a rank-one matrix or the identity
matrix.

Taking an inner product with the identity matrix supplies the inequality:

tr(θ) ≥ 〈 f (X̄),Y 〉 + 〈S, X − X̄Y 〉 ∀Y ∈ Yk
n . (24)

Moreover, by analogy to [10, Section 3.4], if we “project out” the X variables by
decomposing the problem into a master problem in Y and subproblems in X then this
cut becomes the Generalized Benders Decomposition cuts derived in our prior work
[11, Equation 17].

Alternatively, taking the inner product of the cut with a rank-one matrix bb� gives:

b�θb ≥ b�
(
f (X̄)Y + S�(X − X̄Y)

)
b.

A further improvement is actually possible: rather than requiring that the semidef-
inite inequality is non-negative with respect to one rank-one matrix, we can require
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that it is simultaneously non-negative in the directions v1 and v2. This supplies the
second-order cone [64, Equation 8] cut:

(
v1

v2

)� (
θ − f (X̄)Y − S�(X − X̄Y)

)(
v1

v2

)


(
0 0
0 0

)
.

The analysis in this section suggests that applying a perspective cut decomposition
scheme out-of-the-box may be impractical, but leaves the door open to adaptations of
the scheme which account for the projection matrix structure.

4 Examples and Perspective Relaxations

In this section,we apply theMRPT to several important low-rank problems, in addition
to the previously discussed reduced-rank regression problem (Sect. 1.1).We also recall
Theorem 2 to demonstrate that applying theMPRT to spectral functions which feature
in these problems actually gives the convex hull of relevant substructures.

4.1 Matrix completion

Given a sample (Ai, j : (i, j) ∈ I ⊆ [n] × [n]) of a matrix A ∈ Sn+, the matrix
completion problem is to reconstruct the entirematrix, by assuming A is approximately
low-rank [19]. Letting μ, γ > 0 be penalty multipliers, this problem admits the
formulation:

min
X∈Sn+

∑
(i, j)∈I

(Xi, j − Ai, j )
2 + 1

2γ
‖X‖2F + μ · Rank(X). (25)

Applying the MPRT to the ‖X‖2F = tr(X�X) term demonstrates that this problem
is equivalent to the mixed-projection problem:

min
X,θ∈Sn+,Y∈Yn

n

∑
(i, j)∈I

(Xi, j − Ai, j )
2 + 1

2γ
tr(θ)+ μ · tr(Y) s.t.

(
Y X
X θ

)

 0,

and relaxing Y ∈ Yn
n to Y ∈ Conv(Yn

n ) = {Y ∈ Sn : 0 � Y � I} supplies a valid
relaxation. We now argue that this relaxation is often high-quality, by demonstrating
that the MPRT supplies the convex envelope of t ≥ 1

2γ ‖X‖2F + μ · Rank(X), via the
following corollary to Theorem 2:

Corollary 1 Let

S =
{
(Y , X, θ) ∈ Yk

n × Sn+ × Sn : θ 
 X�X, uY 
 X 
 �Y
}
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be a set where �, u ∈ R+. Then, this set’s convex hull is given by:

Sc =
{
(Y , X, θ) ∈ Sn+ × Sn+ × Sn :

Y � I, tr(Y) ≤ k, uY 
 X 
 �Y ,

(
Y X
X� θ

)

 0

}
.

4.2 Tensor completion

A central problem in machine learning is to reconstruct a d-tensor X given a sub-
sample of its entries (Ai1,...id : (i1, . . . id) ∈ I ⊆ [n1] × [n2] × . . . × [nd ]),
by assuming that the tensor is low-rank. Since even evaluating the rank of a ten-
sor is NP-hard [50], a popular approach for solving this problem is to minimize
the reconstruction error while constraining the ranks of different unfoldings of the
tensor (see, e.g., [40]). After imposing Frobenius norm regularization and letting

‖ · ‖HS =
√∑n1

i1=1 . . .
∑nd

id=1 X
2
i1,...,id

denote the (second-order cone representable)

Hilbert-Schmidt norm of a tensor, this leads to optimization problems of the form:

min
X ∈Rn1×...×nd

∑
(i1,...id )∈I

(
Ai1,...id −Xi1,...id

)2 +
n∑

i=1

‖X(i)‖2F

s.t. Rank(X(i)) ≤ k ∀i ∈ [n]. (26)

Similarly to low-rankmatrix completion, it is tempting to apply theMRPT tomodel
the X�

(i)X(i) term for eachmode-n unfolding.We now demonstrate this supplies a tight
approximation of the convex hull of the sum of the regularizers, via the following
lemma (proof omitted, follows in the spirit of [42, Lemma 4]):

Lemma 3

Let Q =
{

(ρ,Y1, . . . ,Ym, X1, . . . , Xm, θ1, . . . , θm) :

ρ ≥
m∑
i=1

qi tr(θ i ), (X i ,Y i , θ i ) ∈ S i ∀i ∈ [m]
}

be a set where li , ui , qi ∈ R
n+ ∀i ∈ [m], and Si is a set of the same form as S, but l, u

are replaced by li , ui . Then, an extended formulation of this set’s convex hull is given
by:

Qc =
{

(ρ,Y1, . . . ,Ym, X1, . . . , Xm, θ1, . . . , θm) :

ρ ≥
m∑
i=1

qi tr(θ i ), (X i ,Y i , θ i ) ∈ Sc
i ∀i ∈ [m]

}
.
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Lemma 3 suggests that the MPRT may improve algorithms which aim to recover
tensors of low slice rank. For instance, in low-rank tensor problems where (26) admits
multiple local solutions, solving the convex relaxation coming from Qc and greedily
rounding may give a high-quality initial point for an alternating minimization method
such as the method of [31], and indeed allow such a strategy to return better solutions
than if it were initialized at a random point.

Note however that Lemma 3 does not necessarily give the convex hull of the sum
of the regularizers, since the regularization terms involve different slices of the same
tensor and thus interact; see also [69] for a related proof that the tensor trace norm
does not give the convex envelope of the sum of ranks of slices.

4.3 Low-rank factor analysis

statistics, psychometrics and economics is to decompose a covariance matrix � ∈ Sn+
into a low-rank matrix X ∈ Sn+ plus a diagonal matrix � ∈ Sn+, as explored by [8]
and references therein. This corresponds to solving:

min
X,�∈Sn+

‖� −�− X‖qq s.t. Rank(X) ≤ k,

i, j = 0,∀i, j ∈ [n] : i �= j, ‖X‖σ ≤ M (27)

where q ≥ 1, ‖X‖q =
(∑n

i=1 λi (X)q
) 1
q denotes the matrix q-norm, and we constrain

the spectral norm of X via a big-M constraint for the sake of tractability.
This problem’s objective involvesminimizing tr (� −�− X)q , and it is not imme-

diately obvious how to either apply the technique in the presence of the � variables or
alternatively seperate out the � term and apply the MPRT to an appropriate (�-free)
substructure. To proceed, let us therefore first consider its scalar analog, obtaining the
convex closure of the following set:

T ={(x, y, z, t) ∈ R× R× {0, 1} × R
+ : t ≥ |x + y − d|q , |x | ≤ M, x = 0 if z = 0},

where d ∈ R and q ≥ 1 are fixed constants, and we require that |x | ≤ M for the
sake of tractability. We obtain the convex closure via the following proposition (proof
deferred to Appendix B.4):

Proposition 5 The convex closure of the set T , T c, is given by:

T c =
{
(x, y, z, t) ∈ R× R× [0, 1] × R

+ :

∃β ≥ 0 : t ≥ |y − β − d(1− z)|q
(1− z)q−1 + |x + β − dz|q

zq−1 , |x | ≤ Mz

}
.

Remark 10 To check that this set is indeed a valid convex relaxation, observe that if
z = 0 then x = 0 and x = −β �⇒ β = 0 and t ≥ |y − d|q , while if z = 1 then
y = β and t ≥ |x + y − d|q .
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Observe that T c can be modeled using two power cones and one inequality con-
straint.

Proposition 5 suggests that we can obtain high-quality convex relaxations for low-
rank factor analysis problems via a judicious use of the matrix power cone. Namely,
introduce an epigraph matrix θ to model the eigenvalues of (� − � − X)q and an
orthogonal projection matrix Y2 to model the span of X . This then leads to the fol-
lowing matrix power cone representable relaxation:

min
X,�,θ ,Y1,Y2∈Sn+,β∈Sn

tr(θ)

s.t. θ 
 Y
1−q
2

1 (Y
1
2
1 �Y

1
2
1 − β −�)Y

1−q
2

1

+ Y
1−q
2

2 (Y
1
2
2 �Y

1
2
2 + β − X)Y

1−q
2

2 ,

Y1 + Y2 = I, tr(Y) ≤ k,i, j = 0,∀i, j ∈ [n] : i �= j,

� � X, X � MY2,−X � MY2.

4.4 Optimal experimental design

Letting A ∈ R
n×m where m ≥ n be a matrix of linear measurements of the form

yi = a�i β + εi from an experimental setting, the D-optimal experimental design
problem (a.k.a. the sensor selection problem) is to pick k ≤ m of these experiments
in order to make the most accurate estimate of β possible, by solving (see [48, 71],
for a modern approach):

max
z∈{0,1}n :e� z≤k

log det
ε

⎛
⎝∑

i∈[n]
zi ai a�i

⎞
⎠ , (28)

where we define log detε(X) = log det(X + εI) for ε > 0 to be the pseudo log-
determinant of a rank-deficient PSD matrix, which can be thought of as imposing
an uninformative prior of importance ε on the experimental design process. Since
log det(X) = tr(log(X)), a valid convex relaxation is given by:

max
z∈[0,1]n ,θ∈Sn+

tr(θ) s.t. log
(
ADiag(z)A� + εI

)

 θ ,

which canbemodeledusing thequantumrelative entropy cone, via (−θ , I, ADiag(z)A�+
εI) ∈ Krel, op

mat . This is equivalent to perhaps the most common relaxation of D-optimal
design, as proposed by [15, Equation 7.2.6]. By formulating in terms of the quantum
relative entropy cone, the identity term suggests this relaxation leaves something “on
the table”.

In this direction, let us apply theMPRT.Observe that X :=∑
i∈[n] zi ai a�i is a rank-

kmatrix and thus at anoptimal solution to the original problem there is someorthogonal
projectionmatrixY such that X = YX . Therefore,we can take the perspective function
of f (X) = log(X+εI), and thereby obtain the following valid—and potentially much
tighter when k < n—convex relaxation:
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max
z∈[0,1]n ,θ ,Y∈Sn+

tr(θ)+ (n − tr(Y)) log(ε)

s.t. Y
1
2 log

(
Y− 1

2 ADiag(z)A�Y− 1
2 + εI

)
Y

1
2 
 θ ,Y � I, tr(Y) ≤ k,

(29)

which can be modeled via the quantum relative entropy cone: (−θ ,Y , ADiag(z)A�+
εY) ∈ Krel, op

mat . We now argue that this relaxation is high-quality, by demonstrating
that the MPRT supplies the convex envelope of t ≥ − log detε(X) under a low-rank
constraint, via the following corollary to Theorem 2:

Corollary 2

Let S =
{
X ∈ Sn+ : t ≥ − log det

ε
(X),Rank(X) ≤ k

}

be a set where ε, k, t are fixed. Then, this set’s convex hull is:

Sc =
{
(Y , X) ∈ Sn+ × Sn+ : 0 � Y � I, tr(Y) ≤ k,

t ≥ −tr(Y
1
2 logε(Y

− 1
2 XY− 1

2 )Y
1
2 )− (n − tr(Y)) log(ε)

}
.

Remark 11 Observe that (29)’s relaxation is not useful in the over-determined regime
where k ≥ n, since setting Y = I recovers (28)’s Boolean relaxation, which is consid-
erably cheaper to optimize over. Accordingly, we only consider the under-determined
regime in our experiments.

4.5 Non-negativematrix optimization

Many important problems in combinatorial optimization, statistics and computer
vision (see, e.g., [17]) reduce to optimizing over the space of low-rank matrices with
non-negative factors. An important special case is when we would like to find the low-
rank completely positive matrix X which best approximates (in a least-squares sense)
a given matrix A ∈ Sn+, i.e., perform non-negative principal component analysis.
Formally, we have the problem:

min
X∈Cn+:Rank(X)≤k

‖X − A‖2F , (30)

where Cn+ := {UU� : U ∈ R
n×n+ } denotes the cone of n × n completely positive

matrices.
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Applying the MPRT to the strongly convex 1
2‖X‖2F term in the objective therefore

yields the following completely positive program:

min
X∈Cn+,Y ,θ∈Sn

1

2
tr(θ)− 〈X, A〉 + 1

2
‖A‖2F s.t. Y � I, tr(Y) ≤ k,

(
Y X
X� θ

)
∈ S2n+ .

(31)

Interestingly, since (31)’s reformulation has a linear objective, some extreme point
in its relaxation is optimal, which means we can relax the requirement that Y is a
projection matrix without loss of optimality and the computational complexity of
the problem is entirely concentrated in the completely positive cone. Unfortunately
however, completely positive optimization itself is intractable. Nonetheless, it can be
approximated by replacing the completely positive cone with the doubly non-negative
cone, Sn+ ∩ R

n×n+ . Namely, we instead solve

min
X∈Sn+∩Rn×n+ ,Y ,θ∈Sn

1

2
tr(θ)− 〈X, A〉 + 1

2
‖A‖2F

s.t.

(
Y X
X� θ

)
∈ S2n+ , Y � I, tr(Y) ≤ k. (32)

Unfortunately, rounding a solution to (32) to obtain a completely positive X is
non-trivial. Indeed, according to [41], there is currently no effective mechanism for
rounding doubly non-negative programs. Nonetheless, as we shall see in our numerical
results, there are already highly effective heuristic methods for completely positive
matrix factorization, and combining our relaxation with such a procedure offers cer-
tificates of near optimality in a tractable fashion.

Remark 12 If X = D� is a monomial matrix, i.e., decomposable as the product of
a diagonal matrix D and a permutation matrix �, as occurs in binary optimization
problems such as k-means clustering problems among others (c.f. [63]), then it follows
that (X�X)† ≥ 0 (see [66]) and thus Y := X(X�X)†X� is elementwise non-
negative. In this case, the doubly non-negative relaxation (32) should be strengthened
by requiring that Y ≥ 0.

5 Numerical Results

In this section, we evaluate the algorithmic strategies derived in the previous section,
implemented in Julia 1.5 using JuMP.jl 0.21.6 and Mosek 9.1 to solve the conic
problems considered here. Except where indicated otherwise, all experiments were
performed on a Intel Xeon E5–2690 v4 2.6GHz CPU core using 32 GB RAM. To
bridge the gap between theory and practice, we have made our code freely available
on Github at github.com/ryancorywright/MatrixPerspectiveSoftware.
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5.1 Reduced rank regression

In this section, we compare our convex relaxations for reduced rank regression devel-
oped in the introduction and laid out in (6)–(7)—which we refer to as “Persp” and
“DCL” respectively—against the nuclear norm estimator proposed by [57] (“NN”),
who solve

min
β∈Rp×n

1

2m
‖Y − Xβ‖2F +

1

2γ
‖β‖2F + μ‖β‖∗. (33)

Similarly to [57], we attempt to recover rank-ktrue estimators β true = UV�, where
each entry of U ∈ R

p×ktrue , V ∈ R
n×ktrue is i.i.d. standard Gaussian N (0, 1), the

matrix X ∈ R
m×p contains i.i.d. standard Gaussian N (0, 1) entries, Y = Xβ + E,

and Ei, j ∼ N (0, σ ) injects a small amount of i.i.d. noise.We set n = p = 50, k = 10,
γ = 106, σ = 0.05 and vary m. To ensure a fair comparison, we cross-validate μ for
both of our relaxations and [57]’s approach so as to minimize the MSE on a validation
set. For eachm, we evaluate 20 different values ofμwhich are distributed uniformly in
logspace between 10−4 and 104 across 50 random instances for our convex relaxations
and report on 100 different random instances with the “best” μ for each method and
each p.

Rank recovery and statistical accuracy: Figures 1a–c report the relative accuracy
(‖βest − β true‖F/‖β true‖F ), the rank (i.e., number of singular values of βest which
exceed 10−4), and the out-of-sample MSE5 ‖Xnewβest − Ynew‖2F (normalized by the
out-of-sample MSE of the ground truth ‖Xnewβ true − Ynew‖2F ). Results are averaged
over 100 random instances per value of m. We observe that—even though we did
not supply the true rank of the optimal solution in our formulation—Problem (7)’s
relaxation returns solutions of the correct rank (ktrue = 10) and better MSE/accuracy,
while our more “naive” perspective relaxation (6) and the nuclear norm approach (33)
return solutions of a higher rank and lower accuracy. This suggests that (7)’s formula-
tion should be considered as a more accurate estimator for reduced rank problems, and
empirically confirms that the MPRT can lead to significant improvements in statistical
accuracy.
Scalability w.r.t. m: Figure 1d reports the average time for Mosek to converge6 to
an optimal solution (over 100 random instances per m). Surprisingly, although (7)
is a stronger relaxation than (6), it is one to two orders of magnitude faster than
(6) and (33)’s formulations. The relative scalability of (7)’s formulation as m—the
number of observations—increases can be explained by the fact that (7) considers
a linear inner product of the Gram matrix X�X with a semidefinite matrix B (the
size of which does not vary with m) while Problems (6) and (33) have a quadratic
inner product 〈ββ�, X�X〉 which must be modeled using a rotated second-order

5 Evaluated on m = 1000 new observations of X j ,Yk generated from the same distribution.
6 We model the convex quadratic ‖Xβ − Y‖2F using a rotated second order cone for formulations (6) and
(33) (the quadratic term doesn’t appear directly in (7)), model the nuclear norm term in (33) by introducing

matrices U, V such that

(
U β

β� V

)

 0 and minimizing tr(U)+ tr(V ), and use default Mosek parameters

for all approaches

123



A new perspective on low-rank optimization 75

(a) Accuracy (b) Rank

(c) Relative MSE (d) Runtime

Fig. 1 Comparative performance, as the number of samples m increases, of formulations (6) (Persp, in
blue), (7) (DCL, in orange) and (33) (NN, in green), averaged over 100 synthetic reduced rank regression
instances where n = p = 50, ktrue = 10. The hyperparameterμwas first cross-validated for all approaches
separately

cone constraint (the size of which depends on m), since modern conic solvers such
as Mosek do not allow quadratic objective terms and semidefinite constraints to be
simultaneously present (if they did, we believe all three formulations would scale
similarly).

Scalability w.r.t p: Next, we evaluate the scalability of all three approaches in
terms of their solve times and peak memory usage (measured using the slurm
command MaxRSS), as n = p increases. Figure 2 depicts the average time to
converge to an optimal solution (a) and peak memory consumption (b) by each
method as we vary n = p with m = n, k = 10, γ = 106, each μ fixed to
the average cross-validated value found in the previous experiment, a peak memory
budget of 120GB, a runtime budget of 12 hours, and otherwise the same experi-
mental setup as previously (averaged over 20 random instances per n). We observe
(7)’s relaxation is dramatically more scalable than the other two approaches consid-
ered, and can solve problems of nearly twice the size (4 times as many variables),
and solves problems of a similar size in substantially less time and with sub-
stantially less peak memory consumption (40s vs. 1000s when n = 100). All in
all, the proposed relaxation (7) seems to be the best method of the three consid-
ered.
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(a) Runtime (b) Peak Memory

Fig. 2 Average time to compute an optimal solution (left panel) and peak memory usage (right panel) vs.
dimensionality n = p for Problems (6) (Persp, in blue), (7) (DCL. in orange) and (33) (NN, in green) over
20 synthetic reduced rank regression instances where ktrue = 10

5.2 Non-negativematrix factorization

In this section, we benchmark the quality of our dual bound for non-negative matrix
factorization laid out in Sect. 4.5 by using the non-linear reformulation strategy pro-
posed by [18] (alternating least squares or ALS) to obtain upper bounds. Namely, we
obtain upper bounds by solving for local minima of the problem

min
U∈Rn×k+

‖UU� − A‖2F . (34)

In our implementation of ALS, we obtain a local minimum by introducing a dummy
variable V which equalsU at optimality and alternating between solving the following
two problems

U t+1 = arg min
U∈Rn×k+

‖UV�
t − A‖2F + ρt‖U − V t‖2F , (35)

V t+1 = arg min
V∈Rn×k+

‖U tV� − A‖2F + ρt‖U t − V‖2F , (36)

where we set ρt = min(10−4 × 2t−1, 105) at the t th iteration in order that the final
matrix is positive semidefinite, as advocated in [5, Section 5.2.3] (we cap ρt to avoid
numerical instability). We iterate over solving these two problems from a random
initialization point V 0—where each V0,i, j is i.i.d. standard uniform—until either the
objective value between iterations does not change by 10−4 orwe exceed themaximum
number of allowable iterations, which we set to 100.

To generate problem instances, we let A = UU� + E where U ∈ R
n×ktrue , each

Ui, j is uniform on [0, 1], Ei, j ∼ N (0, 0.0125ktrue), and set Ai, j = 0 if Ai, j < 0. We
set n = 50, ktrue = 10. We use the ALS heuristic to compute a feasible solution X
and an upper-bound on the problem’s objective value. By comparing it with the lower
bound derived from our MPRT, we can assess the sub-optimality of the heuristic
solution, which previously lacked optimality guarantees.
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(a) Relative MSE (b) Bound gap

Fig. 3 Average relative MSE and duality gap vs. target rank k using the ALS heuristic (UB) and the MPRT
relaxation (LB). Results are averaged over 100 synthetic completely positive matrix factorization instances
where n = 50, ktrue = 10

Figure 3 depicts the average relative in-sample MSE of the heuristic (‖X −
A‖F/‖A‖F ) and the relative bound gap—(UB-LB)/UB—as we vary the target rank,
averaged over 100 random synthetic instances. We observe that the method is most
accurate and has the lowest MSE when k is set to ktrue = 10, which confirms that
the method can recover solutions of the correct rank. In addition, by combining the
solution from OLS with our lower-bound, we can compute a duality gap and assert
that the heuristic solution is 0%−3%-optimal, with the gap peaking at k = ktrue and
stabilizing as k → n. This echoes similar findings in k-means clustering and alter-
nating current optimal power flow problems, where the SDO relaxation need not be
near-tight in theory but nonetheless is nearly exact in practice [51, 63]. Further, this
suggests our convex relaxation may be a powerful weapon for providing gaps for
heuristics for non-negative matrix factorization, and particularly detecting when they
are performing well or can be further improved.

Figure 4 reports the time needed to compute both the upper bound and a lower
bound solution as we vary the target rank.

5.3 Optimal experimental design

In this section, we benchmark our dual bound for D-optimal experimental design (29)
against the convex relaxation (28) and a greedy submodular maximization approach,
in terms of both bound quality and the ability of all three approaches to generate high-
quality feasible solutions. We round both relaxations to generate feasible solutions
greedily, by setting the k largest zi ’s in a continuous relaxation to 1, while for the
submodular maximization approach we iteratively set the j th index of z to 1, where
S is initially an empty set and we iteratively take

S ← S ∪ { j} : j ∈ arg max
i∈[n]\S

{
log det

ε

(∑
l∈S

zlala�l + ai a�i

)}
.
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Fig. 4 Computational time to compute a feasible solution (ALS) and solve the relaxation (Semidefinite
bound) vs. target rank k, averaged over 100 synthetic completely positive matrix factorization instances
where n = 50, ktrue = 10

Table 3 Average runtime in seconds and relative bound gap per approach, over 20 random instances where
n = 10,m = 20

Problem (28)+ round Submodular Problem (29)+ round

k Time(s) Gap (%) Time(s) Gap (%) Time(s) Gap (%)

1 0.52 88.8 0.00 88.9 347.0 0.00

2 0.63 93.7 0.00 93.7 338.5 0.01

3 0.59 97.1 0.00 97.0 320.8 0.06

4 0.63 100.2 0.00 100.2 338.7 0.18

5 0.53 103.8 0.00 103.9 331.1 0.37

6 0.53 109.0 0.00 109.0 287.5 1.40

7 0.55 117.7 0.00 117.7 255.1 2.39

8 0.60 136.9 0.00 138.5 236.1 5.25

9 0.54 260.9 0.00 287.5 235.9 28.43

Interestingly, the greedy rounding approach enjoys rigorous approximation guaran-
tees (see [48, 71]), while the submodular maximization approach also enjoys strong
guarantees (see [58]).

We benchmark all methods in terms of their performance on synthetic D-optimal
experimental design problems, where we let A ∈ R

n×m be a matrix with i.i.d.
N (0, 1√

n
) entries. We set n = 20,m = 10, ε = 10−6 and vary k < m over 20

random instances. Table 3 depicts the average relative bound gap, objective values,
and runtimes for all 3 methods (we use the lower bound from (28)’s relaxation to
compute the submodular bound gap). Note that all results for this experiment were
generated on a standardMacbook pro laptop with a 2.9GHZ 6-core Intel i9 CPU using
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16GB DDR4 RAM, CVX version 1.22, Matlab R2021a, and Mosek 9.1. Moreover,
we optimize over (29)’s relaxation using the CVXQuad package developed by [33].

Relaxation quality: We observe that (29)’s relaxation is dramatically stronger than
(28), offering bound gaps on the order of 0%−3% when k ≤ 7, rather than gaps of
90% or more. This confirms the efficacy of the MPRT, and demonstrates the value
of taking low-rank constraints into account when designing convex relaxations, even
when not obviously present.

Scalability:Weobserve that (29)’s relaxation is around twoorders ofmagnitude slower
than the other proposed approaches, largely because semidefinite approximations of
quantum relative entropy are expensive, but is still tractable for moderate sizes. We
believe, however, that the relaxation would scale significantly better if it were opti-
mized over using an interior point method for non-symmetric cones (see, e.g., [49,
72]), or an alternating minimization approach (see [34]). As such, (29)’s relaxation is
potentially useful at moderate problem sizes with off-the-shelf software, or at larger
problem sizes with problem-specific techniques such as alternating minimization.

6 Conclusion

In this paper, we introduced theMatrix PerspectiveReformulation Technique (MPRT),
a new technique for deriving tractable and often high-quality relaxations of a wide
variety of low-rank problems. We also invoked the technique to derive the convex
hulls of some frequently-studied low-rank sets, and provided examples where the
technique proves useful in practice. This is significant and potentially useful to the
community, because substantial progress on producing tractable upper bounds for low-
rank problems has been made over the past decade, but until now almost no progress
on tractable lower bounds has followed.

Future work could take three directions: (1) automatically detecting structures
where the MPRT could be applied, as is already done for perspective reformulations
in the MIO case by CPLEX and Gurobi, (2) developing scalable semidefinite-free
techniques for solving the semidefinite relaxations proposed in this paper, and (3)
combining the ideas in this paper and in our prior work [11] with custom branching
strategies to solve low-rank problems to optimality at scale.
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A Background on Operator Functions

In this work, we make repeated use of operator functions, i.e., functions defined from
the spectral decomposition of a matrix. Namely, for any function ω : R → R, its
corresponding operator function fω : Sn → Sn is defined as

fω(X) = U Diag(ω(λx
1), . . . , ω(λx

n))U
�,

where X = U Diag(λx
1, . . . , λ

x
n)U

� is an eigendecomposition of X . In this appendix,
we present some common examples and useful properties of operator functions.

A.1 Examples: matrix exponential and logarithm

For self-consistency of the paper, we now define the matrix exponential and logarithm
functions and summarize their properties. These results are well known and can be
found in modern matrix analysis textbooks (see, e.g., [13])

Definition 2 (Matrix exponential) Let X ∈ Sn be a symmetric matrix with eigen-
decomposition X = U	U�. Letting exp(	) = diag(eλ1 , eλ2 , . . . , eλn ), we define
exp(X) := U exp(	)U�.

Proposition 6 The matrix exponential, exp : Sn → Sn+, satisfies the following prop-
erties:

– Power series expansion: exp(X) = I+∑∞
i=1

1
i !X

i .
– Trace monotonicity: X � Y �⇒ tr(exp(X)) ≤ tr(exp(Y)).
– Golden-Thompson-inequality: tr(exp(X + Y)) ≤ tr(exp(X))+ tr(exp(Y)).

Remark 13 The matrix exponential is not monotone: X � Y ��⇒ exp(X) � exp(Y)

[13, Chapter V].

Definition 3 (Matrix logarithm) Let X ∈ Sn be a symmetric matrix with eigende-
composition X = U	U�. Letting log(	) = diag(log(λ1), log(λ2), . . . , log(λn)),
we have log(X) := U log(	)U�.

Proposition 7 The matrix logarithm, log(X) : Sn++ → Sn, satisfies the following
properties:

– Operator monotonicity: X � Y �⇒ log(X) � log(Y).
– Functional inversion: log(exp(X)) = X ∀X ∈ Sn.
– Jacobi formula I: tr(log(X)) = log det(X).

– Jacobi formula II: exp
( 1
n tr log(X)

) = det(X)
1
n .

A.2 Properties of operator functions

Among other properties, one can show that the trace of operator functions is invariant
under an orthogonal rotation, i.e., tr( fω(X)) = tr( fω(U�XU)) for any orthogonal
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rotation U . Also, if ω is analytical, then fω is also analytical with the same Taylor
expansion.

In our analysis (in particular the proof of Proposition 3), we will use this simple
bound on v� fω(A)v in the case where ω is convex:

Lemma 4 Consider a convex function ω : R → R and a symmetric matrix A ∈ Sn.
Consider a unit vector v. Then,

v� fω(A)v ≥ ω
(
v�Av

)
.

Proof Consider a spectral decomposition of A, A = ∑n
i=1 λiuiu�i . Then, fω(A) =∑n

i=1 ω(λi )uiu�i and

v� fω(A)v =
n∑

i=1

ω(λi )v
�uiu�i v ≥ ω

(
n∑

i=1

λiv
�uiu�i v

)
= ω

(
v�Av

)
,

where the inequality comes from the convexity of ω since v�uiu�i v = (u�i v)2 ≥ 0
and

∑n
i=1 v�uiu�i v = v�

(∑n
i=1 uiu

�
i

)
v = ‖v‖2 = 1. ��

B Omitted Proofs

In this section, we supply all omitted proofs, in the order the results were stated.

B.1 Proof of Proposition 3

Proof Fix X ∈ Sn . For Y � 0, the perspective of fω is well-defined according
to Definition 1. Now, consider an arbitrary Y 
 0 and define P as the orthogonal
projection onto the kernel of Y , which is orthogonal to Span(Y). Then, Y ε := Y +εP
for ε > 0 is invertible. The closure of the matrix perspective of fω is defined by

continuity as the limit of Mε := Y
1
2
ε fω

(
Y
− 1

2
ε XY

− 1
2

ε

)
Y

1
2
ε for ε → 0.

Since the ranges of Y and P are orthogonal (Y P = PY = 0), we have Y
− 1

2
ε =

Y− 1
2 + ε− 1

2 P , and

Y
− 1

2
ε XY

− 1
2

ε = Y− 1
2 XY− 1

2 + ε−
1
2 PXY− 1

2 + ε−
1
2Y− 1

2 X P + ε−1PX P .

Note that limε→0 Y
1
2
ε = Y

1
2 but limε→0 Y

− 1
2

ε �= Y− 1
2 . We now distinguish two cases.

Case 1: If span(X) ⊆ span(Y), X P = PX = 0 so

Y
− 1

2
ε XY

− 1
2

ε = Y− 1
2 XY− 1

2 ,

Mε = Y
1
2
ε fω

(
Y− 1

2 XY− 1
2

)
Y

1
2
ε →ε→0 Y

1
2 fω

(
Y− 1

2 XY− 1
2

)
Y

1
2 .
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Case 2: If span(X) � span(Y), consider an orthonormal basis of R
n such that

u1, . . . , uk is an eigenbasis of Span(Y) (with respective eigenvalues λ
y
1, . . . λ

y
k ) and

uk+1, . . . , un is a basis of Span(Y)⊥ = Ker(Y). By assumption, k < n and there
exists j > k such that u�j Xu j �= 0. Without loss of generality, we shall assume

u�n Xun �= 0. We show that the matrix Mε goes to infinity as ε → 0 by showing that
u�n Mεun diverges.

Since Y
± 1

2
ε un = ε± 1

2 un , we have

u�n Mεun = ε u�n fω

(
Y
− 1

2
ε XY

− 1
2

ε

)
un ≥ ε ω

(
u�n Y

− 1
2

ε XY
− 1

2
ε un

)

= ε ω
(
ε−1u�n Xun

)
,

where the inequality follows from the convexity of ω and Lemma 4. By Assumption
1,

lim
ε→0

εω
(
ε−1u�n Xun

)
= ω∞(u�n Xun) = +∞,

because u�n Xun �= 0 and ω is coercive. ��

We now provide a simple extension of Proposition 3 that will prove useful later in
our exposition.

Corollary 3 Consider a function ω : R → R satisfying Assumption 1 and denote its
associated operator function fω. Consider a closed set X ⊆ Sn and define

f (X) =
{
fω(X) if X ∈ X ,

+∞ otherwise.

Then, the closure of the matrix perspective of f is, for any X ∈ Sn, Y ∈ Sn+,

g f (X,Y) =

⎧⎪⎨
⎪⎩
Y

1
2 fω(Y− 1

2 XY− 1
2 )Y

1
2 if Span(X) ⊆ Span(Y),Y 
 0,

Y− 1
2 XY− 1

2 ∈ X ,

∞ otherwise,

where Y− 1
2 denotes the pseudo-inverse of the square root of Y .

Proof Fix X ∈ Sn and Y ∈ Sn+. From Proposition 3, we know that g f (X,Y) = +∞
if Span(X) � Span(Y). Let us assume that Span(X) ⊆ Span(Y). Following the same
construction as in the proof of Proposition 3, we obtain a sequence Y ε that converges

to Y as ε → 0 and such that Y
− 1

2
ε XY

− 1
2

ε = Y− 1
2 XY− 1

2 , which concludes the proof.
��
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B.2 Proof of Lemma 2

Proof First, let us observe that CX = {M : MX = XM} is a closed subset of
Sn , contains the identity, and is closed under multiplication and transposition, also
know as a Von Neumann subalgebra (see [20, Section 4] for a detailed treatment of
projections onto subalgebras). The orthogonal projection of a semidefinite matrix onto
CX is also semidefinite and has the same trace [20, Theorem. 4.13], so

tr
(
Y |X

) = tr (Y) .

Furthermore, since Y �→ g fω(X,Y) is matrix convex, [20, Theorem 4.16] yields

g fω(X,Y |X ) � g fω(X,Y)|X .

Taking the trace on both sides and using that tr
(
g fω(X,Y)|X

) = tr
(
g fω(X,Y)

)
concludes the proof. ��
Remark 14 If X = ∑

i∈[n] λiuiu�i is a spectral decomposition of X , then the pro-
jection of any matrix Y onto the commutant of X can be computed as Y|X =∑

i∈[n] λiuiu�i Yuiu�i . This operation is known in the literature as pinching [20, 25].

In otherwords, taking the projection ofY onto the commutant of X is a trace preserving
operation that can only reduce the value of tr

(
g fω(X, ·)). In this paper, we invoke the

projection onto the commutant of X for theoretical purposes, not computational ones.
So we are not interested in how to compute Y |X in practice. Note that, according to
Proposition 2(a), Lemma 2 holds if fω is matrix convex.

B.3 Counterexample to joint convexity of trace of matrix perspective of cube

In this section, we demonstrate by counterexample that ifω is a convex and continuous
function then, even though the trace of its matrix extension, tr( fω), is convex (c.f. [20],
Theorem 2.10), the trace of its matrix perspective need not be convex.

Specifically, let us consider ω(x) = x3. In this case, ω is convex on R+, fω is not
matrix convex, but tr( fω) is matrix convex. We have that

tr(g fω(X,Y)) = tr
(
XY†XY†X

)

for X ∈ Span(Y), X,Y ∈ Sn+. Let us now consider

Y1 =
(
0.160378 0.343004
0.343004 0.764592

)
, Y2 =

(
0.0859208 0.181976
0.181976 0.52666

)
,

X1 =
(
0.242865 0.543321
0.543321 1.26604

)
, X2 =

(
0.0595215 0.241702
0.241702 1.0596

)
.

Then, some elementary algebra reveals that

tr
[
g fω

( 1
2X1 + 1

2X2,
1
2Y1 + 1

2Y2
)] = 6.248327,
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while

1
2 tr

[
g fω (X1,Y1)

]+ 1
2 tr

[
g fω (X2,Y2)

] = 6.23977,

which verifies that tr(g fω(X,Y)) is not midpoint convex in (X,Y), despite tr( fω)

being convex.

B.4 Proof of Proposition 5

Proof We use the proof technique laid out in [43, Section 3.1], namely writing T as
the disjunction of two convex sets driven by whether z is active and applying Fourier-
Motzkin elimination. That is, we have T = T 1 ∪ T 2 where:

T 1 = {
(0, y1, 0, t1) : t1 ≥ |y1 − d|q} ,

T 2 = {
(x2, y2, 1, t2) : t2 ≥ |x2 − y2 − d|q , |x2| ≤ M

}
.

Moreover, a point (x, y, z, t) is in the convex hull T c if and only if it can be written as
a convex combination of points in T 1, T 2. Letting λ1, λ2 denote the weight of points
in this system, we then have that (x, y, z, t) ∈ T c if and only if the following system
admits a solution:

λ1 + λ2 = 1,

x = λ2x2,

y = λ1y1 + λ2y2,

t = λ1t1 + λ2t2,

z = λ2,

t1 ≥ |y1 − d|q ,
t2 ≥ |x2 + y2 − d|q ,
λ1, λ2 ≥ 0,

|x2| ≤ M . (37)

For ease of computation, we now eliminate variables. First, one can substitute t1, t2
for their lower bounds in the definition of t and replace λ2 with z to obtain

λ1 + z = 1,

x = zx2,

y = λ1y1 + zy2,

t ≥ λ1|y1 − d|q + z|x2 + y2 − d|q ,
λ1, z ≥ 0,

|x2| ≤ M . (38)
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Next, we substitute x/z for x2 and (y − zy2)/λ1 for y1 to obtain

λ1 + z = 1, λ1, z ≥ 0, |x | ≤ Mz,

t ≥ 1

λ
q−1
1

|y − y2z − d(1− z)|q + 1

zq−1 |x + y2z − dz|q . (39)

Finally, we let zy2 be the free variable β and set λ1 = 1 − z to obtain the required
convex set. ��

B.5 Convex closure of epigraph of separable function under cardinality constraint

In this section, to keep this paper self-contained, we verify that the convex closure of
the set

H :=
{

(x, y, t) ∈ R
n × {0, 1}n × R :

∑
i

yi ≤ k,

n∑
i=1

ω (xi )+ μ
∑
i

yi ≤ t, xi = 0 if yi = 0 ∀i ∈ [n]
}

. (40)

is given by the following set:

Hc =
{

(x, y, t) ∈ R
n × [0, 1]n × R :

∑
i

yi ≤ k,

n∑
i=1

yiω
(
xi
yi

)
+ μ

∑
i

yi + (n −
∑
i

yi )ω(0) ≤ t

}
. (41)

By fixing t , we then obtain precisely the result claimed in the proof of Theorem 2.
We remark that this result is essentially due to [76, Theorem 3]; the result we prove

here is a minor extension which allows for ω(0) �= 0. Formally, we have the following
result:

Proposition 8 Suppose that ω satisfies Assumption 1. Then, Hc is the closure of the
convex hull of H.

Proof Let (a, b) ∈ R
2n and consider the following two optimization problems

min a� y + b�x + t s.t. (x, y, t) ∈ H, (42)

min a� y + b�x + t s.t. (x, y, t) ∈ Hc. (43)

Then, sinceHc is a convex outer approximation ofH, it suffices to show that the above
two optimization problems are equivalent, i.e., there exists an optimal solution to (43)
which is optimal for (42) with the same objective value (as argued in [76, Theorem 1]
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we can associate a constant of 1 with t without loss of generality). Therefore, let us
denote by ω� the convex conjugate of ω, i.e.,

ω�(γ ) = sup
v∈R

vγ − ω(v),

and let � := {γ ∈ R : ω�(γ ) < ∞}. Then, by Fenchel’s inequality on the perspective
function, for any γ ∈ � and any y ≥ 0, x ∈ R

n we have

yiω

(
xi
yi

)
≥ γ xi − yiω

�(γ ).

Moreover, we must have that bi ∈ � for each i ∈ [n]; otherwise, both (42) and
(43) are unbounded. Therefore, set γ = −bi in the above expression for each i and
replace t with the left-hand-side of the inequality in (43), which provides the following
relaxation to (43):

min
y∈[0,1]n : e� y≤k

n∑
i=1

(
ai + μ− ω�(−bi )+ (1− ω(0))

)
yi .

This problem is a linear one in y with binary extreme points, and thus it admits an
optimal solution which is binary. Moreover, if we set x�

i = supw∈R−biw − ω(w) if
zi = 1 and wi = 0 otherwise, then we obtain a feasible solution in (42) with the same
objective. ��

C Generalizing theMatrix Perspective Reformulation Technique

We now demonstrate the MPRT can be extended to incorporate a different separa-
bility of eigenvalues assumption, at the price of (a possibly significant amount of)
additional notations. For any symmetric matrix X , let us denote λ

↓
i (X) the i th largest

eigenvalue of X . Before proceeding any further, we recall the following result, due
to [4, Example 18.c], which provides a semidefinite representation of the sum of the
k largest eigenvalues:

Lemma 5 (Representability of sumsof largest eigenvalues)Let Sk(X) :=∑k
i=1 λ

↓
i (X)

denote the sum of the k largest eigenvalues of a symmetric matrix X ∈ Sn. Then, the
epigraph of Sk , Sk(X) ≤ tk , admits the following semidefinite representation:

tk ≥ ksk + tr(Zk), Zk + skI 
 X, Zk 
 0.

Based on this result, we can relax the assumption that the penalty term �(X)

corresponds to the trace of an operator function. Instead, we can assume:

Assumption 4 �(X) = ∑
i∈[n] piλ

↓
i ( fω(X)), where p1 ≥ . . . ≥ pn ≥ 0 and where

ω is a function satisfying Assumption 1 and whose associated operator function, fω,
is matrix convex.
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This assumption is particularly suitable for Markov Chain problems (see, e.g., [15,
Chapter 4.6]), where we are interested in controlling the behaviour of the largest
eigenvalue (which always equals 1) plus the second largest eigenvalue of a matrix.
However, it might appear to be challenging to model, since, e.g., λ

↓
2 (X) is a non-

convex function. By applying a telescoping sum argument reminiscent of the one in
[4, Proposition 4.2.1], namely

�(X) =
n∑

i=1

piλ
↓
i ( f (X)) =

n∑
i=1

(pi − pi+1)Si ( f (X))

with the convention pn+1 = 0, Lemma 5 allows us to rewrite low-rank problems
where �(X) satisfies Assumption 4 in the form:

min
Y∈Yk

n

min
X∈Sn+,Zi∈Sn+,

si ,ti∈R+ ∀i∈[n]
〈C, X〉 + μ · tr(Y)+

n∑
i=1

(pi − pi+1)ti

s.t. 〈Ai , X〉 = bi ∀i ∈ [m], X = YX, X ∈ K,

ti ≥ isi + tr(Zi ), Zi + si I 
 f (X), Zi 
 0 ∀i ∈ [n],
(44)

where ti models the sum of the i largest eigenvalues of f (X). Applying the MPRT
then yields the following extension to Theorem 1:

Proposition 9 Suppose Problem (44) attains a finite optimal value. Then, the following
problem attains the same value:

min
Y∈Yk

n

min
X∈Sn+,Zi∈Sn+,

si ,ti∈R+ ∀i∈[n]
〈C, X〉 + μ · tr(Y)+

n∑
i=1

(pi − pi+1)ti

s.t. 〈Ai , X〉 = bi ∀i ∈ [m], Y− 1
2 XY− 1

2 ∈ K,

ti ≥ isi + i − tr(Y)+ tr(Zi ) ∀i ∈ [n],
Zi + si I 
 g f (X,Y)+ω(0)(I− Y), Zi 
 0 ∀i ∈ [n].

(45)

The proof of this reformulation is almost identical to the proof of Theorem 1, after
observing that (20) holds not only for the traces but for the matrices directly, i.e., if X
and Y ∈ Yk

n commute, we have

f (X) = g f (X,Y)+ ω(0)(I− Y).

Problem (45) involves n times as many variables as Problem (18) and therefore
supplies substantially less tractable relaxations. Nonetheless, it could be useful in
specific instances. In the aforementionedMarkov Chain mixing problem, pi− pi+1 =
0 ∀i ≥ k with k = 2, so we can omit the variables which model the eigenvalues larger
than 2 .
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Appendix D Extension to the Rectangular Case

In this section, we extend theMPRT to the case where X is a generic n×m matrix and
f (X) is the convex quadratic penalty f (X) = X�X . In this case, tr( f (X)) = ‖X‖2F
is the squared Frobenius norm of X .

First, observe that f : R
n×m → Sm+ . Alternatively, one could have considered

g(X) = XX� ∈ Sn+ and obtain the same penalty, i.e., tr( f (X)) = tr(g(X)). In other
words, one can arbitrarily choose whether f preserves the row or the column space of
X . By the Schur complement lemma, the epigraph is semidefinite representable via

epi( f ) :=
{
(X, θ) ∈ R

n×m × Sm+ :
(

θ X�
X I

)

 0

}
,

so f is matrix convex.
In the symmetric case, we considered the matrix perspective of f at (X,Y), where

Y 
 0 is a matrix controlling the range of X . When X is no longer symmetric, it
is natural to consider a matrix perspective function which involves two projection
matrices, one of which models the row space and one which models the column
space, as proposed in our prior work [11]. More precisely, for Y , Z � 0 we define a
perspective of f as

g f (X,Y , Z) = Z
1
2 f (Y− 1

2 XZ−
1
2 )Z

1
2 . (46)

For f (X) = X�X , this function actually does not depend on Z. Hence, we consider

g̃ f (X,Y) = g f (X,Y , Z) = X�Y−1X .

Extending this function to positive semidefinite Y using the same proof technique as
in Proposition 3, we then obtain

g̃ f (X,Y) =
{
X�Y†X if Y 
 0, Span(X) ⊆ Span(Y),

∞ otherwise.

Proof Fix X ∈ Sn andY 
 0. As in the proof of Proposition 3 denote P the orthogonal
projection onto the kernel of Y , and define Y ε := Y + εP for ε > 0. Hence,

X�Y−1
ε X = X�Y†X + ε−1X�PX .

The right-hand side admits a finite limit if and only if

X�PX = 0 ⇐⇒ Span(X) ⊆ Ker(P) = Span(Y). ��
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Furthermore, using the Schur complement lemma as in [11], one can show that g̃ f

is SDP-representable:

epi(g̃ f ) =
{
(X,Y , θ) ∈ R

n×m × Sn+ × Sm :
(

θ X�
X Y

)

 0

}
,

and hence matrix convex.
Finally,we can easily check that Theorem1 still holds in the symmetric case because

(20)—which simplifies to tr( f (X)) = tr(g̃ f (X)) in this case—holds for any Y ∈ Yk
n

such that X = YX .

Remark 15 We believe the approach outlined above could be generalized to a broader
class of function that generalizes operator functions to the non-symmetric case.
Namely, we could consider functions of the form

fω(X) = VDiag
(
ω(σ x

1 ), . . . , ω(σ x
m)
)
V�

where X = UDiag
(
σ x
1 , . . . , σ x

m

)
V� is a singular value decomposition of X and ω is

a convex function satisfying Assumption 1. Again, fω could arbitrarily be defined as
preserving U or V . For these functions, the perspective g fω(X,Y , X) is well defined
for Y , Z � 0. Unlike in the quadratic case, however, its value will depend on both Y
and Z. Developing the theoretical tools necessary to extend the MPRT to rectangular
matrices, is therefore a question for future research.
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