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Abstract
In this paper, we study the convex quadratic optimization problem with indicator
variables. For the 2 × 2 case, we describe the convex hull of the epigraph in the
original space of variables, and also give a conic quadratic extended formulation. Then,
using the convex hull description for the 2 × 2 case as a building block, we derive
an extended SDP relaxation for the general case. This new formulation is stronger
than other SDP relaxations proposed in the literature for the problem, including the
optimal perspective relaxation and the optimal rank-one relaxation. Computational
experiments indicate that the proposed formulations are quite effective in reducing the
integrality gap of the optimization problems.
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1 Introduction

We consider the convex quadratic optimization with indicators:

(QI) min
{
a′x + b′y + y′Qy : (x, y) ∈ In

}
, (1)

where the indicator set is defined as

In = {(x, y) ∈ {0, 1}n × R
n+ : yi (1 − xi ) = 0, ∀i ∈ [n]} ,

wherea andb aren-dimensional vectors, Q ∈ R
n×n is a positive semidefinite (PSD)

matrix and [n] := {1, 2, . . . , n}. For each i ∈ [n], the complementarity constraint
yi (1 − xi ) = 0, along with the indicator variable xi ∈ {0, 1}, is used to state that
yi = 0 whenever xi = 0. Numerous applications, including portfolio optimization
[12], optimal control [26], image segmentation [34], signal denoising [9] are either
formulated as (QI) or can be relaxed to (QI).

Building strong convex relaxations of (QI) is instrumental in solving it effectively.
A number of approaches for developing linear and nonlinear valid inequalities for (QI)
are considered in literature. Dong and Linderoth [22] describe lifted linear inequalities
from its continuous quadratic optimization counterpart with bounded variables. Bien-
stock and Michalka [13] derive valid linear inequalities for optimization of a convex
objective function over a non-convex set based on gradients of the objective function.
Valid linear inequalities for (QI) can also be obtained using the epigraph of bilinear
terms in the objective [e.g.14, 20, 30, 39]. In addition, several specialized results con-
cerning optimization problems with indicator variables exist in the literature [6, 10,
11, 16, 19, 27, 28, 37, 40].

There is a substantial body of research on the perspective formulation of convex
univariate functions with indicators [1, 21–23, 29, 33, 44]. When Q is diagonal, y′Qy
is separable and the perspective formulation provides the convex hull of the epigraph
of y′Qy with indicator variables by strengthening each term Qii y2i with its perspective
counterpart Qii y2i /xi , individually. For the general case, however, convex relaxations
based on the perspective reformulation may not be strong. The computational experi-
ments in [25] demonstrate that as Q deviates from a diagonal matrix, the performance
of the perspective formulation deteriorates.

Beyond the perspective reformulation, which is based on the convex hull of the
epigraph of a univariate convex quadratic function with one indicator variable, the
convexification for the 2 × 2 case has received attention recently. Convex hulls of
univariate and 2 × 2 cases can be used as building blocks to strengthen (QI) by
decomposing y′Qy into a sequence of low-dimensional terms. Castro et al. [17] study
convexification of a special class of two-term quadratic function controlled by a sin-
gle indicator variable. Jeon et al. [36] give conic quadratic valid inequalities for the
2 × 2 case. Frangioni et al. [25] combine perspective reformulation and disjunctive
programming and apply them to the 2 × 2 case. Atamtürk et al. [8] study the convex
hull of the mixed-integer set

Z− :=
{
(x, y, t) ∈ I2 × R+ : t ≥ d1y

2
1 − 2y1y2 + d2y

2
2

}
,
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2 × 2-Convexifications for convex... 97

with coefficients d ∈ D := {d ∈ R
2 : d1 ≥ 0, d2 ≥ 0, d1d2 ≥ 1}, which

subsumes the case where d1 = d2 = 1 considered in [4]. The conditions on the
coefficients d1, d2 imply convexity of the quadratic function. Atamtürk and Gómez
[5] study the case where the continuous variables are free and the rank of the coeffi-
cient matrix is one in the context of sparse linear regression. Anstreicher and Burer
[3] give an extended SDP formulation for the convex hull of the 2 × 2 bounded set{
(y, yy′, xx ′) : 0 ≤ y ≤ x ∈ {0, 1}2}. Their formulation does not assume convexity of
the quadratic function and contain PSDmatrix variables X andY as proxies for xx ′ and
yy′ as additional variables. De Rosa and Khajavirad [18] give the explicit convex hull
description of the set

{
(y, yy′, xx ′) : (x, y) ∈ I2

}
. Anstreicher and Burer [2] study

computable representations of convex hulls of low dimensional quadratic forms with-
out indicator variables.More general convexifications for low-rank quadratic functions
[7, 31] or quadratic functions with tridiagonal matrices [38] have also been proposed.

To design convex relaxations for (QI) based on convexifications for simpler sub-
structures, a standard approach is to decompose the matrix Q as Q = R +∑ j∈J Q j ,
for some index set J , where R, Q j � 0, j ∈ J . After writing problem (1) as

min a′x + b′y + y′Ry +
∑

j∈J

t j (2a)

s.t. t j ≥ y′Q j y ∀ j ∈ J (2b)

(x, y) ∈ In, t ∈ R
J+, (2c)

formulation (2) can then be strengthened based on convexifications of the simpler
structures induced by constraints (2b) (e.g., matrices Q j are diagonal or 2× 2). There
are two main approaches to implement convexifications based on (2). On the one
hand, one may choose fixed R, Q j , j ∈ J , a priori and treat them as parameters,
as done in [7, 24, 25, 38, 45], resulting in simpler formulations (e.g., conic quadratic
representable) thatmay be amenable to usewith off-the-shelf solvers formixed-integer
optimization. On the other hand, one may treat matrices R, Q j , j ∈ J , as decision
variables that are chosen with the goal of obtaining the optimal relaxation bound
after strengthening, as done in [5, 8, 21]. The resulting formulations with the second
approach are stronger but typically more complex to represent. In general, neither
approach is preferable to the other.

Contributions

The contributions of this paper are two-fold.

1. 2× 2 case: we describe the convex hull of the epigraph of a convex bivariate
quadratic with a positive cross product and indicators.

Consider

Z+ :=
{
(x, y, t) ∈ I2 × R+ : t ≥ d1y

2
1 + 2y1y2 + d2y

2
2

}
,
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98 S. Han et al.

where d ∈ D. Observe that any bivariate convex quadratic with positive off-diagonals
can be written as d1y21 + 2y1y2 + d2y22 , by scaling appropriately. Therefore, Z+ is the
complementary set to Z− and, together, Z+ and Z− model epigraphs of all bivariate
convex quadratics with indicators and nonnegative continuous variables.

In this paper, we propose conic quadratic extended formulations to describe
cl conv(Z−) and cl conv(Z+). These extended formulations are more compact than
alternatives previously proposed in the literature. More importantly, a distinguishing
contribution of this paper is that we also give the explicit description of cl conv(Z+) in
the original space of the variables. The corresponding convex envelope of the bivari-
ate function is a four-piece function. While convexifications in the original space of
variables are more difficult to implement using current off-the-shelf mixed-integer
optimization solvers, they offer deeper insights on the structure of the convex hulls.
Whereas the ideal formulations of Z− can be conveniently described with two simple
valid “extremal" inequalities [8], a similar result does not hold forZ+ (see Example 1
in Sect. 3). The derivation of ideal formulations for the more involved set Z+ differs
significantly from the methods in [8]. The complementary results of this paper and
[8] for Z− complete the convex hull descriptions of bivariate convex functions with
indicators and nonnegative continuous variables.

2. General case:wedevelop an optimal SDP relaxation based on 2×2 convexifications
for (QI)

In order to construct a strong convex formulation for (QI), we extract a sequence of
2 × 2 PSD matrices from Q such that the residual term is a PSD matrix as well, and
convexify each bivariate quadratic term utilizing the descriptions of cl conv(Z+) and
cl conv(Z−). This approach works very well when Q is 2 × 2 PSD decomposable,
i.e., when Q is scaled-diagonally dominant [15]. Otherwise, a natural question is how
to optimally decompose y′Qy into bivariable convex quadratics and a residual convex
quadratic term so as to achieve the best strengthening.

We address this question by deriving an optimal convex formulation using SDP
duality. The new SDP formulation dominates any formulation obtained through a
2 × 2-decomposition scheme. This formulation is also stronger than other SDP for-
mulations in the literature, including the optimal perspective formulation [21] and the
optimal rank-one convexification [5]. In addition, the proposed formulation is solved
many orders of magnitude faster than the 2 × 2-decomposition approaches based
on disjunctive programming [25], and delivers higher quality bounds than standard
mixed-integer optimization approaches in difficult portfolio index tracking problems.

Outline

The rest of the paper is organized as follows. In Sect. 2 we review the convex hull
results onZ− and illustrate the structural difference betweenZ+ andZ−. In Sect. 3 we
provide a conic quadratic formulation of cl conv(Z+) and cl conv(Z−) in an extended
space and derive the explicit form of cl conv(Z+) in the original space. In Sect. 4,
employing the results in Sect. 3, we give a strong convex relaxation for (QI) using
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2 × 2-Convexifications for convex... 99

SDP techniques. In Sect. 5, we compare the strength of the proposed SDP relaxation
with others in literature. In Sect. 6, we present computational results demonstrating
the effectiveness of the proposed convex relaxations. Finally, in Sect. 7, we conclude
with a few final remarks.

Notation

To simplify the notation throughout, we adopt the following convention for division
by 0: given x ≥ 0, x2/0 = ∞ if x 	= 0 and x2/0 = 0 if x = 0. Thus, x2/z, the
closure of the perspective of x2, is a closed convex function (see [41], pages67-68).
For a setX ⊆ R

n , cl conv(X ) denotes the closure of the convex hull ofX . For a vector
v, diag(v) denotes the diagonal matrix V with Vii = vi for each i . Finally, Sn+ refers
to the cone of n × n real symmetric PSD matrices.

2 Preliminaries

In this section, we review the existing results on convex hulls of sets Z−, Z+, and
their relaxation Z f with free continuous variables:

Z f :=
{
(x, y, t)∈{0, 1}2×R

3 : t ≥ d1y
2
1 ± 2y1y2+d2y

2
2 , yi (1−xi ) = 0, i ∈ [2]

}
·

Note that when the continuous variables are free, the sign associated with the cross
term 2y1y2 is irrelevant, since one can state it equivalently with the opposite sign by
substituting ȳi = −yi . In contrast, if y ≥ 0, such a substitution is not possible; hence,
the need for separate analyses for sets Z+ and Z−.

We first point out that all three sets can be naturally seen as disjunctions of four
convex sets corresponding to the four possible values for x ∈ {0, 1}2. Thus, a direct
application of disjunctive programming yields similar (conic quadratic) representa-
tions of the three sets [25, 36] but such representations require several additional
variables. While the disjunctive approach might suggest that Z f , Z+, Z− may be
similar, we now argue that the sign of the cross terms materially affect the complexity
of the optimization problems as well as the structure of the convex hulls.

2.1 Optimization

The sign of the off-diagonals of matrix Q critically affect the complexity of the opti-
mization problem (QI). We first state a result concerning optimization with Stieltjes
matrices Q, first proven in [4].

Proposition 1 (Atamtürk and Gómez [4]) Problem (1) can be solved in polynomial
time if Q � 0 and Qi j ≤ 0 for all i 	= j and b ≤ 0.

In contrast, an analogous result does not hold if the off-diagonal terms of matrix Q
are nonnegative.
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100 S. Han et al.

Proposition 2 Problem (1) isNP-hard if Q � 0 and Qi j ≥ 0 for all i 	= j and b ≤ 0.

Proof We show that (QI) includes theNP−hard subset sum problem as a special case
under the assumptions of the proposition: givenw ∈ Z

n+, K ∈ Z+, solve the equation

w′x = K , x ∈ {0, 1}n . (3)

Set Q = (I + qq ′)/2 � 0 where q ∈ R
n++ is a parameter to be specified later. Let

pi = q2i , i ∈ [n], b = −q and a = γ p for some γ > 0 to be specified later as well.
For a vector z ∈ R

n and matrix M ∈ S
n+, let zS and MS denote the subvector and

principle submatrix defined by S ⊆ [n], respectively. Then (QI) reduces to

min
(x,y)∈In

1

2
y′(I + qq ′)y − q ′y + γ p′x

= min
S⊆[n],yS≥0

1

2
y′
S(IS + qSq

′
S)yS − q ′

S yS + γ
∑

i∈S
pi (S := {i : xi = 1})

min
S⊆[n] −

1

2
q ′
S

(
IS + qSq

′
S

)−1
qS + γ

∑

i∈S
pi (4a)

min
S⊆[n] −

1

2
q ′
S

(

IS − qSq ′
S

1 + ‖qS‖22

)

qS + γ
∑

i∈S
pi (Woodbury matrix identity)

min
S⊆[n] −

1

2

‖qS‖22
1 + ‖qS‖22

+ γ ‖qS‖22 (pi = q2i )

min
S⊆[n]

[
1

2(1 + ‖qS‖22)
+ γ (1 + ‖qS‖22)

]

− γ − 1

2
· (4b)

Note that the nonnegativity constraints are dropped in (4a) because they are trivially
satisfied by the optimal solution as

yS =
(

IS − qSq ′
S

1 + ‖qS‖22

)

qS = 1

1 + ‖qS‖22
qS ≥ 0.

Now, let qi = √
wi , i ∈ [n] and γ = 1

2(1+K )2
. Then (4b) simplifies to (after dropping

the constant term −γ − 1/2 and multiplying by 2)

=min
S

1

1 + w(S)
+ 1 + w(S)

(1 + K )2

≥ 2

1 + K
,

where the lower bound is attained if and only if w(S) = K . Hence, the subset sum
problem (3) has a solution if and only if the optimal value of (QI) as constructed above
equals 2/(1 + K ). ��
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2 × 2-Convexifications for convex... 101

Propositions 1 and 2 suggest that convex hulls of sets with negative cross terms are
substantially simpler than those with positive terms.

2.2 Rank-one results

It is convenient to formulate convex hulls of sets via conic quadratic constraints as
they are readily supported by modern mixed-integer optimization software. While
such representations are easy to obtain via disjunctive programming, the resulting
formulations generally have a prohibitive number of variables and constraints, which
hamper the performance of solvers. Therefore, it is of interest to find the most compact
conic quadratic formulations. In this regard, as well,Z+ is significantly more complex
thanZ f andZ−. Consider the existing results for the simpler sets in the rank-one case,
i.e., d1 = d2 = 1.

Proposition 3 Atamtürk and Gómez [5] If d1 = d2 = 1, then

cl conv(Z f )=
{
(x, y, t) ∈ [0, 1]2 × R

3 : t ≥ (y1±y2)
2, t(z1+z2) ≥ (y1 ± y2)

2
}
·

In particular, for the rank-one case with free continuous variables, the cl conv(Z f ) is
conic quadratic representable in the original space of variables, without the need for
additional variables.

Proposition 4 Atamtürk and Gómez [4] If d1 = d2 = 1, then

cl conv(Z−) =
{
(x, y, t) ∈ [0, 1]2 × R+3 : t ≥ φ(x1, x2, y1, y2)

}
,

where

φ(x1, x2, y1, y2) =
{

(y1 − y2)2/x1 if y1 ≥ y2
(y1 − y2)2/x2 if y1 ≤ y2.

In contrast to cl conv(Z f ), since constraints t ≥ (y1 − y2)2/xi , i ∈ [2], are not valid
forZ−, it is unclear how to reformulate cl conv(Z−) using conic quadratic constraints
in the original space of variables. A conic quadratic representation with two additional
variables is given in [8].

In Sect. 3, Corollary 2, we describe cl conv(Z+) in the original space for the rank-
one case. This description is more complex than Z− as it requires four pieces instead
of two and it is not conic-quadratic representable.We also provide a compact extended
formulation with three additional variables.

2.3 Full-rank results

A description of cl conv(Z−) in the original space of variables is given in [8]. Inter-
estingly, it can be expressed as two valid inequalities involving function φ introduced
in Proposition 4.
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102 S. Han et al.

Proposition 5 (Atamtürk et al. [8]) Set cl conv(Z−) is described by bound constraints
y ≥ 0, 0 ≤ x ≤ 1, and the two valid inequalities

t ≥ d1φ(x1, x2, y1, y2/d1) + y22
x2

(
d2 − 1

d1

)
,

t ≥ d2φ(x1, x2, y1/d2, y2) + y21
x1

(
d1 − 1

d2

)
.

Proposition 5 reveals that cl conv(Z−) requires only homogeneous functions that are
sums of rank-one and perspective convexifications. In Sect. 3, Proposition 7, we give
cl conv(Z+) in the original space of variables, and show that the resulting function
does not have either of these properties. The discrepancy between the results highlights
that cl conv(Z+) is fundamentally different from cl conv(Z−), and helps explain why
optimization with positive matrices Q (Proposition 2) is substantially more difficult
than optimization with Stieltjes matrices (Proposition 1).

3 Convex hull description ofZ+

In this section, we give ideal convex formulations for

Z+ =
{
(x, y, t) ∈ I2 × R+ : t ≥ d1y

2
1 + 2y1y2 + d2y

2
2

}
.

When d1 = d2 = 1, Z+ reduces to the simpler rank-one set

X+ =
{
(x, y, t) ∈ I2 × R+ : t ≥ (y1 + y2)

2
}

.

Set X+ is of special interest as it arises naturally in (QI) when Q is a diagonally
dominant matrix, see computations in Sect. 6.1 for details. As we shall see, the convex
hulls of Z+ and X+ are significantly more complicated than their complementary
sets Z− and X− studied earlier. In Sect. 3.1, we develop an SOCP-representable
extended formulation of cl conv(Z+). Then, in Sect. 3.2, we derive the explicit form
of cl conv(Z+) in the original space of variables.

3.1 Conic quadratic-representable extended formulation

We start by writing Z+ as the disjunction of four convex sets defined by all values of
the indicator variables; that is,

Z+ = Z1+ ∪ Z2+ ∪ Z3+ ∪ Z4+,

where Z i+, i = 1, 2, 3, 4 are convex sets defined as:

Z1+ = {(1, 0, u, 0, t1) : t1 ≥ d1u
2, u ≥ 0},
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2 × 2-Convexifications for convex... 103

Z2+ = {(0, 1, 0, v, t2) : t2 ≥ d2v
2, v ≥ 0},

Z3+ = {(1, 1, w1, w2, t3) : t3 ≥ d1w
2
1 + 2w1w2 + d2w

2
2, w1 ≥ 0, w2 ≥ 0},

Z4+ = {(0, 0, 0, 0, t4) : t4 ≥ 0}.

By the definition, a point (x1, x2, y1, y2, t) ∈ conv(Z+) if and only if it can be written
as a convex combination of four points belonging in Z i+, i = 1, 2, 3, 4. Using λ =
(λ1, λ2, λ3, λ4) as the corresponding weights, (x1, x2, y1, y2, t) ∈ conv(Z+) if and
only if the following inequality system has a feasible solution

λ1 + λ2 + λ3 + λ4 = 1 (5a)

x1 = λ1 + λ3, x2 = λ2 + λ3 (5b)

y1 = λ1u + λ3w1, y2 = λ2v + λ3w2 (5c)

t = λ1t1 + λ2t2 + λ3t3 + λ4t4 (5d)

t1 ≥ d1u
2, t2 ≥ d2v

2, t3 ≥ d1w
2
1 + 2w1w2 + d2w

2
2, t4 ≥ 0 (5e)

u, v, w1, w2, λ1, λ2, λ3, λ4 ≥ 0. (5f)

Wewill now simplify (5). First, by Fourier–Motzkin elimination, one can substitute
t1, t2, t3, t4 with their lower bounds in (5e) and reduce (5d) to t ≥ λ1d1u2 +λ2d2v2 +
λ3(d1w2

1 + 2w1w2 + d2w2
2). Similarly, since λ4 ≥ 0, one can eliminate λ4 and reduce

(5a) to
∑3

i=1 λi ≤ 1. Next, using (5c), one can substitute u = (y1 − λ3w1)/λ1
and v = (y2 − λ3w2)/λ2. Finally, using (5b), one can substitute λ1 = x1 − λ3 and
λ2 = x2 − λ3 to arrive at

max{0, x1 + x2 − 1} ≤ λ3 ≤ min{x1, x2} (6a)

λ3wi ≤ yi , i = 1, 2 (6b)

wi ≥ 0, i = 1, 2 (6c)

t ≥ d1(y1−λ3w1)
2

x1−λ3
+ d2(y2−λ3w2)

2

x2−λ3
+λ3(d1w

2
1 + 2w1w2 + d2w

2
2), (6d)

where (6a) results from the nonnegativity ofλ1, λ2, λ3, λ4, (6b) from the nonnegativity
of u and v. Finally, observe that (6b) is redundant for (6): indeed, if there is a solution
(λ,w, t) satisfying (6a), (6c) and (6d) but violating (6b), one can decrease w1 and w2
such that (6b) is satisfied without violating (6d).

Redefining variables in (6), we arrive at the following conic quadratic-representable
extended formulation for cl conv(Z+) and its rank-one special case cl conv(X+).

Proposition 6 The set cl conv(Z+) can be represented as

cl conv(Z+) =
{
(x, y, t) ∈ [0, 1]2 × R

3+ : ∃λ ∈ R+, z ∈ R
2+ s.t.

x1 + x2 − 1 ≤ λ ≤ min{x1, x2},
t ≥ d1(y1−z1)2

x1−λ
+ d2(y2−z2)2

x2−λ
+ d1z21+2z1z2+d2z22

λ

}
·
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104 S. Han et al.

Corollary 1 The set cl conv(X+) can be represented as

cl conv(X+) =
{
(x, y, t) ∈ [0, 1]2 × R

3+ : ∃λ ∈ R+, z ∈ R
2+ s.t.

x1 + x2 − 1 ≤ λ ≤ min{x1, x2},

t ≥ (y1 − z1)2

x1 − λ
+ (y2 − z2)2

x2 − λ
+ (z1 + z2)2

λ

}
·

Remark 1 One can apply similar arguments to the complementary setZ− to derive an
SOCP representable formulation of its convex hull as

cl conv(Z−) =
{
(x, y, t) ∈ [0, 1]2 × R

3+ : ∃λ ∈ R+, z ∈ R
2 s.t.

x1 + x2 − 1 ≤ λ ≤ min{x1, x2},
z1 ≤ y1, z2 ≤ y2,

t ≥ d1(y1−z1)2

x1−λ
+ d2(y2−z2)2

x2−λ
+ d1z21−2z1z2+d2z22

λ

}
·

This extended formulation is smaller than the one given Atamtürk et al. [8] for
cl conv(Z−).

3.2 Description in the original space of variables x, y, t

The purpose of this section is to express cl conv(Z+) and cl conv(X+) in the original
space.

Let �x := {λ ∈ R : max{0, x1 + x2 − 1} ≤ λ ≤ min{x1, x2}}, i.e., the set of fea-
sible λ implied by constraint (6a). Define

G(λ,w) := d1(y1 − λw1)
2

x1 − λ
+ d2(y2 − λw2)

2

x2 − λ
+ λ(d1w

2
1 + 2w1w2 + d2w

2
2)

and g(λ) : �x → R as

g(λ) := min
w∈R2+

G(λ,w).

Note that as G is SOCP-representable, it is convex. We first prove an auxiliary lemma
that will be used in the derivation.

Lemma 1 Function g(λ) is non-decreasing over �x .

Proof Note that for any fixed w and λ < min{x1, x2}, we have

∂G(λ,w)

∂λ
=d1[2(λw1 − y1)w1(x1 − λ) + (y1 − λw1)

2]
(x1 − λ)2
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2 × 2-Convexifications for convex... 105

+ d2[2(λw2 − y2)w2(x2 − λ) + (y2 − λw2)
2]

(x2 − λ)2

+ (d1w
2
1 + 2w1w2 + d2w

2
2)

= d1[w2
1(x1 − λ)2 + 2(λw1 − y1)w1(x1 − λ) + (y1 − λw1)

2]
(x1 − λ)2

+ d2[w2
2(x2 − λ2)

2 + 2(λw2 − y2)w2(x2 − λ) + (y2 − λw2)
2]

(x2 − λ)2

+ 2w1w2

= d1(w1x1 − y1)2

(x1 − λ)2
+ d2(w2x2 − y2)2

(x2 − λ)2
+ 2w1w2

≥ 0.

Therefore, for fixed w, G(·, w) is nondecreasing. Now for λ̃ ≤ λ̂, let w̃ and ŵ be
optimal solutions defining g(λ̃) and g(λ̂). Then,

g(λ̃) = G(λ̃, w̃) ≤ G(λ̃, ŵ) ≤ G(λ̂, ŵ) = g(λ̂),

proving the claim. ��
We now state and prove the main result in this subsection.

Proposition 7 Define

f (x, y, λ; d) := (d1d2 − 1)(d1x2y21 + d2x1y22 ) + 2λd1d2y1y2 + λ(d1y21 + d2y22 )

(d1d2 − 1)x1x2 − λ2 + λ(x1 + x2)
,

and

f ∗+(x, y; d) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d1y21
x1

+ d2y22
x2

if x1 + x2 ≤ 1
d1y21
1−x2

+ d2 y22
x2

if 0 ≤ x1 + x2 − 1 ≤ (x1y2 − d1x2y1)/y2
d1y21
x1

+ d2y22
1−x1

if 0 ≤ x1 + x2 − 1 ≤ (x2y1 − d2x1y2)/y1
f (x, y, x1 + x2 − 1) o.w.

Then, the set cl conv(Z+) can be expressed as

cl conv(Z+) = {(x, y, t) ∈ [0, 1]2 × R
3+ : t ≥ f ∗+(x1, x2, y1, y2; d1, d2)}.

Proof First, observe that we may assume x1, x2 > 0, as otherwise x1 + x2 ≤ 1 and f ∗+
reduces to the perspective function for the univariate case. To find the representation
in the original space of variables, we first project out variables z in Proposition 6.
Specifically, notice that g(λ) can be rewritten in the following form by letting zi =
λwi , i = 1, 2:
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g(λ) = min
d1(y1 − z1)2

x1 − λ
+ d2(y2 − z2)2

x2 − λ
+ d1z21 + 2z1z2 + d2z22

λ

s.t. zi ≥ 0, i = 1, 2. (si ) (7)

By Proposition 6, a point (x, y, t) ∈ [0, 1]2 ×R
3+ belongs to cl conv(Z+) if and only

if t ≥ minλ∈�x g(λ). We first assume x1 + x2 − 1 > 0, which implies λ > 0,∀λ ∈
�x . For given λ ∈ �x , optimization problem (7) is convex with affine constraints,
thus Slater condition holds. Hence, the following KKT conditions are necessary and
sufficient for the minimizer:

2d1
x1 − λ

(z1 − y1) + 2(d1z1 + z2)

λ
− s1 = 0 (8a)

2d2
x2 − λ

(z2 − y2) + 2(d2z2 + z1)

λ
− s2 = 0 (8b)

z1s1 = 0 (8c)

z2s2 = 0 (8d)

si , zi ≥ 0, i = 1, 2. (8e)

Let us analyze the KKT system considering the positiveness of s1 and s2.

• Case s1 > 0. By (8c), z1 = 0 and by (8a), z2 > 0, which implies s2 = 0 from
(8d). Hence, (8a) and (8b) reduce to

2z2
λ

= 2d1
x1 − λ

y1 + s1

2d2
x2 − λ

(z2 − y2) + 2d2z2
λ

= 0.

Solving these two linear equations, we get z2 = y2
x2

λ and s1 = 2( y2x2 − d1y1
x1−λ

). This
also indicates s1 ≥ 0 iff λ ≤ (x1y2 − d1x2y1)/y2. By replacing the variables with
their optimal values in the objective function (7), we find that

g(λ) = d1y21
x1 − λ

+ d2
x2 − λ

(
y2 − y2

x2
λ

)2

+ d2
λ

(
y2
x2

λ

)2
(9a)

= d1y21
x1 − λ

+ d2y22
x2

(9b)

when λ ∈ [0, (x1y2 − d1x2y1)/y2] ∩ �x .
• Case s2 > 0. Similarly, we find that

g(λ) = d1y21
x1

+ d2y22
x2 − λ

(10)

when λ ∈ [0, (x2y1 − d2x1y2)/y1] ∩ �x .
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• Case s1 = s2 = 0. In this case, (8a) and (8b) reduce to

(
d1x1 x1 − λ

x2 − λ d2x2

)(
z1
z2

)
= λ

(
d1y1
d2y2

)
.

If λ > 0, the determinant of the matrix is (d1d2 − 1)x1x2 + λ(x1 + x2 − λ) > 0
and the system has a unique solution. It follows that

(
z1
z2

)
= λ

(
d1x1 x1 − λ

x2 − λ d2x2

)−1 (d1y1
d2y2

)
,

i.e.,

z1 = λ(d1d2x2y1 + (λ − x1)d2y2)

(d1d2 − 1)x1x2 − λ2 + λ(x1 + x2)
,

z2 = λ(d1d2x1y2 + (λ − x2)d1y1)

(d1d2 − 1)x1x2 − λ2 + λ(x1 + x2)
.

Therefore, the bounds z1, z2 ≥ 0 imply lower bounds

λ ≥ (x1y2 − d1x2y1)/y2, λ ≥ (x2y1 − d2x1y2)/y1

on λ. Moreover, from (8a) and (8b), we have

d1(y1 − z1)

x1 − λ
= d1z1 + z2

λ
and

d2(y2 − z2)

x2 − λ
= d2z2 + z1

λ
·

By substituting the two equalities in (7), we find that

g(λ) = (d1y1z1 + y1z2 + d2y2z2 + y2z1
)
/λ

= (d1d2 − 1)(d1x2y21 + d2x1y22 ) + 2λd1d2y1y2 + λ(d1y21 + d2y22 )

(d1d2 − 1)x1x2 − λ2 + λ(x1 + x2)
.

Therefore,

g(λ) = f (x, y, λ; d) (11)

when λ ∈ [max{(x1y2 − d1x2y1)/y2, (x2y1 − d2x1y2)/y1},+∞) ∩ �x .

To see that the three pieces of g(λ) considered above are, indeed,mutually exclusive,
observe thatwhenλ ≤ (x1y2−d1x2y1)/y2, this is,

y2(x1−λ)
x2 y1

≥ d1, we have
d2 y2
y1

x1−λ
x2

≥
d1d2 ≥ 1. Since x1−λ

x2
x2−λ
x1

≤ x1
x2

x2
x1

= 1, it holds d2y2
y1

x1−λ
x2

≥ x1−λ
x2

x2−λ
x1

, that is,
λ ≥ (x2y1 − d2x1y2)/y1.
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Finally, notice when x1 + x2 − 1 ≤ 0, λ may take the value 0. In this case, (7)
reduces to

g(0) = d1y21
x1

+ d2y22
x2

·

By Lemma 1, minλ∈�x g(λ) = g(max{0, x1 + x2 − 1}). Combining this fact with the
above discussion, Proposition 7 holds. ��
Remark 2 For further intuition, we now comment on the validity of each piece of
t ≥ f ∗+(x, y; d) over [0, 1]2 × R

3+ for Z+. Because the first piece can be obtained
by dropping the nonnegative cross product term y1y2 and then strengthening t ≥
y21 + y22 using perspective reformulation, it is valid everywhere. When x1 + x2 < 1
and y1, y2 > 0, t ≥ y2i /xi + y2j /(1 − xi ) > f ∗+(x, y; 1, 1) for i 	= j . Therefore, the

second and the third pieces are not valid on the domain [0, 1]2 × R
3+.

If d1d2 > 1, the last piece t ≥ f (x, y, x1 + x2 − 1; d) is not valid for
cl conv(Z+) everywhere, as seen by exhibiting a point (x, y, t) ∈ cl conv(Z+) violat-
ing t ≥ f (x, y, x1 + x2 − 1; d). To do so, let

(x1, x2, y1, y2, t) = (0.5,
1

d1d2 + 1
+ ε,

1√
d1

, 2
√
d1, f ∗+(x, y)),

where ε > 0 is small enough so that x1 + x2 < 1, i.e., x2 < 0.5. With this choice,
f ∗+(x, y) = d1y21/x1 + d2y22/x2. Let λ̃ = x1 + x2 − 1, then λ̃(x1 + x2) − λ̃2 = λ̃.
Hence, for point (x, y, t), we have

f (x, y, λ̃; d) = (d1d2 − 1)(d1x2y21 + d2x1y22 ) + 2λ̃d1d2y1y2 + λ̃(d1y21 + d2y22 )

(d1d2 − 1)x1x2 + λ̃

= (d1d2 − 1)x1x2(d1y21/x1 + d2y22/x2) + λ̃(d1y21 + 2d1d2y1y2 + d2y22 )

(d1d2 − 1)x1x2 + λ̃

= (1 − α) f ∗+(x, y) + α(d1y
2
1 + 2d1d2y1y2 + d2y

2
2 ),

where α = λ̃/((d1d2 − 1)x1x2 + λ̃). Since λ̃ < 0, α < 0 if and only if

(d1d2 − 1)x1x2 + x1 + x2 − 1 > 0

⇐⇒ d1d2 >
(1 − x1)(1 − x2)

x1x2
= 1

x2
− 1 (by x1 = 0.5)

⇐⇒ x2 >
1

d1d2 + 1
,

which is true by the choice of x2. Moreover,

f ∗+(x, y) = d1y
2
1/x1 + d2y

2
2/x2 = 2 + 8d1d2

> d1y
2
1 + 2d1d2y1y2 + d2y

2
2 = 1 + 8d1d2.
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This indicates f (x, y, λ̃; d) > (1−α) f ∗+(x, y)+α f ∗+(x, y) = f ∗+(x, y) = t, that is,
t ≥ f (x, y, x1 + x2 − 1; d) is violated.

Observe that if d1d2 = 1, then f (x, y, x1 + x2 − 1; d) reduces to the original
quadratic d1y21 + 2y1y2 + d2y2. Otherwise, although t ≥ f (x, y, x1 + x2 − 1; d)

appears complicated, the next proposition implies that it is convex over its restricted
domain and can, in fact, be stated as an SDP constraint. This results strongly indicates
that SOCP-representable relaxations of (QI) may be inadequate to describe the convex
hull of the relevant mixed-integer sets, unless a large number of additional variables
are added. The proof of Proposition 8 can be found in the Appendix.

Proposition 8 If d1d2 > 1 and x1 + x2 − 1 > 0, then t ≥ f (x, y, x1 + x2 − 1; d) can
be rewritten as the SDP constraint

⎛

⎝
t/(d1d2 − 1) y1 y2

y1 d2x1 + x2/d1 − 1/d1 −x1 − x2 + 1
y2 −x1 − x2 + 1 x1/d2 + d1x2 − 1/d2

⎞

⎠ � 0.

From Proposition 7, we get the convex hull of rank-one case X+ by setting d1 =
d2 = 1.

Corollary 2

cl conv(X+) =
{
(x, y, t) ∈ [0, 1]2 × R

3+ : t ≥ f1+(x, y)
}

,

where

f1+(x, y) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

y21
x1

+ y22
x2

if x1 + x2 ≤ 1
y22
x2

+ y21
1−x2

if 0 ≤ x1 + x2 − 1 ≤ (x1y2 − x2y1)/y2
y21
x1

+ y22
1−x1

if 0 ≤ x1 + x2 − 1 ≤ (x2y1 − x1y2)/y1
(y1 + y2)2 o.w.

3.3 Rank-one approximations ofZ+

We now consider valid inequalities analogous to the ones given in Proposition 5 for
Z−. Consider the two decompositions of the bivariate quadratic function given by

d1y
2
1 + 2y1y2 + d2y

2
2 = d1

(
y1 + y2

d1

)2

+
(
d2 − 1

d1

)
y22

= d2

(
y1
d2

+ y2

)2

+
(
d1 − 1

d2

)
y22 .
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Applying perspective reformulation and Corollary 2 to the separable and pairwise
quadratic terms, respectively, one can obtain two simple valid inequalities for Z+:

t ≥ d1 f1+
(
x1, x2, y1,

y2
d1

)
+
(
d2 − 1

d1

)
y22
x2

(12a)

t ≥ d2 f1+
(
x1, x2,

y1
d2

, y2

)
+
(
d1 − 1

d2

)
y21
x1

. (12b)

The following example shows that the inequalities above do not describe cl conv(Z+),
highlighting the more complicated structure of cl conv(Z+) compared to its comple-
mentary set cl conv(Z−).

Example 1 Consider Z+ with d1 = d2 = d = 2, and let x1 = x2 = x = 2/3,
y1 = y2 = y > 0 and t = f ∗+(x, y). Then (x, y, t) ∈ cl conv(Z+). On the one hand,
x1 + x2 > 1 implies

t = f ∗+(x, y) = f (2/3, 2/3, y, y, 1/3) = 133

11
y2.

On the other hand, f1+(x, x, y, y/d) = (y + y/d)2 = 9/2y2 indicates that (12)
reduces to

t ≥ 27

4
y2.

Since 133
11 y2 > 27

4 y2, (12) holds strictly at this point. ��

4 An SDP relaxation for (QI)

In this section, we will give an extended SDP relaxation for (QI) utilizing the convex
hull results obtained in the previous section. Introducing a symmetric matrix variable
Y , let us write (QI) as

min
{
a′x + b′y + 〈Q,Y 〉 : Y � yy′, (x, y) ∈ In

}
. (13)

Suppose for a class of PSD matrices 	 ⊆ S
n+ we have an underestimator fP (x, y) for

y′Py for any P ∈ 	. Then, since 〈P,Y 〉 ≥ y′Py, we obtain a valid inequality

fP (x, y) − 〈P,Y 〉 ≤ 0, P ∈ 	 (14)

for (13). For example, if 	 is the set of diagonal PSD matrices and fP (x, y) =∑
i Pii y

2
i /xi , for P ∈ 	, then inequality (14) is the perspective inequality.

Furthermore, since (14) holds for any P ∈ 	, one can take the supremum over all
P ∈ 	 to get an optimal valid inequality of the type (14)

sup
P∈	

fP (x, y) − 〈P,Y 〉 ≤ 0. (15)
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In the example of perspective reformulation, inequality (15) becomes

sup
P�0 diagonal

{
∑

i

Pii

(
y2i /xi − Yii

)}

≤ 0,

which can be further reduced to the closed form y2i ≤ Yii xi ,∀i ∈ [n]. This leads to
the the optimal perspective formulation [21]

min a′x + b′y + 〈Q,Y 〉 (16a)

(OptPersp) s.t. Y − yy′ � 0 (16b)

y2i ≤ Yii xi ∀i ∈ [n] (16c)

0 ≤ x ≤ 1, y ≥ 0. (16d)

Han et al. [32] show that OptPersp is equivalent to the Shor’s SDP relaxation [42] for
problem (1).

Letting 	 be the class of 2 × 2 PSD matrices and fP (·) as the function describing
the convex hull of the mixed-integer epigraph of y′Py, one can derive new valid
inequalities for (QI). Specifically, using the extended formulations for f ∗+(x, y; d)

and f ∗−(x, y; d) describing cl conv(Z+) and cl conv(Z−), we have

f ∗+(x, y; d) = min
z,λ

d1(y1 − z1)2

x1 − λ
+ d2(y2 − z2)2

x2 − λ
+ d1z21 + 2z1z2 + d2z22

λ
(17a)

s.t. z1 ≥ 0, z2 ≥ 0 (17b)

max{0, x1 + x2 − 1} ≤ λ ≤ min{x1, x2}, (17c)

and

f ∗−(x, y; d) = min
z,λ

d1(y1 − z1)2

x1 − λ
+ d2(y2 − z2)2

x2 − λ
+ d1z21 − 2z1z2 + d2z22

λ
(18a)

s.t. z1 ≤ y1, z2 ≤ y2 (18b)

max{0, x1 + x2 − 1} ≤ λ ≤ min{x1, x2}. (18c)

Since any 2 × 2 symmetric PSD matrix P can be rewritten in the form of P =
p

(
d1 1
1 d2

)
or P = p

(
d1 −1
−1 d2

)
,we can take fP (x, y) = p f ∗+(x, y; d) or fP (x, y) =

p f ∗−(x, y; d), correspondingly. Since we have the explicit form of f ∗+(·) and f ∗−(·),
for any fixed d, (14) gives a nonlinear valid inequality which can be added to (13).
Alternatively, (17) and (18) can be used to reformulate these inequalities as conic
quadratic inequalities in an extended space. Moreover, maximizing the inequalities
gives the optimal valid inequalities among the class of of 2 × 2 PSD matrices stated
below. Recall that D := {d ∈ R

2 : d1 ≥ 0, d2 ≥ 0, d1d2 ≥ 1}.
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Proposition 9 For any pair of indices i < j , the following inequalities are valid for
(QI):

max
d∈D

{
f ∗+(xi , x j , yi , y j ; d1, d2)− d1Yii − d2Y j j − 2Yi j

} ≤ 0, (19a)

max
d∈D

{
f ∗−(xi , x j , yi , y j ; d1, d2)− d1Yii − d2Y j j + 2Yi j

} ≤ 0. (19b)

Optimal inequalities (19) may be employed effectively if they can be expressed
explicitly.Wewill now showhow towrite inequalities (19) explicitly using an auxiliary
3 × 3 matrix variable W .

Lemma 2 A point (x1, x2, y1, y2,Y11,Y12,Y22) satisfies inequality (19a) if and only
if there exists W+ ∈ S

3+ such that the inequality system

W+
12 ≤ Y12 (20a)

(Y11 − W+
11)(x1 − W+

33) ≥ (y1 − W+
31)

2,W+
11 ≤ Y11,W

+
33 ≤ x1 (20b)

(Y22 − W+
22)(x2 − W+

33) ≥ (y2 − W+
32)

2,W+
22 ≤ Y22,W

+
33 ≤ x2 (20c)

W+
31 ≥ 0,W+

32 ≥ 0 (20d)

W+
33 ≥ x1 + x2 − 1 (20e)

is feasible.

Lemma 3 A point (x1, x2, y1, y2,Y11,Y12,Y22) satisfies inequality (19b) if and only
if there exists W− ∈ S

3+ such that the inequality system

Y12 ≤ W−
12 (21a)

(Y11 − W−
11)(x1 − W−

33) ≥ (y1 − W−
31)

2,W−
11 ≤ Y11,W

−
33 ≤ x1 (21b)

(Y22 − W−
22)(x2 − W−

33) ≥ (y2 − W−
32)

2,W−
22 ≤ Y22,W

−
33 ≤ x2 (21c)

W−
31 ≤ y1,W

−
32 ≤ y2 (21d)

W−
33 ≥ x1 + x2 − 1 (21e)

is feasible.

Proof of Lemma 2 The Lemma is proved by means of conic duality. For brevity, dual
variables associated with each constraint are introduced in the formulation below.
Writing f ∗+ as a conic quadratic minimization problem as in (17), we first express
inequality (19a) as

0 ≥ max
d∈D

min
t,λ,z

d1t1 + d2t2 + t3 − d1Y11 − d2Y22 − 2Y12

s.t. t1(x1 − λ) ≥ (y1 − z1)
2, t1 ≥ 0, x1 − λ ≥ 0 (d1, s1, η1)

t2(x2 − λ) ≥ (y2 − z2)
2, t2 ≥ 0, x2 − λ ≥ 0 (d2, s2, η2)

λt3 ≥ ‖B+z‖22, λ ≥ 0, t3 ≥ 0 (1, s3, γ )
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λ ≥ x1 + x2 − 1 (α)

z1, z2 ≥ 0, (r1, r2)

where B2+ =
(
d1 1
1 d2

)
. Taking the dual of the inner minimization, the inequality can

be written as

0 ≥ max
d∈D

max
α,η,γ,s,r

−
∑

i=1,2

(xi si + 2yiηi ) + (x1 + x2 − 1)α − d1Y11 − d2Y22 − 2Y12

s.t. di si ≥ η2i , i = 1, 2

s3 ≥ ‖γ ‖22
r1, r2, α ≥ 0

α + s3 = s1 + s2 (λ)
(
r1 − 2η1
r2 − 2η2

)
= 2B+

(
γ1
γ2,

)
. (z)

Note that one can obtain a strictly dual feasible solution by taking si , i ∈ [3]
sufficiently large. Due to Slater condition, we deduce that strong duality holds. We
first assume d1d2 > 1. Then, the last equation implies γ = B−1+ (r/2−η). Substituting
out γ and s3, and letting ui = ηi −ri/2, i = 1, 2, the maximization problem is further
reduced to

0 ≥ max
d∈D

max
α,η,s,u

−
∑

i=1,2

(xi si + 2yiηi ) + (x1 + x2 − 1)α − d1Y11 − d2Y22 − 2Y12

s.t. di si ≥ η2i , i = 1, 2

ηi ≥ ui , i = 1, 2

α ≥ 0

s1 + s2 − α ≥ u′
[
d1 1
1 d2

]−1

u.

Applying Schur Complement Lemma to the last inequality, we reach

2Y12 ≥ max
η,s,u,r ,d

−
∑

i=1,2

(xi si + 2yiηi ) + (x1 + x2 − 1)α − d1Y11 − d2Y22

s.t. di si ≥ η2i , i = 1, 2 (pi , qi , wi )

ηi ≥ ui , i = 1, 2 (vi )

α ≥ 0 (β)
⎛

⎝
s1 + s2 − α u1 u2

u1 d1 1
u2 1 d2

⎞

⎠ � 0. (W+)
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Note the SDP constraint implies d ∈ D. If d1d2 = 1, then B+ is singular. In this case,
one can apply the same argument to the Moore-Penrose pseudo inverse of B+ (see
p108, Ch12 and Corollary 15.3.2 in [41]) and use the generalized Schur Complement
Lemma (see 7.3.P8 in [35]) to deduce the last SDP constraint. Finally, taking the SDP
dual of the maximization problem we arrive at

2Y12 ≥ min
p,q,w,v,W+ 2W+

12

s.t. piqi ≥ w2
i , pi , qi ≥ 0, i = 1, 2

vi ≥ 0, i = 1, 2

qi + W+
33 = xi , i = 1, 2 (si )

pi + W+
i i = Yii , i = 1, 2 (di )

2wi + vi = 2yi , i = 1, 2 (ηi )

2W+
3i = vi , i = 1, 2 (ui )

β − W+
33 = 1 − x1 − x2 (α)

β ≥ 0, W+ � 0.

One can obtain a strictly primal feasible solution by taking di , si , i = 1, 2 sufficiently
large, which implies strong SDP duality holds due to Slater condtion. Substituting out
p, q, w, v, β, we arrive at (20). ��

The proof of Lemma 3 is similar and is omitted for brevity. Since both (19a) and
(19b) are valid, using (20) and (21) together, one can obtain an SDP relaxation of (QI).
While inequalities in (20) and (21) are quite similar, in general, W+ and W− do not
have to coincide. However, we show below that choosing W+ = W−, the resulting
SDP formulation is still valid and it is at least as strong as the strengthening obtained
by valid inequalities (19).

Let W be the set of points (x1, x2, y1, y2,Y11,Y12,Y22) such that there exists a
3 × 3 matrix W satisfying

W12 = Y12 (25a)

(Y11 − W11)(x1 − W33) ≥ (y1 − W31)
2,W11 ≤ Y11,W33 ≤ x1 (25b)

(Y22 − W22)(x2 − W33) ≥ (y2 − W32)
2,W22 ≤ Y22,W33 ≤ x2 (25c)

0 ≤ W31 ≤ y1, 0 ≤ W32 ≤ y2 (25d)

W33 ≥ x1 + x2 − 1 (25e)

W � 0 (25f)

Then, using W for every pair of indices, we can define the strengthened SDP formu-
lation

min a′x + b′y + 〈Q,Y 〉 (26a)

(OptPairs) s.t. Y − yy′ � 0 (26b)
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(xi , x j , yi , y j ,Yii ,Yi j ,Y j j ) ∈ W ∀i < j (26c)

0 ≤ x ≤ 1, y ≥ 0. (26d)

Proposition 10 OptPairs is a valid convex relaxation of (QI) and every feasible solution
to it satisfies all valid inequalities (19).

Proof To see that OptPairs is a valid relaxation, consider a feasible solution (x, y) of
(QI) and let Y = yy′. For i < j , if xi = x j = 1, constraint (26c) is satisfied with

W =
⎛

⎝
Yii Yi j yi
Yi j Y j j y j
yi y j 1

⎞

⎠ . Otherwise, without loss of generality, one may assume xi = 0.

It follows that Yii = y2i = Yi j = yi y j = 0. Then, constraint (26c) is satisfied with
W = 0. Moreover, ifW satisfies (26c), thenW satisfies (20) and (21) simultaneously.

��

5 Comparison of convex relaxations

In this section, we compare the strength of OptPairs with other convex relaxations of
(QI). The perspective relaxation and the optimal perspective relaxation OptPersp for
(QI) are well-known.

Proposition 11 OptPairs is at least as strong as OptPersp.

Proof Note that (26c) includes constraints

(
Yii yi
yi xi

)
�
(
W11 W31
W31 W33

)
� 0,

corresponding to (25b)–(25c). Thus, the perspective constraints Yii xi ≥ y2i are
implied. ��

In the context of linear regression, Atamtürk and Gómez [5] study the convex hull
of the epigraph of rank-one quadratic with indicators

X f =
{

(x, y, t) ∈ {0, 1}n × R
n+1 : t ≥

( n∑

i=1

yi

)2

, yi (1 − xi ) = 0, i ∈ [n]
}

,

where the continuous variables are unrestricted in sign. Their extended SDP formula-
tion based on cl conv(X f ), leads to the following relaxation for (QI)

min a′x + b′y + 〈Q,Y 〉 (27a)

s.t. Y − yy′ � 0 (27b)

y2i ≤ Yii xi ∀i (27c)
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(OptRankOne)

⎛

⎝
xi + x j yi y j

yi Yii Yi j
y j Yi j Y j j

⎞

⎠ � 0, ∀i < j (27d)

y ≥ 0, 0 ≤ x ≤ 1. (27e)

With the additional constraints (27d), it is immediate that OptRankOne is stronger
than OptPersp. The following proposition compares OptRankOne and OptPairs.

Proposition 12 OptPairs is at least as strong as OptRankOne.

Proof It suffices to show that for each pair i < j , constraint (26c) of OptPairs implies
(27d) of OptRankOne. Rewriting (25b)–(25c), we get

W11 ≤ Y11 − (y1 − W31)
2

x1 − W33
, W22 ≤ Y22 − (y2 − W32)

2

x2 − W33
·

Combining the above and (25a) to substitute out W11,W22 and W12 in W � 0, we
arrive at

⎛

⎜
⎝
Y11 − (y1−W31)

2

x1−W33
Y12 W31

Y12 Y22 − (y2−W32)
2

x2−W33
W32

W31 W32 W33

⎞

⎟
⎠ � 0, W33 ≤ x1, W33 ≤ x2,

which is equivalent to the following matrix inequality by Shur Complement Lemma

⎛

⎜⎜⎜⎜
⎝

Y11 Y12 W31 y1 − W31 0
Y12 Y22 W32 0 y2 − W32
W31 W32 W33 0 0

y1 − W31 0 0 x1 − W33 0
0 y2 − W32 0 0 x2 − W33

⎞

⎟⎟⎟⎟
⎠

� 0.

By adding the third row/column to the forth row/column and then adding the forth
row/column to the fifth row/column, the large matrix inequality can be rewritten as

⎛

⎜⎜⎜⎜
⎝

Y11 Y12 W31 y1 y1
Y12 Y22 W32 W32 y2
W31 W32 W33 W33 W33
y1 W32 W33 x1 x1
y1 y2 W33 x1 x1 + x2 − W33

⎞

⎟⎟⎟⎟
⎠

� 0.

Because W33 ≥ 0, it follows that

⎛

⎝
Y11 Y12 y1
Y12 Y22 y2
y1 y2 x1 + x2

⎞

⎠ �
⎛

⎝
Y11 Y12 y1
Y12 Y22 y2
y1 y2 x1 + x2 − W33

⎞

⎠ � 0.

Therefore, constraints (27d) are implied by (26c), proving the claim. ��
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Table 1 Comparison of convex
relaxations of (QI)

obj val x1 x2 y1 y2

OptPersp −2.866 0.049 0.268 0.208 1.369

OptRankOne −2.222 0.551 0.449 0.0 2.007

OptPairs −2.200 1.0 0.0 0.8 0.0

The example below illustrates that OptPairs is indeed strictly stronger than
OptPersp and OptRankOne.

Example 2 For n = 2, OptPairs is the ideal (convex) formulation of (QI). For the
instance of (QI) with

a =
(
1
5

)
, b =

(−8
−5

)
, Q =

(
5 2
2 1

)

each of the other convex relaxations has a fractional optimal solution as demonstrated
in Table 1.

Notably, the fractional x values for OptPersp and OptRankOne are far from their
optimal integer values. A common approach to quickly obtain feasible solutions to
NP-hard problems is to round a solution obtained from a suitable convex relaxation.
This example indicates that feasible solutions obtained in this way from formulation
OptPairs may be of higher quality than those obtained from weaker relaxations—our
computations in Sect. 6.2 further corroborates this intuition. ��

An alternative way of constructing strong relaxations for (QI) is to decompose
the quadratic function y′Qy into a sum of univariate and bivariate convex quadratic
functions and utilize the convex hull results of 2 × 2 quadratics

αi j qi j (yi , y j ) = βi j y
2
i ± 2yi y j + γi j y

2
j ,

where αi j > 0, in Sect. 3 for each term, see [25] for such an approach. Specifically,
let

y′Qy = y′Dy +
∑

(i, j)∈P
αi j qi j (yi , y j ) +

∑

(i, j)∈N
αi j qi j (yi , y j ) + y′Ry

where D is a diagonal PSD matrix, P/N is the set of quadratics qi j (·) with posi-
tive/negative off-diagonals and R is PSD remainder matrix. Applying the convex hull
description for each univariate and bivariate term we obtain the following convex
relaxation for (QI):
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min a′x + b′y +
n∑

i=1

Dii y
2
i /xi +

∑

(i, j)∈P
αi j f

∗+(xi , x j , yi , y j ;βi j , γi j )

(Decomp) +
∑

(i, j)∈N
αi j f

∗−(xi , x j , yi , y j ;βi j , γi j ) + y′Ry

s.t. 0 ≤ x ≤ 1, y ≥ 0.

The next proposition shows thatOptPairs dominatesDecomp. Similar duality argu-
ments were used in [21, 25, 45].

Proposition 13 OptPairs is at least as strong as Decomp. Moreover, there exists a
decomposition for which Decomp is equivalent to OptPairs.

Proof We prove the result via the minimax theory of concave-convex programs and
show that Decomp can be viewed as a dual formulation ofOptPairs. To make the dual
relationship more transparent, we define zi ji = Wi j

31, z
i j
j = Wi j

32, λi j = Wi j
33 and

� = {(x, y, z,λ) ∈ [0, 1]n × R
n+ × R

n(n−1) × R
n(n−1)/2 : 0 ≤ zi ji ≤ yi ,

0 ≤ zi jj ≤ y j , min{0, xi + x j − 1} ≤ λi j ≤ max{xi , x j }, ∀i < j
}
.

Then, OptPairs can be rewritten as

min
x,y,z,λ

min
Y ,W

a′x + b′y + 〈Q,Y 〉 (28a)

s.t. Y � yy′ (R)

Yii −
(
yi − zi ji

)2

xi − λi j
≥ Wi j

11 ≥
(
zi ji

)2

λi j
∀i < j (�

i j
i , ui ji )

Y j j −
(
y j − zi jj

)2

x j − λi j
≥ Wi j

22 ≥
(
zi jj

)2

λi j
∀i < j (�

i j
j , ui jj )

(
Wi j

11 Yi j
Yi j W i j

22

)

� 1

λi j

(
zi ji
zi jj

)(
zi ji zi jj

)
∀i < j (Qi j )

(x, y, z, λ) ∈ �. (28b)

Taking the SDP dual with respect to the inner minimization problem, one arrives at

min
x,y,z,λ

max
R,Qi j ,�,u

a′x + b′y +
∑

i< j

⎡

⎢
⎣�

i j
i

(
zi ji

)2

λi j
+ �

i j
j

(
zi jj

)2

λi j
+ ui ji

(
yi − zi ji

)2

xi − λi j
+

ui jj

(
y j − zi jj

)2

x j − λi j
+ 1

λi j

(
zi j
)′

Qi j zi j

⎤

⎥
⎦+ 〈R, yy′〉 (29a)
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s.t. Qii = Rii +
∑

i< j

ui ji +
∑

i> j

u ji
i ∀i (Yii )

Qi j = Ri j + Qi j
12 ∀i < j (Yi j )

0 = �
i j
i − ui ji + Qi j

11 ∀i < j (Wi j
11)

0 = �
i j
j − ui jj + Qi j

22 ∀i < j (Wi j
22)

R � 0, Qi j � 0, �i j ≥ 0, ui j ≥ 0 ∀i < j (29b)

(x, y, z, λ) ∈ �. (29c)

Since one can take the diagonal elements of Y and Wi j large enough, there exists
a strictly feasible solution to the inner minimization of (28), which implies strong
duality holds and, thus, (28) is equivalent to (29). Next, substituting out ui j in (29a),
one gets

�
i j
i

(
zi ji

)2

λi j
+ �

i j
j

(
zi jj

)2

λi j
+ ui ji

(
yi − zi ji

)2

xi − λi j
+ ui jj

(
y j − zi jj

)2

x j − λi j
+ 1

λi j

(
zi j
)′

Qi j zi j

= Q̃i j
11

(
yi − zi ji

)2

xi − λi j
+ Q̃i j

22

(
y j − zi jj

)2

x j − λi j
+
(
zi j
)′
Q̃i j zi j

λi j
,

where Q̃i j =
[
�
i j
i + Qi j

11 Qi j
12

Qi j
12 �

i j
j + Qi j

22

]

. By changing variables Qi j ← Q̃i j , one arrives

at

min
(x,y,z,λ)∈�

max
R,Qi j

∑

i< j

⎡

⎢
⎣Q

i j
11

(
yi − zi ji

)2

xi − λi j
+ Qi j

22

(
y j − zi jj

)2

x j − λi j
+
(
zi j
)′
Qi j zi j

λi j

⎤

⎥
⎦

+ 〈R, yy′〉 + a′x + b′y (30a)

s.t. Qii ≥ Rii +
∑

i< j

Qi j
11 +

∑

i> j

Q ji
22 ∀i (30b)

Qi j = Ri j + Qi j
12 ∀i < j (30c)

R � 0, Qi j � 0, ∀i < j (30d)

which is equivalent to (29). Notice that (30b) is, in fact, tight. Thus, (30b), (30c),and
(30d) define a valid decomposition of Q. Moreover, ‖Qi j‖2, ‖R‖2 ≤ Trace(Q) by
(30b), which implies the feasible region of the innermaximization problem is compact.
Therefore, according to Von Neumann’s Minimax Theorem [43], one can interchange
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max and min without loss of equivalence and arrive at

max
R,Qi j :(30b)-(30d)

min
zi j ,λi j

∑

i< j

⎡

⎢
⎣Q

i j
11

(
yi − zi ji

)2

xi − λi j
+ Qi j

22

(
y j − zi jj

)2

x j − λi j
+
(
zi j
)′
Qi j zi j

λi j

⎤

⎥
⎦

+ 〈R, yy′〉 + a′x + b′y
s.t. (x, y, z, λ) ∈ �

where the inner minimization problem is in the form Decomp from Proposition 6. ��

6 Computations

In this section, we report on computational experiments performed to test the effec-
tiveness the formulations derived in the paper. Section6.1 is devoted to synthetic
portfolio optimization instances, where matrix Q is diagonally dominant and the conic
quadratic-representable extended formulations developed in Sect. 3 can be readily
used in a branch-and-bound algorithm without the need for an SDP constraint. The
instances here are generated similarly to [4], and serve to check the incremental value
of convexifications based on Z+ compared to those based on only Z−. In Sect. 6.2,
we use real instances derived from stock market returns and test the SDP relaxation
OptPairs derived in Sect. 4, as well as mixed-integer optimization approaches based
on decompositions of the quadratic matrices.

6.1 Synthetic instances—the diagonally dominant case

We consider a standard cardinality-constrained mean-variance portfolio optimization
problem of the form

min
x,y

{
y′Qy : b′y ≥ r , 1′x ≤ k

0 ≤ y ≤ x, x ∈ {0, 1}n
}

(31)

where Q is the covariance matrix of returns, b ∈ R
n is the vector of the expected

returns, r is the target return and k is themaximumnumber of securities in the portfolio.
All experiments are conducted using Mosek 9.1 solver on a laptop with a 2.30GHz
Intel® CoreTM i9-9880H CPU and 64 GB main memory. The time limit is set to one
hour and all other settings are default by Mosek.

6.1.1 Instance generation

We adopt the method used in [4] to generate the instances. The instances are designed
to control the integrality gap of the instances and the effectiveness of the perspective
formulation. Let ρ ≥ 0 be a parameter controlling the ratio of the magnitude positive
off-diagonal entries of Q to the magnitude of the negative off-diagonal entries of Q.
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Lowervalues ofρ lead tohigher integrality gaps.Let δ ≥ 0be theparameter controlling
the diagonal dominance of Q. The perspective formulation is more effective in closing
the integrality gap for higher values of δ. The following steps are followed to generate
the instances:

• Construct an auxiliary matrix Q̄ by drawing a factor covariance matrix G20×20
uniformly from [−1, 1], and generating an exposure matrix Hn×20 such that Hi j =
0 with probability 0.75, and Hi j drawn uniformly from [0, 1], otherwise. Let
Q̄ = HGG ′H ′.

• Construct off-diagonal entries of Q: For i 	= j , set Qi j = Q̄i j , if Q̄i j < 0 and set
Qi j = ρ Q̄i j otherwise. Positive off-diagonal elements of Q̄ are scaled by a factor
of ρ.

• Construct diagonal entries of Q: Pick μi uniformly from [0, δσ̄ ], where σ̄ =
1
n

∑
i 	= j |Qi j |. Let Qii = ∑i 	= j |Qi j | + μi . Note that if δ = μi = 0, then matrix

Q is already diagonally dominant.
• Construct b, r , k: bi is drawn uniformly from [0.5Qii , 1.5Qii ], r = 0.25

∑n
i=1 bi ,

and k = �n/5�.
Matrices Q generated in this way have only 20.1% of the off-diagonal entries negative
on average.

6.1.2 Formulations

With above setting, the portfolio optimization problem can be rewritten as

min
∑

i∈[n]
μi zi +

∑

Qi j<0

|Qi j |ti j +
∑

Qi j>0

|Qi j |ti j

s.t. (xi , yi , zi ) ∈ X0, ∀i ∈ N ,

(xi , x j , yi , y j , ti j ) ∈ Z−, ∀i > j : Qi j < 0,

(xi , x j , yi , y j , ti j ) ∈ Z+, ∀i > j : Qi j > 0,

b′y ≥ r , 1′x ≤ k,

(32)

where Z+ and Z− are defined as before with d1 = d2 = 1. Four strong formulations
are tested by replacing themixed-integer setswith their convex hulls:ConicQuadPersp
by replacingX0 with cl conv(X0) using the perspective reformulation (2)ConicQuadN
by replacing X0 and Z− with cl conv(X0) and cl conv(Z−) using the corresponding
extended formulation, (3) ConicQuadP by replacingX0 andZ+ with cl conv(X0) and
cl conv(Z+) respectively, and (4) ConicQuadP+N by replacing X0, Z−, and Z+ with
cl conv(X0), cl conv(Z−) and cl conv(Z+), correspondingly.

6.1.3 Results

Table 2 shows the results for matrices with varying diagonal dominance δ for ρ =
0.3. Each row in the table represents the average for five instances generated with
the same parameters. Table 2 displays the dimension of the problem n, the initial
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gap (igap), the root gap improvement (rimp), the number of branch and bound
nodes (nodes), the elapsed time in secons (time), and the end gap provided by
the solver at termination (egap). In addition, in brackets, we report the number of
instances solved to optimality within the time limit. The initial gap is computed as
igap = objbest−objcont|objbest| × 100, where objbest is the objective value of the best
feasible solution found and objcont is the objective value of the natural continuous
relaxation of (31), i.e. obtained by dropping the integral constraints;rimp is computed
as rimp = objrelax−objcont

objbest−objcont
× 100, where objrelax is the objective value of the

continuous relaxation of the corresponding formulation.
In Table 2, as expected, ConicQuadPersp has the worst performance in terms of

both root gap and end gap as well as the solution time. It can only solve instances
with dimension n = 40 and some instances with dimension n = 60 to optimality. The
rimpofConicQuadPersp is less than10%when thediagonal dominance is small. This
reflects the fact that ConicQuadPersp provides strengthening only for diagonal terms.
ConicQuadN performs better than ConicQuadPerspwith rimp about 10%–25%, and
it can solve all low-dimensional instances and most instances of dimension n = 60.
However, ConicQuadN is still unable to solve high-dimensional instances effectively.
ConicQuadP performs much better than ConicQuadN for the instances considered:
The rimp results in significantly stronger root improvements (between 70–80% on
average). Moreover, ConicQuadP can solve almost all instances to near-optimality
for n = 80. For the instances that ConicQuadP is unable to solve to optimality, the
average end gap is less than 5%. By strengthening both the negative and positive off-
diagonal terms,ConicQuadP+N provides the best performancewithrimp above 90%.
ConicQuadP+N can solve all instances and most of them are solved within 10min.
Finally, observe that as the diagonal dominance increases, the performance of all for-
mulations improves. Specifically, larger diagonal dominance results in more instances
solved to optimality, smaller egap and shorter solving time for all formulations. For
these instances, on average, the gap improvement is raised from 50.69% to 92.90%
by incorporating strengthening from off-diagonal coefficients.

Table 3 displays the computational results for different values of ρ with fixed
δ = 0.1. The relative comparison of formulations is similar as discussed before, with
ConicQuadP+N resulting in the best performance. As ρ increases, the performance of
ConicQuadN deteriorates in terms of Rimp while the performance of ConicQuadP
improves, as expected. The performance of ConicQuadP+N also improves for high
values of ρ, and always results in significant improvement compared to other formula-
tions for all instances. For these instances, on average, the gap improvement is raised
from 9.77% to 85.38% by incorporating strengthening from off-diagonal coefficients.

In summary, we conclude that utilizing convexification for Z+ complement those
previously obtained for Z−, and together result in significantly higher root gap
improvement over the simpler perspective relaxation. For the experiments in this sec-
tion, we use the results of Sect. 3 to convexify pairwise quadratic terms, but do not
utilize the more sophisticated SDP formulations in Sect. 4. For the instances in this
section, the optimal perspective formulation [21, 45] achieves close to 100% root
improvement, and all the mixed-integer optimization problems are solved in a few
seconds. Moreover, the new convex formulation OptPairs produces integer (thus opti-
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mal) solutions in all instances. In the next section, we consider these stronger conic
relaxations for the more realistic and challenging instances.

6.2 Real instances—the general case

Now using real stock market data, we consider portfolio index tracking problem of
the form

min (y − yB)′Q(y − yB)

(IT) s.t. 1′y = 1, 1′x ≤ k

0 ≤ y ≤ x, x ∈ {0, 1}n,

where yB ∈ R
n is a benchmark index portfolio, Q is the covariance matrix of security

returns and k is the maximum number of securities in the portfolio. The (continuous)
conic formulations are solved using Mosek 9.1 and the mixed-integer formulations
are solved using CPLEX 12.8. The experiments are conducted on a laptop with a 1.80
GHz Intel® CoreTM i7 CPU and 16 GB main memory. The solver time limit is set to
1200s and all other settings are kept at their default values.

6.2.1 Instance generation

Weuse the daily stock return data provided byBorisMarjanovic inKaggle1 to compute
the covariance matrix Q. Specifically, given a desired start date (either 1/1/2010 or
1/1/2015 in our computations), we compute the sample covariance matrix based on
the stocks with available data in at least 99% of the days since the start (returns for
missing data are set to 0). The resulting covariance matrices are available at https://
sites.google.com/usc.edu/gomez/data. We then generate instances as follows:

• we randomly sample an n×n covariance matrix Q corresponding to n stocks, and
• wedraweach element of yB fromuniform [0,1], and then scale yB so that 1′yB = 1.

6.2.2 Convex relaxations

The natural convex relaxation of IT always yields a trivial lower bound of 0, as it is
possible to set x = y = yB . Thus, we do not report results concerning the natural
relaxation. Instead, we consider the optimal perspective relaxation OptPersp of [21]:

min
x,y,Y

y′
BQyB − 2y′

BQy + 〈Q,Y 〉 (34a)

s.t. Y − yy′ � 0 (34b)

(OptPersp) y2i ≤ Yii xi ∀i ∈ [n] (34c)

0 ≤ x ≤ 1, y ≥ 0 (34d)

1′y = 1, 1′x ≤ k (34e)

1 https://www.kaggle.com/borismarjanovic/price-volume-data-for-all-us-stocks-etfs.
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and the proposed OptPairs exploiting off-diagonal elements of Q:

min
x,y,Y ,W

y′
BQyB − 2y′

BQy + 〈Q,Y 〉
s.t. Y − yy′ � 0

Wi j � 0 ∀i < j

(Yii − Wi j
11)(xi − Wi j

33) ≥ (yi − Wi j
31)

2, Wi j
11 ≤ Yii ∀i < j

(OptPairs) (Y j j − Wi j
22)(x j − Wi j

33) ≥ (y j − Wi j
32)

2, Wi j
22 ≤ Y j j ∀i < j

W i j
33 ≤ xi + x j − 1, Wi j

33 ≤ xi , Wi j
33 ≤ x j ∀i < j

0 ≤ Wi j
31 ≤ yi , 0 ≤ Wi j

32 ≤ y j , Wi j
12 = Yi j ∀i < j

0 ≤ x ≤ 1, y ≥ 0

1′y = 1, 1′x ≤ k,

As pointed out in Example 2, formulation OptPairsmay yield high quality feasible
solutions by rounding. Therefore, for each relaxation, we consider a simple rounding
heuristic to obtain feasible solutions to (IT): given an optimal solution (x̄, ȳ) to the
continuous relaxation, we fix xi = 1 for the k-largest values of x̄ and the remaining
xi = 0, and resolve the continuous relaxation to compute y.

6.2.3 Exact mixed-integer optimization approaches

We also consider three mixed-integer optimization approaches, each associated with
a different convex relaxation. The first one is the Natural relaxation corresponding to
the mixed-integer quadratic formulation (IT ).

The second one is the corresponding OptPersp formulation

min y′
BQyB − 2y′

BQy + y′Ry +
n∑

i=1

Dii ti (35a)

s.t. ti xi ≥ y2i , i ∈ [n] (35b)

1′y = 1, 1′x ≤ k (35c)

0 ≤ y ≤ x, x ∈ {0, 1}n, (35d)

where D + R = Q and R are the dual variables associated with constraint (34b). The
third one is the OptPairs formulation based on the decomposition

min y′
BQyB − 2y′

BQy + y′Ry +
∑

i< j

ti j (36a)

s.t. ti j ≥ Qi j
ii y

2
i + Qi j

j j y
2
j + 2Qi j

i j yi y j ∀i < j (36b)

1′y = 1, 1′x ≤ k (36c)

0 ≤ y ≤ x, x ∈ {0, 1}n, (36d)
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wherematrix R is the dual variable associatedwith constraintY−yy′ � 0, andmatrices
Qi j are the dual variables associated with constraints Wi j � 0. The formulation is
then obtained from the SOCP-representable convexification of constraints (36b) using
Proposition 6 (if Qi j

i j ≥ 0) or Remark 1 (if Qi j
i j < 0). Specifically, the corresponding

OptPairs formulation is

min
t,x,y,z,λ

y′
BQyB − 2y′

BQy + y′Ry +
∑

i< j

ti j

s.t. ti j ≥ t i ji + t i jj + t i ji j , λi j ≥ 0, λi j ≥ xi + x j − 1 ∀i < j

t i ji (xi − λi j ) ≥ Qi j
ii

(
yi − zi ji

)2
, λi j ≤ xi , 0 ≤ zi ji ≤ yi ∀i < j

t i jj (x j − λi j ) ≥ Qi j
j j

(
y j − zi jj

)2
, λi j ≤ x j , 0 ≤ zi jj ≤ y j ∀i < j

t i ji j λi j ≥ Qi j
ii

(
zi ji

)2 + Qi j
j j

(
zi jj

)2 + 2Qi j
i j z

i j
i z

i j
j ∀i < j

1′y = 1, 1′x ≤ k

0 ≤ y ≤ x, x ∈ {0, 1}n .

In practice, one may use solutions obtained from rounding the SDP relaxations as
warm-starts for the mixed-integer optimization solvers for an improved performance.
However, in the experiments, our goal is to compare the bounds obtained from the
SDP rounding approach with the branch-and-bound approach. Therefore, we do not
use solutions from one method in the other one in order to properly compare the two
approaches.

6.2.4 Results

In these experiments, the solution time limit is set to 20min, which includes the time
required to solve the SDP relaxations to find suitable decompositions. Tables 4 and 5
present the results using historical data since 2010 and 2015, respectively. They show,
for different values of n and k, and for each conic relaxation: the time required to solve
the convex relaxations in seconds, the lower bound (LB) corresponding to the optimal
objective value of the continuous relaxation, the upper bound (UB) corresponding
to the objective value of the heuristic, the gap between these two values, computed
as Gap = UB−LB

UB ; they also show the best objective found at termination, and the
associated gap, number of nodes explored, time spent in branch-and-bound in seconds,
and number of instances that could be solved to optimality within the time limit (#).
The lower bounds, upper bounds from the convex relaxations, and objective from
branch-and-bound, are scaled so that the best upper bound found for a given instance
is 100. Each row represents an average of five instances generated with the same
parameters.

We first summarize our conclusions, then discuss in depth the relative performance
of the mixed-integer optimization formulations, and finally discuss the performance
of the conic formulations (which, we argue, perform best for this class of problems).
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• Summary The perspective reformulation (35) remains the best approach to solve
the problems to optimality with the current off-the-shelf MISOCP solvers, as MIP
solvers struggle with more the sophisticated formulations. However, the stronger for-
mulations are very effective in producing comparable or better solutions (especially in
challenging instances with poor natural convex relaxations) via rounding the convex
relaxation solutions in a fraction of the computational time.
• Comparison of mixed-integer optimization approaches For instances with n =
50, we see that, among the mixed-integer optimization approaches, the one based
on OptPersp is arguably the best, solving to optimality 22/30 instances (compared
with Natural: 15/22, and OptPairs: 8/22). The Natural mixed-integer optimization
formulation is able to explore more nodes, but the relaxations are weaker, ultimately
leading to inferior performance. In contrast, the stronger mixed-integer formulation
based onOptPairs needsmore time to process each node (by orders-of-magnitude) due
to the increased complexity of the relaxations, resulting in poor performance overall.
Nonetheless, for instances where it can prove optimality (e.g., n = 50, k = 5), it does
so with substantially fewer nodes, illustrating the power of the stronger relaxations.
Interestingly, in the more challenging instances with data from 2010, n = 50 and
k = 10, OptPairs is able to prove the best optimality gap of 9.6% (compared with
OptPersp: 20.5%, and Natural: 4.8%).

For larger instances with n = 100, all mixed-integer optimization formulations
struggle. Formulations based on OptPairs result in gaps well-above 100%, that is, the
best lower bound achieved by branch-and-bound is negative; for instances with data
since 2015 and k = 20, the root node relaxations cannot be fully processed in 20min,
and the branch-and-bound solver terminates without an incumbent solution. Indeed,
MISOCP solvers based on outer approximations struggle to solve highly nonlinear
instances with a large number of variables and exhibit pathological behavior, e.g., see
[4, 7, 31] for similar documented results. Formulations based on Natural produce the
best incumbent solutions, due to the large number of nodes explored, but terminate
with optimality gaps close to 100% in all cases. Formulations based on OptPersp
achieve a middle ground of producing reasonably good solutions with moderate gaps,
although the optimality gaps of 50% are still quite high.
• Discussion of conic formulations First, note that the continuous conic formulation
OptPairs produces better lower bounds and upper bounds (via the rounding heuristic)
than the continuous OptPersp: in particular, gaps are on average reduced by 66%, see
Fig. 1 for a summary of the gaps across all instances. The better performance comes
at the expense of increased computational times by a factor of three, which does not
depend on the dimension of the problem. For the instances considered, the additional
computation time is at most 30 s, which is negligible compared with the cost of solving
the mixed-integer optimization problem.

We now compare rounding OptPairs solution with the mixed-integer optimization
based on OptPersp, henceforth referred to as MIO, which produced the best results
among branch-and-bound approaches. For instances MIO solves to optimality (typ-
ically requiring between one and ten minutes), OptPairs produces optimality gaps
under 2% in less than four seconds, indicating the effectiveness of rounding the strong
OptPairs solutions. More importantly, in all other instances, OptPairs invariably pro-
duces much better gaps than MIO in a fraction of the time. For example, in Table 4
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Fig. 1 Distribution of gaps for OptPersp and OptPairs

with n = 100, OptPairs provides optimality gaps under 2% in one minute, whereas
MIO terminates with gaps above 40% after 20min of branch-and-bound. While the
improved gaps are mostly caused by considerably better lower bounds, in many cases
the rounding heuristic based on OptPairs delivers better primal bounds than MIO: for
example, in Table 4, n = 100 and k = 20, OptPairs produces feasible solutions with
an average objective value of 100.4, whereas MIO results in incumbents with average
value of 109.7.

7 Conclusions

In this paper, we describe the convex hull of the mixed-integer epigraph of the bivari-
ate convex quadratic functions with nonnegative variables and off-diagonals with an
SOCP-representable extended formulation as well as in the original space of vari-
ables. Furthermore, we develop a new technique for constructing an optimal convex
relaxation from elementary valid inequalities. Using this technique, we develop a new
strong SDP relaxation for (QI), based on the convex hull descriptions of the bivari-
ate cases as building blocks. Moreover, the computational results with synthetic and
real portfolio optimization instances indicate that the proposed formulations provide
substantial improvement over existing alternatives in the literature.
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Appendix

Proof of Proposition 8

Proof of Proposition 8 Notice that for λ = x1 + x2 − 1 > 0, f (x, y, λ; d) can be
rewritten in the form

f (x, y, λ; d) = 1

D
ŷ′A∗ ŷ,

where D = (d1d2 − 1)x1x2 + x1 + x2 − 1 > 0, ŷ′ = (
√
d1y1,

√
d2y2) and

A∗ =
(

(d1d2 − 1)x2 + λ
√
d1d2λ√

d1d2λ (d1d2 − 1)x1 + λ

)
.

Observe det(A∗) = (d1d2 − 1)D. Hence,

f (x, y, λ; d) = (d1d2 − 1)

det(A∗)
ŷT A∗ ŷ = (d1d2 − 1)ŷT A−1 ŷ,

where A is the adjugate of A∗, i.e.,

A =
(

(d1d2 − 1)x1 + λ −√
d1d2λ

−√
d1d2λ (d1d2 − 1)x2 + λ

)
·

Note that A � 0. By Schur Complement Lemma, t/(d1d2 − 1) ≥ ŷ′A−1 ŷ if and only
if

(
t/(d1d2 − 1) ŷT

ŷ A

)
� 0,

i.e.,

⎛

⎝
t/(d1d2 − 1)

√
d1y1

√
d2y2√

d1y1 (d1d2 − 1)x1 + λ −√
d1d2λ√

d2y2 −√
d1d2λ (d1d2 − 1)x2 + λ

⎞

⎠ � 0,

which is further equivalent to

⎛

⎝
t/(d1d2 − 1) y1 y2

y1 (d1d2 − 1)x1/d1 + λ/d1 −λ

y2 −λ (d1d2 − 1)x2/d2 + λ/d2

⎞

⎠ � 0.

The conclusion follows by taking λ = x1 + x2 − 1. ��
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