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Abstract
The softmax policy gradient (PG) method, which performs gradient ascent under
softmax policy parameterization, is arguably one of the de facto implementations
of policy optimization in modern reinforcement learning. For γ -discounted infinite-
horizon tabular Markov decision processes (MDPs), remarkable progress has recently
been achieved towards establishing global convergence of softmax PG methods in
finding a near-optimal policy. However, prior results fall short of delineating clear
dependencies of convergence rates on salient parameters such as the cardinality of
the state space S and the effective horizon 1

1−γ
, both of which could be excessively

large. In this paper, we deliver a pessimistic message regarding the iteration complex-
ity of softmax PG methods, despite assuming access to exact gradient computation.
Specifically, we demonstrate that the softmax PG method with stepsize η can take

1

η
|S|2�

(
1

1−γ

)

iterations

to converge, even in the presence of a benign policy initialization and an initial state
distribution amenable to exploration (so that the distributionmismatch coefficient is not
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exceedingly large). This is accomplished by characterizing the algorithmic dynamics
over a carefully-constructedMDPcontaining only three actions.Our exponential lower
bound hints at the necessity of carefully adjusting update rules or enforcing proper
regularization in accelerating PG methods.

Keywords Policy gradient methods · Exponential lower bounds · Softmax
parameterization · Discounted infinite-horizon MDPs

Mathematics Subject Classification 60J10 · 90C30 · 90C40

1 Introduction

Despite their remarkable empirical popularity in modern reinforcement learning [35,
41], theoretical underpinnings of policy gradient (PG) methods and their variants [20,
23, 37, 43, 47] remain severely obscured. Due to the nonconcave nature of value
function maximization induced by complicated dynamics of the environments, it is in
general highly challenging to pinpoint the computational efficacy of PG methods in
finding a near-optimal policy. Motivated by their practical importance, a recent strand
of work sought to make progress towards demystifying the effectiveness of policy
gradient type methods (e.g., [1, 7–9, 11, 18, 22, 24, 31, 32, 34, 40, 53–55, 57, 59]),
focusing primarily on canonical settings such as tabular Markov decision processes
(MDPs) for discrete-state problems and linear quadratic regulators for continuous-state
problems.

The current paper studies PG methods with softmax parameterization—commonly
referred to as softmax policy gradientmethods—which are among the de facto imple-
mentations of PG methods in practice. An intriguing theoretical result was recently
obtained by the work Agarwal et al. [1], which established asymptotic global con-
vergence of softmax PG methods for infinite-horizon γ -discounted tabular MDPs.
Subsequently, Mei et al. [34] strengthened the theory by demonstrating that softmax
PG methods are capable of finding an ε-optimal policy with an iteration complex-
ity proportional to 1/ε (see Table 1 for the precise form). While these results take
an important step towards understanding the effectiveness of softmax PG methods,
caution needs to be exercised before declaring fast convergence of the algorithms. In
particular, the iteration complexity derived by Mei et al. [34] falls short of delineating
clear dependencies on important salient parameters of theMDP, such as the dimension
of the state space S and the effective horizon 1/(1 − γ ). These parameters are, more
often than not, enormous in contemporary RL applications, and might play a pivotal
role in determining the scalability of softmax PG methods.

Additionally, it is worth noting that existing literature largely concentrated on devel-
oping algorithm-dependent upper bounds on the iteration complexities. Nevertheless,
we recommend caution when directly comparing computational upper bounds for dis-
tinct algorithms: the superiority of the computational upper bound for one algorithm
does not necessarily imply this algorithm outperforms others, unless we can certify the
tightness of all upper bounds being compared.As amore concrete example, it is of prac-
tical interest to benchmark softmax PGmethods against natural policy gradient (NPG)
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methods with softmax parameterization, the latter of which is a variant of policy opti-
mization lying underneath several mainstream RL algorithms such as proximal policy
optimization (PPO) [39] and trust region policy optimization (TRPO) [38]. While it is
tempting to claim superiority of NPG methods over softmax PG methods—given the
appealing convergence properties of NPG methods [1] (see Table 1)—existing theory
fell short to reach such a conclusion, due to the absence of convergence lower bounds
for softmax PG methods in prior literature.

The above considerations thus lead to a natural question that we aim to address in
the present paper:

Canwedevelop a lower boundon the iteration complexity of softmaxPGmethods
that reflects explicit dependency on salient parameters of the MDP of interest?

1.1 Main result

As an attempt to address the question posed above, our investigation delivers a some-
what surprising message that can be described in words as follows:

Softmax PG methods can take (super-)exponential time to converge, even in the
presence of a benign initialization and an initial state distribution amenable to
exploration.

Our finding, which is concerned with a discounted infinite-horizon tabular MDP, is
formally stated in the following theorem. Here and throughout, |S| denotes the size of
the state space S, 0 < γ < 1 stands for the discount factor, V � indicates the optimal
value function, η > 0 is the learning rate or stepsize, whereas V (t) represents the value
function estimate of softmax PG methods in the t-th iteration. All immediate rewards
are assumed to fall within [−1, 1]. See Sect. 2 for formal descriptions.

Theorem 1 Assume that the softmax PG method adopts a uniform initial state distri-
bution, a uniform policy initialization, and has access to exact gradient computation.
Suppose that 0 < η < (1 − γ )2/5, then there exist universal constants c1, c2, c3 > 0
such that: for any 0.96 < γ < 1 and |S| ≥ c3(1− γ )−6, one can find a γ -discounted
MDP with state space S that takes the softmax PG method at least

c1
η

|S|2
c2
1−γ

iterations (1)

to reach

1

|S|
∑

s∈S

[
V �(s) − V (t)(s)

] ≤ 0.07. (2)

Remark 1 (Action space) The MDP we construct contains at most three actions for
each state.
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Table 1 Upper and lower bounds on the iteration complexities of PG and NPG methods with softmax
parameterization in finding an ε-optimal policy obeying ‖V � − V (t)‖∞ ≤ ε ≤ 0.15

Algorithm Iteration complexity References

Softmax PG upper bound Asymptotic Agarwal et al. [1, Thm. 5.1]

Softmax PG upper bound O
(
C2spg(M)

∥∥
∥
dπ�
μ
μ

∥∥
∥
2

∞
∥∥
∥ 1

μ

∥∥
∥∞

|S|
(1−γ )6ε

)
Mei et al. [34, Thm. 4]

Softmax NPG upper bound O
( 1
(1−γ )2ε

)
Agarwal et al. [1, Thm. 5.3]

Softmax PG lower bound (1−γ )5�2
�

12ε Mei et al. [34, Thm. 10]

Softmax PG lower bound |S|2
�( 1

1−γ
)

This work

We assume exact gradient evaluation, and hide the dependencies that are logarithmic on problem param-
eters. Here, μ denotes the initial state distribution,

∥∥dπ�

μ /μ
∥∥∞ is the distribution mismatch coefficient,

a�(s) is the optimal action at state s according to π�, Cspg(M):=( infs∈S inf t≥1 π(t)(a�(s) | s))−1

is a quantity depending on both the PG trajectory and salient MDP parameters, whereas �� :=
mins∈S,a �=a�(s)

{
Q�(s, a�(s)) − Q�(s, a)

}
is the optimality gap w.r.t. the optimal Q-function Q�

Remark 2 (Stepsize range) Our lower bound operates under the assumption that
η < (1 − γ )2/5. In comparison, prior convergence guarantees for PG-type meth-
ods with softmax parameterization (e.g., Agarwal et al. [1, Theorem 5.1] and Mei et
al. [34, Theorem 6]) required η < (1 − γ )3/8, a range of stepsizes fully covered by
our theorem. In fact, prior works could only guarantee monotonicity of softmax PG
methods (in terms of the value function) within the range η < (1−γ )2/5 (see Agarwal
et al. [1, Lemma C.2]).

Remark 3 While we can also provide explicit numbers for the constants c1, c2, c3 >

0, these numbers are not informative, and hence we omit explicit numbers here to
streamline the proof a bit.

For simplicity of presentation, Theorem 2 is stated for the long-effective-horizon
regime where γ > 0.96; it continues to hold when γ > c0 for some smaller con-
stant c0 > 0. Our result is obtained by exhibiting a hard MDP instance—which is
a properly augmented chain-like MDP—for which softmax PG methods converge
extremely slowly even when perfect model specification is available. Several remarks
and implications of our result are in order.

Comparisons with prior results. Table 1 provides an extensive comparison of the
iteration complexities—including both upper and lower bounds—of PG and NPG
methods under softmax parameterization. As suggested by our result, the iteration
complexity O(C2spg(M) 1

ε
) derived in Mei et al. [34] (see Table 1) might not be as rosy

as it seems for problems with large state space and long effective horizon; in fact, the
crucial quantity Cspg(M) therein could scale in a prohibitive manner with both |S|
and 1

1−γ
. Mei et al. [34] also developed a lower bound on the iteration complexity of

softmax PG methods, which falls short of capturing the influence of the state space
dimension and might become smaller than 1 unless ε is very small (e.g., ε � (1−γ )3)
for problems with long effective horizons. In addition, Mei et al. [33] provided some
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interesting evidence that a poorly-initialized softmax PG algorithm can get stuck at
suboptimal policies for a single-state MDP (i.e., the bandit problem). This result,
however, fell short of providing a complete runtime analysis and did not look into
the influence of a large state space. By contrast, our theory reveals that softmax PG
methods can take exponential time to reach even a moderate accuracy level.

Slow convergence evenwith benign distributionmismatch.Existing computational
complexities for policy gradient type methods (e.g., [1, 34]) typically scale polynomi-

ally in the so-called distribution mismatch coefficient1
∥∥ d

π
ρ

μ

∥∥∞, where dπ
ρ stands for

a certain discounted state visitation distribution (see (13) in Sect. 2), and μ denotes
the distribution over initial states. It is thus natural to wonder whether the exponential
lower bound in Theorem 1 is a consequence of an exceedingly large distribution mis-
match coefficient. This, however, is not the case; in fact, our theory chooses μ to be

a benign uniform distribution so that ‖ dπ
ρ

μ
‖∞ ≤ ‖ 1

μ
‖∞ ≤ |S|, which scales at most

linearly in |S|.
Benchmarking with softmax NPG methods. Our algorithm-specific lower bound
suggests that softmax PG methods—in their vanilla form—might take a prohibitively
long time to converge when the state space and effective horizon are large. This
is in stark contrast to the convergence rate of NPG type methods, whose iteration
complexity is dimension-free and scales only polynomially with the effective horizon
[1, 11]. Consequently, our results shed light on the practical superiority of NPG-based
algorithms such as PPO [39] and TRPO [38].

Crux of our design. As we shall elucidate momentarily in Sect. 3, our exponential
lower bound is obtained through analyzing the trajectory of softmax PG methods
on a carefully-designed MDP instance with no more than 3 actions per state, when
a uniform initialization scheme and a uniform initial state distribution are adopted.
Our construction underscores the critical challenge of credit assignments [42] in RL
compounded by the presence of delayed rewards, long horizon, and intertwined inter-
actions across states. While it is difficult to elucidate the source of exponential lower
bound without presenting our MDP construction, we take a moment to point out some
critical properties that underlie our designs. To be specific, we seek to design a chain-
like MDP containing H = O

( 1
1−γ

)
key primary states {1, . . . , H} (each coupled

with many auxiliary states), for which the softmax PG method satisfies the following
properties.

• For the two key primary states, we have

min
{
convergence-time(state 1), convergence-time(state 2)

} ≥ |S|
η

. (3)

• (A blowing-up phenomenon) For each key primary state 3 ≤ s ≤ H = O
( 1
1−γ

)
,

one has

convergence-time(state s ) �
(
convergence-time(state s − 2 )

)1.5
, 3 ≤ s ≤ H .

(4)

1 Here and throughout, the division of two vectors represents componentwise division.
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Here, it is understood that convergence-time( state s ) represents informally the time
taken for the value function of state s to be sufficiently close to its optimal value.
The blowing-up phenomenon described above is precisely the source of our (super)-
exponential lower bound.

1.2 Other related works

Non-asymptotic analysis of (natural) policy gradient methods. Moving beyond tabu-
lar MDPs, finite-time convergence guarantees of PG/NPGmethods and their variants
have recently been studied for control problems (e.g., [18, 19, 44, 58]), regularized
MDPs (e.g., [11, 24, 54]), constrained MDPs (e.g., [15, 50]), robust MDPs (e.g., [29,
60]), MDPs with function approximation (e.g., [1, 2, 10, 25, 30, 45]), Markov games
(e.g., [13, 14, 46, 49, 61]), and their use in actor-critic methods (e.g., [3, 12, 48, 51]).

Other policy parameterizations. In addition to softmax parameterization, several
other policy parameterization schemes have also been investigated in the context of
policy optimization and reinforcement learning at large. For example, [1, 24, 54, 56]
studied the convergence of projected PG methods and policy mirror descent with
direct parameterization, [4] introduced the so-called mallow parameterization, while
[33] studied the escort parameterization. Part of these parameterizationswere proposed
in response to the ineffectiveness of softmax parameterization observed in practice.

Lower bounds. Establishing information-theoretic or algorithmic-specific lower
bounds on the statistical and computational complexities of RL algorithms—often
achieved by constructing hard MDP instances—plays an instrumental role in under-
standing the bottlenecks of RL algorithms. To give a few examples, Azar et al. [5],
Domingues et al. [16], Li et al. [28], Yan et al. [52] developed information-theoretic
lower bounds on the sample complexity of RL under multiple sampling mechanisms
(e.g., sampling with a generative model, online RL, and offline/batch RL), Li et al.
[27] established an algorithm-dependent lower bound on the sample complexity of
Q-learning, whereas Khamaru et al. [21], Pananjady and Wainwright [36] developed
instance-dependent lower bounds for policy evaluation. Additionally, Agarwal et al.
[1] constructed a chain-like MDP whose value function under direct parameterization
might contain very flat saddle points under a certain initial state distribution, high-
lighting the role of distribution mismatch coefficients in policy optimization. Finally,
exponential-time convergence of gradient descent has been observed in other noncon-
vex problems as well (e.g., [17]) despite its asymptotic convergence [26], although the
context and analysis therein are drastically different fromwhat happens in RL settings.

1.3 Paper organization

The rest of this paper is organized as follows. In Sect. 2, we introduce the basics of
Markov decision processes, and describe the softmax policy gradient method along
with several key functions/quantities. Section 3 constructs a chain-like MDP, which is
the hardMDP instance underlying our computational lower bound for PGmethods. In
Sect. 4, we outline the proof of Theorem 1, starting with the proof of a weaker version
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before establishing Theorem 1. The proof of all technical lemmas are deferred to the
appendix. We conclude the paper in Sect. 5 with a summary of our findings.

2 Background

In this section, we introduce the basics ofMDPs, and formally describe the softmax PG
method.Here and throughout,we denote by�(X ) the probability simplex over a setX ,
and let |X | represent the cardinality of the setX . Given two probability distributions p
and q over S, we adopt the notation ∥∥ p

q

∥∥∞ = maxs∈S p(s)
q(s) and

∥∥ 1
q

∥∥∞ = maxs∈S 1
q(s) .

Throughout this paper, the notation f (M) � g(M) (resp. f (M) � g(M)) means
there exist some universal constants c > 0 independent of the parameters of the MDP
M such that f (M) ≥ cg(M) (resp. f (M) ≤ cg(M)), while the notation f (M) �
g(M) means that f (M) � g(M) and f (M) � g(M) hold simultaneously.

Infinite-horizon discounted MDP. Let M = (S, {As}s∈S , P, r , γ ) be an infinite-
horizon discounted MDP. Here, S represents the state space, As denotes the action
space associated with state s ∈ S, γ ∈ (0, 1) indicates the discount factor, P is the
probability transition kernel (namely, for each state-action pair (s, a), P(· | s, a) ∈
�(S) denotes the transition probability from state s to the next state when action
a is taken), and r stands for a deterministic reward function (namely, r(s, a) is the
immediate reward received in state s upon executing action a). Throughout this paper,
we assume normalized rewards such that −1 ≤ r(s, a) ≤ 1 for any state-action pair
(s, a). In addition, we concentrate on the scenario where γ is quite close to 1, and
often refer to 1

1−γ
as the effective horizon of the MDP.

Policy, value function, Q-function and advantage function. The agent operates by
adopting a policy π , which is a (randomized) action selection rule based solely on the
current state of the MDP. More precisely, for any state s ∈ S, we use π(· | s) ∈ �(As)

to specify a probability distribution, withπ(a | s) denoting the probability of executing
action a ∈ As when in state s. The value function V π : S → R of a policy π—which
indicates the expected discounted cumulative reward induced by policy π—is defined
as

∀s ∈ S : V π (s):=E

[ ∞∑

k=0

γ kr(sk, ak)
∣∣ s0 = s

]

. (5)

Here, the expectation is taken over the randomness of theMDP trajectory {(sk , ak)}k≥0
and the policy, where s0 = s and, for all k ≥ 0, ak ∼ π(· | sk) follows the policy
π and sk+1 ∼ P(· | sk, ak) is generated by the transition kernel P . Analogously, we
shall also define the value function V π (μ) of a policy π when the initial state is drawn
from a distribution μ over S, namely,

V π (μ) := Es∼μ

[
V π (s)

]
. (6)

Additionally, the Q-function Qπ of a policy π—namely, the expected discounted
cumulative reward under policy π given an initial state-action pair (s0, a0) = (s, a)—
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is formally defined by

∀(s, a) ∈ S × A : Qπ (s, a):=E

[ ∞∑

k=0

γ kr(sk, ak)
∣∣ s0 = s, a0 = a

]

, (7)

where the expectation is again over the randomness of theMDP trajectory {(sk , ak)}k≥1
when policy π is adopted. In addition, the advantage function of policy π is defined
as

Aπ (s, a):=Qπ (s, a) − V π (s) (8)

for every state-action pair (s, a).
Amajor goal is to find a policy that optimizes the value function and the Q-function.

Throughout this paper,we denote respectively byV � and Q� the optimal value function
and optimal Q-function, namely,

V �(s):=max
π

V π (s), Q�(s, a):=max
π

Qπ (s, a), for all s ∈ S and a ∈ As .

(9)

Softmax parameterization and policy gradient methods. The family of pol-
icy optimization algorithms attempts to identify optimal policies by resorting to
optimization-based algorithms. To facilitate differentiable optimization, a widely
adopted scheme is to parameterize policies using softmax mappings. Specifically, for
any real-valued parameter θ = [θ(s, a)]s∈S,a∈As , the corresponding softmax policy
πθ := softmax(θ) is defined such that

∀s ∈ S and a ∈ As : πθ(a | s):= exp
(
θ(s, a)

)

∑
a′∈As

exp
(
θ(s, a′)

) . (10)

With the aim of maximizing the value function under softmax parameterization,
namely,

maximizeθ V πθ (μ), (11)

the softmax PG method proceeds by adopting gradient ascent update rules w.r.t. θ :

θ(t+1) = θ(t) + η∇θV
(t)(μ), t = 0, 1, . . . . (12a)

Here and throughout, we let V (t) = V π(t)
and Q(t) = Qπ(t)

abbreviate respectively
the value function and Q-function of the policy iterate π(t):=πθ(t) in the t-th iteration,
and η > 0 denotes the stepsize or learning rate. Interestingly, the gradient ∇θV πθ

under softmax parameterization (10) admits a closed-form expression [1], that is, for
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Fig. 1 An illustration of the constructed MDP

any state-action pair (s, a),

∂V πθ (μ)

∂θ(s, a)
= 1

1 − γ
dπθ
μ (s) πθ (a | s) Aπθ (s, a). (12b)

Here, dπθ
μ (s) represents the discounted state visitation distribution of a policy π given

the initial state s0 ∼ μ:

∀s ∈ S : dπ
μ (s):=(1 − γ ) E

s0∼μ

[ ∞∑

k=0

γ k
P(sk = s | s0)

]
, (13)

with the expectation taken over the randomness of the MDP trajectory {(sk, ak)}k≥0
under the policy π and the initial state distribution μ. In words, dπ

μ (s) measures—
starting from an initial distribution μ—how frequently state s will be visited in a
properly discounted fashion. Throughout this paper, we shall denote A(t):= Aπ(t)

and
d(t)
μ (s):= dπ(t)

μ (s) for notation simplicity.

3 Construction of a hardMDP

This section constructs a discounted infinite-horizonMDPM = {S, {As}s∈S , r , P, γ },
as depicted in Fig. 1, which forms the basis of the exponential lower bound claimed in
this paper. In addition to the basic notation already introduced in Sect. 2, we remark
on the action space as follows.

• For each state s ∈ S, we haveAs ⊆ {a0, a1, a2}. For convenience of presentation,
we allow the action space to vary with s ∈ S, but it always comprises no more
than 3 actions.
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State space partitioning. The states of our MDP exhibit certain group structure. To
be precise, we partition the state space S into a few disjoint subsets

S = {0} ∪ Sprimary ∪ Sadj ∪ S1 ∪ S2 ∪ Ŝ1 ∪ · · · ∪ ŜH ∪ Ŝ1 ∪ · · · ∪ ŜH ,

(14)

which entails:

• State 0 (an absorbing state);
• Two key “buffer” state subsets S1 and S2;
• A set of H − 2 key primary states Sprimary:={3, . . . , H};2
• A set of H key adjoint states Sadj:={1, 2, . . . , H};
• 2H “booster” state subsets Ŝ1, . . . , ŜH , Ŝ1, . . . , ŜH .

Remark 4 Our subsequent analysis largely concentrates on the subsets S1, S2, Sprimary
and Sadj. In particular, each state s ∈ {3, . . . , H} is paired with what we call an adjoint
state s, whose role will be elucidated shortly. In addition, state 1 (resp. state 2) can be
viewed as the adjoint state of the set S1 (resp. S2). The sets Sprimary and Sadj comprise
a total number of 2H − 2 states; in comparison, S1 and S2 are chosen to be much
larger and contain a number of replicated states, a crucial design component that helps
ensure the property (3) under a uniform initial state distribution. As we shall make
clear momentarily, the “booster” state sets are introduced mainly to help boost the
discounted visitation distribution of the states in S1, S2, Sprimary, and Sadj at the initial
stage.

We shall also specify below the size of these state subsets as well as some key
parameters, where the choices of the quantities ch, cb,1, cb,2, cm � 1 will be made
clear in the analysis (cf. (35)).

• H is taken to be on the same order as the “effective horizon” of this discounted
MDP, namely,

H = ch
1 − γ

. (15)

• The two buffer state subsets S1 and S2 have size

|S1| = cb,1(1 − γ )|S| and |S2| = cb,2(1 − γ )|S|. (16)

• The booster state sets are of the same size, namely,

|Ŝ1| = · · · |ŜH | = |Ŝ1| = · · · = |ŜH | = cm(1 − γ )|S|. (17)

2 While we do not include states 1 and 2 here, any state in S1 (resp. S2) can essentially be viewed as a
(replicated) copy of state 1 (resp. state 2).
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Probability transition kernel and reward function. We now describe the probability
transition kernel and the reward function for each state subset. Before continuing,
we find it helpful to isolate a few key parameters that will be used frequently in our
construction:

τs := 0.5γ
2s
3 , (18a)

p:= cp(1 − γ ), (18b)

rs := 0.5γ
2s
3 + 5

6 , (18c)

where s ∈ {1, 2, . . . , H}, and cp > 0 is some small constant that shall be specified
later (see (35)). To facilitate understanding, we shall often treat τs and rs (s ≤ H ) as
quantities that are all fairly close to 0.5 (which would happen if γ is close to 1 and
H = ch

1−γ
for ch sufficiently small).

We are now positioned to make precise descriptions of both P and r as follows.

• Absorbing state 0: singleton action space {a0},

P(0 | 0, a0) = 1, r(0, a0) = 0. (19)

This is an absorbing state, namely, the MDP will stay in this state permanently
once entered. As we shall see below, taking action a0 in an arbitrary state will enter
state 0 immediately.

• Key primary states s ∈ {3, . . . , H}: action space {a0, a1, a2},

P(0 | s, a0) = 1, r(s, a0) = rs + γ 2 pτs−2, (20a)

P
(
s − 1 | s, a1

) = 1, r(s, a1) = 0, (20b)

P(0 | s, a2) = 1 − p, r(s, a2) = rs, (20c)

P
(
s − 2 | s, a2

) = p, (20d)

where p, τs and rs are all defined in (18).
• Key adjoint states s ∈ {3, . . . , H}: action space {a0, a1},

P(0 | s, a0) = 1, r(s, a0) = γ τs, (21a)

P(s | s, a1) = 1, r(s, a1) = 0, (21b)

where τs is defined in (18a).
• Key buffer state subsets S1 and S2: action space {a0, a1},

∀s1 ∈ S1 : P(0 | s1, a0) = 1, r(s1, a0) = −γ 2, (22a)

P(0 | s1, a1) = 1, r(s1, a1) = γ 2, (22b)

∀s2 ∈ S2 : P(0 | s2, a0) = 1, r(s2, a0) = −γ 4, (22c)

P(0 | s2, a1) = 1, r(s2, a1) = γ 4. (22d)
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Given the homogeneity of the states in S1 (resp. S2), we shall often use
the shorthand notation P(· | 1, a) (resp. P(· | 2, a)) to abbreviate P(· | s1, a)

(resp. P(· | s2, a)) for any s1 ∈ S1 (resp. s2 ∈ S2) for the sake of convenience.
• Other adjoint states 1 and 2: action space {a0, a1},

P(0 | 1, a0) = 1, r(1, a0) = γ τ1,

P(s1 | 1, a1) = 1

|S1| , ∀s1 ∈ S1, r(1, a1) = 0, (23a)

P(0 | 2, a0) = 1, r(2, a0) = γ τ2,

P(s2 | 2, a1) = 1

|S2| , ∀s2 ∈ S2, r(2, a1) = 0, (23b)

where τ1 and τ2 are defined in (18a).
• Booster state subsets Ŝ1, . . ., ŜH , Ŝ1, . . ., ŜH : singleton action space {a1},

∀s′ ∈ Ŝ1, s ∈ S1 : P(s | s′, a1) = 1/|S1|, (24a)

∀s′ ∈ Ŝ2, s ∈ S2 : P(s | s′, a1) = 1/|S2|; (24b)

for any s ∈ {3, . . . , H},

∀s′ ∈ Ŝs, : P(s | s′, a1) = 1, (24c)

and for any s ∈ {1, . . . , H},

∀s′ ∈ Ŝs, : P(s | s′, a1) = 1. (24d)

The rewards in all these cases are set to be 0 (in fact, they will not even appear in
the analysis). In addition, any transition probability that has not been specified is
equal to zero.

Convenient notation for buffer state subsets S1 and S2. By construction, it is easily
seen that the states in S1 (resp. S2) have identical characteristics; in fact, all states
in S1 (resp. S2) share exactly the same value functions and Q-functions throughout
the execution of the softmax PG method. As a result, we introduce the following
convenient notation whenever it is clear from the context:

V π (s1)=: V π (1), Qπ (s1, a)=: Qπ (1, a), Aπ (s1)=: Aπ (1) for all s1 ∈ S1;
(25a)

V π (s2)=: V π (2), Qπ (s2, a)=: Qπ (2, a), Aπ (s2)=: Aπ (2) for all s2 ∈ S2;
(25b)

dπ
μ (s1)=: dπ

μ (1), π(a | s1)=: π(a | 1), θ(s1, a)=: θ(1, a) for all s1 ∈ S1;
(25c)

dπ
μ (s2)=: dπ

μ (2), π(a | s2)=: π(a | 2), θ(s2, a)=: θ(2, a) for all s2 ∈ S2.

(25d)
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Optimal values and optimal actions of the constructed MDP. Before concluding
this section, we find it convenient to determine the optimal value functions and the
optimal actions of the constructed MDP, which would be particularly instrumental
when presenting our analysis. This is summarized in the lemma below, whose proof
can be found in Appendix A.3.

Lemma 1 Suppose that γ 2H ≥ 2/3 and H ≥ 2.
Then one has

V �(0) = 0, V �(s) = Q�(s, a1) = γ 2s, 1 ≤ s ≤ H , (26a)

V �(s) = Q�(s, a1) = γ 2s+1, 1 ≤ s ≤ H , (26b)

and the optimal policy is to take action a1 in all non-absorbing states. In addition, for
any policy π and any state-action pair (s, a), one has Qπ (s, a) ≥ −γ 2.

Lemma 1 tells us that for this MDP, the optimal policy for all non-absorbing states
takes a simple form: sticking to action a1. In particular, when γ ≈ 1 and γ H ≈ 1,
Lemma 1 reveals that the optimal values of all non-absorbing major states are fairly
close to 1, namely,

V �(s) ≈ 1 for all s ∈ {1, . . . , H} ∪ {1, . . . , H}. (27)

Additionally, the above lemma directly implies that the Q-function (and hence the
value function) is always bounded below by −1, a property that will be used several
times in our analysis.

4 Analysis: proof outline

In this section, we present the main steps for establishing our computational lower
bound in Theorem 1. Before doing so, we find it convenient to start by presenting and
proving a weaker version as follows.

Theorem 2 Consider the MDP M constructed in Sect. 3 (and Fig. 1). Assume that
the softmax PG method adopts a uniform initial state distribution, a uniform policy
initialization, and has access to exact gradient computation. Suppose that 0 < η <

(1 − γ )2/5. There exist universal constants c1, c2, c3 > 0 such that: for any 0.96 <

γ < 1 and |S| ≥ c3(1 − γ )−6, one has

V �(s) − V (t)(s) > 0.15, for all primary states 0.1H < s < H , (28)

provided that the iteration number satisfies

t <
c1
η

|S|2
c2
1−γ

. (29)
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In what follows, we shall concentrate on establishing Theorem 2, on the basis of the
MDP instance constructed in Sect. 3. Once this theorem is established, we shall revisit
Theorem 1 (towards the end of Sect. 4.3) and describe how the proof of Theorem 2
can be adapted to prove Theorem 1.

4.1 Preparation: crossing times and choice of constants

Crossing times. To investigate how long it takes for softmax PG methods to converge
to the optimal policy, we shall pay particular attention to a family of key quantities:
the number of iterations needed for V (t)(s) to surpass a prescribed threshold τ (τ < 1)
before it reaches its optimal value. To be precise, for each s ∈ {3, . . . , H}∪{1, . . . , H}
and any given threshold τ > 0, we introduce the following crossing time:

ts(τ ) := argmin
{
t | V (t)(s) ≥ τ

}
. (30)

When it comes to the buffer state subsets S1 and S2, we define the crossing times
analogously as follows

t1(τ ):= argmin
{
t | V (t)(1) ≥ τ

}
and t2(τ ):= argmin

{
t | V (t)(2) ≥ τ

}
, (31)

where we recall the notation V (t)(1) and V (t)(2) introduced in (25).

Monotonicity of crossing times. Recalling the definition (30) of the crossing time
ts(·), we know that

V (t)(s) < τs for all t < ts(τs), (32)

with τs defined in expression (18a).We immediatelymake note of the following crucial
monotonicity property that will be justified later in Remark 8:

t2(τ2) ≤ t3(τ3) ≤ · · · ≤ tH (τH ). (33)

It will also be shown in Lemma 4 that t1(τ1) ≤ t2(τ2) when the constants cb,1, cb,2
and cm are properly chosen.

Remark 5 Aswe shall see shortly (i.e., Part (iii) of Lemma 8), one has ts(γ τs) = ts(τs)
for any s ∈ {1, . . . , H}, which combined with (33) leads to

t1(τ1)= t1(γ τ1) ≤ t2(τ2)= t1(γ τ1) ≤ t3(τ3) = t3(γ τ3) ≤ · · · ≤ tH (τH )= tH (γ τH ).

(34)

Choice of parameters. We assume the following choice of parameters throughout the
proof:

γ > 0.96, cm < 1, ch < 0.19, η <
(1 − γ )2

5
,
cb,1
cm

≤ 1

79776
,
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Fig. 2 An illustration of the dynamics of π(t)(a1 | s) versus the iteration count t . The yellow line, the
middle red line, and the dark red line illustrate the dynamics of π(t)(a1 | 1), π(t)(a1 | 3) and π(t)(a1 | 5),
respectively

8 ≤ cb,2
cm

≤ 15, cp <
1

2016
. (35)

In the sequel, we outline the key steps that underlie the proof of our main results, with
the proofs of the key lemmas postponed to the appendix.

4.2 A high-level picture

While our proof is highly technical, it is prudent to point out some key features that
help paint a high-level picture about the slow convergence of the algorithm. Recall
that a1 is the optimal action in the constructed MDP. The chain-like structure of
our MDP underscores a sort of sequential dependency: the dynamic of any primary
state s ∈ {3, . . . , H} depends heavily on what happens in those states prior to s—
particularly state s−1, state s−2 as well as the associated adjoint states. By carefully
designing the immediate rewards, we can ensure that for any s ∈ {3, . . . , H}, the
iterate π(t)(a1 | s) corresponding to the optimal action a1 keeps decreasing before
π(t)(a1 | s − 2) gets reasonably close to 1. As illustrated in Fig. 2, this feature implies
that the time taken for π(t)(a1 | s) to get close to 1 grows (at least) geometrically as s
increases, as will be formalized in (46).

Furthermore, we summarize below the typical dynamics of the iterates θ(t)(s, a)

before they converge, which are helpful for the reader to understand the proof. We
start with the key buffer state sets S1 and S2, which are the easiest to describe.

Dynamics of θ(t)(s, a) (for key buffer state sets S1 and S2):

1. Initialization: θ(0)(1, a0) = θ(0)(1, a1) = 0 and θ(0)(2, a0) =
θ(0)(2, a1) = 0

2. All iterations (Lemma 4):

• θ(t)(1, a1) and θ(t)(2, a1) keep increasing and remains the
largest

• θ(t)(1, a0) and θ(t)(2, a0) keep decreasing and remains the
smallest
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Fig. 3 An illustration of the dynamics of {θ(t)(s, a)}a∈{a0,a1,a2} vs. iteration number t . The blue, red and

yellow lines represent the dynamics of θ(t)(s, a0), θ(t)(s, a1) and θ(t)(s, a2), respectively. Here, we use
solid lines to emphasize the time ranges for which the dynamics of θ(t)(s, a) play the most crucial roles in
our lower bound analysis

Next, the dynamics of θ(t)(s, a) for the key primary states 3 ≤ s ≤ H are much
more complicated, and rely heavily on the status of several prior states s − 1, s − 2
and s − 1. This motivates us to divide the dynamics into several stages based on the
crossing times of these prior states, which are illustrated in Fig. 3 as well. Here, we
remind the reader of the definition of τs in (18).

Dynamics of θ(t)(s, a) (for key primary states 3 ≤ s ≤ H ):

1. Initialization: θ(0)(s, a0) = θ(0)(s, a1) = θ(0)(s, a2) = 0
2. Initial stage: t < ts−2(τs−2) (Lemma 5)

• θ(t)(s, a1) keeps decreasing and remains the smallest
• θ(t)(s, a0) keeps increasing and remains the largest
• θ(t)(s, a2) keeps increasing

3. Intermediate stage: ts−2(τs−2) ≤ t ≤ ts−1(τs) (Lemma 6)

• θ(t)(s, a1) keeps decreasing and remains the smallest
• θ(t)(s, a2) keeps increasing

4. Final stage (part 1): ts−1(τs) < t < tref (Lemma 7)

• θ(t)(s, a1) increases a little
• θ(t)(s, a0) keeps decreasing and approaches θ(t)(s, a1)
• θ(t)(s, a2) keeps increasing and becomes the largest

5. Final stage (part 2): t ≥ tref (Lemma 7)

• θ(t)(s, a1) keeps increasing and becomes the largest
• θ(t)(s, a2) decreases a lot
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4.3 Proof outline

We are now in a position to outline the main steps of the proof of Theorem 1 and The-
orem 2, with details deferred to the appendix. In the following, Steps 1-6 are devoted
to analyzing the dynamics of softmax PG methods when applied to the constructed
MDPM, which in turn establish Theorem 2. Step 7 describes how these can be easily
adapted to prove Theorem 1, by slightly modifying the MDP construction.

Step 1: bounding the discounted state visitation distributions

In view of the PG update rule (12), the size of the policy gradient relies heavily on the
discounted state visitation distribution d(t)

μ (s). In light of this observation, this step

aims to quantify the magnitudes of d(t)
μ (s), for which we start with several universal

lower bounds regardless of the policy in use.

Lemma 2 For any policy π , the following lower bounds hold true:

dπ
μ (s) ≥ cmγ (1 − γ )2, if s ∈ {3, . . . , H}, (36a)

dπ
μ (s) ≥ cmγ (1 − γ )2, if s ∈ {1, . . . , H}, (36b)

dπ
μ (1) ≥ cmγ (1 − γ )2

|S1| = γ (1 − γ )
cm
cb,1

· 1

|S| , (36c)

dπ
μ (2) ≥ cmγ (1 − γ )2

|S2| = γ (1 − γ )
cm
cb,2

· 1

|S| . (36d)

As it turns out, the above lower bounds are order-wise tight estimates prior to certain
crucial crossing times. This is formalized in the following lemma, where we recall the
definition of τs in (18).

Lemma 3 Under the assumption (35), the following results hold:

∀3 ≤ s ≤ H , t ≤ ts(τs) : d(t)
μ (s) ≤ 14cm(1 − γ )2, (37a)

∀2 ≤ s ≤ H , t ≤ ts(τs) : d(t)
μ (s) ≤ 14cm(1 − γ )2, (37b)

∀t ≤ t2(τ2) : d(t)
μ (2) ≤ 1 − γ

|S|
(
1 + 8cm

cb,2

)
, (37c)

∀t ≤ t2(τ2) : d(t)
μ (1) ≤ 14cm(1 − γ )2, (37d)

∀t ≤ min{t1(τ1), t2(τ2)} : d(t)
μ (1) ≤ 1 − γ

|S|
(
1 + 17cm

cb,1

)
. (37e)

Remark 6 As will be demonstrated in Lemma 4, one has t1(τ1) ≤ t2(τ2) for properly
chosen constants cb,1, cb,2 and cm. Therefore, we shall bear in mind that the properties
(37d) and (37e) hold for any t ≤ t1(τ1).

The proofs of these two lemmas are deferred to Appendix B. The sets of booster
states, whose cardinality is controlled by cm, play an important role in sandwiching the
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initial distribution of the states in S1, S2, Sprimary, and Sadj. Combining these bounds,
we uncover the following properties happening before V (t)(s) exceeds τs :

• For any key primary state s ∈ {3, . . . , H} or any adjoint state s ∈ {1, . . . , H}, one
has

d(t)
μ (s) � (1 − γ )2.

• For any state s contained in the buffer state subsets S1 and S2, we have

d(t)
μ (1) � (1 − γ )2

|S1| and d(t)
μ (2) � (1 − γ )2

|S2| ,

where we recall the size of S1 and S2 in (16). In other words, the discounted state
visitation probability of any buffer state is substantially smaller than that of any key
primary state 3, . . . , H or adjoint state. In principle, the size of each buffer state
subset plays a crucial role in determining the associated d(t)

μ (s)—the larger the
size of the buffer state subset, the smaller the resulting state visitation probability.

• Further, the aggregate discounted state visitation probability of the above states is
no more than the order of

(1 − γ )2 · H � 1 − γ = o(1),

which is vanishingly small. In fact, state 0 and the booster states account for the
dominant fraction of state visitations at the initial stage of the algorithm.

Step 2: characterizing the crossing times for the first few states (S1,S2, and 1)

Armed with the bounds on d(t)
μ developed in Step 1, we can move forward to study the

crossing times for the key states. In this step, we pay attention to the crossing times for
the buffer states S1,S2 as well as the first adjoint state 1, which forms a crucial starting
point towards understanding the behavior of the subsequent states. Specifically, the
following lemma develops lower and upper bounds regarding these quantities, whose
proof can be found in Appendix C.

Lemma 4 Suppose that (35) holds. If |S| ≥ 1/(1−γ )2, then the crossing times satisfy

log 3

1 + 17cm/cb,1

|S|
η

≤ t1(τ1) ≤ t1
(
γ 2 − 1/4

) ≤ t2(τ2) ≤ t2
(
γ 4 − 1/4

)

≤ 15cb,2
cm

|S|
η

. (38a)

In addition, if |S| ≥ 320γ 3

cm(1−γ )2
, then one has

t2(τ2) > t1
(
γ 3 − 1/4

)
. (38b)
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For properly chosen constants cb,1, cb,2 and cm, Lemma 4 delivers the following
important messages:

• The cross times of these first few states are already fairly large; for instance,

t1(τ1) � t2(τ2) � |S|
η

, (39)

which scale linearly with the state space dimension. As we shall see momentarily,
while t1(τ1) and t2(τ2) remain polynomially large, these play a pivotal role in
ensuring rapid explosion of the crossing times of the states that follow (namely,
the states {3, . . . , H}).

• We can guarantee a strict ordering such that the crossing time of state 2 is at least
as large as that of both state 1 and state 1. This property is helpful as well for
subsequent analysis.

Step 3: understanding the dynamics of�(t)(s, a) before ts−2(�s−2)

With the above characterization of the crossing times for the first few states, we are
ready to investigate the dynamics of θ(t)(s, a) (3 ≤ s ≤ H ) at the initial stage, that is,
the duration prior to the threshold ts−2(τs−2). Our finding for this stage is summarized
in the following lemma, with the proof deferred to Appendix D.

Lemma 5 Suppose that (35) holds. For any 3 ≤ s ≤ H and any 0 ≤ t ≤ ts−2(τs−2),
one has

θ(t)(s, a1) ≤ −1

2
log
(
1 + cmγ

35
η(1 − γ )2t

)
(40)

and θ(t)(s, a0) ≥ θ(t)(s, a2) ≥ 0. (41)

Lemma 5 makes clear the behavior of θ(t)(s, a) during this initial stage:

• The iterate θ(t)(s, a1) associated with the optimal action a1 keeps dropping at a
rate of log

(
O( 1√

t
)
)
, and remains the smallest compared to the ones with other

actions (since θ(t)(s, a1) ≤ 0 ≤ θ(t)(s, a2) ≤ θ(t)(s, a0)).
• The other two iterates θ(t)(s, a0) and θ(t)(s, a2) stay non-negative throughout this
stage, with a0 being perceived as more favorable than the other two actions.

• In fact, a closer inspection of the proof in Appendix D reveals that θ(t)(s, a2)
remains increasing—even though at a rate slower than that of θ(t)(s, a0)—
throughout this stage (see (134) and the gradient expression (12b)).

In particular, around the threshold ts−2(τs−2), the iterate θ(t)(s, a1) becomes as small
as

exp
(
θ(t)(s, a1)

)
≤ O

(
1

√
η(1 − γ )2ts−2(τs−2)

)
.
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In fact, an inspection of the proof of this lemma reveals that

π(t)(a1 | s) ≤ O

(
1

η(1 − γ )2ts−2(τs−2)

)
when t = ts−2(τs−2).

This means that π(t)(a1 | s) becomes smaller for a larger ts−2(τs−2), making it more
difficult to return/converge to 1 afterward.

Step 4: understanding the dynamics of�(t)(s, a) between ts−2(�s−2) and ts−1(�s)

Next, we investigate, for any 3 ≤ s ≤ H , the behavior of the iterates during an “inter-
mediate” stage, namely, the duration when the iteration count t is between ts−2(τs−2)

and ts−1(τs). This is summarized in the following lemma, whose proof can be found
in Appendix E.

Lemma 6 Consider any 3 ≤ s ≤ H. Assume that (35) holds. Suppose that

ts−1(τs−1) > ts−2(τs−1) + 2444s

cmγ η(1 − γ )2
, (42a)

t3(τ3) > t2(γ
4 − 1/4). (42b)

Then one has

θ(ts−1(τs ))(s, a1) ≤ θ(ts−2(τs−2))(s, a1) and θ(ts−1(τs ))(s, a2) ≥ 0. (43)

In particular, when s = 3, the results in (43) hold true without requiring the assump-
tion (42).

Remark 7 Condition (42a) only requires ts−1(τs−1) to be slightly larger than
ts−2(τs−1), which will be justified using an induction argument when proving the
main theorem.

As revealed by the claim (43) of Lemma 6, the iterate θ(t)(s, a2) remains suffi-
ciently large during this intermediate stage. In the meantime, Lemma 6 guarantees
that during this stage, θ(t)(s, a1) lies below the level of θ(ts−2(τs−2))(s, a1) that has
been pinned down in Lemma 5 (which has been shown to be quite small). Both of
these properties make clear that the iterates θ(t)(s, a) remain far from optimal at the
end of this intermediate stage.

Step 5: establishing a blowing-up phenomenon

The next lemma, which plays a pivotal role in developing the desired exponential
convergence lower bound, demonstrates that the cross times explode at a super fast
rate. The proof is postponed to Appendix F.
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Lemma 7 Consider any 3 ≤ s ≤ H. Suppose that (35) holds and

ts−2(τs−2) ≥
(

6300e

cp(1 − γ )

)4 1
cmγ
35 η(1 − γ )2

. (44)

Then there exists a time instance tref obeying ts−1(τs) ≤ tref < ts(τs) such that

θ(tref)(s, a0) ≤ θ(tref)(s, a1) − log
( cp
16128

(1 − γ )
)
, (45a)

θ(tref)(s, a1) ≤ − 1

2
log
(
1 + cmγ

35
η(1 − γ )2ts−2(τs−2)

)
+ 1, (45b)

and at the same time,

ts(τs) − tref ≥ 10−10cpc
0.5
m η0.5(1 − γ )2

(
ts−2(τs−2)

)1.5
. (45c)

The most important message of Lemma 7 lies in property (45c). In a nutshell, this
property uncovers that the crossing time ts(τs) is substantially larger than ts−2(τs−2),
namely,

ts(τs) � η0.5(1 − γ )2
(
ts−2(τs−2)

)1.5
, (46)

thus leading to explosion at a super-linear rate. By contrast, the other two properties
unveil some important features happening between ts−1(τs) and ts(τs) that in turn
lead to property (45c). In words, property (45a) requires θ(tref)(s, a0) to be not much
larger than θ(tref)(s, a1); property (45b) indicates that: when ts−2(τs−2) is large, both
θ(tref)(s, a1) and θ(tref)(s, a0) are fairly small, with θ(tref)(s, a2) being the dominant one
(due to the fact

∑
a θ(tref)(s, a) = 0 as will be seen in Part (vii) of Lemma 8).

The reader might naturally wonder what the above results imply about π(tref)(a1 | s)
(as opposed to θ(tref)(s, a1)). Towards this end, we make the observation that

π(tref)(a1 | s) = exp
(
θ(tref)(s, a1)

)

∑
a exp

(
θ(tref)(s, a)

) ≤ exp
(
θ(tref)(s, a1)

)

exp
(
θ(tref)(s, a2)

)

(i)= exp
(
2θ(tref)(s, a1) + θ(tref)(s, a0)

)

(ii)
� 1

(1 − γ )
(
η(1 − γ )2ts−2(τs−2)

)1.5 � 1

η1.5(1 − γ )4
(
ts−2(τs−2)

)1.5 ,

(47)

where (i) holds true since
∑

a θ(tref)(s, a) = 0 (a well-known property of policy gradi-
ent methods as recorded in Lemma 8(vii)), and (ii) follows from the properties (45a)
and (45b). In other words, π(tref)(s, a1) is inversely proportional to

(
ts−2(τs−2)

)3/2.
As we shall see, the time taken for π(tref)(a1 | s) to converge to 1 is proportional to the
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inverse policy iterate
(
π(t)(s, a1)

)−1, meaning that it is expected to take an order of
(
ts−2(τs−2)

)3/2 iterations to increase from π(tref)(s, a1) to 1.

Step 6: putting all this together to establish Theorem 2

With the above steps in place, we are ready to combine them to establish the following
result. As can be easily seen, Theorem 2 is an immediate consequence of Theorem 3.

Theorem 3 Suppose that (35) holds. There exist some universal constants c1, c2, c3 >

0 such that

ts(0.5) ≥ c1
|S| 23
η

(
c2|S|

) 1
3 ·1.5�s/2�

, (48)

provided that

|S| ≥ c3
(1 − γ )6

. (49)

Proof of Theorem 3 Let us define two universal constants C1:= log 3
1+17cm/cb,1

and C2:=
10−20c2pcm log 3
1+17cm/cb,1

. We claim that if one can show that

ts(τs) ≥ C1
|S|
η

(
C2(1 − γ )4|S|

)1.5�(s−1)/2�−1
, (50)

then the desired bound (48) holds true directly. In order to see this, recall that τs ≤ 1/2
by definition, and therefore,

ts(0.5) ≥ ts(τs)
(i)≥ C1

|S|
η

(
C2

3
√|S|

)1.5�(s−1)/2�−1 (ii)≥ c1
|S| 23
η

(
c2|S|

) 1
3 ·1.5�s/2�

.

Here, (i) follows from (50) in conjunction with the assumption (49), whereas (ii) holds
true by setting c1 = C1/C2 and c2 = C3

2 .
It is then sufficient to prove the inequality (50), towards which we shall resort to

mathematical induction in conjunction with the following induction hypothesis

ts(τs) > ts−1(τs) + 2444(s + 1)

cmγ η(1 − γ )2
, for s ≥ 3. (51)

• We start with the cases with s = 1, 2, 3. It follows from Lemma 4 that

t2(τ2) ≥ t1(τ1) ≥ log 3

1 + 17cm/cb,1

|S|
η

= C1
|S|
η

, (52)
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which validates the above claim (50) for s = 1 and s = 2. In addition, Lemma 7
ensures that

t3(τ3) − max
{
t1(γ

3 − 1/4), t2(τ3)
}

≥ 10−10cpc
0.5
m η0.5(1 − γ )2

(
t1(τ1)

)1.5

≥ 9776

cmγ η(1 − γ )2
, (53)

where the last inequality is guaranteed by (52) and the assumption |S| ≥
max

{
4888

C1cmγ (1−γ )2
, 4
C2(1−γ )4

}
. This implies that the inequality (51) is satisfied

when s = 3.
• Next, suppose that the inequality (50) holds true up to state s − 1 and the inequal-
ity (51) holds up to s for some 3 ≤ s ≤ H . To invoke the induction argument, it
suffices to show that the inequality (50) continues to hold for state s and the inequal-
ity (51) remains valid for s + 1. This will be accomplished by taking advantage of
Lemma 7.]

Given that the inequality (50) holds true for every state up to s − 1, one has

ts−1(τs−1) ≥ ts−2(τs−2) ≥ C1
|S|
η

(
C2(1 − γ )4|S|

)1.5�(s−3)/2�−1

≥
( 6300e

cp(1 − γ )

)4 1
cmγ
35 η(1 − γ )2

,

where the last inequality is satisfied provided that |S| > max
{( 6300e

cp

)4

35
C1cmγ (1−γ )6

, 4
C2(1−γ )4

}
. Therefore, Lemma 7 is applicable for both s and s + 1,

thus leading to

ts(τs) − ts−1(τs) ≥ 10−10cpc
0.5
m η0.5(1 − γ )2

(
ts−2(τs−2)

)1.5

≥ 10−10cpc
0.5
m η0.5(1 − γ )2

(
C1

|S|
η

(
C2(1 − γ )4|S|

)1.5�(s−3)/2�−1
)1.5

≥ C1
|S|
η

(
C2(1 − γ )4|S|

)1.5�(s−1)/2�−1
.

Here, the last step relies on the condition 10−10cpc0.5m η0.5(1− γ )2(C1
|S|
η

)0.5 ≥ 1.
This in turn establishes the property (50) for state s (given that ts−1(τs) ≥ 0). In
addition, Lemma 7—when applied to s + 1—gives

ts+1(τs+1) − ts(τs+1) ≥ 10−10cpc
0.5
m η0.5(1 − γ )2

(
ts−1(τs−1)

)1.5

≥ 10−10cpc
0.5
m η0.5(1 − γ )2
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(
C1

|S|
η

(
C2(1 − γ )4|S|

)1.5�(s−2)/2�−1
)1.5

≥ C1
|S|
η

(
C2(1 − γ )4|S|

)1.5�s/2�−1

≥ 2444(s + 2)

cmγ η(1 − γ )2
,

where the last step follows as long as |S| > max
{

4888
C1cmγ (1−γ )2

, 4
C2(1−γ )4

}
. We

have thus established the property (51) for state s + 1.

Putting all the above pieces together, we arrive at the inequality (50), thus estab-
lishing Theorem 3. ��

Step 7: adapting the proof to establish Theorem 1

Thus far, we have established Theorem 2, and are well equipped to return to the proof
of Theorem 1. As a remark, Theorem 2 and its analysis posits that for a large fraction of
the key primary states (as well as their associated adjoint states), softmax PGmethods
can take a prohibitively large number of iterations to converge. The issue, however,
is that there are in total only O(H) key primary states and adjoint states, accounting
for a vanishingly small fraction of all |S| states. In order to extend Theorem 2 to
Theorem 1 (the latter of which is concerned with the error averaged over the entire
state space), we would need to show that the value functions associated with those
booster states—which account for a large fraction of the state space—also converge
slowly.

In the MDP instance constructed in Sect. 3, however, the action space associated
with the booster states is a singleton set, meaning that the action is always optimal. As
a result, wewould first need tomodify/augment the action space of booster states, so as
to ensure that their learned actions remain suboptimal before the algorithm converges
for the associated key primary states and adjoint states.

A modified MDP instance. We now augment the action space for all booster states in
the MDPM constructed in in Sect. 3, leading to a slightly modified MDP denoted by
Mmodified:

• for any key primary state s ∈ {3, . . . , H} and any associated booster state ŝ ∈ Ŝs ,
take the action space of ŝ to be {a0, a1} and let

P(0 | ŝ, a0) = 0.9, P(s | ŝ, a0) = 0.1, r (̂s, a0) = 0.9γ τs,

P(s | ŝ, a1) = 1, r (̂s, a1) = 0; (54)

• for any key adjoint state s ∈ {1, . . . , H} and any associated booster state ŝ ∈ Ŝs ,
take the action space of ŝ to be {a0, a1} and let

P(0 | ŝ, a0) = 0.9, P(s | ŝ, a0) = 0.1, r (̂s, a0) = 0.9γ 2τs,
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P(s | ŝ, a1) = 1, r (̂s, a1) = 0; (55)

• all other comoponents ofMmodified remain identical to those of the original M.

Analysis for the new booster states. Given that the dynamics of non-booster states are
un-affected by the booster states, it suffices to perform analysis for the booster states.
Let us first consider any key primary state s and any associated booster state ŝ.

• As can be easily seen,

Q(t)(̂s, a0) = r (̂s, a0) + γ P(s | ŝ, a0)V (t)(s) + γ P(0 | ŝ, a0)V (t)(0)

= 0.9γ τs + 0.1γ V (t)(s),

Q(t)(̂s, a1) = r (̂s, a1) + γ P(s | ŝ, a0)V (t)(s) = γ V (t)(s),

where we have used the basic fact V (t)(0) = 0 (see (73) in Lemma 8). Given that
V (t)(̂s) is a convex combination of Q(t)(̂s, a0) and Q(t)(̂s, a1), one can easily see
that: if V (t)(s) < τs , then one necessarily has V (t)(̂s) < γ τs

• Similarly, the optimal Q-function w.r.t. ŝ is given by

Q�(̂s, a0) = r (̂s, a0) + γ P(s | ŝ, a0)V �(s) + γ P(0 | ŝ, a0)V �(0)

= 0.9γ τs + 0.1γ V �(s),

Q�(̂s, a1) = r (̂s, a1) + γ P(s | ŝ, a0)V �(s) = γ V �(s),

which together with Lemma 1 and the definition (18) of τs indicates that V �(̂s) =
Q�(̂s, a1) = γ 2s+1.

• The above facts taken collectively imply that: if V (t)(s) < τs , then

V �(̂s) − V (t)(̂s) > γ 2s+1 − γ τs = γ
(
γ 2s − 0.5γ

2s
3
)

> 0.22, (56)

provided that γ is sufficiently large (which is satisfied under the condition (35)).

Similarly, for any key adjoint state s and any associated booster state ŝ, if V (t)(s) <

γ τs , then one must have

V �(̂s) − V (t)(̂s) > 0.22. (57)

Repeating the same proof as for Theorem 2, one can easily show that (with slight
adjustment of the universal constants)

ts(τs) = ts(γ τs) ≥ 1

η
|S|2�( 1

1−γ
)

for all s > 0.1H . (58)

This taken together with the above analysis suffices to establish Theorem 1, given the
following two simple facts: (i) there are 2Hcm(1− γ )|S| = 2cmch|S| booster states,
and (ii)more than 90%of themneed a prohibitively large number of iterations (cf. (58))
to reach 0.22-optimality. Here, we can take cmch > 0.18 which satisfies (35). The
proof is thus complete.
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Table 2 Summary of notation and parameters

S,As , γ State space, action space associated with state s, discount factor

P(s′ | s, a) Probability of transitioning from state s to state s′ upon execution
of action a

r(s, a) Immediate reward gained in state s when action a is taken;
r(s, a) ∈ [−1, 1]

η Stepsize or learning rate

π(t), θ(t) Policy estimate and its associated parameterization in the t-th
iteration

Vπ , V (t), V � Value function of π , value function of π(t), optimal value function

Qπ , Q(t), Q� Q-function of π , Q-function of π(t), optimal Q-function

Aπ , A(t) Advantage function of π , advantage function of π(t)

μ Initial state distribution (used in defining the objective function
(11))

dπ
μ , d(t)

μ Discounted state visitation distribution of π and π(t) from initial
state distribution μ

τs , p, rs Useful quantities: τs = 0.5γ
2s
3 , p = cp(1 − γ ) and

rs = 0.5γ
2s
3 + 5

6

H Number of key primary states: H = ch
1−γ

S1, S2 Buffer state subsets: |S1| = cb,1(1 − γ )|S|, |S2| = cb,2(1 − γ )|S|
Ŝs Booster state sets w.r.t. state s: |Ŝs | = cm(1 − γ )|S|
Sprimary, Sadj Set of key primary states, set of key adjoint states

s Adjoint state associated with primary state s

M,Mmodified MDPs constructed to prove Theorem 2 and Theorem 1

ts (τ ) Crossing time: argmin{t | V (t)(s) ≥ τ }

5 Discussion

This paper has developed an algorithm-specific lower bound on the iteration complex-
ity of the softmax policy gradient method, obtained by analyzing its trajectory on a
carefully-designed hard MDP instance. We have shown that the iteration complexity
of softmax PG methods can scale pessimistically, in fact (super-)exponentially, with
the dimension of the state space and the effective horizon of the discounted MDP of
interest. Our finding makes apparent the potential inefficiency of softmax PGmethods
in solving large-dimensional and long-horizon problems. In turn, this suggests the
necessity of carefully adjusting update rules and/or enforcing proper regularization in
accelerating policy gradient methods (Table 2).

Our work relies heavily on proper exploitation of the structural properties of the
MDP in algorithm-dependent analysis, which might shed light on lower bound con-
struction for other algorithms as well. For instance, if the objective function (i.e.,
the value function) is augmented by a regularization term, how does the choice
of regularization affect the global convergence behavior? While Agarwal et al. [1]
demonstrated polynomial-time convergence of PG methods in the presence of log-
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barrier regularization, non-asymptotic analysis of PG methods with other popular
regularization—particularly entropy regularization—remains unavailable in existing
literature. How to understand the (in)-effectiveness of entropy-regularized PG meth-
ods is of fundamental importance in the theory of policy optimization. Additionally,
the current paper concentrates on the use of constant learning rates; it falls short of
accommodating more adaptive learning rates, which might be a potential solution to
accelerate vanilla PG methods. Furthermore, our strategy for lower bound construc-
tion might be extended to unveil algorithmic bottlenecks of policy optimization in
multi-agent Markov games as well. All this is worthy of future investigation.
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A Preliminary facts

A.1 Basic properties of the constructedMDP

In this section, we provide more basic properties about the MDP we have constructed
(see Sect. 3). Specifically, we present a miscellaneous collection of basic relations
regarding more general policies, postponing the proof to Appendix A.4.

Lemma 8 Consider any policy π , and recall the quantities defined in (18). Suppose
that γ 2H ≥ 1/2 and 0 < cp ≤ 1/6.

(i) For any state s ∈ {3, . . . , H}, one has

γ
3
2 τs−1 ≤ Qπ (s, a0) = rs + γ 2 pτs−2 ≤ γ

1
2 τs, (59a)

Qπ (s, a1) = γ V π (s − 1), (59b)

Qπ (s, a2) = rs + γ pV π (s − 2) ≤ γ
1
2 τs . (59c)

If one further has V π (s − 2) ≥ 0, then Qπ (s, a2) ≥ γ
3
2 τs−1.

(ii) If V π (s) ≥ τs for some s ∈ {3, . . . , H}, then we necessarily have

π(a1 | s) ≥ 1 − γ

2
. (60)
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(iii) For any s ∈ {1, . . . , H}, one has

Qπ (s, a0) = γ τs and Qπ (s, a1) = γ V π (s), (61)

where we recall the definition of V π (1) and V π (2) in (25). In addition, if
π(a1 | s) > 0, then

V π (s) ≥ γ τs holds if and only if V π (s) ≥ τs . (62)

This means that: if π(t)(a1 | s) > 0 holds for all t ≥ 0, then one necessarily has

ts(γ τs) = ts(τs). (63)

(iv) For any policy π , we have

Qπ (1, a0) = −γ 2, Qπ (1, a1) = γ 2, V π (1) = −γ 2π(a0 | 1) + γ 2π(a1 | 1),
(64a)

Qπ (2, a0) = −γ 4, Qπ (2, a1) = γ 4, V π (2) = −γ 4π(a0 | 2) + γ 4π(a1 | 2).
(64b)

(v) Consider any policy π obeying mina,s π(a | s) > 0. For every s ∈ {3, . . . , H}, if
V π (s) ≥ γ

1
2 τs occurs, then one necessarily has V π (s − 1) ≥ τs−1.

(vi) If V π (s − 2) < τs−2 and π(a1 | s − 2) > 0, then

Qπ (s, a0) − Qπ (s, a2) = γ p
(
γ τs−2 − V π (s − 2)

)
> 0.

If V π (s − 1) ≤ τs−1 and V π (s − 2) ≥ 0, then

min
{
Qπ (s, a0), Q

π (s, a2)
}− Qπ (s, a1) ≥ (1 − γ )/8.

(vii) Consider the softmax PG update rule (12). One has for any s ∈ S and any θ ,

∑

a

∂V πθ (μ)

∂θ(s, a)
= 0 and

∑

a

θ(t)(s, a) = 0 (65)

Remark 8 As it turns out, invoking Part (v) of Lemma 8 recursively reveals that: for
any 2 ≤ s ≤ H and any t < ts(τs), we have

V (t)(s′) < γ 1/2τs′ < τs′ for all s′ obeying s ≤ s′ ≤ H . (66)

This in turn implies that t2(τ2) ≤ t3(τ3) ≤ · · · ≤ tH (τH ) according to the definition
(30).
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Let us point out some implications of Lemma 8 that help guide our lower bound
analysis. Once again, it is helpful to look at the results of this lemma when γ ≈ 1 and
γ H ≈ 1. In this case, the quantities defined in (18) obey τs ≈ rs ≈ 1/2, allowing us
to obtain the following messages:

• Lemma 8(i) implies that, under mild conditions,

Qπ (s, a0) ≈ Qπ (s, a2) ≈ 1/2

holds any s ∈ {3, . . . , H} and any policy π . In comparison to the optimal values
(27), this result uncovers the strict sub-optimality of actionsa0 anda2, and indicates
that one cannot possibly approach the optimal values unless π(a1 | s) ≈ 1.

• As further revealed by Lemma 8(ii), one needs to ensure a sufficiently large
π(a1 | s)—i.e., π(a1 | s) ≥ (1 − γ )/2—in order to achieve V π (s) � 1/2.

• Lemma 8(iii) establishes an intimate connection between V π (s) and V π (s): if we
hope to attain V π (s) � 1/2 for an adjoint state s, then one needs to first ensure
that its associated primary state achieves V π (s) � 1/2. The equivalence property
(63) allows one to propagate the crossing time of state s to that of state s.

• In Lemma 8(iv), we make clear that the Q-functions w.r.t. the buffer states are
independent of the policy in use.

• Lemma 8(v) further establishes an intriguing connection between the crossing time
of state s and that of the preceding state s − 1.

• Lemma 8(vi) uncovers that: (a) if V π (s − 2) is not sufficiently large, then the
Q-value associated with (s, a0) dominates the one associated with (s, a2); (b) if
V π (s−1) is not large enough, then theQ-value associatedwith (s, a1) is dominated
by that of the other two.

• As indicated by Lemma 8(vii), the sum of the iterate θ(t)(s, a) over a remains
unchanged throughout the execution of the algorithm.

Another key feature that permeates our analysis is a certain monotonicity property
of value function estimates as the iteration count t increases, which we discuss in the
sequel. To begin with, akin to the monotonicity properties of gradient descent [6], the
softmax PG update is known to achieve monotonic performance improvement in a
pointwise manner, as summarized in the following lemma. The interested reader is
referred to Agarwal et al. [1, Lemma C.2] for details.

Lemma 9 Consider the softmax PG method (12). One has

V (t+1)(s) ≥ V (t)(s) and Q(t+1)(s, a) ≥ Q(t)(s, a)

for any state-action pair (s, a) and any t ≥ 0, provided that 0 < η < (1 − γ )2/5.

The preceding monotonicity feature, in conjunction with the uniform initialization
scheme, ensures non-negativity of value function estimates throughout the execution
of the algorithm.

Lemma 10 Consider the softmax PG method (12), and suppose the initial policy
π(0)(· | s) for any s ∈ S is given by a uniform distribution over the action space
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As and 0 < η < (1 − γ )2/5. Then one has

∀t ≥ 0, ∀s ∈ S : V (t)(s) ≥ 0.

Proof The only negative rewards in our constructedMDP are r(s1, a0) for s1 ∈ S1 and
r(s2, a0) for s2 ∈ S2.Whenπ(0)(· | s1) is uniformly distributed, theMDP specification
(22) gives

∀s1 ∈ S1 : V (0)(s1) = 0.5r(s1, a0) + 0.5r(s1, a1) = 0.

Similarly, one has V (0)(s2) = 0 for all s2 ∈ S2. Applying Lemma 9, we can demon-
strate that V (t)(s) ≥ V (0)(s) ≥ 0 for any s ∈ S1∪S2 and any t ≥ 0. From the Bellman
equation, it is easily seen that the value function V (t) of any other state is a linear com-
bination of {r(s, a) | s /∈ S1, s /∈ S2}, {V (t)(s1) | s1 ∈ S1} and {V (t)(s2) | s2 ∈ S2},
which are all non-negative. It thus follows that V (t)(s) ≥ 0 for any s ∈ S and any
t ≥ 0. ��

A.2 A type of recursive relations

In addition, we make note of a sort of recursive relations that appear commonly when
studying the dynamics of gradient descent [6]. The proof of the following lemma can
be found in Appendix A.5.

Lemma 11 Consider a positive sequence {xt }t≥0.

(i) Suppose that xt ≤ xt−1 for all t > 0. If there exists some quantity cl > 0 obeying
clx0 ≤ 1/2 and

xt ≥ xt−1 − clx
2
t−1 for all t > 0, (67a)

then one has

xt ≥ 1

2clt + 1
x0

for all t ≥ 0. (67b)

(ii) If there exists some quantity cu > 0 obeying

xt ≤ xt−1 − cux
2
t−1 for all t > 0, (68a)

then it follows that

xt ≤ 1

cut + 1
x0

for all t ≥ 0. (68b)
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(iii) Suppose that 0 < xt < cx for all t < t0 and xt0 ≥ cx for some quantity cx > 0.
Assume that

xt ≥ xt−1 + c−x2t−1 for all 0 < t ≤ t0 (69a)

for some quantity c− > 0. Then one necessarily has

t0 ≤ 1 + c−cx
c−x0

. (69b)

(iv) Suppose that

0 ≤ xt ≤ xt−1 + c+x2t−1 for all 0 < t ≤ t0 (70a)

for some quantity c+ > 0. Then one necessarily has

t0 ≥
1
x0

− 1
xt0

c+
. (70b)

A.3 Proof of Lemma 1

(i) Let us startwith state 0.Given that this is an absorbing state and that r(0, a0) = 0,
we have V �(0) = 0.

(ii) Next, we turn to the buffer states in S1 and S2. For any s1 ∈ S1, the Bellman
equation gives

Q�(s1, a0) = r(s1, a0) + γ V �(0) = −γ 2; (71a)

Q�(s1, a1) = r(s1, a1) + γ V �(0) = γ 2. (71b)

This in turn implies that V �(s1) = Q�(s1, a1) = γ 2. Repeating the same argu-
ment, we arrive at V �(s2) = Q�(s2, a1) = r(s2, a1) = γ 4 for any s2 ∈ S2.

(iii) We then move on to the adjoint states 1 and 2. From the construction (23), the
Bellman equation yields

Q�(1, a0) = r(1, a0) + γ V �(0) = γ τ1 < γ/2,

Q�(1, a1) = r(1, a1) + γ

|S1|
∑

s1∈S1

V �(s1) = γ

|S1|
∑

s1∈S1

V �(s1) = γ 3,

where the last identity follows since V �(s1) = γ 2. This in turn indicates that
V �(1) = max{Q�(1, a0), Q�(1, a1)} = γ 3, provided that γ 2 ≥ 1/2. Similarly,
repeating this argument shows that V �(2) = γ 5, as long as γ 4 ≥ 1/2. As before,
the optimal action in state 1 (resp. 2) is a1.
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(iv) The next step is to determine V �(s) for any s ∈ {3, . . . , H}. Suppose that
V �(s − 2) = γ 2s−3 and V �(s − 1) = γ 2s−1. Then the construction (20)
together with the Bellman equation yields

Q�(s, a0) = r(s, a0) + γ V �(0) = rs + γ 2 pτs−2 < 2/3;
Q�(s, a1) = r(s, a1) + γ V �(s − 1) = γ γ 2s−1 = γ 2s;
Q�(s, a2) = r(s, a2) + γ (1 − p)V �(0) + γ pV �(s − 2)

= rs + pγ 2s−2 < 2/3.

Consequently, one has V �(s) = Q�(s, a1) = γ 2s—namely, a1 is the optimal
action—as long as γ 2s ≥ 2/3.

(v) We then turn attention to V �(s) for any s ∈ {3, . . . , H}. Suppose that V �(s) =
γ 2s . In view of the construction (21) and the Bellman equation, one has

Q�(s, a0) = r(s, a0) + γ V �(0) = γ τs < 1/2;
Q�(s, a1) = r(s, a1) + γ V �(s) = γ 2s+1.

Hence, we have V �(s) = Q�(s, a1) = γ 2s+1—with the optimal action being
a1—provided that γ 2s+1 ≥ 1/2.

(vi) Applying an induction argument based on Steps (iii), (iv) and (v), we conclude
that

V �(s) = γ 2s and V �(s) = γ 2s+1 (72)

for all 3 ≤ s ≤ H , with the proviso that γ 2H ≥ 2/3 and γ 2H+1 ≥ 1/2.
(vii) In view of our MDP construction, a negative immediate reward (which is either

−γ 2 or −γ 4) is accrued only when the current state lies in the buffer sets S1
and S2 and when action a0 is executed. However, once a0 is taken, the MDP
will transition to the absorbing state 0, with all subsequent rewards frozen to
0. In conclusion, the entire MDP trajectory cannot receive negative immediate
rewards more than once, thus indicating that Qπ (s, a) ≥ min{−γ 2,−γ 4} =
−γ 2 irrespective of π and (s, a).

A.4 Proof of Lemma 8

Proof of Part (i). Before proceeding, we make note of a straightforward fact

V π (0) = 0, (73)

given that state 0 is an absorbing state and r(0, a0) = 0.
For any s ∈ {3, . . . , H}, the construction (20) together with (73) and the Bellman

equation yields

Qπ (s, a0) = r(s, a0) + γ V π (0) = rs + γ 2 pτs−2; (74a)
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Qπ (s, a1) = r(s, a1) + γ V π (s − 1) = γ V π (s − 1); (74b)

Qπ (s, a2) = r(s, a2) + γ (1 − p)V π (0) + γ pV π (s − 2) = rs + γ pV π (s − 2).
(74c)

Recalling the choices of τs , rs and p in (18), we can continue the derivation in (74a)
to reach

Qπ (s, a0) = 0.5γ
2s
3 + 5

6 + cp(1 − γ )γ
2s
3 + 2

3

�⇒ γ
3
2 τs−1 = 0.5γ

2s
3 + 5

6 ≤ Qπ (s, a0) ≤ 0.5γ
2s
3 + 1

2 = γ
1
2 τs .

Here, the last inequality is valid when cp ≤ 1/6, given that γ
1
3 + 1−γ

6 γ
1
6 ≤ 1 holds

for any γ < 1.
In addition, combining (74c) with (72), we arrive at

Qπ (s, a2) ≤ rs+γ pV �(s − 2)=0.5γ
2s
3 + 5

6 + cp(1 − γ )γ 2s−2≤0.5γ
2s
3 + 1

2 =γ
1
2 τs .

This is guaranteed to hold when cp ≤ 1/6, given that γ
1
3 + 1−γ

3 γ
4s
3 − 5

2 ≤ γ
1
3 +

1−γ
3 γ

3
2 ≤ 1 is valid for all γ < 1 and s ≥ 3.Moreover, if one further has V π (s − 2) ≥

0, then it is seen from (74c) that

Qπ (s, a2) ≥ rs = 0.5γ
2s
3 + 5

6 = γ
3
2 τs−1. (75)

Proof of Part (ii). By virtue of the construction (20), we can invoke the Bellman
equation to show that

V π (s) = π(a0 | s)Qπ (s, a0) + π(a1 | s)Qπ (s, a1) + π(a2 | s)Qπ (s, a2)

= π(a1 | s) · γ V π (s − 1) + π(a0 | s)Qπ (s, a0) + π(a2 | s)Qπ (s, a2)

≤ π(a1 | s)γ 2s + {π(a0 | s) + π(a2 | s)}γ 1
2 τs

= γ 2sπ(a1 | s) + γ
1
2 τs
(
1 − π(a1 | s)). (76)

Here, the second identity comes from (74b), the penultimate line follows from (59),
(72), as well as the facts V π (s − 1) ≤ V �(s − 1), while the last inequality exploits
the fact π(a0 | s) + π(a2 | s) = 1 − π(a1 | s).

If V π (s) ≥ τs , then this together with the upper bound (76) necessarily requires
that

τs ≤ γ 2sπ(a1 | s) + γ
1
2 τs
(
1 − π(a1 | s)),

which is equivalent to saying that

π(a1 | s) ≥ τs−γ
1
2 τs

γ 2s−γ
1
2 τs

= 1−γ
1
2

2γ
4s
3 −γ

1
2

≥ 1−γ
1
2

γ
4s
3

= 1 − γ

γ
4s
3 (1 + γ

1
2 )

≥ 1 − γ

2
. (77)
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Putting these arguments together establishes the advertised result (60).

Proof of Part (iii). For any s ∈ {3, . . . , H}, in view of the construction (21) and the
Bellman equation, one has

Qπ (s, a0) = r(s, a0) + γ V π (0) = γ τs;
Qπ (s, a1) = r(s, a1) + γ V π (s) = γ V π (s).

Regarding state 1, we have

Qπ (1, a0) = r(1, a0) + γ V π (0) = γ τ1;
Qπ (1, a1) = r(1, a1) + γ

1

|S1|
∑

s′∈S1
V π (s′) = γ V π (1).

Similarly, one obtains Qπ (2, a0) = γ τ2 and Qπ (2, a1) = γ V π (2).
Next, let us decompose V π (s) as follows:

V π (s) = π(a0 | s)Qπ (s, a0) + π(a1 | s)Qπ (s, a1)

= γ τsπ(a0 | s) + γπ(a1 | s)V π (s) = γ τs + γπ(a1 | s)(V π (s) − τs
)
,

where we have used π(a0 | s) + π(a1 | s) = 1. From this relation and the assumption
π(a1 | s) > 0, it is straightforward to see that V π (s) ≥ γ τs if and only if V π (s) ≥ τs .
The claim (63) regarding ts(τs) and ts(γ τs) then follows directly from the definition
of ts (see (30) and (31)).

Proof of Part (iv). For any s1 ∈ S1, the Bellman equation yields

Qπ (s1, a0) = r(s1, a0) + γ V π (0) = −γ 2 + 0 = −γ 2,

Qπ (s1, a1) = r(s1, a1) + γ V π (0) = γ 2 + 0 = γ 2,

and hence

V π (s1) = π(a0 | s1)Qπ (s1, a0) + π(a1 | s1)Qπ (s1, a1) = −γ 2π(a0 | s1) + γ 2π(a1 | s1).

A similar argument immediately yields that for any s2 ∈ S2,

Qπ (s2, a0) = −γ 4, Qπ (s2, a1) = γ 4, and

V π (s2) = −γ 4π(a0 | s2) + γ 4π(a1 | s2).

These together with our notation convention (25) establish (64).
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Proof of Part (v). Suppose instead that V π (s − 1) < τs−1. In view of the basic
property (62) in Lemma 8, this necessarily requires that

V π (s − 1) < γ τs−1. (78)

Taking (78) together with the relation (59b) allows us to reach

Qπ (s, a1) = γ V π (s − 1) < γ 2τs−1 = γ
4
3 τs . (79)

In addition, the properties (59a) and (59c) imply that

Qπ (s, a0) < γ
1
2 τs and Qπ (s, a2) < γ

1
2 τs .

Putting everything together implies that

V π (s) ≤ max
{
Qπ (s, a0), Q

π (s, a1), Q
π (s, a2)

}
< γ

1
2 τs,

which contracticts the assumption V π (s) ≥ γ
1
2 τs . This establishes the claimed result

for any s ∈ {3, . . . , H}.

Proof of Part (vi). First, due to explicit expressions of the Q functions (74a) and (74c),
one has

Qπ (s, a0) − Qπ (s, a2) = γ 2 pτs−2 − γ pV π (s − 2) = γ p
(
γ τs−2 − V π (s − 2)

)
> 0,

where the last relation holds since V π (s − 2) < γ τs−2 when V π (s − 2) < τs−2 (see
(62)).

In addition, following the same derivation as for (79), we see that the condition
V π (s − 1) ≤ τs−1 implies

Qπ (s, a1) ≤ γ 2τs−1.

It is also seen from Part (i) of this lemma that

Qπ (s, a0) ≥ γ 3/2τs−1 and Qπ (s, a2) ≥ γ 3/2τs−1,

provided that V π (s − 2) ≥ 0. Combining these two inequalities, we arrive at the
claimed bound

min
{
Qπ (s, a0), Q

π (s, a2)
}− Qπ (s, a1) ≥ γ 3/2τs−1 − γ 2τs−1

= γ 3/2 (1 − γ ) τs−1

1 + γ 1/2 ≥ (1 − γ )/8,

where the last inequality holds if γ 2s/3+5/6 ≥ γ s ≥ 1/2.
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Proof of Part (vii). According to the update rule (12), we have—for any policy π—that

∑

a

∂V πθ (μ)

∂θ(s, a)
=
∑

a

1

1 − γ
dπθ
μ (s)πθ (a | s)(Qπθ (s, a) − V πθ (s)

)

= 1

1 − γ
dπθ
μ (s)

(
∑

a

πθ(a | s)Qπθ (s, a) − V πθ (s)
∑

a

πθ (a | s)
)

= 0,

wherewehaveused the identities
∑

a πθ (a | s) = 1andV π (s) =∑a π(a | s)Qπ (s, a).
As a result, if

∑
a θ(0)(s, a) = 0, then it follows from the PG update rule that∑

a θ(t)(s, a) = 0.

A.5 Proof of Lemma 11

Proof of Part (i). Dividing both sides of (67a) by xt xt−1, we obtain

1

xt−1
≥ 1

xt
− clxt−1

xt
.

If c1x0 ≤ 1/2, then the monotonicity assumption gives clxt ≤ 1/2 for all t ≥ 0. It
then follows that

xt
xt−1

≥ 1 − clxt−1 ≥ 1

2
�⇒ 1

xt−1
≥ 1

xt
− clxt−1

xt
≥ 1

xt
− 2cl.

Apply this relation recursively to deduce that

1

xt
≤ 1

xt−1
+ 2cl ≤ · · · ≤ 1

x0
+ 2clt .

This readily concludes the proof of (67b).

Proof of Part (ii). Similarly, divide both sides of (68a) by xt xt−1 to derive

1

xt−1
≤ 1

xt
− cuxt−1

xt
≤ 1

xt
− cu,

given the monotonicity and positivity assumption 0 < xt ≤ xt−1. Invoking this
inequality recursively gives

1

xt
≥ 1

xt−1
+ cu ≥ · · · ≥ 1

x0
+ cut,

thus establishing the advertised bound (68b).
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Proof of Part (iii). We now turn attention to (69b). As is clearly seen, the non-negative
sequence {xt } majorizes another sequence {yt } generated as follows (in the sense that
xt ≥ yt for all 0 < t ≤ t0)

y0 = x0 and yt = yt−1 + c−y2t−1 for all 0 < t ≤ t0 (80)

Dividing both sides of the second equation of (80) by yt−1yt , we reach

1

yt−1
= 1

yt
+ c−

yt−1

yt
≥ 1

yt
+ c−

1 + c−cx
.

To see why the last inequality holds, note that, according to the first equation of (80)
and the assumption xt−1 < cx (and hence yt−1 ≤ xt−1 < cx ), we have

yt
yt−1

= 1 + c−yt−1 ≤ 1 + c−cx .

As a result, we can apply the preceding inequalities recursively to derive

1

y0
≥ 1

y1
+ c−

1 + c−cx
≥ · · · ≥ 1

yt0
+ c−

1 + c−cx
t0 ≥ c−

1 + c−cx
t0,

and hence we arrive at (69b),

t0 ≤ 1 + c−cx
c−y0

= 1 + c−cx
c−x0

.

Proof of Part (iv). The proof of (70b) is quite similar to that of (69b). Let us construct
another non-negative sequence {zt } as follows

z0 = x0 and zt = zt−1 + c+z2t−1 for all 0 < t ≤ t0. (81)

Comparing this with (70a) clearly reveals that zt ≥ xt . Divide both sides of (81) by
zt zt−1 to reach

1

zt−1
= 1

zt
+ c+

zt−1

zt
≤ 1

zt
+ c+,

where the last inequality is valid since, by construction, zt ≥ zt−1. Applying this
relation recursively yields

1

z0
≤ 1

zt0
+ c+t0,

which taken together with the fact z0 = x0 and zt0 ≥ xt0 leads to

t0 ≥
1
z0

− 1
zt0

c+
≥

1
x0

− 1
xt0

c+
.
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B Discounted state visitation probability (Lemmas 2-3)

In this section, we establish our bounds concerning the discounted state visitation
probability, as claimed in Lemma 2 and Lemma 3. Throughout this section, we denote
by P(· | π) the probability distribution when policy π is adopted. Also, we recall that
μ is taken to be a uniform distribution over all states.

B.1 Lower bounds: proof of Lemma 2

Consider an arbitrary policy π , and let {sk}k≥0 represent an MDP trajectory. For any
s ∈ {3, . . . , H}, it follows from the definition (13) of dπ

μ that

dπ
μ (s) = (1 − γ )

∞∑

k=0

γ k
P
(
sk = s | s0 ∼ μ,π

)

≥ (1 − γ )γP
(
s1 = s | s0 ∼ μ,π

)

≥ (1 − γ )γ
∑

s′∈Ŝs

P
(
s1 = s | s0 = s′, π

)
P(s0 = s′ | s0 ∼ μ)

= (1 − γ )γ · |Ŝs |
|S| = cmγ (1 − γ )2. (82)

Here, the penultimate identity is valid due to the construction (24) and the assumption
that μ is uniformly distributed, whereas the last identity results from the assumption
(17). This establishes (36a). Repeating the same argument also reveals that

dπ
μ (s) ≥ cmγ (1 − γ )2

for any s ∈ {1, . . . , H}, thus validating the lower bound (36b).
In addition, for any s ∈ S1, the MDP construction (24) allows one to derive

dπ
μ (s) = (1 − γ )

∞∑

k=0

γ k
P
(
sk = s | s0 ∼ μ,π

) ≥ γ (1 − γ )P
(
s1 = s | s0 ∼ μ,π

)

≥ γ (1 − γ )P
(
s1 = s | s0 ∈ Ŝ1

)
P
(
s0 ∈ Ŝ1 | s0 ∼ μ

)

= γ (1 − γ ) · 1

|S1| · |Ŝ1|
|S| = γ (1 − γ )

cm
cb,1

· 1

|S| .

Here, the last line holds due to the fact that μ is uniformly distributed and the assump-
tions (16) and (17). We have thus concluded the proof for (36c). The proof for (36d)
follows from an identical argument and is hence omitted.
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B.2 Upper bounds: proof of Lemma 3

B.2.1 Preliminary facts

Before embarking on the proof, we collect several basic yet useful properties that
happenwhen t < ts(τs). The first-time readers can proceed directly toAppendixB.2.2.

Properties about Q(t)(s, a). Combine the property (61) in Lemma 8 with (32) to
yield that: for any 1 ≤ s ≤ H and any t < ts(τs), one has

Q(t)(s, a1) = γ V (t)(s) < γ τs = Q(t)(s, a0) (83)

In addition, combining the property (61) in Lemma 8 with (66) yields: for any 2 ≤
s ≤ H ,

V (t)(s′) ≤ max
{
Q(t)(s′, a0

)
, Q(t)(s′, a1

)} = max
{
γ τs′ , γ V

(t)(s′)
}

= γ τs′ (84)

holds for all s′ obeying s ≤ s′ ≤ H and all t < ts(τs). As a remark, (83) indicates
that a1 remains unfavored (according to the current estimate Q(t)) before the iteration
number hits ts(τs).

Properties about Q(t)(s + 1, a) and Q(t)(s + 2, a). First, combining (84) with the
relation (74) reveals that: for any 2 ≤ s ≤ H − 1 and any t < ts(τs),

Q(t)(s + 1, a0) = rs+1 + γ 2 pτs−1 ≥ rs+1, (85a)

Q(t)(s + 1, a1) = γ V (t)(s) ≤ γ 2τs = γ 1/2rs+1, (85b)

Q(t)(s + 1, a2) = rs+1 + γ pV (t)(s − 1) ≥ rs+1 (85c)

hold as long as V (t)(s − 1) ≥ 0 (which is guaranteed by Lemma 10). Similarly, (84)
and (74) also give

Q(t)(s + 2, a0) = rs+2 + γ 2 pτs

Q(t)(s + 2, a1) = γ V (t)(s + 1) = γ 2τs+1 = γ 1/2rs+2,

Q(t)(s + 2, a2) = rs+2 + γ pV (t)(s) ≤ rs+2 + γ 2 pτs

for any 1 ≤ s ≤ H − 2 and any t < ts(τs). Consequently, we have

Q(t)(s + 1, a1) ≤ min
{
Q(t)(s + 1, a0), Q

(t)(s + 1, a2)
}
, if 2 ≤ s ≤ H − 1

(86a)

Q(t)(s + 2, a2) ≤ Q(t)(s + 2, a0), if 1 ≤ s ≤ H − 2
(86b)

for all t < ts(τs). In other words, the above two inequalities reveal that actions a1 and
a2 are perceived as suboptimal (based on the current Q-function estimates) before the
iteration count surpasses ts(τs).
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Next, consider any 2 ≤ s ≤ H − 1 and any t < ts(τs). It has already been shown
above that

Q(t)(s + 1, a) ≥ Q(t)(s + 1, a1), a ∈ {a0, a2}. (87a)

A similar argument also implies that, for any t < ts(τs),

Q(t)(s + 2, a0) ≥ Q(t)(s + 2, a2), (87b)

which forms another property useful for our subsequent analysis.

B.2.2 Proof of the upper bounds (37a) and (37b)

We now turn attention to upper bounding d(t)
μ (s) for any s ∈ {3, . . . , H}. By virtue

of the expansion (82), upper bounding d(t)
μ (s) requires controlling P

(
sk = s | s0 ∼

μ,π(t)
)
for all k ≥ 0. In light of this, our analysis consists of (i) developing upper

bounds on the inter-related quantities P
(
sk = s | s0 ∼ μ,π(t)

)
and P

(
sk = s | s0 ∼

μ,π(t)
)
for any k ≥ 0, and (ii) combining these upper bounds to control d(t)

μ (s). At
the core of our analysis is the following upper bounds on the t-th policy iterate, which
will be established in Appendix B.2.6.

Lemma 12 Under the assumption (35), for any 2 ≤ s ≤ H and any t < ts(τs), one
has

π(t)(a1 | s) ≤ π(t)(a0 | s) and π(t)(a1 | s) ≤ 1/2. (88a)

Furthermore,

π(t)(a1 | s + 1)≤min
{
π(t)(a0 | s + 1), π(t)(a2 | s + 1)

}
and π(t)(a1 | s + 1)≤1/3

(88b)

hold if 2 ≤ s ≤ H − 1, and

π(t)(a2 | s + 2) ≤ π(t)(a0 | s + 2) and π(t)(a2 | s + 2) ≤ 1/2 (88c)

hold if 1 ≤ s ≤ H − 2.

In words, Lemma 12 posits that, at the beginning, the policy iterateπ(t) does not assign
toomuchprobabilitymass on actions that are currently perceived as suboptimal (see the
remarks in Appendix B.2.1). With this lemma in place, we are positioned to establish
the advertised upper bound.

Step 1: bounding P
(
sk = s | s0 ∼ μ,π(t)

)
. For any t < ts(τs) and any s ∈

{3, . . . , H}, making use of the upper bound (88a) and the MDP construction in Sect. 3
yields

P
(
s0 = s | s0 ∼ μ,π(t)) = 1/|S|,
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P
(
s1 = s | s0 ∼ μ,π(t)) ≤ P

(
s0 ∈ Ŝs

)+ π(t)(a1 | s)P(s0 = s)

≤ |Ŝs |
|S| + 1

2
· 1

|S| ≤ 2|Ŝs |
|S| = 2cm(1 − γ ),

P
(
sk = s | s0 ∼ μ,π(t)) = π(t)(a1 | s)P(sk−1 = s | s0 ∼ μ,π(t))

≤ 1

2
P
(
sk−1 = s | s0 ∼ μ,π(t))

for all k ≥ 2. Note that the above calculation exploits the fact that μ is a uniform
distribution.
Step 2: bounding P

(
sk = s | s0 ∼ μ,π(t)

)
. Given that μ is a uniform distribution,

one has

P
(
s0 = s | s0 ∼ μ,π(t)) = 1/|S| (90a)

for any s ∈ S. With (88b) and (88c) in mind, the MDP construction in Sect. 3 allows
one to show that

P
(
s1 = s | s0 ∼ μ,π(t)) ≤ P

(
s0 ∈ Ŝs

)+ π(t)(a1 | s + 1)P(s0 = s + 1)

+ π(t)(a2 | s + 2)P(s0 = s + 2)

≤ |Ŝs |
|S| + 1

3|S| + 1

2|S| ≤ 2|Ŝs |
|S| = 2cm(1 − γ ) (90b)

holds for any 2 ≤ s ≤ H − 2 and any t < ts(τs), and in addition,

P
(
sk = s | s0 ∼ μ,π(t))

≤ π(t)(a1 | s + 1)P
(
sk−1 = s + 1 | s0 ∼ μ,π(t))

+ π(t)(a2 | s + 2)P
(
sk−1 = s + 2 | s0 ∼ μ,π(t))

≤ 1

3
P
(
sk−1 = s + 1 | s0 ∼ μ,π(t))+ 1

2
P
(
sk−1 = s + 2 | s0 ∼ μ,π(t)) (90c)

hold for any k ≥ 2, 2 ≤ s ≤ H − 2, and any t < ts(τs). Moreover, invoking (88b)
and the MDP construction once again reveals that

P
(
sk = H − 1 | s0 ∼ μ,π(t)) ≤ π(t)(a1 | H)P

(
sk−1 = H | s0 ∼ μ,π(t))

≤ 1

3
P
(
sk−1 = H | s0 ∼ μ,π(t))

P
(
sk = H | s0 ∼ μ,π(t)) = 0

hold for any k ≥ 2 and any t < ts(τs). In addition, it is seen that

P
(
s1 = H − 1 | s0 ∼ μ,π(t)) ≤ P

(
s0 ∈ ŜH−1

)+ P(s0 = H) =
∣∣ŜH−1

∣∣

|S| + 1

|S|
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≤ 2
∣∣ŜH−1

∣∣

|S| = 2cm(1 − γ ),

P
(
s1 = H | s0 ∼ μ,π(t)) ≤ P

(
s0 ∈ ŜH

) =
∣∣ŜH

∣∣

|S| = cm(1 − γ ).

Step 3: putting all this together. Combining the preceding upper bounds on both
P
(
sk = s | s0 ∼ μ,π(t)

)
and P

(
sk = s | s0 ∼ μ,π(t)

)
(k ≥ 1) and recognizing the

monotonicity property (33), we immediately arrive at the following crude bounds

max
3≤s≤H ,t<ts (τs )

{
P
(
s0 = s | s0 ∼ μ,π(t)),P

(
s1 = s | s0 ∼ μ,π(t))

}
≤ 1/|S| ≤ 2cm(1 − γ )

max
2≤s≤H ,t<ts (τs )

{
P
(
s0 = s | s0 ∼ μ,π(t)),P

(
s1 = s | s0 ∼ μ,π(t))

}
≤ 2cm(1 − γ )

max
3≤s≤H ,t<ts (τs )

P
(
sk = s | s0 ∼ μ,π(t)) ≤ 5

6
max

2≤s≤H ,t<ts (τs )
P
(
sk−1 = s | s0 ∼ μ,π(t))

max
2≤s≤H ,t<ts (τs )

P
(
sk = s | s0 ∼ μ,π(t)) ≤ 5

6
max

3≤s≤H ,t<ts (τs )
P
(
sk−1 = s | s0 ∼ μ,π(t))

for any k ≥ 2. It is then straightforward to deduce that

max
3≤s≤H ,t<ts (τs )

P
(
sk = s | s0 ∼ μ,π(t)) ≤

(
5

6

)k−1

2cm(1 − γ ) (91a)

max
2≤s≤H ,t<ts (τs )

P
(
sk = s | s0 ∼ μ,π(t)) ≤

(
5

6

)k−1

2cm(1 − γ ) (91b)

for any k ≥ 1. In turn, these bounds give rise to

d(t)
μ (s) = (1 − γ )

∞∑

k=0

γ k
P
(
sk = s | s0 ∼ μ,π(t))

≤ (1 − γ )

{

2cm(1 − γ ) +
∞∑

k=1

(
5

6

)k−1

2cm(1 − γ )

}

≤ 2cm(1 − γ )2 + 1

1 − 5/6
· 2cm(1 − γ )2 = 14cm(1 − γ )2 (92a)

for any 3 ≤ s ≤ H and any t < ts(τs). This establishes the claimed upper bound (37a)
as long as Lemma 12 is valid. Further, replacing s with s in (92) also reveals that

d(t)
μ (s) ≤ 14cm(1 − γ )2 (92b)

for any 2 ≤ s ≤ H and any t < ts(τs), thus concluding the proof of (37b).
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B.2.3 Proof of the upper bound (37c)

We now consider any s ∈ S2. From our MDP construction, we have

P
(
s0 = s | s0 ∼ μ,π(t)) = 1/|S|,

P
(
s1 = s | s0 ∼ μ,π(t)) ≤ P

(
s1 = s | s0 ∈ Ŝ2, π

(t))
P
(
s0 ∈ Ŝ2

)

+ P
(
s1 = s | s0 = 2, π(t))

P
(
s0 = 2

)

≤ 1

|S2|
|Ŝ2|
|S| + 1

|S2|
1

|S| ≤ 2|Ŝ2|
|S2| |S| = 2cm

cb,2|S| ,
P
(
sk = s | s0 ∼ μ,π(t)) ≤ P

(
sk = s | sk−1 = 2, π(t))

P
(
sk−1 = 2 | s0 ∼ μ,π(t))

≤ 1

2|S2|P
(
sk−1 = 2 | s0 ∼ μ,π(t))

for any k ≥ 2 and any s ∈ S2. In addition, our bound in (91b) gives

P
(
sk−1 = 2 | s0 ∼ μ,π(t)) ≤

(
5

6

)k−2

2cm(1 − γ )

for any k ≥ 2 and any t < t2(τ2). Consequently, we arrive at

P
(
sk = s | s0 ∼ μ,π(t)) ≤ 1

|S2|P
(
sk−1 = 2 | s0 ∼ μ,π(t)) ≤ cm(1 − γ )

|S2|
(
5

6

)k−2

= cm
cb,2|S|

(
5

6

)k−2

. (94)

Armed with the preceding inequalities, we can derive

d(t)
μ (s) = (1 − γ )

∞∑

k=0

γ k
P
(
sk = s | s0 ∼ μ,π(t))

≤ (1 − γ )

{
1

|S| + γ · 2cm
cb,2|S| +

∞∑

k=2

γ k cm
cb,2|S|

(
5

6

)k−2
}

≤ 1 − γ

|S|
(
1 + 2cm

cb,2

)
+ cm(1 − γ )

(1 − 5/6)cb,2|S| = 1 − γ

|S|
(
1 + 8cm

cb,2

)

for any s ∈ S2 and any t < t2(τ2), thus concluding the advertised upper bound for
s ∈ S2.

B.2.4 Proof of the upper bound (37d)

It follows from our MDP construction that

P
(
s0 = 1 | s0 ∼ μ,π(t)) = 1/|S|,
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P
(
s1 = 1 | s0 ∼ μ,π(t)) ≤ P

(
s0 ∈ Ŝ1

)+ P
(
s0 = 3

) = |Ŝ1|
|S| + 1

|S| .

Moreover, for any k ≥ 2 and any t < t3(τ3), one can derive

P
(
sk = 1 | s0 ∼ μ,π(t)) = π(t)(a2 | 3)P(sk−1 = 3 | s0 ∼ μ,π(t))

≤
(
5

6

)k−2

2cm(1 − γ ), (95)

where the last inequality arises from (91a). Putting these bounds together leads to

d(t)
μ (1) = (1 − γ )

∞∑

k=0

γ k
P
(
sk = 1 | s0 ∼ μ,π(t))

≤ (1 − γ )

{
1

|S| + γ

(
|Ŝ1|
|S| + 1

|S|

)

+
∞∑

k=2

(
5

6

)k−2

2cm(1 − γ )

}

≤ (1 − γ )

{
2|Ŝ1|
|S| + 1

1 − 5/6
2cm(1 − γ )

}

= 14cm(1 − γ )2,

where we have used the assumption that |Ŝ1| = cm(1 − γ )|S|. When t < t2(τ2),
the monotonicity property (33) indicates that t < t3(τ3), thus concluding the proof of
(37d).

B.2.5 Proof of the upper bound (37e)

In view of our MDP construction, for any s ∈ S1 and any t < min{t1(τ1), t2(τ2)} we
have

P
(
s0 = s | s0 ∼ μ,π(t)) = 1/|S|,

P
(
s1 = s | s0 ∼ μ,π(t)) ≤ P

(
s1 = s | s0 ∈ Ŝ1, π

(t))
P
(
s0 ∈ Ŝ1

)

+ P
(
s1 = s | s0 = 1, π(t))

P
(
s0 = 1

)

≤ 1

|S1|
|Ŝ1|
|S| + 1

|S1|
1

|S| ≤ 1

|S1|
2|Ŝ1|
|S| = 2cm

cb,1|S| ,
P
(
sk = s | s0 ∼ μ,π(t)) ≤ P

(
sk = s | sk−1 = 1, π(t))

P
(
sk−1 = 1 | s0 ∼ μ,π(t))

≤ 1

|S1|P
(
sk−1 = 1 | s0 ∼ μ,π(t)) ≤ 2cm

cb,1|S|
(
5

6

)k−3

,

where k is any integer obeying k ≥ 2. Here, the last inequality comes from (95). These
bounds taken collectively demonstrate that

d(t)
μ (s) = (1 − γ )

∞∑

k=0

γ k
P
(
sk = s | s0 ∼ μ,π(t))
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≤ (1 − γ )

{
1

|S| + γ · 2cm
cb,1|S| +

∞∑

k=2

γ k 2cm
cb,1|S|

(
5

6

)k−3
}

≤ 1 − γ

|S|
(
1 + 2cm

cb,1

)
+

6
5 · 2cm(1 − γ )

(1 − 5/6)cb,1|S| ≤ 1 − γ

|S|
(
1 + 17cm

cb,1

)

for any s ∈ S1 and any t < min{t1(τ1), t2(τ2)}. This completes the proof.

B.2.6 Proof of Lemma 12

In order to prove this lemma, we are in need of the following auxiliary result, whose
proof can be found in Appendix B.2.7.

Lemma 13 Consider any state 1 ≤ s ≤ H. Suppose that 0 < η ≤ (1 − γ )/2.

(i) If the following conditions

Q(t)(s, a0) − Q(t)(s, a1) ≥ 0, Q(t)(s, a2) − Q(t)(s, a1) ≥ 0

π(t−1)(a1 | s) ≤ min
{
π(t−1)(a0 | s), π(t−1)(a2 | s)}

hold, thenonehasπ(t)(a1 | s) ≤ 1/3andπ(t)(a1 | s) ≤ min
{
π(t)(a0 | s), π(t)(a2 |

s)
}
.

(ii) If the following conditions

Q(t)(s, a0) − Q(t)(s, a2) ≥ 0 and π(t−1)(a2 | s) ≤ π(t−1)(a0 | s)

hold, then one has π(t)(a2 | s) ≤ 1/2 and π(t)(a2 | s) ≤ π(t)(a0 | s).
(iii) If the following conditions

Q(t)(s, a0) − Q(t)(s, a1) ≥ 0 and π(t−1)(a1 | s) ≤ π(t−1)(a0 | s)

hold, then one has π(t)(a1 | s) ≤ 1/2 and π(t)(a1 | s) ≤ π(t)(a0 | s).
Remark 9 In words, Lemma 13 develops nontrivial upper bounds on the policy asso-
ciated with actions that are currently perceived as suboptimal. As we shall see, such
upper bounds—which are strictly below 1—translate to some contraction factors that
enable the advertised result of this lemma.

With Lemma 13 in place, we proceed to prove Lemma 12 by induction. Let us start
from the base case with t = 0. Given that the initial policy is chosen to be uniformly
distributed, we have

π(0)(a1 | s) = π(0)(a0 | s) = π(0)(a2 | s), 3 ≤ s ≤ H ;
π(0)(a1 | s) = π(0)(a0 | s), 1 ≤ s ≤ H .

Therefore, the claim (88) trivially holds for t = 0.
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Next, we move on to the induction step. Suppose that the induction hypothesis (88)
holds for the t-th iteration, and we intend to establish it for the (t + 1)-th iteration.
Apply Lemma 13 with Conditions (83) and (88a) to yield

π(t+1)(a1 | s) ≤ π(t+1)(a0 | s)

with the proviso that 0 < η ≤ (1−γ )/2. Clearly, this also implies thatπ(t+1)(a1 | s) ≤
1/2. Further, invoke Lemma 13 once again with Condition (87) and the induction
hypothesis (88) to arrive at

π(t+1)(a1 | s + 1) ≤ min
{
π(t+1)(a0 | s + 1), π(t+1)(a2 | s + 1)

}
, if 2 ≤ s ≤ H − 1;

π(t+1)(a2 | s + 2) ≤ π(t+1)(a0 | s + 2), if 1 ≤ s ≤ H − 2.

A straightforward consequence is π(t+1)(a1 | s + 1) ≤ 1/3 and π(t+1)(a2 | s + 2) ≤
1/2. The proof is thus complete by induction.

B.2.7 Proof of Lemma 13

First of all, suppose that Q(t)(s, a0) − Q(t)(s, a1) ≥ 0 and π(t−1)(a0 | s) ≥
π(t−1)(a1 | s) hold true. Combining this result with the PG update rule (12) gives

θ(t)(s, a1) = θ(t−1)(s, a1) + η

1 − γ
d(t−1)
μ (s) π(t−1)(a1 | s) A(t−1)(s, a1)

≤ θ(t−1)(s, a1) + η

1 − γ
d(t−1)
μ (s) π(t−1)(a1 | s) A(t−1)(s, a0).

Consequently, applying this inequality and using the PG update rule (12) yield

θ(t)(s, a1) − θ(t)(s, a0)

≤ θ(t−1)(s, a1) + η

1 − γ
d(t−1)
μ (s) π(t−1)(a1 | s) A(t−1)(s, a0)

− θ(t−1)(s, a0) − η

1 − γ
d(t−1)
μ (s) π(t−1)(a0 | s) A(t−1)(s, a0)

≤
{
θ(t−1)(s, a1) − θ(t−1)(s, a0)

}

+
{
π(t−1)(a0 | s) − π(t−1)(a1 | s)

} ∣∣
∣

η

1 − γ
d(t−1)
μ (s)A(t−1)(s, a0)

∣∣
∣, (97)

where the last line arises by combining terms and invoking the assumption
π(t−1)(a0 | s) ≥ π(t−1)(a1 | s).

Additionally, it is seen from the definition of the advantage function that

∣∣A(t−1)(s, a0)
∣∣ ≤ max

π,a

∣∣Qπ (s, a)
∣∣+ max

π

∣∣V π (s)
∣∣ ≤ 2, (98)
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where the last inequality follows from Lemma 1. Recognizing that d(t−1)
μ (s) ≤ 1, one

obtains
∣∣∣

η

1 − γ
d(t−1)
μ (s)A(t−1)(s, a0)

∣∣∣ ≤ η

1 − γ
· 2 ≤ 1, (99)

with the proviso that 0 < η ≤ (1 − γ )/2.
Substituting (99) into (97) then yields

(97) ≤
{
θ(t−1)(s, a1) − θ(t−1)(s, a0)

}
+
{
π(t−1)(a0 | s) − π(t−1)(a1 | s)

}

≤
{
θ(t−1)(s, a1) − θ(t−1)(s, a0)

}
−
{
θ(t−1)(s, a0) − θ(t−1)(s, a1)

}
= 0,

(100)

where both the first line and the last identity rely on the fact that θ(t−1)(s, a1) ≤
θ(t−1)(s, a0)—an immediate consequence of the assumption π(t−1)(a1 | s) ≤ π(t−1)

(a0 | s). To see why the inequality (100) holds, it suffices to make note of the following
consequence of softmax parameterization:

π(t−1)(a0 | s) − π(t−1)(a1 | s) = π(t−1)(a1 | s)
{
exp
[
θ(t−1)(s, a0) − θ(t−1)(s, a1)

]− 1
}

(a)≤ exp
[
θ(t−1)(s, a0) − θ(t−1)(s, a1)

]− 1

exp
[
θ(t−1)(s, a0) − θ(t−1)(s, a1)

]+ 1

(b)≤ θ(t−1)(s, a0) − θ(t−1)(s, a1),

where (b) follows since ex−1
ex+1 ≤ x for all x ≥ 0, and the validity of (a) is guaranteed

since

π(t−1)(a1 | s) = exp
(
θ(t−1)(s, a1)

)

∑
a exp

(
θ(t−1)(s, a)

) ≤ exp
(
θ(t−1)(s, a1)

)

exp
(
θ(t−1)(s, a0)

)+ exp
(
θ(t−1)(s, a1)

)

= 1

exp
[
θ(t−1)(s, a0) − θ(t−1)(s, a1)

]+ 1
.

To conclude, the above result (100) implies that

π(t)(a0 | s) ≥ π(t)(a1 | s). (101)

Repeating the above argument immediately reveals that: if

Q(t−1)(s, a2) ≥ Q(t−1)(s, a1) and π(t−1)(a2 | s) ≥ π(t−1)(a1 | s),

then one has π(t)(a2 | s) ≥ π(t)(a1 | s), which together with (101) indicates that

π(t)(a1 | s) ≤ min
{
π(t)(a0 | s), π(t)(a2 | s)}
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�⇒ π(t)(a1 | s) ≤ π(t)(a0 | s) + π(t)(a1 | s) + π(t)(a2 | s)
3

= 1

3
.

This establishes Part (i) of Lemma 13.
The proofs of Parts (ii) and (iii) follow from exactly the same argument as for Part

(i), and are hence omitted for the sake of brevity.

C Crossing times of the first few states (Lemma 4)

This section presents the proof of Lemma 4 regarding the crossing times w.r.t. S1, S2,
and state 1.

C.1 Crossing times for the buffer states inS1 andS2

We first present the proof of the relation (38a) regarding several quantities about t1
and t2.

Step 1: characterize the policy gradients. Our analysis largely relies on understanding
the policy gradient dynamics, towards which we need to first characterize the gradient.
Recalling that the gradient of V (t) w.r.t. θt (1, a1) (cf. (12b)) is given by

∂V (t)(μ)

∂θ(1, a1)
= 1

1 − γ
d(t)
μ (1)π(t)(a1 | 1)

{
Q(t)(1, a1) − V (t)(1)

}

= 1

1 − γ
d(t)
μ (1)π(t)(a1 | 1)

{
Q(t)(1, a1)

− π(t)(a0 | 1)Q(t)(1, a0) − π(t)(a1 | 1)Q(t)(1, a1)
}

= 1

1 − γ
d(t)
μ (1)π(t)(a1 | 1)π(t)(a0 | 1)

{
Q(t)(1, a1) − Q(t)(1, a0)

}

= 2γ 2

1 − γ
d(t)
μ (1)π(t)(a1 | 1)π(t)(a0 | 1) > 0, (102)

where in the last step we use Q(t)(1, a1) − Q(t)(1, a0) = 2γ 2 (see (64)). The same
calculation also yields

∂V (t)(μ)

∂θ(2, a1)
= 2γ 4

1 − γ
d(t)
μ (2)π(t)(a1 | 2)π(t)(a0 | 2) > 0. (103)

As an immediate consequence, the PG update rule (12a) reveals that both θ(t)(1, a1)
(resp. π(t)(1, a1)) and θ(t)(2, a1) (resp. π(t)(2, a1)) are monotonically increasing with
t throughout the execution of the algorithm, which together with the initial condition
π(0)(a0 | 1) = π(0)(a1 | 1) = π(0)(a0 | 2) = π(0)(a1 | 2) as well as the identities
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θ(t)(1, a1) = −θ(t)(1, a0) and θ(t)(2, a1) = −θ(t)(2, a0) (due to (65)) gives

π(t)(a0 | 1) ≤ π(t)(a1 | 1) andπ(t)(a0 | 2) ≤ π(t)(a1 | 2) for all t ≥ 0. (104)

Step 2: determine the range of π(t)(· | 1) andπ(t)(· | 2). From the basic property (64),
the value function of the buffer states in S1—abbreviated by V (t)(1) as in the notation
convention (25)—satisfies

V (t)(1) = −γ 2π(t)(a0 | 1) + γ 2π(t)(a1 | 1) = −γ 2 + 2γ 2π(t)(a1 | 1), (105)

given that π(t)(a0 | 1)+π(t)(a1 | 1) = 1. Therefore, for any t < t1(γ 2 −1/4)—which
means V (t)(1) < γ 2 − 1/4 according to the definition (31)—one has the following
upper bound:

V (t)(1) = −γ 2 + 2γ 2π(t)(a1 | 1) < γ 2 − 1/4.

This is equivalent to requiring that

π(t)(a1 | 1) < 1 − (8γ 2)−1 ≤ 7/8 (106)

and, consequently, π(t)(a0 | 1) = 1 − π(t)(a1 | 1) ≥ 1/8 for any t < t1(γ 2 − 1/4).
Putting this and (104) together further implies—for every t < t1(γ 2 − 1/4)—that:

1/8 ≤ π(t)(a0 | 1) ≤ π(t)(a1 | 1) ≤ 7/8. (107)

Step 3: determine the range of policy gradients. In addition to showing the non-

negativity of ∂V (t)(μ)
∂θ(1,a1)

and ∂V (t)(μ)
∂θ(2,a1)

for all t ≥ 0, we are also in need of bounding their
magnitudes. Towards this, invoke the property (107) to bound the derivative (102) by

7γ 2

32(1 − γ )
d(t)
μ (1) ≤ ∂V (t)(μ)

∂θ(1, a1)
≤ γ 2

2(1 − γ )
d(t)
μ (1) (108)

for any t < t1(γ 2 − 1/4), where we have used the elementary facts

min
1/8≤x≤7/8

x(1 − x) = 7/64 and max
0≤x≤1

x(1 − x) = 1/4.

Similarly, repeating the above argument with the gradient expression (103) leads to

∂V (t)(μ)

∂θ(2, a1)
≤ γ 4

2(1 − γ )
d(t)
μ (2) for all t ≥ 0; (109a)

∂V (t)(μ)

∂θ(2, a1)
≥ 7γ 4

32(1 − γ )
d(t)
μ (2) for all 0 ≤ t < t2(γ

4 − 1/4). (109b)
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Further, note that Lemma 2 and Lemma 3 deliver upper and lower bounds on the
quantities d(t)

μ (1) and d(t)
μ (2), which allow us to deduce that

∂V (t)(μ)

∂θ(1, a1)
≥ 7γ 3cm

32cb,1|S| for all t < t1
(
γ 2 − 1/4

); (110a)

∂V (t)(μ)

∂θ(2, a1)
≥ 7γ 5cm

32cb,2|S| for all t < t2(γ
4 − 1/4); (110b)

∂V (t)(μ)

∂θ(1, a1)
≤ γ 2(1 + 17cm/cb,1)

2|S| for all t < min
{
t1(τ1), t2(τ2)

}; (110c)

∂V (t)(μ)

∂θ(2, a1)
≤ γ 4(1 + 8cm/cb,2)

2|S| for all t < t2(τ2). (110d)

Step 4: develop an upper bound on t1(γ 2 − 1/4). The preceding bounds allow us
to develop an upper bound on t1(γ 2 − 1/4). To do so, it is first observed from the fact
θ(t)(1, a0) = −θ(t)(1, a1) (due to (65)) that

π(t)(a1 | 1) = exp
(
θ(t)(1, a1)

)

exp
(
θ(t)(1, a0)

)+ exp
(
θ(t)(1, a1)

) = 1 − 1

1 + exp
(
2θ(t)(1, a1)

) .

Recognizing that V (t)(1) < γ 2 −1/4 occurs if and only if π(t)(a1 | 1) < 1− (8γ 2)−1

(see (106)), we can easily demonstrate that

θ(t)(1, a1) ≤ 1

2
log
(
8γ 2 − 1

)
≤ 1

2
log 7 for all t < t1

(
γ 2 − 1/4

)
. (111)

If t1
(
γ 2 − 1/4

) ≥ ⌈ 32 log(7)cb,1|S|
7γ 3cmη

⌉
, then taking t = ⌈ 32 log(7)cb,1|S|

7γ 3cmη

⌉
together with

(110) and (12a) yields

θ(t)(1, a1) ≥ θ(0)(1, a1) + η
7γ 3cm

32cb,1|S| t = η
7γ 3cm

32cb,1|S| t ≥ log 7,

thus leading to contradiction with (111). As a result, one arrives at the following upper
bound:

t1(τ1) ≤ t1
(
γ 2 − 1/4

) ≤ 32 log(7)cb,1|S|
7γ 3cmη

≤ 15cb,1|S|
cmη

, (112)

with the proviso that γ ≥ 0.85 (so that τ1 ≤ γ 2 − 1/4).
An upper bound on t2(γ 4−1/4) (and hence t2(τ2)) can be obtained in a completely

analogous manner

t2(τ2) ≤ t2
(
γ 4 − 1/4

) ≤ 15cb,2|S|
cmη

,
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provided that γ ≥ 0.95 (so that τ2 ≤ γ 4 − 1/4). We omit the proof of this part for the
sake of brevity.

Step 5: develop a lower bound on t2(τ2). Repeating the argument in (106) and (111),
we see that V (t)(2) ≥ τ2 if and only if π(t)(a1 | 2) ≥ 1

2 + τ2
2γ 4 , which is also equivalent

to

θ(t)(2, a1) ≥ 1

2
log

(
1

1
2 − τ2

2γ 4

− 1

)

>
1

2
log 3,

as long as 2τ2 > γ 4. Of necessity, this implies that θ(t)(2, a1) > 1
2 log 3 when

t = t2(τ2). If t2(τ2) ≤ |S| log 3
2ηγ 4(1+8cm/cb,2)

, then invoking (110) and (12a) and taking

t = t2(τ2) yield

θ(t)(2, a1) ≤ θ(0)(2, a1) + η
γ 4

2|S|
(
1 + 8cm

cb,2

)
t = ηγ 4t

2|S|
(
1 + 8cm

cb,2

)
≤ 1

2
log 3,

thus resulting in contradiction. We can thus conclude that

t2(τ2) >
|S| log 3

ηγ 4
(
1 + 8cm/cb,2

) >
|S| log 3

η(1 + 8cm/cb,2)
. (113)

As an important byproduct, comparing (113) with (112) immediately reveals that

t2(τ2) ≥ t1
(
γ 2 − 1/4

) ≥ t1
(
τ1), (114)

with the proviso that log 3
1+8cm/cb,2

≥ 15cb,1
cm

and γ ≥ 0.87 (so that γ 2 − 1/4 > τ1).

Step 6: develop a lower bound on t1(τ1). Repeat the analysis in (106) and (111) to
show that: V (t)(1) ≥ τ1 if and only if

θ(t)(1, a1) ≥ 1

2
log

(
1

1
2 − τ1

2γ 2

− 1

)

>
1

2
log 3.

Clearly, this lower bound should hold if t = t1(τ1). In addition, in view of (114),
one has min{t1(τ1), t2(τ2)} = t1(τ1). If t1(τ1) ≤ |S| log 3

ηγ 2(1+17cm/cb,1)
, then setting t =

t1(τ1) = min{t1(τ1), t2(τ2)} and applying (110) and (12a) lead to

θ(t)(1, a1) ≤ θ(0)(1, a1) + η
γ 2(1 + 17cm/cb,1)

2|S| t = ηγ 2t(1 + 17cm/cb,1)

2|S| ≤ 1

2
log 3,

which is contradictory to the preceding lower bound. This in turn implies that

t1(τ1) ≥ |S| log 3
ηγ 2(1 + 17cm/cb,1)

>
|S| log 3

η(1 + 17cm/cb,1)
. (115)
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C.2 Crossing times for the adjoint state 1

We now move on to the proof of (38b). Note that we have developed a lower bound
on t2(τ2) in (113). In order to justify the advertised result t2(τ2) > t1

(
γ 3 − 1/4

)
, it

thus suffices to demonstrate that

t1
(
γ 3 − 1/4

) ≤ |S| log 3
η(1 + 8cm/cb,2)

, (116)

a goal we aim to accomplish in this subsection.
To do so, we divide into two cases. In the scenario where t1(τ1) ≥ t1

(
γ 3 − 1/4

)
,

the bound (112) derived previously immediately leads to the desired bound:

t1
(
γ 3 − 1/4

) ≤ t1(τ1) ≤ 15cb,1|S|
cmη

≤ |S| log 3
η(1 + 8cm/cb,2)

,

with the proviso that 15cb,1
cm

≤ log 3
1+8cm/cb,2

. Consequently, the subsequent analysis con-
centrates on establishing (116) for the case where

t1(τ1) < t1
(
γ 3 − 1/4

)
.

In what follows, we divide into three stages and investigate each one separately, after
presenting some basic gradient calculations that shall be invoked frequently.

Gradient characterizations. To begin with, observe from (12) that

∂V (t)(μ)

∂θ(1, a1)
= 1

1 − γ
d(t)
μ (1)π(t)(a1|1

)(
Q(t)(1, a1) − V (t)(1)

)

= 1

1 − γ
d(t)
μ (1)π(t)(a1 | 1)

⎛

⎝Q(t)(1, a1) −
∑

a∈{a0,a1}
π(t)(a | 1)Q(t)(1, a)

⎞

⎠

= 1

1 − γ
d(t)
μ (1)π(t)(a1 | 1)π(t)(a0 | 1)

(
Q(t)(1, a1) − Q(t)(1, a0)

)
,

(117a)

which makes use of the fact π(t)
(
a0 | 1)+ π(t)

(
a1 | 1) = 1. Analogously, we have

∂V (t)(μ)

∂θ(1, a0)
= − 1

1 − γ
d(t)
μ (s)π(t)(a1 | 1)π(t)(a0 | 1)

(
Q(t)(1, a1) − Q(t)(1, a0)

)
.

(117b)

Stage 1: any t obeying t < t1(τ1). We start by looking at each term in the gradient
expression (117a) separately. First, note that when t < t1(τ1), one has V (t)(1) < τ1,
which combinedwith (61) inLemma8 indicates that Q(t)(1, a1) = γ V (t)(1) < γ τ1 =

123

758



Softmax policy gradient methods can take exponential…

Q(t)(1, a0). In fact, from the definition (18a) of τ1, the property (61) and Lemma 10,
we have

1/2 ≥ Q(t)(1, a0) > Q(t)(1, a1) = γ V (t)(1) ≥ 0.

Additionally, recall that t1(τ1) < t2(τ2) (see (114)). Lemma 3 then tells us that
d(t)
μ (1) ≤ 14cm(1 − γ )2 during this stage. Substituting these into (117a) and using

π(t)(a0 | 1) ≤ 1, we arrive at

0 ≥ ∂V (t)(μ)

∂θ(1, a1)
≥ −7cm(1 − γ )π(t)(a1 | 1), (118)

which together with the PG update rule (12) also indicates that θ(t)(1, a1) (and hence
π(t)
(
a1 | 1)) is monotonically non-increasing with t in this stage. Invoke the auxiliary

fact in Lemma 14 to reach

π(t+1)(a1 | 1)− π(t)(a1 | 1) ≥ 2ηπ(t)(a1 | 1) ∂V
(t)(μ)

∂θ(1, a1)

≥ −14ηcm(1 − γ )
[
π(t)(a1 | 1)

]2
.

Taking the preceding recursive relation together with Lemma 11 and recalling the
initialization π(0)

(
a1 | 1) = 1/2, we can guarantee that

π(t)(a1 | 1) ≥ 1

28ηcm(1 − γ )t + 2
for all t ≤ t1(τ1) (119)

provided that 14ηcm(1 − γ ) ≤ 1. In conclusion, the above calculation precludes
π(t)
(
a1 | 1) from decaying to zero too quickly, an observation that is particularly useful

for our analysis in Stage 3.

Stage 2: any t obeying t1(τ1) ≤ t < t1(γ 2 − 1/4). The only step lies in extending
the lower bound (119) to this stage. From the definition (31) of t1(τ1) as well as the
monotonicity of V (t)(1) (see Lemma 9), we know that

V (t)(1) ≥ V (t1(τ1))(1) ≥ τ1 for all t ≥ t1(τ1),

provided that η < (1− γ )2/5. This taken together with the property (61) in Lemma 8
reveals that

Q(t)(1, a1) − Q(t)(1, a0) ≥ 0 for all t ≥ t1(τ1),

and hence π(t)
(
a1 | 1) is non-decreasing in t during this stage. Therefore, we have

π(t)(a1 | 1) ≥ π(t1(τ1))
(
a1 | 1) ≥ 1

28ηcm(1 − γ )t1(τ1) + 2
, t ≥ t1(τ1), (120)
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where the first inequality follows from the non-decreasing property established above,
and the second inequality follows from the lower bound (119). In fact, we have estab-
lished a lower bound onπ(t)

(
a1 | 1) that holds for the entire trajectory of the algorithm.

Stage 3: any t obeying t1(γ 2 − 1/4) ≤ t ≤ t1(γ
3 − 1/4). To facilitate analysis, we

single out a time threshold t ′ as follows:

t ′:=min
{
t | π(t)(a0 | 1) < 1/2

}
. (121)

We begin by developing an upper bound on π(t)
(
a0 | 1) for any t ≥ max{t ′, t1(γ 2 −

1/4)}. Towards this, with the help of (61) in Lemma 8 we make the observation that:
for any t ≥ t1(γ 2 − 1/4), one has

Q(t)(1, a1) − Q(t)(1, a0) = γ V (t)(1) − γ τ1 ≥ γ
(
γ 2 − 1/4

)− γ τ1 ≥ 0.1 (122)

as long as γ ≥ 0.92, which combined with (117b) indicates that

∂V (t)(μ)

∂θ(1, a0)
< 0 for all t ≥ t1(γ

2 − 1/4). (123)

Recognizing that dπ
μ (1) ≥ cmγ (1−γ )2 (see Lemma 2), we can continue the derivation

(117b) to derive

∂V (t)(μ)

∂θ(1, a0)
≤ − 1

1 − γ
γ cm(1 − γ )2 · 1

2
· π(t)(a0 | 1) · 0.1

= −0.05cmγ (1 − γ )π(t)(a0 | 1)

for any t ≥ max{t ′, t1(γ 2 − 1/4)}, which implies

π(t)(a1 | 1) ≥ π(t ′)(a1 | 1) = 1 − π(t ′)(a0 | 1) ≥ 1/2 for any t ≥ t ′.

Invoke Lemma 14 to arrive at

π(t+1)(a0 | 1)− π(t)(a0 | 1) ≤ η

2
π(t)(a0 | 1) ∂V

(t)(μ)

∂θ(1, a0)

≤ − η

40
cmγ (1 − γ )

[
π(t)(a0 | 1)

]2
,

provided that 2η ∂V (t)(μ)

∂θ(1,a0)
≥ −1, which is guaranteed by η < (1− γ )/2. Recalling that

π(t)
(
a0 | 1) ≤ 1/2 for this entire stage, one can apply Lemma 11 to obtain

π(t)(a0 | 1) ≤ 1
η
40cmγ (1 − γ )

(
t − max

{
t ′, t1(γ 2 − 1/4)

})+ 2
(124)
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for any t ≥ max{t ′, t1(γ 2 − 1/4)}.
With the above upper bound (124) in place, we are capable of showing that the

target quantity t1
(
γ 3 − 1/4

)
is not much larger than max{t ′, t1(γ 2 − 1/4)}. To show

this, we first note that the value function of the adjoint state 1 obeys (see Part (iii) in
Lemma 8)

V (t)(1) = π(t)(a0 | 1)Q(t)(1, a0) + π(t)(a1 | 1)Q(t)(1, a1)

= γ τ1π
(t)(a0 | 1) + γπ(t)(a1 | 1)V (t)(1)

= γ τ1π
(t)(a0 | 1) + γ V (t)(1)

{
1 − π(a0 | 1)

}

≥ γ τ1π
(t)(a0 | 1) + γ

(
γ 2 − 1/4

) {
1 − π(t)(a0 | 1)

}

= γ
{
τ1 − γ 2 + 1/4

}
π(t)(a0 | 1) + γ 3 − γ /4,

where the inequality holds since V (t)(1) ≥ γ 2 − 1/4 in this stage (given that t ≥
t1(γ 2 − 1/4)). Recognizing that 0.5γ 2/3 − γ 2 + 1/4 < 0 for any γ ≥ 0.85, we can
rearrange terms to demonstrate that V (t)(1) ≥ γ 3 − 1/4 holds once

π(t)(a0 | 1) ≤ 1 − γ

4γ
(
γ 2 − 1/4 − 0.5γ 2/3

) .

In fact, for any γ ≥ 0.85, the above inequality is guaranteed to hold as long as
π(t)(a0 | 1) ≤ 1 − γ since 4γ

(
γ 2 − 1/4 − 0.5γ 2/3

)
< 1. In view of (124), we

can achieve π(t)(a0 | 1) ≤ 1 − γ as soon as t − max
{
t ′, t1(γ 2 − 1/4)

}
surpasses

40
cmγ η(1−γ )2

. As a consequence, we reach

t1
(
γ 3 − 1/4

) ≤ max
{
t ′, t1(γ 2 − 1/4)

}
+ 40

cmγ η(1 − γ )2
. (125)

Armed with the relation (125), the goal of upper bounding t1
(
γ 3 − 1/4

)
can be

accomplished by controlling t ′. To this end, we claim for the moment that

t ′ ≤ 1121t1(γ 2 − 1/4)

γ
. (126)

If this claimholds, then combining itwith (125) and (112)would result in the advertised
bound (116):

t1
(
γ 3 − 1/4

) ≤ 9972cb,1|S|
γ 4cmη

+ 40

cmγ η(1 − γ )2
≤ |S|

4γ 4η
≤ |S| log 3

η(1 + 8cm/cb,2)
,
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where the penultimate inequality relies on the assumptions cb,1
cm

≤ 1
79776 and |S| ≥

320γ 3

cm(1−γ )2
, and the last one holds as long as 1

4γ 4 ≤ log 3
1+8cm/cb,2

. To finish up, it suffices
to establish the claim (126).

Proof of the claim (126). It is sufficient to consider the case where t ′ > t1(γ 2 −1/4);
otherwise the inequality (126) is trivially satisfied. SinceLemma2 tells us that dπ

μ (1) ≥
cmγ (1 − γ )2, we can see from (117a) that, for any t with t1(γ 2 − 1/4) ≤ t < t ′,

∂V (t)(μ)

∂θ(1, a1)
= 1

1 − γ
d(t)
μ (1)π(t)(a1 | 1)π(t)(a0 | 1)

{
Q(t)(1, a1) − Q(t)(1, a0)

}

≥ 0.05cmγ (1 − γ )π(t)(a1 | 1) > 0,

where the last line follows by combining (122) and the fact that π(t)(a0 | 1) ≥ 1/2 for
any t < t ′ (see the definition (121) of t ′). According to Lemma 14, we can demonstrate
that

π(t+1)(a1 | 1)− π(t)(a1 | 1) ≥ ηπ(t)(a1 | 1) ∂V
(t)(μ)

∂θ(1, a1)

≥ 0.05ηcmγ (1 − γ )
[
π(t)(a1 | 1)

]2

for any t obeying t1(γ 2 − 1/4) ≤ t < t ′. Invoking Lemma 11, we then have

t ′ ≤ 1 + 0.025ηcmγ (1 − γ )

0.05ηcmγ (1 − γ )π(t1(γ 2−1/4))
(
a1 | 1) + t1(γ

2 − 1/4)

<
40

ηcmγ (1 − γ )π(t1(γ 2−1/4))
(
a1 | 1) + t1(γ

2 − 1/4)

≤ 40
(
28t1(τ1) + 2

)

γ
+ t1(γ

2 − 1/4)

≤ 1121t1(γ 2 − 1/4)

γ

as claimed, where the second line follows from (120).

C.3 Auxiliary facts

In this subsection, we collect some elementary facts that have been usedmultiple times
in the proof of Lemma 4. Specifically, the lemma below makes clear an explicit link
between the gradient ∇θV (t)(μ) and the difference between two consecutive policy
iterates.

Lemma 14 Consider any s whose associated action space is {a0, a1}.

123

762



Softmax policy gradient methods can take exponential…

• If ∂V (t)(μ)
∂θ(s,a1)

≤ 0, then one has

π(t+1)(a1 | s)− π(t)(a1 | s) ≥ 2ηπ(t)(a1 | s) ∂V
(t)(μ)

∂θ(s, a1)
. (127)

• If π(t+1)
(
a0 | s) ≥ 1/2 and −1 ≤ 2η ∂V (t)(μ)

∂θ(s,a1)
≤ 0, then we have

π(t+1)(a1 | s)− π(t)(a1 | s) ≤ η

2
π(t)(a1 | s) ∂V

(t)(μ)

∂θ(s, a1)
. (128)

• If ∂V (t)(μ)
∂θ(s,a1)

≥ 0 and if π(t+1)
(
a0 | s) ≥ 1/2, then one has

π(t+1)(a1 | s)− π(t)(a1 | s) ≥ ηπ(t)(a1 | s) ∂V
(t)(μ)

∂θ(s, a1)
. (129)

Proof of Lemma 14 We make note of the following elementary identity

eθ1

eθ1 + e−θ1
− eθ2

eθ2 + e−θ2
= eθ1−θ2 − e−θ1+θ2

(
eθ1 + e−θ1

)(
eθ2 + e−θ2

)

= e−θ1

eθ1 + e−θ1

eθ2

eθ2 + e−θ2

(
e2(θ1−θ2) − 1

)

=
(
1 − eθ1

eθ1 + e−θ1

)
eθ2

eθ2 + e−θ2

(
e2(θ1−θ2) − 1

)
,

which allows us to write

π(t+1)(a1 | s)− π(t)(a1 | s) = π(t+1)(a0 | s)π(t)(a1 | s)
{
exp
[
2θt+1(s, a1) − 2θt (s, a1)

]
− 1
}

= π(t+1)(a0 | s)π(t)(a1 | s)
{

exp
[
2η

∂V (t)(μ)

∂θ(s, a1)

]
− 1

}

.

(130)

• If ∂V (t)(μ)
∂θ(s,a1)

≤ 0, then one can deduce that

(130) ≥ 2ηπ(t+1)(a0 | s)π(t)(a1 | s) ∂V
(t)(μ)

∂θ(s, a1)
≥ 2ηπ(t)(a1 | s) ∂V

(t)(μ)

∂θ(s, a1)
,

where the first inequality relies on the elementary fact ex − 1 ≥ x for all x ∈ R,

and the second one holds since π(t+1)
(
a0 | s) ≤ 1 and ∂V (t)(μ)

∂θ(s,a1)
≤ 0.
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• If −1 ≤ 2η ∂V (t)(μ)
∂θ(s,a1)

≤ 0 and π(t+1)
(
a0 | s) ≥ 1/2, then one has

(130) ≤ ηπ(t+1)(a0 | s)π(t)(a1 | s) ∂V
(t)(μ)

∂θ(s, a1)
≤ η

2
π(t)(a1 | s) ∂V

(t)(μ)

∂θ(s, a1)
,

where the first inequality comes from the elementary inequality ex −1 ≤ 0.5x for
any −1 ≤ x ≤ 0, and the last inequality is valid since π(t+1)

(
a0 | s) ≥ 1/2 and

∂V (t)(μ)
∂θ(s,a1)

≤ 0.

• If ∂V (t)(μ)
∂θ(s,a1)

≥ 0 and if π(t+1)
(
a0 | s) ≥ 1/2, then it follows that

(130) ≥ 2ηπ(t+1)(a0 | s)π(t)(a1 | s) ∂V
(t)(μ)

∂θ(s, a1)
≥ ηπ(t)(a1 | s) ∂V

(t)(μ)

∂θ(s, a1)
,

as claimed in (129). ��

D Analysis for the initial stage (Lemma 5)

This section establishes Lemma 5, which investigates the dynamics of θ(t)(s, a) prior
to the threshold ts−2(τs−2). Before proceeding, let us introduce a rescaled version of
π(t)(s, a) that is sometimes convenient to work with:

π̂ (t)(s, a):= exp
(
θ(t)(s, a) − max

a′∈As

θ(t)(s, a′)
)

(131)

for any state-action pair (s, a). This is orderwise equivalent to π(t)(s, a) since

π̂ (t)(s, a) = exp
(
θ(t)(s, a)

)

maxa′∈As exp
(
θ(t)(s, a′)

) ≥ exp
(
θ(t)(s, a)

)

∑
a′∈As

exp
(
θ(t)(s, a′)

) = π(t)(s, a);
(132a)

π̂ (t)(s, a) = exp
(
θ(t)(s, a)

)

maxa′∈As exp
(
θ(t)(s, a′)

) ≤ exp
(
θ(t)(s, a)

)

1
3

∑
a′∈As

exp
(
θ(t)(s, a′)

) = 3π(t)(s, a).

(132b)

D.1 Two key properties

Our proof is based on the following claim: in order to establish the advertised results
of Lemma 5, it suffices to justify the following two properties

1

1 + 56cmη(1 − γ )t
≤ π̂ (t)(a1 | s) ≤ 1

1 + cmγ
35 η(1 − γ )2t

(133)

and Q(t)(s, a2) − V (t)(s) ≥ 0 (134)
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hold for any t ≤ ts−2(τs−2). In light of this claim, our subsequent analysis consists of
validating these two inequalities separately, which forms themain content of Sect. D.2.

We now move on to justify the above claim, namely, Lemma 5 is valid as long as
the two key properties (133) and (134) hold true. First, recall that Lemma 12 together
with (33) and Lemma 4 tells us that

θ(t)(s, a0) ≥ θ(t)(s, a2) ≥ θ(t)(s, a1) for all t < ts−2(τs−2) ≤ ts−1(τs−1)

(135)

for any 3 ≤ s ≤ H . Next, note that the gradient takes the following form (cf. (12))

∂V (t)(μ)

∂θ(s, a)
= 1

1 − γ
d(t)
μ (s)π(t)(a|s)(Q(t)(s, a) − V (t)(s)

)
, a ∈ {a0, a1, a2}

(136)

which together with the assumption Q(t)(s, a2) − V (t)(s) ≥ 0 (cf. (134)) implies that

∂V (t)(μ)

∂θ(s, a2)
≥ 0 for all t < ts−2(τs−2).

Consequently, θ(t)(s, a2) keeps increasing before t exceeds ts−2(τs−2). This com-
bined with the relation (135), the initialization θ(0)(s, a0) = θ(0)(s, a2) = 0 and the
constraint

∑
a θ(t)(s, a) = 0 (see Part (vii) of Lemma 8) reveals that

θ(t)(s, a0) ≥ θ(t)(s, a2) ≥ 0 ≥ θ(t)(s, a1) for all t < ts−2(τs−2), (137)

thereby confirming the desired property (41).
Further, given the non-negativity of θ(t)(s, a2) stated in (137), one can readily derive

π̂ (t)(a1 | s) = exp
(
θ(t)(s, a1) − max

a′ θ(t)(s, a′)
)

= exp
(
θ(t)(s, a1) − θ(t)(s, a0)

)

= exp
(
2θ(t)(s, a1) + θ(t)(s, a2)

)
≥ exp

(
2θ(t)(s, a1)

)
,

where the last line alsomakes use of the identity θ(t)(s, a0) = −θ(t)(s, a1)−θ(t)(s, a2)
(see Part (vii) of Lemma 8).With this observation in mind, the assumed property (133)
directly leads to the advertised result (40).

D.2 Proof of the properties (133) and (134)

This subsection presents the proofs of the two key properties, which are somewhat
intertwined and require a bit of induction. Before proceeding, we make note of the
initialization π̂ (0)(a1 | s) = 1, which clearly satisfies the property (133) for this base
case. Our proof consists of two steps to be detailed below. As can be easily seen, com-
bining these two steps in an inductive manner immediately establishes both properties
(133) and (134) for any t ≤ ts−2(τs−2).
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Step 1: justifying (134) for the t-th iteration if (133) holds for the t-th iteration

We first turn to the proof of the inequality (134), assuming that (133) holds for the t-th
iteration. According to (132) and (133), we have

π(t)(a1 | s) ≥ 1

3
π̂ (t)(a1 | s) ≥ 1

3 + 168cmη(1 − γ )t
. (138)

By virtue of the auxiliary fact (146c) in Lemma 15 (see Sect. D.3), one has

Q(t)(s, a0) − Q(t)(s, a2) ≤ γ p
cmγ
2 η(1 − γ )t + 1

γ τs−2

. (139)

Given that p:=cp(1 − γ ) for some small constant 0 < cp < 1
2016 , the above two

inequalities allow one to ensure that

Q(t)(s, a0) − Q(t)(s, a2) < (γ 3/2 − γ 2)τs−1π
(t)(a1 | s). (140)

With the above relation in mind, we are ready to control Q(t)(s, a2) − V (t)(s) as
follows

Q(t)(s, a2) − V (t)(s) =
(
∑

a

π(t)(a | s)
)

Q(t)(s, a2) −
∑

a

π(t)(a | s)Q(t)(s, a)

= π(t)(a1 | s)
(
Q(t)(s, a2) − Q(t)(s, a1)

)

− π(t)(a0 | s)
(
Q(t)(s, a0) − Q(t)(s, a2)

)

≥ π(t)(a1 | s)(γ 3/2 − γ 2)τs−1 −
(
Q(t)(s, a0) − Q(t)(s, a2)

)

> 0.

Here, the second lines arise from the auxiliary facts in Lemma 15, while the last
inequality is a consequence of (140). Then we complete the proof of the inequal-
ity (134).

Step 2: justifying (133) for the (t+1)-th iteration if (134) holds up to the t-th iteration

Suppose that the inequality (134) holds up to the t-th iteration. To validate (133) for
the (t + 1)-th iteration, we claim for the moment that

−14cm(1 − γ )π̂ (t)(a1 | s) ≤ ∂V (t)(μ)

∂θ(s, a1)
≤ −cmγ

24
(1 − γ )2π̂ (t)(a1 | s) < 0 (141)

as long as t ≤ ts(τs). Let us take this claim as given, and return to prove it shortly.
Recall from (135) that

θ(t)(s, a0) ≥ θ(t)(s, a2) ≥ θ(t)(s, a1)
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and hence θ
(t)
max(s) = θ(t)(s, a0) is increasing with t during this stage, and as a result,

θ(t+1)(s, a1) − θ(t)(s, a1) + θ
(t)
max(s) − θ

(t+1)
max (s) ≤ θ(t+1)(s, a1) − θ(t)(s, a1) ≤ 0.

The gradient expression (136) combined with the satisfaction of (134) up to the t-
th iteration implies that θ(t)(s, a2) is increasing up to the t-th iteration. Given that∑

a θ(t)(s, a) = 0 (see Part (vii) of Lemma 8), we can derive

θ
(t)
max(s) − θ

(t+1)
max (s) = θ(t)(s, a0) − θ(t+1)(s, a0)

= θ(t+1)(s, a1) − θ(t)(s, a1) + θ(t+1)(s, a2) − θ(t)(s, a2)

≥ θ(t+1)(s, a1) − θ(t)(s, a1),

thus indicating that

θ(t+1)(s, a1) − θ(t)(s, a1) + θ
(t)
max(s) − θ

(t+1)
max (s) ≥ 2

(
θ(t+1)(s, a1) − θ(t)(s, a1)

)
.

These combined with Lemma 16 in Sect. D.3 guarantee that

π̂ (t+1)(a1 | s) − π̂ (t)(a1 | s) ≥ 2π̂ (t)(a1 | s)
(
θ(t+1)(s, a1) − θ(t)(s, a1)

)
,

π̂ (t+1)(a1 | s) − π̂ (t)(a1 | s) ≤ 0.7π̂ (t)(a1 | s)
(
θ(t+1)(s, a1) − θ(t)(s, a1)

)
,

and as a consequence,

2π̂ (t)(a1 | s) · η
∂V (t)(μ)

∂θ(s, a1)
≤ π̂ (t+1)(a1 | s) − π̂ (t)(a1 | s)

≤ 0.7π̂ (t)(a1 | s) · η
∂V (t)(μ)

∂θ(s, a1)
.

Taking this collectively with (141), we reach

−28cmη(1 − γ )
[
π̂ (t)(a1 | s)

]2 ≤ π̂ (t+1)(a1 | s) − π̂ (t)(a1 | s)

≤ −cmγ

35
η(1 − γ )2

[
π̂ (t)(a1 | s)

]2
. (142)

Apply Lemma 11 together with the initialization π̂ (0)(a1 | s) = 1 to arrive at

1

1 + 56cmη(1 − γ )(t + 1)
≤ π̂ (t+1)(a1 | s) ≤ 1

1 + cmγ
35 η(1 − γ )2(t + 1)

. (143)

Proof of the inequality (141). Recall the gradient expression (136):

∂V (t)(μ)

∂θ(s, a1)
= 1

1 − γ
d(t)
μ (s)π(t)(a1 | s)

(
Q(t)(s, a1) − V (t)(s)

)
, (144)
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each term of which will be bounded separately.
The first step is to control Q(t)(s, a1) − V (t)(s), towards which we start with the

following decomposition

Q(t)(s, a1) − V (t)(s) = Q(t)(s, a1) −
∑

a∈{a0,a1,a2}
π(t)(a | s)Q(t)(s, a)

= −π(t)(a0 | s)
(
Q(t)(s, a0) − Q(t)(s, a1)

)

− π(t)(a2 | s)
(
Q(t)(s, a2) − Q(t)(s, a1)

)
. (145)

The auxiliary facts stated in Lemma 15 (see Appendix D.3) imply that

Q(t)(s, a0) − Q(t)(s, a1) ≥ Q(t)(s, a2) − Q(t)(s, a1) ≥ (γ 3/2 − γ 2)τs−1,

while Lemma 1 and Lemma 10 tell us that

Q(t)(s, a0) − Q(t)(s, a1) ≤ V �(s) − 0 = γ 2s .

At the same time, the auxiliary fact (146a) in Lemma 15 (see Appendix D.3) taken
together with the gradient expression (12b) guarantees that

∂V (t)(μ)

∂θ(s, a0)
≥ ∂V (t)(μ)

∂θ(s, a2)
≥ ∂V (t)(μ)

∂θ(s, a1)

and hence θ(t)(s, a1) ≤ θ(t)(s, a2) ≤ θ(t)(s, a0) (or equivalently π(t)(a1 | s) ≤
π(t)(a2 | s) ≤ π(t)(a0 | s)) during this stage. As a result,

π(t)(a1 | s) ≤ 1/3 and 1 ≥ π(t)(a0 | s) + π(t)(a2 | s) ≥ 2/3.

Substituting the preceding bounds into the decomposition (145), we arrive at

Q(t)(s, a1) − V (t)(s) ≤ −
(
π(t)(a0 | s) + π(t)(a2 | s)

)

min
{
Q(t)(s, a0) − Q(t)(s, a1), Q

(t)(s, a2) − Q(t)(s, a1)
}

≤ −2

3
(γ

3
2 − γ 2)τs−1 = −2

3

γ
3
2 τs−1

1 + √
γ

(1 − γ ) ≤ −1 − γ

8
,

provided that γ ≥ 0.85. Meanwhile, it follows from Lemma 1 and Lemma 10 that

Q(t)(s, a1) − V (t)(s) ≥ 0 − V �(s) ≥ −1.

Further, from Lemma 3, we have learned that cmγ (1− γ )2 ≤ d(t)
μ (s) ≤ 14cm(1−

γ )2 for any t ≤ ts(τs). Substituting the above bounds into (144) and invoking (132),
we establish the desired inequality (141).
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D.3 Auxiliary facts

Wenow gather a few basic facts that are useful throughout this section. The first lemma
presents somepreliminary facts regarding the differenceofQ-function estimates across
different actions in the current setting; the proof is deferred to Appendix D.3.1.

Lemma 15 Consider any t < ts−2(τs−2). Under the assumption (35), the following
are satisfied

Q(t)(s, a0) > Q(t)(s, a2) > Q(t)(s, a1), (146a)

Q(t)(s, a2) − Q(t)(s, a1) ≥ (γ 3/2 − γ 2)τs−1, (146b)

Q(t)(s, a0) − Q(t)(s, a2) ≤ γ p
cmγ
2 η(1 − γ )t + 1

γ τs−2

. (146c)

Remark 10 Lemma 15 makes clear that—before t exceeds ts−2(τs−2)—action a0 is
perceived as the best choice, with a1 being the least favorable one. In the meantime,
it also reveals that (i) Q(t)(s, a2) is considerably larger than Q(t)(s, a1), while (ii) the
gap between Q(t)(s, a0) and Q(t)(s, a2) decays at least as rapidly as O(1/t) in this
stage.

The second lemma is concerned with the consecutive difference between two
rescaled policy iterates. The proof can be found in Appendix D.3.2.

Lemma 16 Suppose that 0 < η ≤ (1 − γ )/6. For any t ≥ 0 and any 3 ≤ s ≤ H,
define θ

(t)
max(s):=maxa θ(t)(s, a). If we write

π̂ (t+1)(a1 | s) − π̂ (t)(a1 | s)
= cπ̂ (t)(a1 | s)

(
θ(t+1)(s, a1) − θ(t)(s, a1) + θ

(t)
max(s) − θ

(t+1)
max (s)

)
(147)

for some c ∈ R, then we necessarily have

c ∈ [1, 1.5) if θ(t+1)(s, a1) ≥ θ(t)(s, a1) and θ
(t)
max(s) ≥ θ

(t+1)
max (s);

c ∈ (0.72, 1] if θ(t+1)(s, a1) ≤ θ(t)(s, a1) and θ
(t)
max(s) ≤ θ

(t+1)
max (s).

D.3.1 Proof of Lemma 15

In view of Lemma 10, one has V (t)(s − 2) ≥ 0 for all t ≥ 0. Therefore, the relation
(59) yields

Q(t)(s, a2) = rs + γ pV (t)(s − 2) ≥ rs = γ 3/2τs−1.

In addition, for any t < ts−2(τs−2) ≤ ts−1(τs−1) ≤ ts−1(γ τs−1) (see Lemma 8 and
Lemma 4), we have V (t)(s − 1) < γ τs−1, and hence it is seen from the relation (59)
that

Q(t)(s, a2) − Q(t)(s, a1) = Q(t)(s, a2) − γ V (t)(s − 1) ≥ (γ 3/2 − γ 2)τs−1 > 0,
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as claimed in (146b). Also, Part (i) of Lemma 8 tells us that

Q(t)(s, a0) − Q(t)(s, a2) = rs + γ 2 pτs−2 − rs − γ pV (t)(s − 2)

= γ p
(
γ τs−2 − V (t)(s − 2)

)
≥ 0,

where the last inequality holds for any t < ts−2(τs−2) (see Part (iii) of Lemma 8).
These taken together validate (146a).

It remains to justify (146c), which is the content of the rest of this proof. The main
step lies in demonstrating that, for any t < ts(τs) and any 1 ≤ s ≤ H ,

γ τs − V (t)(s) ≤ 1
cmγ
2 η(1 − γ )t + 1

γ τs

. (148)

If this were true, than taking it together with the following property (which is a con-
sequence of (59))

Q(t)(s, a0) − Q(t)(s, a2) = γ p
(
γ τs−2 − V (t)(s − 2)

)
, (149)

would establish the inequality (146c). It then boils down to justifying (148). Towards
this, we first make the observation that

V (t)(s) − γ τs = π(t)(a0 | s)Q(t)(s, a0) + π(t)(a1 | s)Q(t)(s, a1) − γ τs

= π(t)(a0 | s)γ τs + π(t)(a1 | s)Q(t)(s, a1) − γ τs

= π(t)(a1 | s)
(
Q(t)(s, a1) − γ τs

)
, (150)

where the second line holds since Q(t)(s, a0) = γ τs (see (61)). Additionally, recall
from the definition that for any t < ts(τs), one has V (t)(s) < τs and hence

∂V (t)(μ)

∂θ(s, a1)
= 1

1 − γ
d(t)
μ (s)π(t)(a1 | s)

(
Q(t)(s, a1)

− π(t)(a0 | s)Q(t)(s, a0) − π(t)(a1 | s)Q(t)(s, a1)
)

= 1

1 − γ
d(t)
μ (s)π(t)(a0 | s)π(t)(a1 | s)

(
Q(t)(s, a1) − Q(t)(s, a0)

)

= 1

1 − γ
d(t)
μ (s)π(t)(a0 | s)π(t)(a1 | s)

(
γ V (t)(s) − γ τs

)
< 0, (151)

where the last line makes use of the identities in (61). This means that θ(t)(s, a1) keeps
decreasing, and hence θ(t)(s, a1) ≤ 0 given the initialization θ(0)(s, a1) = 0. As an
immediate consequence, one has θ(t)(s, a0) = −θ(t)(s, a1) ≥ 0 and π(t)(a0 | s) ≥
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1/2. Taking this observation together with (151) and Lemma 2 gives

∂V (t)(μ)

∂θ(s, a1)
= 1

1 − γ
d(t)
μ (s)π(t)(a0 | s)π(t)(a1 | s)

(
Q(t)(s, a1) − Q(t)(s, a0)

)

= 1

1 − γ
d(t)
μ (s)π(t)(a0 | s)π(t)(a1 | s)

(
Q(t)(s, a1) − γ τs

)

≤ cmγ

2
(1 − γ )π(t)(a1 | s)

(
Q(t)(s, a1) − γ τs

)
< 0.

Moreover, combine (151) with Lemma 3 and Lemma 1 to yield

∣∣
∣∣∣
∂V (t)(μ)

∂θ(s, a1)

∣∣
∣∣∣
≤ 1

1 − γ
d(t)
μ (s)

∣
∣∣Q(t)(s, a1) − γ τs

∣
∣∣

≤ 1

1 − γ
14cm(1 − γ )2

(∣∣Q(t)(s, a1)
∣∣+ γ τs

)
≤ 28cm(1 − γ ),

If 28cmη(1 − γ ) < 1/2, then the above inequalities taken together with Lemma 14
give

π(t+1)(a1 | s) − π(t)(a1 | s) ≤ cmγ

2
η(1 − γ )

[
π(t)(a1 | s)

]2(
Q(t)(s, a1) − γ τs

)

(152)

for all t < ts(τs). This combined with (150) and the monotonicity of Q(t)(s, a1) (see
Lemma 9) gives

γ τs − V (t+1)(s) = π(t+1)(a1 | s)
(
γ τs − Q(t+1)(s, a1)

)

≤ π(t+1)(a1 | s)
(
γ τs − Q(t)(s, a1)

)

≤
{
π(t)(a1 | s) − cmγ

2
η(1 − γ )

[
π(t)(a1 | s)

]2(
γ τs − Q(t)(s, a1)

)}

(
γ τs − Q(t)(s, a1)

)

=
{
1 − ηcmγ (1 − γ )

2

(
γ τs − V (t)(s)

)}(
γ τs − V (t)(s)

)
,

where the penultimate line follows from the inequality (152) for the iteration t−1, and
the last identity makes use of (150). In conclusion, we have arrived at the following
inductive relation

γ τs − V (t+1)(s) ≤ γ τs − V (t)(s) − ηcmγ (1 − γ )

2

(
γ τs − V (t)(s)

)2
,

which bears resemblance to the recursive relations studied in Lemma 11. Recognizing
that γ τs − V (0)(s) ≤ γ τs−2 (since V (0)(s) ≥ 0 according to Lemma 10), we can
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invoke Lemma 11 to derive

γ τs − V (t)(s) ≤ 1
cmγ
2 η(1 − γ )t + 1

γ τs

.

Putting the above pieces together concludes the proof of (146c).

D.3.2 Proof of Lemma 16

From the definition (131), direct calculations lead to

π̂ (t+1)(a1 | s) − π̂ (t)(a1 | s) = exp
(
θ(t+1)(s, a1) − θ

(t+1)
max (s)

)

− exp
(
θ(t)(s, a1) − θ

(t)
max(s)

)

= π̂ (t)(a1 | s)
{
exp
(
θ(t+1)(s, a1) − θ(t)(s, a1)

+ θ
(t)
max(s) − θ

(t+1)
max (s)

)
− 1
}
.

According to Lemma 1, we have |Q(t)(s, a)| ≤ 1 and |V (t)(s)| ≤ 1, which indicates—
for any action a ∈ {a0, a1, a2}—that

∣
∣∣θ(t+1)(s, a) − θ(t)(s, a)

∣
∣∣ =

∣
∣∣η

∂V (t)(μ)

∂θ(s, a)

∣
∣∣

= η

1 − γ
d(t)
μ (s)π(t)(a | s)

∣∣∣Q(t)(s, a) − V (t)(s)
∣∣∣ ≤ 1

3
,

provided thatη ≤ (1−γ )/6.An immediate consequence is that |θ(t+1)
max (s)−θ

(t)
max(s)| ≤

1/3 and hence

∣∣∣θ(t+1)(s, a1) − θ(t)(s, a1) + θ
(t)
max(s) − θ

(t+1)
max (s)

∣∣∣ ≤ 2/3.

This taken together with the following elementary facts

(ex − 1)/x ∈ [1, 1.5) for 0 ≤ x < 2/3, and

(ex − 1)/x ∈ (0.72, 1] for − 2/3 < x ≤ 0

establishes the claim (147).

E Analysis for the intermediate stage (Lemma 6)

We now turn attention to Lemma 6, which studies the dynamics during an intermediate
stage between ts−2(τs−2) and ts−1(τs).
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E.1 Main steps

Key facts regarding crossing times. Our proof for Lemma 6 relies on several crucial
properties regarding the crossing times for both the key primary states and the adjoint
states, as stated in the following two lemmas.

Lemma 17 Suppose that (35) holds. There exists some constant 0 < c0 ≤ 1222
cmγ

such
that:

ts
(
γ 2s − 1/4

)− max
{
ts−1

(
γ 2s−1 − 1/4

)
, ts(τs)

}
≤ c0

η(1 − γ )2
(153)

holds for every 3 ≤ s ≤ H, and

ts
(
γ 2s+1 − 1/4

)− max
{
ts
(
γ 2s − 1/4

)
, ts(τs+1)

}
≤ c0

η(1 − γ )2
(154)

holds for every 1 ≤ s ≤ H.

Lemma 18 Suppose that (35) holds and

t3(τ3) > t2(γ
4 − 1/4). (155)

Then for every 3 ≤ s ≤ H, we have

ts
(
γ 2s − 1/4) − ts(τs

) ≤ 2sc0
η(1 − γ )2

, (156a)

ts−1

(
γ 2s−1 − 1/4

)− ts−1(τs) ≤ 2sc0
η(1 − γ )2

. (156b)

In addition, if we further have ts−1(τs−1) > ts−2(τs−1) + 2sc0
η(1−γ )2

, then

ts−2

(
γ 2s−3 − 1/4

) ≤ ts−1(τs). (156c)

Furthermore, (156c) still holds for s = 3 without requiring the assumption (155).

The proofs of the above two lemmas are postponed toAppendix E.2 andAppendix E.3,
respectively. Let us take a moment to explain these two lemmas; to provide some
intuitions, let us treat γ 2s ≈ 1. Lemma 17 makes clear that: once the value function
estimates for states s − 1 and s are both sufficiently large (i.e., V (t)(s − 1) � 0.75
and V (t)(s) � 0.5), then it does not take long for V (t)(s) to (approximately) exceed
0.75. A similar message holds true if we replace s (resp. s − 1) with s (resp. s).
Built upon this observation, Lemma 18 further reveals that: the time taken for V (t)(s)
(resp. V (t)(s − 1)) to rise from 0.5 to 0.75 is fairly short.
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Proof of Lemma 6 We are now in a position to present the proof of Lemma 6. To begin
with, recall from Lemma 8 that: for any t ≤ ts−1(τs) ≤ ts−1(τs−1), one has

Q(t)(s, a1) = γ V (t)(s − 1) ≤ γ τs ≤ min
{
Q(t)(s, a0), Q

(t)(s, a2)
}
. (157)

Given thatV (t)(s) is a convex combination of {Q(t)(s, a)}a∈{a0,a1,a2}, one hasV (t)(s)−
Q(t)(s, a1) ≥ 0, which together with the gradient expression (136) indicates that

∂V (t)(μ)

∂θ(s, a1)
≤ 0 (158)

and hence θ(t)(s, a1) is non-increasing with t for any t < ts−1(τs). Additionally, we
have learned from Lemma 18 that

ts−1(τs) ≥ ts−2

(
γ 2s−3 − 1/4

) ≥ ts−2

(
γ τs−2

) = ts−2
(
τs−2

)
,

where the second inequality holds since γ 2s−3 − 1/4 ≥ γ τs−2,f and the last iden-
tity results from Part (iii) of Lemma 8. This combined with the non-increasing
nature of θ(t)(s, a1) readily establishes the advertised inequality θ(ts−1(τs ))(s, a1) ≤
θ(ts−2(τs−2))(s, a1).

The next step is to justify θ(ts−1(τs ))(s, a2) ≥ 0. Notice that for t > ts−2(τs−2),
we have V (t)(s − 2) > τs−2, and then V (t)(s − 2) > γ τs−2 by (62), which leads
to Q(t)(s, a2) > Q(t)(s, a0) by (59) in Lemma 8. Recall (157) that Q(t)(s, a1) ≤
γ τs ≤ min

{
Q(t)(s, a0), Q(t)(s, a2)

}
. Then, one has Q(t)(s, a2)−V (t)(s) ≥ 0, which

together with the gradient expression (136) indicates that

∂V (t)(μ)

∂θ(s, a2)
≥ 0 (159)

and hence θ(t)(s, a2) is non-decreasing with t for any t < ts−1(τs). This establishes

θ(ts−1(τs ))(s, a2) ≥ 0. ��

E.2 Proof of Lemma 17

For every t ≥ max
{
ts−1(γ

2s−1 − 1/4), ts(τs)
}
, we isolate the following properties

that will prove useful.

• The definition (30) of ts−1(·) together with the monotonicity property in Lemma 9
requires that V (t)(s − 1) ≥ γ 2s−1 − 1/4, and hence it is seen from (59) that

Q(t)(s, a1) = γ V (t)(s − 1) ≥ γ 2s − γ /4. (160)

• In the meantime, since t ≥ ts(τs), Lemma 8 (cf. (60)) guarantees that

π(t)(a1 | s) ≥ (1 − γ )/2. (161)
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• Given that ts(τs) ≥ ts−2(τs−2) (see (33)) and the monotonicity property in
Lemma 9, one has V (t)(s − 2) ≥ τs−2, and thus we can see from (59) that

Q(t)(s, a2) − Q(t)(s, a0) = γ p
(
V (t)(s − 2) − τs−2

) ≥ 0. (162)

• In addition, Lemma 8 ensures that both Q(t)(s, a2) and Q(t)(s, a0) are bounded
above by γ 1/2τs . Therefore, it is easily seen that

Q(t)(s, a1) ≥ γ 2s − γ /4 > γ 1/2τs ≥ Q(t)(s, a2) ≥ Q(t)(s, a0), (163)

where the first inequality comes from (160), the second one holds when γ 2s >

0.75, and the last inequality has been justified in (162).
• Moreover, given that V (t)(s) ≥ τs (since t ≥ ts(τs)), one further has

Q(t)(s, a1) − max
{
Q(t)(s, a2), Q

(t)(s, a0)
}

> V (t)(s) − max
{
Q(t)(s, a2), Q

(t)(s, a0)
}

> τs − γ 1/2τs > 0. (164)

Here, the first inequality comes from (163), while the penultimate inequality is a
consequence of (163).

• We have seen from the above bullet points that

Q(t)(s, a1) > V (t)(s) > max
{
Q(t)(s, a2), Q

(t)(s, a0)
}
, (165)

which combined with the gradient expression (136) reveals that

∂V (t)(μ)

∂θ(s, a1)
> 0 > max

{
∂V (t)(μ)

∂θ(s, a0)
,
∂V (t)(μ)

∂θ(s, a2)

}

. (166)

With the above properties in place, we are now ready to prove our lemma, for which
we shall look at the key primary states 3 ≤ s ≤ H and the adjoint states separately.

Analysis for the key primary states. Let us start with any state 3 ≤ s ≤ H , and control
ts(γ 2s − 1/4) as claimed in (153). As before, define

θ
(t)
max(s):=maxa θ(t)(s, a).

From the above fact (166), we know that θ(t)(s, a1) keeps increasing with t while
θ(t)(s, a0), θ(t)(s, a2) are both decreasing with t . As a result, once θ(t)(s, a1) =
θ

(t)
max(s), then θ(t)(s, a1) will remain equal to θ

(t)
max(s) for the subsequent iterations.

This allows us to divide into two stages as follows.

• Stage 1: the duration when θ(t)(s, a1) < θ
(t)
max(s). Our aim is to show that this

stage contains at most O
( 1

η(1−γ )2

)
iterations. In order to prove this, the starting
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point is again the gradient expression (136):

∂V (t)(μ)

∂θ(s, a1)
= 1

1 − γ
d(t)
μ (s)π(t)(a1 | s)(Q(t)(s, a1) − V (t)(s)

)

≥ cmγ (1 − γ )π(t)(a1 | s)(Q(t)(s, a1) − V (t)(s)
)
, (167)

where the last line relies on Lemma 2 and the fact Q(t)(s, a1) > V (t)(s) (cf. (165)).
Regarding the size of Q(t)(s, a1) − V (t)(s), we make the observation that

Q(t)(s, a1) − V (t)(s) = π(t)(a0 | s)
(
Q(t)(s, a1) − Q(t)(s, a0)

)

+ π(t)(a2 | s)
(
Q(t)(s, a1) − Q(t)(s, a2)

)

≥ (π(t)(a0 | s) + π(t)(a2 | s))
(
Q(t)(s, a1) − max

a∈{a0,a2}
Q(t)(s, a)

)

(i)≥ 1

2

(
Q(t)(s, a1) − max

a∈{a0,a2}
Q(t)(s, a)

)

(ii)≥ 1

2

(
γ 2s − γ /4 − γ 1/2τs

) (iii)≥ 1

16
.

Here, (i) follows since θ(t)(s, a1) < θ
(t)
max(s) during this stage and, therefore,

π(t)(a1 | s) ≤ 1/2; (ii) arises from the relation (163); and (iii) holds whenever
γ 2s − γ /4 > 5/8. Substitution into (167) yields

∂V (t)(μ)

∂θ(s, a1)
≥ 1

16
cmγ (1 − γ )π(t)(a1 | s) ≥ 1

48
cmγ (1 − γ )π̂ (t)(a1 | s), (168)

where the last inequality comes from (132). In addition, recall that θ(t)(s, a1) is
increasing with t , while θ(t)(s, a0) and θ(t)(s, a2) are both decreasing (and hence
θ

(t)
max(s) is also decreasing). Invoking Lemma 16 then yields

π̂ (t+1)(a1 | s) − π̂ (t)(a1 | s)
≥ π̂ (t)(a1 | s)

(
θ(t+1)(s, a1) − θ(t)(s, a1) + θ

(t)
max(s) − θ

(t+1)
max (s)

)

≥ π̂ (t)(a1 | s)
(
θ(t+1)(s, a1) − θ(t)(s, a1)

)

= π̂ (t)(a1 | s) · η
∂V (t)(μ)

∂θ(s, a1)
≥ 1

48
cmηγ (1 − γ )

[
π̂ (t)(a1 | s)

]2
,

where the last line arises from (168). Given this recursive relation, Lemma 11
implies that: if π̂ (t)(a1 | s) < 1 (or equivalently, θ(t)(s, a1) < θ

(t)
max(s)), then one
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necessarily has

t − t0,1 ≤ 1 + 1
48cmηγ (1 − γ )

1
48cmηγ (1 − γ )π(t0)(a1 | s) ≤ 2

1
48cmηγ (1 − γ )π(t0,1)(a1 | s)

≤ 240

cmηγ (1 − γ )2
,

with t0,1:=max
{
ts−1(γ

2s−1 −1/4), ts(τs)
}
. Here, the last inequality relies on the

property (161).
• Stage 2: the duration when θ(t)(s, a1) = θ

(t)
max(s). For this stage, we

intend to demonstrate that it takes at most O
( 1

η(1−γ )2

)
iterations to achieve

max
{
π(t)(a0 | s), π(t)(a2 | s)} ≤ (1−γ )/8. To this end, we again begin by study-

ing the gradient as follows:

∂V (t)(μ)

∂θ(s, a2)
= 1

1 − γ
d(t)
μ (s)π(t)(a2 | s)

(
Q(t)(s, a2) − V (t)(s)

)

≤ cmγ (1 − γ )π(t)(a2 | s)
(
Q(t)(s, a2) − V (t)(s)

)

≤ 1

3
cmγ (1 − γ )π̂ (t)(a2 | s)

(
Q(t)(s, a2) − V (t)(s)

)
.

Here, the first inequality comes from Lemma 2 and the fact Q(t)(s, a2) < V (t)(s)
(see (165)), whereas the last inequality is a consequence of (132). In order to
control Q(t)(s, a2) − V (t)(s), we observe that

Q(t)(s, a2) − V (t)(s) = π(t)(a1 | s)
(
Q(t)(s, a2) − Q(t)(s, a1)

)

+ π(t)(a0 | s)
(
Q(t)(s, a2) − Q(t)(s, a0)

)

≤ π(t)(a1 | s)
(
γ 1/2τs − γ 2s + γ /4

)

+ π(t)(a2 | s)γ p
(
V (t)(s − 2) − τs−2

)

≤ 1

3

(
γ 1/2τs − γ 2s + γ /4

)
+ γ p ≤ − 1

24
,

where the second line arises from (163) and (162), and the last line holds since
V (t)(s − 2) ≤ 1 as well as the fact π(t)(a1 | s) ≥ 1/3 during this stage (since
θ(t)(s, a1) = θ

(t)
max(s)). Putting the above two bounds together leads to

∂V (t)(μ)

∂θ(s, a2)
≤ − 1

72
cmγ (1 − γ )π̂ (t)(a2 | s). (169)

Next, Lemma 16 tells us that

π̂ (t+1)(a2 | s) − π̂ (t)(a2 | s) ≤ 0.72π̂ (t)(a2 | s)
(
θ(t+1)(s, a2) − θ(t)(s, a2)
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+ θ
(t)
max(s) − θ

(t+1)
max (s)

)

≤ 0.72π̂ (t)(a2 | s)
(
θ(t+1)(s, a2) − θ(t)(s, a2)

)

= 0.72π̂ (t)(a2 | s) · η
∂V (t)(μ)

∂θ(s, a2)

≤ −0.01ηcmγ (1 − γ )
[
π̂ (t)(a2 | s)

]2
,

where the first inequality makes use of the facts θ(t+1)(s, a2) ≤ θ(t)(s, a2) and
θ

(t)
max(s) = θ(t)(s, a1) ≤ θ(t+1)(s, a1) = θ

(t+1)
max (s) (see (166)). Denoting by t0,2

the first iteration in this stage, we can invoke Lemma 11 to reach

π̂ (t−t0,2)(a2 | s) ≤ 1

0.01ηcmγ (1 − γ )(t − t0,2) + 1
. (170)

As a consequence, once t − t0,2 exceeds

800

ηcmγ (1 − γ )2
,

then one has π(t)(a2 | s) ≤ (1 − γ )/8. The same conclusion holds for a0 as well.

Combining the above analysis for the two stages, we see that: if

t − t0,1 ≥ 240

ηcmγ (1 − γ )2
+ 800

ηcmγ (1 − γ )2
= 1040

ηcmγ (1 − γ )2

with t0,1:=max
{
ts−1(γ

2s−1 − 1/4), ts(τs)
}
, then one has

π(t)(a1 | s) = 1 − π(t)(a0 | s) − π(t)(a2 | s) ≥ 1 − (1 − γ )/4,

which combined with (163) leads to

V (t)(s) ≥ π(t)(a1 | s)Q(t)(s, a1) ≥ (1 − (1 − γ )/4
)(

γ 2s − γ /4
) ≥ γ 2s − 1/4.

This means that one necessarily has t ≥ ts(γ 2s − 1/4). It then follows that

ts
(
γ 2s − 1/4

)− max
{
ts−1

(
γ 2s−1 − 1/4

)
, ts(τs)

} = ts
(
γ 2s − 1/4

)− t0,1

≤ 1040

ηcmγ (1 − γ )2
,

thus concluding the proof of (153).
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Analysis for the adjoint states. We then move forward to the adjoint states {1, . . . , H}
and control ts(γ 2s+1 − 1/4) as desired in (154). The proof consists of studying the
dynamic for any t obeying

max
{
ts
(
γ 2s − 1/4

)
, ts(τs+1)

}
≤ t ≤ ts

(
γ 2s+1 − 1/4

)
.

Once again, we divide into two stages and analyze each of them separately.

• Stage 1: the duration where θ(t)(s, a1) < θ(t)(s, a0). We aim to demonstrate that
it takes no more than O

( 1
η(1−γ )2

)
iterations for θ(t)(s, a1) to surpass θ(t)(s, a0).

In order to do so, note that

∂V (t)(μ)

∂θ(s, a1)
= 1

1 − γ
d(t)
μ (s)π(t)(a1 | s)π(t)(a0 | s)

(
Q(t)(s, a1) − Q(t)(s, a0)

)

≥ 1

16
cmγ (1 − γ )π(t)(a1 | s) > 0. (171)

Here, the last line applies Lemma 2 and makes use of the fact

Q(t)(s, a1) − Q(t)(s, a0) = γ V (t)(s) − γ τs ≥ γ (γ 2s − 1/4 − τs) ≥ 1/8.
(172)

where the inequality comes from the assumption t ≥ ts
(
γ 2s − 1/4

)
as well as the

monotonicity property in Lemma 9. As a result, the PG update rule (12a) implies
that θ(t)(s, a1) is increasing in t , and hence θ(t)(s, a0) is decreasing in t (since∑

a θ(t)(s, a) = 0); these taken collectively mean that

θ(t+1)(s, a1) − θ(t)(s, a1) + θ(t)(s, a0) − θ(t+1)(s, a0)

≥ θ(t+1)(s, a1) − θ(t)(s, a1) ≥ 0.

Invoking Lemma 16 then reveals that

π̂ (t+1)(a1 | s) − π̂ (t)(a1 | s) ≥ π̂ (t)(a1 | s)
(
θ(t+1)(s, a1) − θ(t)(s, a1)

+ θ(t)(s, a0) − θ(t+1)(s, a0)
)

≥ π̂ (t)(a1 | s)
(
θ(t+1)(s, a1) − θ(t)(s, a1)

)

= ηπ̂(t)(a1 | s) ∂V (t)(μ)

∂θ(s, a1)

≥ 1

48
ηcmγ (1 − γ )

[
π̂ (t)(a1 | s)

]2
,

where the last inequality relies on (171) and (132). Given this recursive relation,
Lemma 11 tells us that: one has π̂ (t)(a1 | s) ≥ 1 (which means a1 becomes the
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favored action by (131)) as soon as t − t0,3 exceeds

2
1
48ηcmγ (1 − γ )π̂ (t0,3)(a1 | s) ≤ 96

ηcmγ (1 − γ )π(t0,3)(a1 | s) ≤ 1152

ηcmγ (1 − γ )2
,

where t0,3:=max
{
ts
(
γ 2s − 1/4

)
, ts(τs+1)

}
. Here, the last inequality is valid as

long as

π(t0,3)(a1 | s) ≥ (1 − γ )/12 (173)

holds. It thus remains to justify (173). Towards this end, observe that for any
t ≥ ts(τs+1),

τs+1 ≤ V (t)(s) = π(t)(a0 | s)Q(t)(s, a0) + π(t)(a1 | s)Q(t)(s, a1)

= π(t)(a0 | s)γ τs + π(t)(a1 | s)γ V (t)(s)

= γ τs + π(t)(a1 | s)γ
(
V (t)(s) − τs

)
≤ γ τs + π(t)(a1 | s)γ,

and, as a result,

π(t)(a1 | s) ≥ τs+1

γ
− τs = 1

2

γ
2
3 s+ 2

3 − γ
2
3 s+1

γ
= γ

2
3 s−1

2

(
γ

2
3 − γ

)
≥ 1 − γ

12
,

provided that γ ≥ 0.9 (so that γ
2
3 − γ ≥ 0.3(1 − γ )) and γ

2
3 H ≥ 0.7. This

concludes the analysis of this stage.
• Stage 2: the duration where θ(t)(s, a1) ≥ θ(t)(s, a0). Similar to the above
argument, we intend to show that it takes at most O

( 1
η(1−γ )2

)
iterations for

π(t)(a0 | s) ≤ 1 − γ to occur. From the gradient expression and the property
(172), we obtain

∂V (t)(μ)

∂θ(s, a0)
= 1

1 − γ
d(t)
μ (s)π(t)(a0 | s)π(t)(a1 | s)

(
Q(t)(s, a0) − Q(t)(s, a1)

)

≤ − 1

16
cmγ (1 − γ )π(t)(a0 | s) ≤ − 1

48
cmγ (1 − γ )π̂ (t)(a0 | s),

where the first inequality uses Lemma 2 and the property π(t)(a1 | s) ≥ 1/2 (since
θ(t)(s, a1) ≥ θ(t)(s, a0)), and the last inequality relies on (132).Repeating a similar
argument as above, we can demonstrate that

π̂ (t+1)(a0 | s) − π̂ (t)(a0 | s) ≤ − 1

70
ηcmγ (1 − γ )

[
π̂ (t)(a0 | s)

]2
. (174)
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This combined with Lemma 11 implies that

π̂ (t)(a0 | s) ≤ 1
1
70ηcmγ (1 − γ )(t − t0,4) + 1

, (175)

with t0,4 denoting the first iteration of this stage. Consequently, one has
π̂ (t)(a0 | s) ≤ 1 − γ—and therefore π(t)(a0 | s) ≤ 1 − γ according to (132)—as
soon as t − t0,4 exceeds

70

ηcmγ (1 − γ )2
.

Finally, if π(t)(a0 | s) ≤ 1 − γ , then one has

V (t)(s) = π(t)(a0 | s)Q(t)(s, a0) + π(t)(a1 | s)Q(t)(s, a1)

= π(t)(a0 | s)γ τs + π(t)(a1 | s)γ V (t)(s)

≥ π(t)(a0 | s)γ τs +
(
1 − π(t)(a0 | s)

)
γ
(
γ 2s − 1/4

)

= π(t)(a0 | s)
(
γ τs − γ 2s+1 − γ /4

)
+ γ 2s+1 − γ /4

≥ (1 − γ )
(
γ τs − γ 2s+1 − γ /4

)
+ γ 2s+1 − γ /4 ≥ γ 2s+1 − 1/4,

where the first inequality holds by recalling that t ≥ ts(γ 2s − 1/4). Consequently,
putting the above pieces (regarding the duration of the two stages) together allows us
to conclude that

ts
(
γ 2s+1 − 1/4

)− max
{
ts
(
γ 2s − 1/4

)
, ts(τs+1)

}
≤ 1152

ηcmγ (1 − γ )2
+ 70

ηcmγ (1 − γ )2

= 1222

ηcmγ (1 − γ )2

as claimed.

E.3 Proof of Lemma 18

Before proceeding, we first single out two properties that play a crucial role in the
proof of Lemma 18.

Lemma 19 The following basic properties hold true for any 2 ≤ s ≤ H:

ts(τs) ≥ ts−1(τs); (176a)

ts−1(τs) ≥ ts−1(τs−1). (176b)

The proof of this auxiliary lemma is deferred to the end of this subsection. Equipped
with this result, we are positioned to present the proof of Lemma 18. To begin with,
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we seek to bound the quantity ts(γ 2s − 1/4) − ts(τs). Apply Lemma 17 with a little
algebra to yield

ts(γ
2s − 1/4) − ts(τs) ≤ max

{
ts−1(γ

2s−1 − 1/4), ts(τs)
}

+ c0
η(1 − γ )2

− ts(τs)

= max
{
ts−1(γ

2s−1 − 1/4) − ts(τs), 0
}

+ c0
η(1 − γ )2

.

(177)

With the assistance of the bound (176a) in Lemma 19, we can continue the bound in
(177) to derive

ts(γ
2s − 1/4) − ts(τs) ≤ max

{
ts−1(γ

2s−1 − 1/4) − ts−1(τs), 0
}

+ c0
η(1 − γ )2

= ts−1(γ
2s−1 − 1/4) − ts−1(τs) + c0

η(1 − γ )2
. (178)

To continue, we shall bound the quantity ts−1(γ
2s−1 − 1/4) − ts−1(τs). Similar to

the derivation of the inequality (177), we can apply Lemma 17 to show that

ts−1(γ
2s−1 − 1/4) − ts−1(τs) ≤ max

{
ts−1(γ

2s−2 − 1/4), ts−1(τs)
}

+ c0
η(1 − γ )2

− ts−1(τs)

= max
{
ts−1(γ

2s−2 − 1/4) − ts−1(τs), 0
}

+ c0
η(1 − γ )2

≤ max
{
ts−1(γ

2s−2 − 1/4) − ts−1(τs−1), 0
}

+ c0
η(1 − γ )2

= ts−1(γ
2s−2 − 1/4) − ts−1(τs−1) + c0

η(1 − γ )2
, (179)

where the third line makes use of (176b) in Lemma 19.
Applying the inequalities (178) and (179) recursively, one arrives at

ts(γ
2s − 1/4) − ts(τs) ≤ ts−1(γ

2s−2 − 1/4) − ts−1(τs−1) + 2c0
η(1 − γ )2

≤ · · ·

≤ t3(γ
6 − 1/4) − t3(τ3) + 2(s − 3)c0

η(1 − γ )2
. (180)

To continue, note that Lemma 17 and the bound (176a) give

t3(γ
6 − 1/4) ≤ max

{
t2(γ

5 − 1/4), t3(τ3)
}

+ c0
η(1 − γ )2

,

t2(γ
5 − 1/4) ≤ max

{
t2(γ

4 − 1/4), t2(τ3)
}

+ c0
η(1 − γ )2

≤ max
{
t2(γ

4 − 1/4), t3(τ3)
}

+ c0
η(1 − γ )2

,
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which together leads to

t3(γ
6 − 1/4) ≤ max

{
t2(γ

4 − 1/4), t3(τ3)
}

+ 2c0
η(1 − γ )2

. (181)

Plugging back to (180) leads to

ts(γ
2s − 1/4) − ts(τs) ≤ max

{
t2(γ

4 − 1/4), t3(τ3)
}

− t3(τ3)

+ 2c0
η(1 − γ )2

+ 2(s − 3)c0
η(1 − γ )2

≤ (2s − 4)c0
η(1 − γ )2

, (182)

where the last step arises from the assumption (155), that is, t2(γ 4 − 1/4) < t3(τ3).
Further, the above inequality taken together with (179) yields

ts−1(γ
2s−1 − 1/4) − ts−1(τs) ≤ (2s − 4)c0

η(1 − γ )2
+ c0

η(1 − γ )2
= (2s − 3)c0

η(1 − γ )2
. (183)

We have thus established (156a) and (156b).
Finally, we turn to the proof of (156c). In view of (156b), one has

ts−2(γ
2s−3 − 1/4) − ts−2(τs−1) ≤ 2sc0

η(1 − γ )2
.

In addition,

ts−1(τs) − ts−2(τs−1) ≥ ts−1(γ τs−1) − ts−2(τs−1) = ts−1(τs−1) − ts−2(τs−1)

≥ ts−1(τs−1) − ts−2(τs−1) >
2sc0

η(1 − γ )2
,

where the identity in the first line comes from Part (iii) of Lemma 8, and the last
inequality uses the assumption ts−1(τs−1) > ts−2(τs−1) + 2sc0

η(1−γ )2
. Combining the

above two inequalities justifies the validity of the advertised inequality (156c). Then,
we establish (156c) for s = 3 through Lemma 4, which gives

t1
(
γ 3 − 1/4

) ≤ t2(τ2) ≤ t2(τ3), (184)

where the last inequality comes from (176b).

Proof of Lemma 19 To begin with, the claim (176a) holds when s = 2 as a result of
the inequality (38b) in Lemma 4. We now turn to the case with 3 ≤ s ≤ H . In view
of the property (59) in Lemma 8, we have

max
{
Q(t)(s, a0), Q

(t)(s, a2)
}

≤ γ
1
2 τs < τs and Q(t)(s, a1) = γ V (t)(s − 1).
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Recognizing that V (t)(s) is a convex combination of
{
Q(t)(s, a)

}
a∈{a0,a1,a2}, we know

that if V (t)(s) ≥ τs , then one necessarily has Q(t)(s, a1) > τs , or equivalently,
V (t)(s − 1) > τs/γ ≥ τs . This essentially means that ts(τs) ≥ ts−1(τs), thus estab-
lishing the claim (176a).

Similarly, Lemma 8 (cf. (61)) also tells us that

Q(t)(s, a0) = γ τs and Q(t)(s, a1) = γ V (t)(s).

This means that if V (t)(s − 1) ≤ τs−1, then

V (t)(s − 1) ≤ max
{
Q(t)(s − 1, a0), Q

(t)(s − 1, a1)
}

≤ γ τs−1 ≤ τs .

Consequently, we conclude that ts−1(τs) ≥ ts−1(τs−1), as claimed in (176b). ��

F Analysis for the blowing-up lemma (Lemma 7)

In this section, we establish the blowing-up phenomenon as asserted in Lemma 7.

F.1 Which reference point tref shall we choose?

Let us specify the time instance tref as required in Lemma 7 as follows

tref:=min
{
t ∈ [ ts−1(τs), ts(τs)

) | cref(1 − γ )π(t)(a0 | s) ≤ π(t)(a1 | s)
}
, (185)

where cref ∈ (0, 1/3) is some constant to be specified shortly.

Existence. An important step is to justify that (185) is well-defined, namely, there
exists at least one time instance within

[
ts−1(τs), ts(τs)

)
that satisfies cref(1 −

γ )π(t)(a0 | s) ≤ π(t)(a1 | s). Towards this, we note that if the time instance ts−1(τs)

obeys

cref(1 − γ )π(t)(a0 | s) ≤ π(t)(a1 | s) when t = ts−1(τs),

then we simply have tref = ts−1(τs). We then move on to the complement case where

cref(1 − γ )π(ts−1(τs ))(a0 | s) > π(ts−1(τs ))(a1 | s),
or equivalently, θ(ts−1(τs ))(s, a0) > θ(ts−1(τs ))(s, a1) − log(cref(1 − γ )). (186)

To justify that the construction (185) makes sense, it suffices to show that the endpoint
ts(τs) obeys

cref(1 − γ )π(ts (τs ))(a0 | s) < π(ts (τs ))(a1 | s). (187)
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In order to validate (187), recall that the inequality (60) in Lemma 8 ensures that

π(ts (τs ))(a1 | s) ≥ 1 − γ

2
,

given that V (ts (τs ))(s) ≥ τs . Therefore, the inequality (187) must be satisfied when
cref < 1/2, given that the left-hand side of (187) obeys

cref(1 − γ )π(ts (τs ))(a0 | s) ≤ cref(1 − γ ) <
1 − γ

2
.

This in turn validates the existence of (187) for this case.

Several immediate properties about tref and ts−1(τs). We pause to single out a
couple of immediate properties about the tref constructed above as well as ts−1(τs).

Consider the case where ts−1(τs) obeys

cref(1 − γ )π(ts−1(τs ))(a0 | s) ≤ π(ts−1(τs ))(a1 | s),
or equivalently, θ(ts−1(τs ))(s, a0) ≤ θ(ts−1(τs ))(s, a1) − log

(
cref(1 − γ )

)
,

then one has tref = ts−1(τs) (as discussed above). As can be clearly seen, ts−1(τs)

satisfies the advertised inequality (45a) by taking cref ≥ cp/8064. Additionally, let us
first recall from (156c) in Lemma 18 that

ts−1(τs) = max
{
ts−2(γ

2s−3 − 1/4), ts−1(τs)
}
.

This combined with Lemma 6 (see (43)) tells us that

θ(ts−1(τs ))(s, a1) = θ(ts−1(τs ))(s, a1) ≤ θ(ts−2(τs−2))(s, a1)

≤ −1

2
log
(
1 + cmγ

35
η(1 − γ )2ts−2(τs−2)

)
, (188)

where the last relation utilizes the bound (40) in Lemma 5. This leads to the advertised
bound (45b).

As a result, the claims (45a)-(45b) only need to be justified under the assumption
(186).

Organization of the proof. In light of the above basic facts, the subsequent proof
focuses on the scenario where (186) is satisfied, namely, the case where

ts−1(τs) < tref.

Weshall start by justifying that θ(t)(s, a1)has not increasedmuchduring [ts−1(τs), tref],
as detailed in Appendix F.2 and F.3 (focusing on two separate stages respectively).
This feature will then be used in Appendix F.4 to establish the claims (45a)-(45b), and
in Appendix F.5 to establish the claim (45c).
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F.2 Stage I: the duration where�(t)(s, a2) < �(t)(s, a0)

Suppose that at the starting point we have θ(ts−1(τs ))(s, a2) < θ(ts−1(τs ))(s, a0); other-
wise the reader can proceed directly to Stage II in Appendix F.3. The goal is to control
the number of iterations taken to achieve θ(t)(s, a2) ≥ θ(t)(s, a0). More specifically,
let us define the transition point

ttran:=min
{
t | θ(t)(s, a2) ≥ θ(t)(s, a0), t ≥ ts−1(τs)

}
. (189)

In this subsection, we seek to develop an upper bound on ttran − ts−1(τs), and to show

that θ(t)(s, a1) − θ(ts−1(τs ))(s, a1) ≤ 1/2 holds throughout this stage.

Preparation: basic facts and rescaled policies. Before moving forward, we first gather
some basic facts. To begin with, from the definition (185) of tref, we know that the
inequality cref(1−γ )π(t)(a0 | s) > π(t)(a1 | s) holds true for every t ∈ [ts−1(τs), tref),
or equivalently,

θ(t)(s, a0) > θ(t)(s, a1) − log
(
cref(1 − γ )

)
for all t ∈ [ts−1(τs), tref). (190)

In the case considered here, we have—according to (190) and (189)—that

θ(t)(s, a0) > θ(t)(s, a1) − log
(
cref(1 − γ )

)
and θ(t)(s, a0) > θ(t)(s, a2) (191)

for any t obeying ts−1(τs) ≤ t < min{ttran, tref}. This means that

θ(t)(s, a0) = max
a

θ(t)(s, a) and hence π(t)(a0 | s) > 1/3 (192)

holds for any t obeying ts−1(τs) ≤ t < min{ttran, tref}, provided that 0 < cref < 1.
Moreover, let us introduce the rescaled policy π̂ (t)(a | s) as before

π̂ (t)(a | s):= exp
(
θ(t)(s, a) − max

a′∈As

θ(t)(s, a′)
)
.

In view of (192), the rescaled policy can therefore be written as

π̂ (t)(a2 | s) = exp
(
θ(t)(s, a2) − θ(t)(s, a0)

) = exp
(
2θ(t)(s, a2) + θ(t)(s, a1)

)

π̂ (t)(a1 | s) = exp
(
θ(t)(s, a1) − θ(t)(s, a0)

) = exp
(
2θ(t)(s, a1) + θ(t)(s, a2)

)

(193)

for any t with ts−1(τs) ≤ t < min{ttran, tref}, where we have used the constraint
∑

a θ(t)(s, a) = 0 (see Part (vii) of Lemma 8).

Showing θ(t)(s, a1)−θ(ts−1(τs ))(s, a1) ≤ 1/2 by induction. In the following, we seek
to prove by induction the following key property

θ(t)(s, a1) − θ(ts−1(τs ))(s, a1) ≤ 1/2 (194)
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for any t that obeys ts−1(τs) ≤ t ≤ min{ttran, tref} and

t − ts−1(τs) ≤ 225

cpcmη(1 − γ )2 exp
(
θ(ts−1(τs ))(s, a1)

)=:̃t . (195)

We shall return to justify (195) for all t within this stage later on. In words, the claim
(194) essentially means that θ(t)(s, a1) does not deviate much from θ(ts−1(τs ))(s, a1)
during this stage. With regards to the base case where t = ts−1(τs), the hypothesis
(194) holds true trivially. Next, assuming that (194) is satisfied for every integer less
than or equal to t − 1, we intend to establish this hypothesis for the t-th iteration,
which is accomplished as follows.

First, Lemma 1 and Lemma 10 tell us that Q(t)(s, a1)−V (t)(s) ≤ 1. It then follows
that

∂V (t)(μ)

∂θ(s, a1)
= 1

1 − γ
d(t)
μ (s)π(t)(a1 | s)

{
Q(t)(s, a1) − V (t)(s)

}

≤ 14cmη(1 − γ )π(t)(a1 | s),

which relies on the bound d(t)
μ (s) ≤ 14cm(1 − γ )2 stated in Lemma 3. As a result, it

can be derived from the PG update rule (12a) that

θ(t)(s, a1) − θ(ts−1(τs ))(s, a1) =
t−1∑

j=ts−1(τs )

η
∂V ( j)(μ)

∂θ(s, a1)

≤
t−1∑

j=ts−1(τs )

14cmη(1 − γ )π( j)(a1 | s)

≤ 14cmη(1 − γ )(t − ts−1(τs)) max
ts−1(τs )≤ j<t

π( j)(a1 | s).
(196)

Regarding the term involving π( j)(a1 | s), we observe that for any ts−1(τs) ≤ j < t ,

π( j)(a1 | s) (i)≤ π̂ ( j)(a1 | s) (ii)≤ exp
(3
2
θ( j)(s, a1)

)
(197)

(iii)≤ exp
(3
2

(
θ(ts−1(τs ))(s, a1) + 1/2

))
. (198)

Here, (i) is a consequence of (132), (ii) holds since (in view of (193), θ( j)(s, a0) ≥ 0,
and

∑
a θ( j)(s, a) = 0)

π̂ ( j)(a1 | s) = exp
(
2θ( j)(s, a1) + θ( j)(s, a2)

)

≤ exp
(
2θ( j)(s, a1) + 0.5θ( j)(s, a2) + 0.5θ( j)(s, a0)

)
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= exp
(
1.5θ( j)(s, a1)

)
,

whereas (iii) follows from the induction hypothesis (194) for any ts−1(τs) ≤ j < t .
Combine the inequalities (196) and (198) to reach

θ(t)(s, a1) − θ(ts−1(τs ))(s, a1) ≤ 14cmη(1 − γ )
(
t − ts−1(τs)

)

exp
(3
2

(
θ(ts−1(τs ))(s, a1) + 1/2

))
.

Consequently, under the constraint (195), the preceding inequality implies that

θ(t)(s, a1) − θ(ts−1(τs ))(s, a1) ≤ 14cmη(1 − γ )
225

cpcmη(1 − γ )2 exp(θ(ts−1(τs ))(s, a1))

exp
(3
2

(
θ(ts−1(τs ))(s, a1) + 1/2

))

= 3150e exp
( 1
2θ

(ts−1(τs ))(s, a1)
)

cp(1 − γ )
≤ 1

2
, (199)

where the last inequality makes use of (188) and the assumption (44). These allow us
to establish the induction hypothesis for the t-th iteration, namely,

θ(t)(s, a1) − θ(ts−1(τs ))(s, a1) ≤ 1/2. (200)

Validating the constraint (195) and upper bounding min{ttran, tref} − ts−1(τs). It
remains to justify the assumed condition (195) for all iteration within this stage. To
this end, suppose instead that

ts−1(τs) + t̃ ≤ min{ttran, tref}, (201)

where t̃ is defined in (195). We claim that the following relation is satisfied

π̂ (t)(a2 | s) − π̂ (t−1)(a2 | s) ≥ cpcm
150

η(1 − γ )2
[
π̂ (t−1)(a2 | s)

]2
(202)

for any t obeying ts−1(τs) ≤ t ≤ ts−1(τs) + t̃ ≤ min{ttran, tref}. Equipped with this
recursive relation, we can invoke Lemma 11 to develop a lower bound on π̂ (t)(a2 | s),
provided that an initial lower bound is available. In order to do so, in view of the
expression (193), we can deduce that

π̂ (ts−1(τs ))(a2 | s) = exp
(
2θ(ts−1(τs ))(s, a2) + θ(ts−1(τs ))(s, a1)

)

≥ exp
(
θ(ts−1(τs ))(s, a1)

)
,

where the last relation is due to the bound θ(ts−1(τs ))(s, a2) ≥ 0 (see (43) in Lemma 6).
Combining the above two inequalities and applying Lemma 11 (see (69b)), we arrive
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at π(t)(s, a2) ≥ 1/2—and hence π(t)(s, a2) ≥ π(t)(s, a0)—as soon as t − ts−1(τs)

exceeds

1 + cpcm
100 η(1 − γ )2

cpcm
150 η(1 − γ )2π̂ (ts−1(τs ))(a2 | s) .

This together with the definition of ttran thus indicates that

ttran − ts−1(τs) ≤ 1 + cpcm
150 η(1 − γ )2

cpcm
150 η(1 − γ )2π̂ (ts−1(τs ))(a2 | s)

≤ 1 + cpcm
150 η(1 − γ )2

cpcm
150 η(1 − γ )2 exp

(
θ(ts−1(τs ))(s, a1)

)

≤ 1.5
cpcm
150 η(1 − γ )2 exp

(
θ(ts−1(τs ))(s, a1)

) ,

provided that
cpcm
150 η(1− γ )2 ≤ 0.5. This, however, contradicts the assumption (201).

As a consequence, we conclude that ts−1(τs)+ t̃ > min{ttran, tref}, thus indicating that

min{ttran, tref} − ts−1(τs) ≤ t̃ ≤ 225

cpcmη(1 − γ )2 exp
(
θ(ts−1(τs ))(s, a1)

) . (203)

Showing that ttran = min{ttran, tref}. We now justify that ttran < tref, so that the upper
bound (203) leads to an upper bound on ttran − ts−1(τs). Suppose instead that

ttran ≥ tref, or equivalently, tref = min{ttran, tref},

and we would like to show that this leads to contradiction. By definition of tref, we
have

θ(tref)(s, a0) ≤ θ(tref)(s, a1) − log
(
cref(1 − γ )

)
.

This further yields

max
{
θ(tref)(s, a0), θ

(tref)(s, a1)
}

≤ θ(tref)(s, a1) − log
(
cref(1 − γ )

)

≤ θ(ts−1(τs ))(s, a1) + 1/2 − log
(
cref(1 − γ )

)
< 0,

where the second inequality arises from (194), and the last one makes use of (188)
as long as ts−2(τs−2). However, this together with the constraint

∑
a θ(tref)(s, a) = 0

implies that

θ(tref)(s, a2) = −θ(tref)(s, a0) − θ(tref)(s, a1) > 0 > max
{
θ(tref)(s, a0), θ

(tref)(s, a1)
}
.
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which, however, implies that tref > ttran (according to the definition of ttran) and leads
to contradiction. As a result, we conclude that

ttran < tref, (204)

and the bound (203) then indicates that

ttran − ts−1(τs) ≤ 225

cpcmη(1 − γ )2 exp
(
θ(ts−1(τs ))(s, a1)

) . (205)

F.2.1 Proof of the inequality (202)

From the relation (193), one can deduce that

π̂ (t)(a2 | s) − π̂ (t−1)(a2 | s)
= exp

(
2θ(t)(s, a2) + θ(t)(s, a1)

)
− exp

(
2θ(t−1)(s, a2) + θ(t−1)(s, a1)

)

= π̂ (t−1)(a2 | s)
{
exp
(
2θ(t)(s, a2) − 2θ(t−1)(s, a2) + θ(t)(s, a1) − θ(t−1)(s, a1)

)
− 1
}

≥ π̂ (t−1)(a2 | s)
{
2θ(t)(s, a2) − 2θ(t−1)(s, a2) + θ(t)(s, a1) − θ(t−1)(s, a1)

}

= π̂ (t−1)(a2 | s) · η
(
2
∂V (t−1)(μ)

∂θ(s, a2)
+ ∂V (t−1)(μ)

∂θ(s, a1)

)
(206)

for any t with ts−1(τs) ≤ t ≤ min{ttran, tref}, where the inequality above follows from
the elementary fact ex − 1 ≥ x for any x ∈ R. Therefore, the difference between

π̂ (t)(a2 | s) and π̂ (t−1)(a2 | s) depends on both ∂V (t−1)(μ)
∂θ(s,a2)

and ∂V (t−1)(μ)
∂θ(s,a1)

, motivating us
to lower bound these two derivatives separately.

Step 1: bounding ∂V (t)(μ)
∂θ(s,a2)

. First, we make the observation that for any 3 ≤ s < H
and any t ≥ ts−1(τs),

Q(t)(s, a2) − Q(t)(s, a0) = γ p
(
V (t)(s − 2) − γ τs−2

) ≥ γ p
(
γ 2s−3 − 1/4 − γ τs−2

)

≥ p

8
= cp(1 − γ )

8
(207)

holds as long as γ (γ 2s−3 − 1/4 − γ τs) ≥ 1/8. Here, the first identity comes from
(59) in Lemma 8, and the first inequality holds for any t ≥ ts−2(γ

2s−3 − 1/4)—a
consequence of the monotonicity property in Lemma 9. As a result, for any t obeying
ts−1(τs) ≤ t ≤ min{ttran, tref} we have

Q(t)(s, a2) − V (t)(s) = π(t)(a0 | s)
(
Q(t)(s, a2) − Q(t)(s, a0)

)

+ π(t)(a1 | s)
(
Q(t)(s, a2) − Q(t)(s, a1)

)

≥ cp(1 − γ )

24
− π(t)(a1 | s) ≥ cp(1 − γ )

24
− cref(1 − γ )
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≥ cp(1 − γ )

48
, (208)

where the first inequality combines (207) with the facts that π(t)(a0 | s) ≥ 1/3 (see
(192)) and 0 ≤ Q(t)(s, a2), Q(t)(s, a1) ≤ 1 (see Lemma 1), and the last line holds by
observing (see (185))

π(t)(a1 | s) ≤ cref(1 − γ )π(ts−1(τs ))(a0 | s) ≤ cref(1 − γ ) for all t ∈ [ts−1(τs), tref)

and using the assumption cref ≤ cp/2. Consequently, for any t ≥ ts−1(τs), the gradient
w.r.t. θ(s, a2) satisfies

∂V (t)(s)

∂θ(s, a2)
= 1

1 − γ
d(t)
μ (s)π(t)(a2 | s)

(
Q(t)(s, a2) − V (t)(s)

)

≥ cpcmγ

48
(1 − γ )2π(t)(a2 | s) ≥ cpcmγ

144
(1 − γ )2π̂ (t)(a2 | s) > 0,

(209)

where the first inequality above also makes use of the lower bound in Lemma 2.
In fact, the above lower bound holds true regardless of t , as long as t ≥ ts−1(τs)

where we have shown that ∂V (t−1)(μ)
∂θ(s,a2)

is bounded from below by 0. One can thus

conclude that the iterate θ(t)(s, a2) increases with t .

Step 2: bounding ∂V (t)(μ)
∂θ(s,a1)

. Regarding the gradient w.r.t. θ(s, a1), we have

∂V (t)(μ)

∂θ(s, a1)
= 1

1 − γ
d(t)
μ (s)π(t)(a1 | s)

(
Q(t)(s, a1) − V (t)(s)

)

= 1

1 − γ
d(t)
μ (s)π(t)(a1 | s)

{
π(t)(a0 | s)

(
Q(t)(s, a1) − Q(t)(s, a0)

)

+ π(t)(a2 | s)
(
Q(t)(s, a1) − Q(t)(s, a2)

)}

≥ 1

1 − γ
d(t)
μ (s)π(t)(a1 | s)

(
π(t)(a0 | s) + π(t)(a2 | s)

)
(γ τs − γ

1
2 τs),

where the last line follows since (see Lemma 8 and the fact that t ≥ ts−1(τs))

max
{
Q(t)(s, a0), Q

π (s, a2)
} ≤ γ

1
2 τs, Q(t)(s, a1) = γ V (t)(s − 1) ≥ γ τs .

In addition, recognizing thatπ(t)(a0 | s)+π(t)(a2 | s) ≤ 1 and d(t)
μ (s) ≤ 14cm(1−γ )2

(see Lemma 3), we can continue the above bound to obtain

∂V (t)(μ)

∂θ(s, a1)
≥ − 14cm(1 − γ )π(t)(a1 | s)τsγ 1

2
1 − γ

1 + √
γ

≥ −7cm(1 − γ )2π̂ (t)(a1 | s),
(210)
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where the last inequality is due to τs ≤ 1/2 and 0 < γ < 1 and the bound (132).

Step 3: connecting π̂ (t)(a1 | s) with π̂ (t)(a2 | s). The above lower bound (210) on
∂V (t)(μ)
∂θ(s,a1)

is dependent on π̂ (t)(a1 | s). However, the desired lower bound (202) is only

a function of π̂ (t)(a2 | s). This motivates us to investigate the connection between
π̂ (t)(a1 | s) and π̂ (t)(a2 | s).

To this end, let us write

π̂ (t−1)(a1 | s) = π̂ (t−1)(a2 | s) exp
(
θ(t−1)(s, a1) − θ(t−1)(s, a2)

)
. (211)

As a result, one only needs to control the quantity exp
(
θ(t−1)(s, a1) − θ(t−1)(s, a2)

)
.

In order to do so, we make use of the induction hypothesis (194) for the (t − 1)-th
iteration to show that

exp
(
θ(t−1)(s, a1) − θ(t−1)(s, a2)

)
≤ exp

(
θ(ts−1(τs ))(s, a1) + 1/2 − θ(t−1)(s, a2)

)

(i)≤ exp
(
θ(ts−1(τs ))(s, a1) + 1/2 − θ(ts−1(τs ))(s, a2)

)

(ii)≤ exp
(
θ(ts−2(τs−2))(s, a1) + 1/2

)
.

Here, (i) follows from the fact that θ(t)(s, a2) increases with t (see (209)); and (ii)
comes from the inequality (43) in Lemma 6 as well as (188). Recalling Lemma 5, one
has

exp
(
θ(t−1)(s, a1) − θ(t−1)(s, a2)

)
≤ exp

(
θ(ts−2(τs−2))(s, a1) + 1/2

)

≤ exp(1/2)
√
1 + cmγ

35 η(1 − γ )2ts−2(τs−2)

≤ γ cp
1050

,

(212)

where the last inequality is satisfied provided that ts−2(τs−2) ≥ 10502e
cmγ 3
35 η(1−γ )2c2p

. Com-

bining (210) with (211) and (212), we arrive at

∂V (t−1)(μ)

∂θ(s, a1)
≥ − cpcm

150
(1 − γ )2π̂ (t−1)(a2 | s). (213)

Step 4: combining bounds. Putting the above pieces together and invoking the expres-
sion (206) yield for γ > 0.96,

π̂ (t)(a2 | s) − π̂ (t−1)(a2 | s) ≥ π̂ (t−1)(a2 | s) · η
(
2
∂V (t−1)(μ)

∂θ(s, a2)
+ ∂V (t−1)(μ)

∂θ(s, a1)

)

≥
[
π̂ (t−1)(a2 | s)

]2
η
cpcm
150

(1 − γ )2,
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which concludes the proof of the advertised bound (202).

F.3 Stage II: the duration where�(t)(s, a2) ≥ �(t)(s, a0)

We now turn attention to the case where t lies within [ttran, tref), which is a non-empty
interval according to (204). In this case one has

θ(t)(s, a2) ≥ θ(t)(s, a0), or equivalently, π(t)(s, a2) ≥ π(t)(s, a0), (214)

as a consequence of the definition (189) of ttran. Again, from the definition (185) of tref,
the inequality cref(1−γ )π(t)(a0 | s) > π(t)(a1 | s) holds true for every t ∈ [ttran, tref),
or equivalently,

θ(t)(s, a0) ≥ θ(t)(s, a1) − log
(
cref(1 − γ )

)
for all t ∈ [ttran, tref). (215)

The goal of this subsection is to show that θ(t)(s, a1)−θ(ttran)(s, a1) ≤ 1/2 throughout
this stage.

Preparation. From the above conditions (214) and (215), we have

π(t)(s, a2) ≥ π(t)(s, a0) ≥ π(t)(s, a1) and hence π(t)(s, a2) ≥ 1/3. (216)

We now look at the gradient w.r.t. θ(s, a0), for which we first observe that

Q(t)(s, a0) − V (t)(s) = π(t)(a2 | s)
(
Q(t)(s, a0) − Q(t)(s, a2)

)

+ π(t)(a1 | s)
(
Q(t)(s, a0) − Q(t)(s, a1)

)

(i)≤ − cp(1 − γ )

24
+ cref(1 − γ )

(ii)≤ −cp(1 − γ )

36
< 0. (217)

Here, (i) follows from the inequalities (207) and (216), whereas (ii) holds true as long
as cref ≤ cp/72. Consequently,

∂V (t)(μ)

∂θ(s, a0)
= 1

1 − γ
d(t)
μ (s)π(t)(a0 | s)

(
Q(t)(s, a0) − V (t)(s)

)
< 0,

thus indicating that θ(t)(s, a0) is decreasing with t .

Key induction hypotheses. Again, we seek to prove by induction that

θ(t)(s, a1) − θ(ttran)(s, a1) ≤ 1/2, t ∈ [ttran, tref). (218)

For the base case where t = ttran, this claim trivially holds true. Now suppose that the
induction hypothesis (218) is satisfied for every iteration up to t − 1, and we would
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like to establish it for the t-th iteration. Towards this, we find it helpful to introduce
another auxiliary induction hypothesis

π̂ (i)(a0 | s) ≤ 1

1 + cpcm
288 η(1 − γ )2(i − ttran)

for all i ∈ [ttran, t). (219)

As an immediate remark, this hypothesis trivially holds true when t = ttran + 1. In
what follows, we shall first establish (218) for the t-th iteration assuming satisfaction
of (219), and then use to demonstrate that (219) holds for i = t as well.

Inductive step 1: showing that θ(t)(s, a1) − θ(ttran)(s, a1) ≤ 1/2. Towards this, let
us introduce for convenience another time instance

t̃ := arg max
i : ttran≤i<t

θ(i)(s, a1), (220)

which reflects the time when θ(i)(s, a1) reaches its maximum before iteration t . In
order to establish the induction hypothesis (218) for the t-th iteration, it is sufficient
to demonstrate that

θ (̃t)(s, a1) − θ(ttran)(s, a1) ≤ 1/2. (221)

As before, let us employ the PG update rule (12a) to expand θ (̃t)(s, a1)−θ(ttran)(s, a1)
as follows

θ (̃t)(s, a1) − θ(ttran)(s, a1) =
t̃−1∑

i=ttran

η
∂V (i)(μ)

∂θ(s, a1)
. (222)

For each gradient ∂V (i)(μ)
∂θ(s,a1)

, invoking Lemma 3, Lemma 1 and Lemma 10 tells us that

∂V (i)(μ)

∂θ(s, a1)
= 1

1 − γ
d(i)
μ (s)π(i)(a1 | s)(Q(i)(s, a1) − V (i)(s)

) ≤ 14cm(1 − γ )π(i)(a1 | s).
(223)

In addition, a little algebra together with (216) leads to

π(i)(a1 | s) ≤ π̂ (i)(a1 | s) = exp
(
θ(i)(s, a1) − θ(i)(s, a2)

)

(i)= exp
(3
2
θ(i)(s, a1) + 1

2
θ(i)(s, a0) − 1

2
θ(i)(s, a2)

)

= exp
(3
2
θ(i)(s, a1)

)√
π̂ (i)(a0 | s)

(ii)≤ exp
(3
2
θ (̃t)(s, a1)

) 1
√
1 + cpcm

288 η(1 − γ )2(i − ttran)
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for any i obeying ts−1(τs) ≤ i < t̃ , where the first inequality comes from (132), (i)
makes use of

∑
a θ(i)(s, a) = 0, and (ii) follows from the induction hypothesis (219)

along with the definition (220) of t̃ .
Putting the above bounds together with (222) and (223) guarantees that

θ (̃t)(s, a1) − θ(ttran)(s, a1) ≤
t̃−1∑

i=ttran

14cmη(1 − γ ) exp
(3
2
θ (̃t)(s, a1)

)

1
√
1 + cpcm

288 η(1 − γ )2(i − ttran)

= 14cmη exp
( 3
2θ

(̃t)(s, a1)
)

√
cpcm
288 η

⎧
⎨

⎩
1 +

t̃−1∑

i=ttran+1

1√
i − ttran

⎫
⎬

⎭

≤
√
225792cmη(̃t − ttran)

cp
exp
(3
2
θ (̃t)(s, a1)

)
. (224)

Given that θ (̃t)(s, a0) ≥ θ (̃t)(s, a1)− log
(
cref(1−γ )

)
(see (215)) and

∑
a θ (̃t)(s, a) =

0, one obtains

π̂ (̃t)(a0 | s) = exp
(
θ (̃t)(s, a0) − θ (̃t)(s, a2)

)
= exp

(
2θ (̃t)(s, a0) + θ (̃t)(s, a1)

)

≥ exp
(
3θ (̃t)(s, a1) − 2 log

(
cref(1 − γ )

))
,

which combined with the inequality (219) thus implies that

exp
(3
2
θ (̃t)(s, a1)

)
≤ cref(1 − γ )

√
π̂ (̃t)(a0 | s) ≤ cref(1 − γ )

√
cpcm
288 η(1 − γ )2(̃t − ttran)

.

(225)

As a consequence of the inequalities (224) and (225), we obtain

θ (̃t)(s, a1) − θ(ttran)(s, a1) ≤
√
225792cmη(̃t − ttran)

cp

cref(1 − γ )
√

cpcm
288 η(1 − γ )2(̃t − ttran)

≤ 8064cref
cp

<
1

2
, (226)

where the last line holds as long as cref < cp/16128. This in turn establishes our induc-
tion hypothesis (221)—and hence (220) for the t-th iteration—assuming satisfaction
of the hypothesis (219).

Inductive step 2: establishing the upper bound (219). The next step is thus to
justify the induction hypothesis (219) when i = t . To do so, we first pay attention
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to the dynamics of θ(i)(s, a0) for any ttran ≤ i ≤ t . Recognizing that θ(i)(s, a2) =
maxa θ(i)(s, a) (see (216)) and

∑
a θ(i)(s, a) = 0, we can express

π̂ (i)(a0 | s) = exp
(
θ(i)(s, a0) − θ(i)(s, a2)

)
= exp

(
2θ(i)(s, a0) + θ(i)(s, a1)

)
.

This allows one to obtain

π̂ (i)(a0 | s) − π̂ (i+1)(a0 | s) = exp
(
2θ(i)(s, a0) + θ(i)(s, a1)

)

jh − exp
(
2θ(i+1)(s, a0) + θ(i+1)(s, a1)

)

= π̂ (i)(a0 | s)
{
1 − exp

(
2θ(i+1)(s, a0) − 2θ(i)(s, a0) + θ(i+1)(s, a1) − θ(i)(s, a1)

)}

= π̂ (i)(a0 | s)
{
1 − exp

(
2η

∂V (i)(μ)

∂θ(s, a0)
+ η

∂V (i)(μ)

∂θ(s, a1)

)}
. (227)

With the above observation in mind, we claim for the moment the following recur-
sive relation

π̂ (i)(a0 | s) − π̂ (i+1)(a0 | s) ≥ cpcm
288

η(1 − γ )2
[
π̂ (i)(a0 | s)

]2
(228)

for any i obeying ttran ≤ i < t , whose proof is deferred to the end of this section. If
this claim were true, then (67b) in Lemma 11 allows us to conclude the desired bound

π̂ (t)(a0 | s) ≤ 1

1 + cpcm
288 η(1 − γ )2(t − ttran)

. (229)

Proof of the inequality (228). Combining (217) and the lower bound on d(i)
μ (s) in

Lemma 2, we have

∂V (i)(μ)

∂θ(s, a0)
≤ cmγ (1 − γ )π(i)(a0 | s)

(
Q(i)(s, a0) − V (i)(s)

)

≤ −cpcm
108

(1 − γ )2π̂ (i)(a0 | s),

where the last inequality also makes use of (132). In addition, invoking the inequali-
ties (223) and (132) gives

∂V (i)(μ)

∂θ(s, a1)
≤ 14cm(1 − γ )π(i)(a1 | s) ≤ 14cm(1 − γ )π̂ (i)(a1 | s)

= 14cm(1 − γ )π̂ (i)(a0 | s) exp
(
θ(i)(s, a1) − θ(i)(s, a0)

)
. (230)
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Recall that for any i ∈ [ttran, tref), one has θ(i)(s, a0) ≥ θ(i)(s, a1)− log
(
cref(1−γ )

)
,

or equivalently,

exp
(
θ(i)(s, a1) − θ(i)(s, a0)

)
≤ cref(1 − γ ).

It thus follows that

∂V (i)(μ)

∂θ(s, a1)
≤ 14crefcm(1 − γ )2π̂ (i)(a0 | s).

As a result, the above bounds taken collectively lead to

2
∂V (i)(μ)

∂θ(s, a0)
+ ∂V (i)(μ)

∂θ(s, a1)
≤
[

− cpcm
56

(1 − γ )2 + 14crefcm(1 − γ )2
]
π̂ (i)(a0 | s)

≤ −cpcm
112

(1 − γ )2π̂ (i)(a0 | s),

provided that cref/cp < 1/1568. In addition, similar to (230), we can easily see that

η

∣∣
∣
∂V (i)(μ)

∂θ(s, a1)

∣∣
∣ ≤ 14ηcm(1 − γ )π(i)(a1 | s) ≤ 14ηcm(1 − γ ) ≤ 1/3, (231a)

η

∣
∣∣
∂V (i)(μ)

∂θ(s, a0)

∣
∣∣ ≤ 14ηcm(1 − γ )π(i)(a0 | s) ≤ 14ηcm(1 − γ ) ≤ 1/3 (231b)

as long as ηcm(1 − γ ) ≤ 1/42.
Substituting the preceding bounds into (227), we immediately arrive at

π̂ (i)(a0 | s) − π̂ (i+1)(a0 | s) = π̂ (i)(a0 | s)
{

1 − exp

(

2η
∂V (i)(μ)

∂θ(s, a0)
+ η

∂V (i)(μ)

∂θ(s, a1)

)}

≥ π̂ (i)(a0 | s)η
2

(

−2
∂V (i)(μ)

∂θ(s, a0)
− ∂V (i)(μ)

∂θ(s, a1)

)

≥ ηcpcm
224

(1 − γ )2
[
π̂ (i)(a0 | s)

]2
,

where the first inequality holds due to the fact−1 ≤ 2η ∂V (i)(μ)
∂θ(s,a0)

+η
∂V (i)(μ)
∂θ(s,a1)

≤ 0 as well
as the elementary inequality 1− ex ≥ −x/2 as long as −1 ≤ x ≤ 0. This establishes
the inequality (228).

F.4 Proof of the claims (45a) and (45b)

We are now ready to justify the claims (45a) and (45b). Combining (194) and (218),
we reach

θ(t)(s, a1) − θ(ts−1(τs ))(s, a1)
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=
{

θ(t)(s, a1) − θ(ts−1(τs ))(s, a1), if ts−1(τs) ≤ t ≤ ttran(
θ(ttran)(s, a1) − θ(ts−1(τs ))(s, a1)

)
+
(
θ(t)(s, a1) − θ(ttran)(s, a1)

)
, if ttran ≤ t ≤ tref

≤ max
ts−1(τs )≤i≤ttran

(
θ(i)(s, a1) − θ(ts−1(τs ))(s, a1)

)

+ max
ttran≤i<tref

(
θ(i)(s, a1) − θ(ttran)(s, a1)

)
≤ 1.

This taken collectively with (188) leads to

θ(tref)(s, a1) ≤ θ(ts−1(τs ))(s, a1) + 1 ≤ −1

2
log
(
1 + cmγ

35
η(1 − γ )ts−2(τs−2)

)
+ 1,

as claimed in (45b).
In addition, recalling the definition (185) of tref, we have

θ(tref)(s, a0) ≤ θ(tref)(s, a1) − log
(
cref(1 − γ )

)
,

which clearly satisfies (45a) as long as cref ≥ cp/16128.

F.5 Proof of the claim (45c)

Finally, we move on to analyze what happens after iteration tref, for which we focus
on tracking the changes of π̂ (t)(a1 | s). In this part, let us only consider the set of t
satisfying

π(t)(a1 | s) ≤ π(t)(a2 | s).

Note that at time tref, the inequalities (45a) and (45b) are both satisfied, which together
with the property π(t)(a1 | s) ≤ π(t)(a2 | s) yield

π̂ (t)(a1 | s):= exp
(
θ(t)(s, a1) − max

a
θ(t)(s, a)

)
= exp

(
θ(t)(s, a1) − θ(t)(s, a2)

)
.

Then, if cref < cp/1000, we have

π̂ (t+1)(a1 | s) − π̂ (t)(a1 | s) = exp
(
θ(t+1)(s, a1) − θ(t+1)(s, a2)

)

− exp
(
θ(t)(s, a1) − θ(t)(s, a2)

)

= π̂ (t)(a1 | s)
{
exp
(
θ(t+1)(s, a1) − θ(t+1)(s, a2)

− θ(t)(s, a1) + θ(t)(s, a2)
)

− 1
}

= π̂ (t)(a1 | s)max
{
exp
(
η

∂V (t)(μ)

∂θ(s, a1)
− η

∂V (t)(μ)

∂θ(s, a2)

)
− 1, 0

}

≤ π̂ (t)(a1 | s) · 2ηmax

{
∂V (t)(μ)

∂θ(s, a1)
− ∂V (t)(μ)

∂θ(s, a2)
, 0

}
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≤ 56cmη(1 − γ )2
[
π̂ (t)(a1 | s)

]2
. (232)

Here, the first inequality holds if η
∂V (t)(μ)
∂θ(s,a1)

− η
∂V (t)(μ)
∂θ(s,a2)

≤ 1 (given the elementary fact
ex − 1 ≤ 2x for any 0 ≤ x ≤ 1), and the last line is valid since

∂V (t)(μ)

∂θ(s, a1)
= 1

1 − γ
d(t)
μ (s)π(t)(a1 | s)

(
Q(t)(s, a1) − V (t)(s)

)

(i)≤ 14cm(1 − γ )π(t)(a1 | s),
∂V (t)(μ)

∂θ(s, a2)
= 1

1 − γ
d(t)
μ (s)

{
π(t)(a1 | s)

(
Q(t)(s, a2) − Q(t)(s, a1)

)

+π(t)(a0 | s)
(
Q(t)(s, a2) − Q(t)(s, a0)

)}

(ii)≥ 1

1 − γ
d(t)
μ (s)π(t)(a1 | s)

(
Q(t)(s, a2) − Q(t)(s, a1)

)

(iii)≥ −14cm(1 − γ )π(t)(a1 | s),

where (ii) holds since Q(t)(s, a2) ≥ Q(t)(s, a0) (cf. (207)), and (i) and (iii) make

use of Lemma 1 and Lemma 3. In addition, these bounds also imply that η ∂V (t)(μ)
∂θ(s,a1)

−
η

∂V (t)(μ)
∂θ(s,a2)

≤ 1 hold as long as 28ηcm(1− γ ) ≤ 1, thus validating the argument for the
first inequality in (232).

Armed with the above recursive relation (232), we can invoke Lemma 11 to show
that

ts(τs) − tref ≥
1

π̂ (tref)(a1 | s) − 1
π̂ (ts (τs ))(a1 | s)

56cmη(1 − γ )2
≥

1
π̂ (tref)(a1 | s) − 2

1−γ

56cmη(1 − γ )2
, (234)

where the last inequality holds since (in view of (132) and (60)).

π̂ (t)(a1 | s) ≥ π(t)(a1 | s) ≥ (1 − γ )/2 for any t ≥ ts(τs).

In order to control ts(τs) − tref via (234), it remains to upper bound π̂ (tref)(a1 | s).
Towards this end, it is seen that

π̂ (tref)(a1 | s) = exp
(
θ(tref)(s, a1) − θ(tref)(s, a2)

)
= exp

(
2θ(tref)(s, a1) + θ(tref)(s, a0)

)

≤ exp
(
3θ(tref)(s, a1) − log

(cp(1 − γ )

16128

))

≤ 16128e3

cp(1 − γ )
(
1 + cmγ

35 η(1 − γ )2ts−2(τs−2)
)1.5

≤ 16128e3

cp(1 − γ )
(
cmγ
35 η(1 − γ )2ts−2(τs−2)

)1.5 , (235)
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where the first line uses
∑

a θ(tref)(s, a) = 0, the second line relies on the inequality
(45a), and the last one applies the inequality (45b). Substitution into the relation (234)
yields

ts(τs) − tref ≥ 10−10cpc
0.5
m η0.5(1 − γ )2

(
ts−2(τs−2)

)1.5
,

thus establishing the advertised bound.
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