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Abstract
We study the minimization of a rank-one quadratic with indicators and show that the
underlying set function obtained by projecting out the continuous variables is super-
modular. Although supermodular minimization is, in general, difficult, the specific set
function for the rank-one quadratic can be minimized in linear time. We show that
the convex hull of the epigraph of the quadratic can be obtained from inequalities
for the underlying supermodular set function by lifting them into nonlinear inequal-
ities in the original space of variables. Explicit forms of the convex-hull description
are given, both in the original space of variables and in an extended formulation via
conic quadratic-representable inequalities, along with a polynomial separation algo-
rithm. Computational experiments indicate that the lifted supermodular inequalities
in conic quadratic form are quite effective in reducing the integrality gap for quadratic
optimization with indicators.
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1 Introduction

Consider the convex quadratic optimization problem with indicators

min
{
a′x+b′y+y′Qy : yi (1−xi ) = 0, i = 1, . . . , n; (x, y) ∈ {0, 1}n× R

n+
}

(1)

where a, b ∈ R
n and Q ∈ R

n×n is a symmetric positive semi-definite matrix. For
each i = 1, . . . , n, the binary variable xi , along with the complementarity constraint
yi (1 − xi ) = 0, indicates whether yi may take positive values. Problem (1) arises in
numerous practical applications, including portfolio optimization [16], signal/image
denoising [13, 14], best subset selection [15, 20, 34], and unit commitment [25].

Constructing strong convex relaxations for non-convex optimization problems is
critical in devising effective solution approaches for them. Natural convex relaxations
of (1), where the complementarity constraints yi (1− xi ) = 0 are linearized using the
so-called “big-M" constraints yi ≤ Mxi , are known to be weak [40, e.g.,]. There-
fore, there is an increasing effort in the literature to better understand and describe
the epigraph of quadratic functions with indicator variables. Dong and Linderoth [21]
describe lifted linear inequalities for (1) from its continuous quadratic optimization
counterpart over bounded variables. Bienstock and Michalka [17] give a characteriza-
tion of linear inequalities obtained by strengthening gradient inequalities of a convex
objective function over a non-convex set.

The majority of the work toward constructing strong relaxations of (1) is based
on the perspective reformulation [2, 18, 23, 32, 35, 39, 55, 57]. The perspective
reformulation, which may be seen as a consequence of the convexifications based
on disjunctive programming derived in [19], is based on strengthening the epigraph
of a univariate convex quadratic function y2i ≤ t by using its perspective y2i /xi ≤ t .
The perspective strengthening can be applied to a general convex quadratic y′Qy, by
writing it as y′(Q − D)y + y′Dy for a diagonal matrix D � 0 and Q − D � 0, and
simply reformulating each separable quadratic term Dii y2i as Dii y2i /xi [22, 24, 61].
While this approach is effective when Q is strongly diagonal dominant, it is ineffective
otherwise, or inapplicable when Q is not full-rank as no such D exists.

To address the limitations of the perspective reformulation, a recent stream of
research focuses on constructing strong relaxations of the epigraphs of simple but
multi-variable quadratic functions. Jeon et al. [36] use linear lifting to construct valid
inequalities for the epigraphs of two-variable quadratic functions. Frangioni et al.
[26] use extended formulations based on disjunctive programming to derive stronger
relaxations of the epigraph of two-variable functions. They study heuristics and semi-
definite programming (SDP) approaches to extract from Q such two-variable terms.
The disjunctive approach results in a substantial increase in the size of the formulations,
which limits its use to small instances. Atamtürk and Gómez [6] describe the convex
hull of the epigraph of the two-variable quadratic function (y1−y2)2 ≤ t in the original
space of variables, andAtamtürk et al. [13] generalize this result to convex two-variable
quadratic functions a1y21 − 2y1y2 + a2y22 ≤ t and show how to optimally decompose
an M-matrix (psd with non-positive off-diagonals) Q into such two-variable terms;
their numerical results indicate that such formulations considerably improve the con-
vex relaxations when Q is an M-matrix, but the relaxation quality degrades when Q
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Supermodularity and valid inequalities for quadratic… 297

has positive off-diagonal entries. Han et al. [33] give SDP formulations for (1) based
on convex-hull descriptions of the 2x2 case. These SDP formulations require O(n2)
additional variables and constraints, which may not scale to large problems. Wei et al.
[53] give an extended formulation via a single SDP constraint and linear inequalities.
Atamtürk and Gómez [7] give the convex hull description of a rank-one function with
free continuous variables, and propose an SDP formulation to tackle quadratic opti-
mization problems with free variables arising in sparse regression. Wei et al. [51, 52]
extend those results, deriving ideal formulations for rank-one functions with arbitrary
constraints on the indicator variables x . These formulations are shown to be effective
in sparse regression problems; however as they do not account for the non-negativity
constraints on the continuous variables, they are weak for (1). The rank-one quadratic
set studied in this paper addresses this gap and properly generalizes the perspective
strengthening of a univariate quadratic to higher dimensions.

In the context of discrete optimization, submodularity/supermodularity plays a crit-
ical role in the design of algorithms [27, 31, 44] and in constructing convex relaxations
to discrete problems [1, 5, 10, 42, 48, 56, 58–60]. Exploiting submodularity in settings
involving continuous variables as well typically require specialized arguments, e.g.,
see [12, 37, 49]. A notable exception is Wolsey [54], presenting a systematic approach
for exploiting submodularity in fixed-charge network problems. As submodularity
arises in combinatorial optimization, where the convex hulls of the sets under study
are polyhedral, there are fewpapers utilizing submodularity to describe non-polyhedral
convex hulls [8], and those sets typically involve some degree of separability between
continuous and discrete variables. In this paper, we show how to generalize the valid
inequalities proposed in [54] to convexify non-polyhedral sets, where the continuous
variables are linked with the binary variables via indicator constraints.

Contributions

Here, we study the mixed-integer epigraph of a rank-one quadratic function with
indicator variables and non-negative continuous variables:

X =

⎧
⎪⎨

⎪⎩
(x, y, t) ∈ {0, 1}N × R

N+ × R+ :
⎛

⎝
∑

i∈N+
yi −

∑

i∈N−
yi

⎞

⎠

2

≤ t, yi (1 − xi ) = 0, i ∈ N

⎫
⎪⎬

⎪⎭
,

where (N+, N−) is a partition of N := {1, . . . , n}. Observe that any rank-one
quadratic of the form

(
c′y

)2 ≤ t with ci �= 0 for all i ∈ N can be written as in
X by scaling the continuous variables. If all coefficients of c are of the same sign, then
either N+ = ∅ or N− = ∅, and X reduces to the simpler form

X+ =
⎧
⎨

⎩
(x, y, t) ∈ {0, 1}N × R

N+ × R+ :
(

∑

i∈N
yi

)2

≤ t, yi (1 − xi ) = 0, i ∈ N

⎫
⎬

⎭
·
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298 A. Atamtürk , A. Gómez

To the best of our knowledge, the convex hull structure of X or X+ has not been
studied before. Interestingly, optimization of a linear function over X can be done in
linear time (Sect. 4.2).

Our motivation for studying X stems from constructing strong convex relaxations
for problem (1) by writing the convex quadratic y′Qy as a sum of rank-one quadratics.
Especially in large-scale applications, it is effective to state Q as a sum of a low-
rank matrix and a diagonal matrix. Specifically, suppose that Q = FF ′ + D, where
F ∈ R

n×r and D ∈ R
n×n is a (possibly equal to zero) nonnegative diagonal matrix.

Such decompositions can be constructed in numerous ways, including singular-value
decomposition, Cholesky decomposition, or via factor models. Letting Fj denote the
j-th column of F , adding auxiliary variables t ∈ R

r , j = 1, . . . , r , and using the
perspective reformulation, problem (1) can be cast as

min
x,y,t

a′x + b′y+
r∑

j=1

t j +
n∑

i=1

Dii
y2i
xi

(2a)

s.t. (F ′
j y)

2 ≤ t j , j = 1, . . . , r (2b)

(x, y) ∈ {0, 1}N × R
n+, t ∈ R

r . (2c)

Formulation (2) arises naturally, for example, in portfolio risk minimization [16],
where the covariance matrix Q is the sum of a low-rank factor covariance matrix
and an idiosyncratic (diagonal) variance matrix. When the entries of the diagonal
matrix D are small, the perspective reformulation is not effective in strengthening
the formulation. However, noting that (x, Fj ◦ y, t j ) ∈ X , where (Fj ◦ y)i = Fi j yi ,
for each j = 1, . . . , r , one can employ strong relaxations based on the rank-one
quadratic with indicators. Our approach for decomposing y′Qy into a sum of rank-
one quadratics and utilizing strong relaxations of epigraphs of rank-one quadratics is
analogous to employing cuts separately from individual rows of a constraint matrix
Ax ≤ b in mixed-integer linear programming.

In this paper, we present a generic framework for obtaining valid inequalities for
mixed-integer nonlinear optimization problems by exploiting supermodularity of the
underlying set function. To do so, we project out the continuous variables and derive
valid inequalities for the corresponding pure integer set and then lift these inequalities
to the space of continuous variables as in Nguyen et al. [43], Richard and Tawarmalani
[47]. It turns out that for the rank-one quadratic with indicators, the corresponding set
function is supermodular and holds much of the structure of X . The lifted supermodu-
lar inequalities derived in this paper are nonlinear in both the continuous and discrete
variables.

We show that this approach encompasses several previously known convexifica-
tions for quadratic optimization with indicator variables. Moreover, the well-known
inequalities in the mixed-integer linear optimization literature given in [54], which
include flow cover inequalities as a special case, can also be obtained via the lifted
supermodular inequalities.

Finally, and more importantly, we show that the lifted supermodular inequalities
and bound constraints are sufficient to describe cl conv(X). Such convex hull descrip-
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tions of high-dimensional nonlinear sets are rare in the literature. In particular, we
give a characterization in the original space of variables. This description is defined
by a piecewise valid function with exponentially many pieces; therefore, it cannot be
used by the convex optimization solvers directly. To overcome this difficulty, we also
give a conic quadratic representable description in an extended space, with exponen-
tiallymany valid conic quadratic inequalities, alongwith a polynomial-time separation
algorithm.

The rank-one quadratic sets X and X+ appear very similar to their relaxation

X f =
⎧
⎨

⎩
(x, y, t) ∈ {0, 1}N × R

N × R :
(

∑

i∈N
yi

)2

≤ t, yi (1 − xi ) = 0, i ∈ N

⎫
⎬

⎭
,

where the non-negativity constraints on the continuous variables y ≥ 0 are dropped.

However, while only one additional inequality (
∑

i∈N yi)
2

∑
i∈N xi

≤ t is needed to describe

cl conv(X f ) [7] , the convex hulls of X and X+ are substantiallymore complicated and
rich. Indeed, cl conv(X f ) provides a weak relaxation for cl conv(X+), as illustrated
in the next example.

Example 1 Consider set X+ with n = 3. For the relaxation X f , the closure of the

convex hull is described by 0 ≤ x ≤ 1 and inequality t ≥ (y1+y2+y3)2

min{1,x1+x2+x3} . Figure 1a
depicts this inequality as a function of (x1, y1) for x2 = 0.6, x3 = 0.3, y2 = 0.5, and
y3 = 0.2 (fixed). In Proposition 8, we give the function f describing cl conv(X+).
Figure 1b depicts f (x, y) (truncated at 5) as a function of (x1, y1)when other variables
are fixed as before.

We find that cl conv(X f ) is a very weak relaxation of cl conv(X+) for low values

of x1. For example, for x1 = 0.01 and y1 = 1, we find that (1+0.5+0.2)2

0.01+0.6+0.3 ≈ 3.18,
whereas f (x, y) ≈ 100.55. The computation of f for this example is described after
Proposition 8. �

Outline

The rest of the paper is organized as follows. In Sect. 2 we review the valid inequalities
for supermodular set functions and present the general form of the lifted supermodular
inequalities. In Sect. 3 we re-derive known ideal formulations in the literature for
quadratic optimization using the lifted supermodular inequalities. In Sect. 4 we show
that the lifted supermodular inequalities are sufficient to describe the convex hull of
X . In Sect. 5 we provide the explicit form of the lifted supermodular inequalities
for X , both in the original space of variables and in a conic quadratic representable
form in an extended space, and discuss the separation problem. In Sect. 6 we present
computational results, and in Sect. 7 we conclude the paper.
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300 A. Atamtürk , A. Gómez

(A) (B)

Fig. 1 Comparison of cl conv(X f ) and cl conv(X+). Variables x2 = 0.6, x3 = 0.3, y2 = 0.5, and y3 = 0.2
are fixed

Notation

For a set S ⊆ N , define xS as the indicator vector of S. By abusing notation, given a
set function g : 2N → R, we may equivalently write g(S) or g(xS). To simplify the
notation, given i ∈ N and S ⊆ N , we write S ∪ i instead of S ∪ {i} and S\i instead
of S\{i}. For a set Y ⊆ R

N , let conv(Y ) denote the convex hull of Y and cl conv(Y)
denote its closure. We adopt the convention that a/0 = ∞ if a > 0 and a/0 = 0 if
a = 0. For a a ∈ R, let a+ = max{a, 0}. For a vector c ∈ R

N and a set S ⊆ N , we let
c(S) = ∑

i∈S ci , maxc(S) = maxi∈S ci (by convention, maxc(∅) = 0) and cS be the
subvector of c induced by S. For an optimization problem with variables x , an optimal
solution is denoted by x∗.

2 Preliminaries

In this section we cover a few preliminary results for the paper and, at the end, give
the general form of the lifted supermodular inequalities (Theorem 1).

2.1 Supermodularity and valid inequalities

A set function g : 2N → R is supermodular if

ρ(i, S) ≤ ρ(i, T ) ∀i ∈ N and ∀S ⊆ T ⊆ N\i,

where ρ(i, S) = g(S ∪ i) − g(S) is the increment function.

Proposition 1 (Nemhauser et al. [42]) If g is a supermodular function, then
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(1) g(T ) ≥ g(S) + ∑

i∈T \S
ρ(i, S) − ∑

i∈S\T
ρ(i, N\i) for all S, T ⊆ N

(2) g(T ) ≥ g(S) + ∑

i∈T \S
ρ(i,∅) − ∑

i∈S\T
ρ(i, S\i) for all S, T ⊆ N.

As a direct consequence of Proposition 1, one can construct valid inequalities for
the epigraph of a supermodular function g, i.e.,

Z =
{
(x, t) ∈ {0, 1}N × R : g(x) ≤ t

}
.

Specifically, for any S ⊆ N , the linear supermodular inequalities [41]

g(S) +
∑

i∈N\S
ρ(i, S)xi −

∑

i∈S
ρ(i, N\i)(1 − xi ) ≤ t, and (3a)

g(S) +
∑

i∈N\S
ρ(i,∅)xi −

∑

i∈S
ρ(i, S\i)(1 − xi ) ≤ t (3b)

are valid for Z .

2.2 Lifted supermodular inequalities

We now describe a family of lifted supermodular inequalities, using a lifting approach
similar to the ones used in [28, 47]. Let h : {0, 1}N × R

N → R ∪ {∞} be a function
defined over a mixed 0-1 domain and consider its epigraph

H =
{
(x, y, t) ∈ {0, 1}N × R

N × R : h(x, y) ≤ t
}

.

Observe that H allows for arbitrary constraints, which can be encoded via function
h. For example, nonnegativity and complementarity constraints can be included by
letting h(x, y) = ∞ whenever yi < 0 or yi (1 − xi ) �= 0 for some i ∈ N .

For α ∈ R
N , define the set function gα : {0, 1}N → R ∪ {∞,−∞} as

gα(x) = min
y∈RN

−α′y + h(x, y), (4)

and let B ⊆ R
N be the set of values of α for which problem (4) is bounded for all

x ∈ {0, 1}N , i.e.,

B =
{
α ∈ R

N : |gα(x)| < ∞, ∀x ∈ {0, 1}N
}

.

Although supermodularity is defined for set functions only, we propose in Definition 1
below an extension for functions involving continuous variables as well.

Definition 1 Function h is supermodular if the set function gα defined in (4) is super-
modular for all α ∈ B.
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Remark 1 Suppose that h does not depend on the continuous variables y, i.e., h(x, y) =
g(x). In this case problem (4) is unbounded unless α = 0, i.e., B = {0}, and we find
that h(x, y) is supermodular if and only if g0(x) = g(x) is supermodular. Thus,
Definition 1 includes the usual definition of supermodularity for set functions as a
special case. �
Proposition 2 If function h is supermodular, then for any α ∈ B and S ⊆ N, the
inequalities

α′y + gα(S) +
∑

i∈N\S
ρα(i, S)xi −

∑

i∈S
ρα(i, N\i)(1 − xi ) ≤ t, and (5a)

α′y + gα(S) +
∑

i∈N\S
ρα(i,∅)xi −

∑

i∈S
ρα(i, S\i)(1 − xi ) ≤ t (5b)

are valid for H, where ρα(i, S) = gα(S ∪ i) − gα(S).

Proof For any α ∈ B, S ⊆ N , and (x, y, t) ∈ H , we find

t − α′y ≥ h(x, y) − α′y ≥ gα(x) ≥ gα(S) +
∑

i∈N\S
ρα(i, S)xi −

∑

i∈S
ρα(i, N\i)(1 − xi ),

where the first inequality follows directly from the definition of H , the second inequal-
ity follows byminimizing h(y)−α′y with respect to y, and the third inequality follows
from the validity of (3a). Thus, by adding α′y on both sides, we find that inequality
(5a) is valid. The validity of (5b) is proven identically. �

Since inequalities (5) are valid for any α ∈ B, one can obtain stronger valid inequal-
ities by optimally choosing vector α.

Theorem 1 (Lifted supermodular inequalities) If h is supermodular, then for any S ⊆
N, the lifted supermodular inequalities

max
α∈B gα(S) +

∑

i∈N\S
ρα(i, S)xi −

∑

i∈S
ρα(i, N\i)(1 − xi ) + α′y ≤ t, and (6a)

max
α∈B gα(S) +

∑

i∈N\S
ρα(i,∅)xi −

∑

i∈S
ρα(i, S\i)(1 − xi ) + α′y ≤ t (6b)

are valid for H.

Observe that while inequalities (5) are linear, inequalities (6) are nonlinear in x and
y. Moreover, each inequality (6) is convex since it is defined as a supremum of linear
inequalities. In addition, if the base supermodular inequalities (3) are strong for the
convex hull of epi gα , then the lifted supermodular inequalities (6) are strong for H
as well, as formalized next. Given α ∈ B, define

Gα =
{
(x, t) ∈ {0, 1}N × R : gα(x) ≤ t

}
.
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Note that conv(Gα) is a polyhedron. Theorem 2 below is a direct consequence of
Theorem 1 in [47].

Theorem 2 ([47]) If inequalities (3) and bound constraints 0 ≤ x ≤ 1 describe
conv(Gα) for all α ∈ B, then the lifted supermodular inequalities (6) and bound
constraints 0 ≤ x ≤ 1 describe cl conv(H).

Although Definition 1 may appear to be too restrictive to arise in practice, we
show in Sect. 2.3 that supermodular functions are in fact widespread in a class of
well-studied problems in mixed-integer linear optimization. In Sect. 3 we show that
several existing results for quadratic optimization with indicators can be obtained as
lifted supermodular inequalities. Perhaps,more surprisingly, for the rank-onequadratic
with indicators

h(x, y) =
{(

y(N+) − y(N−)
)2 if y ≥ 0 and yi (1 − xi ) = 0, ∀i ∈ N+ ∪ N−

∞ otherwise,

we show in Sect. 4 that conditions in Definition 1 and Theorem 2 are satisfied as well.

2.3 Supermodular inequalities and fixed-charge networks

Given b ∈ R, u ∈ R
N+ , and a partition N = N+ ∪ N− ∪ A+ ∪ A−, define for all

x ∈ {0, 1}N the fixed-charge network set

FC(x) =
{
y ∈ R

N+ : y(N+) + y(A+) − y(A−) − y(N−) ≤ b, yi ≤ ui , i ∈ N ,

yi (1 − xi ) = 0, i ∈ N+, yi xi = 0, i ∈ N−}
·

Wolsey [54] uses FC(x) to describe network structures arising in flow problems with
fixed charges on the arcs: N+ denotes the incoming arcs into a given subgraph, N−
denotes the outgoing arcs, and whereas A+ ∪ A− denotes the internal arcs in the
subgraph, and b represents the supply/demand of the subgraph. Finally, define

h(x, y) =
{
0 if y ∈ FC(x)

∞ otherwise.

Proposition 3 ([54])For any α ∈ R
N , the function

vα(x) = max
y∈RN+

α′y − h(x, y)

is submodular.

It follows that the function gα(x) = −vα(x) = miny∈RN+ −α′y + h(x, y) is super-
modular, and inequalities (5) and (6) are valid. Moreover, Wolsey [54] shows that
the linear supermodular inequalities (5) with α ∈ {−1, 0, 1}N include as special
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cases well-known inequalities for mixed-integer linear optimization such as flow-
cover inequalities [45, 50] and inequalities for capacitated lot-sizing [9, 46]; several
other classes for fixed-charge network flow problems are special cases as well [4, 11,
12]. Therefore, the inequalities presented in this paper can be interpreted as nonlinear
generalizations of the aforementioned inequalities.

3 Previous results as lifted supermodular inequalities

In order to illustrate the approach, in this section, we show how existing results for
quadratic optimization with indicators can be derived using the lifted supermodular
inequalities (6).

3.1 The single-variable case

Consider, first, the single-variable case

X1 =
{
(x, y, t) ∈ {0, 1} × R+ × R : y2 ≤ t, y(1 − x) = 0

}

for which cl conv(X1) is given by the perspective reformulation [2, 19, 23, 32]:

cl conv(X1) =
{
(x, y, t) ∈ [0, 1] × R+ × (R ∪ ∞) : y2

x
≤ t

}
.

Note that cl conv(X1) ⊆ R
2 × (R∪∞). We now derive the perspective reformulation

as a special case, in fact, using a modular inequality. Note that gα(0) = 0 and gα(1) =
miny∈R+ −αy + y2 = −α2+

4 since y∗ = α/2 if α ≥ 0 and y∗ = 0 otherwise. Thus, gα

is a modular function for any α ∈ R
N , and inequalities (3) reduce to

t ≥ −1

4
α2+x .

Then, we find that inequalities (6) reduce to the perspective of y2:

t ≥ max
α∈RN

−1

4
α2+x + αy = y2

x
· (with α∗ = 2y/x)
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3.2 The rank-one case with free continuous variables

Consider the relaxation of X obtained by dropping the non-negativity constraints
y ≥ 0:

X f = {
(x, y, t) ∈ {0, 1}N × R

N × R : y(N )2 ≤ t, yi (1 − xi ) = 0, ∀i ∈ N
}·

Observe that any rank-one quadratic constraint of the form
(∑

i∈N ci yi
)2 ≤ t with

ci �= 0 canbe transformed into the formgiven in X f by scaling the continuous variables
(so that |ci | = 1) and negating variables as ȳi := −yi if ci < 0. The closure of the
convex hull of X f is derived in [7], and the effectiveness of the resulting inequalities
is demonstrated on sparse regression problems. We now re-derive the description of
cl conv(X f ) using lifted supermodular inequalities.

For S ⊆ N , we have

gα(S) = min
y∈RS

−α′y + y(S)2.

It is easy to see that gα(xS) = −∞ unless αi = α j for all i �= j , see [7]. Therefore,
letting ᾱ = αi for all i ∈ N , we find that

gᾱ(xS) = min
y∈RS

−ᾱy(S) + y(S)2 =
{
0 if S = ∅
−ᾱ2/4 otherwise,

where the optimal solution is found by setting y(S) = ᾱ/2. The function gα is super-
modular since ρᾱ(i,∅) = −ᾱ2/4 and ρᾱ(i, S) = 0 for any S �= ∅.

Letting S = {1}, inequality (6a) reduces to

max
ᾱ∈R − ᾱ2

4
+ ᾱy(N ) ≤ t ⇔ y(N )2 ≤ t . (with ᾱ = 2y(N ))

Also letting S = {1}, inequality (6b) reduces to

max
ᾱ∈R − ᾱ2

4
x(N ) + ᾱy(N ) ≤ t ⇔ y(N )2

x(N )
≤ t . (with ᾱ = 2y(N )/x(N ))

These two supermodular inequalities are indeed sufficient to describe conv(X f ) [7].
As we shall see in Sect. 4, incorporating the non-negativity constraints y ≥ 0, conv(X)

is substantially more complex than conv(X f ). Nonetheless, as shown in Example 1,
the resulting convexification is substantially stronger as well.
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3.3 The rank-one case with a negative off-diagonal

Consider the special case of X with two continuous variables (N = {1, 2}) with a
negative off-diagonal:

X2− =
{
(x, y, t) ∈ {0, 1}2 × R

2+ × R : (y1 − y2)
2 ≤ t, yi (1 − xi ) = 0, i = 1, 2

}
.

Observe that any quadratic constraint of the form (c1y1 − c2y2)2 ≤ t with c1, c2 > 0
can be written as in X2− by scaling the continuous variables.

For α ∈ R
2, observe that if α1 + α2 > 0,

gα({1, 2}) = min
y∈R2+

−α1y1 − α2y2 + (y1 − y2)
2

is unbounded. Otherwise,

gα(∅) = 0,

gα({1}) = −α2
1

4
if α1 ≥ 0 and gα({1}) = 0 otherwise,

gα({2}) = −α2
2

4
if α2 ≥ 0 and gα({2}) = 0 otherwise,

gα({1, 2}) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−α2
1
4 if α1 ≥ 0

−α2
2
4 if α2 ≥ 0

0 if α1 ≤ 0 and α2 ≤ 0.

In particular, gα is supermodular (and in fact modular) for any fixed α such that

α1 + α2≤0: for any i = 1, 2 and S ⊆ N\i , ρα(i, S) = −max{0,αi }2
4 . Letting S = ∅,

inequality (6a) reduces to

max
α1+α2≤0

−max{0, α1}2
4

x1 − max{0, α2}2
4

x2 + α1y1 + α2y2 ≤ t . (7)

An optimal solution of (7) can be found as follows. If y1 ≥ y2, then set α1 > 0 and
α2 = −α1 < 0. Moreover, in this case, the optimal value is given by

max−α2
1

4
x1 + α1(y1 − y2) = (y1 − y2)2

x1
.

The case y2 ≥ y1 is identical. The resulting piecewise valid inequality

t ≥
{

(y1−y2)2

x1
if y1 ≥ y2

(y1−y2)2

x2
if y2 ≥ y1

(8)
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along with the bound constraints 0 ≤ x ≤ 1, 0 ≤ y describe cl conv(X2−) [6]. We
point that a conic quadratic representation for cl conv(X2−) and generalizations to
(not necessarily rank-one) quadratic functions with negative off-diagonals are given
in [13].

3.4 Outlier detection with temporal data

In the context of outlier detection with temporal data, Gómez [30] studies the set

XT =
{
(x, y, t) ∈ {0, 1}2 × R

4 × R :a1
2

(y3 − y1)
2 + (y3 − y4)

2 + a2
2

(y4 − y2)
2 ≤ t,

y1(1 − x1) = 0, y2(1 − x2) = 0
}

where a1, a2 > 0 are constants. While we refer the reader to [30] for details on
the derivation of cl conv(XT ), we point out that it can in fact be described by lifted
supermodular inequalities. Indeed, in this case, function gα is given by

gα(x) = K1(α) − K2(α)max{x1, x2},

where K1(α) and K2(α) are constants that do not depend on x and K2(α) ≥ 0. Since
max{x1, x2} is a submodular function, it follows that gα is supermodular.

4 Convex hull via lifted supermodular inequalities

We now turn our attention to the rank-one sets X and X+. This section is devoted
to showing that the lifted supermodular inequalities (6) are sufficient to describe
cl conv(X) and cl conv(X+). By Theorem 2, it suffices to derive an explicit form
of the projection function gα and show that inequalities (3) describe the convex hull of
its epigraph Gα . The rest of this section is organized as follows. In Sect. 4.1 we derive
the set function gα defined in (4) for the rank-one quadratic function and then show
that it is supermodular. In Sect. 4.2 we describe the convex hull of Gα using only a
small subset of the supermodular inequalities (3).

4.1 The set function g˛

We present the derivation of set function gα for X+ and X separately, and then verify
that gα is indeed supermodular.

4.1.1 Derivation for X+

For X+,

h(x, y) =
{
y(N )2 if y ≥ 0 and yi (1 − xi ) = 0, ∀i ∈ N

∞ otherwise.
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Therefore, for S ⊆ N ,

gα(xS) = min
y∈RS+

−αS
′yS + y(S)2. (9)

Note that (9) is bounded for all α ∈ R
S , thus B = R

N . Since, for αi < 0, yi = 0 in
any optimal solution, we assume for simplicity that α ≥ 0 and B = R

N+ . From the
KKT conditions corresponding to variable yk ≥ 0 in (9), we find that

2y(S) ≥ αk, (10)

and, by complementary slackness, (10) holds at equality whenever yk > 0. Moreover,
let j ∈ S such that α j = maxα(S); setting y j = α j/2 and yi = 0 for i ∈ S\ j ,
we find a feasible solution for (9) that satisfies all dual feasibility conditions (10)
and complementary slackness, and therefore is optimal for the convex optimization
problem (9). Thus, we conclude that

gα(xS) = −maxα(S)2

4
·

4.1.2 Derivation for X

For the general case of X ,

h(x, y) =
{(

y(N+) − y(N−)
)2 if y ≥ 0 and yi (1 − xi ) = 0, ∀i ∈ N+ ∪ N−

∞ otherwise.

Therefore, for S ⊆ N+ ∪ N−,

gα(xS) = min
y∈RS+

−α′y +
(
y(N+ ∩ S) − y(N− ∩ S)

)2
. (11)

If S ∩ N− = ∅ or S ∩ N+ = ∅, then we find from Sect. 4.1.1 that gα(xS) =
−maxα(S)2/4. Now let S+ := S ∩ N+ and S− := S ∩ N−, and assume S+ �= ∅ and
S− �= ∅. We first state conditions under which (11) is bounded, and then we provide
the explicit description of gα .

Lemma 1 Problem (11) is bounded if and only if

max
α

(S+) ≤ −max
α

(S−). (12)

Proof Let p = argmaxi∈S+ αi and q = argmaxi∈S− αi . If αp +αq > 0 , then ep + eq
is an unbounded direction. Otherwise,

−α′y +
(
y(S+) − y(S−)

)2 ≥ −αp y(S
+) − αq y(S

−) +
(
y(S+) − y(S−)

)2
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≥ −αp(y(S
+) − y(S−)) +

(
y(S+) − y(S−)

)2

≥ −α2
p/4,

where the second inequality follows from αp + αq ≤ 0. �
Note that wemay equivalently rewrite (12) asαi +α j ≤ 0, for all i ∈ S+, j ∈ S−,

and in particular,

B =
{
α ∈ R

N : αi + α j ≤ 0 for all i ∈ N+, j ∈ N−}
.

Proposition 4 Function gα is given by

gα(xS) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if α ≤ 0

−maxα(S+)2/4 if α � 0, (12) and αi ≤ 0 for all i ∈ S−

−maxα(S−)2/4 if α � 0, (12) and αi ≤ 0 for all i ∈ S+

−∞ otherwise.

Proof If α ≤ 0, then gα(xS) ≥ 0 and the lower bound can be obtained by setting
y = 0. We now assume y � 0. Note that for (12) to hold, if there exists j ∈ S− such
that α j ≥ 0, then αi ≤ 0 for all i ∈ S+, and vice versa. Therefore, either αi ≤ 0 for
all i ∈ S+ or α j ≤ 0 for all j ∈ S−.

First, assume that α j ≤ 0 for all j ∈ S−. In this case, there exists an optimal
solution of (11) where y(S−) = 0 and (11) reduces to (9). Then, we may assume that
αi ≥ 0 for all i ∈ S+ as in Sect. 4.1.1, and arrive at

gα(xS) = −maxα(S+)2

4
·

By symmetry, if αi ≤ 0 for all i ∈ S+, we may assume that α j ≥ 0 for all i ∈ S− and

gα(xS) = −maxα(S−)2

4
·

�
Observe that if αi ≤ 0 for all i ∈ S− and there exists α j ∈ S+ such that α j < 0,

then setting α j = 0 does not change the function gα . Thus we can assume without
loss of generality in optimization problem (6) that

B =
{
α ∈ R

N : αiα j ≤ 0 and αi + α j ≤ 0 for all i ∈ N+, j ∈ N−}
.

It is convenient to partition B into two sets so that B = B+ ∪ B−, where

B+ =
{
α ∈ R

N : αi ≥ 0 ∀i ∈ N+, α j ≤ 0 ∀ j ∈ N−, and αi + α j ≤ 0 ∀i ∈ N+, j ∈ N−}
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Fig. 2 Depiction of B+ and B−
in a two-dimensional example
with N+ = {1} and N− = {2}.
The upper right shaded region
(triangle) corresponds to the
region where gα(x) = −∞; the
lower left shaded region (square)
corresponds to the region
discarded, as equivalent
solutions of (6) can be found in
either B+ or B−

B− =
{
α ∈ R

N : αi ≤ 0 ∀i ∈ N+, α j ≥ 0 ∀ j ∈ N−, and αi + α j ≤ 0 ∀i ∈ N+, j ∈ N−}

and analyze the inequalities separately for each set. Figure 2 depicts regions B+ and
B− for a two-dimensional case.

Therefore, instead of studying inequalities (6) directly, one can equivalently study
their relaxation where either α ∈ B+ or α ∈ B−; consequently, each inequality (6)
corresponds to (the maximum of) two simpler inequalities. Since the sets B+ and B−
are symmetric, and inequalities (6) corresponding to α ∈ B− are simply inequalities
where the role of N+ and N− is interchanged (andα ∈ B+), the analysis and derivation
of the inequalities is simplified. Therefore, in the sequel, wewill derive the inequalities
for α ∈ B+ only and then state the inequalities corresponding to B− by interchanging
N+ and N−.

Supermodularity

For α ∈ B+, the set function gα(x) for X is monotone non-increasing, also it is
supermodular as maxα(S+) is submodular. The case for α ∈ B− is analogous.

4.2 Convex hull of epi g˛

In this section we show that a small subset of the supermodular inequalities (3a) are
sufficient to describe the convex hull of the epigraph of the set function gα , i.e.,

Gα =
{

(x, t) ∈ {0, 1}N × R : −maxi∈N {α2
i xi }

4
≤ t

}

, (13)

where α ≥ 0 – observe that since x is binary, (maxi∈N {αi xi })2 = maxi∈N {α2
i xi }.
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Given nonempty S ⊆ N , � ∈ argmaxi∈S{αi }, k ∈ argmaxi∈N\�{αi }, and
T = {i ∈ N\S : αi > α�}; observe that T = ∅ if and only if α� ≥ αk . Then, valid
inequalities (3a) for Gα reduce to

t ≥

⎧
⎪⎨

⎪⎩

−α2
�

4 + α2
�−α2

k
4 (1 − x�) if α� ≥ αk

−α2
�

4 − ∑

i∈T
α2
i −α2

�

4 xi if α� ≤ αk .
(14)

If S = ∅, then valid inequalities (3a) reduce to

t ≥ −
∑

i∈N

α2
i

4
xi .

Remark 2 Observe that if α� ≥ αk , then the inequality

t ≥ −α2
�

4
+ α2

� − α2
k

4
(1 − x�) = −α2

k

4
− α2

� − α2
k

4
x�

can also be obtained by setting S = N\� (or by choosing any S ⊆ N\� such that
k ∈ S). Therefore, when considering inequalities (14), we can assume without loss
of generality that there exists k ∈ argmaxi∈N {αi } such that k /∈ S and, thus, the case
α� ≥ αk can be ignored. �
Remark 3 Suppose that the variables are indexed such that α1 ≤ · · · ≤ αn , let α0 = 0,
and let � = maxi∈S{i} if S �= ∅ and � = 0 otherwise. Observe that we can assume
without loss of generality that i ∈ S for all i ≤ �, since inequalities (14) are the same
whether i ∈ S or not. Therefore, it follows that there are only n inequalities (14) given
by

t ≥ −α2
�

4
−

n∑

i=�+1

α2
i − α2

�

4
xi , � = 0, . . . , n − 1. (15)

�
We now show that inequalities (14) characterize the convex hull of Gα .

Proposition 5 Inequalities (14) and bound constraints describe conv(Gα).

Proof Let (x, t) ∈ [0, 1]N × R. By definition, (x, t) ∈ conv(Gα) if and only

t ≥ min
λ

−
∑

S⊆N

maxα(S)2

4
λS (16a)

s.t.
∑

S⊆N :i∈S
λS = xi , i ∈ N (16b)
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∑

S⊆N

λS = 1 (16c)

λS ≥ 0, S ⊆ N , (16d)

where constraints (16b) can be restated as x = ∑
i∈S λSxS . From linear programming

duality, we find the equivalent condition

t ≥ max
μ,γ

∑

i∈N
xiμi + γ (17a)

s.t.
∑

i∈S
μi + γ ≤ −maxα(S)2

4
, S ⊆ N (17b)

μ ∈ R
N , γ ∈ R. (17c)

Any feasible solution (μ, γ ) of (17) yields a valid inequality for conv(Gα). Moreover,
characterizing the optimal solutions of (17) (for all x ∈ [0, 1]N ) results in the convex
hull description of Gα .

Suppose, without loss of generality, that α1 ≤ . . . ≤ αn , let α0 = 0, and let
� ∈ {0, . . . , n−1} be the smallest index such that

∑n
i=�+1 xi ≤ 1; thus, if � > 0, then

∑n
i=� xi > 1. We claim that the dual solution given by γ̂ = −α2

�

4 , μ̂i = 0 for i ≤ �

and μ̂i = −α2
i −α2

�

4 for i > � is optimal for (17).
First, we verify that (μ̂, γ̂ ) is feasible for (17). Observe that for any S ⊆ {1, . . . , �},

constraint (17b) reduces to −α2
�

4 ≤ −maxα(S)2

4 , which is indeed satisfied. For any S
such that the maximum element j > �, we find that (17b) reduces to

∑
i∈S:i �= j μ̂i ≤ 0;

since μ̂ ≤ 0, the constraint is satisfied. For S = ∅, constraint (17b) reduces to γ ≤ 0,
which is satisfied. To verify complementary slackness (later), note that constraints
(17b) corresponding to sets (a) S = T ∪ { j}, where T ⊆ {1, . . . , �} and j > �

(i.e., containing exactly one element greater than �), and (b) S = T ∪ {�}, where
T ⊆ {1, . . . , � − 1} (i.e., containing � but no greater element) are satisfied at equality.

Finally, for (μ̂, γ̂ ), the objective function (17a) is of the form (15):

t ≥ −α2
�

4
−

n∑

i=�+1

α2
i − α2

�

4
xi .

To verify that (μ̂, γ̂ ) is optimal for (17), we construct a primal solution λ̂ feasible
for (16) satisfying complementary slackness. The greedy algorithm for constructing
λ̂ is presented in Algorithm 1 and illustrated with an example in Fig. 3.

We now check that constraint (16c) is satisfied. At the end of the algorithm,∑
S⊆N λ̂S = � (since variable � is updated each time λ̂ is updated). Moreover,

at the end of the first cycle (line 13) we have � = ∑n
i=�+1 xi . If � = 0, then � = 1

trivially (line 16); otherwise, at the end of the second cycle (line 22) and additional
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(A) (B)

(C) (D)

(E) (F)

Fig. 3 Algorithm 1 with x = (1, 0.2, 0.5, 0.6, 0.3) and � = 3
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Algorithm 1 Algorithm for problem (16)
Input: x1, . . . , xn with 0 =: α0 ≤ α1 ≤ · · · ≤ αn .
Output: λ̂ optimal for (16).
1: � ← min{k : ∑n

i=k+1 xi ≤ 1}
2: λ̂S ← 0 for all S ⊆ N
3: x̂i ← xi for all i ∈ N\�
4: if � > 0 then
5: x̂� ← x� − (

1 − ∑n
i=�+1 xi

) � Buffer for �; x̂� > 0 by definition of �

6: end if
7: � ← 0 � Variable for

∑
S λ̂S

8: for j = n . . . � + 1 do
9: while x̂ j > 0 do
10: S ← {i ≤ � : x̂i > 0} ∪ j
11: Allocate(S)
12: end while
13: end for � At this point � = ∑n

i=�+1 xi
14: if � = 0 then
15: λ̂∅ ← 1 − � � Constraint (16c) is satisfied
16: � ← 1
17: else
18: x̂� ← 1 − ∑n

i=�+1 xi � Buffer is removed
19: while x̂� > 0 do
20: S ← {i < � : x̂i > 0} ∪ �

21: Allocate(S)
22: end while � � = 1
23: end if
24: return λ̂

25:
26: function Allocate(S)
27: v ← mini∈S x̂i
28: � ← � + v

29: λ̂S ← v

30: x̂i ← x̂i − v for all i ∈ S � At this point x̂i = (xi − �)+ for all i < �

31: end function

value of x̂� = 1−∑n
i=�+1 xi (line 18) is added to�. Hence, at the end of the algorithm

� =
∑

S⊆N

λ̂S =
n∑

i=�+1

xi +
(

1 −
n∑

i=�+1

xi

)

= 1.

Next, we verify that constraints (16b) are satisfied. For i ∈ {1, . . . , � − 1}, at any
point in the algorithm, we have that

∑
S⊆N :i∈S λS = xi − x̂i . Since, at any point, x̂i =

(xi − �)+ and � = 1 at the end of the algorithm, it follows that
∑

S⊆N :i∈S λS = xi .
For i ∈ {� + 1, . . . , n} we also have that

∑
S⊆N :i∈S λS = xi − x̂i , and x̂i = 0 at the

end (line 13). Finally, for i = � > 0, we have that

∑

S⊆N :�∈S
λS =

(

x� −
(

1 −
n∑

i=�+1

xi

))

+
(

1 −
n∑

i=�+1

xi

)

= x�.
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Finally, to check that λ̂ satisfies complementary slackness, it suffices to observe
that all updates of λ̂ correspond to sets S such that exactly one element of S is greater
than � (line 10), or to sets S with no element greater than � and where � ∈ S (line 20),
where the corresponding dual constraints are satisfied at equality.

Therefore, we conclude that λ̂ and (μ̂, γ̂ ) are an optimal primal-dual pair. Since
problem (17) admits for any x ∈ [0, 1] an optimal solution of the form (15), it follows
that those inequalities and bound constraints describe conv(Gα). �

Finally, we obtain the main result of this section: that the (nonlinear) lifted super-
modular inequalities

t ≥ max
α∈B+ −maxα(S+)2

4
−

∑

i∈N+\S+

(
α2
i − maxα(S+)2

)
+

4
xi + α′y, ∀S+ ⊆ N+ (18)

t ≥ max
α∈B− −maxα(S−)2

4
−

∑

i∈N−\S−

(
α2
i − maxα(S−)2

)
+

4
xi + α′y, ∀S− ⊆ N− (19)

are sufficient to describe the closure of the convex hull of X .

Proposition 6 Lifted supermodular inequalities (18)–(19) and the bound constraints
0 ≤ x ≤ 1, y ≥ 0 describe cl conv(X).

Proof Follows immediately from Proposition 5 and Theorem 2. �
Remark 4 We end this section with the remark that optimization of a linear function
over X can be done easily using the projection function gα . Consider

min
{ − α′y + β ′x + t : (x, y, t) ∈ X

}·

Projecting out the continuous variables using gα , the problem reduces to

min
x∈{0,1}N

β ′x − max
i∈N {α2

i xi }/4. (20)

Assumewithout loss of generality thatβ ≥ 0 (otherwise, set xi = 1wheneverβi < 0).
Then an optimal solution of (20) corresponds to either setting x = 0, or setting a single
variable xi = 1where i ∈ argmaxi∈N βi+αi/4. Identifying such an index can be done
in O(n). �

5 Explicit form of the lifted supermodular inequalities

In this section we derive explicit forms of the lifted supermodular inequalities (18)–
(19). In Sect. 5.1 we describe the inequalities in the original space of variables, and
describe how to solve the separation problem. In Sect. 5.2 we provide conic quadratic
representable inequalities in an extended space, which can then be implemented with
off-the-shelf conic solvers.
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5.1 Inequalities and separation in the original space of variables

5.1.1 Lifted inequalities for X

We first present the inequalities for the more general set X . Finding a closed form
expression for the lifted supermodular inequalities (18) for all S+ ⊆ N+ amounts to
solving the maximum lifting problem

t ≥ max
S+⊆N+,α∈B+ −maxα(S+)2

4
−

∑

i∈N+\S+

(
α2
i − maxα(S+)2

)
+

4
xi + α′y. (21)

We now give a closed form expression for (21). Let m = |N+|, and given (x̄, ȳ) ∈
[0, 1]N × R

N+ , index variables in N+ so that ȳ(1)/x̄(1) ≤ ȳ(2)/x̄(2) ≤ · · · ≤ ȳ(m)/x̄(m).

Proposition 7 Given (x̄, ȳ, t̄) ∈ [0, 1]N × R
N+×R, if there exist indexes 0 ≤ κ1 <

κ2 ≤ m + 1 such that the (possibly empty) sets L = {
(i) ∈ N+ : i ≤ κ1

}
and U ={

(i) ∈ N+ : i ≥ κ2
}
satisfy

1 − x̄(N+\L) ≥ 0 (22a)

ȳ(L)

1 − x̄(N+\L)
<

ȳi
x̄i

, i ∈ N+\L (22b)

ȳ(L)

1 − x̄(N+\L)
≥ ȳi

x̄i
, i ∈ L (22c)

ȳ(U ) − ȳ(N−) ≥ 0 (22d)

ȳ(U ) − ȳ(N−)

x̄(U )
>

yi
xi

, i ∈ N+\U (22e)

ȳ(U ) − ȳ(N−)

x̄(U )
≤ ȳi

x̄i
, i ∈ U (22f)

ȳ(L)

1 − x̄(N+\L)
<

ȳ(U ) − ȳ(N−)

x̄(U )
, (22g)

then inequality (21) is satisfied if and only if

t̄ ≥ ȳ(L)2

1 − x̄(N+\L)
+

∑

i∈N+\(L∪U )

ȳ2i
x̄i

+
(
ȳ(U ) − ȳ(N−)

)2

x̄(U )
; (23)

otherwise, inequality (21) is satisfied if and only if t̄ ≥ (
ȳ(N+) − ȳ(N−)

)2
.

Below we state two remarks on Proposition 7, and then we prove the result.

Remark 5 Inequalities (23), when sets L and U are fixed, are neither valid for
cl conv(X) nor convex for all (x, y) ∈ [0, 1]N × R

N+ . Indeed, if condition (22a)
is not satisfied, then (23) may not be convex. Moreover, suppose that L = { j} and
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U = {k} for some j, k ∈ S+: note that setting xi = yi = 0 for all i ∈ N\{ j, k},
x j = xk = 1, y j , yk > 0, and t = (y j + yk)2 is feasible for X , but this point is cut off

by inequality (23) since y(L)2

1−x(N+\L)
= y2j

1−xk
= ∞.

In fact, if (x, y, t) ∈ cl conv(X), then (23) holds only when conditions (22a),
(22b), (22d), (22e), and (22g) are satisfied. Conditions (22c) and (22f) do not affect
the validity of (23) but if they are not satisfied then (23) is weak, i.e., a stronger
inequality can be obtained from another choice of L and U . �
Remark 6 If ȳ(N+) < ȳ(N−), then condition (22d) in Proposition 7 cannot be sat-
isfied. However, in this case, the role of N+ and N− can be interchanged to satisfy
(22d); interchanging N+ and N− is equivalent to letting α ∈ B−. �
Proof of Proposition 7 Let us define auxiliary variables β, γ ∈ R as β = maxα(N−)

and γ = maxα(S+), respectively. Then, inequality (21) reduces to

t̄ ≥ max
S+⊆N+ max

α,β,γ
− γ 2

4
−

∑

i∈N+\S+

(
α2
i − γ 2

)
+

4
x̄i + α′ ȳ (24a)

s.t. αi ≤ γ, ∀i ∈ S+ (24b)

αi ≤ β, ∀i ∈ N− (24c)

β ≤ −αi , ∀i ∈ N+ (24d)

α ∈ R
N , γ ∈ R+, β ∈ R−, (24e)

where constraints (24b) and (24c) enforce the definitions of γ and β, and constraints
(24d) and (24e) enforce that α ∈ B+.

First, observe that there exists an optimal solution of (24) with γ ≤ αi for all
i ∈ N+: if αi < γ for some i ∈ N+, then setting αi = γ results in a feasible solution
with improved objective value. Therefore, the value of S+ is completely determined
by γ since S+ = {

i ∈ N+ : αi ≤ γ
}
. Also note that αi = β for all i ∈ N−: if αi < β

for some i ∈ N−, then setting αi = β results in an improved (or identical) objective
value. We now consider two cases:

Case 1 Suppose in an optimal solution of (24) we have γ = −β, which implies that
αi = γ for all i ∈ N+ and αi = −γ for all i ∈ N−. In this case, (24) simplifies

to t̄ ≥ maxγ∈R+ γ
(
ȳ(N+) − ȳ(N−)

) − γ 2

4 , which, after optimizing for γ , further

reduces to the original rank-one quadratic inequality t̄ ≥ (
ȳ(N+) − ȳ(N−)

)2
.

Case 2 Now suppose γ < −β in an optimal solution. Let L = {
i ∈ N+ : αi = γ

}

and U = {i ∈ N+ : αi = −β}. Then, from the discussion above, (24) reduces to

t ≥ max
α,β,γ

γ · ȳ(L) − γ 2

4

(
1 − x̄(N+\L)

) +
∑

i∈N+\(L∪U )

(

αi ȳi − α2
i

4
x̄i

)

− β
(
ȳ(U ) − ȳ(N−)

) − β2

4
x̄(U ) (25a)
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s.t. γ < αi < −β, ∀i ∈ N+\(L ∪U ) (25b)

α ∈ R
N , γ, β ∈ R+. (25c)

Observe that for (L,U , γ ) to correspond to an optimal solution, we must have 1 −
x̄(N+\L) ≥ 0 (otherwise, γ can be increased to another αi while improving the
objective value) and ȳ(U ) − ȳ(N−) ≥ 0 (otherwise, −β can be decreased to another
αi while improving the objective value). When both conditions are satisfied, from
first-order conditions we see that αi = 2 ȳi/x̄i for i ∈ N+\(L ∪U ), γ = 2 ȳ(L)/

(
1−

x̄(N+\L)
)
and β = −2

(
ȳ(U ) − ȳ(N−)

)
/x̄(U ), and (25) simplifies to (23). The

constraints γ < αi are satisfied for all i ∈ N+\(L ∪ U ) if and only if (22b) hold,
constraints αi ≤ −β are satisfied for all i ∈ N+\(L ∪ U ) if and only if (22e) hold,
and constraint α < −β, which may not be implied if N+\(L ∪U ) = ∅, is satisfied if
and only if (22g) holds.

Finally, we verify that first order conditions are satisfied for j ∈ L , this is, setting
α j > γ results in a worse solution. If condition (22c)

ȳ(L)

1 − x̄(N+\L)
≥ ȳi

x̄i
, ∀i ∈ L

does not hold for some j ∈ L , then increasing α j from γ = 2 ȳ(L)

1−x̄(N+\L)
to 2 ȳ j/x̄ j

improves the objective value. Similarly, we verify that first order conditions for j ∈ U :
if condition (22f)

ȳ(U ) − ȳ(N−)

x̄(U )
≤ ȳi

x̄i
, ∀i ∈ U

does not hold for some j ∈ U , then α j can be decreased from β = ȳ(U )−ȳ(N−)
x̄(U )

to
improve the objective value.

Note that conditions (22b) and (22c) together imply that ȳi/x̄i < ȳ j/x̄ j whenever
i ∈ L and j /∈ L; in other words, if L �= ∅, then L = {(1), (2), . . . , (κ1)} for some
1 ≤ κ1 ≤ m. Similarly, from conditions (22e) and (22f), we conclude that either
U = ∅ or U = {(κ2), (κ2 + 1), . . . , (m)} for some 1 ≤ κ2 ≤ m. �
5.1.2 Lifted inequalities for X+

We now present the inequalities for X+, which can be interpreted as a special cases
of the inequalities for X given in Sect. 5.1.1. Recall that for set X+, the set B used in
(6a) is simply B = R

N (we can assume B = R
N+ without loss of generality) and a

closed form expression for (6a) requires solving the lifting problem

t ≥ max
S⊆N

max
α∈RN+

−maxα(S)2

4
−

∑

i∈N\S

(
α2
i − maxα(S)2

)
+

4
xi + α′y. (26)

Note that in the proof of Proposition 7, set U corresponds to the set of variables
in N+ where constraint αi ≤ −maxα(N−) is tight in an optimal solution of (24).
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Intuitively, set X+ can be interpreted as a special case of X where N+ = N and
N− = ∅, and such constraints can be dropped from the lifting problem. Therefore,
we may assume U = ∅ in Proposition 7. Proposition 8 formalizes this intuition; note
however that it is slightly stronger as, unlike Proposition 7, it guarantees the existence
of a set satisfying the conditions of the proposition. Similar to Proposition 7, index
variables in N so that ȳ(1)/x̄(1) ≤ ȳ(2)/x̄(2) ≤ · · · ≤ ȳ(n)/x̄(n).

Proposition 8 Given (x̄, ȳ, t̄) ∈ [0, 1]N × R
N+×R, there exists an index 0 ≤ κ ≤ n

such that the (possibly empty) set L = {(i) ∈ N : i ≤ κ} satisfies
1 − x̄(N\L) ≥ 0 (27a)

ȳ(L)

1 − x̄(N\L)
<

ȳi
x̄i

, i ∈ N\L (27b)

ȳ(L)

1 − x̄(N\L)
≥ ȳi

x̄i
, i ∈ L (27c)

and inequality (26) is satisfied if and only if

t ≥ ȳ(L)2

1 − x̄(N\L)
+

∑

i∈N\L

ȳ2i
x̄i

. (28)

The proof of Proposition 8 is given in “Appendix A”.

Example 2 (cont) Consider X+ with n = 3, and assume x2 = 0.6, x3 = 0.3, y2 = 0.5
and y3 = 0.2. Note that y2/x2 ≈ 0.83 > 0.67 ≈ y3/x3. We now compute the
minimum values t such (x, y, t) ∈ cl conv(X+), for different values of (x1, y1).

• Let (x1, y1) = (0.01, 1) and y1/x1 = 100. Then L = ∅ satisfies all conditions
(22): x(N ) = 0.91 < 1, conditions (27b) are trivially satisfied since y(∅) = 0,
and conditions (27c) are void. In this case, we find that (x, y, t) ∈ cl conv(X+) iff
t ≥ 12/0.01+0.52/0.6+0.22/0.3 ≈ 100.55. In contrast, (x, y, t) ∈ cl conv(X f )

iff t ≥ (0.01 + 0.5 + 0.2)2 /0.91 ≈ 3.18.
• Let (x1, y1) = (0.1, 0.5) and y1/x1 = 5. Then L = {3} satisfies all conditions
(22): x1+x2 = 0.7 < 1, 0.2/0.3 ≈ 0.67 < y2/x2 and 0.2/0.3 ≈ 0.67 = y3/x3. In
this case, (x, y, t) ∈ cl conv(X+) iff t ≥ 0.22/0.3+ 0.52/0.1+ 0.52/0.6 ≈ 3.05.
In contrast, (x, y, t) ∈ cl conv(X f ) iff t ≥ (0.5 + 0.5 + 0.2)2 /1 = 1.44.

• Let (x1, y1) = (0.4, 0.1) and y1/x1 = 0.25. Then L = {1, 3} satisfies all
conditions (22): x2 = 0.6 < 1, (0.1 + 0.2)/0.4 = 0.75 < y2/x2 and
(0.1 + 0.2)/0.4 = 0.75 ≥ y3/x3. In this case, (x, y, t) ∈ cl conv(X+) iff
t ≥ (0.1+ 0.2)2/0.4+ 0.52/0.6 ≈ 0.642. In contrast, (x, y, t) ∈ cl conv(X f ) iff
t ≥ (0.1 + 0.5 + 0.2)2 = 0.640.

• Let (x1, y1) = (0.5, 0.2) and y1/x1 = 0.4. Then L = {1, 2, 3} satisfies all condi-
tions (22): (27a) is trivially satisfied, (27b) is void and (0.2+0.5+0.2)/1 = 0.9 ≥
y2/x2. In this case, (x, y, t) ∈ cl conv(X+) iff t ≥ (0.2 + 0.5 + 0.2)2 = 0.81,
which coincides with cl conv(X f ) and the natural inequality t ≥ y(N )2.

Figure 1 plots the minimum values of t as a function of (x1, y1) for cl conv(X f )

and cl conv(X+). �

123



320 A. Atamtürk , A. Gómez

5.1.3 Separation

We now consider the separation problem for inequalities (21) and (26), i.e., given a
point (x̄, ȳ, t̄) ∈ [0, 1]N×R

N+×R, finding sets L,U ⊆ N+ satisfying the conditions in
Proposition 7 or finding L ⊆ N satisfying the conditions in Proposition 8, respectively.

Separation for (21) First, as pointed out in Remark 6, we verify whether ȳ(N+) ≥
ȳ(N−) or ȳ(N+) < ȳ(N−); in the first case, we use directly the conditions in Propo-
sition 7, and in the second one, we interchange the roles of N+ and N− so that
ȳ(N+) ≥ ȳ(N−). Next, indexing the variables so that ȳ(1)/x̄(1) ≤ · · · ≤ ȳ(m)/x̄(m),
where m = |N+|, can be done in O(m logm) by sorting. Finally, one can simply
enumerate all m(m − 1)/2 possible values of (κ1, κ2) and verify whether conditions
(22) are satisfied for each candidate set L andU . Hence, the separation algorithm runs
in O(n2) time.

Separation for (26) First, indexing the variables so that ȳ(1)/x̄(1) ≤ · · · ≤ ȳ(n)/x̄(n) can
be accomplished in O(n log n) time by sorting. Then, one can simply enumerate all n
possible values of κ and verify whether conditions (27) are satisfied for each candidate
set L . Since the sorting step dominates the complexity, the separation algorithm runs
in O(n log n).

5.2 Conic quadratic valid inequalities in an extended formulation

Inequalities (23) and (28) given in the original space of variables are valid only over
restricted parts of the domain. They are neither valid nor convex over the entire domain
of the variables, e.g., (23) is not convex whenever x(N+\L) ≥ 1. Thus, such inequal-
ities are difficult to utilize directly by the optimization solvers. In order to address this
challenge, in this section, we give valid conic quadratic reformulations in an extended
space, which can be readily used by conic quadratic solvers.

For a partitioning (L, R,U ) of N+ consider the inequality

t ≥ min
λ,μ,ζ

(
y(L) − λ0

)2

1 − x(R) − x(U ) + μ(R) + μ0
+

∑

i∈R

(yi − λi )
2

xi − μi
+

(
y(U ) − y(N−) + λ0 + λ(R) + ζ

)2

x(U ) − μ0

(29a)
s.t. 1 − x(R) − x(U ) + μ(R) + μ0 ≥ 0 (29b)

μi ≤ xi , i ∈ R (29c)
μ0 ≤ x(U ) (29d)

λ, μ ∈ R
R+, λ0, μ0, ζ ∈ R+. (29e)

Note that each inequality (29) requires O(n) additional variables and constraints.
Moreover, although not explicitly enforced, it is easy to verify that there exists an
optimal solution to (29) with λi ≤ yi and λ0 ≤ y(L). Inequalities (29) are con-
vex as they involve linear constraints and sums of ratios of convex quadratic terms
and nonnegative linear terms, thus conic quadratic representable [3, 38]. We show,
in Proposition 9, that inequalities (29) imply the strong formulations described in
Proposition 7, and, in Proposition 10, that they are valid for X .
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Proposition 9 If conditions (22a), (22b), (22d), (22e) and (22g) are satisfied, then
λ = μ = 0 and λ0 = μ0 = ζ = 0 in an optimal solution of (29).

Proof Observe that ζ does not appear in any constraint of (29). Thus, since y(U ) −
y(N−) ≥ 0 and λ, λ0 ≥ 0, it follows that ζ = 0 in an optimal solution. Moreover,
since (22a) is satisfied, then setting μ = 0 is feasible for (29). Finally, find that KKT
conditions are satisfied for λ,μ = 0 and λ0 = μ0 = 0 if

− y(L)

1 − x(R) − x(U )
+ y(U ) − y(N−)

x(U )
≥ 0 (λ0)

−
(

y(L)

1 − x(R) − x(U )

)2

+
(
y(U ) − y(N−)

x(U )

)2

≥ 0 (μ0)

− yi
xi

+ y(U ) − y(N−)

x(U )
≥ 0, ∀i ∈ R (λi )

−
(

y(L)

1 − x(R) − x(U )

)2

+
(
yi
xi

)2

≥ 0, ∀i ∈ R. (μi )

The KKT condition above for λ0 is precisely (22g). Since x(R) + x(U ) ≤ 1 by
(22a), and y(U ) − y(N−) ≥ 0 by (22d), the KKT condition for μ0 is equivalent to

y(L)
1−x(R)−x(U )

+ y(U )−y(N−)
x(U )

≥ 0, and thus reduces to (22g). The KKT conditions for λi
are satisfied since (22e) holds. Finally, the KKT conditions for μi can be equivalently
stated as y(L)

1−x(R)−x(U )
≤ yi

xi
(since x(R)+ x(U ) ≤ 1 and x, y ≥ 0), which are satisfied

since (22b) holds. �
Note that when λ = μ = 0 and λ0 = μ0 = ζ = 0, inequality (29) reduces to (23).
Thus, if sets L,U satisfy the conditions of Proposition 7 for a given (x, y), then there
exists t ∈ R such that (x, y, t) ∈ conv(X) and (29) holds at equality. It remains to
prove that inequalities (29) do not cut-off any points in X for any choice of partition
(L, R,U ).

Proposition 10 For any partitioning (L, R,U ) of N+, inequalities (29) are valid for
X.

Proof It suffices to show that for any (x, y) ∈ X , i.e., xi ∈ {0, 1} and xi (1 − yi ) = 0
for all i ∈ N , there exists (λ, μ, λ0, μ0, ζ ) satisfying (29b)–(29e) such that inequality
(29a) is valid. We prove the result by cases.

Case 1 y(N+) < y(N−): In this case, we can set λi = yi and μi = xi for i ∈ R,
λ0 = y(L), μ0 = x(U ), ζ = y(N−) − y(U ) − y(L) − y(R), and inequality (29a)
reduces to t ≥ 0, which is valid.

Case 2 y(N+) ≥ y(N−), x(R) = 0 and x(U ) = 0: In this case, yi = 0, i ∈ R ∪ U .
Setting μi = λi = 0 for i ∈ R, λ0 = y(N−), μ0 = 0 and ζ = 0, we find that
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inequality (29a) reduces to t ≥ (
y(L) − y(N−)

)2 = (
y(N+) − y(N−)

)2, which is
valid.

Case 3 y(N+) ≥ y(N−) and x(U ) ≥ 1: Setting λi = yi and μi = xi for i ∈ R, λ0 =
y(L),μ0 = x(U )−1, and ζ = 0, inequality (29a) reduces to t ≥ (

y(N+)− y(N−)
)2,

which is valid.

Case 4 y(N+) ≥ y(N−), x(U ) = 0, x(R) ≥ 1, y(N−) < yi for all i ∈ R and
y(N−) < y(L): In this case, yi = 0, for all i ∈ U and xi = 1, for all i ∈ R, we can
set μ0 = 0, and inequality (29) reduces to

t ≥ min
λ,μ

(
y(L) − λ0

)2

1 − |R| + μ(R)
+

∑

i∈R

(yi − λi )
2

1 − μi
(30a)

s.t. 1 − |R| + μ(R) ≥ 0 (30b)

μi ≤ 1 ∀i ∈ R (30c)

− y(N−) + λ0 + λ(R) + ζ = 0 (30d)

λ,μ ∈ R
R+, λ0, ζ ∈ R+. (30e)

Constraint (30d) is obtained since the denominator of the third term in (29a) is zero,
thus constraining the numerator to vanish as well. Moreover, since variable ζ ≥ 0
only appears in (30d), after projecting ζ out we find that constraint (30d) reduces to

λ0 + λ(R) ≤ y(N−). (31)

Note that constraint (31), and assumptions y(N−) < yi for all i ∈ R and y(N−) <

y(L), imply that λi ≤ yi and λ0 ≤ y(L). Observe that we can set

μi = 1 − yi − λi

y(L) + y(R) − λ(R) − λ0
∀i ∈ R.

Indeed, for any feasible λ, y(L) + y(R) − λ(R̄) − λ0 ≥ y(L) + y(R) − y(N−) ≥ 0;
thus μi ≤ 1. Moreover,

yi − λi

y(L) + y(R) − λ(R) − λ0
≤ yi − λi

y(L) + y(R\i) + yi − λi
≤ 1

thus μi ≥ 0. For this choice of μ, we find that

1 − |R| + μ(R) = y(L) − λ0

y(L) + y(R) − λ(R) − λ0
≥ 0.

Finally, substituting 1 − |R| + μ(R) and μi in (30a) with their respective values,
(30a) reduces to

t ≥min
λ

(
y(L) − λ0

)(
y(L) + y(R) − λ(R) − λ0

)
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+
(
y(L) + y(R) − λ(R) − λ0

)∑

i∈R

(yi − λi )

⇔ t ≥min
λ

(
y(L) + y(R) − λ(R) − λ0

)2 =
(
y(L) + y(R) − y(N−)

)2
,

and since y(L) + y(R) = y(N+), this inequality is valid.
Case 5 y(N+) ≥ y(N−), x(U ) = 0, x(R) ≥ 1, y(N−) < y(L) but y(N−) ≥ y j for
some j ∈ R: In this case, yi = 0 for all i ∈ U , and we set μ0 = 0. Note that, in (29),
we can set λ j = y j and μ j = x j , resulting in the inequality

t ≥ min
λ,μ,ζ

(
y(L) − λ0

)2

1 − x(R\ j) − x(U ) + μ(R\ j) +
∑

i∈R\ j

(yi − λi )
2

xi − μi

+
(
y(U ) − y(N−) + y j + λ0 + λ(R\ j) + ζ

)2

x(U )

s.t. 1 − x(R\ j) − x(U ) + μ(R\ j) ≥ 0

μi ≤ xi ∀i ∈ R\ j
λ,μ ∈ R

R\ j
+ , λ0, ζ ∈ R+.

This inequality of the same form as (29) but with R̂ = R\ j and ŷ(N−) = y(N−)− y j .
After repeating sequentially this process so that λi = yi and μi = xi for some subset
T ⊆ R, such that y(N−)− y(T ) ≤ yi for all i ∈ R\T , and applying a similar strategy
as in Case 4, we obtain an inequality of the form

t ≥
(
y(L) + y(R\T ) − (

y(N−) − y(T )
))2 =

(
y(N+) − y(N−)

)2
,

which is valid.

Case 6 y(N+) ≥ y(N−), x(U ) = 0, x(R) ≥ 1, and y(N−) ≥ y(L): In this case, we
can set λ0 = y(L), μ0 = 0, and (29) reduces to

t ≥ min
λ,μ

∑

i∈R

(yi − λi )
2

xi − μi

s.t. 1 − x(R) + μ(R) ≥ 0

μi ≤ xi ∀i ∈ R

λ(R) ≤ y(N−) − y(L)

λ, μ ∈ R
R+.
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Moreover, if y(N−) − y(L) ≥ y j for some j ∈ R, then we can set λ j = y j , μ j = y j
as done in Case 5. After repeating this process, we obtain an inequality of the form

t ≥ min
λ,μ

∑

i∈R\T

(yi − λi )
2

xi − μi
(32a)

s.t. 1 − x(R\T ) + μ(R\T ) ≥ 0 (32b)

μi ≤ xi ∀i ∈ R\T (32c)

λ(R\T ) ≤ y(N−) − y(L) − y(T ) (32d)

λ,μ ∈ R
R\T
+ , (32e)

where y(N−) − y(L) − y(T ) < yi for all i ∈ R\T , and therefore xi = 1 for all
i ∈ R\T .

Note that constraint (32d) and y(N−) − y(L) − y(T ) < yi imply that λi < yi in
any feasible solution. Then, for all i ∈ R\T , we can set

μi = xi − yi − λi

y(R\T ) − λ(R\T )
.

Clearly, μi ≤ xi . Moreover, for all i ∈ R\T ,
yi − λi

y(R\T ) − λ(R\T )
≤ yi − λi

y(R\(T ∪ i)) + yi − λi
≤ 1 = xi ,

thus μi ≥ 0. Finally,

1 − x(R\�) + μ(R\T ) = 1 − y(R\T ) − λ(R\λ)

y(R\T ) − λ(R\T )
= 0,

and constraint (32b) is satisfied. Substituting xi − λi , i ∈ R\T , with their explicit
form in (32a), we find the equivalent form

t ≥ min
λ

(
y(R\T ) − λ(R\T )

) ∑

i∈R\T
(yi − λi ) =min

λ

(
y(R\T ) − λ(R\T )

)2

=
(
y(N+) − y(N−)

)2
,

which is valid. �
To derive the corresponding lifted inequalities for B−, it suffices to interchange N+

and N−. Therefore, for a partitioning (L, R,U ) of N−, we find the conic quadratic
inequalities:

t ≥ min
λ,μ,ζ

(y(L) − λ0)
2

1 − x(R) + x(U ) + μ(R) + μ0
+

∑

i∈R

(yi − λi )
2

xi − μi
+

(
y(U ) − y(N+) + λ0 + λ(R) + ζ

)2

x(U ) − μ0

(33a)

123



Supermodularity and valid inequalities for quadratic… 325

s.t. 1 − x(R) − x(U ) + μ(R) + μ0 ≥ 0 (33b)
μi ≤ xi , i ∈ R (33c)
μ0 ≤ x(U ) (33d)

λ, μ ∈ R
R+, λ0, μ0, ζ ∈ R+. (33e)

One of the main results of the paper, that is, an explicit description of cl conv(X)

via a finite number of conic quadratic inequalities, is stated below.

Theorem 3 cl conv(X) is given by bound constraints 0 ≤ x ≤ 1, y ≥ 0, and inequal-
ities (29) and (33).

For the positive case of X+ with N− = ∅, for a partitioning (L, R) of N , inequalities
(29) reduce to

t ≥ min
μ

y(L)2

1 − x(R) + μ(R)
+

∑

i∈R

y2i
xi − μi

(34a)

s.t. 1 − x(R) + μ(R) ≥ 0 (34b)

μi ≤ xi , i ∈ R (34c)

μ ∈ R
R+. (34d)

Note that each inequality (34) also requires O(n) additional variables and constraints
but is significantly simpler compared to (29).

Theorem 4 cl conv(X+) is given by bound constraints 0 ≤ x ≤ 1, y ≥ 0, and
inequalities (34).

6 Computational experiments

In this section, we test the computational effectiveness of the conic quadratic inequal-
ities given in Sect. 5.2 in solving convex quadratic minimization problems with
indicators. In particular, we solve portfolio optimization problems with fixed-charges.
All experiments are run with CPLEX 12.8 solver on a laptop with a 1.80GHz
Intel®CoreTM i7 CPU and 16 GB main memory on a single thread. We use CPLEX
default settings but turn on the numerical emphasis parameter, unless stated otherwise.
The data for the instances and problem formulations in.lp format can be found online
at https://sites.google.com/usc.edu/gomez/data.

6.1 Instances

We consider optimization problems of the form

min
y,x

y′(FF ′)y +
n∑

i=1

(di yi )
2 (35a)

s.t. e′y = 1 (35b)
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b′y − a′x ≥ β (35c)

yi ≤ xi , i ∈ N (35d)

x ∈ {0, 1}N , y ∈ R
N+ (35e)

where F ∈ R
n×r+ with r < n, a, b, d ∈ R

N+ . We test two classes of instances,
general and positive, where either F has both positive and negative entries, or
F has only non-negative entries, respectively. Note that constraints (35d) are in fact a
big-M reformulation of complementarity constraint yi (1− xi ) = 0: indeed, constraint
(35b) and y ≥ 0 imply the upper bound y ≤ 1. The parameters are generated as
follows—we use the notation Y ∼ U [�, u] as “Y is generated from a continuous
uniform distribution between � and u":

F Let ρ be a positive weight parameter. Matrix F = EG where E ∈ R
n×r+ is

an exposure matrix such that Ei j = 0 with probability 0.8 and Ei j ∼ U [0, 1]
otherwise, and G ∈ R

r×r+ such that: Gi j ∼ U [ρ, 1]. If ρ ≥ 0, then matrix F is
guaranteed to be positive, andwe refer to such instances aspositive. Otherwise,
for ρ < 0, we refer to the instances as general.

d Let δ be a diagonal dominance parameter. Define v = (1/n)
∑n

i=1(FF ′)i i to be
the average diagonal element of FF ′; then d2i ∼ U [0, vδ].

b We generate entries bi ∼ U [0.25, 0.75] ×
√

(FF ′)i i + d2i . Note that if the terms

bi and ((FF ′)i i + d2i ) are interpreted as the expectation and variance of a random
variable, then expectations are approximately proportional to the standard devia-
tions. This relation aims to avoid trivial instances, where one term dominates the
other.

a Let ω be a fixed cost parameter and ai = ω(e′b)/n, i ∈ N , where e is an n-
dimensional vector of ones.

It is well-documented in the literature that for matrices with large diagonal dominance
the perspective reformulation achieves close to 100% gap improvement. Therefore,
we choose a low diagonal dominance δ = 0.01 to generate instances hard for the
perspective reformulation. In our computations, unless stated otherwise, we use n =
200 and β = (e′b)/n.

6.2 Methods

We test the following methods:

• Basic : Problem (35) formulated as

min ‖q‖22 +
n∑

i=1

(di yi )
2 (36a)

s.t. q = F ′y (36b)

(35b) − (35d) (36c)

x ∈ {0, 1}n, y ∈ R
n+, q ∈ R

r . (36d)
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• Perspective : Problem (35) formulated as

min ‖q‖22 +
n∑

i=1

d2i pi (37a)

s.t. q = F ′y (37b)

y2i ≤ pi xi , i = 1, . . . , n (37c)

(35b) − (35d) (37d)

x ∈ {0, 1}n, y ∈ R
n+, p ∈ R

n+, q ∈ R
r . (37e)

• Supermodular : Problem (35) formulated as

min
r∑

j=1

t j +
n∑

i=1

d2i pi (38a)

s.t.
(
F ′
j y

)2 ≤ t j , j = 1, . . . , r (38b)

y2i ≤ pi xi , i = 1, . . . , n (38c)

(35b) − (35d) (38d)

x ∈ {0, 1}n, y ∈ R
n+, p ∈ R

n+, t ∈ R
r+, (38e)

where Fj denotes the j-th column of F . Additionally, lifted supermodular inequal-
ities (29) are added to strengthen the relaxations. Note that the convex relaxation
of (38) without any additional inequalities is equivalent to the convex relaxation
of (37).

Cuts (29) (for general instances) or (34) (for positive instances) for method
Supermodular are added as follows:

(1) We solve the convex relaxation of (38) to obtain a solution (x̄, ȳ, t̄). By default,
the convex relaxation is solved with an interior point method.

(2) We find a most violated inequality (29) or (34) for each constraint (38b) using the
separation algorithm given in Sect. 5.1.3. Denote by ν̄ j the rhs value of (23) or
(28) if sets L and U satisfying (22) exist; otherwise, let ν̄ = −∞.

(3) Let ε = 10−3 be a precision parameter. Inequalities found in step (2) are added
if either t̄ j < ε and (ν̄ j − t̄ j ) > ε; or t̄ j ≥ ε and (ν̄ j − t̄ j )/t̄ j > ε. At most r
inequalities are added per iteration, one for each constraint (38b).

(4) This process is repeated until either no inequality is added in step (3) or max
number of cuts (3r ) is reached.

We point out that convexification based on X f [7], described in Sect. 3.2, is not
effective with formulation (38) since t j ≥ (F ′

j y)
2/min{1, e′x} reduces to t j ≥ (F ′

j y)
2

due to (35b) and (35d).
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6.3 Results

Tables 1, 2, 3 and 4 present the results for ρ = {−1,−0.5,−0.2, 0}. They show,
for different ranks r and values of the fixed cost parameter ω, the optimal objective
value (opt) and, for eachmethod, the optimal objective value for the convex relaxation
(val), the integrality gap (gap) computed asgap = opt−val

opt ×100, the improvement
(imp) of Supermodular over Perspective computed as

imp = gapPersp. − gapSupermod.
gapPersp.

,

the time required to solve the relaxation in seconds (time) and the number of cuts
added (cuts). The optimal solutions are computed using CPLEX branch-and-bound
method using the Perspective formulation. The values opt and val are scaled
so that, in a given instance, opt = 100. Each row corresponds to the average of five
instances generated with the same parameters.

First note that Perspective achieves only a very modest improvement over
Basic due to the low diagonal dominance parameter δ = 0.01. We also point out
that instances with smaller positive weight ρ have weaker natural convex relaxations,
i.e., Basic has larger gaps—a similar phenomenon was observed in [26].

The relative performance of all methods in rank-one instances, r = 1, is virtually
identical regardless of the value of the positive weight parameter ρ. In particular
Supermodular substantially improves upon Basic and Perspective : it
achieves 0% gaps in instances with ω ≤ 10, and reduces to gap from 35 to 6% in
instances with ω = 50.

In instances with r ≥ 5, the relative performance of Supermodular depends
on the positive weight parameter ρ: for larger values of ρ, more cuts are added and
Supermodular results in higher quality formulations. For example, in instances
with r = 5, ω = 50, the improvements achieved by Supermodular are 40.3%
(ρ = −1), 53.2% (ρ = −0.5), 62.0% (ρ = −0.2) and 72.7% (ρ = 0). Similar
behavior can be observed for other combinations of parameters with r ≥ 5.

Our interpretation of the dependence of ρ in the strength of the formulation is as fol-
lows. For instances with small values of ρ, it is possible to reduce the systematic risk of
the portfolio y′(FF ′)y close to zero due to negative correlations, i.e., achieve “perfect
hedge" although it may be unrealistic in practice. In such instances, the idiosynctratic
risk

∑n
i=1(di yi )

2 and constraints (35b)–(35d), which limit diversification, are the
most important components behind the portfolio variance. In contrast, as ρ increases,
it is increasingly difficult to reduce the systematic risk (and altogether impossible for
ρ ≥ 0). Thus, in such instances, the systematic risk y′(FF ′)y accounts for the major-
ity of the variance of the portfolio. Thus, the lifted supermodular inequalities, which
exploit the structure induced by the systematic risk, are particularly effective in the
later class of instances.
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Table 1 Computational results for general instances, ρ = −1

r ω Opt Method Strength Performance

Val Gap (%) Imp (%) Time (s) Cuts

1 2 100.0 Basic 92.5 7.5 <0.1 –

Perspective 98.4 1.6 <0.1 –

Supermodular 100.0 0.0 100.0 0.1 1

10 100.0 Basic 82.9 17.1 <0.1 –

Perspective 90.9 9.1 <0.1 –

Supermodular 100.0 0.0 100.0 0.1 1

50 100.0 Basic 61.7 38.3 <0.1 –

Perspective 65.4 34.6 <0.1 –

Supermodular 94.3 5.7 83.5 0.1 1

5 2 100.0 Basic 88.3 11.7 <0.1 –

Perspective 96.5 3.5 <0.1 –

Supermodular 97.7 2.3 34.3 0.1 3

10 100.0 Basic 69.7 30.3 <0.1 –

Perspective 80.5 19.5 <0.1 –

Supermodular 88.5 11.5 41.0 0.3 4

50 100.0 Basic 41.8 58.2 <0.1 –

Perspective 46.6 53.4 <0.1 –

Supermodular 68.1 31.9 40.3 0.6 5

10 2 100.0 Basic 87.1 12.9 <0.1 –

Perspective 95.6 4.4 <0.1 –

Supermodular 95.8 4.2 4.5 0.1 2

10 100.0 Basic 62.0 38.0 <0.1 –

Perspective 72.9 27.1 <0.1 –

Supermodular 76.1 23.9 11.8 0.7 7

50 100.0 Basic 27.4 72.6 <0.1 –

Perspective 30.9 69.1 <0.1 –

Supermodular 40.4 59.6 13.7 1.0 12

Figure 4 depicts the integrality gap of different formulations as a function of rank
for instances with ρ = 0. We see that Supermodular achieves large (> 70%)
improvement over Perspective especially in the challenging low-rank settings.
The improvement is significant (44%) also for high-rank settings with r = 35.

Finally, to evaluate the computational burden associated with the formulations, we
plot in Fig. 5 the time in seconds (in a logarithmic scale) require the solve the convex
relaxations of eachmethod for different dimensions n. Each point in Fig. 5 corresponds
to an average of 15 portfolio optimization instances generated with parameters r =
10, δ = 0.01 and ω ∈ {2, 10, 50} (5 instances for each value of ω). The time for
Supermodular includes the total time used to generate cuts and solving the convex
relaxations many times.
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Table 2 Computational results for general instances, ρ = −0.5

r ω Opt Method Strength Performance

Val Gap (%) Imp (%) Time (s) Cuts

1 2 100.0 Basic 92.5 7.5 <0.1 –

Perspective 98.3 1.7 <0.1 –

Supermodular 100.0 0.0 100.0 0.1 1

10 100.0 Basic 82.9 17.1 <0.1 –

Perspective 91.0 9.1 <0.1 –

Supermodular 99.9 0.1 98.9 0.1 1

50 100.0 Basic 61.7 38.3 <0.1 –

Perspective 65.3 34.7 <0.1 –

Supermodular 94.2 5.8 83.3 0.1 1

5 2 100.0 Basic 91.5 8.5 <0.1 –

Perspective 96.5 3.5 <0.1 –

Supermodular 98.1 1.9 45.7 0.3 4

10 100.0 Basic 76.4 23.6 <0.1 –

Perspective 83.1 16.9 0.1 –

Supermodular 92.7 7.3 56.8 0.4 4

50 100.0 Basic 52.1 47.9 <0.1 –

Perspective 55.1 44.9 <0.1 –

Supermodular 79.0 21.0 53.2 0.4 4

10 2 100.0 Basic 89.7 10.3 <0.1 –

Perspective 93.3 6.7 0.1 –

Supermodular 94.7 5.3 20.9 1.6 10

10 100.0 Basic 69.5 30.5 <0.1 –

Perspective 73.2 26.8 <0.1 –

Supermodular 81.4 18.6 30.6 2.4 11

50 100.0 Basic 38.3 61.7 <0.1 –

Perspective 39.6 60.4 <0.1 –

Supermodular 54.5 45.5 24.7 2.2 16

We see that, in general, formulation Basic is an order-of-magnitude faster than
Perspective, which in turn is an order-of-magnitude faster thanSupermodular.
Nonetheless, the computation times for Supermodular are adequate for many
applications, solving instances with n = 1000 on average under four seconds.

Contrary to expectations, Supermodular is faster for general instances than
for positive instances, despite the larger and more complex inequalities (29) used
for the general case; for n = 1000, Supermodular runs in 1.9 s in general
instances versus 3.8 s in positive instances. This counter-intuitive behavior is
explained by the number of cuts added, as several more violated cuts are found in
instances with large values of ρ, leading to larger convex formulations and the need
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Table 3 Computational results for general instances, ρ = −0.2

r ω Opt Method Strength Performance

Val Gap (%) Imp (%) Time (s) Cuts

1 2 100.0 Basic 92.5 7.5 <0.1 –

Perspective 98.3 1.7 <0.1 –

Supermodular 100.0 0.0 100.0 0.1 1

10 100.0 Basic 82.9 17.1 <0.1 –

Perspective 90.9 9.1 <0.1 –

Supermodular 99.9 0.1 98.9 0.1 1

50 100.0 Basic 61.7 38.3 <0.1 –

Perspective 65.4 34.6 <0.1 –

Supermodular 94.2 5.8 83.2 0.1 1

5 2 100.0 Basic 93.8 6.2 <0.1 –

Perspective 96.3 3.7 <0.1 –

Supermodular 98.9 1.1 70.3 0.6 5

10 100.0 Basic 79.6 20.4 <0.1 –

Perspective 82.1 17.9 0.1 –

Supermodular 93.8 6.2 65.4 0.8 6

50 100.0 Basic 57.6 42.4 <0.1 –

Perspective 58.7 41.3 <0.1 –

Supermodular 84.3 15.7 62.0 0.6 5

10 2 100.0 Basic 93.1 6.9 <0.1 –

Perspective 94.9 5.1 <0.1 –

Supermodular 97.6 2.4 52.9 6.6 14

10 100.0 Basic 77.8 22.2 <0.1 –

Perspective 79.3 20.7 <0.1 –

Supermodular 89.7 10.3 50.2 3.0 12

50 100.0 Basic 56.9 43.1 <0.1 –

Perspective 57.5 42.5 <0.1 –

Supermodular 76.9 23.1 45.6 10.3 20

to resolve them more times; for n = 1000, 20 cuts are added in each instance with
ρ = 0, whereas on average only 3.7 cuts are added in instances with ρ = −1.

The computation times are especially promising for tackling large-scale quadratic
optimization problems with indicators, where alternatives to constructing strong
convex relaxations (often based on decomposition of matrix FF ′ + D into lower-
dimensional terms) may not scale. For example, Frangioni et al. [26] solve convex
relaxations of instances up to n = 50, Han et al. [33] solve relaxations for instances
up to n = 150, and Atamtürk and Gómez [6] report that solving the convex relaxation
of quadratic instances with n = 200 requires up to 1000 s. All of thesemethods require
adding O(n2) variables and constraints to the formulations to achieve strengthening.
In contrast, the supermodular inequalities (29) and (34) yield formulations with O(nr)
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Table 4 Computational results for positive instances, ρ = 0

r ω Opt Method Strength Performance

Val Gap (%) Imp (%) Time (s) Cuts

1 2 100.0 Basic 92.5 7.5 <0.1 –

Perspective 98.3 1.7 <0.1 –

Supermodular 100.0 0.0 100.0 0.1 2

10 100.0 Basic 82.9 17.1 <0.1 –

Perspective 91.0 9.0 <0.1 –

Supermodular 99.9 0.1 98.9 0.1 2

50 100.0 Basic 61.7 38.3 <0.1 –

Perspective 65.3 34.7 <0.1 –

Supermodular 94.2 5.8 83.3 0.1 2

5 2 100.0 Basic 94.1 5.9 <0.1 –

Perspective 96.2 3.8 <0.1 –

Supermodular 98.7 1.3 65.8 0.2 10

10 100.0 Basic 80.4 19.6 <0.1 –

Perspective 82.4 17.6 <0.1 –

Supermodular 93.4 6.6 65.2 0.2 10

50 100.0 Basic 65.6 34.4 <0.1 –

Perspective 66.7 33.3 <0.1 –

Supermodular 90.9 9.1 72.7 0.2 10

10 2 100.0 Basic 94.0 6.0 <0.1 –

Perspective 95.5 4.5 <0.1 -

Supermodular 97.6 2.4 51.1 0.6 20

10 100.0 Basic 83.1 16.9 <0.1 –

Perspective 84.4 15.6 <0.1 –

Supermodular 93.2 6.8 56.4 0.6 20

50 100.0 Basic 66.0 34.0 <0.1 –

Perspective 66.7 33.3 <0.1 –

Supermodular 82.6 17.4 47.7 0.6 20

additional variables and constraints, which can be solved efficiently even if n is large
provided that the rank r is sufficiently small: in our computations, instances with
r = 10 and n = 1000 are solved in under 4 s. Nonetheless, as discussed in the next
section, even if the convex relaxations can be solved easily, incorporating the proposed
convexification in branch-and-boundmethodsmay required tailored implementations,
not supported by current off-the-shelf branch-and-bound solvers.

6.4 On the performance with off-the-shelf branch-and-bound solvers

We also experimentedwith solving the formulationsSupermodular obtained after
adding cutswithCPLEXbranch-and-bound algorithm.However, note that inequalities
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Fig. 5 Solution time vs problem dimension (r = 10, δ = 0.01)

(29) and, to a lesser degree, inequalities (34), involve several ratios that can result in
division by 0—from the proof of Proposition 10,we see that this in fact the case inmany
scenarios. Therefore, while we did not observe any particular numerical difficulties
when solving the convex relaxations (via interior point methods), in a small subset of
the instances we observed that the branch-and-bound method (based on linear outer
approximations) resulted in numerical issues leading to incorrect solutions.

Table 5 reports the results on the two instances that exhibit such pathological behav-
ior. It shows, for each instance andmethod anddifferentCPLEXsettings, the bounds on
the optimal solution obtained reported by CPLEX when solving the convex relaxation
via interior point methods (barrier, corresponding to a lower bound), and lower and
upper bounds reported by running the branch-and-bound algorithm for one hour. We
do not scale the solutions obtained in Table 5. The tested settings are default CPLEX
(def), default CPLEX with numerical emphasis enabled (+num), and CPLEX with
numerical emphasis enabled and presolve and CPLEX cuts disabled (+num-pc).

In the first instance shown in Table 5, when using Supermodular with the
default CPLEX settings, the solution reported is worse than the optimal solution by
30%. By enabling the numerical emphasis option, the solution improves but is still
10% worse than the solution reported by Perspective. Nonetheless, if presolve
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Table 5 Examples of pathological behavior in branch-and-bound

Instance Method Setting Bounds

Barrier lb_bb ub_bb

Perspective def 0.0202 0.0942 0.0942

200-10-1.0-0.01 Supermodular def 0.0243 0.1249 0.1249

−50.0-1-1-103† +num 0.0243 0.1078 0.1078

+num-pc 0.0243 0.0942 0.0942

Perspective def 0.1950 0.4849 0.4849

200-10-1.0-0 Supermodular def 0.2471 0.4849 0.4849

−50.0-1-1-104†† +num 0.2471 0.4849 0.4849

+num-pc 0.2471 0.5209 0.6629

† General portfolio instance with ρ = −1, n = 200, r = 10, δ = 0.01, ω = 50
†† General portfolio instance with ρ = −1, n = 200, r = 10, δ = 0, ω = 50

and CPLEX cuts are disabled, then both solutions coincide. The second instance
shown in Table 5 exhibits the opposite behavior: when used with the default settings,
independently of the numerical emphasis, the solutions obtained by Perspective
and Supermodular coincide; however, if presolve and CPLEX cuts are dis-
abled, then the lower bound obtained after one hour of branch-and-bound with the
Supermodular method already precludes finding the correct solution. We point
out that pathological behavior of conic quadratic branch-and-bound solvers have been
observed in the past for other nonlinear mixed-integer problems with a large number
of variables, see for example [6, 13, 26, 29].

7 Conclusions

In this paper we describe the convex hull of the epigraph of a rank-one quadratic
functions with indicator variables. In order to do so, we first describe the convex hull
of a underlying supermodular set function in a lower-dimensional space, and then
maximally lift the resulting facets into nonlinear inequalities in the original space of
variables. The approach is broadly applicable, asmost of the existing results concerning
convexifications of convex quadratic functionswith indicator variables can be obtained
in this way, as well as several well-known classes of facet-defining inequalities for
mixed-integer linear problems.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10107-022-01908-2.
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Appendix A

Proof of Proposition 8 In order to solve problem (26)we introduce an auxiliary variable
γ ∈ R+ such that γ = maxα(S+). Then, inequality (26) reduces to

t̄ ≥ max
S⊆N

max
α,γ

− γ 2

4
−

∑

i∈N\S

(
α2
i − γ 2

)
+

4
x̄i + α′ ȳ (39a)

s.t. αi ≤ γ, i ∈ S (39b)

α ∈ R
N+ , γ ∈ R+, (39c)

where constraint (39b) enforces the definition of γ .
Note that there exists an optimal solution for (39) were γ ≤ αi for all i ∈ N :

if αi < γ for some i ∈ N , then setting αi = γ yields a feasible solution with
improved objective value. Therefore, S is completely determined by γ since S =
{i ∈ N : αi ≤ γ }.

Now, let L = {i ∈ N : αi = γ } in a solution of (39). From the discussion above,
we find that (39) reduces to

t ≥ max
α,γ

γ · ȳ(L) − γ 2

4

(
1 − x̄(N\L)

) +
∑

i∈N\L

(

αi ȳi − α2
i

4
x̄i

)

(40a)

s.t. γ < αi ∀i ∈ N\L (40b)

α ∈ R
N , γ ∈ R+. (40c)

Observe that for (L, γ ) to correspond to an optimal solution, we require that 1 −
x̄(N\L) ≥ 0 (otherwise γ can be increased and set to an upper boundwhile improving
the objective value). When this condition is satisfied, we find by taking derivatives of
the objective and setting to 0, that αi = 2 ȳi/x̄i for i ∈ N\L and γ = 2 ȳ(L)/

(
1 −

x̄(N\L)
)
, and (40) simplifies to (28). Note however that, in general, (α, γ ) may not

satisfy constraints (40b) for any choice of sets L ⊆ N . The constraints are satisfied if
and only if γ < αi for all i ∈ N\L , i.e., if and only if conditions (27b) are satisfied.

In order for L to be optimal we require condition (27c), i.e.,

y(L)

1 − x̄(N\L)
≥ ȳi

x̄i
∀i ∈ L.
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Indeed, if this condition is not satisfied for some j ∈ L , then increasing α j from

γ = 2 ȳ(L)
1−x̄(N\L)

≥ 2
ȳ j
x̄ j

to 2 ȳ j/x̄ j (or setting it to β if β < 2 ȳ j/x̄ j ) results in a better
objective value.

Finally, note that conditions (27b) and (27c) together imply that ȳi/x̄i < ȳ j/x̄ j
whenever i ∈ L and j /∈ L; in other words, if L �= ∅, then L = {(1), (2), . . . , (κ)}
for some 1 ≤ κ ≤ n. �
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