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Abstract
We consider primal-dual pairs of semidefinite programs and assume that they are
singular, i.e., both primal and dual are either weakly feasible or weakly infeasible.
Under such circumstances, strong duality may break down and the primal and dual
might have a nonzero duality gap. Nevertheless, there are arbitrary small perturba-
tions to the problem data which would make them strongly feasible thus zeroing the
duality gap. In this paper, we conduct an asymptotic analysis of the optimal value
as the perturbation for regularization is driven to zero. Specifically, we fix two posi-
tive definite matrices, Ip and Id , say, (typically the identity matrices), and regularize
the primal and dual problems by shifting their associated affine space by ηIp and
ε Id , respectively, to recover interior feasibility of both problems, where ε and η are
positive numbers. Then we analyze the behavior of the optimal value of the regu-
larized problem when the perturbation is reduced to zero keeping the ratio between
η and ε constant. A key feature of our analysis is that no further assumptions such
as compactness or constraint qualifications are ever made. It will be shown that the
optimal value of the perturbed problem converges to a value between the primal and
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dual optimal values of the original problems. Furthermore, the limiting optimal value
changes “monotonically” from the primal optimal value to the dual optimal value as
a function of θ , if we parametrize (ε, η) as (ε, η) = t(cos θ, sin θ) and let t → 0.
Finally, the analysis leads us to the relatively surprising consequence that some repre-
sentative infeasible interior-point algorithms for SDP generate sequences converging
to a number between the primal and dual optimal values, even in the presence of a
nonzero duality gap. Though this result is more of theoretical interest at this point, it
might be of some value in the development of infeasible interior-point algorithms that
can handle singular problems.

Keywords Semidefinite programs · Singular problems · Nonzero duality gaps ·
Perturbation · Regularization · Infeasible interior-point algorithms

Mathematics Subject Classification 90C22 · 90C25 · 90C51 · 90C31 · 65K05

1 Introduction

Strong feasibility of primal and dual problems is a standard regularity condition in
convex optimization, e.g., [24], [36, Chapter 3]. Once this condition is satisfied, pow-
erful algorithms such as interior-point algorithms and the ellipsoid algorithm can be
applied to solve them efficiently, at least in theory. On the other hand, if a problem
at hand does not satisfy this condition, it can be much harder to solve. For instance,
the problem may have a positive duality gap. Due to the advance of techniques of
optimization modelling, there are many problems which do not satisfy primal-dual
strong feasibility by nature.

A first attempt to apply interior-point algorithms to such problems would be to
perturb the problem to recover strong feasibility at both sides, i.e., “regularization.”
But it is not clear how this perturbation affects the optimal value. In this paper, we
focus on semidefinite programs (SDP) and conduct an asymptotic analysis of the
optimal value function when the problem is perturbed slightly to recover primal-dual
strong feasibility. The analysis is general enough to be applicable to any ill-behaved
problem without assuming constraint qualifications, and has interesting implications
to the convergence theory of interior-point algorithms.

It is known that every SDP falls into one of the four statuses: strongly feasible,
weakly feasible, weakly infeasible and strongly infeasible, e.g., see [23]. Difficult
situations like positive duality gap may occur when the problem is either weakly
feasible or weakly infeasible. We may call such problems “singular”.

A standard method to deal with singular problems in semidefinite programming
and general conic convex programming is facial reduction [4–7, 15, 40, 43, 46]. This
approach recovers strong feasibility by finding theminimal face containing the feasible
region.Whilemany of the earlier papers on facial reduction focused onweakly feasible
problems, it is relatively recent that weak infeasibility is analyzed in this context
[15, 18, 29]. Along this line of developments, the paper [20] showed that, through
double facial reduction, any SDP can be solved “completely” by calling an interior-
point oracle polynomially many times, where the interior-point oracle is an idealized
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interior-point algorithm which return primal-dual optimal solutions given a primal-
dual strongly feasible SDP. In the context of SDPs with positive duality gaps, Ramana
developed an extended Lagrangian dual SDP for which strong duality always holds
[34]. Later it was shown in [35] that Ramana’s dual problem is strongly related to
facial reduction, see also [28].

Implementation of a facial reduction algorithm is subtle and not easy, being vul-
nerable to rounding errors. Nevertheless, it is worth mentioning that there are several
recent works focused on practical issues regarding facial reduction or on heuristics
based on facial reduction [9, 30, 31, 49].

So far, we have discussed approaches based on (or related to) facial reduction
in order to deal with singular SDPs. Unrelated to that, the paper [16] considered an
application of theDouglas-Rachford algorithm to the analysis of pathological behavior
in SDPs. Interestingly, they show it is sometimes possible to identify the presence of
positive duality gaps by observing whether certain sequences converge to 0 or to ∞,
see [16, Fig. 1, Sects. 2.8 and 2.9].

As mentioned previously, in this paper we will consider yet another approach for
analyzing singular SDPs: regularization. The idea is to perturb the problem slightly
to recover strong feasibility on both primal and dual sides. Once strong feasibility is
recovered, we may, say, apply interior-point algorithms to the regularized problems.
However, the resulting approximate optimal solution is not guaranteed to be close to
the optimal solution to the original problem, though intuitively we might expect or
hope so. In particular, if we consider a SDP problem with a finite and nonzero duality
gap, it is not clear what happens with the optimal value and the optimal solutions of the
regularized problem as functions of the perturbation when the perturbation is reduced
to zero.

Analyzing this problem is one of the main topics of the current paper. We consider
primal and dual pairs of semidefinite programs and assume they are singular i.e.,
either weakly feasible or weakly infeasible (see Sect. 2.1 for definitions). Under these
circumstances, there are arbitrarily small perturbations which make the perturbed pair
primal-dual strongly feasible. Then, we fix two positive definite matrices, and shift
the associated affine spaces of the primal and dual slightly in the direction of these
matrices so that the perturbed problems have interior feasible solutions. Under this
setting, we analyze the behavior of the optimal value of the perturbed problem when
the perturbation is reduced to zero while keeping the proportion.

First, we demonstrate that, if perturbation is added only to the primal problem to
recover strong feasibility, then the optimal value of the perturbed problem converges
to the dual optimal value as the perturbation is reduced to zero, even in the presence of
nonzero duality gap. An analogous proposition holds for the dual problem. We derive
them as a significantly simplified version of the classical asymptotic strong duality
theorem (see, for instance, [1, 3, 8, 23, 24, 36] and Chapter 2 of [42]).

Then we analyze the case where perturbation is added to both primal and dual sides
of the problem. We will demonstrate that in that case the limiting optimal value of the
perturbed problems converges to a value between the primal and dual optimal values
of the original problem even in the presence of nonzero duality gap. The limiting
optimal value is a function of the relative weight of primal and dual perturbations, and
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reduces monotonically from the primal optimal value to the dual optimal value as the
relative weight shifts from the dual side to the primal side.

The result provides an interesting implication to the behavior of infeasible interior-
point algorithms applied to general SDPs [12, 13, 25, 27, 32, 44, 48]. In particular,
we pick up two well-known polynomial-time infeasible interior-point algorithms by
Zhang [48] and Potra and Sheng [32], and prove the following (see Theorems 5 and
6):

1. If neither the primal nor the dual are strongly infeasible then:

(a) the algorithms always generate sequences (Xk, Sk, yk) that are asymptotically
primal-dual feasible and such that the “duality gap” Xk • Sk converges to zero.

(b) the sequence of modified (primal and dual) objective values converges to a
number in [θD, θP ], where θP and θD are the primal optimal value and the dual
optimal value, respectively.

2. Otherwise (i.e., if either the primal or the dual is strongly infeasible), the algorithms
fail to generate a sequence such that the duality gap Xk • Sk converges to zero.
(Needless to say, there is no way to generate an asymptotically primal-dual feasible
sequence in this case.)

One implication of the results above is that, at least in theory, these interior-point algo-
rithms generate sequences converging to the optimal value as long as strong feasibility
is satisfied at one side of the problem. Furthermore, even in the presence of a finite
duality gap, they still generate sequences converging to values between the primal and
dual optimal values. It is also worth mentioning that our analysis shows that, by setting
appropriate initial iterates, it is possible to control how close the limit value will be to
the primal or the dual optimal values.

Though this result is more of theoretical interest, this might be of some value if
one wants to solve mixed-integer SDP (MISDP) through branch-and-bound and linear
SDP relaxations.As discussed in [10], it is quite possible that the relaxations eventually
fail to satisfy strong feasibility at one of the sides of the problem.

Nevertheless, the solutions obtained by the infeasible interior-point methods
described above can still be used as bounds to the optimal values of the relaxed
linear SDPs regardless of regularity assumptions or constraint qualifications (at least
in theory).

This paper is organized as follows. In Sect. 2, we describe ourmain results. Section3
is a preliminary section where we review asymptotic strong duality, infeasible interior-
point algorithms, and semialgebraic geometry. In Sect. 4, we prove our main results. In
Sect. 5, we show an application of our results to the analysis of infeasible primal-dual
interior-point algorithms. In Sect. 6, illustrative instances will be presented.

2 Main results

In this section, we introduce our main results after providing the setup and some
preliminaries. We also review existing related results.
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2.1 Setup and terminology

First we introduce the notation. The space of n × n real symmetric matrices will be
denoted by Sn . We denote the cone of n × n real symmetric positive semidefinite
matrices and the cone of n × n real symmetric positive definite matrices by Sn+ and
Sn++. For U , V ∈ Sn , we define the inner product U • V as

∑
Ui j Vi j , and we use

U � 0 and U � 0 to denote that U ∈ Sn+ and U ∈ Sn++, respectively. The n × n
identity matrix is denoted by I . We denote the Frobenius norm and the operator norm
by ‖X‖F and ‖X‖. For v ∈ R

k , we denote by ‖v‖ its Euclidean norm.
In this paper, we deal with the following standard form primal-dual semidefinite

programs

P : min
X

C • X s.t. Ai • X = bi , i = 1, . . . ,m, X � 0

D : max
y,S

bT y s.t. C −
m∑

i=1

Ai yi = S, S � 0,

where C , Ai , i = 1, . . . ,m, X , S are real symmetric n × n matrices and y ∈ R
m . For

ease of notation, we define the mapping A from Sn to Rm :

A(Y ) ≡ (A1 • Y , . . . , Am • Y ), (1)

and introduce

V ≡ {X ∈ Sn | Ai • X = bi , i = 1, . . . ,m} = {X ∈ Sn | A(X) = b}.

We denote by v(P) and v(D) the optimal values of P and D, respectively. We use
analogous notation throughout the paper to denote the optimal value of an optimization
problem. For a maximization problem, the optimal value +∞ means that the optimal
value is unbounded above and the optimal value −∞ means that the problem is
infeasible. For a minimization problem, the optimal value−∞means that the optimal
value is unbounded below and the optimal value +∞ means that the the problem is
infeasible.

It is well-known that v(P) = v(D) holds under suitable regularity conditions,
although, in general, wemight have v(P) 	= v(D), i.e., the problemmayhave a nonzero
duality gap. We also note that v(P) and v(D) might not be necessarily attainable.

In general,P is known to be in one of the following four differentmutually exclusive
status (see [24]).

1. Strongly feasible: there exists a positive definite matrix satisfying the constraints
of P, i.e., V ∩ Sn++ 	= ∅. This is the same as Slater’s condition.

2. Weakly feasible: P is feasible but not strongly feasible, i.e., V ∩ Sn++ = ∅ but
V ∩ Sn+ 	= ∅.

3. Weakly infeasible: P is infeasible but the distance between Sn+ and the affine space
V is zero, i.e., V ∩ Sn+ = ∅ but the zero matrix belongs to the closure of Sn+ − V .
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4. Strongly infeasible:P is infeasible but not weakly infeasible. Note that this includes
the case where V = ∅.

The status of D is defined analogously by replacing V by the affine set

{

S ∈ Sn | ∃y ∈ R
m,C −

m∑

i=1

Ai yi = S

}

.

We say that a problem is asymptotically feasible if it is either feasible or weakly
infeasible. As a reminder, we say that a problem is singular if it is either weakly
feasible or weakly infeasible.

2.2 Main results

Now we introduce the main results of this paper. We say that a problem is asymptoti-
cally primal-dual feasible (or asymptotically pd-feasible, in short) if both P and D are
asymptotically feasible. Evidently, the problem is asymptotically pd-feasible if and
only if both P and D are feasible or weakly infeasible. The analysis in this paper is
conducted mainly under this condition.

Note that asymptotic pd-feasibility is a rather weak condition. Many difficult situ-
ations such as finite nonzero duality gaps and weak infeasibility of both P and D are
covered under this condition. Furthermore, since strong infeasibility can be detected
by solving auxiliary SDPs that are both primal and dual strongly feasible (see [19]),
checking whether a given problem is asymptotically pd-feasible or not can also be
checked by solving SDPs that are primal and dual strongly feasible.

We consider the following primal-dual pair P(ε, η) and D(ε, η) obtained by per-
turbing P and D with two positive definite matrices Ip and Id and two nonnegative
parameters ε and η:

P(ε, η) : min (C + ε Id) • X s.t. Ai • X = bi + ηAi • Ip, i = 1, . . . ,m, X � 0,

(2)

and

D(ε, η) : max
m∑

i=1

(bi + ηAi • Ip)yi s.t. C −
m∑

i=1

Ai yi + ε Id = S, S � 0. (3)

Using (1), we have

P(ε, η) : min (C + ε Id) • X s.t. A(X) = b + ηA(Ip), X � 0. (4)

While Ip and Id represent the direction of perturbation, ε and η represent the amount
of perturbation. In particular, we could take, for example, Ip = Id = I , where I is
the n × n identity matrix. We note that the perturbed pair (2) and (3) was used in the
study of infeasible interior-point algorithms [32] and facial reduction [40].

123



A limiting analysis on regularization of singular SDP and... 537

If the problem is asymptotically pd-feasible,D(ε, η) is strongly feasible for any ε >

0 and P(ε, η) is strongly feasible for any η > 0. To see the strong feasibility of P(ε, η),
we observe that there always exists X̃ � −ηIp/2 satisfying Ai • X̃ = bi , i = 1, . . . ,m,
since P is weakly infeasible or feasible. Then, we see that the matrix X = X̃ + ηIp is
positive definite and a feasible solution to P(ε, η). We emphasize that the primal-dual
pair P(ε, η) and D(ε, η) is a natural and possibly one of the simplest regularizations
of P and D which ensures primal-dual strong feasibility under perturbation.

We define v(ε, η) to be the common optimal value of P(ε, η) and D(ε, η) if they
coincide. If the optimal values differ, v(ε, η) is not defined. Suppose that P and D
are asymptotically pd-feasible. In this case, from the the duality theory of convex
programs, the function v(ε, η) has the following properties:

1. v(ε, η) is finite if ε > 0 and η > 0.
2. v(ε, 0) is well-defined as long as ε > 0 and it takes the value+∞ if P is infeasible.
3. v(0, η) is well-defined as long as η > 0 and it takes the value−∞ ifD is infeasible.
4. v(ε, η) may not be defined at (0, 0). This is because P = P(0, 0) and D = D(0, 0)

may have different optimal values, i.e., P and D may have a nonzero duality gap.

Therefore, although the regularized pair P(ε, η) and D(ε, η) satisfies primal-dual
strong feasibility if ε > 0 and η > 0, it is not clear whether this is actually use-
ful in solving SDP under notorious situations such as the presence of nonzero duality
gaps. This is precisely one of the main topics of this paper: an analysis on the behavior
of the regularized problems without imposing any restrictive assumption.

In this context, it is worth mentioning that the following asymptotic strong duality
results

(i) lim
ε↓0 v(ε, 0) = lim

ε↓0 v(D(ε, 0)) = v(P) under dual asymptotic feasibility

and

(ii) lim
η↓0 v(0, η) = lim

η↓0 v(P(0, η)) = v(D) under primal asymptotic feasibility

are obtained as corollaries of the classical asymptotic strong duality theorem estab-
lished in the 1950’s and 1960’s [1, 8]. This theory received renewed attention with the
emergence of conic linear programming; see, for instance, [3, 23, 24, 36] and Chapter
2 of [42]. We will prove (i) and (ii) in the next section, see Theorem 3. In comparison
with the classical asymptotic strong duality theorem, Theorem 3 considers a smaller
perturbation space.

Now we are ready to describe the main results. They are developed to interpolate
between (i) and (ii). The first result is the following theorem.

Theorem 1 Let α ≥ 0, β ≥ 0 and (α, β) 	= (0, 0). If the problem is asymptotically
pd-feasible, then limt↓0 v(tα, tβ) exists.

Here we remark that Theorem 1 includes the case where the limit is ±∞. Theorem 1
implies that the limit of the optimal value of the perturbed system exists but it is a
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function of the direction used to approach (0, 0). For θ ∈ [0, π/2], let us consider the
function

va(θ) ≡ lim
t↓0 v(t cos θ, t sin θ),

which is the limiting optimal value of v(·)when it approaches zero along the direction
making an angle of θ with the ε axis.With that, va(0) and va(π/2) are the special cases
corresponding to dual-only perturbation and primal-only perturbation, respectively. So
we abuse notation slightly and define

va(D) ≡ va(0) and va(P) ≡ va(π/2). (5)

Below is our second main result.

Theorem 2 If the problem is asymptotically pd-feasible, the following statements hold.

1. va(0) = va(D) = v(P) and va(π/2) = va(P) = v(D).
2. va(θ) is monotone decreasing in [0, π/2], and is continuous in (0, π/2).

Theorem 2 is proved by using Theorem 4 which establishes monotonicity and con-
vexity of limt→0 v(t, tβ).

Now we turn our attention to the connection of these main results to the conver-
gence analysis of the primal-dual infeasible interior-point algorithm. Indeed, the pair
(2) and (3) appears often in the analysis of infeasible interior-point algorithms. In par-
ticular, primal-dual infeasible interior-point algorithms typically generate a sequence
of feasible solutions to P(tk, tk) and D(tk, tk), where Ip and Id are determined by the
initial value of the algorithm and tk is a positive sequence converging to 0. By The-
orem 2 , the common optimal value v(tk, tk) of P(tk, tk) and D(tk, tk) converges to
va(π/4)which is between v(P) and v(D). Therefore, if we can show that an infeasible
interior-point algorithm generates a sequence which approaches v(tk, tk) as k → ∞,
we can prove that that sequence converges to v(π/4) in the end.

Exploiting this idea, we obtain the following convergence results without any
assumption on the feasibility status of the problem. We consider two typical well-
known polynomial-time algorithms by Zhang [48] and Potra and Sheng [32]. But the
idea can be applied to a broad class of infeasible interior-point algorithms to obtain
analogous results. They are stated formally in Theorem 5 and Theorem 6, and sum-
marized as follows:

1. The algorithms [32, 48] generate asymptotically pd-feasible sequences with the
duality gap Xk • Sk and tk converging to zero if and only if P and D are asymptot-
ically pd-feasible.

2. IfP andD are asymptotically pd-feasible, the sequence of modified primal and dual
objective values converges to a common value between the primal optimal value
v(P) and the dual optimal value v(D) even in the presence of nonzero duality gap.

The modified primal and dual objective values mentioned in the statements can be
easily computed using the current iterate and do not require any extra knowledge.
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If P and D are not asymptotically pd-feasible, namely, if one of the problems is
strongly infeasible, the algorithms get stuck at a certain point and they fail to generate
an asymptotically pd-feasible sequence and fails to drive duality gap and tk to 0. But
the algorithms never fails to generate asymptotically pd-feasible sequences as long as
the problems are asymptotically pd-feasible.

We note that Theorems 5 and 6 are to some extent surprising in that infeasible
interior-point algorithms work in a meaningful manner without making any restric-
tive assumptions, at least in theory. This might have interesting implications when
solving SDP relaxations arising from hard optimization problems such as MISDP by
using infeasible interior-point algorithms. The theorems guarantees that the modified
objective function value converges to a value between the primal and dual optimal
values. Therefore, the limiting modified objective value can always be used to bound
the optimal value of linear SDP relaxations obtained when solving MISDP via, say,
branch-and-bound as in [10]. We should mention, however, that if one tries to imple-
ment this idea, one would still need to find a way to overcome the severe numerical
difficulties that may happen when attempting to solve singular SDPs directly.

Finally, while the results of this paper clarifies some aspects of the limiting behavior
of infeasible interior-point algorithms when applied to a problemwith nonzero duality
gap, we remark that deriving similar results for self-dual embedding approaches is still
an open problem.

2.3 Related work

Our work is closely related to perturbation theory and sensitivity analysis which are,
of course, classic topics in the optimization literature. In particular, there are a number
of results on perturbation of semidefinite programs and closely related topics, see [3,
23, 24, 42]. The book by Bonnans and Shapiro [3], for instance, has many results
on the perturbation and sensitivity analysis of general conic programs that are later
specialized to nonlinear SDPs in Sect. 5.3 therein. See also [37] for earlier results in
the context of convex optimization. However, many of those results require that some
sort of constraint qualification holds.

In particular, in Chapter 4 of [3] there is a discussion of a family of optimization
problems having the format

min
x∈X f (x, u) s.t. G(x, u) ∈ K, (6)

where f and G are functions depending on the parameter u and K is a closed convex
set in some Banach space. Denote by v(u), the optimal value of (6). For some fixed
u0, many results are proved about the continuity of v(·) [3, Proposition 4.4], or the
directional derivatives of v(·) in a neighborhood of u0 [3, Theorem 4.24].

However, these existing results do not cover the situations we will deal in this
paper. [3, Proposition 4.4], for example, requires a condition called inf-compactness,
which implies, in particular, that the set of optimal solutions of the problem associated
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to v(u0) be compact. [3, Theorem 4.24], on the other hand, requires that the set of
optimal solutions associated to v(u0) be non-empty. In contrast, neither compactness
nor non-emptiness is assumed in this paper.

The perturbation we consider is closely related to the infeasible central path appear-
ing in the primal-dual infeasible interior-point algorithms. In fact, we use some
properties of the infeasible central path in our proof. The papers [21, 33] showed
the analyticity of the entire trajectory including the end point at the optimal set under
the existence of primal-dual optimal solutions satisfying strict complementarity con-
ditions. A very recent paper [41] analyzes the limiting behavior of singular infeasible
central paths taking into account the singularity degree. Therein, the authors analyze
the speed of convergence under the assumption that the feasible region exists and is
bounded. No strong feasibility assumption is made, although we remark that if the
feasible region of a primal SDP is non-empty and bounded, then its dual counterpart
must satisfy Slater’s condition. While their analysis conducts a detailed limiting anal-
ysis on the asymptotic behavior of the central path, our analysis deals with the limiting
behavior of the optimal value of the perturbed system under weaker assumptions.

In reality, it may be necessary to estimate the error of an approximate optimal
solution to a problem with a finite perturbation. In this regard, an interesting and
closely related topic to the limiting perturbation analysis is error bounds. The error
bound analysis is relatively easy under primal-dual strong feasibility, but it becomes
much harder for singular SDPs. See [22, 43] for SDP and SOCP, and [17] for a more
general class of convex programs. The relationship between forward and backward
errors of a semidefinite feasibility system is closely related to its singular degree,which,
roughly, is defined as the number of facial reduction steps necessary for regularizing the
problem. Recently, some analysis of limiting behaviors of the external (or infeasible)
central path involving singularity degree is developed in [41]. Finally, wemention [39]
which conducted a sensitivity analysis of SDP under perturbation of the coefficient
matrices “Ai”.

3 Preliminaries

In this section, we introduce three ingredients of this paper, namely, asymptotic strong
duality, infeasible interior-point algorithms and real-algebraic geometry.

3.1 Asymptotic strong duality

A main difference between the duality theory in linear programming and general
convex programming is that the latter requires some regularity conditions for strong
duality to hold. If such regularity condition is violated, then the primal and dual may
have nonzero duality gap [34]. Nevertheless, the so-called asymptotic strong duality
holds even in such singular cases [1, 3, 8, 23, 24, 36, 42]. Here we quickly review the
result and work on it a bit to derive a modified and simplified version suitable for our
purposes.
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Let a-val(P) and a-val(D) be

a-val(P) ≡ lim
ε↓0 inf‖�b‖<ε

inf{C • X | A(X) = b + �b, X � 0},

a-val(D) ≡ lim
ε↓0 sup

‖�C‖<ε

sup

{

bT y| C + �C −
∑

i

Ai yi � 0

}

. (7)

Here, a-val(P) and a-val(D) are called the asymptotic optimal values of P and D,
respectively [36]. (It is also called subvalue in [1, 3, 8, 23, 24].) The following
asymptotic duality theorem holds, see also [8, Theorem 1], [1, Lemmas 1 and 2],
[23, Theorem 2], [24, Theorem 6] for similar statements.

Theorem (Asymptotic Duality Theorem, e.g., [36, Theorem 3.2.4])

1. If P is asymptotically feasible, then, a-val(P) = v(D).
2. If D is asymptotically feasible, then, a-val(D) = v(P).

Note that the Asymptotic Duality Theorem includes the cases where a-val(·) = ±∞.
Now we develop a simplified version of the Asymptotic Duality Theorem. Let

ε ≥ 0, and let D(ε) be D(ε, 0), i.e., the relaxed dual problem

max bT y s.t. C −
m∑

i=1

Ai yi + ε Id = S, S � 0. (8)

According to the notation introduced in Sect. 2.2, the optimal value of (8) is written
as v(ε, 0). Recall also that

lim
ε↓0 v(ε, 0) = va(0) = va(D).

Next we consider an analogous relaxation at the primal side. Notice that (8) is
obtained by shifting the semidefinite cone by−ε Id . The analogous perturbation of the
primal problem is given by

min C • X̃ s.t. A(X̃) = b, X̃ � −ηIp, (9)

where η ≥ 0. Letting X ≡ X̃ + ηIp, we obtain

min C • X − ηC • Ip s.t. A(X) = b + ηA(Ip), X � 0. (10)

The optimal value of (9) is monotone decreasing in η, because the feasible region
enlarges as η is increased (strictly speaking, it does not shrink). Observe also that this
problem is P(0, η) with the objective function shifted by a constant −ηC • Ip. Since
this constant vanishes as η → 0, we obtain

va

(π

2

)
= va(P) = lim

η↓0 v(0, η) = lim
η↓0{The optimal value of (10)}.

123



542 T. Tsuchiya et al.

Now we prove Theorem 3, which is a simplified version of the asymptotic duality
theorem discussed above. Compared with the asymptotic duality results discussed in
[1, 3, 8, 23, 24, 36], the key difference is that we only consider perturbations along a
single direction in each of the primal and dual problems, while in the aforementioned
works the perturbation space is larger. Indeed, in the Asymptotic Duality Theorem (as
stated above), the perturbation space is‖�b‖ < ε and‖�C‖ < ε at the primal anddual
sides, respectively. In contrast, in Theorem 3 below, we only consider perturbations
along a single direction at each of the primal and dual problems (i.e., along Ip and Id ,
respectively). Since it is not a priori obvious that the smaller perturbation space is still
enough to close the duality gap, we provide a detailed proof showing how to go from
the Asymptotic Duality Theorem to Theorem 3.

Theorem 3 The following statements hold.

1. If D is asymptotically feasible, then

va(0) = va(D)= lim
ε↓0 v(ε, 0) = v(P). (11)

2. If P is asymptotically feasible, then

va(π/2) = va(P)= lim
η↓0 v(0, η) = v(D). (12)

Proof Recall that by definition (see (5)), we have va(0) = va(D) and va(π/2) =
va(P).

First we show that va(D) = v(P). From the Asymptotic Duality Theorem,
a-val(D) = v(P) holds including the special caseswhere a-val(D) = ±∞.We observe
that a-val(D) satisfies

a-val(D) = lim
ε↓0 sup

y,�C

{

bT y | C + �C −
∑

i

Ai yi � 0, ‖�C‖ ≤ ε

}

,

where ‖�C‖ < ε in (7) is changed to ‖�C‖ ≤ ε.
Since va(0) is obtained by restricting the condition on �C from “‖�C‖ ≤ ε” to

“�C = ε Id/‖Id‖”, we obtain va(0) ≤ a-val(D) = va(D). We also have the converse
inequality va(0) ≥ va(D) because

a-val(D) = lim
ε↓0 sup

{

bT y | C + �C −
∑

i

Ai yi � 0, ‖�C‖ ≤ ε

}

= lim
ε↓0 sup

{

bT y | C + �C −
∑

i

Ai yi � 0, −ε I � �C � ε I

}

≤ lim
ε↓0 sup

{

bT y | C + �C −
∑

i

Ai yi � 0, �C � ε I

}
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≤ lim
ε↓0 sup

{

bT y | C + �C −
∑

i

Ai yi � 0, �C � ε‖I−1
d ‖Id

}

≤ lim
ε↓0 sup

{

bT y | C + ε Id −
∑

i

Ai yi � 0

}

= va(D).

Here we used I � ‖I−1
d ‖Id for the second inequality. The proof of item 1 is complete.

We proceed to prove item 2. From the Asymptotic Duality Theorem again, we
have v(D) = a-val(P). Hence, for the sake of proving assertion 2, it suffices to show
that va(P) = a-val(P). The proof of the inequality va(P) ≥ a-val(P) is analogous
to the proof for va(D) ≤ a-val(D). We will now show the converse inequality. If
a-val(P) = +∞, then va(P) ≥ a-val(P) implies that va(P) = +∞. Therefore, in
what follows we assume that a-val(P) < +∞.

By assumption, P is not strongly infeasible (see Sect. 2.1). By the definition of
a-val(P), for every ε > 0 sufficiently small, there exist Xε and�bε such that ‖�bε‖ ≤
ε, Xε is feasible to “A(X) = b + �bε, X � 0”, and

a-val(P) = lim
ε↓0 C • Xε. (13)

Note that this is still valid even when a-val(P) = −∞.
In addition, the fact that P is not strongly infeasible implies the existence of a

solution to the system “A(X ′) = b”. As a consequence, “A(Y ) = �bε” too has a
solution when�bε is as described above. Otherwise, “A(X) = b+�bε” is infeasible,
contradicting the existence of Xε above.

Next, we show that there exists M > 0 depending only on A such that “A(Y ) =
�bε” has a solution with norm bounded by M‖�bε‖. Let V denote the set of solutions
to “A(Y ) = �b” and let S be a symmetric matrix. Denote by dist (S,V) the Euclidean
distance between S and V . Hoffman’s lemma (e.g., [11, Theorem 11.26]) says that
there exists a constant M depending on A but not on�b such that for every S, we have
that dist (S,V) is bounded above by M‖�b − A(S)‖. Taking S = 0, we conclude the
existence of Y satisfying A(Y ) = �b and ‖Y‖ ≤ M‖�b‖.

Let Yε be one such solution. Then ‖Yε‖ ≤ M‖�bε‖ ≤ Mε for each sufficiently
small ε > 0 and hence

lim
ε↓0 ‖Yε‖ = 0. (14)

Observing that ‖I−1
p ‖Ip � I and ‖Yε‖I − Yε � 0 yield ‖Yε‖‖I−1

p ‖Ip − Yε � 0, we
let

X ′
ε ≡ Xε + ‖Yε‖‖I−1

p ‖Ip − Yε.

With that, X ′
ε is positive semidefinite and is a feasible solution to P(0, η) with η =

‖Yε‖‖I−1
p ‖ (see (4)). Furthermore,
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|C • Xε − C • X ′
ε| = |C • (‖Yε‖‖I−1

p ‖Ip − Yε)| ≤ 2‖C‖‖Yε‖‖I−1
p ‖‖Ip‖F ,

(15)

which approaches 0 by driving ε → 0 because of (14).
We are now ready to show the desired assertion.Notice thatwe have limε↓0 C•X ′

ε ≥
va(P), since X ′

ε is feasible to P(0, ‖Yε‖‖I−1
p ‖) and (14) holds. This fact combined

with (13) and (15) implies va(P) ≤ a-val(P). The proof is complete. ��
Theorem 3 motivates our subsequent discussion and leads naturally to an examina-

tion of what happens when P and D are simultaneously perturbed, which is the focus
of Theorems 1, 2 and 4.

3.2 Infeasible primal-dual interior-point algorithms

We introduce some basic concepts of infeasible primal-dual interior-point algorithms
for SDP [32, 45, 47, 48]. This is because our analysis leads to a novel conver-
gence property of the infeasible primal-dual interior-point algorithms when applied
to singular problems. We also need some theoretical results about infeasible interior-
point algorithms in the proof of Theorem 1. In this subsection, we assume that Ai

(i = 1, . . . ,m) are linearly independent. This assumption is not essential but to ensure
uniqueness of y and �y in the system of equations of the form S = ∑

i Ai yi + C ′
and �S = ∑

i Ai�y + R′ with respect to (S, y) and (�S,�y), respectively, where
C ′ and R′ are constants, which appear throughout the analysis.

3.2.1 Outline of infeasible primal-dual interior-point algorithms

Primal-dual interior-point methods for P and D are based on the following optimality
conditions:

XS = 0, C −
∑

i

Ai yi = S, A(X) = b X � 0, S � 0. (16)

Rather than solving this system directly, a relaxed problem

XS = ν I , C −
∑

i

Ai yi = S, A(X) = b, X � 0, S � 0, (17)

is considered, where ν > 0. The algorithm solves (16) by solving (17) approximately
and reducing ν gradually to zero repeatedly. This amounts to following the central
path

{(Xν, Sν, yν) | (X , S, y) = (Xν, Sν, yν) is a solution to (17), ν ∈ (0,∞]} (18)

towards “ν = 0”. Let us take a closer look at the algorithm proposed by Zhang, more
precisely, Algorithm-B of [48].
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Let (X , S, y) be the current iterate such that X � 0 and S � 0. Themethod employs
the Newton direction to solve the system (17). More precisely, the first equation XS =
ν I is replaced with an equivalent symmetric reformulation

�(X , S) = 1

2
(PXSP−1 + P−1SX P) = ν I , (19)

where P is a constant nonsingular matrix. In Zhang’s algorithm, the constant matrix
P is set to S1/2. Then we consider a modified nonlinear system of equations to (17)
where XS = ν I is replaced with (19). The Newton direction (�X ,�S,�y) for that
modified system at the point (X , S, y) is the unique solution to the following system
of linear equations.

�(X , S) + L�(�X ,�S) = ν I ,

C −
∑

i

Ai (yi + �yi ) = S + �S, (20)

A(X + �X) = b,

where L� is a linearization of �(X , S).
Starting from the kth iterate (Xk, Sk, yk) = (X , S, y), the next iterate

(Xk+1, Sk+1, yk+1) is determined as:

(Xk+1, Sk+1, yk+1) = (Xk, Sk, yk) + sk(�X ,�S,�y). (21)

The stepsize 0 < sk ≤ 1 is chosen not only so that Xk+1 and Sk+1 are strictly positive
but also carefully so that they stay close to the central path in order to ensure good
convergence properties. Then ν is updated appropriately and the iteration continues.

Now we briefly describe another representative polynomial-time infeasible primal-
dual interior-point algorithm developed by Potra and Sheng [32]. Let (X0, S0, y0) be
a point satisfying X0 � 0 and S0 � 0 and consider the path defined as follows.

{(X , S, y) | XS = t I , C −
∑

Ai yi − S = t(C −
∑

Ai y
0
i − S0),

A(X) − b = t(A(X0) − b), X � 0, S � 0, t ∈ (0, 1]}. (22)

The algorithm follows this path by driving t → 0 and using a predictor-corrector
method.

We note that polynomial-time convergence is proved for both algorithms [32, 48]
assuming the existence of optimal solutions (X∗, S∗, y∗) to P and D. In the analysis,
the initial iterate (X0, S0, y0) is set to (ρ0 I , ρ1 I , 0) where ρ0 and ρ1 are selected
to be large enough in order to satisfy the conditions X0 − X∗ � 0 and S0 − S∗ �
0. Although the polynomial convergence analysis was conducted using this initial
iterate, the algorithms themselves can be applied to any SDP problem by choosing
(X0, S0, y0) such that X0 � 0 and S0 � 0 as the initial iterate.

In many practical implementations of the algorithm [45, 47], they take different
stepsizes in the primal and dual space for the sake of practical efficiency. For simplicity
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of presentation, we only analyze the case (21)which corresponds to the situationwhere
we take the same stepsize in the primal-dual space.

The following well-known property connects Theorems 1 and 2 to the analysis of
infeasible interior-point algorithms.

Proposition 1 Let X0 � 0 and S0 � 0, and let {(Xk, Sk, yk)} be a sequence generated
by the primal-dual infeasible interior-point algorithms in [32, 48] with initial iterate
(X0, S0, y0). Let I ′

d ≡ S0 − (C − ∑
Ai y0i ) and let I ′

p ≡ X0 − X̃ where A(X̃) = b.

Then, there exists a nonnegative sequence {tk} such that the following equations hold:

(C + tk I ′
d) −

∑

i

Ai y
k = Sk, A(Xk) = b + tk A(I ′

p). (23)

(cf. The linear equality constraints of (2) and (3))

Proof This result is a fundamental tool used in the analysis of the algorithms in [32,
48]. For the sake of completeness, here we prove the result only for Zhang’s algorithm.

We prove the first relation of (23) by induction. For k = 0, the proposition holds
by taking t0 ≡ 1. Suppose that the relation (23) holds for k, then, the search direction
(�X ,�S,�y) is the solution to the linear system of equations (20) with (X , S, y) =
(Xk, Sk, yk). Because of the second equation of (20), we have

C −
∑

Ai (y
k
i + �yi ) − (Sk + �S) = 0.

Therefore,

C −
∑

Ai (y
k
i + sk�yi ) − (Sk + sk�S) = (1 − sk)

(
C −

∑
Ai y

k
i − Sk

)
.

Since yk+1
i = yki + sk�yi and Sk+1 = Sk + sk�S, we obtain

C −
∑

Ai y
k+1
i − Sk+1 = (1 − sk)tk I ′

d = tk+1 I ′
d

as we desired, because C − ∑
Ai yki − Sk = tk(C − ∑

Ai y0i − S0) = tk I ′
d holds

by the induction assumption. The primal relation, i.e., the right side in (23), follows
similarly. ��
Remark In view of Proposition 1, by convention, we treat tk as a part of iterates of the
algorithms. By its construction, we have t0 = 1 and

tk+1 =
k∏

l=0

(1 − sl) (24)

for k = 0, 1, . . .
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3.2.2 Path formed by points on the central path of perturbed problems

We fix ν to be a positive number, and consider the following system of equations and
semidefinite conditions parametrized by t > 0:

XS − ν I = 0, C + tα Id −
∑

i

Ai yi − S = 0,

A(X − tβ Ip) − b = 0,

X � 0, S � 0.

(25)

We denote by wν(t) ≡ (Xν(t), Sν(t), yν(t)) the solution of (25) (if it exists). If the
problem is asymptotically pd-feasible, for any t > 0, P(tα, tβ) and D(tα, tβ) are
strongly feasible. Then the solution of (25) defines a point on the central path with
parameter ν of the primal-dual pair of strongly feasible SDP:

min (C + tα Id) • X s.t. A(X − tβ Ip) = b, X � 0 (26)

and

max
∑

i

(bi + tβAi • Ip)yi s.t. C + tα Id −
∑

i

Ai yi = S, S � 0, (27)

wherewe note that t is fixed in (26) and (27). In this case,wν(t) is ensured to exist and is
uniquely determined for all t ∈ (0,∞) (due to the assumption of linear independence
of Ai , i = 1, . . . ,m). Moreover, the set

C ≡ {wν(t) | t ∈ (0,∞)} (28)

forms an analytic path running throughSn++×Sn++×R
m . The existence and analyticity

of C is a folklore result (e.g., [21, 33]), but we outline a proof in the Appendix A based
on a result in [26]. We note that the existence and analyticity of the path just relies
on local conditions, so, the existence of optimal solutions of P and D is not necessary.
A special case where ν = 1 and C = 0 is analyzed in [40] in the context of facial
reduction.

Since A(Xν(t)) = b+tβA(Ip),C+tα Id−∑
i Ai yνi (t) = Sν(t), and Xν(t)Sν(t) =

ν I hold, we have

0 ≤ (C + tα Id) • Xν(t) −
m∑

i=1

(bi + tβAi • Ip)yνi (t)

= (C + tα Id) • Xν(t) −
m∑

i=1

Ai • Xν(t)yνi (t)

= Sν(t) • Xν(t) = Tr(Xν(t)Sν(t)) = Tr(ν I ) = nν. (29)
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Let us denote by vopt(t) the common optimal value of (26) and (27). Since vopt(t)
is between (C + tα Id) • Xν(t) and

∑m
i=1(bi + tβAi • Ip)yνi (t), i.e.,

vopt(t) ∈
[

m∑

i=1

(bi + tβAi • Ip)yνi (t), (C + tα Id) • Xν(t)

]

(30)

holds by weak duality, we see, together with (29), that

0 ≤ (C + tα Id) • Xν(t) − vopt(t) ≤ nν (31)

holds for each t > 0.

3.3 Semialgebraic sets and the Tarski-Seidenberg Theorem

A set S in R
k is called basic semialgebraic if it can be written as the set of solutions

of finitely many polynomial equalities and strict polynomial inequalities. Then, a set
is said to be semialgebraic if it is a union of finitely many basic semialgebraic sets.
In particular, a semialgebraic set in R is a union of finitely many points and intervals.
For x = (x1, . . . , xk) ∈ R

k , let T (x) be a coordinate projection to R
k−1 defined

as T (x) ≡ (x2, . . . , xn). The Tarski-Seidenberg Theorem states that a coordinate
projection of a semialgebraic set is again a semialgebraic set in the lower-dimensional
space, and described as follows.

Tarski-Seidenberg Theorem (e.g. Theorem 2.2.1 of [2])
Let W ⊆ R

k be a semialgebraic set. Then, T (W ) is a semialgebraic set in Rk−1.

4 Proof of themain results

In this section, we prove Theorems 1 and 2. We start with some basic properties of
v(ε, η).

Proposition 2 If the problem is asymptotically pd-feasible, the following statements
hold.

1. v(ε, η) is well-defined for all (ε, η) ≥ 0 not equal to (0, 0). Furthermore,

(i) limε↓0 v(ε, 0) = v(P) and
(ii) limη↓0 v(0, η) = v(D)

hold including the cases where their values are ±∞.
2. v(ε, η) is a monotone increasing concave function in ε. (From item 1., if η > 0,

v(ε, η) is well-defined over [0,∞). If η = 0, v(ε, η) is well-defined over (0,∞).)
3. vP (ε, η) ≡ v(ε, η) − ηC • Ip − ηε Id • Ip is a monotone decreasing and convex

function in η. (From item 1., if ε > 0, vP (ε, η) is well-defined over [0,∞). If ε = 0,
vP (ε, η) is well-defined over (0,∞).)

Proof Item 1. follows directly from Theorem 3. Next, we move on to item 2. Let
(ε1, η) ≥ 0, (ε2, η) ≥ 0 and, without loss of generality, we may assume that 0 ≤ ε1 <
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ε2. By definition, v(ε, η) coincides with v(D(ε, η)) whenever v(ε, η) is well-defined,
see Sect. 2.2. Then, v(ε, η) is monotonically increasing in ε because if y is feasible
for D(ε1, η) then y is feasible for D(ε2, η) too. Next, we prove concavity and we will
start by first considering the case η > 0.

There are two sub-cases to consider: when ε1 = 0 and when ε1 > 0. In the latter
sub-case, D(ε1, η) and D(ε2, η) are both feasible, since ε1, ε2 and η are all positive
and asymptotic primal-dual feasibility was assumed. For simplicity, we define b̂ as the
vector corresponding to the objective function of D(ε, η) so that

b̂T y =
m∑

i=1

(bi + ηAi • Ip)yi , ∀y ∈ R
m .

We let yk and ȳk be sequences of feasible solutions ofD(ε1, η) andD(ε2, η) satisfying

b̂T yk → v(D(ε1, η)) and b̂T ȳk → v(D(ε2, η)).

Then, for t ∈ [0, 1], we have that t yk + (1 − t)ȳk is a feasible solution to D(tε1 +
(1 − t)ε2, η) with objective value b̂T (t yk + (1 − t)ȳk). Then it follows

v(D(tε1 + (1 − t)ε2, η)) = v(tε1 + (1 − t)ε2, η)

≥ b̂T (t yk + (1 − t)ȳk) = t b̂T yk + (1 − t)b̂T ȳk .

Taking the limit with respect to k, we obtain

v(tε1 + (1 − t)ε2, η) ≥ tv(ε1, η) + (1 − t)v(ε2, η) (32)

as we desired.
Nowwe dealwith the sub-casewhere ε1 = 0. By assumption,we have ε2 > ε1 = 0,

implying that v(ε2, η) is finite. Then, we can proceed analogously except thatD(0, η)

may be infeasible so that v(ε1, η) = v(0, η) = −∞. However, in that case, since
v(tε1 + (1 − t)ε2, η) = v((1 − t)ε2, η) is finite for all t ∈ [0, 1), we see that (32)
indeed holds. This concludes the proof for the case where η > 0.

Finally, we deal with the case η = 0. In this case, wemay assume that ε1 is positive,
since v(ε1, 0)might not bewell-defined otherwise. By assumption,D is asymptotically
feasible, so D(ε, 0) is always feasible for ε > 0. Thus the optimal value of D(ε1, 0) is
either finite or is +∞.

There are two sub-cases to consider. First, suppose that the optimal value ofD(ε, 0)
is +∞ for some ε > 0. Then, P(ε, 0) is infeasible. However, the feasible region of
P(ε, 0) is the same for all ε > 0, which implies infeasibility of P(ε, 0) for all ε > 0.
Consequently, v(ε, 0) = +∞ for all ε > 0 and (32) holds.

The next sub-case is when the optimal value of D(ε, 0) is finite for all ε > 0. In
particular, v(D(ε1, η)) and v(D(ε2, η)) are both finite and we can proceed as in the
proof of the case η > 0. This concludes the proof of item 2.

Nowwe prove item 3. First, we recall that the optimal value of (10) (or, equivalently,
(9)) is monotone decreasing in η. If we replace C with C + ε Id in (10) we obtain
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min (C + ε Id) • X − η(C + ε Id) • Ip s.t. A(X) = b + ηA(Ip), X � 0. (33)

Similarly, the optimal value of (33) is monotone decreasing in η, when ε is fixed. Since
(33) differs from P(ε, η) by the term (η(C • Ip)+ηε Id • Ip) in the objective function,
the optimal value of (33) can be written as

v(ε, η) − (η(C • Ip) + ηε Id • Ip),

which is precisely vP (ε, η). Therefore vP (ε, η) is monotone decreasing with respect
to η.

Finally, for fixed ε, vP (ε, η) and v(ε, η) differ by a linear function in η. So to prove
that vP (ε, η) is convex as a function of η, it is enough to prove that v(ε, η) is convex
as a function of η. This can be done analogously to the proof of item 2., so we omit
the details. ��

In the following, we prove Theorem 1. The theorem claims that, even though v(0, 0)
is not well-defined, the limiting value exists when approaching (0, 0) along a straight
line emanating from the origin to any direction of the first orthant.

Proof of Theorem 1Although the result holds even if the Ai ’s are linearly dependent, for
simplicity sake, in this proof we assume linear independence of the Ai (i = 1, . . . ,m).
In addition, we write v(tα, tβ) as vopt(t), since v(tα, tβ) is the common optimal value
to the primal-dual pairP(tα, tβ) andD(tα, tβ).We also assume that α > 0 and β > 0,
since the proof for the case where either of α and β is 0 (but (α, β) 	= 0) has already
been established in Proposition 2.

Recall that we introduced the analytic path C in Sect. 3.2.2 (See (25)–(28)). We
follow the same notation described therein. The path C is parametrized by t . We
divide the proof into the following two steps:
(Step 1) For any fixed ν > 0, we prove the monotonicity of (C + tα Id) • Xν(t) when
t > 0 is sufficiently small.
(Step 2) Prove the existence of limt↓0 vopt(t).

(Step 1)
We analyze the behavior of (C+tα Id)•Xν(t) along the path C as t → 0. Recall that

(25) is the system parametrized by t which defines the path C. By differentiating the
three equations in (25) with respect to t , we see that the following system of equations
in (t, X , S, y, δX , δS, δy) (with semidefinite constraints on X and S)

XδS + δXS = 0,
α Id − ∑

i
Aiδyi = δS,

Ai • (δX − β Ip) = 0, (i = 1, . . . ,m),

XS = ν I ,
C + tα I − ∑

i
Ai yi = S,

Ai • (X − tβ Ip) = bi , (i = 1, . . . ,m),

X � 0, S � 0, t > 0,

(34)
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has a unique solution

(t, X , S, y, δX , δS, δy) =
(

t, Xν(t), Sν(t), yν(t),
dXν(t)

dt
,
dSν(t)

dt
,
dyν(t)

dt

)

for each t ∈ (0,∞). That is, (34) is a system of equations with semidefi-
nite constraints which determines the curve (Xν(t), Sν(t), yν(t)) and its tangent(
dXν (t)
dt ,

dSν (t)
dt ,

dyν (t)
dt

)
. The reason for that is as follows. By the discussion in

Sect. 3.2.2, for fixed t > 0, Xν(t), Sν(t) are uniquely defined. Since the Ai are
linearly independent, yν(t) must be unique as well. In order to see that δX , δS, δy
are also uniquely determined, we take a look at the first three equations of (34) for
fixed positive definite matrices X and S. They become linear equations in δX , δS, δy
and determine a unique solution if and only if the kernel of φ : (U , V , z) �→
(XU+V S, V +∑

i Ai zi , A(U )) is trivial. Supposeφ(U , V , z) = 0. Then,U •V = 0.
Considering the first component of φ, we have the equation XU = −V S, which
implies that νU = −SV S. Taking the inner product with V , we obtain 0 =
(SV S) • V = ‖S1/2V S1/2‖2F . Therefore, S1/2V S1/2 = 0 and since S is invertible,
V = 0. By νU = −SV S, we have U = 0.

Now we are ready to proceed. Let us denote by D the set of solutions to (34) as
follows:

D = {(t, X , S, y, δX , δS, δy) | (t, X , S, y, δX , δS, δy) satisfies (34).}

Each element of D can be seen as a pair consisting of a point on C and its tangent.
Since the semidefinite conditions S � 0 and X � 0 can be written as the solution set
of finitely many polynomial inequalities, D is a semialgebraic set.

Now we claim that (C + tα Id)• Xν(t) is either monotonically increasing or mono-
tonically decreasing for sufficiently small t . To this end, we analyze the set of local
minimum points and local maximum points of (C + tα Id) • Xν(t) over (0,∞). A
necessary condition for local minimum and maximum points is:

d(C + tα Id) • Xν(t)

dt
= (C + α Id) • dXν(t)

dt
+ α Id • Xν(t) = 0.

Recall that for t̂ > 0, ( dXν

dt (t̂), dSν

dt (t̂), dyν
dt (t̂)) is the tangent part (δX , δS, δy) of

the unique solution to (34) with t = t̂ . With that in mind, a necessary condition for
(C + tα Id) • Xν(t) to have an extreme value at t is that t is in the set

T1 ≡ {t | (t, X , S, y, δX , δS, δy) ∈ T },

where

T ≡ {(t, X , S, y, δX , δS, δy) ∈ D | (C + tα Id) • δX + α Id • X = 0}.
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SinceD is a semialgebraic set, so is T . Since T1 is the projection of T onto the t coor-
dinate, by applying the Tarski-Seidenberg Theorem, we see that T1 is a semialgebraic
set.

Thus, T1 is a semialgebraic set contained in R, therefore T1 can be expressed as a
union of finitely many points and intervals over R. Since (C + tα Id) • Xν(t) is an
analytic function (see Sect. 3.2.2), the same is true for its derivatives. Therefore, if T1
contains an interval, then the derivative of (C + tα Id) • Xν(t) with respect to t must,
in fact, be zero throughout (0,∞)1. In particular, (C + tα Id) • Xν(t) is constant for
all t > 0. Thus, (C + tα Id)• Xν(t) is a monotonically increasing/decreasing function
in this case.

Now we deal with the case where T1 consists of a finite number of points only. We
recall that (C + tα Id) • Xν(t) takes an extreme value at t only if t ∈ T1. This implies
that the number of extremal points of (C + tα Id) • Xν(t) is finite and hence (C +
tα Id)•Xν(t) is monotonically increasing or monotonically decreasing for sufficiently
small t .

(Step 2)
It follows from Step 1 that there are three possibilities.

(i) limt↓0(C + tα Id) • Xν(t) = ∞,
(ii) limt↓0(C + tα Id) • Xν(t) = −∞,
(iii) limt↓0(C + tα Id) • Xν(t) is a finite value.

First we consider cases (i) and (ii). Recalling (31), we have |(C + tα Id) • Xν(t) −
vopt(t)| ≤ nν. Therefore, vopt(t) diverges to +∞ and −∞, respectively. This corre-
sponds to the case of the theorem where the limit is ±∞.

Next, we proceed to case (iii). In this case, vopt(t) is bounded for sufficiently small
t > 0 because |vopt(t)− (C + tα Id) • Xν(t)| ≤ nν and (C +α Id) • Xν(t) is bounded
for sufficiently small t > 0. Therefore, there exist three constants M1, M2, and t̄ > 0
such that M1 < M2 and t̄ > 0 for which

vopt(t) ∈ [M1, M2] if t ∈ (0, t̄].

For the sake of obtaining a contradiction, we assume that vopt(t) does not have a
limit as t → 0. Then, there exists an infinite sequence {tk} with limk→∞ tk → 0
where {vopt(tk)} has two distinct accumulation points, v1 and v2, say. Without loss of
generality, we let v1 > v2 and z ≡ v1 − v2.

Let ν̃ ≡ z/(6n). By Step 1, it follows that (C+tα Id)•X ν̃ (t) is a monotone function
for sufficiently small t > 0. Furthermore, since vopt(t) is bounded for sufficiently small
t , (31) implies that (C + tα Id) • X ν̃ (t) does not diverge and has a limit as t ↓ 0. Let
us denote by c∗

ν̃
the limit value, and let t̃ > 0 be such that

|(C + tα Id) • X ν̃ (t) − c∗
ν̃ | ≤ z

6
(35)

1 Herewe are using the fact that the zero function is analytic and if two real analytic functions f : (0, ∞) →
R, g : (0, ∞) → R coincide in some interval (a, b) with a < b, then f and g coincide throughout (0, ∞),
e.g., [14, Corollary 1.2.6].
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holds for any t ∈ (0, t̃]. On the other hand,

|(C + tα Id) • X ν̃ (t) − vopt(t)| = (C + tα Id) • X ν̃ (t) − vopt(t) ≤ nν̃ = z

6
(36)

holds due to (31). Adding (35), (36) and using the triangular inequality, we see that

|c∗
ν̃ − vopt(t)| ≤ z

3
, i.e., c∗

ν̃ − 1

3
z ≤ vopt(t) ≤ c∗

ν̃ + 1

3
z

holds for any t ∈ (0, t̃]. Together with the fact that v1 > v2 are the two accumulation
points of {vopt(t)}, the above relation yields

c∗
ν̃ − 1

3
z ≤ v2 < v1 ≤ c∗

ν̃ + 1

3
z.

This implies z = v1−v2 ≤ 2z/3 and hence z ≤ 0, which, however, contradicts z > 0.
Therefore, the accumulation point of vopt(t) is unique and the limit of vopt(t) exists
as t ↓ 0. ��

Now we are ready to prove Theorem 2. Let

ṽ(β) ≡ lim
t↓0 v(t, tβ) for β ∈ [0,∞), ṽ(∞) ≡ lim

t↓0 v(0, t).

We note that

va(θ) = lim
t↓0 v(t cos θ, t sin θ) = ṽ(tan θ).

Theorem 2 is a direct consequence of the following theorem.

Theorem 4 If the problem is asymptotically pd-feasible, then ṽ(β) is a monotone
decreasing function in β in the interval [0,+∞] and the following relation holds.

v(D) = ṽ(∞) ≤ ṽ(β) ≤ ṽ(0) = v(P).

Furthermore, ṽ(β) is a convex function in the interval [0,∞).

Proof We first show that ṽ is a monotone decreasing function in [0,∞). Suppose that,
by contradiction, monotonicity is violated, namely, there exists β1 and β2 such that
β1 < β2 and ṽ(β1) < ṽ(β2). Let u = ṽ(β2) − ṽ(β1) > 0. Recall that

ṽ(β) = lim
t→0

v(t, tβ).

We show that for sufficiently small t

v(t, tβ2) − v(t, tβ1) ≤ u/2
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holds, which contradicts ṽ(β2) − ṽ(β1) = limt↓0(v(t, tβ2) − v(t, tβ1)) = u. In fact,
since vP (ε, η) = v(ε, η) − η(C • Ip + ε Id • Ip) is a monotone decreasing function in
η (see item 3 of Proposition 2),

v(t, tβ) − tβ(C • Ip + t Id • Ip)

is a monotone decreasing function in β. Therefore,

v(t, tβ2) − tβ2(C • Ip + t Id • Ip) ≤ v(t, tβ1) − tβ1(C • Ip + t Id • Ip)

holds. This implies that, for sufficiently small t > 0,

v(t, tβ2) − v(t, tβ1) ≤ t(β2 − β1)(C • Ip + t Id • Ip) ≤ u

2

and hence letting t → 0, we obtain

0 < u = ṽ(β2) − ṽ(β1) ≤ u

2
,

contradiction.
Now we confirm monotonicity at β = ∞. Since ṽ(∞) = limt↓0 v(0, t), what we

need to show is ṽ(∞) ≤ ṽ(β) for any finite β. This is confirmed as follows:

ṽ(∞) = lim
t↓0 v(0, t) ≤ lim

t↓0 v(β−1t, t) = lim
t↓0 v(t, βt) = ṽ(β) (β > 0).

The first inequality is due to the item 2. of Proposition 2, and the second equality holds
because ṽ(γ ) = ṽ(kγ ) for any k > 0, i.e., ṽ is a homogeneous function.

Now we prove convexity of ṽ(β). We define the function vk as

vk(β) ≡ vP

(
1

k
,
1

k
β

)

.

Then it follows for any β ∈ [0,∞) that

lim
k→∞ vk(β) = lim

k→∞ vP

(
1

k
,
1

k
β

)

= ṽ(β).

Thus, {vk} converges pointwise to ṽ. By item 3. of Proposition 2, vk is convex on
(0,∞), so it follows from [38, Theorem 10.8] that ṽ is also a convex function on
(0,∞). Since ṽ(α) is monotone increasing on [0,∞), ṽ is convex on [0,∞). This
completes the proof of the theorem. ��

Proof of Theorem 2 We recall that a convex function is continuous over the relative
interior of its domain, e.g., [38, Theorem 10.1], so the function ṽ in Theorem 4 is
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continuous over (0,∞). We also recall that va(θ) = limt↓0 v(t cos θ, t sin θ). We
have, for θ ∈ [0, π/2],

va(θ) = lim
t↓0 v(t cos θ, t sin θ) = lim

t↓0 v(t, t tan θ) = ṽ(tan θ).

Since va(θ) = ṽ(tan θ) and tan is a strictly monotone increasing function in θ , Theo-
rem 2 readily follows.

5 Application to infeasible interior-point algorithms

The analysis in the previous section indicates that the limiting common optimal value
of P(tα, tβ) and D(tα, tβ) exists as t → 0 and the value is between v(D) and v(P).
In this section, we discuss an application to the convergence analysis of infeasible
primal-dual interior-point algorithms.

While the efficiency of infeasible interior-point algorithms is supported by a
powerful polynomial-convergence analysis when applied to a primal-dual strongly
feasible problems, its behavior for singular problems was not clear. Our analysis leads
to a clearer picture about what happens when infeasible interior-point algorithms
are applied to arbitrary SDP problems. As indicated in Sect. 3.2, we focus on two
polynomial-time algorithms by Zhang [48] and Potra and Sheng [32], but the idea and
the analysis can be applied to many other variants.

Suppose that X̂ is a solution to A(X) = b, (Ŝ, ŷ) is a solution to S = C −∑
i Ai yi ,

and let

(X0, S0, y0) ≡ (X̂ + ρ sin θ Ip, Ŝ + ρ cos θ Id , 0),

where θ ∈ (0, π/2) and ρ > 0 is sufficiently large so that X0 � 0 and S0 � 0
hold. This is an interior feasible point to the primal-dual pair P(ρ cos θ, ρ sin θ) and
D(ρ cos θ, ρ sin θ), see (2) and (3). In the following, we analyze infeasible primal-dual
interior-point algorithms started from this point.

For simplicity of notation, we let α ≡ cos θ and β ≡ sin θ . As discussed in
Sect. 3.2.1, in particular as stated in Proposition 1, the infeasible primal-dual interior-
point algorithms we are considering generate a sequence (Xk, Sk, yk) of interior
feasible points to the perturbed system

C + tkα Id −
∑

i

Ai y
k
i = Sk, A(Xk − tkβ Ip) = b, Xk � 0, Sk � 0. (37)

for tk ≥ 0. We define

(C + tkα Id) • X and
∑

i

(bi + tkβAi • Ip)y
k
i (38)

as the modified primal objective function and the modified dual objective function,
respectively. If (Xk, Sk, yk, tk) is a sequence satisfying (37) for every k and tk ↓ 0,

123



556 T. Tsuchiya et al.

then it is an asymptotically pd-feasible sequence in the sense that Xk , Sk satisfy the
conic constraints of P and D and the distance between (Xk, Sk, yk) and the set of
solutions to the linear constraints of P and D goes to 0 as k → ∞.2

Now we are ready to describe and prove our first result on infeasible interior-point
algorithms.

Theorem 5 Suppose that X̂ is a solution to A(X̂) = b, (Ŝ, ŷ) is a solution to C −∑
i Ai yi = S, and let (X0, S0, y0) ≡ (X̂ + ρ sin θ Ip, Ŝ + ρ cos θ Id , 0), where θ ∈

(0, π/2) and ρ > 0 is sufficiently large so that X0 � 0 and S0 � 0 hold. Also, let
t0 ≡ 1. Apply the algorithm Algorithm-B of [48] or Algorithm 2.1 of [32] to solve
P and D, and let {(Xk, Sk, yk, tk)} be the generated sequence. Then the following
statements hold.

1. tk → 0 and Xk • Sk → 0 hold if and only if P and D are asymptotically pd-
feasible, namely, the algorithms generate an asymptotically pd-feasible sequence
with duality gap converging to zero if and only if P and D are asymptotically
pd-feasible. See the remark after the proof of the theorem for the behavior of the
algorithms when P and D are not asymptotically pd-feasible.

2. If the problem is asymptotically pd-feasible, then the generated sequence of the
modified primal and dual objective values (38) converges to the value va(θ) ∈
[v(D), v(P)]. Here, we include the possibility that va(θ) = +∞ and va(θ) = −∞,
interpreting them as divergence to +∞ and −∞, respectively.

3. In item2., as θ gets closer to 0 the limitingmodified objective values of the infeasible
primal-dual algorithm get closer to the primal optimal value v(P) of the original
problem. As θ gets closer to π/2 the limiting modified objective value gets closer
to the dual optimal value v(D).

Proof First, we discuss item 1. If {(Xk, Sk, yk, tk)} is an asymptotically pd-feasible
sequence, then P and D must be asymptotically pd-feasible. Next, we take a look at
the converse. In the analysis conducted in [32, 48], although both papers assume the
existence of a solution to (16), in fact, the existence of a solution is not necessary for
showing convergence of tk and Xk • Sk to zero under asymptotic pd-feasibility. Under
asymptotic pd-feasibility, for any t > 0 the perturbed problems are strongly feasible.
This is enough for showing tk → 0 and Xk • Sk → 0 in these algorithms. We give
more details of the proof in Appendix B.

Now we prove items 2. and 3. The following relations hold at the k-th iteration:

(C + tkα Id) • Xk −
∑

i

(bi + tkβAi • Ip)y
k
i = Xk • Sk . (39)

v(tkα, tkβ) ∈
[
∑

i

(bi + tkβAi • Ip)y
k
i , (C + tkα Id) • Xk

]

(40)

(See also (29) and (30) for the derivation of these relations.)

2 We note, however, that this does not imply that, say, the distance between Xk and the feasible region of
P goes to 0 as k → ∞, even if the feasible region of P is not empty. A similar comment applies to Sk , yk

and the feasible region of D. An instructive example can be seen in [43, Example 1].
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Then it follows from (39), (40) and Xk • Sk → 0 that the sets of accumulation
points of {(C + tkα Id) • Xk}, {v(tkα, tkβ)}, and {∑(bi + tkβAi • Ip)yki } coincide.
Since tk → 0, this implies that v(tkα, tkβ) = v(tk cos θ, tk sin θ) converges to va(θ).
Then the sequences of the modified objective functions (38) also converge to va(θ). ��
Remark When P and D are not pd-asymptotically feasible, limk→∞ tk is positive for
both algorithms [32, 48]. But the behavior of the duality gap Xk • Sk is a bit different.
In the case of Zhang’s algorithm, the sequence of Xk • Sk also converges to a positive
value as well, but in the case of Potra and Sheng’s algorithm, what we can say is that
liminf Xk • Sk is positive. This is because the sequence Xk • Sk is not necessarily
monotonically decreasing in Potra and Sheng’s algorithm.

Now we present the last theorem. A typical choice of the initial iterate (X0, S0, y0)
for primal-dual infeasible interior-point algorithms is (X0, S0, y0) = (ρ0 I , ρ1 I , 0)
with ρ0 > 0 and ρ1 > 0 sufficiently large. This is different from the one adopted in
Theorem 5. In concluding this section, we discuss how our results can be adapted to
this case.

Let X̂ be a solution to A(X) = b. If we set Ip ≡ ρ0 I − X̂ and Id ≡ ρ1 I − C with
ρ0 and ρ1 sufficiently large so that Ip � 0 and Id � 0 hold, (X0, S0, y0) is a feasible
solution to P(1, 1) and D(1, 1). Now, we are ready to apply an argument analogous
to the one we developed earlier to derive Theorem 5 with this choice of Ip and Id to
obtain the following theorem.

Theorem 6 Let (X0, S0, y0) ≡ (ρ0 I , ρ1 I , 0), where ρ0 > 0 and ρ1 > 0 are suffi-
ciently large so that Ip = ρ0 I − X̂ � 0 and Id = ρ1 I − C � 0 hold, where X̂ is a
solution to A(X) = b. Apply the algorithm Algorithm-B of [48] or Algorithm 2.1 of
[32] with the initial iterate (X0, S0, y0) and t0 = 1, and let {(Xk, Sk, yk, tk)} be the
generated sequence. Then the following statements hold:

1. tk → 0 and Xk Sk → 0 hold if and only if P and D are asymptotically pd-
feasible, namely, the algorithm generates an asymptotically pd-feasible sequence
with duality gap converging to zero if and only if P and D are asymptotically pd-
feasible. If P and D are not asymptotically pd-feasible, then the same remark after
Theorem 5 holds.

2. If the problem is asymptotically-pd feasible, then the generated sequence of the
modified primal and dual objective values (38) converges to a value va(π/4) ∈
[v(D), v(P)]. Here, we include the possibility that va(π/4) = +∞ and va(π/4) =
−∞, interpreting them as divergence to +∞ and −∞, respectively.

6 Examples

In this section, we present three examples with nonzero duality gaps to illustrate
Theorems 1 and 2. The optimal values of P and D are both finite in Example 1, the
optimal value of P is finite butD is weakly infeasible in Example 2, and both problems
are weakly infeasible in Example 3. In the latter two cases the duality gaps are infinity.
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Example 1 We start with a simple instance with a finite nonzero duality gap taken from
Ramana’s famous paper [34]. The following problem has a duality gap of one.

The problem D is

max y1 s.t.

⎛

⎝
1 − y1 0 0

0 −y2 −y1
0 −y1 0

⎞

⎠ � 0.

With that, we have

C =
⎛

⎝
1 0 0
0 0 0
0 0 0

⎞

⎠ , A1 =
⎛

⎝
1 0 0
0 0 1
0 1 0

⎞

⎠ , A2 =
⎛

⎝
0 0 0
0 1 0
0 0 0

⎞

⎠ , b1 = 1.

The optimal value v(D) = 0 for this problem, since y1 = 0 is the only possible value
for the lower-right 2 × 2 submatrix to be positive semidefinite.

The associated primal P is

min x11 s.t. x11 + 2x23 = 1, x22 = 0,

⎛

⎝
x11 x12 x13
x12 x22 x23
x13 x23 x33

⎞

⎠ � 0.

The optimal value v(P) = 1 for this problem, since x23 = 0 must hold for positive
semidefiniteness of the lower-right 2 × 2 submatrix, which drives x11 to be 1.

Now we consider the problem D(ε, η)

max (1 + η)y1 + ηy2 s.t.

⎛

⎝
1 + ε − y1 0 0

0 ε − y2 −y1
0 −y1 ε

⎞

⎠ � 0.

This is equivalent to

max (1 + η)y1 + ηy2 s.t. 1 + ε − y1 ≥ 0, ε(ε − y2) − y21 ≥ 0.

Since the objective is linear, there is an optimal solution such that at least one of
the inequality constraints is active. Taking into account that the second constraint is
quadratic, we analyze the following three subproblems, and take the maximum of
them.

(Case 1) max (1 + η)y1 + ηy2 s.t. 1 + ε − y1 = 0, ε(ε − y2) − y21 ≥ 0.

(Case 2) max (1 + η)y1 + ηy2 s.t. 1 + ε − y1 ≥ 0, y1 = √
ε(ε − y2).

(Case 3) max (1 + η)y1 + ηy2 s.t. 1 + ε − y1 ≥ 0, y1 = −√
ε(ε − y2).

(Case 1)
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In this case, the second constraint yields

ε − (1 + ε)2

ε
≥ y2.

Together with y1 = 1+ ε, the problem reduces to a linear program, and it follows that
the maximum is

v1(ε, η) ≡ (1 + η)(1 + ε) + ηε − η(1 + ε)2

ε
.

(Case 2)
Under this condition, the objective function is written as

f (y2) ≡ (1 + η)
√

ε(ε − y2) + ηy2.

By computing the derivative, we see that the function takes the unique maximum at

y2 = ε − ε(1 + η)2

4η2
(41)

and

√
ε(ε − y2) = ε(1 + η)

2η
. (42)

Then, we see that

f (y2) = εη + ε

4η
(1 + η)2. (43)

But we should recall that this maximum is obtained by ignoring the constraint

1 + ε − y1 = 1 + ε − √
ε(ε − y2) ≥ 0.

By substituting (41) and (42) into this constraint, (43) is the maximum only if

1 + ε − ε(1 + η)

2η
≥ 0, or, equivalently,

2η

1 − η
≥ ε (44)

is satisfied.
If (44) does not hold, then, the maximum of f (y2) is taken at the boundary of the

constraint 1 + ε − y1 ≥ 0, i.e., y2 satisfying the condition

1 + ε = √
ε(ε − y2).
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Solving this equation with respect to y2, we obtain

y2 = −2 − 1

ε
, y1 = 1 + ε, f (y2) = (1 + η)(1 + ε) − η

(

2 + 1

ε

)

.

In summary, the maximum value in (Case 2) is as follows:

v2(ε, η) ≡ εη + ε

4η
(1 + η)2 if

2η

1 − η
≥ ε,

v2(ε, η) ≡ (1 + η)(1 + ε) − η

(

2 + 1

ε

)

if
2η

1 − η
≤ ε.

(Case 3)
In this case, 1 + ε − y1 ≥ 0 holds trivially. Therefore, the maximization problem

in this case is

max−(1 + η)
√

ε(ε − y2) + ηy2

under the condition that y2 ≤ ε. The function is monotone increasing, so that the
maximum is attained when y2 = ε and the maximum value is

v3(ε, η) ≡ ηε.

Now we are ready to combine the three results to complete the evaluation of ṽ and va .
By letting ε = tα, η = tβ with t > 0 and letting t ↓ 0, we see that

(Case 1) limt↓0 v1(tα, tβ) = 0.
(Case 2) limt↓0 v2(tα, tβ) = α

4β if β
α

≥ 1
2 , limt↓0 v2(tα, tβ) = 1 − β

α
if β

α
≤ 1

2
(Case 3) limt↓0 v3(tα, tβ) = 0.
The maximum among the three corresponds to ṽ. Comparing the three, we see that

(Case 2) always is the maximum. This means

ṽ(β) = 1 − β (β ∈ [0, 1
2
]), ṽ(β) = 1

4β
(β ∈ [1

2
,∞)), ṽ(∞) = 0.

Example 2 The next example is such that D is weakly infeasible but P is weakly
feasible and has a finite optimal value.

The problem D is

max −y1 s.t.

⎛

⎝
y2 0 1
0 y1 0
1 0 0

⎞

⎠ � 0.

C =
⎛

⎝
0 0 1
0 0 0
1 0 0

⎞

⎠ , A1 =
⎛

⎝
0 0 0
0 −1 0
0 0 0

⎞

⎠ , A2 =
⎛

⎝
−1 0 0
0 0 0
0 0 0

⎞

⎠ , b1 = −1.

This system is weakly infeasible, so v(D) = −∞.
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The associated primal P is

min 2x13 s.t. x11 = 0, x22 = 1,

⎛

⎝
x11 x12 x13
x12 x22 x23
x13 x23 x33

⎞

⎠ � 0.

The optimal value v(P) = 0 for this problem, since x13 = 0 must hold for feasibility.

Now we consider the problem D(ε, η)

max −(1 + η)y1 − ηy2 s.t.

⎛

⎝
y2 + ε 0 1

0 y1 + ε 0
1 0 ε

⎞

⎠ � 0.

It follows that

y1 ≥ −ε, y2 ≥ 1 − ε2

ε
.

Therefore, we see that the maximum value is

v(ε, η) = (1 + η)ε − 1 − ε2

ε
η.

Now we are ready to evaluate ṽ and va . By letting ε = tα, η = tβ with t > 0 and
letting t ↓ 0, we see that

lim
t↓0 v(tα, tβ) = −β

α
.

and

ṽ(β) = −β (β ∈ [0,∞]).

Finally, we deal with a pathological case where both primal and dual are weakly
infeasible.

Example 3 The problem D is

max y1 s.t.

⎛

⎝
y2 0 1 + 1

2 y1
0 1 + y1 0

1 + 1
2 y1 0 0

⎞

⎠ � 0.

C =
⎛

⎝
0 0 1
0 1 0
1 0 0

⎞

⎠ , A1 =
⎛

⎝
0 0 − 1

2
0 −1 0

− 1
2 0 0

⎞

⎠ , A2 =
⎛

⎝
−1 0 0
0 0 0
0 0 0

⎞

⎠ , b1 = 1.

The optimal value v(D) = −∞ for this problem, since y1 = −2 should hold for
feasibility, but then the (2,2) element becomes−1 and, therefore, the matrix cannot be
feasible. By letting y2 large and y1 = 0, we confirm the problem is weakly infeasible.
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The associated primal P is

min 2x13 + x22 s.t. x13 + x22 = −1, x11 = 0,

⎛

⎝
x11 x12 x13
x12 x22 x23
x13 x23 x33

⎞

⎠ � 0.

This problem is weakly infeasible.
Now we consider the problem D(ε, η)

max (1 − η)y1 − ηy2 s.t.

⎛

⎝
ε + y1 0 1 + 1

2 y1
0 1 + ε + y1 0

1 + 1
2 y1 0 ε

⎞

⎠ � 0.

This is equivalent to

max (1 − η)y1 − ηy2 s.t. ε + y2 ≥ 0, ε(ε + y2) −
(

1 + 1

2
y1

)2

≥ 0,

1 + ε + y1 ≥ 0.

Since the objective is linear, there is an optimal solution such that at least one
of the inequality constraints is active. Taking into account that the second constraint
is quadratic, we analyze the following three subproblems and take the maximum of
them.

(Case 1) max (1 − η)y1 − ηy2 s.t. ε + y2 = 0, ε(ε + y2) −
(

1 + 1

2
y1

)2

≥ 0,

1 + ε + y1 ≥ 0.

(Case 2) max (1 − η)y1 − ηy2 s.t. ε + y2 ≥ 0, ε(ε + y2) −
(

1 + 1

2
y1

)2

= 0,

1 + ε + y1 ≥ 0.

(Case 3) max (1 − η)y1 − ηy2 s.t. ε + y2 ≥ 0, ε(ε + y2) −
(

1 + 1

2
y1

)2

≥ 0,

1 + ε + y1 = 0.

(Case 1)
In this case, we have y2 = −ε, y1 = −2. Then the third constraint becomes

ε − 1 ≥ 0. Since we are interested in the situation where ε is approaching zero, we
may exclude this case.
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(Case 2)
In this case, we have

ε(ε + y2) =
(

1 + 1

2
y1

)2

.

This implies that

y1 = 2
(
−1 ± √

ε(ε + y2)
)

.

Since the condition 1 + ε + y1 ≥ 0 yields

±√
ε(ε + y2) ≥ 1 − ε,

choosing ‘-’ sign is not compatible with our analysis since we are interested in the
case where ε is close to zero. Therefore, we pick ‘+’ sign, and seek for the maximum
of the objective function

2(1 − η)
(
−1 + √

ε(ε + y2)
)

− ηy2.

By differentiation, we see that the function attains its maximum at

y1 = 2

(

−1 + ε(1 − η)

η

)

, y2 = ε

η2
(1 − 2η).

We see that the first constraint is always satisfied at the maximum. The third constraint
1 + y1 + ε ≥ 0 is satisfied if

ε

η
≥ 1 + ε

2
.

If this condition is not satisfied, then 1+ y1 +ε = 0 holds at the maximum, so, we can
leave the analysis to the third case. Substituting y1, y2 to the objective, we conclude
that, if ε/η ≥ 1, then, the maximum is

v2(ε, η) ≡ 2(1 − η)

(

−1 − ε + ε

η

)

− ε

η
+ 2ε,

and if the aforementioned condition is not satisfied, then, we can leave the analysis to
the third case below.
(Case 3)

We have y1 = −1−ε. After simplemanipulation, we see that other two inequalities
are satisfied iff

y2 ≥ 1

ε

(
1 − ε

2

)2

− ε.
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Therefore, the maximum is

v3(ε, η) ≡ −(1 − η)(1 + ε) − η

ε

(
1 − ε

2

)2

+ εη.

Now we are ready to combine the three results to complete evaluation of ṽ and va .
By letting ε = tα, η = tβ with t > 0 and letting t ↓ 0, we see that

(Case 1) Cannot occur.
(Case 2) limt↓0 v2(tα, tβ) = −2 + α

β
if α

β
≥ 1

2 .

(Case 3) limt↓0 v3(tα, tβ) = −1 − 1
4

β
α
.

The maximum between the latter two corresponds to ṽ. Thus, we obtain that

ṽ(β) = −2 + 1

β
(β ∈ [0, 2]), ṽ(β) = −1 − β

4
(β ∈ [2,∞]),

where we used the convention 1/0 = ∞.

7 Concluding discussion

In this paper, we developed a perturbation analysis for singular primal-dual semidefi-
nite programs. We assumed that primal and dual problems are asymptotically feasible
and added positive definite perturbations to recover strong feasibility. Amajor innova-
tionwas that we considered perturbations of primal and dual problems simultaneously.
It was shown that the primal-dual common optimal value of the perturbed problem has
a directional limit when the perturbation is reduced to zero along a line. Represent-
ing the direction of approach with an angle θ between 0 and π/2, where the former
and latter corresponds to the dual-only perturbation and the primal-only perturbation,
respectively, we demonstrated that the limiting objective value is a monotone decreas-
ing function in θ which takes the primal optimal value v(P) at θ = 0 and the dual
optimal value v(D) at θ = π/2. Based on this result, we could show that the mod-
ified objective values of the two infeasible primal-dual interior-point algorithms by
Zhang and by Potra and Sheng converge to a value between the optimal values of P
and D. The modified primal and dual objective functions are easily computed from
the current iterate. The development of analogous results for homogeneous self-dual
interior-point algorithms and the design of robust infeasible primal-dual interior-point
algorithms reflecting the theory developed in this paper are interesting further research
topics to explore.
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A Outline of a proof of the existence and analyticity of the path
C = {w�(t)| 0 < t < ∞}

Let

φ1(X , S, y) = X1/2SX1/2 − ν I , φ2(X , S, y) = C −
∑

i

Ai yi − S,

φ3(X , S, y) =
⎛

⎜
⎝

A1 • X − b1
...

Am • X − bm

⎞

⎟
⎠ .

Then, wν(t) is a unique solution to

�(X , S, y, t) ≡
⎛

⎝
φ1(X , S, y)

φ2(X , S, y) + tα I
φ3(X , S, y) − tβ I

⎞

⎠ = 0.

� is an analyticmapping from {(X , S, y, t) ∈ Sn++×Sn++×R
(m+1)} toSn++×Sn×R

m ,
where S++ is the set of symmetric positive definite matrices. Therefore, in order to
show the existence and analyticity of the path with the help of the analytic version of
the implicit function theorem, it is enough to confirm that the rank of the Jacobian
matrix of � is n(n + 1) + m. To this end, we show that the Jacobian matrix of the
mapping

⎛

⎝
φ1(X , S, y)
φ2(X , S, y)
φ3(X , S, y)

⎞

⎠

is nonsingular. Indeed it is essentially shown in Theorem 2.4 of [26] that the Jacobian
matrix is nonsingular if φ1 = 0, i.e., XS = ν I . (See also the note following the
theorem.)

B Outline of a proof of item 1 of Theorems 5 and 6

First, we observe that if either P or D is strongly infeasible, it is not possible to find
{tk}, Xk , and Sk satisfying tk → 0 and Xk • Sk → 0. It remains to show the converse,
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that is, assuming thatP andD are asymptotically pd-feasible, we need to show that {tk}
generated by the algorithm converges to 0 and Xk•Sk → 0.We provide an explanation
for Zhang’s algorithm (AlgorithmB in Sect. 6.2 of [48]). A similar argument also holds
for Potra and Sheng’s algorithm.

As was explained in Sect. 3.2.1, the algorithm generates a sequence
{(Xk, Sk, yk, tk)} where Xk and (Sk, yk) are feasible solutions to P(tkα, tkβ) and
D(tkα, tkβ), respectively, Xk � 0, Sk � 0 and tk is a monotonically decreasing
sequence with t0 = 1. The matrices Ip and Id used to define P(tα, tβ) and D(tα, tβ)

are determined by the initial values. We defineP(t) andD(t) as the feasible regions of
P(tα, tβ) and D(tα, tβ), respectively. If the problems are asymptotically pd-feasible,
then for any t > 0, P(tα, tβ) and D(tα, tβ) are strongly feasible. For the sake of
obtaining a contradiction, suppose that tk has a positive limit t∗ > 0. The iterates
(Xk, Sk, yk, tk) are confined to �, where

� ≡ {(X , S, y, t) | X ∈ P(t), (S, y) ∈ D(t), t ∈ [t∗, 1], X • S ≤ X0 • S0}.

By using the facts that P(tα, tβ) andD(tα, tβ) are strongly feasible for any t > 0 and
that the difference of the objective functions of P(t) and D(t), which is nothing but
X•S, is bounded in�,we can show that� is compact. Therefore, {(Xk , Sk, yk, tk)}has
an accumulation point (X∗, S∗, y∗, t∗). The point (X∗, S∗, y∗) is in the neighborhood
of the central path employed by the algorithm (see (4.2)-(4.6) of [48]). In a sufficiently
small neighborhood �′ ⊆ {(X , S, y)|(X , S, y, t) ∈ �} of (X∗, S∗, y∗), the search
direction is well-defined and is a continuous function of (X , S, y). Therefore, the
norm of the search direction is bounded over �′. This enables us to show that the step
sk in (21) is bounded away from zero uniformly if (Xk, Sk, yk) ∈ �′. Then there exists
ζ > 0 such that sk > ζ holds infinitely many times. This contradicts that tk → t∗,
because, in view of (24), we have t∗ ≤ tk+1 = (1− sk)tk < (1− ζ )tk , but this cannot
hold infinitely many times thus leading to a contradiction.

Next, we show that tk → 0 yields Xk • Sk → 0. The stepsize sk is controlled in
such a way that

Xk+1 • Sk+1

Xk • Sk
≤ 1 − ηsk (45)

holds in the algorithm, where η ∈ (0, 1) is a constant. (To see this, we associate the
stepsize sk to α+ in Algorithm-B of [48]. From the definition of α+ in the bottom
line of p.368 and (2.6) of [48], we see that (45) holds with η = (1 − σ)/2.) There
are two possible cases. The first case is sk = 1 for some k = k̂, say. In that case,
after the k̂th iteration, the algorithm becomes a feasible path following method, and
Xk • Sk converges to zero following a standard argument, see Algorithm-A in [48].
In the second case, sk < 1 for all k. Since limk→∞ tk = limk→∞

∏k
l=0(1 − sl) = 0

yields limk→∞
∏k

l=0(1 − ηsl) = 0, we obtain

lim
k→∞ Xk • Sk ≤ lim

k→∞

k∏

l=0

(1 − ηsl)X0 • S0 = 0.
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