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Abstract
Awell-established heuristic approach for solving bicriteria optimization problems is to
enumerate the set of Pareto-optimal solutions. The heuristics following this principle
are often successful in practice. Their running time, however, depends on the number
of enumerated solutions, which is exponential in the worst case. We study bicriteria
integer optimization problems in the model of smoothed analysis, in which inputs are
subject to a small amount of random noise, and we prove an almost tight polynomial
bound on the expected number of Pareto-optimal solutions. Our results give rise to
tight polynomial bounds for the expected running time of the Nemhauser-Ullmann
algorithm for the knapsack problem and they improve known results on the running
times of heuristics for the bounded knapsack problem and the bicriteria shortest path
problem.
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1 Introduction

We study integer optimization problems with two objective functions (say profit and
weight) that are to be optimized simultaneously. A common approach for solving such
problems is generating the set of Pareto-optimal solutions, also known as the Pareto
set. Pareto-optimal solutions are optimal compromises of the two criteria in the sense
that any improvement of one criterion implies an impairment of the other. In other
words, a solution x is Pareto-optimal if there does not exist another solution y that
dominates x , in the sense that y has at least the same profit and at most the sameweight
as x and at least one of these inequalities is strict. Generating the Pareto set is of great
interest in many scenarios and widely used in practice. This approach fails to yield
reasonable results in the worst case because even integer optimization problems with a
simple combinatorial structure can have exponentially many Pareto-optimal solutions.
In practice, however, generating the Pareto set is often feasible because typically the
number of Pareto-optimal solutions does not attain its worst-case bound.

The discrepancy between practical experience and worst-case results motivates the
study of the number of Pareto-optimal solutions in a more realistic scenario. One pos-
sible approach is to study the average number of Pareto-optimal solutions rather than
the worst-case number. In order to analyze the average, one has to define a probabil-
ity distribution on the set of instances with respect to which the average is taken. In
most situations, however, it is not clear how to choose a probability distribution that
reflects typical inputs. In order to bypass the limitations ofworst-case and average-case
analysis, Spielman and Teng [22] introduced the notion of smoothed analysis. They
consider a semi-random input model in which first an adversary specifies an input
that is afterwards slightly perturbed at random. The perturbation is motivated by the
observation that in most practical applications instances are to some extent influenced
by random events like, for example, measurement errors or numerical imprecision.
Intuitively, the perturbation rules out pathological worst-case instances that are rarely
observed in practice but dominate the worst-case analysis.

We consider bicriteria integer optimization problems in the framework of smoothed
analysis. For this we assume that an adversary specifies an arbitrary set S ⊆ Dn of
solutions, where D ⊆ Z denotes a finite set of integers, and two objective functions,
profit p : S → R and weightw : S → R. We assume that the profit is to bemaximized
while the weight is to be minimized. This assumption is without loss of generality
as our results are not affected by changing the optimization direction of any of the
objective functions. In our model, the weight function w can be chosen arbitrarily
by the adversary, whereas the profit function p has to be linear of the form p(x) =
p1x1 + · · · + pnxn .

In a classical worst-case analysis, the adversary can choose the coefficients
p1, . . . , pn exactly so as to maximize the number of Pareto-optimal solutions. If he
chooses these coefficients and the objective function w such that p(x) = w(x) for all
solutions x ∈ S and such that all solutions from S have pairwise different profits then
all solutions from S are Pareto-optimal. In the model of smoothed analysis consid-
ered in this article, the adversary is less powerful: instead of being able to specify the
coefficients exactly, he can only specify a probability distribution for each coefficient
according to which it is chosen independently of the other coefficients. Allowing arbi-
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trary distributions would include deterministic instances as a special case and hence,
in order for the model to make sense, we need to ensure that the adversary is not too
powerful and cannot concentrate the probabilitymass in a too small region.We achieve
this by restricting the adversary to probability distributions that can be described by
probability density functions that are bounded from above by some parameter φ ≥ 1.
The parameter φ can be seen as a measure specifying how close the analysis is to
a worst-case analysis: the larger φ, the more concentrated the probability mass can
be and hence, the closer the analysis is to a worst-case analysis. To avoid that the
effect of the perturbation is diminished by scaling, we assume that the distributions
are normalized such that the expected absolute value of each profit is bounded from
above by a constant.

To illustrate this model, let us consider the following example more reminiscent of
Spielman and Teng’s original model of smoothed analysis: first the adversary chooses
an arbitrary vector of profits (p1, . . . , pn) ∈ [−1, 1]n , and then an independent Gaus-
sian random variable with mean 0 and standard deviation σ ≤ 1 is added to each
profit pi . In this example, the standard deviation σ takes over the role of φ: the smaller
σ , the closer the analysis is to a worst-case analysis. For Gaussians with mean 0 and
standard deviation σ , the maximum density is 1/(

√
2πσ) < 1/σ and the expected

absolute value is σ
√
2/π < σ ≤ 1. Hence, this model of Gaussian perturbations is

covered by our model for φ = 1/σ . In our model the adversary is even more powerful
because he is not only allowed to choose the expected value of each profit pi but also
the type of noise as long as the density is bounded from above by φ. In particular, the
adversary could choose for each profit pi an interval Ii ⊆ [0, 1] of length 1/φ from
which it is chosen independently uniformly at random.

The smoothed number of Pareto-optimal solutions is defined to be the maximum
expected number of Pareto-optimal solutions for any choice of the set of solutions S,
the weight function w, and the distributions of the profits subject to the bounds on
the maximum density and the expected absolute value. We present a new method for
bounding the smoothed number of Pareto-optimal solutions, which yields an upper
bound that is polynomial in the number n of variables, the parameter maxa∈D |a|, and
the maximum density φ. This immediately implies polynomial upper bounds on the
smoothed running time of several heuristics for generating the Pareto set of problems
like the bounded knapsack problem. Previous results of this kind were restricted to
the case of binary optimization problems. For this special case, our method yields an
improved upper bound, which matches the known lower bound.

1.1 Related work

Multiobjective optimization is a well-studied research area. Several algorithms for
generating the Pareto set of various optimization problems such as the (bounded)
knapsack problem [11, 17], the bicriteria shortest path problem [6, 21], and the bicri-
teria network flow problem [9, 12] have been proposed. The running times of these
algorithms depend crucially on the number of Pareto-optimal solutions and hence none
of them runs in polynomial time in the worst case. In practice, however, generating
the Pareto set is tractable in many situations. For instance, Müller-Hannemann and
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Weihe [13] study the number of Pareto-optimal solutions inmulti-criteria shortest path
problems experimentally. They consider networks that arise from computing the set
of best train connections (in view of travel time, fare, and number of train changes)
and conclude that in this application scenario generating the complete Pareto set is
tractable even for large instances. For more examples, we refer the reader to [8].

One way of coping with the bad worst-case behavior is to relax the requirement
of finding the complete Pareto set. Papadimitriou and Yannakakis present a general
framework for finding approximate Pareto sets. A solution x is ε-dominated by another
solution y if p(x)/p(y) ≤ 1 + ε and w(y)/w(x) ≤ 1 + ε. We say that Pε is an ε-
approximation of a Pareto set P if for any solution x ∈ P there is a solution y ∈ Pε

that ε-dominates it. Papadimitriou and Yannakakis [18] show that for any Pareto setP ,
there is an ε-approximation of P with polynomially (in the input size and 1/ε) many
points. Furthermore, they give a sufficient and necessary condition for the existence of
an FPTAS for approximating the Pareto set of a multi-criteria optimization problem.
Vassilvitskii and Yannakakis [24] and Diakonikolas and Yannakakis [7] investigate
the problem of computing ε-approximate Pareto sets of small size.

After the seminal work of Spielman and Teng about the simplex algorithm [22],
smoothed analysis has proven to be a good tool for narrowing the gap between practical
experience and theoretical results, and it has been used to explain the practical success
of algorithms in various areas. Some of these results are summarized in the surveys
by Spielman and Teng [23] and and by Manthey and Röglin [15].

Beier and Vöcking [5] initiated the study of the smoothed number of Pareto-optimal
solutions. They consider the special case of our model in which variables can take
only binary values, i.e., S ⊆ {0, 1}n , and show that the smoothed number of Pareto-
optimal solutions is bounded from above by O(n4φ). Furthermore, they present a
lower bound of Ω(n2) on the expected number of Pareto-optimal solutions for profits
that are chosen uniformly from the interval [0, 1]. Brunsch et al. [2] improve this lower
bound to Ω(n2φ).

Röglin and Teng [20] study the same binary model, except that they allow any finite
number d of perturbed linear objective functions (plus one arbitrary adversarial objec-
tive function) and that they require the densities according to which the coefficients are
chosen to have a bounded support in [−1, 1]. They obtain an upper bound of (nφ) f (d)

for the smoothed number of Pareto-optimal solutions, where f grows exponentially in
d. This result has been improved by Moitra and O’Donnell [14] to O(n2dφd(d+1)/2)

and afterwards by Brunsch and Röglin [3] to O(n2dφd) under the additional assump-
tion that all densities are quasiconcave. Under this assumption they also prove an upper
bound of O((n2dφd)c) for the c-th moment of the smoothed number of Pareto-optimal
solutions for any constant c ∈ N, which gives rise to non-trivial concentration bounds.
Furthermore they also consider the case that S ⊆ {0, 1, . . . , k}n and they analyze the
effect of zero-preserving perturbations, in which the adversary can choose for each
coefficient either a φ-bounded density function according to which it is chosen or
set it deterministically to zero. The analyses in these articles are significantly more
complicated than the upper bound presented in this article because they are targeted
to problems with more than two objective functions.

Brunsch et al. [2] also prove a lower bound ofΩ(nd−1.5φd) for the smoothed num-
ber of Pareto-optimal solutions in the case of d perturbed linear objective functions.
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1.2 Model and notation

LetD ⊆ Z be a finite set of integers and letS ⊆ Dn denote an arbitrary set of solutions.
We are interested in the cardinality of the set P ⊆ S of Pareto-optimal solutions with
respect to the objective functions profit p : S → R and weight w : S → R, which
are to be maximized and minimized, respectively. While the objective function w can
be chosen arbitrarily by an adversary, the objective function p is assumed to be linear
of the form p(x) = p1x1 + . . . + pnxn , where x = (x1, . . . , xn)T ∈ S. By abuse of
notation, let p not only denote the objective function, but also the vector (p1, . . . , pn)T.
Then the profit p(x) of a solution x ∈ S can be written as p · x .

We assume that each pi is a random variable that (independently of the other p j )
follows a density fi with fi (x) ≤ φi for all x ∈ R. Furthermore, we denote by
μi the expected absolute value of pi , i.e., μi = E[|pi |] = ∫

x∈R |x | fi (x) dx . Let
φ = maxi∈[n] φi andμ = maxi∈[n] μi . For given parametersD, n, φ, andμwe assume
that an adversary chooses the set S, the objective functionw, and the densities fi so as
to maximize the expected number of Pareto-optimal solutions. We refer to the largest
expected number of Pareto-optimal solutions he can achieve as the smoothed number
of Pareto-optimal solutions (with respect to D, n, φ, and μ).

We denote by [n] the set {1, . . . , n}, we use the notation d = |D| andΔ = max{a−
b | a, b ∈ D}, and we denote by Hn the nth harmonic number, i.e., Hn =∑n

i=1 1/i .

1.3 Our results

In this article, we present a new approach for bounding the smoothed number of
Pareto-optimal solutions for bicriteria integer optimization problems. This approach
follows to a large extent the analysis in [4] with one improvement from [19], which
removes a factor of Hd . Altogether we obtain the following bound.

Theorem 1 Let D ⊆ Z be a finite set of integers, let n ∈ N, and let S ⊆ Dn.
Furthermore, let w : S → R be arbitrary and let arbitrary densities f1, . . . , fn be
given according to which the coefficients p1, . . . , pn of the linear objective function p
are chosen. Letφi denote an upper bound on fi and letμi denote the expected absolute
value of a random variable drawn according to fi . Then the expected number of
Pareto-optimal solutions in S with respect to p and w is at most

4Δd

(
n∑

i=1

φi

)(
n∑

i=1

μi

)

+ dn + 1.

This implies that the smoothed number of Pareto-optimal solutions is bounded from
above by O(Δd ·n2φμ). ForD = {0, . . . , k} and constant expected absolute value μ,
the bound simplifies to O(n2φ · k2). For the binary caseD = {0, 1} the bound further
simplifies to O(n2φ). This improves significantly upon the previously known bound
of O(n4φ) due to Beier and Vöcking [5]. The bound O(n2φ) follows also from the
result of Moitra and O’Donnell [14] (which appeared after the conference version of
this article [4]). However, the proof of Theorem 1 is much simpler than the analysis
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of Moitra and O’Donnell, which is targeted to problems with more than two objective
functions. It is also much simpler than the analysis of Beier and Vöcking [5] and it
allows unbounded coefficients pi (as long as the expected absolute value is bounded),
whereas all results for more than two objectives assume that the coefficients have
bounded support. Furthermore, all results for more than two objective functions in
the literature either consider only the binary case (Moitra and O’Donnell [14]) or the
dependence on k is much worse than k2 (it is k32 in Brunsch and Röglin [3]). Hence
none of these results implies Theorem 1.

Additionally, we also present two lower bounds on the smoothed number of Pareto-
optimal solutions. In the following lower bound we use the term ranking to refer to
the objective function w. The higher the ranking, the smaller is the weight.

Theorem 2 Let (5(c + 1) + 1) log n ≤ k ≤ nc for some c ≥ 2 and assume that n
is a multiple of c + 2. Let D = {0, . . . , k} and S = Dn. There exists a ranking on
S and a constant κ depending only on c such that the expected number of Pareto-
optimal solutions is at least κn2k2 if each profit pi is chosen independently uniformly
at random from the interval [−1, 1].

In the proof of this lower bound we assume that the profits are chosen uniformly
at random from the interval [−1, 1] and hence, the lower bound holds for any φ with
φ ≥ 1. The lower bound matches the upper bound in terms of n and k. We also obtain
a slightly weaker lower bound for the case that the adversary is restricted to linear
weight functions.

Theorem 3 Let D = {0, . . . , k} and S = Dn. Suppose that the profits are drawn
independently at random according to a continuous probability distribution with non-
increasing density function f : R≥0 → R≥0. Then there is a linear weight function
w : S → R with coefficients w1, . . . , wn ∈ R>0 for which the expected number of
Pareto-optimal solutions is at least

Hk

4
k(n2 − n) + kn + 1.

If the profits are drawn according to the uniform distribution over some interval
[0, a] with a > 0, then the above term equals the expected number of Pareto-optimal
solutions.

While Theorem 2 shows that the upper bound in Theorem 1 is tight in terms of n
and k, it is an open problem to find a lower bound that is additionally tight in terms
of φ.

Knapsack Problem The Nemhauser-Ullmann algorithm solves the knapsack prob-
lem by enumerating the set of Pareto-optimal solutions [17]. This means that the
capacity of the knapsack is neglected and all knapsack fillings that are Pareto-optimal
with respect to profit and weight are enumerated. Then, the optimal solution of the
knapsack problem is the Pareto-optimal solution with the highest weight not exceed-
ing the capacity. The running time of this algorithm on an instance with n items is
Θ(
∑n

i=1 qi ), where qi denotes the number of Pareto-optimal solutions of the knapsack
instance that consists only of the first i items.
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We assume that an adversary can choose arbitrary weights and that he chooses a
probability distribution for every profit arbitrarily subject to the bounds on the max-
imum density and the expected absolute value. Using their bound of O(n4φ) on the
smoothed number of Pareto-optimal solutions and linearity of expectation, Beier and
Vöcking [5] show that the smoothed running time of the Nemhauser-Ullmann algo-
rithm is bounded by O(n5φ). Here the term smoothed running time refers to the
maximum expected running time that can be achieved by choosing weights and prob-
ability distributions for the profits. Based on our improved bound on the expected
number of Pareto-optimal solutions presented in Theorem 1, we conclude the follow-
ing corollary.

Corollary 1 The smoothed running time of the Nemhauser-Ullmann algorithm for the
knapsack problem is O(n3φ).

For uniformly distributed profits Beier and Vöcking present a lower bound on the
expected running time of Ω(n3). Hence, we obtain tight bounds on the running time
of the Nemhauser-Ullmann algorithm in terms of the number of items n.

Bounded Knapsack problem In the bounded knapsack problem, a number k ≥ 2 and
a set of n items with weights and profits are given, and it is assumed that k − 1 copies
of each of the n items are available. We assume that an adversary can choose arbitrary
weights and that he chooses a probability distribution for every profit arbitrarily subject
to the bounds on themaximumdensity and the expected absolute value. Then according
to Theorem 1 the expected number of Pareto-optimal solutions is bounded from above
by O(n2k2φ).

This observation alone does not yet imply that the Pareto set can be computed
efficiently. However, Kellerer et al. [10] describe how an instance of the bounded
knapsack problem with n items can be transformed into an instance of the knapsack
problemwith nK items, where K = Θ(log k).Wewill call the items of this instance of
the knapsack problem virtual items in the following. In the transformation, K numbers

1, . . . , 
K ∈ {0, 1, . . . , k−1}with∑K

i=1 
i = k−1 are chosen and every item i in the
bounded knapsack instance with profit pi and weightwi is replaced by K virtual items
with profits 
1 pi , . . . , 
K pK andweights 
1wi , . . . , 
KwK . Using this transformation,
the bounded knapsack problem can be solved by the Nemhauser-Ullmann algorithm

in running timeΘ(
∑nK

i=1 qi ), where qi denotes the number of Pareto-optimal solutions
of the knapsack instance that consists only of the first i virtual items.

In order to obtain an upper bound on the expected value of qi , we can directly use
Theorem 1. To see this, observe that the knapsack instance with only the first i virtual
items can be viewed as an instance of the bounded knapsack problem in which only
certain multiplicities of every item are allowed. Hence, for an appropriately chosen set
Si of solutions Theorem 1 applies and yields a bound of O(n2k2φ) for the expected
value of qi . Based on this, we obtain the following corollary.

Corollary 2 The Nemhauser-Ullmann algorithm can be used to solve the bounded
knapsack problem in smoothed running time O(n3k2 log(k)φ).

Bicriteria shortest path problem Different algorithms have been proposed for enu-
merating the Pareto set in bicriteria shortest path problems [6, 21]. An instance of the
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bicriteria shortest path problem is described by a graph with n nodes and m edges in
which each edge has certain costs and a certain length. The costs and the length of a
path are then simply the sum of the costs and lengths of its edges, and the goal is to
compute all Pareto-optimal paths. Given this Pareto set, one can in particular solve
the constrained shortest path problem in which a budget is given and the goal is to
find the shortest path whose costs do not exceed the given budget. As in the knapsack
problem, the optimal solution to this problem is the Pareto-optimal solution with the
largest costs not exceeding the budget.

Corley and Moon [6] suggest a modified version of the Bellman-Ford algorithm
for enumerating the Pareto set of the bicriteria shortest path problem. Beier [1] shows
that the running time of this algorithm is O(nmU ) where U is an upper bound on the
number of Pareto-optimal solutions in certain sub-problems. These subproblems can
be described by sets S of solutions that are subsets of {0, 1}m . Given the bound on the
smoothed number of Pareto-optimal solutions [5], Beier concludes that the smoothed
running of this modified Bellman-Ford algorithm is O(nm5φ) if either the costs or
the lengths of the edges are perturbed. Based on Theorem 1, we obtain the following
improved bound.

Corollary 3 The smoothed running time of the modified Bellman-Ford algorithm is
O(nm3φ) if either the costs or the lengths of the edges are perturbed.

In the following two sections, we prove the upper and lower bounds on the smoothed
number of Pareto-optimal solutions.

2 Upper bound on the smoothed number of Pareto-optimal solutions

Since the profits are continuous random variables, the probability that there exist two
solutions with exactly the same profit is zero. Hence, we can ignore this event and
assume that no two solutions with the same profit exist. Furthermore, we assume
without loss of generality that there are no two solutions with the same weight. If the
adversary specifies a weight function in which two solutions have the same weight, we
apply an arbitrary tie-breaking, which cannot decrease the expected number of Pareto-
optimal solutions. We will now prove the upper bound on the smoothed number of
Pareto-optimal solutions.

Proof We start the proof by defining d subsets of the Pareto set. We say that a Pareto-
optimal solution x belongs to class a ∈ D if there exists an index i ∈ [n] with xi �= a
such that the succeeding Pareto-optimal solution y satisfies yi = a, where succeeding
Pareto-optimal solution refers to the Pareto-optimal solution with the smallest weight
among all solutions with higher profit than x (see Fig. 1). The Pareto-optimal solution
with the highest profit, which does not have a succeeding Pareto-optimal solution, is
not contained in any of the classes, but every other Pareto-optimal solution belongs to at
least one of these classes. Let q denote the number of Pareto-optimal solutions and let
qa denote the number of Pareto-optimal solutions in class a. Since q ≤ 1+∑a∈D qa ,
linearity of expectation implies
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Fig. 1 The solutions from S are
depicted as points, where a
solution z ∈ S corresponds to
the point at (w(z), p(z)). Black
points correspond to
Pareto-optimal solutions and
they dominate all solutions
below the step function, which
are depicted in gray. The
Pareto-optimal solution y
succeeds the Pareto-optimal
solution x , which is class-a
Pareto-optimal because there
exists an index i with xi �= a
and yi = a

E[q] ≤ 1 +
∑

a∈D
E[qa] . (1)

The following lemma, whose proof can be found below, shows an upper bound for
the expected number of class-0 Pareto-optimal solutions.

Lemma 1 The smoothed number of class-0 Pareto-optimal solutions is at most

4Δ

(
n∑

i=1

μi

)(
n∑

i=1

φi

)

+ n.

To conclude the proof of the theorem, we show that counting the expected number
of class-a Pareto-optimal solutions for a ∈ D with a �= 0 can be reduced to counting
the expected number of class-0 Pareto-optimal solutions.

Starting from the original setS,weobtain amodified setSa by subtracting the vector
(a, . . . , a) from each solution vector x ∈ S, that is, Sa = {x − (a, . . . , a) | x ∈ S}.
As a ∈ D, the set Sa is a subset of Dn

a , with Da := {x − a | x ∈ D} ⊆ {−Δ,−Δ +
1, . . . , Δ − 1,Δ}. This way, the profit of each solution x in Sa is smaller than the
profit of its counterpart x + (a, . . . , a) in S by exactly a

∑n
i=1 pi if we extend the

linear profit function p from S to Sa . Let us additionally define a weight function
w∗ : Sa → R that assigns to every solution x ∈ Sa the weight that w assigns to its
counterpart in S.

Claim A solution in Sa is Pareto-optimal with respect to p and w∗ if and only if its
counterpart in S is Pareto-optimal with respect to p and w.

Proof Let x and y be two solutions from S and let xa and ya denote their counterparts
in Sa . Then w(x) = w∗(xa) and w(y) = w∗(ya). Furthermore p(x) = p(xa) +
a
∑n

i=1 pi and p(y) = p(ya) + a
∑n

i=1 pi . Hence, p(x) > p(y) if and only if
p(xa) > p(ya). Overall this implies that x dominates y if and only if xa dominates
ya . Since this is the case for every pair of solutions, the claim follows. 
�
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A solution x is class-a Pareto-optimal in S if and only if the corresponding solution
x−(a, . . . , a) is class-0 Pareto-optimal inSa . Hence, the number qa of class-a Pareto-
optimal solutions in S corresponds to the number q0(Sa) of class-0 Pareto-optimal
solutions in Sa , which can be bounded by Lemma 1. Note that by definition ofDa we
have |Da | = |D| = d aswell asmax{b−c | b, c ∈ Da} = max{b−c | b, c ∈ D} = Δ.
Combining Equation (1) and Lemma 1 yields that E[q] is at most

1 +
∑

a∈D
E
[
q0(Sa)

] ≤ 1 +
∑

a∈D

(

4Δ

(
n∑

i=1

μi

)(
n∑

i=1

φi

)

+ n

)

≤ 4Δd

(
n∑

i=1

μi

)(
n∑

i=1

φi

)

+ dn + 1,

which proves the theorem. 
�
To conclude the proof of Theorem 1, we prove Lemma 1.

Proof of Lemma 1 We assume 0 ∈ D as otherwise there are no class-0 solutions. This
assumption yields |a| ≤ Δ for all a ∈ D.

The main part of the proof is an upper bound on the probability that there exists
a class-0 Pareto-optimal solution whose profit lies in a small interval [t − ε, t), for
some given t ∈ R and ε > 0. Roughly speaking, if ε is smaller than the smallest
profit difference of any two Pareto-optimal solutions, then this probability equals the
expected number of class-0 Pareto-optimal solutions in the interval [t − ε, t). Then
we can divide R into intervals of length ε and sum these expectations to obtain the
desired bound on the expected number of Pareto-optimal solutions.

Let t ∈ R be chosen arbitrarily. We define x∗ to be the solution from S with the
lowest weight among all solutions satisfying the constraint p · x ≥ t , that is,

x∗ = argmin
x∈S:p·x≥t

w(x).

If there does not exist a solution x ∈ S with p · x ≥ t then x∗ does not exist.
Otherwise, the solution x∗ is Pareto-optimal. Let x̂ denote the Pareto-optimal solution
that precedes x∗, that is,

x̂ = argmax
x∈S:w(x)<w(x∗)

p · x .

See Fig. 2 for an illustration of these definitions. We aim at bounding the probability
that x̂ is a class-0 Pareto-optimal solution whose profit falls into the interval [t − ε, t).

For thiswe classify class-0Pareto-optimal solutions to beordinary or extraordinary.
Considering only ordinary solutions allows us to prove a bound that depends not only
on the length ε of the interval but also on |t |, the distance to zero. This captures the
intuition that it becomes increasingly unlikely to observe solutions whose profits are
much larger than the expected profit of the most profitable solution. The final bound is
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Fig. 2 Illustration of the
definitions of x∗ and x̂ . If x̂
exists then it is Pareto-optimal.
If additionally there is an index i
with x∗

i = 0 and x̂i �= 0 then x̂
is a class-0 Pareto-optimal
solution

Fig. 3 The solution x is an
extraordinary class-0
Pareto-optimal solution if zi �= 0
and z′i �= 0 holds for all indices
i ∈ [n] for which xi �= 0 and
yi = 0

obtained by observing that there can be at most n extraordinary class-0 Pareto-optimal
solutions.

We would like to mention that the classification into ordinary and extraordinary
solutions is only necessary because we allowed density functions with unbounded
support for the pi . If all densities would have a bounded support on, e.g., [−1, 1] then
the separate treatment of extraordinary solutions would not be necessary.

We classify solutions to be ordinary or extraordinary as follows. Let x be a class-0
Pareto-optimal solution and let y be the succeeding Pareto-optimal solution, which
must exist by definition. We say that x is extraordinary if for all indices i ∈ [n] with
xi �= 0 and yi = 0, all Pareto-optimal solutions z that precede x satisfy zi �= 0. In other
words, for those indices i that make x class-0 Pareto-optimal, y is the Pareto-optimal
solution with the smallest profit that is independent of pi (see Fig. 3). We classify a
class-0 Pareto-optimal solutions as ordinary if it is not extraordinary. For every index
i ∈ [n], there can be at most one extraordinary class-0 Pareto-optimal solution. In the
following, we restrict ourselves to solutions x̂ that are ordinary, and we denote by P0

the set of ordinary class-0 Pareto-optimal solutions. We define the loser gap to be the
slack of the solution x̂ from the threshold t (see Figure 2), that is,
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Λ(t) =
{
t − p · x̂ if x∗ and x̂ exist and x̂ ∈ P0,

∞ otherwise.

If Λ(t) ≤ ε, then there exists a solution x ∈ P0 with p · x ∈ [t − ε, t), namely
x̂ . The converse is not true because it might be the case that x̂ /∈ P0 and that there
exists another solution x ∈ P0 with p · x ∈ [t − ε, t). If, however, ε is smaller than
the minimum profit difference of any two Pareto-optimal solutions, then the existence
of a solution x ∈ P0 with p · x ∈ [t − ε, t) implies x̂ = x and hence Λ(t) ≤ ε. Let
F(ε) denote the event that there are two Pareto-optimal solutions whose profits differ
by at most ε, then

Pr
[
∃x ∈ P0 : p · x ∈ [t − ε, t)

∣
∣
∣ ¬F(ε)

]
= Pr [Λ(t) ≤ ε | ¬F(ε)] . (2)

In the following, we estimate, for a given b > 0, the expected number of Pareto-
optimal solutions whose profits lie in the interval (−b, b]. For this, we partition the
interval (−b, b] into 2bm sub-intervals of length 1/m each, and we let the number
2bm of sub-intervals tend infinity. For m ∈ N and i ∈ {0, . . . , 2bm − 1}, we set
Imi = (bi , bi+1] with bi = −b + i/m. Since the number of Pareto-optimal solutions
is always bounded by |S| ≤ (d)n , we obtain

E
[
|P0|

]
≤ lim

m→∞
(
Pr [¬F(1/m)] · E

[
|P0|

∣
∣
∣ ¬F(1/m)

]
+ Pr [F(1/m)] · (d)n

)
.

The probability that two given solutions have a profit difference of at most ε can be
bounded from above by 2εφ. In order to see this, consider two solutions x �= y and
choose an index i with xi �= yi . Then use the principle of deferred decisions and assume
that all p j with j �= i are already fixed arbitrarily. Then the event |p · x − p · y| ≤ ε

is equivalent to the event that pi takes a value in a fixed interval (depending on the p j

with j �= i) of length 2ε. Since the density of pi is bounded from above by φ, the
probability of the event |p · x − p · y| ≤ ε is at most 2εφ. Hence, a union bound over
all pairs of solutions (there are at most d2n pairs) yields

Pr [F(1/m)] ≤ 2d2nφ/m,

which tends to 0 when m tends to infinity. Hence, it holds

E
[
|P0|

]
≤ lim

m→∞
(
Pr [¬F(1/m)] · E

[
|P0|

∣
∣
∣ ¬F(1/m)

])
. (3)

Under the condition ¬F(1/m), every interval Imi can contain at most one Pareto-
optimal solution, and hence, under this condition, the probability that Imi contains
a Pareto-optimal solution from P0 equals the expected number of Pareto-optimal
solutions from P0 in Imi , yielding together with (2) and (3) that the expected number
of ordinary class-0 Pareto-optimal solutions with profits in (−b, b] is bounded from
above by
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lim
m→∞

(

Pr [¬F(1/m)] ·
2bm−1∑

i=0

Pr
[
∃x ∈ P0 : p · x ∈ Imi

∣
∣
∣ ¬F(1/m)

]
)

= lim
m→∞

(

Pr [¬F(1/m)] ·
2bm−1∑

i=0

Pr
[
Λ(bi+1) ≤ 1/m | ¬F(1/m)

]
)

= lim
m→∞

(
2bm−1∑

i=0

Pr
[
(Λ(bi+1) ≤ 1/m) ∧ (¬F(1/m))

]
)

≤ lim
m→∞

2bm−1∑

i=0

Pr
[
Λ(bi+1) ≤ 1/m

]
. (4)

The only missing part is to analyze the probability of the event Λ(t) ≤ ε for given
t ∈ R and ε > 0, which is done in the following lemma.

Lemma 2 For all t ∈ R and ε > 0,

Pr [Λ(t) ≤ ε] ≤ Pr

[

Δ ·
n∑

i=1

|pi | ≥ |t |
]

· 2ε
n∑

i=1

φi .

Lemma 2 yields the following upper bound on (4):

2

(
n∑

i=1

φi

)

· lim
m→∞

2bm−1∑

i=0

(
1

m
· Pr

[

Δ ·
n∑

i=1

|pi | ≥ |bi |
])

.

We consider Pr
[
Δ ·∑n

i=1 |pi | ≥ |t |] as a function of t . Because the density of pi is
bounded from above, this function is continuous. Therefore by the definition of the
Riemann integral, we can rewrite the previous limit as

2

(
n∑

i=1

φi

)

·
∫ b

−b
Pr

[

Δ ·
n∑

i=1

|pi | ≥ |t |
]

dt .

This term is an upper bound on the expected number of ordinary class-0 Pareto-optimal
solutions in the interval (−b, b]. Letting b tend to infinity and using that the expected
absolute value of profit pi is μi yield that the expected number of ordinary class-0
Pareto-optimal solutions can be bounded from above by

2

(
n∑

i=1

φi

)

·
∫ ∞

−∞
Pr

[

Δ ·
n∑

i=1

|pi | ≥ |t |
]

dt

= 4

(
n∑

i=1

φi

)

·
∫ ∞

0
Pr

[

Δ ·
n∑

i=1

|pi | ≥ t

]

dt
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= 4

(
n∑

i=1

φi

)

· E
[

Δ ·
n∑

i=1

|pi |
]

= 4Δ

(
n∑

i=1

μi

)(
n∑

i=1

φi

)

.

Since there are at most n extraordinary class-0 Pareto-optimal solutions , this proves
the lemma. 
�

We conclude the proof of Theorem 1 and Lemma 1 by proving Lemma 2.

Proof of Lemma 2 In order to analyze the probability of the event Λ(t) ≤ ε, we define
a set of auxiliary random variables such that Λ(t) is guaranteed to always take a
value also taken by at least one of the auxiliary random variables. Then we analyze
the auxiliary random variables and use a union bound to conclude the desired bound
for Λ(t).

Define D′ = D \ {0} and Sxi=v = {x ∈ S | xi = v} for all i ∈ [n] and v ∈ D. We
denote by x∗(i) the solution from Sxi=0 with lowest weight with profit at least t , that
is,

x∗(i) = argmin
x∈Sxi=0:p·x≥t

w(x).

For each i ∈ [n] we define the set Li as follows. If there does not exist a solution
x ∈ Sxi=0 with p · x ≥ t then x∗(i) does not exist. If x∗(i) does exist and there
also exists a solution in Sxi=0 with profit smaller than t , then Li is defined as the set
that consists of all solutions from

⋃
v∈D′ Sxi=v that have smaller weight than x∗(i),

otherwise Li = ∅. Let x̂ (i) denote the Pareto-optimal solution from the set Li with
the highest profit, that is,

x̂ (i) = argmax
x∈Li

p · x .

Note that we must have p · x̂ (i) < p · x∗(i) because otherwise p · x̂ (i) ≥ p · x∗(i) ≥ t
and w · x̂ (i) < w · x∗(i), contradicting the choice of x∗(i). Finally, we define for each
i ∈ [n], the auxiliary random variable

Λi (t) =
{
t − p · x̂ (i) if x̂ (i) exists,
∞ otherwise.

Observe that the definitions of Λ(t) and Λi (t) are very similar. The only difference in
the definitions of x∗ and x∗(i) is that we require x∗(i)

i = 0. The only difference in the

definitions of x̂ and x̂ (i) is that we require x̂ (i)
i ∈ D′. The reason for these additional

constraints is that they will help us to apply the principle of deferred decisions. Intu-
itively, even if all p j with j �= i are fixed arbitrarily, the randomness of pi suffices to
bound the probability of the event Λi (t) ∈ (0, ε].
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Lemma 3 If Λ(t) ≤ ε then Λi (t) ∈ (0, ε] for at least one i ∈ [n].
Proof Assume that Λ(t) ≤ ε. Then by definition, x∗ and x̂ exist and x̂ ∈ P0, i.e., x̂ is
an ordinary class-0 Pareto-optimal solution. Since x̂ is class-0 Pareto-optimal and x∗
is the succeeding Pareto-optimal solution, there exists an index i ∈ [n] such that

(a) x∗
i = 0 and x̂i = v �= 0 for some v ∈ D′, and

(b) there exists a solution x ∈ Sxi=0 with profit smaller than t .

The second condition is a consequence of the assumption that x̂ is not extraordinary,
that is, there exists a Pareto-optimal solution z with zi = 0 that has smaller profit than
x̂ and hence smaller profit than t (this is important because otherwise by definition
Li = ∅). Recall that x∗(i) is defined to be the solutionwith the smallest weight inSxi=0

with p · x ≥ t . As x∗ ∈ Sxi=0, x∗ = x∗(i). Moreover, Li consists of all solutions from⋃
v∈D′ Sxi=v that have smaller weight than x∗. Thus, x̂ ∈ Li . By construction, x̂ has

the highest profit among the solutions inLi and therefore, x̂ (i) = x̂ andΛi (t) = Λ(t).

�

We continue the proof by analyzing the probability of the event Λi (t) ∈ (0, ε]. If
Λi (t) ∈ (0, ε], which impliesΛi (t) �= ∞, then the following three events must occur
simultaneously:

E1: There exists a solution x ∈ Sxi=0 with p · x ≥ t (namely x∗(i)).
E2: There exists a solution x ∈ Sxi=0 with p · x < t (otherwise we defined Li = ∅).
E3: The solution x̂ (i) exists and its profit lies in the interval [t − ε, t).

The events E1 and E2 depend only on the profits p j , j �= i . The existence and
identity of x̂ (i) depends additionally on pi , but the profits p j , j �= i , determine a
set X̂ (i) of at most d − 1 candidate solutions such that x̂ (i) ∈ X̂ (i) if x̂ (i) exists.

For each i ∈ [n] and v ∈ D′, we partition the set Li = ⋃
v∈D′ L(i,v) as follows.

If Li = ∅, then we define L(i,v) = ∅. Otherwise L(i,v) consists of all solutions from
Li ∩Sxi=v , i.e., all solutions from Sxi=v that have smaller weight than x∗(i). Let x̂ (i,v)

denote the Pareto-optimal solution from the set L(i,v) with the highest profit, that is,

x̂ (i,v) = argmax
x∈L(i,v)

p · x .

Let X̂ (i) denote the set that contains all x̂ (i,v) that exist (i.e., for which L(i,v) �= ∅):

X̂ (i) = {x̂ (i,v) | v ∈ D′ ∧ x̂ (i,v) exists}.

If x̂ (i) exists then

x̂ (i) = argmax{p · x | x ∈ X̂ (i)}.

For all v ∈ D′ the existence and identity of x̂ (i,v) is completely determined by the
profits p j , j �= i . Hence, if we fix all profits except for pi , then x̂ (i,v) is fixed and its
profit is κ(i,v) + vpi for some constant

κ(i,v) = p · x̂ (i,v) − vpi =
∑

j �=i

p j x̂
(i,v)
j
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that depends only on the profits p j with j �= i .
With these definitions the event E3 is equivalent to the event

E ′
3: X̂ (i) �= ∅ and max

{
p · x | x ∈ X̂ (i)

}
lies in the interval [t − ε, t).

To analyze the probability that, given X̂ (i) �= ∅, max{p · x | x ∈ X̂ (i)} lies in the
interval [t − ε, t), we partition X̂ (i) into X̂ (i,<0) and X̂ (i,>0) with

X̂ (i,<0) :=
{
x̂ (i,v) | v < 0 and x̂ (i,v) ∈ X̂ (i)

}

and

X̂ (i,>0) :=
{
x̂ (i,v) | v > 0 and x̂ (i,v) ∈ X̂ (i)

}
.

Then in order for E ′
3 to be true at least one of the following events must occur:

E ′
(3,<0): X̂ (i,<0) �= ∅ and max

{
p · x | x ∈ X̂ (i,<0)

}
lies in the interval [t − ε, t),

E ′
(3,>0): X̂ (i,>0) �= ∅ and max

{
p · x | x ∈ X̂ (i,>0)

}
lies in the interval [t − ε, t).

Given X̂ (i,<0) �= ∅, let

p< = max
v∈D′

{
y ∈ R | x̂ (i,v) ∈ X̂ (i,<0) ∧ κ(i,v) + vy = t

}
.

Claim Let X̂ (i,<0) �= ∅. For pi < p< we have p(x̂ (i,v)) = κ(i,v) + vpi > t for at least
one x̂ (i,v) ∈ X̂ (i,<0).

Proof Consider an element v ∈ D′ for which the maximum in the definition of p<

is taken. For this v, we have κ(i,v) + vp< = t . Since X̂ (i,<0) contains only solutions
x̂ (i,v) with v < 0, we obtain

p(x̂ (i,v)) = κ(i,v) + vpi > κ(i,v) + vp< = t

for pi < p<. 
�
We also have κ(i,v) + vp< ≤ t for all v ∈ D′ with x̂ (i,v) ∈ X̂ (i,<0). Therefore for

pi > p<+ε we obtain κ(i,v)+vpi < κ(i,v)+v(p<+ε) ≤ κ(i,v)+v(p<)−ε ≤ t−ε.
In order for E ′

(3,<0) to be true, we therefore must have pi ∈ [p<, p< + ε].
Given X̂ (i,>0) �= ∅, we analogously let

p> = min
v∈D′{y ∈ R | x̂ (i,v) ∈ X̂ (i,>0) ∧ κ(i,v) + vy = t − ε}.

Then for pi < p> we have p(x̂ (i,v)) < t − ε for all x̂ (i,v) ∈ X̂ (i,>0).

Claim For pi > p> + ε we have p(x̂ (i,v)) > t for at least one x̂ (i,v) ∈ X̂ (i,>0).
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Proof Consider an element v ∈ D′ for which the minimum in the definition of p> is
taken. For this v, we have κ(i,v) + vp> = t − ε. Since X̂ (i,>0) contains only solutions
x̂ (i,v) with v > 0, we obtain

p(x̂ (i,v)) = κ(i,v) + vpi > κ(i,v) + v(p> + ε) = t − ε + vε ≥ t

for pi > p> + ε. 
�
In order for E ′

(3,>0) to be true we therefore must have pi ∈ [p>, p> + ε].
Note that p< and p> depend only on the profits already fixed, i.e., the profits p j

with j �= i . Since the events E1 and E2 are independent of pi , we obtain1

Pr [E3 | E1 and E2] = Pr
[E ′

3

∣
∣ E1 and E2

]

= Pr
[
max{p · x | x ∈ X̂ (i)} ∈ [t − ε, t)

∣
∣
∣ E1 and E2

]

≤ Pr [ pi ∈ [p<, p< + ε] ∪ [p>, p> + ε] | E1 and E2]
≤ 2εφ.

The event E2 implies −Δ
∑n

j=1 |p j | < t . This is equivalent to Δ
∑n

j=1 |p j | ≥ −t
because the probability that the inequality is satisfied with equality is zero. For t ≤ 0,
the event E1 implies Δ

∑n
j=1 |p j | ≥ t , and hence, for every t ∈ R, one of the events

implies Δ
∑n

j=1 |p j | ≥ |t |. This yields

Pr [E1 and E2] ≤ Pr

⎡

⎣Δ

n∑

j=1

|p j | ≥ |t |
⎤

⎦ .

Since the events E1 and E2 do not depend on pi and in our analysis of E3 we assumed
that all p j with j �= i can be arbitrarily fixed, we obtain

Pr [Λi (t) ∈ (0, ε]] ≤ Pr [E1 and E2 and E3]
= Pr [E1 and E2] · Pr [E3 | E1 and E2]

≤ Pr

⎡

⎣Δ

n∑

j=1

|p j | ≥ |t |
⎤

⎦ · 2εφi .

To conclude the proof, we apply a union bound and Lemma 3:

Pr [Λ(t) ≤ ε] ≤ Pr [∃i : Λi (t) ∈ (0, ε]]

≤
n∑

i=1

Pr [Λi (t) ∈ (0, ε]]

1 The contribution of [19] is this improved upper bound for Pr[E3]. In [4], we used a union bound over all
candidates from X̂ (i), which resulted in an additional factor of O(log k).
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≤
n∑

i=1

Pr

⎡

⎣Δ

n∑

j=1

|p j | ≥ |t |
⎤

⎦ 2εφi

≤ Pr

[

Δ ·
n∑

i=1

|pi | ≥ |t |
]

· 2ε
n∑

i=1

φi .


�

3 Lower bounds on the smoothed number of Pareto-optimal
solutions

In this section we first present a lower bound ofΩ(n2k log k) on the smoothed number
of Pareto-optimal solutions for S = {0, . . . , k}n , generalizing a bound for the binary
domain presented in [5]. Afterwards we prove a stronger bound of Ω(n2k2) under
stronger assumptions. The weaker bound provides a vector of weights w1, . . . , wn

such that the bound holds for a linear weight function w · x . For the stronger bound
we can only prove that there is some weight function w : S → R for which the bound
holds but this function might not be linear.

3.1 Lower bound for linear weight functions

For linear weight functions, we prove the following lower bound on the expected
number of Pareto-optimal solutions restated in Theorem 3.

Theorem 3 Let D = {0, . . . , k} and S = Dn. Suppose that the profits are drawn
independently at random according to a continuous probability distribution with non-
increasing density function f : R≥0 → R≥0. Then there is a linear weight function
w : S → R with coefficients w1, . . . , wn ∈ R>0 for which the expected number of
Pareto-optimal solutions is at least

Hk

4
k(n2 − n) + kn + 1.

If the profits are drawn according to the uniform distribution over some interval
[0, a] with a > 0, then the above term equals the expected number of Pareto-optimal
solutions.

Similarly, a lower bound of Ω(n2k log k) can be obtained for the case that f is the
density of aGaussian randomvariablewithmean 0. Since all weightswi are larger than
0, a solution with a negative profit cannot be contained in a Pareto-optimal solution.
Hence, we can ignore those items. Restricted to the interval [0,∞) the density of
a Gaussian random variable with mean 0 is non-increasing and hence we can apply
Theorem 3 when taking into account that with high probability at least a constant
fraction of the random variables take positive values.
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Proof of Theorem 3 The set S = {0, . . . , k}n corresponds to the solution set of the
bounded knapsack problem in which up to k identical copies of each item can be put
into the knapsack. For the sake of a simple presentation,we describe our construction in
terms of this knapsack problem.Wefix theweights of all items by settingwi = (k+1)i

for all i ∈ [n]. This way, the lexicographic order of the solutions in S is the same as the
order defined by the weight w · x of solutions. Since the density function of the profits
is assumed to be non-increasing, the distribution function F : R≥0 → [0, 1] is concave
as F ′ = f . Furthermore, F(0) = 0. Observe that such a function is sub-additive, that
is, F(a + b) ≤ F(a) + F(b) for every a, b ≥ 0.

Let S j denote the set of the first (k + 1) j solutions in the lexicographic order,
which are exactly those solutions that contain only copies of the items 1, . . . , j . We
define Pj = k

∑ j
i=1 pi and we denote by P j the set of Pareto-optimal solutions over

S j . Observe that the last solution in S j has profit Pj and it is Pareto-optimal with
probability 1.

For any given α > 0, let X j
α denote the number of Pareto-optimal solutions in

P j with profit at least Pj − α, not counting the last solution in this sequence, which

is (k, . . . , k, 0, . . . , 0). By induction we show E
[
X j

α

]
≥ j

∑k
i=1 F(α/i), where F

denotes the distribution function of the profits. We partition the interval [0,∞) into
disjoint intervals I0 = (α,∞), I
 = (α/(
+1), α/
] for 
 ∈ [k−1], and Ik = [0, α/k].
For every i ∈ [n] and for 
 ∈ {0, . . . , k}, we denote by Ai


 the event that pi lies in the
interval I
. For all 
 ∈ [k−1] it holds Pr[Ai




] = F(α/
)−F(α/(
+1)). Furthermore
we have Pr

[
Ai
0

] = 1 − F(α) and Pr
[
Ai
k

] = F(α/k).

Claim For j = 1, the base case of the induction, we have

E
[
X1

α

]
=

k∑


=1

F
(α




)
.

Proof Since w1 > 0 and p1 > 0 with probability one, we have P1 = S1 =
{(i, 0, . . . , 0) | i ∈ {0, . . . , k}}. By definition X1

α counts the number of solutions inP1
with profit at least P1 − α = kp1 − α, not counting the last solution (k, 0, . . . , 0).
Hence,

X1
α = {i ∈ {0, . . . , k − 1} | i p1 ≥ kp1 − α} = {i ∈ {0, . . . , k − 1} | k − i ≤ α/p1}

= min{�α/p1�, k}.

This implies that X1
α = 
 holds if and only if the event A1


 occurs. Hence,

E
[
X1

α

]
=

k∑


=0


 · Pr
[
A1




]
= k · Pr

[
A1
k

]
+

k−1∑


=1




(

F
(α




)
− F

(
α

(
 + 1)

))

=
k∑


=1

F
(α




)
.
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Fig. 4 In this example, we have k = 3 and hence the solutions in S j are grouped into 4 blocks, with block

 ∈ {0, . . . , 3} containing all solutions with x j = 
. These blocks are depicted as rectangles. Block 0
(the leftmost block) corresponds to S j−1 and the other blocks are shifted copies of block 0. The points
inside the blocks depict the Pareto-optimal solutions from P j−1. Let 
 ≥ 1. Our choice of the weights
guarantees that each solution in block 
 has more weight than any solution from a block 
′ < 
 and hence
solutions from block 
 cannot dominate solutions from a block 
′ < 
. On the other hand any solution from
a block 
′ < 
 has profit at most Pj−1 + (
 − 1)p j and hence solutions from block 
 with a larger profit
cannot be dominated by solutions from a block 
′ < 
. Since every block is a shifted copy of block 0, these
solutions correspond to solutions from block 0 with a profit larger than Pj−1 − p j (there are three such
solutions in the example). Hence, exactly these solutions give rise to one new Pareto-optimal solution in
each of the k following blocks. Pareto-optimal solutions in P j are marked in black 
�

Now we consider the case j > 1. We group the solutions in S j into k + 1 blocks,
with block 
 ∈ {0, . . . , k} containing all solutions with x j = 
. Block 0 corresponds
to S j−1. Each Pareto-optimal solution in S j−1 with profit in the interval (Pj−1 −
p j , Pj−1] gives rise to one new Pareto-optimal solution in each of the k following

blocks (see Fig. 4). In the event A j
0 we have X j

α = X j−1
α because all solutions that

contribute to X j
α are in block k. In the event A j

1 we have X j−1
p j + 1 Pareto-optimal

solutions in block k and X j−1
α−p j

+ 1 Pareto-optimal solutions in block k − 1. Since the

last solution is not counted in X j
α , we have X j

α = X j−1
p j + X j−1

α−p j
+ 1 (see Fig. 5).

By similar reasoning, event A j

 implies X j

α = 
X j−1
p j + X j−1

α−lp j
+ 
. Hence, it follows

that we can lower bound the expected value of X j
α by

k∑


=0

Pr
[
A j
l

] (

 · E

[
X j−1

p j

∣
∣
∣ A

j



]
+ E

[
X j−1

α−
p j

∣
∣
∣ A

j



]
+ 

)

=
k∑


=0

∫

x∈I

f (x) ·

(

 · E

[
X j−1
x

]
+ E

[
X j−1

α−
x

]
+ 

)
dx

≥
k∑


=0

∫

x∈I

f (x) ·

(


 · ( j − 1)
k∑

i=1

F
( x

i

)
+ ( j − 1)

k∑

i=1

F

(
α − lx

i

)

+ 


)

dx,

where the last inequality follows from the induction hypothesis.We can further rewrite
this term as
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Fig. 5 In this example, we have k = 2 and hence the solutions in S j are grouped into 3 blocks, with block

 ∈ {0, . . . , 2} containing all solutions with x j = 
. These blocks are depicted as rectangles. Block 0 (the
leftmost block) corresponds to S j−1 and the other blocks are shifted copies of block 0. The points inside
the blocks depict the Pareto-optimal solutions from P j−1. The Pareto-optimal solutions from P j−1 in
block 0 and their shifted copies in the other blocks together constitute a superset of the Pareto set P j . In

this example, event A j
1 occurs, i.e., p j ∈ (α/2, α]. Hence, for X j

α only the last two blocks are relevant. It

holds X j
α = X j−1

p j + X j−1
α−p j

+1. The term X j−1
p j counts the number of relevant Pareto-optimal solutions in

block 2 (the rightmost block). It holds X j−1
p j = 3 and the corresponding solutions are marked in black. The

term X j−1
α−p j

counts the number of relevant solutions in block 1. It holds X j−1
α−p j

= 2 and the corresponding

solutions are marked in black. Observe that the last solution in block 1 with profit Pj − p j needs to be

counted in X j
α . However, this solution is not counted in X

α−p j
j−1 by definition. This is the reason for the +1

term in the formula for X j
α above

k∑


=0

∫

x∈I

f (x) ·

(

( j − 1)
k∑

i=1

[


 · F
( x

i

)
+ F

(
α − 
x

i

)]

+ 


)

dx

≥
k∑


=0

∫

x∈I

f (x) ·

(

( j − 1)
k∑

i=1

F
(α

i

)
+ 


)

dx

= ( j − 1)
k∑

i=1

F
(α

i

)
+

k∑


=0


 · Pr
[
A j




]
= j

k∑

i=1

F
(α

i

)
,

where the inequality is due to the fact that the function F is sub-additive. If every
profit is chosen uniformly at random from some interval [0, a] with a > 0, then this
term equals exactly the expected number of Pareto-optimal solutions.

Now let Y j = |P j | − |P j−1| denote the number of new Pareto-optimal solutions

in P j . Observe that Y j = kX j−1
p j + k. This follows from the fact that each Pareto-

optimal solution in P j−1 with profit in the interval (Pj−1 − p j , Pj−1] gives rise to k
new Pareto-optimal solutions (see Fig. 4). The additive k is due to the fact that the last
solution in P j−1 is not counted in X j−1

p j but yields k new solutions in P j . Since p j

and X j−1
α are independent, the induction hypothesis implies
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E
[
Y j
] = E

[
kX j−1

p j + k
]

≥ E

[

k( j − 1)
k∑

i=1

F
( p j

i

)
+ k

]

.

Furthermore, the number of Pareto-optimal solutions in Pn is q = 1+∑n
j=1 Y j . The

additional 1 is due to the first solution (0, . . . , 0), which is always Pareto-optimal.
Therefore,

E[q] = 1 +
n∑

j=1

E
[
Y j
] = 1 +

n∑

j=1

E
[
kX j−1

p j + k
]

≥ 1 +
n∑

j=1

E

[

k( j − 1)
k∑

i=1

F
( p j

i

)
+ k

]

.

The random variable F(p j ) is uniformly distributed over the interval [0, 1]. To see
this, observe that for any α ∈ [0, 1] we have

Pr
[
F(p j ) ≤ α

] = Pr
[
p j ≤ F−1(α)

]
= F(F−1(α)) = α,

where F−1 denotes the inverse function of F . This function is not unique in gen-
eral because the distribution F is not injective in general. However, the argument
works for any choice of F−1. Thus E

[
F(p j )

] = 1/2. As F is sub-additive,
i · F(p j/i) ≥ F(p j ) holds, which implies E

[
F(p j/i)

] ≥ E
[
F(p j )/i

] = 1/(2i).

Using E
[∑k

i=1 F(p j/i)
]

= 1
2Hk yields

E[q] ≥ Hk

4
k(n2 − n) + kn + 1.

If the profits are drawn according to the uniform distribution over some interval [0, a]
with a > 0, then the above inequality holds with equality. 
�

3.2 Lower bound for general weight functions

Every weight function induces a ranking on the set of solutions, and in the following,
we use the terms weight function and ranking synonymously. We assume that k is a
function of n with (5(c + 1) + 1) log n ≤ k ≤ nc for some constant c. We use the
probabilisticmethod to show that, for each sufficiently large n ∈ N, a ranking exists for
which the expected number of Pareto-optimal solutions is lower bounded byΩ(n2k2).
That is, we create a ranking at random (but independently of the profits) and show that
the expected number of Pareto-optimal solutions (where the expectation is taken over
both the random ranking and the random profits) satisfies the desired lower bound.
This implies that, for each sufficiently large n ∈ N, there must exist a deterministic
ranking on {0, . . . , k}n for which the expected number of Pareto-optimal solutions
(where the expectation is now taken only over the random profits) is Ω(n2k2).
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Theorem 2 Let (5(c + 1) + 1) log n ≤ k ≤ nc for some c ≥ 2 and assume that n
is a multiple of c + 2. Let D = {0, . . . , k} and S = Dn. There exists a ranking on
S and a constant κ depending only on c such that the expected number of Pareto-
optimal solutions is at least κn2k2 if each profit pi is chosen independently uniformly
at random from the interval [−1, 1].

Before we describe how the ranking is created, we want to give a short overview on
the ideas of the proof. In order to show a lower bound ofΩ(n2k2) on the expected num-
ber of Pareto-optimal solutions for S = {0, . . . , k}n , we will use a similar approach
as in Sect. 3.1. However, in order to obtain the higher bound, we need a larger number
of items. We will use the existing original items to create new items called virtual
items. As virtual items we will allow specific subsets of the n original items. We will
randomly choose some of the virtual items and again similar to Sect. 3.1 we will create
a ranking which can be represented as a linear function on binary combinations of the
virtual items. Note that we might not be able to represent such a ranking by a linear
function on the original items. The proof that this creates an expected number of at
least Ω(n2k2) Pareto-optimal solutions consists of two parts. In the first part we show
that it is likely that the random set of virtual items creates a feasible instance and that,
in case the profits of the original items are chosen uniformly at random, the distribution
of the profits of the possible virtual items is likely to be close to a uniform distribution.
In the second part we then show how to apply a similar proof as for Theorem 3 for a
set of randomly chosen virtual items.

In order to describe how the ranking is created, we define virtual items. Let [n] be
the set of original items and assume that we have k instances of each of these n items.
A virtual item is a vector x ∈ Dn . Intuitively, adding the virtual item x to the knapsack
corresponds to inserting xi instances of the i th original item into the knapsack for
every i ∈ [n].

Assume that a sequence x (1), . . . , x (
) of virtual items is given. Based on this
sequence, we create a ranking on the set of solutions Dn similar to the ranking used
in Theorem 3 but for the binary case in which every virtual item can be “contained”
at most once in every solution. That is, we create a ranking such that solutions that
“contain” the i th virtual item cannot dominate solutions that “consist” only of a subset
of the first i − 1 virtual items. Let S0 = {(0, . . . , 0)} and assume that the solution
(0, . . . , 0) has the highest rank, i.e., that it cannot be dominated by any other solution.
Let Si denote the set of solutions that can be obtained by adding a subset of the first i
virtual items, that is,

Si = Si−1 ∪
{
x + x (i) | x ∈ Si−1

}
.

Let S∗
i = Si \ Si−1. In the ranking we define, each solution from S∗

i is ranked lower
than every solution from Si−1. It remains to define the ranking among two solutions
x, y ∈ S∗

i . The solutions x and y can uniquely be written as x = x ′ + x (i) and
y = y′ + x (i) for some x ′, y′ ∈ Si−1. Based on this observation, we define the ranking
between x and y to be the same as the one between x ′ and y′. Furthermore, we define
the ranking in such a way that all solutions in S \S
 are ranked lower than all solutions
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in S
. Hence, we do not need to consider the solutions in S \S
 anymore. For a given
sequence of virtual items, this yields a fixed ranking among the solutions in S
.

Example 1 In order to illustrate the way of how the ranking is created, let us give an
example. Let us assume that n = 3 and that three virtual items are chosen, namely
x (1) = (1, 0, 1), x (2) = (1, 1, 0), and x (3) = (0, 0, 1). Then S0 = {(0, 0, 0)},
S1 = {(0, 0, 0), (1, 0, 1)}, S2 = {(0, 0, 0), (1, 0, 1), (1, 1, 0), (2, 1, 1)}, and S3 =
{(0, 0, 0), (1, 0, 1), (1, 1, 0), (2, 1, 1), (0, 0, 1), (1, 0, 2), (1, 1, 1), (2, 1, 2)}.
The solutions in S3 are listed according to the ranking, that is, (0, 0, 0) is the highest
ranked solution and (2, 1, 2) is the lowest ranked solution. 
�

Now we describe how the sequence of virtual items is chosen. We set 
 :=
nk/(2e(c + 2)). Since we assumed that n is a multiple of c + 2, we can partition
the set of original items into c + 2 groups with n′ = n/(c + 2) items each. Let V
denote the set of virtual items that contain one item from each group, that is,

V =
⎧
⎨

⎩
x ∈ {0, 1}n

∣
∣
∣
∣
∣
∣
∀ j ∈ {0, . . . , c + 1} :

n′
∑

i=1

x j ·n′+i = 1

⎫
⎬

⎭
.

Every virtual item x (i) is drawn independently and uniformly from the set V . It can
happen that there exists an original item that occurs in more than k virtual items. In
this case, the sequence of virtual items is not valid because we have only k copies of
each item. Then the ranking is replaced by an arbitrary ranking on Dn . The following
lemma shows that this failure event is unlikely to occur.

Lemma 4 The probability that the sequence of virtual items is not valid because more
than k copies of one original item are contained in the virtual items is at most 1/(nk)5.

Proof For i ∈ [n], let Li denote the number of instances of item i that are contained
in the virtual items. We can bound the probability that Li exceeds k by

Pr [Li ≥ k + 1] ≤
(




k + 1

)

·
(
1

n′

)k+1

≤
(

e · 


k + 1

)k+1

·
(
c + 2

n

)k+1

<

(
1

2

)k

.

A union bound yields

Pr [∃i ∈ [n] : Li ≥ k + 1] ≤ n ·
(
1

2

)k

≤ n ·
(
1

2

)(5(c+1)+1) log n

= 1

n5(c+1)
≤ 1

(nk)5
.


�
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We prove Theorem 2 in two steps. First we prove the following lemma about how
the profits of the virtual items in V are distributed, where the profit of a virtual item
x ∈ {0, 1}n is defined as p · x . Observe that scaling all profits by the same factor
does not change the number of Pareto-optimal solutions. Hence, we can assume that
the profits are chosen uniformly at random from the interval [−u, u] for an arbitrary
u > 0.

Lemma 5 If the profits p1, . . . , pn of the original items are chosen independently
uniformly at random from the interval [−nc+1, nc+1], then there exist constants γ >

0 and p > 0 depending only on c such that with probability at least p, for each
j ∈ {0, . . . , nc+1 − 1}, the set V contains at least n/γ virtual items whose profits lie
in the interval ( j, j + 1).

Let us remark that we scaled the profits of the original items to the inter-
val [−nc+1, nc+1] in the lemma above only to keep the notation less cumbersome.
The benefit of scaling is that we can consider intervals ( j, j + 1) for integer values
of j . Throughout the entire remainder of this section we will assume that the profits of
the original items are chosen uniformly from [−nc+1, nc+1] without mentioning this
explicitly anymore. This applies in particular to the proof of Theorem 2 below. This
assumption is without loss of generality because scaling all profits does not change
the set of Pareto-optimal solutions.

Furthermore, we adapt the lower bound of Ω(n2) in [5] for the binary case from
uniformly random profits to profits that are chosen only “nearly” uniformly at random.
To make this more precise, consider a knapsack instance with n items in which the i th
item has weight 2i and the profits of the items are chosen independently according to
a probability distribution F : R → R≥0. Assume that F consists of two components,
that is, there exists a constant δ > 0 such that F = δ · U + (1 − δ) · G for two
probability distributions U and G. Furthermore, assume that U has the property that
for each j ∈ {0, . . . , T −1} it holds Pr [X ∈ ( j, j + 1)] = 1/T for a random variable
X distributed according to U and some T ≥ n.

Lemma 6 The expected number of Pareto-optimal solutions in the aforementioned
scenario is at least δ2n2/128.

Together Lemmas 4, 5, and 6 and the upper bound on the expected number of
Pareto-optimal solutions presented in Theorem 1 imply Theorem 2.

Proof of Theorem 2 Assume that the ranking on the set of solutions is determined as
described above, that is, the ranking is induced by 
 randomly chosen virtual items
from V . Let F1 denote the event that there exists some j ∈ {0, . . . , nc+1 − 1} for
which less than n/γ elements in V have a profit in ( j, j + 1). Due to Lemma 5, the
probability of the event F1 is at most 1− p. Intuitively, the failure event F1 occurs if
the profits p1, . . . , pn are chosen such that the profit distribution of the virtual items
is not uniform enough.

We first analyze the number q ′ of Pareto-optimal solutions in a different random
experiment. In this random experiment, we do not care if the sequence of virtual items
is valid, that is, we assumeD = {0, . . . , 
}, for which the sequence is always valid.We
later use q ′ as an auxiliary random variable to analyze the number of Pareto-optimal
solutions for the setting D = {0, . . . , k}, which we actually care about.

123



344 R. Beier et al.

Claim It holds E
[
q ′ ∣∣ ¬F1

] ≥ κ ′n2k2 for κ ′ = δ2/(512e2(c + 2)2).

Proof Let X denote the random variable that describes the profit of a uniform random
virtual item chosen from V . We argue in the following that under the assumption that
F1 does not occur, we can write the distribution of X in a form such that Lemma 6 is
applicable.

Under the assumption thatF1 does not occur, for every j ∈ {0, . . . , nc+1−1} at least
n/γ virtual items have a profit in the interval ( j, j+1). For each interval ( j, j+1)we
choose exactly n/γ virtual items with a profit in that interval arbitrarily. We call these
virtual items good and all other virtual items bad. Altogether there are nc+2/γ good
items. Since there are (n′)c+2 virtual items in V in total, the probability that one of the
good items is chosen is δ = nc+2/(γ n′c+2) = (c+ 2)c+2/γ . Under the condition that
a good item is chosen, which happens with probability δ, the probability that X takes
a value in the interval ( j, j + 1) is exactly 1/nc+1 for every j ∈ {0, . . . , nc+1 − 1}.
This corresponds to the distribution U in the setting of Lemma 6.

The number of virtual items in the sequence is 
 = nk/(2e(c + 2)). These virtual
items are chosen independently and if we assign the i th virtual item x (i) a weight of 2i

we can apply Lemma 6, yielding that the expected number of Pareto-optimal solutions
of a knapsack instance with the virtual items is at least

δ2
2/128 = κ ′n2k2 for κ ′ = δ2/(512e2(c + 2)2).

Altogether, we have shown E
[
q ′ ∣∣ ¬F1

] ≥ κ ′n2k2. 
�

Observe that it can happen that there exist different subsets of the virtual items that
represent the same original solution, i.e., there exist I , J ⊆ {1, . . . , 
} with I �= J
such that

∑
i∈I x (i) = ∑

j∈J x
( j). Due to the definition of S∗

i as Si \ Si−1, only the
solution with highest ranking among these is considered in our construction. Since all
solutions of the knapsack instance that represent the same original solution have the
same profit only the one with the highest ranking can be a Pareto-optimal solution.
Hence, leaving out the other solutions in our construction does not affect the number
of Pareto-optimal solutions.

Now we take into account that the sequence of virtual items might not be a valid
sequence for D = {0, . . . , k} because more than k copies of one original item are
contained in the virtual items. Let F2 denote the event that the sequence of virtual
items is not allowed because it contains more than k instances of one item. Due to
Lemma 4, we know that Pr [F2] ≤ 1/(nk)5. Remember that if this failure event
occurs, the ranking is set to an arbitrary ranking on Dn . Let q denote the number
of Pareto-optimal solutions. By definition of q ′ and the failure event F2, we know
that E[q | ¬F2] = E

[
q ′ ∣∣ ¬F2

]
. Furthermore, since F2 does not affect the choice

of the profits, we can use Theorem 1 to bound E
[
q ′ ∣∣ F2

]
, but we have to take into

account that in the modified random experiment for which q ′ is defined we have
D = {0, . . . , 
}. Hence, we obtain E

[
q ′ ∣∣ F2

] ≤ κ ′′n4k2 for a sufficiently large
constant κ ′′.

Putting these results together yields
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E[q] ≥ Pr [¬F2] · E[q | ¬F2]

= Pr [¬F2] · E[q ′ ∣∣ ¬F2
]

= E
[
q ′]− Pr [F2] · E[q ′ ∣∣ F2

]

≥ Pr [¬F1] · E[q ′ ∣∣ ¬F1
]− Pr [F2] · E[q ′ ∣∣ F2

]

≥ p · κ ′n2k2 − κ ′′n4k2

(nk)5

≥ κn2k2

for a sufficiently large constant κ . 
�

3.2.1 Proof of Lemma 5

In order to prove Lemma 5, we analyze an auxiliary random experiment first. A
well-studied random process is the experiment of placing n balls uniformly and inde-
pendently at random into m bins. In this random allocation process, the expected load
of each bin is n/m and one can use Chernoff bounds to show that in the case n ≥ m
it is unlikely that there exists a bin whose load deviates by more than a logarithmic
factor from its expectation. In this section, we consider a random experiment in which
the locations of the balls are chosen as linear combinations of independent random
variables. Since the same random variables appear in linear combinations for different
balls, the locations of the balls are dependent in a special way.

Let c ∈ N with c ≥ 2 be an arbitrary constant and assume that we are given n
independent random variables that are chosen uniformly at random from the interval
[−nc+1, nc+1]. We assume that n is a multiple of c + 2, and we partition the set of
random variables into c + 2 sets with n′ = n/(c + 2) random variables each. For
i ∈ {1, . . . , c + 2} and j ∈ {1, . . . , n′}, let pij denote the j-th random variable in the
i th group.

For every 
 ∈ [c + 2], we consider a random experiment in which the set of balls
is [n′]
 and the bins are the intervals (−
nc+1,−
nc+1 + 1), . . . , (
nc+1 − 1, 
nc+1).
In the following, bin j denotes the interval ( j, j + 1). Hence, the number of balls is
(n′)
 and the number of bins is 2
nc+1. Instead of placing these balls independently
into the bins, the location of a ball a ∈ [n′]
 is chosen to be p1a1 +· · ·+ p


a

, that is, it is

placed in bin �p1a1 +· · ·+ p

a


�. We will refer to this random process as round 
 in the
following. We show that despite these dependencies, the allocation process generates
a more or less balanced allocation with constant probability. We use the following
weighted Chernoff bound whose proof can be found in Appendix A.

Lemma 7 Let X1, . . . , Xn be independent discrete random variables with values in
[0, z] for some z > 0. Let X =∑n

i=1 Xi and μ = E[X ]. Then for every x > 0,

Pr [X ≥ x] <
(e · μ

x

)x/z
and Pr [X ≤ x] <

(
e1−μ/x · μ

x

)x/z

.
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Wewill first study how the random experiments for different values of 
 are related.
In round1, there aren′ balls that are placed at the positions p11, . . . , p1n′ . These positions
are chosen independently and uniformly at random from the interval [−nc+1, nc+1].
The bins correspond to the intervals ( j, j + 1) for j ∈ {−nc+1, nc+1 − 1}. Hence,
each ball is placed in each bin with probability 1/(2nc+1) and the process in round 1
corresponds to the well-studied setting that n′ balls are independently and uniformly
at random allocated to 2nc+1 bins. We define F1 to be the event that there exists a bin
that contains more than one ball after the first round. Since c ≥ 2, a union bound over
the
(n′
2

) ≤ (n′)2 pairs of balls implies

Pr [F1] ≤ (n′)2

2nc+1 = o(1)

because the probability that two specific balls are assigned to the samebin is 1/(2nc+1).
Let 
 ≥ 2. We can describe round 
 as follows: Replace each ball from round 
− 1

by n′ identical copies. Then these n′ copies are moved, where the location of the j-th
copy is obtained by adding p


j to the current location. Let X

j denote the number of

balls in bin j after the 
th round.
For 
 ∈ {2, . . . , c}, let F
 denote the event that after round 
 there exists a bin that

contains more than (2c+4)
−1 balls. Furthermore, letFc+1 denote the event that after
round c + 1 there exists a bin that contains more than ln n balls.

Lemma 8 After roundc+1, the averagenumberof balls per bin is a constant depending
on c, and with probability 1−o(1), the maximal number of balls in any bin is bounded
from above by ln n.

Proof The number of balls in round c + 1 is (n′)c+1 and the number of bins is 2(c +
1)nc+1. Hence, the average number of balls per bin is

(n′)c+1

2(c + 1)nc+1 = nc+1

2(c + 1)nc+1(c + 2)c+1 = 1

2(c + 1)(c + 2)c+1 = Θ(1).

Let 
 ∈ {2, . . . , c}. Assume that the random variables in the first 
 − 1 groups are
already fixed in such a way that the eventF
−1 does not occur. Under this assumption,
also the variables X
−1

j are fixed and have values of at most (2c + 4)
−2. Consider a
bin j after round 
 − 1 and assume that to all elements in that bin the d-th element of
the 
th group is added. The locations of the balls obtained this way are in the interval
( j + �p


d�, j + �p

d� + 2), that is, they lie either in bin j + �p


d� or j + �p

d� + 1.

Hence, we can bound X

j by

X

j ≤

n′
∑

d=1

Y 
−1
j,p


d
with Y 
−1

j,p

d

:= X
−1
j−�p


d� + X
−1
j−�p


d�−1
.

Hence, when the randomvariables in the first 
−1 groups are fixed such thatF
−1 does
not occur, then X


j is bounded by the sum of independent discrete random variables
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Y 
−1
j,p


d
that take only values from the set {0, . . . , 2(2c + 4)
−2}. The expected value of

X

j is bounded from above by (n′)
/(2nc+1) < 1/n. Altogether, this implies that we

can use Lemma 7 to bound the probability that X

j exceeds its expectation. We obtain

Pr
[
X


j ≥ (2c + 4)
−1
∣
∣
∣ ¬F
−1

]
≤
(

e

(2c + 4)
−1n

)c+2

< n−(c+2).

Applying a union bound over all 2
nc+1 bins j yields

Pr
[F
 | ¬F
−1

] ≤ Pr
[
∃ j : X


j ≥ (2c + 4)
−1
∣
∣
∣ ¬F
−1

]
≤ (2
nc+1) · n−(c+2) = o(1).

Now consider round c + 1. The expected value of Xc+1
j is bounded from above by

(n′)c+1/(2nc+1) < 1 and the same arguments as for the previous rounds show that
Xc+1

j can be bounded by the sum of independent random variables with values from

the set {0, . . . , 2(2c+ 4)c−1} when the random variables in the first c groups are fixed
such that Fc does not occur. Hence, we can again apply Lemma 7 to obtain

Pr
[
Xc+1

j ≥ ln n
∣
∣
∣ ¬Fc

]
≤
( e

ln n

)ln n/(2(2c+4)c−1) ≤ n− ln ln n/(2(2c+4)c−1)+1.

Let Fc+1 denote the event that after round c + 1 there exists a bin that contains more
than ln n balls. Applying a union bound over all 2(c + 1)nc+1 bins yields

Pr
[Fc+1 | ¬Fc

] ≤ (2(c + 1)nc+1) · n− ln ln n/(2(2c+4)c−1)+1 = o(1).

Now we can bound the probability that Fc+1 occurs as

Pr
[Fc+1

] ≤ Pr [Fc] + Pr
[Fc+1 | ¬Fc

] = Pr [Fc] + o(1)

≤ Pr
[Fc−1

]+ Pr
[Fc | ¬Fc−1

]+ o(1) = Pr
[Fc−1

]+ o(1)

≤ Pr
[Fc−2

]+ Pr
[Fc−1 | ¬Fc−2

]+ o(1) = Pr
[Fc−2

]+ o(1)

≤ . . . = Pr [F1] + o(1) = o(1).


�
Based on Lemma 8, we prove the following lemma about the allocation after round

c + 2, which directly implies Lemma 5. To see this implication, observe that the
auxiliary random experiment that we analyze in this section corresponds exactly to
the setting of Lemma 5, where the virtual items correspond to the balls in round c+ 2
and the intervals ( j, j+1) in Lemma5 correspond to the bins. The randomvariables pij
for i ∈ {1, . . . , c + 2} and j ∈ {1, . . . , n′} with n′ = n/(c + 2) correspond to the
profits p1, . . . , pn of the original items.

Lemma 9 For every constant c ≥ 2, there exist constants γ > 0 and p > 0 such
that with probability at least p the above described process yields after round c + 2
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an allocation of the (n′)c+2 balls to the 2(c + 2)nc+1 bins in which every bin j ∈
{0, . . . , nc+1 − 1} contains at least n/γ balls.

Proof In order to analyze the last round, we need besides ¬Fc+1 one additional prop-
erty that has to be satisfied after round c + 1. Let Y denote the number of balls after
round c+1 that are assigned to bins j with j ∈ {0, . . . , nc+1−1}. The probability that
a fixed ball a ∈ [n′]c+1 is placed in one of these bins is at least 1/(2(c + 1)). Hence,
the expected value of Y is at least (n′)c+1/(2(c + 1)). Let Y denote the number of
balls after round c+1 that are not assigned to bins in {0, . . . , nc+1 −1}. The expected
value of Y is at most (n′)c+1(2c+ 1)/(2c+ 2). Applying Markov’s inequality yields

Pr
[

Y ≤ (n′)c+1

4c + 4

]

≤ Pr
[

Y ≥ E
[
Y
] 4c + 3

4c + 2

]

≤ 4c + 2

4c + 3
.

Let G denote the failure event that Y is less than (n′)c+1/(4c + 4). We have seen that
¬G occurs with constant probability.

Now we analyze round c+2 and assume that the random variables in the first c+1
groups are fixed in such a way that ¬Fc+1 ∩ ¬G occurs.

Claim Consider a bin j ∈ {0, . . . , nc+1 − 1}. Under the assumption ¬G, the expected
value of Xc+2

j is at least n/(c + 2)c+5.

Proof Under the assumption ¬G, there are together at least (n′)c+1/(4c + 4) balls in
the bins in {0, . . . , nc+1−1} after round c+1. Each of these balls is at a location from
the interval [0, nc+1]. Fix an arbitrary such ball at location x ∈ [0, nc+1]. From this
ball, we obtain n′ balls in round c + 2 by adding one of the numbers pc+2

1 , . . . , pc+2
n′

to its current location x . Adding a number from ( j − x, j + 1 − x) to x results in
a ball with location in ( j, j + 1). Since j ∈ {0, . . . , nc+1 − 1} and x ∈ [0, nc+1],
the interval ( j − x, j + 1 − x) lies inside the interval [−nc+1, nc+1] from which the
numbers pc+2

1 , . . . , pc+2
n′ are chosen uniformly at random. Hence, for every i , we have

Pr
[
pc+2
i ∈ ( j − x, j + 1 − x)

]
= 1/(2nc+1).

Since there are at least (n′)c+1/(4c + 4) balls in the bins in {0, . . . , nc+1 − 1} and
each of them gives rise to n′ balls in round c + 2, the expected value of Xc+2

j is at
least

(n′)c+2

((4c + 4)2nc+1)
≥ n

(c + 2)c+5
.


�
Remember that Fc+1 denotes the event that after round c + 1 there exists a bin

that contains more than ln n balls. Hence, under the assumption ¬Fc+1, the random
variable

Y c+1
j,pc+2

d
:= Xc+1

j−�pc+2
d � + Xc+1

j−�pc+2
d �−1

,
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which we already used in the proof of Lemma 8, takes only values in the interval
{0, . . . , 2 ln n} because each Xc+1

i is at most ln n.
We apply Lemma 7 to bound the probability that Xc+2

j deviates from its mean:

Pr
[

Xc+2
j ≤ n

2(c + 2)c+5

∣
∣
∣
∣ ¬Fc+1 ∩ ¬G

]

≤
(
2

e

)n/(4(c+2)c+5 ln n)

.

Let F denote the event that there exists a bin j ∈ {0, . . . , nc+1 − 1} whose load is
smaller than n/(2(c + 2)c+5). We can bound the probability of F by

Pr
[F | ¬Fc+1 ∩ ¬G] ≤ nc+1 ·

(
2

e

)n/(4(c+2)c+5 ln n)

= o(1).

Altogether this implies

Pr [F] ≤ Pr
[Fc+1 ∪ G]+ Pr

[F | ¬Fc+1 ∩ ¬G]

≤ Pr [Fc] + Pr
[Fc+1 | ¬Fc

]+ 4c + 2

4c + 3
+ o(1)

≤ Pr
[Fc−1

]+ Pr
[Fc | ¬Fc−1

]+ 4c + 2

4c + 3
+ o(1)

≤ Pr
[Fc−2

]+ Pr
[Fc−1 | ¬Fc−2

]+ 4c + 2

4c + 3
+ o(1)

≤ Pr [F1] + Pr [F2 | ¬F1] + 4c + 2

4c + 3
+ o(1)

≤ 4c + 2

4c + 3
+ o(1),

which yields the lemma. 
�

3.2.2 Proof of Lemma 6

Beier and Vöcking [5] prove a lower bound of Ω(n2) on the expected number of
Pareto-optimal knapsack fillings for exponentially growing weights and profits that
are chosen independently and uniformly at random from the interval [0, 1]. In this
section, we adapt their proof for a random experiment in which the profits are chosen
only “nearly" uniformly at random. Assume that we are given n items and that the
i th item has weight wi = 2i . Furthermore, let T ∈ N be given and assume that
T ≥ n. In order to determine the profit pi of the i th item, first one of the intervals
(0, 1), (1, 2), . . . , (T − 1, T ) is chosen uniformly at random. Then an adversary is
allowed to choose the exact profit within the randomly chosen interval. We call an
item whose profit is chosen this way a nearly uniform item. We prove that also in this
scenario the expected number of Pareto-optimal solutions is lower bounded byΩ(n2).

Lemma 10 For instances consisting of n nearly uniform items, the expected number
of Pareto-optimal solutions is bounded from below by n2/16.
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Proof The proof follows along the lines of the proof of Theorem 3 for the binary case.
LetP j denote the set of Pareto-optimal solutions over thefirst j items, and let Pj denote

the total profit of the first j items. For j ∈ [n] and α ≥ 0, let X j
α denote the number

of Pareto-optimal solutions from P j with profits in the interval [Pj −α, Pj ). Observe

that p j > α implies X j
α = X j−1

α and p j < α implies X j
α = X j−1

p j + X j−1
α−p j

+ 1.
For integral α ∈ [T ], the adversary cannot influence the event p j < α, as the interval
fromwhich he is allowed to pick values for p j lies either completely left or completely

right of α. Hence, for α ∈ [T ] we can bound the expected value of X j
α recursively as

follows:

E
[
X j

α

]
≥ Pr

[
p j > α

] · E
[
X j−1

α

∣
∣
∣ p j > α

]

+ Pr
[
p j < α

] ·
(
E
[
X j−1

p j

∣
∣
∣ p j < α

]
+ E

[
X j−1

α−p j

∣
∣
∣ p j < α

]
+ 1
)

.

As X j−1
β is independent of p j and X j−1

β is monotone in β, we have

E
[
X j

α

]
≥ Pr

[
p j > α

] · E
[
X j−1

α

]

+ Pr
[
p j < α

] ·
(
E
[
X j−1

�p j �
∣
∣
∣ p j < α

]
+ E

[
X j−1

�α−p j �
∣
∣
∣ p j < α

]
+ 1
)

.

(5)

In the following, we prove by induction on j that for every α ∈ [T ],

E
[
X j

α

]
≥ α · j

2T
.

For j = 1 and α ∈ [T ], we obtain

E
[
X1

α

]
= Pr [p1 < α] = α

T
≥ α

2T
.

Using the induction hypothesis and (5), we obtain, for j ∈ [n] \ {1} and α ∈ [T ], that
E
[
X j

α

]
is lower bounded by

Pr
[
p j > α

] · E
[
X j−1

α

]

+ Pr
[
p j < α

] (
E
[
X j−1

�p j �
∣
∣
∣ p j < α

]
+ E

[
X j−1

�α−p j �
∣
∣
∣ p j < α

]
+ 1
)

≥ T − α

T
· α( j − 1)

2T
+

α−1∑

i=0

Pr
[
p j ∈ (i, i + 1)

] (
E
[
X j−1
i

]
+ E

[
X j−1

α−i−1

]
+ 1
)

≥ T − α

T
· α( j − 1)

2T
+

α∑

i=1

1

T

(
i( j − 1)

2T
+ (α − i − 1)( j − 1)

2T
+ 1

)
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= T − α

T
· α( j − 1)

2T
+ α

T

(
(α − 1)( j − 1)

2T
+ 1

)

= α( j − 1)

2T
+ α

T

(

1 − j − 1

2T

)

≥ α( j − 1)

2T
+ α

T
· 1
2

= α · j
2T

.

This yields the following lower bound on the expected number of Pareto-optimal
solutions:

E[q] ≥
n∑

j=1

E
[
X j−1

�p j �
]

≥
n∑

j=1

E
[�p j�

] · ( j − 1)

2T
≥ T − 1

4T
·

n∑

j=1

( j − 1) ≥ n2

16
.


�
We further generalize the scenario that we considered above and analyze the

expected number of Pareto-optimal solutions for instances that do not only consist
of nearly uniform items but also of some adversarial items. To be more precise, we
assume that the profit of each item is chosen as follows: First a coin is tossed which
comes up head with probability δ > 0. If the coin comes up head, then the profit of
the item is chosen as for nearly uniform items, that is, an interval is chosen uniformly
at random and after that an adversary may choose an arbitrary profit in that interval.
If the coin comes up tail, then an arbitrary non-integer profit can be chosen by an
oblivious adversary who does not know the outcomes of the previous profits.

Proof of Lemma 6 First of all, we show that the presence of adversarial items does not
affect the lower bound for the expected number of Pareto-optimal solutions. That is,
we show that if there are n̂ nearly uniform items and an arbitrary number of adversarial
items, one can still apply Lemma 10 to obtain a lower bound of n̂2/16 on the expected
number of Pareto-optimal solutions. For this, consider the situation that the first j items
are nearly uniform items and that item j +1 is an adversarial item. Due to Lemma 10,
we obtain that the expected value of X j

α is bounded from below by j · α/(2T ) for
every α ∈ [T ]. We show that the expected value of X j+1

α is lower bounded by the
same value. For this, consider the two alternatives that the adversary has. He can either
choose p j+1 > α or p j+1 < α. In the former case, we have X j

α = X j+1
α . In the latter

case, we have

E
[
X j+1

α

]
≥ E

[
X j

�p j+1�
]

+ E
[
X j

�α−p j �
]

+ 1 ≥ (α − 1) j

2T
+ 1 ≥ α · j

2T
.

Hence, the adversarial profit of item j + 1 does not affect the lower bound for the
expected number of Pareto-optimal solutions. One can apply this argument inductively
to show the desired lower bound of n̂2/16.
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In expectation the number n̂ of nearly uniform items is δn and applying a Chernoff
bound yields that with high probability n̂ ≥ δn/2. For sufficiently large n, we can
bound the probability that n̂ < δn/2 from above by 1/2. Hence, with probability 1/2
the expected number of Pareto-optimal solutions is at least (δn/2)2/16, and hence, the
expected number of Pareto-optimal solutions is bounded from below by (δn)2/128. 
�
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A Weighted Chernoff bound

In this section, we prove Lemma 7 (which corresponds to Exercise 4.19 from [16]).
Typically Chernoff bounds are formulated for sums of independent Poisson trials. In
this section, we derive a Chernoff bound for general discrete random variables. The
proof is based very closely on the one for sums of Poisson trials in [16]. In fact, the
only part which needs to be exchanged is an upper bound on the moment generating
function.

For a random variable X , let MX (t) = E
[
et X
]
denote its moment generating

function. Assume that X is the sum of independent random variables X1, . . . , Xn ,
where each Xi is a discrete random variable taking only values in [0, 1]. Fix an index
i and consider the random variable Xi . Let p : W → R≥0 be its distribution, where
W ⊆ [0, 1] is a countable set.

We can write the moment generating function of Xi as follows:

MXi (t) = E
[
et Xi

]

=
∑

w∈W
p(w) · etw

≤
∑

w∈W
p(w) · (wet + 1 − w), (6)

where the last inequality follows from the convexity of the function f (x) = etx since

etw = f (w) = f (w · 1 + (1 − w) · 0) ≤ w · f (1) + (1 − w) · f (0) = w · et + 1 − w.

123

http://creativecommons.org/licenses/by/4.0/


The smoothed number of Pareto-optimal solutions… 353

Inequality (6) yields

MXi (t) ≤ 1 +
∑

w∈W
p(w) · w · (et − 1)

= 1 + E[Xi ] · (et − 1)

≤ exp
(
E[Xi ] · (et − 1)

)
,

where in the last inequality we have used the fact that, for any y ∈ R, 1 + y ≤ ey .
Since the random variables X1, . . . , Xn are assumed to be independent, themoment

generating function of X is simply the product of the moment generating functions of
the Xi ’s. Hence, we obtain

MX (t) =
n∏

i=1

MXi (t)

≤
n∏

i=1

exp
(
E[Xi ] · (et − 1)

)

≤ exp

(
n∑

i=1

E[Xi ] · (et − 1)

)

= exp
(
E[X ] · (et − 1)

)
.

Now, we are ready to prove the following Chernoff bound.

Theorem 4 Let X1, . . . , Xn be independent discrete random variables with values in
[0, 1]. Let X =∑n

i=1 Xi and μ = E[X ]. Then for every x > 0,

Pr [X ≥ x] <
(e · μ

x

)x
.

Proof Applying Markov’s inequality, for any δ > 0 and t > 0 we have

Pr [X ≥ (1 + δ)μ] = Pr
[
et X ≥ et(1+δ)μ

]

≤ E
[
et X
]

et(1+δ)μ

≤ e(et−1)μ

et(1+δ)μ
.

For any δ > 0, we can set t = ln(1 + δ) > 0 to get

Pr [X ≥ (1 + δ) · μ] ≤
(

eδ

(1 + δ)(1+δ)

)μ

.
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This yields the theorem since

Pr [X ≥ t] = Pr
[

X ≥
(

1 +
(
x

μ
− 1

))

· μ

]

≤
(

ex/μ−1

(x/μ)x/μ

)μ

≤
(e · μ

x

)x
.


�
By an appropriate scaling, we obtain the following variant of Theorem 4.

Corollary 4 Let X1, . . . , Xn be independent discrete random variables with values in
[0, z] for some z > 0. Let X =∑n

i=1 Xi and μ = E[X ]. Then for every x > 0,

Pr [X ≥ x] <
(e · μ

x

)x/z
.

By similar calculations, one obtains the following corollary.

Corollary 5 Let X1, . . . , Xn be independent discrete random variables with values in
[0, z] for some z > 0. Let X =∑n

i=1 Xi and μ = E[X ]. Then for every x > 0,

Pr [X ≤ x] <

(
e1−μ/x · μ

x

)x/z

.
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