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Abstract
Robust convex constraints are difficult to handle, since finding the worst-case sce-
nario is equivalent to maximizing a convex function. In this paper, we propose a new
approach to deal with such constraints that unifies most approaches known in the lit-
erature and extends them in a significant way. The extension is either obtaining better
solutions than the ones proposed in the literature, or obtaining solutions for classes of
problems unaddressed by previous approaches. Our solution is based on an extension
of the Reformulation-Linearization-Technique, and can be applied to general convex
inequalities and general convex uncertainty sets. It generates a sequence of conserva-
tive approximations which can be used to obtain both upper- and lower- bounds for
the optimal objective value. We illustrate the numerical benefit of our approach on a
robust control and robust geometric optimization example.
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1 Introduction

In this paper, we consider a general hard robust constraint

h (A(x)z + b(x)) ≤ 0, ∀z ∈ Z, (1)

where h : R
m �→ [−∞,+∞] is a proper, closed and convex function, A : R

nx �→
R
m×L , b : Rnx �→ R

L are affine, and Z is a nonempty convex subset of R
L . Unlike

inequalities that are concave in the uncertain parameters [4], a tractable equivalent
reformulation for the robust constraint (1) is out of reach in general.

When h(·) is (conic) quadratic, several exact reformulations have been proposed
for specific uncertainty sets. We refer to [3, Chapter 6] for an overview of these
methods. In the general case, generic approximate methods have been proposed for
safely approximating (1). For homogeneous convex functions h(·) and symmetric
norm-based uncertainty sets Z , Bertsimas and Sim [8] propose a computationally
tractable safe approximation together with probabilistic guarantees. Zhen et al. [21]
develop safe approximations for conic quadratic and SDP problems with polyhedral
uncertainty sets. They first reformulate the robust inequality into an equivalent set of
linear adaptive robust constraints, which can then be approximated by, e.g., static or
affine decision rules. Roos et al. [18] extend their approach with affine decision rules
to general convex functions h(·) but still with polyhedral uncertainty sets. For general
convex uncertainty sets, they propose a similar approach, yet using static decision
rules only.

In this paper, we propose a new general safe approximation procedure for robust
convex constraint (1). Our approach is ‘general’ in the sense that it can be applied to a
generic convex function h(·) and convex uncertainty setZ . Using the Reformulation-
Perspectification-Technique (RPT) as a unifying lens [20], our approach not only
unifies many previous work from the literature but also extends them in a significant
way. First, it is superior on special cases with homogeneous functions h(·) and/or
polyhedral uncertainty sets. Second, it is applicable to any convex function h(·) and
convex uncertainty set Z under mild assumptions, namely that one can explicitly
describe the uncertainty set and the domain of the conjugate of h (see definition in
Sect. 1.2) via convex inequalities.

Wedevelopourmain approximation for a generic class of uncertainty sets, described
as the intersection of a polyhedron and a convex set. We first prove that the orig-
inal uncertain convex inequality (1) is equivalent to an uncertain linear constraint
with a non-convex uncertainty set. In other words, we reformulate (1) as a linear
robust constraint where the new uncertainty set Θ is non-convex due to the presence
of bilinear equality constraints. We then use the recently developed Reformulation-
Perspectification-Technique (RPT) [20] to obtain a hierarchy of safe approximations,
i.e, we construct convex sets Θ i , i = 0, 1, . . . , 3, such that Θ ⊆ Θ3 ⊆ Θ2 ⊆ Θ1 ⊆
Θ0. We show that this approach unifies a variety of methods known in the literature,
and extends them in a significant way.When the uncertainty set lies in the non-negative
orthant, we show that the first-level approximation Θ1 coincides with the perspectifi-
cation approach, a generalization of the approach of Bertsimas and Sim [8] for which
we also provide probabilistic guarantees. Consequently, our approach connects and
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Robust convex optimization:… 879

generalizes further the work of Bertsimas and Sim [8] and Roos et al. [18] to a broader
class of uncertainty sets, and improves them by proposing tighter approximations,Θ2
and Θ3. For polyhedral uncertainty sets, our RPT-based approach with Θ1 coincides
with the approximation from Roos et al. [18] with linear decision rules [18, Theorem
2].

The paper is structured as follows: In Sect. 2, we present our RPT-based hierarchy
of safe approximations. We connect it with existing results from the literature in
Sect. 3. In particular, for uncertainty sets lying in the non-negative orthant, we show
in Appendix A that our first-level approximation with Θ1 can be alternatively derived
using a ‘perspectification’ technique and provide probabilistic guarantees in this case.
When applied to a minimization problem, our safe approximations provide a valid
upper bound on the objective value. Our approach can also be adapted to derive lower
bounds, as described in Sect. 4. Finally, we assess the numerical performance of our
technique in Sect. 5, and conclude our findings in Sect. 6.

1.1 Examples

In this section, we present a few examples of the robust convex constraint (1) often
encountered in the literature and summarize them in Table 1.

Quadratic Optimization (QO)We consider the general quadratic constraint

z	F(x)	F(x)z + f (x)	z ≤ g(x), ∀z ∈ Z,

where F : R
nx �→ R

m×L , f : R
nx �→ R

L and g : R
nx �→ R are affine in x. The

constraint is of the form (1) with

h

([
y
ȳ

])
:= y	 y + ȳ, A(x) :=

[
F(x)

f (x)	
]

, and b(x) :=
[

0
g(x)

]
.

Alternatively, the constraint can be represented as a second-order cone constraint

∥∥∥∥ F(x)z
(1+ f (x)	z − g(x))/2

∥∥∥∥
2
≤ (1− f (x)	z + g(x)), ∀z ∈ Z,

which is also of the form (1) for

h

⎛
⎝
⎡
⎣ y
ỹ
ȳ

⎤
⎦
⎞
⎠ :=

√
y	 y + ỹ2 + ȳ, A(x) :=

⎡
⎣ F(x)

1
2 f (x)	
1
2 f (x)	

⎤
⎦ , and b(x) :=

⎡
⎣ 0

1−g(x)
2

− 1+g(x)
2

⎤
⎦ .

Piecewise linear constraints (PWL) We consider the piece-wise linear convex
constraint

max
k∈[m]

{
ak(x)	z + bk(x)

}
≤ 0, ∀z ∈ Z,
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880 D. Bertsimas et al.

Table 1 Example of functions h(·) and their corresponding conjugate, defined as h∗(w) :=
sup y∈dom h { y	w − h( y)}
Type h dom h∗ h∗

QO 1 h( y, ȳ) := y	 y + ȳ {(w, w̄) : w̄ = 1} 1
4w	w

QO 2 h( y, ȳ) := ‖ y‖2 + ȳ {(w, w̄) : ‖w‖2 ≤ 1, w̄ = 1} 0

PWL h( y) := maxi yi {w ≥ 0 :∑i wi = 1} 0

SML h( y) :=
∑
k

max
i∈Ik

yi

{
(wk )k : ∀k, wk ≥ 0,∑

i∈Ik wki = 1

}
0

GO h( y) = log
(∑

i e
yi
) {w ≥ 0 :∑i wi = 1} ∑

i wi logwi

SC h( y) :=∑i∈[I ] hi ( y)
{
(wi )i :

∑
i wi = w,

wi ∈ dom h∗i , ∀i
}

minwi

∑
i h
∗
i (wi )

where ak : Rnx �→ R
L and bk : Rnx �→ R are affine functions of x. Such a constraint

is a special case of (1) with

h( y) := max
k∈[m] yk, A(x) := [ak(x)	]k, and b(x) := [bk(x)]k .

Sum-of-max of linear constraints (SML) The sum-of-max of linear constraints
is defined as h( y) :=∑k maxi∈Ik yi , for any y ∈ R

ny .
Geometric optimization (GO) In geometric optimization, the function h in (1) is

the log-sum-exp function defined by h( y) := log
(
ey1 + · · · + eyny

)
for any y ∈ R

ny .
Sum-of-convex constraints (SC) The sum of general convex functions is defined

as h( y) := ∑i∈[I ] hi ( y), where hi : R
m �→ [−∞,+∞], i ∈ [I ], are proper, closed

and convex with ∩i∈[I ]ri(domhi ) �= ∅.
In this paper, we study robust convex constraints, and not only robust conic con-

straints, on purpose. It is generally believed thatmost convex problems can bemodeled
in terms of the five basic cones: linear, quadratic, semi-definite, power, and exponen-
tial cones. Still, we do not restrict our attention to robust conic optimization for the
following reason: Although conic optimization is a powerful modeling framework, the
uncertainty is often split over multiple constraints, and the robust version of the conic
representation is not equivalent to the original one. For example, while the sum-of-max
of linear functions is linear-cone representable, its robust counterpart is not necessarily
equivalent with the robust version of the original constraint. The conclusion is that the
right order is to first develop the robust counterpart of the nonlinear inequality and
then reformulate it into a conic representation, instead of the other way around.

1.2 Notations

We use nonbold face characters (x) to denote scalars, lowercase bold faced characters
(x) to denote vectors, uppercase bold faced characters (X) to denotematrices, and bold
calligraphic characters such asX to denote sets. We denote by ei the unit vector with
1 at the i th coordinate and zero elsewhere, with dimension implied by the context.
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Robust convex optimization:… 881

We use [n] to denote the finite index set [n] = {1, . . . , n}with cardinality |[n]| = n.
Whenever the domain of an optimization variable is omitted, it is understood to be the
entire space (whose definition will be clear from the context).

The function δ∗(x|S) denotes the support function of the set S evaluated at x, i.e.,
δ∗(x|S) = sup y∈S y	x.

A function f : R
ny �→ [−∞,+∞] is said to be proper if there exists at

least one vector y such that f ( y) < +∞ and for any y ∈ R
ny , f ( y) > −∞.

For a proper, closed and convex function f , we define its conjugate as f ∗(w) =
sup y∈dom f

{
w	 y − f ( y)

}
. When f is closed and convex, f ∗∗ = f . If the function

f : R
ny �→ [−∞,+∞] is proper, closed and convex, the perspective function of f

is defined for all y ∈ R
ny and t ∈ R+ as

persp f : ( y, t) �→
{
t f ( y/t), if t > 0,

f∞( y), if t = 0.

The function f∞ : Rny × R+ �→ [−∞,+∞] is the recession function, which can be
equivalently defined as

f∞( y) = lim
t→0

t f ( y/t) = δ∗( y| dom f ∗).

Among others, the perspective and conjugate functions of f satisfy the relationship

t f
( y
t

)
= sup

w∈dom f ∗

{
y	w − t f ∗(w)

}
for t > 0.

For ease of exposition, we use t f ( y/t) to denote the perspective function f .

2 The reformulation-perspectification approach

In this section, we describe our main approach, which is based on an extension of
the Reformulation-Linearization-Technique, that is, Reformulation-Perspectification-
Technique [20].

Our approach comprises three steps:

– Step 1. Reformulate the robust convex constraint (1) into a robust linear optimiza-
tion problem with bilinear equalities in the uncertainty set.

– Step 2.Apply the Reformulation-Perspectification-Technique to get a safe approx-
imation of the robust convex inequality that is linear in the uncertain parameters.

– Step 3. Construct a computationally tractable robust counterpart of the approxi-
mation obtained in Step 2 by using the approach described in Ben-Tal et al. [4].
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882 D. Bertsimas et al.

2.1 Step 1: Bilinear reformulation

We first describe Step 1 in more detail. The following proposition shows that the
robust convex constraint (1) is equivalent to a robust linear constraint with bilinear
equality constraints in the uncertainty set.

Proposition 1 (Bilinear Reformulation) The robust convex constraint (1) is equivalent
to

sup
(w,w0,z,V ,v0)∈Θ

{
Tr(A(x)	V )+ b(x)	w − w0

}
≤ 0, (2)

where

Θ=
{
(w, w0, z, V , v0)

∣∣∣ z ∈ Z, w ∈ dom h∗, h∗(w) ≤ w0, V =wz	, v0=w0z
}

.

Proof Because h is closed and convex we have

h(s) = h∗∗(s) = sup
w∈dom h∗

{
s	w − h∗(w)

}
,

and thus

sup
z∈Z

h (A(x)z + b(x)) = sup
z∈Z

sup
w∈dom h∗

z	A(x)	w + b(x)	w − h∗(w)

= sup
z∈Z

w∈dom h∗
h∗(w)≤w0

Tr(A(x)	wz	)+ b(x)	w − w0

= sup
(w,w0,z,V ,v0)∈Θ

Tr(A(x)	V )+ b(x)	w − w0, (3)

for the properly defined set Θ . ��
Thecomplication in (2) is that the extendeduncertainty setΘ is not convexdue to the

bilinear constraint V = wz	. Therefore, in Step 2we propose a safe approximation of
Θ basedon theReformulation-Perspectification-Technique [20]. Formally,weprovide
tractable approximations of the robust convex constraint in (1) by exhibiting convex
sets Φ such that Θ ⊆ Φ. Indeed, if Θ ⊆ Φ, then

sup
(w,w0,z,V ,v0)∈Φ

{
Tr(A(x)	V )+ b(x)	w − w0

}
≤ 0

constitutes a safe approximation of (1). In addition, this safe approximation is linear
in the uncertain parameter (w, w0, z, V , v0) and convex in the decision variable x.
Hence, provided that the new uncertainty sets Φ is convex, its robust counterpart can
be derived in a tractable manner using techniques from Ben-Tal et al. [4] (Step 3).
Observe that since the objective function is linear, we can replaceΘ by conv(Θ) in (2)
without loss of optimality. So we effectively need to construct setsΦ that approximate
conv(Θ) as closely as possible.
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2.2 Step 2: Hierarchy of safe approximations

To develop a hierarchy of safe approximations (Step 2) for the robust non-convex
constraint (2), we assume that the uncertainty set Z is described through K0 linear
and K1 convex inequalities.

Assumption 1 The uncertainty set Z = {z ∈ R
L |Dz ≤ d, ck(z) ≤ 0, k ∈ [K1]},

where D ∈ R
K0×L , d ∈ R

K0 , and ck : R
L �→ [−∞,+∞] is proper, closed and,

convex for each k ∈ [K1].
Note that the decomposition ofZ into linear and convex constraints in Assumption 1
is not unique. Indeed, affine functions are also convex so one could assume K0 = 0
without loss of generality. However, the presence of linear constraints in the definition
of Z will be instrumental in deriving good approximations. Consequently, from a
practical standpoint, we encourage to include as many linear constraints as possible
in the linear system of inequalities Dz ≤ d. We illustrate this modeling choice on a
simple example.

Example 1 Consider the polytope Z = {z ∈ R
L+|
∑L

�=1 z� ≤ 1, � ∈ [L]}. Z satisfies
Assumption 3 with K = 1 and c1(z) = ∑

� z� − 1. Therefore, Z also satisfies
Assumption 1 with D = −I L , d = 0L , and c1(z) =∑� z� − 1, hence K0 = L and
K1 = 1. Alternatively, Z satisfies Assumption 1 with K0 = L + 1 and K1 = 0 with

D =
[−I L
e	
]

, and d =
[
0L
1

]
.

Similarly, we assume that dom h∗ can be described with J0 linear and J1 convex
inequalities.

Assumption 2 The set dom h∗ = {w | Fw ≤ f , g j (w) ≤ 0, j ∈ [J1]} has J0 linear
inequalities defined by F and f , and J1 nonlinear inequalities defined by g j , j ∈ [J1],
where g j is proper, closed, and convex for each j ∈ [J1].
Under Assumptions 1 and 2 , the non-convex uncertainty set Θ can be represented as

Θ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(w, w0, z, V , v0)

∣∣∣∣∣∣∣∣∣∣

Dz ≤ d, ck(z) ≤ 0, k ∈ [K1] (z ∈ Z)

Fw ≤ f , g j (w) ≤ 0, i ∈ [J1] (w ∈ dom h∗)
h∗(w) ≤ w0 (epigraph)
V = wz	
v0 = w0z

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

Proposition 2 (Convex Relaxation via RPT) For any (w, w0, z, V , v0) ∈ Θ , we have

a)
dkw − V D	ek
dk − e	k Dz

∈ dom h∗, for all k ∈ [K0],

b)
f j z − FVe j
f j − e	j Fw

∈ Z , for all j ∈ [J0].
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884 D. Bertsimas et al.

Each of these two set memberships can be expressed through constraints that are
convex in (w, w0, z, V , v0). As a result, the three sets

Θ0 =
⎧⎨
⎩(w, w0, z, V , v0)

∣∣∣∣∣∣
z ∈ Z,

w ∈ dom h∗,
h∗(w) ≤ w0

⎫⎬
⎭ ,

Θ1 =
⎧⎨
⎩(w, w0, z, V , v0)

∣∣∣∣∣∣
(w, w0, z, V , v0) ∈ Θ0,

dkw − V D	ek
dk − e	k Dz

∈ dom h∗, k ∈ [K0]

⎫⎬
⎭ ,

Θ2 =
⎧⎨
⎩(w, w0, z, V , v0)

∣∣∣∣∣∣
(w, w0, z, V , v0) ∈ Θ1,
f j z − FVe j
f j − e	j Fw

∈ Z, j ∈ [J0]

⎫⎬
⎭

are convex and satisfy Θ ⊆ Θ2 ⊆ Θ1 ⊆ Θ0.

Proof a) Consider a linear constraint on z, e	k (d − Dz) ≥ 0 for some k ∈ [K0]. If
dk − e	k Dz > 0, algebraic manipulations yield

w = dk − e	k Dz

dk − e	k Dz
w = dkw − (e	k Dz)w

dk − e	k Dz
= dkw − V D	ek

dk − e	k Dz
,

where the last equality follows from the fact that V = wz	. Since w ∈ dom h∗,

we must have
dkw − V D	ek
dk − e	k Dz

∈ dom h∗. We then derive convex constraints in

(w, w0, z, V , v0) that enforces this set membership. Bymultiplying both sides of a
generic convex constraint on w, g(w) ≤ 0, by the non-negative scalar dk − e	k Dz,
we obtain

(dk − e	k Dz)g(w) = (dk − e	k Dz)g

(
dkw − V D	ek
dk − e	k Dz

)
≤ 0, (4)

which is convex in
(
dk − e	k Dz, dkw − V D	ek

)
, since the constraint function is

the perspective of the convex function g. Hence, it is convex in (w, z, V ). Note
that if dk − e	k Dz is not strictly positive, constraint (4) should still hold by a limit
argument. We apply this methodology to:

– Linear constraints on w, g(w) = Fw − f ≤ 0. In this case, (4) leads to

(dk − e	k Dz)

[
F
dkw − V D	ek
dk − e	k Dz

− f

]
≤ 0,
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and can be expressed as a linear constraint in (w, z, V ):

F
[
dkw − V D	ek

]
≤ (dk − e	k Dz) f . (5)

– g(w) = g j (w), j ∈ [J1], i.e,

(dk − e	k Dz)g j

(
dkw − V D	ek
dk − e	k Dz

)
≤ 0, ∀ j ∈ [J1], (6)

– and the epigraph constraint, h∗(w) ≤ w0, yielding

(dk − e	k Dz)

[
h∗
(
dkw − V D	ek
dk − e	k Dz

)
− w0

]
≤ 0,

⇐⇒ (dk − e	k Dz)h∗
(
dkw − V D	ek
dk − e	k Dz

)
≤ dkw0 − e	k Dv0, (7)

where the equivalence follows from v0 = w0z.

Together, these constraints (5)–(6)–(7) enforce that

dkw − V D	ek
dk − e	k Dz

∈ dom h∗.

b) Similarly, we can consider a linear constraint in w, f j − e	j Fw ≥ 0, for some
j ∈ [J0]. We have

z = f j z − FVe j
f j − e	j Fw

so that
f j z − FVe j
f j − e	j Fw

∈ Z.

Given a generic convex constraint in z, c(z) ≤ 0,we obtain a new convex constraint

( f j − e	j Fw)c

(
f j z − FVe j
f j − e	j Fw

)
≤ 0.

Applying these manipulations to the linear constraints Dz ≤ d yields

D
[
f j z − FVe j

] ≤ ( f j − e	j Fw) d. (8)

Taking c(z) = ck(z), k ∈ [K1] we get

( f j − e	j Fw)ck

(
f j z − FVe j
f j − e	j Fw

)
≤ 0, ∀k ∈ [K1]. (9)
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Eventually, we obtain constraints (8)-(9), enforcing that

f j z − FVe j
f j − e	j Fw

∈ Z.

��
Proposition 2 exhibits a hierarchy of approximations to convexify the non-convex

setΘ . A safe approximation is then obtained by considering the robust linear constraint

sup
(w,w0,z,V ,v0)∈Φ

{
Tr(A(x)	V )+ b(x)	w − w0

}
≤ 0, (10)

with Φ = Θ i , i = 0, 1, 2. Observe that for Θ0, the robust counterpart of the safe
approximation is

A(x) = 0, h(b(x)) ≤ 0.

Accordingly, it is fair to admit that Θ0 offers a poor approximation and that relevant
safe approximations are to be found at higher orders of the hierarchy. A higher order
in the hierarchy, however, does not necessarily imply a tighter safe approximation, as
discussed in Sect. 2.5.

So far, we obtained convex constraints on (w, w0, z, V , v0) by multiplying a linear
constraint on z (resp. w) with a convex constraint on w (resp. z). However, in many
cases multiplying two general convex constraints, e.g., multiplying ck(z) ≤ 0 with
g j (w) ≤ 0, also yields valuable convex constraints. The resulting set, whichwe denote
Θ3 and concisely define as

Θ3 =
{
(w, w0, z, V , v0)

∣∣∣∣ (w, w0, z, V , v0) ∈ Θ2,

ck(z)× g j (w) ≤ 0, k ∈ [K1], j ∈ [J1]
}

provides an even tighter safe approximation of (2). In the definition above, “ck(z) ×
g j (w) ≤ 0” denotes valid convex inequalities obtained when multiplying “ck(z) ≤ 0”
with “g j (w) ≤ 0”. In the following example, we illustrate this approach when ck
and g j are two conic quadratic functions, which typically occurs with ellipsoidal
uncertainty sets and a conic quadratic function h. We refer to Zhen et al. [20] for a
thorough analysis of all 15 possible multiplications of any two of the five basic convex
cones (linear, conic quadratic, power, exponential, semi-definite).

Example 2 Consider two conic quadratic inequalities

{
b1 − a	1 w ≥ ‖D1w + p1‖
b2 − a	2 z ≥ ‖D2z + p2‖,

the first one coming from the description of dom h∗, and the second is one of the
constraints that define Z . We now apply RPT to these inequalities, i.e., we multiply
the LHS andRHSof the two constraints, andwemultiply the LHSof the first constraint
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with the second constraint, and multiply the LHS of the second constraint with the
first constraint. We obtain:

⎧⎨
⎩

(b1 − a	1 w)(b2 − a	2 z) ≥ ‖D1w + p1‖‖D2 z + p2‖
(b1 − a	1 w)(b2 − a	2 z) ≥ (b1 − a	1 w)‖D2 z + p2‖
(b1 − a	1 w)(b2 − a	2 z) ≥ (b2 − a	2 z)‖D1w + p1‖

⇔
⎧⎨
⎩
b1b2 − b1a	2 x − b2a	1 w + a	1 wz	a2 ≥ ‖(D1w + p1)(D2 z + p2)

	‖2
b1b2 − b1a	2 z − b2a	1 w + a	1 wz	a2 ≥ ‖b1D2 z + b1 p2 − D2wz	a1 − a	1 w p2‖
b1b2 − b1a	2 z − b2a	1 w + a	1 wz	a2 ≥ ‖b2D1w + b2 p1 − D1wz	a2 − a	2 z p1‖

⇔
⎧⎨
⎩
b1b2 − b1a	2 z − b2a	1 w + a	1 Va2 ≥ ‖D1V D	2 + p1z

	D	2 + D1w p	2 + p1 p
	
2 ‖2

b1b2 − b1a	2 z − b2a	1 w + a	1 Va2 ≥ ‖b1D2 z + b1 p2 − D2Va1 − a	1 w p2‖
b1b2 − b1a	2 z − b2a	1 w + a	1 Va2 ≥ ‖b2D1w + b2 p1 − D1Va2 − a	2 z p1‖,

since V = wz	. Here, ‖ · ‖2 denotes the 2-norm of a matrix defined as its largest sin-
gular value, i.e., ‖M‖2 := σmax(M) =

√
λmax(MM	). In particular, we used the fact

that for rank-1 matrices M = uv	, ‖M‖2 = ‖u‖‖v‖. In practice, constraints of the
form ‖M‖2 ≤ λ can be modeled as semidefinite constraints using Schur complement.
To improve scalability, however, one can replace the 2-norm in the first constraint by
the Frobenius norm of the matrix. Indeed, ‖M‖2 ≤ ‖M‖F , and the equality holds for
rank-1 and zero matrices, so

⎧⎨
⎩
b1b2 − b1a	2 z − b2a	1 w + a	1 Va2 ≥ ‖D1V D	2 + p1z

	D	2 + D1w p	2 + p1 p
	
2 ‖F

b1b2 − b1a	2 z − b2a	1 w + a	1 Va2 ≥ ‖b1D2 z + b1 p2 − D2Va1 − a	1 w p2‖
b1b2 − b1a	2 z − b2a	1 w + a	1 Va2 ≥ ‖b2D1w + b2 p1 − D1Va2 − a	2 z p1‖

are valid, yet looser, constraints.

We could even further tighten our approximations by applying RPT to z and to w

separately. More specifically, we could multiply the linear and nonlinear constraints
that define Z with each other and express them in terms of z, an additional variable
defined as Z = zz	. The same could be done for the constraints in dom h∗, and define
W = ww	. By doing so, all the nonlinear substitutions are concisely defined as

(
W V
V	 z

)
=
(

w

z

)(
w

z

)	
.

In a relaxation, the equality = is replaced by � and, by using Schur complements,
yields the semidefinite constraint:

⎛
⎝W V w

V	 z z
w	 z	 1

⎞
⎠ � 0. (11)

Hence, we can add this LMI to any of the safe approximations obtained byRPTΘ i and
the resulting uncertainty set, Θ LM I ,i , would provide a safe approximation at least as
good as the one obtained from Θ i . However, whether the extra computational burden
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outweighs the improvement of the approximation remains an open question, whose
answer might depend on the specific problem. On a geometric optimization example
in Sect. 5.2, for instance, we observed no numerical improvement from adding this
LMI.

2.3 Step 3: Tractable robust counterpart

Finally, the safe approximation (10) is a robust constraint, linear in the uncertain param-
eters (w, w0, z, V , v0), and with a convex uncertainty set Φ = Θ i , i = 0, 1, 2, 3.
Hence, following the approach of Ben-Tal et al. [4], one can derive its robust counter-
part by computing the support function of Φ, δ∗(·|Φ). In particular, (10) is equivalent
to

δ∗ ( (b(x),−1, 0, A(x), 0)|Φ) ≤ 0.

In our hierarchy, note that Θ i+1 is obtained by imposing additional constraints to Θ i ,
hence is of the form Θ i+1 = Θ i ∩ Φ i+1 for some convex set Φ i+1. Consequently,
the support function of Θ i+1 can be expressed as a function of the support functions
of Θ i and Φ i+1 [see [4, Lemma 6.4]].

2.4 Description of the approach for conic constraints

In this section, we describe our Reformulation-Perspectification-Technique for conic
inequalities. We consider an uncertain conic constraint of the type

A(x)z + b(x) �K 0, ∀z ∈ Z, (12)

where K ∈ �m is a closed convex cone with nonempty relative interior. Examples
of these cones are the linear cone, the second-order cone, the semi-definite cone, the
power cone, and the exponential cone. We refer the reader to MOSEK [16] for an
extensive treatment of these five cones. The dual cone, referred to as K∗ of K is
defined as

K∗ =
{
w ∈ �m : w	u ≥ 0, ∀u ∈ K

}
,

and is again a convex cone. Furthermore, we have K = (K∗)∗, because the cone is
closed and convex. Using these properties, we derive for (12)

A(x)z + b(x) �K 0, ∀z ∈ Z
⇐⇒ w	 (A(x)z + b(x)) ≤ 0, ∀w ∈ K∗ ∀z ∈ Z
⇐⇒ max

w∈K∗
max
z∈Z

w	 (A(x)z + b(x)) ≤ 0

⇐⇒ max
w∈K∗

max
z∈Z

Tr(A(x)	wz	)+ w	b(x) ≤ 0.
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Table 2 Number of constraints defining the uncertainty sets of our hierarchy, Θ i , i = 0, 1, 2

Set Linear constraints Convex constraints

Θ0 K0 + J0 K1 + J1 + 1

Θ1 K0 + J0 + K0 J0 K1 + J1 + 1+ K0(J1 + 1)

Θ2 K0 + J0 + K0 J0 K1 + J1 + 1+ K0(J1 + 1)+ J1K0

We can now directly apply our RPT approach to the last inequality that is bilinear in
the uncertain parameters w and z. Note that this conic case is a special case of (2)
where we have h∗(w) = 0, and dom h∗ = K∗.

2.5 Trade-off between approximation accuracy and computational complexity

Our RPT approach exhibits a hierarchy of increasingly tighter safe approximations.
In this section, we discuss the trade-off between the quality of a safe approximation
and its computational tractability.

In terms of computational tractability, Table 2 reports the number of linear and
convex inequalities involved in each set of our hierarchy, Θ i , i = 0, 1, 2. Observe
that imposing constraints (8) for all j ∈ [J0] is redundant with imposing (5) for
all k ∈ [K0]. Hence, Θ2 requires no additional linear constraints compared with
Θ1. Moving one level higher in the hierarchy requires adding a quadratic number of
linear/convex constraints compared with the number of constraints defining Z and
dom h∗. Furthermore, our approach involves the perspective functions and conjugates
of the functions definingZ and dom h∗. If a function is conic representable in a coneK,
then its perspective (resp. conjugate) is conic representable in the same cone K (resp.
the dual cone K∗). On this aspect, our approach does not increase the computational
complexity.

Regarding approximation guarantees, we note that if the description ofZ involves
no linear constraints (K0 = 0), then Θ0 = Θ1, and Θ2 would provide a substantial
benefit. Alternatively, whenZ is polyhedral (J0 = 0), Θ1 = Θ2 and Θ1 provides all
the benefit. Consequently, we intuit that the relative benefit of Θ2 over Θ1 depends
on how binding the convex constraints in Z are. For instance, if the description of Z
contains one convex constraint c(z) ≤ 0 that is redundant with the linear constraints
Dz ≤ d, then the constraints

( f j − e	j Fw)c

(
f j z − FVe j
f j − e	j Fw

)
≤ 0, ∀ j ∈ [J0] (13)

in Θ2 are redundant with linear constraints in Θ1.

Proof As previously observed, imposing constraints (5) for all k ∈ [K0] in Θ1
is equivalent to imposing (8) for all j ∈ [J0]. Hence, for any j ∈ [J0], for any
(w, w0, z, V , v0) ∈ Θ1, if f j − e	j Fw > 0, y := ( f j z − FVe j )/( f j − e	j Fw)

satisfies Dy ≤ d. Hence, c( y) ≤ 0 and constraints (13) are satisfied. Note that the
result holds if f j − e	j Fw = 0, by continuity. ��
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WhenZ is polyhedral, wewill show in Sect. 3.2 that RPTwithΘ1 can be viewed as
approximating an adaptive robust optimization problem (with uncertainty set dom h∗)
with linear decision rules [as in [18, Theorem 2]]. In addition, if h is piecewise lin-
ear, then dom h∗ is a simplex. Since linear decision rules are optimal for simplex
uncertainty sets, as proved by Bertsimas and Goyal [7, Theorem 1] and generalized
in Ben-Ameur et al. [1, Corollary 1], Θ1 provides an exact reformulation of (1). In
general, for polyhedralZ , the quality of the approximation with Θ1 will thus depend
on the geometry of dom h∗, in particular its symmetry and “simplex dilation factor”
[5]; see El Housni and Goyal [12, 13] and references therein for some average- and
worst-case performance results of linear decision rules. Theoretical results to precisely
quantify the benefit, in terms of approximation guarantee, of each level of the hierarchy
constitutes an interesting future direction.

From a practical standpoint, when using our approach with the uncertainty set Θ1,
one can check whether the additional constraints in Θ2 are satisfied by the worst-case
scenario for the current solution. If so, the current solution remains robust feasible for
Θ2 and Θ2 will not provide any improvement. Alternatively, our approach provides
both an upper and lower bound (see Sect. 4). Combined, they can be used to measure
the approximation gap and decide whether to use Θ2 instead.

3 Connection with previous approaches from the literature

In this section, we show that our RPT approach unifies many existing robust convex
optimization techniques, and extends them in a significant way.

3.1 Case when the uncertainty set lies in the non-negative orthant

First, we restrict our analysis to cases where the linear inequalities describing Z in
Assumption 1 are non-negativity constraints only. Formally, we make the following
assumption:

Assumption 3 The uncertainty setZ = {z | z ≥ 0, ck(z) ≤ 0, k ∈ [K ]} is full dimen-
sional and bounded, where ck : R

L �→ [−∞,+∞] is proper, closed and convex for
each k ∈ [K ].
Note that the non-negativity assumption ofZ can always be satisfied byproperly lifting
or shifting the uncertainty set (see the detailed discussion in Sect. 5.1 andAppendixA).
Under this more specialized assumption, we reformulate our RPT-based safe approx-
imation with Θ1 (Corollary 1) and discuss its connection with the approaches from
Bertsimas and Sim [8] and Roos et al. [18]. We will later refer to Corollary 1 as the
perspectification approach because it can also be derived without invoking the RPT
but a perspectification lemma instead (as we do in Appendix A).

Corollary 1 ForZ satisfying Assumption 3, the safe approximation obtained with RPT
and Θ1 is equivalent to

∑
�∈[L]

z�h∞ (A(x)e�)+ h (b(x)) ≤ 0, ∀z ∈ Z. (14)
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Proof We need the following identity, for any u ≥ 0,

u h
( y
u

)
= sup

w∈dom h∗

{
y	w − uh∗(w)

}
.

Denoting between brackets the dual variables associated with constraints in the defi-
nition of Θ1,

Θ1 =

⎧⎪⎪⎨
⎪⎪⎩

(w, w0, z, V , v0)

∣∣∣∣∣∣∣∣

z ∈ Z,

w ∈ dom h∗, h∗(w) ≤ w0, [u]
Ve�/z� ∈ dom h∗, z�h∗

(
Ve�

z�

)
≤ v0�, � ∈ [L], [u�]

⎫⎪⎪⎬
⎪⎪⎭

,

we have

sup
(w,w0,z,V ,v0)∈Θ1

{
Tr(A(x)	V )+ b(x)	w − w0

}

= sup
z∈Z
w0,v0

sup
w∈dom h∗

Ve�/z�∈dom h∗
inf

u,u≥0 Tr(A(x)	V )+ b(x)	w − w0 − u(h∗(w)− w0)

−
∑
�∈[L]

u�

(
z�h

∗
(
Ve�

z�

)
− v0�

)
.

Let us observe that

sup
w∈dom h∗

b(x)	w − uh∗(w) = uh

(
b(x)

u

)
,

and similarly for the terms involving Ve�/z�, � ∈ [L], so that

sup
(w,w0,z,V ,v0)∈Θ1

{
Tr(A(x)	V )+ b(x)	w − w0

}

= sup
z∈Z

inf
u,u≥0 sup

w0,v0

∑
�

u�z�h

(
A(x)e�

u�

)
+ uh

(
b(x)

u

)
+ u	v0 + (u − 1)w0

= sup
z∈Z

∑
�∈[L]

z�h∞ (A(x)e�)+ h (b(x)) ,

where the last equality holds because u = 0 and u = 1. ��

Remark 1 Corollary 1 might be uninformative if the recession function of h is
unbounded (e.g., if h is strongly convex). In this case, we propose an alternative to
Corollary 1 with the additional requirement that h(0) = 0. Indeed, h(0) = 0 implies
w0 ≥ h∗(w) ≥ 0. In this case, we should define
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Θ0 =

⎧⎪⎪⎨
⎪⎪⎩

(w, w0, z, V , v0)

∣∣∣∣∣∣∣∣

z ∈ Z,

w ∈ dom h∗,
w0 ≥ 0, h∗(w) ≤ w0,

v0/w0 ∈ Z

⎫⎪⎪⎬
⎪⎪⎭

,

in Proposition 2, where the membership v0/w0 ∈ Z is enforced by multiplying each
constraint in the definition of Z by w0 ≥ 0. The resulting safe approximation is:

∃(u, u) ∈ R
L+1+ , s.t.

∑
�∈[L]

z�u�h

(
A(x)e�

u�

)
+ u h

(
b(x)

u

)
≤ 0, ∀z ∈ Z,

z	u + u ≤ 1, ∀z ∈ Z.

The key benefit from Corollary 1 is that it preserves the uncertainty set. Namely, it
safely approximates the robust convex constraint (1) by a robust constraint that is linear
in the same uncertain parameter z. Consequently, one can also derive probabilistic
guarantees for this safe approximation, after positing a generative distributional model
for z. We derive such guarantees in Appendix A.

We now compare this formulation with the approaches from Bertsimas and Sim [8]
and Roos et al. [18].

For positively homogeneous functions h, we show that Corollary 1 recovers the
approach of Bertsimas and Sim [8].

Indeed, Bertsimas and Sim [8] construct a safe approximation for the robust constraint
(1) in the special case where the function h(·) is positively homogeneous, i.e., h(λ y) =
λh( y) for any λ > 0 and y. In this case,

h∞( y) = lim
t→0

th( y/t) = h( y),

so Corollary 1 is equivalent to

∑
�∈[L]

z�h (A(x)e�)+ h (b(x)) ≤ 0, ∀z ∈ Z,

which coincides with the approximation proposed by Bertsimas and Sim [8]. Accord-
ingly, the RPT approach extends the one in Bertsimas and Sim [8] in multiple
significant ways. First, Bertsimas and Sim [8] require h to be convex and homoge-
neous, hence sub-additive. They use sub-additivity to derive their safe approximation.
In contrast, Corollary 1 applies to any convex function. In Appendix A, we show how
Corollary 1 can also be obtained independently from the RPT approach, by using a
generalization of sub-additivity to general convex functions called the perspectification
lemma (Lemma1). Second, theRPT approach can lead to tighter approximationswhen
(a) some of the generic convex constraints ck(z) ≤ 0 are also linear and can be used
to define a smaller set Θ1, or when (b) a higher set in the hierarchy of approximations
is used. Finally, besides the safe approximation, Bertsimas and Sim [8] also propose a
non-convex lifting procedure to transform any norm-based set into a lifted uncertainty
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set that lies in the non-negative orthant and satisfies Assumption 3. On that regard, our
proposal is agnostic of the procedure used in practice to ensure Assumption 3 holds.

We now show that Corollary 1 coincides with the safe approximation of (1) from
Roos et al. [18] with static policies.

Roos et al. [18] propose to first reformulate (1) as an adaptive robust nonlinear
constraint, which they then approximate with static decision rules:

Proposition 3 ([18], Theorem 7) Under Assumption 3, the robust convex constraint
(1) can be safely approximated by the constraints

∃λ ≥ 0, {uk}k, s.t. ,
K∑

k=1
λkc

∗
k

(
uk/λk

)
+ h(b(x)) ≤ 0,

h∞(A(x)e�) ≤
K∑

k=1
uk�,∀� ∈ [L].

Proposition 3 is equivalent to Corollary 1 after observing that, for any y,

sup
z≥0:ck (z)≤0,k∈[K ]

y	z = inf
uk ,k∈[K ]

λk≥0,k∈[K ]

∑
k

λkc
∗
(
uk

λk

)
s.t. y ≤

∑
k∈[K ]

uk .

Consequently, our RPT approach extends Roos et al. [18, Theorem 7] by providing
tighter approximations when additional linear constraints are present or when using a
higher set in the hierarchy.

3.2 Case when the uncertainty set is a polyhedron

In this subsection, we show that the safe approximation obtained fromΘ1 for (1)
with Z = {z | Dz ≤ d}, where D ∈ R

K0×L , d ∈ R
K0 , coincides with that of

Theorem 2 in Roos et al. [18].

It follows fromProposition 2 that the convex robust constraint (1) can be safely approx-
imated by

sup
(w,w0,z,V ,v0)∈Θ1

{
Tr{A(x)	V } + b(x)	w − w0

}
≤ 0,

where Θ1 is equal to

⎧⎪⎪⎨
⎪⎪⎩

(w, w0, z, V , v0)

∣∣∣∣∣∣∣∣

Dz ≤ d,

h∗(w) ≤ w0,

(dk − e	k Dz)h∗
(

wdk−V D	ek
pk−e	k Dz

)
≤ dkw0 − e	k Dv0, k ∈ [K0]

⎫⎪⎪⎬
⎪⎪⎭

.
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The corresponding tractable robust counterpart constitutes a safe approximation of
(1), which coincides with the safe approximation of (1) proposed in Roos et al. [18,
Theorem 2].

3.3 Connection to result for robust quadratic with an ellipsoid

It is well-known that robust quadratic inequalities with an ellipsoidal uncertainty set
admit an exact SDP reformulation via the S-lemma [see [3]]. Alternatively, we show
that the same reformulation can be obtained via RPT. To this end, consider the follow-
ing robust quadratic inequality, which is a special case of the bilinear reformulation
in Proposition 1 with w = z,

z	A(x)z + b(x)	z ≤ g(x) ∀z ∈ {z ∈ R
L : z	Dz + d	z ≤ c}, (15)

which is equivalent to

max
(z,Z)∈Θell

{
Tr(A(x)Z)+ b(x)	z

}
≤ g(x),

where Θell =
{
(z, Z) ∈ R

L × S
L | Tr(DZ)+ d	z ≤ c, Z = zz	

}
. The set Θell is

non-convex because of the nonlinear equality Z = zz	, and the outer approximations
of Θell proposed in Proposition 2 satisfy Θell ⊆ Θell,0 = Θell,1 = Θell,2. By
relaxing the non-convex constraint Z = zz	 to Z � zz	, and then using Schur
complement we obtain:

Θell,3 =
{
(z, Z) ∈ R

L × S
L
∣∣∣∣ Tr(DZ)+ d	z ≤ c,

(
Z z
z	 1

)
� 0

}
.

The tractable robust counterpart of

max
(z,Z)∈Θell,3

{
Tr(A(x)Z)+ b(x)	z

}
≤ g(x)

coincides with the tractable robust counterpart of (15) obtained from using the S-
lemma. Moreover, if the uncertainty set constitutes an intersection of ellipsoids, the
obtained safe approximation for the robust quadratic inequality via RPT coincides
with that from the approximate S-lemma [2]. In Zhen et al. [20], a similar relation-
ship between the (approximate) S-lemma and RPT is established for quadratically
constrainted quadratic optimization.

4 Obtaining lower bounds

One simple way of relaxing constraint (1) is to consider a finite subset of scenarios
Z sampled from the uncertainty set Z , and the sampled version of (1) constitutes a
finite set of convex inequalities:
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h (A(x)z + b(x)) ≤ 0, ∀z ∈ Z �⇒ max
i∈[I ] h

(
A(x)z(i) + b(x)

)
≤ 0

⇐⇒ h
(
A(x)z(i) + b(x)

)
≤ 0, ∀i ∈ [I ], (16)

where {z(1), · · · , z(I )} = Z ⊆ Z . Here, the point-wisemaximum of convex functions
in the sampled inequality can be reformulated into a finite set of convex inequali-
ties (16), and provides a naive progressive approximation of (1).

The question that remains is how to choose the finite set of scenarios. One simple
way to do this would be to consider all extreme points of Z , and the sampled ver-
sion (16) is then optimal. However, the number of extreme points ofZ could be large
in general. Hadjiyiannis et al. [14] propose a way to obtain a small but effective finite
set of scenarios for two-stage robust linear problems, which takes scenarios that are
binding for the model solved with affine policies.

Alternatively, we can also adopt a dual perspective and sample scenarios from
dom h∗. Consider the following form of the bilinear reformulation (2) with a fixed x:

sup
z∈Z

w∈dom h∗

{
w	A(x)z + b(x)	w − h∗(w)

}
. (17)

The embedded maximization problem in (17) can be interpreted as a disjoint bilin-
ear problem, that is, fixing either z or w, the embedded problem becomes a convex
optimization problem. Hence, given a finite set W ⊆ dom h∗, the constraints

sup
z∈Z

{
w	A(x′)z + b(x′)	w − h∗(w)

}
≤ 0, ∀w ∈W (18)

provide a progressive approximation of (1) as well.
Hence,we propose a hybrid approach to obtain valid lower boundswherewe replace

both Z and dom h∗ in (17) by finite subsets Z and W respectively. The idea here is
adopted from Zhen et al. [21].

For a fixed x, we observe that the embedded problem in (17) becomes a convex
optimization problem whenever z or w is fixed. By exploiting this observation, for
any given z′ ∈ Z ⊆ Z , the maximizer

w′ = argmaxw∈dom h∗ w	A(x)z′ + b(x)	w − h∗(w)

is a violating scenario if the corresponding optimal value is larger than 0, and w′ can
be used to updateW , that is,W ←W ∪ {w′}. Subsequently, fixing the obtained w′
in (17), the maximizer

z′ = argmaxz∈Z w′	A(x)z + b(x)	w′ − h∗(w) (19)

is a violating scenario if the corresponding optimal value is larger than 0, and z′ can be
used to updateZ , that is,Z ← Z ∪{z′}. We can repeat this iterative procedure till no
improvement on the lower bound for (17) can be achieved. The enriched sets Z and
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W can then be used to improve x by solving the optimization problem with both (16)
with Z and (18) with W . The procedure can be repeated till no improvement can be
achieved or the prescribed computational limit is met.

Remark 2 One can improve the efficiency of the iterative procedure if A(x) = A
in (1), that is, A is independent of x. In this case, for a given w′, de Ruiter et al. [19]
have shown that the maximizer z′ in (19) dominates w′, that is, the feasible region
of x in (16) with Z ′ = {z′} is larger or equal to the one in (18) with W ′ = {w′}.
Therefore, the inequalities involving w′ is redundant, and can be omitted throughout
the procedure to improve the efficiency of this iterative procedure.

5 Computational results

In this section, we assess the numerical benefit from our RPT hierarchy on two exam-
ples, a robust control and geometric optimization setting, respectively.

5.1 Constrained linear-quadratic control

In this section, we consider an example from stochastic linear-quadratic control as in
Bertsimas and Brown [6]. They consider a discrete-time stochastic system of the form:

yk+1 = Ak yk + Bkuk + Ck zk, k = 0, . . . , N − 1,

where yk , uk , and zk are the state, control, and disturbance vectors respectively. The
objective is to control the system (find control vectors uk) in order to minimize the
cost function

J ( y0, u, z) =
N∑

k=1
( y	k Qk yk + 2q	k yk)+

N−1∑
k=0

(u	k Rkuk + 2r	k uk),

under some uncertainty on the disturbance vectors zk . After algebraic manipulations
and given a robust description of the uncertainty, the problem can be cast into

min
x,t

t s.t. ‖x‖22 + 2(F	x + h)	z + z	Cz ≤ t, ∀z ∈ Z,

whereZ = {z : ‖z‖2 ≤ γ }, and properly define vector h and matrices F, C (C � 0).
Note that x can be subject to other deterministic constraints. For instance, imposing
uk ≥ 0 yields linear constraints on x. We refer the reader to Bertsimas and Brown [6]
and references therein for problem motivation and details on the derivations.

Hence, we focus our attention to the robust convex constraint

2(F	x + h)	z + z	Cz ≤ t − ‖x‖22, ∀z ∈ Z . (20)

Note thatZ is described using a single quadratic constraint. However, our approxima-
tions partly rely on the presence of linear constraints in the definition of the uncertainty
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set. Hence, one could consider a shifted uncertainty set instead, obtained by introduc-
ing redundant linear inequalities such as ¯z ≤ z ≤ z̄ with z̄ = γ e and ¯z = −γ e, or
a non-convex lifting of Z as in Bertsimas and Sim [8]. In this section, we compare
these modeling alternatives with three objectives in mind: (a) illustrate the benefit of
our general RPT approach outlined in Sect. 2 over the perspectification approach from
Sect. 3.1 (and Appendix A), which requires more stringent assumptions on the uncer-
tainty set, (b) measure the relative benefit from shifting or lifting the uncertainty set,
and (c) compare and assess the overall strength of our proposed safe approximations.

It is well-known that the robust constraint (20) is equivalent to a semidefinite con-
straint,whichwewill use as a benchmark tomeasure the suboptimality of our approach.
In our numerical experiments, as in Bertsimas and Brown [6], we take y0 = −1,
Ak = Bk = Ck = 1, Qk = Rk = βk with β ∈ (0, 1), and qk = rk = 0.

Benefit from RPT over Perspectification

As we derived in Sect. 3.1, applying RPT up to Θ1 in Proposition 2 leads to the
safe approximation presented in Corollary 1. In addition, here, there are no linear
constraints in the description of dom h∗, so Θ1 = Θ2 and the benefit from using RPT
(Proposition 2) over perspectification (Corollary 1) might be unclear. Yet, as discussed
in Sect. 2.2, RPT is more flexible and can allow for an arbitrary number of linear
constraints, while perspectification can only account for non-negativity constraints on
z. We illustrate this point on the present example.

To derive meaningful safe approximations, we need to enrich the definition of Z
with linear constraints. A generic method for doing so is shifting the uncertainty set.
For instance, any z : ‖z‖2 ≤ γ satisfies −γ e ≤ z ≤ γ e. Accordingly, we can:

– Consider the shifted uncertain vector z̃ = γ e+ z, z ∈ Z , so that z̃ ≥ 0 and apply
Corollary 1. We will refer to this method as [Cor. 1 LB];

– Consider the shifted uncertainty set γ e−Z ⊆ R
I+ and apply Corollary 1 [Cor. 1

UB];
– Add the 2L linear inequalities −γ e ≤ z ≤ γ e to the definition of Z and apply
RPT with Θ1 [Prop. 2, Shifted Θ1].

Derivations of the resulting three safe approximations are provided inAppendixB. Fig-
ure 1 displays the sub-optimality gap of each alternative, compared with the exact SDP
reformulation, as γ increases. [Prop. 2, LiftedΘ1] provides a substantial improvement
over both [Cor. 1 LB] and [Cor. 1 UB], hence illustrating the benefit from accounting
for both lower and upper bounds on zwhen safely approximating the robust constraint.
Corollary 1, however, is unable to leverage such information, for it requires exactly
and only L non-negativity constraints. In addition, applying RPT opens the door to a
hierarchy of approximations. For instance, by multiplying the two norm constraints in
the definition ofZ and dom h∗ respectively, one can consider the third level of approx-
imation Θ3 which further reduces the optimality gap (see performance of [Prop. 2,
Lifted Θ3] in Fig. 1).

123



898 D. Bertsimas et al.

Fig. 1 Computational results on constrained linear-quadratic control. Evolution of the sub-optimality gap
of the safe approximation as γ increases for a constrained linear-quadratic control examples with N = 20
periods and shifted uncertainty sets

Benefit from lifting over shifting

Another option to add linear constraints into the definition of the uncertainty set is to
decompose z into z = z+ − z− and consider the lifted uncertainty set {(z+, z−) :
z+, z− ≥ 0, ‖z++ z−‖2 ≤ γ }. Observe that this kind of non-convex lifting cannot be
applied to any uncertainty set, for the constraint ‖z‖2 ≤ γ is replaced by ‖z++z−‖2 ≤
γ - instead of ‖z+ − z−‖2 ≤ γ - and constitutes a valid lifting of Z for norm-sets
only [8]. Yet, as demonstrated on Fig. 2, such non-convex lifting of the uncertainty set
can lead to tighter safe approximations (see [Prop. 2, Lifted Θ1] and [Prop. 2, Lifted
Θ3]) than shifting, especially for low to moderate values of γ . We remark that the
first level of approximation with the lifted uncertainty set [Prop. 2, Lifted Θ1] - which
is equivalent to the approach outlined in Bertsimas and Sim [8] - competes and even
surpasses the third level of approximation on the shifted one. However, we observe
that the difference between shifting and lifting shrinks as γ increases. Also, we should
emphasize the fact that shifting is a very generic procedure that can be applied to any
bounded uncertainty set, without further assumption on its structure.

Overall performance

Figure 3 compares the performance of the SDP reformulationwith safe approximations
obtained from Θ3 in Proposition 2, with the original uncertainty set {z : ‖z‖2 ≤ γ },
its shifted and lifted versions respectively. In short, we observe that our approach
successfully provides near-optimal solution to (within 5% optimality) at a fraction of
the cost of solving the exact SDP reformulation.

5.2 Robust geometric optimization

We evaluate the performance of our proposed approach on geometric optimization
instances that are randomly as in Hsiung et al. [15]. In particular,we consider geometric
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Fig. 2 Computational results on constrained linear-quadratic control. Relative performance of shifting vs.
lifting the uncertainty set as γ increases for constrained linear-quadratic control examples with N = 20
periods. Performance is measured in terms of sub-optimality gap with respect to the SDP reformulation

Fig. 3 Computational results on constrained linear-quadratic control. Numerical behavior of three level-3
safe approximations derived with RPT (Proposition 2) as the number of time periods N increases, compared
with the exact SDP reformulation of the robust constraint. For this experiment, we set β = 1.0 and impose
yk ≥ 0

optimization problems with a linear objective, and a system of two-term log-sum-exp
robust inequalities

min
x

c	x

s.t. log

(
e

(
−1+B(1)

i z
)	

x + e

(
−1+B(2)

i z
)	

x

)
≤ 0, ∀z ∈ Z, i ∈ [I ], (21)

where c = 1 ∈ R
nx is the all ones vector, and B(1)

i , B(2)
i ∈ R

nx×L are randomly
generated sparse matrices with sparsity density 0.1 whose nonzero elements are uni-
formly distributed on the interval [−1, 1]. The uncertainty set is assumed to be an
intersection of a hypercube and a ball, that is,
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Z =
{
z ∈ R

L | ‖z‖∞ ≤ 1, ‖z‖2 ≤ γ
}

.

We consider a set of instances with nx = I = 100 and L ∈ {6, 8, · · · , 20}. We select

a γ = L
√

2LΓ (n/2+1)
π L/2 , where Γ denotes the gamma function, that ensures the volume

of the ball {z | ‖z‖2 ≤ γ } coincides with the volume of the hypercube {z | ‖z‖∞ ≤ 1}.
All the reported numerical results are from the average of 10 randomly generated
instances.

Consider the bilinear reformulation of the i-th constraint of (21)

sup
(w,z,v1,v2,v0)∈Θ

{(
−1w1 + B(1)

i v1

)	
x +

(
−1w2 + B(2)

i v2

)	
x − w0

}

with the non-convex uncertainty set

Θ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(w, z, v1, v2, v0)

∣∣∣∣∣∣∣∣∣∣

‖z‖∞ ≤ 1, ‖z‖2 ≤ γ, (z ∈ Z)

w1, w2 ≥ 0, w1 + w2 = 1, (w ∈ dom h∗)
w1 logw1 + w2 logw2 ≤ w0, (epigraph)
v1 = w1z, v2 = w2z,
v0 = w0z,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

which is safely approximated by four convex sets that satisfy Θ ⊆ Θ LM I ,2 ⊆ Θ2 ⊆
Θ1 ⊆ Θ1′ , where Θ1 and Θ2 are obtained from applying Proposition 2 to Θ , while
Θ LM I ,2 is obtained by enriching Θ2 with the LMI in (11). In addition, we also
compare the safe approximations from Θ1, Θ2 and Θ LM I ,2 with Θ1′ , where Θ1′ is
the corresponding Θ1 if Zbox = {z | ‖z‖∞ ≤ 1} is considered instead of Z . Note
that the obtained safe approximation from Θ1′ coincides with that of Roos et al. [18]
as discussed in Sect. 3.2. We refer to Appendix C.1 for a detailed representation of
Θ1, Θ1′ , Θ2 and Θ LM I ,2. We resort to comparing our solutions’ objective value to
a lower bound. To this end, we compute a lower bound by using the optimal solution
to the tightest obtained safe approximation to find potentially critical scenarios in the
uncertainty set. The lower bound is then constructed by solving a model that only
safeguards for this finite set of critical scenarios; see more detail in Sect. 4.

Numerical performance

From Fig. 4 we observe that, while our proposed safe approximations from Θ1 and
Θ2 requires similar computational effort as that fromΘ1′ , the average optimality gaps
from considering Θ1 andΘ2 are consistently smaller than that from considering Θ1′ .
For all considered instances, we observe that despite the significant additional compu-
tational effort, the optimality gaps obtained from considering Θ LM I ,2 coincide with
the optimality gaps from considering Θ2. Therefore, we do not report the computa-
tion time for the safe approximations from Θ LM I ,2. Moreover, we also consider the
shifted uncertainty set, and observe that the obtained optimality gaps coincide with
the optimality gaps when the original uncertainty set is considered.
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Fig. 4 Computational results on robust geometric optimization. Numerical behavior of the safe approxi-
mations from Θ1′ , Θ1 and Θ2 as the size of the instance, that is, L ∈ {6, 8, · · · , 20}, increases

Benefit from lifting

Alternatively, we consider the following lifted uncertainty set of Z .

Z+ =
{
(z+, z−) ∈ R

L+ × R
L+ | ‖z+ + z−‖∞ ≤ 1, ‖z+ + z−‖2 ≤ γ

}
.

This non-convex projection is first proposed in Bertsimas and Sim [8] and then
extended to solve adaptive robust linear problems in Chen and Zhang [11]. By substi-
tuting z with z+ − z−, the bilinear reformulation becomes

sup(
w,z±,v±i

)∈Θ+
(−w11+ B(1)

i [v+1 − v−1 ])	x + (−w21+ B(2)
i [v+2 − v−2 ])	x − w0

with the lifted non-convex uncertainty set

Θ+ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
w, z+, z−, v+1 , v−1
v+2 , v−2 , v+0 , v−0

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

‖z+ + z−‖∞ ≤ 1,
‖z+ + z−‖2 ≤ γ, ((z+, z−) ∈ Z+)

z+, z− ∈ R
L+

w1, w2 ≥ 0, w1 + w2 = 1, (w ∈ domh∗)
w1 logw1 + w2 logw2 ≤ w0, (epigraph)
v+1 = w1z+, v−1 = w1z−,

v+2 = w2z+, v−2 = w2z−,

v+0 = w0z+, v−0 = w0z−,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

which is safely approximated by four convex sets that satisfy Θ+ ⊆ Θ+
2 ⊆ Θ+

1 ⊆
Θ+

1′ and Θ+ ⊆ Θ+
2 ⊆ Θ+

1 ⊆ ΘBS, where Θ+
1 and Θ+

2 obtained from applying
Proposition 2 to Θ+, and Θ+

1′ is the corresponding Θ+
1 if Z+box = {(z+, z−) ∈

R
L+ ×R

L+ | ‖z+ + z−‖∞ ≤ 1} is considered instead ofZ+. We define ΘBS in such a
way that the obtained safe approximation coincides with that of the extended approach
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Fig. 5 Computational results on robust geometric optimization. Numerical behavior of the safe approxi-
mations from Θ+1′ , Θ

+
1 and Θ+2 as the size of the instance, that is, L ∈ {6, 8, · · · , 20}, increases

of Bertsimas and Sim [8]; see Sects. 3.1 and Appendix A. We refer to Appendix C.2
for a detailed representation of ΘBS, Θ

+
1 , Θ

+
1′ and Θ+

2 . We do not consider Θ+
LM I ,2,

that is, Θ+
2 with addition LMI similarly as in (11), because we already observe that

Θ LM I ,2 does not improve the approximation from Θ2 for the problem we consider
here.

Numerical performance with lifting

FromFig. 5weobserve that,while our proposed safe approximations fromΘ+
1 andΘ+

2
require similar computational effort as that from ΘBS, the average optimality gaps
from considering Θ+

1 and Θ+
2 are consistently smaller than that from considering

ΘBS. For all considered instances, we observe that the optimality gaps obtained from
considering Θ+

1′ coincide with the optimality gaps from considering Θ1 (i.e., without
lifting). Therefore, we do not report the computation time for the safe approximations
from Θ+

1′ .

Overall performance

Firstly, the average optimality gaps from Θ1′ (which has the same performance as
Roos et al. [18]; see Sect. 3.2) and ΘBS (which has the same performance as the
extended approach of Bertsimas and Sim [8]; see Sects. 3.1 and Appendix A) are very
close to each other, while the computational effort required for computing the safe
approximation fromΘBS is almost twice as much as that fromΘ1′ . Our proposed safe
approximations from Θ1, Θ2, Θ+

1 and Θ+
2 consistently outperform that from con-

sidering Θ1′ and ΘBS. Although the computational effort required for computing the
safe approximations from Θ+

1 and Θ+
2 is more than twice of that from Θ1′ and ΘBS,

the average optimality gaps fromΘ+
1 andΘ+

2 are half of the ones fromΘ1′ andΘBS.
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6 Conclusion

We propose a hierarchical safe approximation scheme for (1). Via numerical experi-
ments, we demonstrate that our approach either coincides with or improves upon the
existing approaches of Bertsimas and Sim [8] and Roos et al. [18]. Furthermore, our
approach not only provides a trade-off between the solution quality and the compu-
tational effort, but also allows a direct integration with existing safe approximation
schemes, e.g., the lifting technique proposed in Bertsimas and Sim [8] and Chen and
Zhang [11], which is used to further improve the obtained safe approximations.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10107-022-01881-w.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A The perspectification approach

In this section, we propose an extension of the approach proposed by Bertsimas and
Sim [8] for general convex constraints and general convex uncertainty sets. Although
this approach is dominated by our main RPT-based approach in Sect. 2, it has the
advantage that probability guarantees can be derived for the solutions obtained. While
Bertsimas and Sim [8] requires the function h to be sub-additive, our generalization
is based on the ‘perspectification’ of the function h(·).

As inBertsimas and Sim [8],wemake the additional assumption that the uncertainty
set lies in the non-negative orthant, as stated in Assumption 3. The non-negativity
assumption of Z holds without loss of generality and can always be satisfied by
properly lifting or shifting the uncertainty set. Indeed, ifZ � R

L+, one can decompose
z into z = z+ − z− with z+, z− ≥ 0. Then,

A(x)z + b(x) = A(x)z+ − A(x)z− + b(x) = Ã(x)

[
z+
z−
]
+ b(x),

where Ã(x) = [A(x), −A(x)
]
is linear in x and our analysis applies to the lifted

uncertainty set

Z ′ =
{
(z+, z−) ∈ R

L+ × R
L+ : (z+ − z−) ∈ Z

}
.

However, the lifted uncertainty set Z ′ defined above might be unbounded. As
a result, Bertsimas and Sim [8] and Chen and Zhang [11] propose to incorpo-
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rate a non-convex lifting for norm-based uncertainty sets. For instance, if Z̄ ={
z ∈ R

L : z ∈ Z, ‖z‖∞ ≤ 1, ‖z‖2 ≤ γ
}
, Bertsimas and Sim [8] consider the fol-

lowing lifted uncertainty set:

Z+ =
{
(z+, z−) ∈ R

L+ × R
L+ : ‖z

+ + z−‖∞ ≤ 1,
‖z+ + z−‖2 ≤ γ

}
.

Alternatively, we can shift the uncertainty set by some constant factor z0 such that
z + z0 ∈ z0 +Z ⊆ R

L+. Hence,

A(x)z + b(x) = A(x)(z + z0)−A(x)z0 + b(x)︸ ︷︷ ︸
=: b̃(x) affine in x

.

We numerically discussed the implications of these two alternatives on the numerical
behavior of our proposed approximations in Sect. 5.1.

As previously discussed in Sect. 3.1, the perspectification lemma we present in this
section offers an alternative derivation of Corollary 1, i.e., the RPT-based approx-
imation with Θ1 under Assumption 3. In addition, for this approach, we derive
probabilistic guarantees, i.e., bounds on the probability of constraint violation, under
the assumption that the uncertain parameter has sub-Gaussian tails.

A.1 Safe approximations via perspectification

The perspectification approach is based on the following perspectification lemma [19]:

Lemma 1 (Perspectification of Convex Functions) If the function g : R
m �→

[−∞,+∞] is proper, closed and convex, then for any y1, . . . , ym ∈ R
m and non-

negative weights α1, . . . , αm ≥ 0, we have:

g

(
m∑
i=1

αi yi

)
≤

m∑
i=1

αi ti g

(
yi
ti

)
, (22)

for any t ≥ 0 satisfying
∑m

i=1 αi ti = 1.

Remark 3 If g is positively homogeneous, i.e., for any vector y ∈ R
m and any positive

scalar λ > 0, g(λ y) = λg( y), then (22) reduces to

g

(
m∑
i=1

αi yi

)
≤

m∑
i=1

αi g
(
yi
)
,

and the additional variables ti in (22) need not to be introduced. In this case, Lemma 1
simply states that g is sub-additive.

Remark 4 The terms in the right-hand side of Lemma 1 should be interpreted as αi

times the perspective function of g at (ti , yi ). In particular, it is defined when ti = 0
and equal to αi g∞( yi ) in this case.

123



Robust convex optimization:… 905

Weuse this lemma to develop a safe approximation of (1), i.e., a sufficient condition
for x to satisfy (1).

Proposition 4 (SafeApproximation via Perspectification) Under Assumption 3, a safe
approximation of (1) is:

∀z ∈ Z, ∃(u, u) ∈ R
L+1+ , s.t.

∑
�∈[L]

z�u�h

(
A(x)e�

u�

)
+ u h

(
b(x)

u

)
≤ 0, (23a)

L∑
i=1

zi ui + u = 1, (23b)

where A(x)e� selects the �-th column of the matrix A(x) for each � ∈ [L].
Proof Consider z ∈ Z . If there exists a vector (u, u) ∈ R

L+1+ satisfying (23a)–(23b),
(u, u) satisfies the assumption of Lemma 1, (23b). Hence,

h(A(x)z + b(x)) = h

⎛
⎝∑

�∈[L]
z�A(x)e� + b(x)

⎞
⎠

≤
∑
�∈[L]

z�u�h

(
A(x)e�

u�

)
+ u h

(
b(x)

u

)
.

Finally, the right-hand side is lower than 0 from (23a) so (1) holds. ��
Following Remark 4, the terms u�h(A(x)e�/ul) in (23a) should be interpreted

as persph(u�, A(x)e�). In particular, for u� = 0, u�h(A(x)e�/ul) = h∞(A(x)e�).
Proposition 4 approximates the robust convex constraint (1) via a set of adaptive robust
constraints that depend linearly in the uncertainty z. Note, however, that even in the
fully adaptive case where (u, u) can depend arbitrarily on the uncertain parameter
z, Proposition 4 is only a valid approximation of the robust constraint (1), not an
equivalent reformulation.

Remark 5 The safe approximation in Proposition 4 can be concisely written as

sup
z∈Z

inf
(u,u)∈RL+1+
z	u+u=1

∑
�∈[L]

z�u�h

(
A(x)e�

u�

)
+ u h

(
b(x)

u

)
≤ 0.

Expressing h(·) as the conjugate of its conjugate, we have

z�u�h

(
A(x)e�

u�

)
= sup

v�:v�/z�∈dom h∗

{
e	� A(x)	v� − z�u�h

∗
(

v�

z�

)}
,

u h

(
b(x)

u

)
= sup

w∈dom h∗

{
b(x)	w − uh∗(w)

}
.
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Finally, for a fixed z ∈ Z , we can interchange the inf and sup operators, take the dual
with respect to (u, u), and reformulate Proposition 4 as

sup
z∈Z

sup
w∈dom h∗
v�
z�
∈dom h∗

sup
w0: h∗(w)≤w0
z�h∗(

v�
z�

)≤z�w0

∑
�∈[L]

e	� A(x)	v� + b(x)	w − w0,

where w0 is the dual variable associated with the linear constraint z	u + u = 1.
However, the maximization problem above is not convex in (z, {v�}�,w, w0) due to

the product of variable z�w0 in the constraint z�h
(

v�

z�

)
≤ z�w0 for every � = 1, . . . , L .

Since the safe approximation in Proposition 4 is an adaptive robust linear constraint,
we can then derive tractable reformulations by restricting our attention to specific
adaptive policies. For instance, if we consider only static policies, we obtain the fol-
lowing safe approximations of the inequalities (23b) and (23a) which are equivalent
to Corollary 1:

Corollary 2 Under Assumption 3, a safe approximation of (1) is:

∑
�∈[L]

z�h∞(A(x)e�)+ h (b(x)) ≤ 0, ∀z ∈ Z.

Proof

∃(u, u) ∈ R
L+1+ , s.t.

∑
�∈[L]

z�u�h

(
A(x)e�

u�

)
+ u h

(
b(x)

u

)
≤ 0, ∀z ∈ Z,

z	u + u = 1, ∀z ∈ Z.

Since Z is full dimensional by Assumption 3, the equality constraint implies u = 0
and u = 1. ��
Remark 6 For the safe approximation (14) to be meaningful, we need the recession
function of h, h∞(·) to be finite. If this is not the case - if h is quadratic for instance -
then, by decomposing A(x)z + b(x) into

∑
� z�A(x)e� + b(x)+ 0 and applying the

same line of reasoning as for Proposition 4, we can show that

∃(u, u) ∈ R
L+1+ , s.t.

∑
�∈[L]

z�u�h

(
A(x)e�

u�

)
+ u h

(
b(x)

u

)
≤ 0, ∀z ∈ Z,

z	u + u ≤ 1, ∀z ∈ Z,

also constitutes a safe approximation of (1) under the additional assumption that
h(0) = 0. However, now, the inequality constraint does not force u = 0 so it does not
involve the recession function of h.

123



Robust convex optimization:… 907

A.2 Probabilistic guarantees

The main advantage of the safe approximation obtained with Corollary 1-2 is that
the resulting constraint is a robust constraint with the same uncertainty set Z for
which probabilistic guarantees can be derived. In order to provide such guarantees,
distributional assumptions on the “true” uncertain parameter are needed. However,
Assumption 3 requires the uncertainty set Z to lie in the non-negative orthant, an
assumption which is often satisfied in practice once the original uncertain parameter
is shifted or lifted. Accordingly, we derive probabilistic guarantees for these two cases.

For clarity, we will refer to this original uncertain vector as u and identify random
variables with tildes (·̃).

A.2.1 Shifted uncertainty set

We first consider the case where the uncertainty set is shifted and make the following
assumption:

Assumption 4 We assume that

(i) the uncertainty set Z ⊆ R
L+ can be decomposed into Z = z0 + U , where U is

full dimensional and contains 0 in its interior;
(ii) the randomvector z̃ can be decomposed into z̃ = z0+ũ, where z0 is a deterministic

vector and ũ is a randomvectorwhose coordinates are L independent sub-Gaussian
random variables with parameter 1 (see Definition 1 ).

In practice, the uncertain parameter z is often decomposed into z = ẑ + u, where
ẑ is the nominal value and u the (uncertain) deviation from the nominal. Then, an
uncertainty set for u is built,U , and z is taken in the uncertainty set ẑ+U . Assumption 4
mirrors this modelling process with the additional caveat that the uncertainty set is
further shifted by z0 − ẑ in order to guarantee that Z ⊆ R

L+.
From a probability distribution standpoint, Assumption 4 requires the coordinates

of ũ to be sub-Gaussian, i.e.,

Definition 1 [17,Definition 1.2 in]A randomvariable ũ ∈ R is said to be sub-Gaussian
with parameter σ 2, denoted ũ ∼ subG(σ 2), if ũ is centered, i.e., E[ũ] = 0, and for all
s ∈ R,

E

[
esũ
]
≤ e

s2σ 2

2 .

Requiring ũ to be sub-Gaussian or, equivalently, to have Gaussian-type tail probabil-
ities, is a fairly general assumption. In particular, standard Gaussian random variables
or random variables with mean 0 and bounded between −1 and 1 are special cases
of sub-Gaussian random variables with parameter 1 ; see [17, Lemma 1.8]. From a
bound on the moment generating function, one can derive large deviation bounds.
More precisely, if ũ ∼ subG(σ 2), then for any t > 0, P(ũ > t) ≤ exp(−t2/(2σ 2))

[17, Lemma 1.3].
Under this set of assumptions, we derive the following probabilistic guarantees.
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Proposition 5 Under Assumption 3 and 4 , if x satisfies

z	h∞(A(x))+ h(b(x)) ≤ 0, ∀z ∈ Z,

with h∞(A(x)) = (h∞(A(x)e1), . . . , h∞(A(x)eL))	, then

P (h (A(x) z̃ + b(x)) > 0) ≤ exp

(
−δ∗ (h∞(A(x))|U)2

2‖h∞(A(x))‖22

)
+ p0

≤ exp
(
− 1

2ρ(U)2
)
+ p0,

where

a) δ∗( y|U) := maxu∈U y	u is the support function of the set U ,
b) ρ(U) := min y:‖ y‖2=1 δ∗( y|U) denotes its robust complexity [10],
c) and p0 ≥ P( z̃ � 0).

Proposition 5 displays a posteriori and a priori probabilistic guarantees, i.e., a
bound that depends on a specific robust solution x and one that only depends on the
uncertainty set U . In both cases, it involves p0 ≥ P( z̃ � 0) = P(ũ � −z0), i.e., the
probability that a random uncertain parameter z̃ does not belong to the non-negative
orthant. In cases where z̃ is known or assumed to have bounded support –for instance
z̃ ∈ [−1, 1]L almost surely– then z0 can be chosen large enough so that P( z̃ � 0) = 0.
Otherwise, for a general z0 ≥ 0, a union bound inequality yields

P( z̃ � 0) = P(ũ � −z0) ≤
L∑

i=1
P(ũi � −z0i ) ≤

L∑
i=1

exp(−z20i/2),

where the last inequality follows from the fact that ũi ∼ subG(1). Hence, p0 is a valid
upper bound on P( z̃ � 0) and can be as low as 0 and in general depends on the shifting
vector z0.

The a priori guarantees in Proposition 5 depend on the uncertainty set through its
robust complexity, ρ(U), introduced by Bertsimas et al. [10]. We report closed-form
expressions of ρ(U), or at least a lower bound, for commonly used uncertainty set in
Table 3.

Proof We consider a robust solution x. With support function notations, x satisfies

δ∗ (h∞(A(x))|Z)+ h(b(x)) ≤ 0.

We denote A the event that z̃ ≥ 0. Hence, P (Ac) = P
(
z̃ � 0

) ≤ p0, by definition of
p0. Conditioned on A, the assumptions of Lemma 1 are satisfied, leading to

h(A(x) z̃ + b(x)) ≤ z̃	h∞(A(x))+ h(b(x)),
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Table 3 Valid lower bound on robust complexity of U , defined as ρ(U) := min y:‖ y‖2=1 maxu∈Z y	u,
for some common uncertainty sets. Instances denoted by a * are valid under the assumption that the true
uncertain parameter ũ satisfies ‖ũ‖∞ ≤ 1. Results are taken from Table 2 in Bertsimas et al. [10]

Uncertainty set Definition Safe approximation of ρ(U)

Norm-set {u : ‖u‖p ≤ Γ }
{

Γ , if p ≥ 2,

Γ L1/2−1/p, if p ≤ 2.

Budget set* {u : ‖u‖∞ ≤ 1, ‖z‖1 ≤ Γ } Γ /
√
L

Box-Ellipsoidal set* {u : ‖u‖∞ ≤ 1, ‖z‖2 ≤ Γ } Γ

�∞+�1 set {u1 + u2 : ‖u1‖∞ ≤ ρ1, ‖u2‖1 ≤ ρ2} ρ1 + ρ2/
√
L

�∞+�2 set {u1 + u2 : ‖u1‖∞ ≤ ρ1, ‖u2‖2 ≤ ρ2} ρ1 + ρ2

Polyhedral set {u : Du ≤ d} min
i

di
‖D	ei ‖2

and

P
(
h(A(x) z̃ + b(x)) > 0 |A ) ≤ P

(
z̃	h∞(A(x)) > δ∗ (h∞(A(x))|Z)

)

= P

(
ũ	h∞(A(x)) > δ∗ (h∞(A(x))|U)

)

≤ exp

(
−δ∗ (h∞(A(x))|U)2

2‖h∞(A(x))‖22

)
,

where the last inequality follows from the fact that, by affine transformation of
sub-Gaussian random variables, ũ	h∞(A(x)) is itself sub-Gaussian with parame-
ter ‖h∞(A(x))‖22. By definition of the robust complexity, for any vector v,

δ∗(v|U)

‖v‖2 ≥ min
v:‖v‖2=1

δ∗ (v|U) = ρ(U),

so that we obtain

P
(
h(A(x) z̃ + b(x)) > 0 |A ) ≤ exp

(
− 1

2ρ(U)2
)

.

All things considered,

P (h(A(x) z̃ + b(x)) > 0) = P (h(A(x) z̃ + b(x)) > 0|A) P (A)

+ P
(
h(A(x) z̃ + b(x)) > 0|Ac)

P
(Ac)

≤ P (h(A(x) z̃ + b(x)) > 0|A)+ P
(Ac) ,

and the result follows. ��
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Remark 7 As previously suggested, if the recession function of h is not finite, we can
further assume that h(0) = 0 and show that

∃(v, v) ∈ R
L+1+ , s.t.

∑
�∈[L]

z�v�h

(
A(x)e�

v�

)
+ v h

(
b(x)

v

)
≤ 0,∀z ∈ Z,

z	v + v ≤ 1,∀z ∈ Z,

constitutes a valid safe approximation of (1). If x satisfies such a safe approximation,
then a similar line of reasoning yields (proof omitted)

P (h (A(x) z̃ + b(x)) > 0) ≤ exp

(
−δ∗(g(x, v)|U)2

2‖g(x, v)‖22

)
+ exp

(
−δ∗(v|U)2

2‖v‖22

)
+ p0

≤ 2 exp
(
− 1

2ρ(U)2
)
+ p0,

with g(x, v)	e� = v�h

(
A(x)e�

v�

)
.

A.2.2 Lifted uncertainty set

We now consider the case where Z is a lifted version of an original uncertainty set.
Accordingly, we assume the following:

Assumption 5 We assume that

(i) the uncertainty set Z ⊆ R
2L+ is of the form Z = {(z+, z−) ∈ R

L+ × R
L+ | ∃u ∈

U : z+ = max(u, 0), z− = max(−u, 0)}, where U is full dimensional and con-
tains 0 in its interior;

(ii) the random vector z̃ can be decomposed into z̃ = (max(ũ, 0),max(−ũ, 0)) ∈
R
2L+ , where the coordinates of ũ ∈ R

L are L independent sub-Gaussian random
variables with parameter 1.

Under this assumption, we can write Corollary 1–2 as:

(z+)	h∞ (A(x))+ (z−)	h∞ (−A(x))+ h (b(x)) ≤ 0, ∀(z+, z−) ∈ Z.

Since z+ and z− cannot be simultaneously positive, the constraint above is equivalent
to

∑
�

|u�|max [h∞ (±A(x)e�)]+ h (b(x)) ≤ 0, ∀u ∈ U .

Despite additional technicalities due to the fact that the coordinates of z± are defined
as the positive (resp. negative) parts of sub-Gaussian random variables, we obtain
similar guarantees.
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Proposition 6 Define |U | := {|u| : u ∈ U}, g(A, x) := [max h∞(±A(x)e�)]�=1,...,L
and α = √L. Consider a vector x satisfying

1. If t := δ∗ ( g(A, x)| |U |)
α‖g(A, x)‖2 > 1, and under Assumption 5, then

P (h (A(x)ũ + b(x)) > 0) ≤ √et exp

(
− t2

2

)
.

2. If ρ(|U |) > α and under Assumption 5, then

P (h (A(x)ũ + b(x)) > 0) ≤
√
e

α
ρ(|U |) exp

(
− 1

2α2 ρ(|U |)2
)

.

Proposition 6 recovers exactly Theorem 2 from Bertsimas et al. [9], under the weaker
assumption that u j ’s are independent sub-Gaussian random variables (instead of inde-
pendent Gaussian random variables) and for any uncertainty set U . In particular, our
proof relies on a novel generalization of theHanson-Wright inequality to sub-Gaussian
random variables, which is of independent interest (see the Online Supplement, The-
orem OS.2 and Corollary OS.4). However, the constant α in Proposition 6 is weaker
than the ones obtained by Bertsimas et al. [9]. Indeed, while our bound is generic, they
provide h-specific values for α, which we could use to tighten our bound as well.

Before proving Proposition 6, we establish a technical lemma.

Lemma 2 For any x and z, we have

max (h∞ (±A(x)z)) ≤ α‖H(A, x)z‖2.

for α = √L and H(A, x) the L × L diagonal matrix whose diagonal coefficients are
max [h∞ (±A(x)e�)].

Proof Since h∞ is positively homogeneous with h∞(0) = 0, it is sub-additive and

h∞ (A(x)z) ≤
∑

�

h∞ (z�A(x)e�) (Sub-additivity)

≤
L∑
j=1
|z j |h∞ (ε�A(x)e�) with ε� = sign(z�)

≤
L∑
j=1
|z j |max [h∞ (±A(x)e�)]

≤ √L

√√√√ L∑
j=1

max [h∞ (±A(x)e�)]2 z2j (Cauchy-Schwarz).

��
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912 D. Bertsimas et al.

Finally, let us prove the Proposition 6.

Proof 1. Using the safe approximation

h (A(x)ũ + b(x)) ≤ h∞ (A(x)ũ)+ h (b(x)) ≤ max
[
h∞ (±A(x)ũ)

]+ h (b(x)) ,

together with

δ∗ ( g(A, x)| |U |)+ h (b(x)) ≤ 0,

we have

P (h (A(x)ũ + b(x)) > 0) ≤ P
(
max

[
h∞ (±A(x)ũ)

]
> δ∗ ( g(A, x)| |U |)) .

Applying Lemma 2, we eventually get

P (h (A(x) z̃ + b(x)) > 0) ≤ P
(
α‖H(A, x)ũ‖2 > δ∗ ( g(A, x)| |U |)) .

Both sides of the inequality being positive, we compare their squares and the
result follows from the generalized Hanson-Wright inequality (Corollary OS.4)
with t = δ∗ ( g(A, x)| |U |)2/α2.

2. The function t �→ √
et exp(−t2/2) is monotonically decreasing over [1,∞).

Denoting t(x) = δ∗(g(A,x)||U |)
α‖g(A,x)‖2 , we have t(x) ≥ ρ(|U |)/α.

��
Remark 8 A tighter, yet more overwhelming, bound can be obtained by invoking
the generalized Hanson-Wright inequality stated in Theorem OS.2 instead of Corol-
lary OS.4.

Remark 9 We recover exactly Theorem 2 of Bertsimas et al. [9], under the weaker
assumption that u j ’s are independent sub-Gaussian random variables (instead of inde-
pendent Gaussian random variables) and for any uncertainty set U . However, the
generic constant α we obtain is weaker. Indeed, Bertsimas et al. [9] provide an h-
specific proof of Lemma 2 and are able to derive tighter values of α in these special
cases, which could in turn be used to tighten our bound as well.

B Derivations for the robust control example

Constraint (20) is of the form

h (A(x)z + b(x)) ≤ t − ‖x‖22, ∀z ∈ Z,

with

h

([
u
ū

])
= u	u + ū, A(x) =

[
C1/2

2x	F + 2h	
]

, b(x) =
[
0
0

]
.
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In this case, since there are no linear constraints in the definition of dom h∗,Θ1 = Θ2
in the hierarchy of safe approximations presented in Proposition 2.

B.1 Ellipsoidal uncertainty set

We first consider the raw description of the uncertainty set Z = {z : ‖z‖2 ≤ γ } and
consider the bilinear reformulation (2)

sup
(w,w̄,w0,z,V ,v̄,v0)∈Θ

[
Tr(C1/2V )+ 2x	Fv̄ + 2h	v̄ − w0

]
≤ t − ‖x‖22,

with

Θ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(w, w̄, w0, z, V , v̄, v0)

∣∣∣∣∣∣∣∣∣∣∣∣

‖z‖2 ≤ γ, (z ∈ Z)

w̄ = 1, ((w, w̄) ∈ dom h∗)
0 ≤ w0,

1
4‖w‖22 ≤ w0, (h∗(w, w̄) ≤ w0)

V = wz	,

v̄ = w̄z,
v0 = w0z

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

After careful inspection, we can eliminate the variables w̄(= 1) and v̄(= z) and
consider instead

sup
(w,w0,z,V ,v0)∈Θ

[
Tr(C1/2V )+ 2x	Fz + 2h	z − w0

]
≤ t − ‖x‖22,

with

Θ =

⎧⎪⎪⎨
⎪⎪⎩

(w, w0, z, V , v0)

∣∣∣∣∣∣∣∣

‖z‖2 ≤ γ,

0 ≤ w0,
1
4‖w‖22 ≤ w0,

V = wz	,

v0 = w0z

⎫⎪⎪⎬
⎪⎪⎭

.

However, in the absence of linear inequalities in the description ofZ and dom h∗, we
have Θ0 = Θ1 = Θ2 and the resulting safe approximations are uninformative. Yet,
we can apply the third level of approximation,

Θ3 =

⎧⎪⎪⎨
⎪⎪⎩

(w, w0, z, V , v0)

∣∣∣∣∣∣∣∣

‖z‖2 ≤ γ,

0 ≤ w0,
1
4‖w‖22 ≤ w0,

1
4‖V‖22 ≤ γ 2w0,

‖v0‖2 ≤ γw0

⎫⎪⎪⎬
⎪⎪⎭

,

and eventually get the following robust counterpart

2γ ‖F	x + h‖2 + γ 2‖C‖2 ≤ t − ‖x‖22.
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914 D. Bertsimas et al.

This is equivalent to upper-bounding the strongly convex part in the original constraint
by γ 2‖C‖2 and take the robust counterpart of the robust linear constraint. This is the
approach chosen by Bertsimas and Brown [6], although with different derivations.

B.2 Shifted uncertainty set

We enrich the definition of Z with redundant linear constraints, i.e., we consider

Z = {z : ‖z‖2 ≤ γ, ¯z ≤ z ≤ z̄},

with z̄ = γ e and ¯z = −γ e. As a result, z − ¯z ≥ 0 and we can apply Corollary 1
for the shifted uncertainty −¯z +Z ⊆ R

I+. Namely, we introduce additional decision
variables u, u ≥ 0 such that u	(z− ¯z)+ u ≤ 1, ∀z, i.e., γ ‖u‖2 − u	¯z+ u ≤ 1, and
such that

−
∑
i ¯

zi
Cii

ui
+ γ

∥∥∥∥2F	x + 2h +
[
Cii

ui

]
i

∥∥∥∥
2
+ ¯z

	C ¯z
u

≤ t − ‖x‖2.

Alternatively, z̄ − z ≥ 0 and we can apply Corollary 1 for the shifted uncertainty
z̄ −Z ⊆ R

I+. Namely, we introduce additional decision variables u, u ≥ 0 such that
u	( z̄ − z)+ u ≤ 1, ∀z, i.e., u	 z̄ + γ ‖u‖2 + u ≤ 1, and such that

∑
i

z̄i
Cii

ui
+ γ

∥∥∥∥2F	x + 2h −
[
Cii

ui

]
i

∥∥∥∥
2
+ ¯z

	C ¯z
u

≤ t − ‖x‖2.

Finally, we can also employ the bilinear reformulation (2):

sup
(w,w0,z,V ,v0)∈Θ

[
Tr(C1/2V )+ 2x	Fz + 2h	z − w0

]
≤ t − ‖x‖22,

with

Θ =

⎧⎪⎪⎨
⎪⎪⎩

(w, w0, z, V , v0)

∣∣∣∣∣∣∣∣
¯z ≤ z, z ≤ z̄, ‖z‖2 ≤ γ, (z ∈ Z)
1
4‖w‖22 ≤ w0, (h∗(w, w̄) ≤ w0)

V = wz	,

v0 = w0z

⎫⎪⎪⎬
⎪⎪⎭

,

and derive the corresponding hierarchy (Proposition 2):

Θ0 =
⎧⎨
⎩(w, w0, z, V , v0)

∣∣∣∣∣∣
¯z ≤ z, z ≤ z̄, ‖z‖2 ≤ γ, (z ∈ Z)
1
4‖w‖22 ≤ w0, (h∗(w, w̄) ≤ w0)

w0¯z ≤ v0 ≤ w0 z̄, ‖v0‖2 ≤ γw0,

⎫⎬
⎭ ,
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Θ1 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(w, w0, z, V , v0)

∣∣∣∣∣∣∣∣∣∣∣

(w, w0, z, V , v0) ∈ Θ0,

1
4 (z̄k − zk)

∥∥∥∥ z̄kw − Vek
z̄k − zk

∥∥∥∥
2

2
≤ w0 z̄k − v0k,

1
4 (zk − ¯zk)

∥∥∥∥Vek − ¯zkw
zk − ¯zk

∥∥∥∥
2

2

≤ v0k − w0¯zk

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

,

Θ2 = Θ1,

Θ3 =
{

(w, w0, z, V , v0)

∣∣∣∣∣
(w, w0, z, V , v0) ∈ Θ2,
1

4
‖V‖2F ≤ γ 2w0.

}
.

B.3 Lifted uncertainty set

Another way to introduce meaningful constraints is to lift the uncertainty set into
positive and negative part, i.e., consider {(z+, z−) ∈ R

2L+ | ‖z+ + z−‖2 ≤ γ }. In this
case, we can apply Corollary 1 for the lifted uncertainty set and introduce additional
decision variables u+, u−, u+, u− ≥ 0 such that

γ ‖max(u+, u−)‖2 + u+ + u− ≤ 1,

γ

∥∥∥max
([

Cii
u+i

]
i
+ 2F	x + 2h,

[
Cii
u−i

]
i
− 2F	x − 2h

)∥∥∥
2
≤ t − ‖x‖22.

We can also apply the bilinear formulation and enforce

sup
(w,w0,z±,V±,v0)∈Θ

[
Tr(C1/2V+)− Tr(C1/2V−)+ 2(F	x + h)	(z+ − z−)− w0

]

to be less than t − ‖x‖22, with

Θ =

⎧⎪⎪⎨
⎪⎪⎩

(w, w̄, w0, z±, V±, v±0 )

∣∣∣∣∣∣∣∣

0 ≤ z±, ‖z+ + z−‖2 ≤ γ, ((z+, z−) ∈ Z)

0 ≤ w0,
1
4‖w‖22 ≤ w0, (h∗(w, w̄) ≤ w0)

V± = wz±	,

v±0 = w0z±

⎫⎪⎪⎬
⎪⎪⎭

,

and the corresponding hierarchy is

Θ0 =
⎧⎨
⎩(w, w0, z±, V±, v±0 )

∣∣∣∣∣∣
0 ≤ z±, ‖z+ + z−‖2 ≤ γ, ((z+, z−) ∈ Z)

0 ≤ w0,
1
4‖w‖22 ≤ w0, (h∗(w, w̄) ≤ w0)

v±0 ≥ 0, ‖v+0 + v−0 ‖2 ≤ γw0

⎫⎬
⎭ ,

Θ1 =

⎧⎪⎨
⎪⎩(w, w0, z±, V±, v±0 )

∣∣∣∣∣∣∣
(w, w0, z±, V±, v±0 ) ∈ Θ0

z±k
4

∥∥∥∥∥
1

z±k
V±ek

∥∥∥∥∥
2

2

≤ v±0,k

⎫⎪⎬
⎪⎭ ,

Θ2 = Θ1,
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Θ3 =
{

(w, w0, z±, V±, v±0 )

∣∣∣∣∣
(w, w0, z±, V±, v±0 ) ∈ Θ2
1

4

∥∥V+ + V−
∥∥2
F ≤ γ 2w0

}
.

C Derivations for the robust geometric optimization example

C.1 Original formulation

The safe approximation at Level 1 with Zbox = {z | ‖z‖∞ ≤ 1} (instead of z) is:

Θ1′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(w, z, v1, v2, v0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

‖z‖∞ ≤ 1
w1, w2 ≥ 0, w1 + w2 = 1
w1 logw1 + w2 logw2 ≤ w0
‖v1‖∞ ≤ w1, ‖v2‖∞ ≤ w2
v1 + v2 = z
(w1 − v1�) log

w1−v1�
1−z� + (w2 − v2�) log

w2−v2�
1−z�≤ w0 − v0�, � ∈ [L]

(w1 + v1�) log
w1+v1�
1+z� b + (w2 + v2�) log

w2+v2�
1+z�≤ w0 + v0�, � ∈ [L]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

The safe approximation at Level 1 is:

Θ1 =
{
(w, z, v1, v2, v0) ∈ Θ1′

∣∣ ‖z‖2 ≤ γ
}
.

The safe approximation at Level 2 is:

Θ2 =
{
(w, z, v1, v2, v0) ∈ Θ1

∣∣‖v1‖2 ≤ w1γ, ‖v2‖2 ≤ w2γ
}
.

The safe approximation at Level 3 is:

Θ LM I ,2 =
⎧⎨
⎩(w, z, v1, v2, v0) ∈ Θ2

∣∣∣∣∣∣∃z,W :
⎛
⎝W V w

V	 z z
w	 z	 1

⎞
⎠ � 0

⎫⎬
⎭ ,

where W ∈ R
3×3, V = [v0 v1 v2]	 ∈ R

3×L , z ∈ R
L×L and w = [w0 w1 w2]	.
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C.2 Lifted formulation

The safe approximation of the extended approach of Bertsimas and Sim [8] is:

ΘBS =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
w, z+, z−, v+1 , v−1
v+2 , v−2 , v+0 , v−0

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

‖z+ + z−‖∞ ≤ 1, ‖z+ + z−‖2 ≤ γ

w1, w2 ≥ 0, w1 + w2 = 1
w1 logw1 + w2 logw2 ≤ w0
‖v+1 + v−1 ‖∞ ≤ w1, ‖v+2 + v−2 ‖∞ ≤ w2
v+1 + v+2 = z+, v−1 + v−2 = z−
v+1� log(v

+
1�/z

+
�

)+ v+2� log(v
+
2�/z

+
�

) ≤ v+0� � ∈ [L]
v−1� log(v

−
1�/z

−
�

)+ v−2� log(v
−
2�/z

−
�

) ≤ v−0� � ∈ [L]
z+, z−, v+1 , v−1 , v+2 , v−2 ∈ R

L+

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

The safe approximation atLevel 1withZ+box =
{
(z+, z−) ∈ R

L+ × R
L+ | ‖z+ + z−‖∞

≤ 1} is:

Θ+1′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
w, z+, z−, v+1 , v−1
v+2 , v−2 , v+0 , v−0

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

‖z+ + z−‖∞ ≤ 1
w1, w2 ≥ 0, w1 + w2 = 1
w1 logw1 + w2 logw2 ≤ w0
‖v+1 + v−1 ‖∞ ≤ w1, ‖v+2 + v−2 ‖∞ ≤ w2
v+1 + v+2 = z+, v−1 + v−2 = z−
v+1� log(v

+
1�/z

+
�

)+ v+2� log(v
+
2�/z

+
�

) ≤ v+0� � ∈ [L]
v−1� log(v

−
1�/z

−
�

)+ v−2� log(v
−
2�/z

−
�

) ≤ v−0� � ∈ [L]
(w1 − v+1� − v−1�) log

w1−v+1�−v−1�
1−z+� −z−�

+
(w2 − v+2� − v−2�) log

w2−v+2�−v−2�
1−z+� −z−�

...

≤ w0 − v+0� − v−0�, � ∈ [L]
z+, z−, v+1 , v−1 , v+2 , v−2 ∈ R

L+

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

The safe approximation at Level 1 is:

Θ+
1 =

{(
w, z+, z−, v+1 , v−1
v+2 , v−2 , v+0 , v−0

)
∈ Θ+

1′
∣∣‖z+ + z−‖2 ≤ γ

}
.

The safe approximation at Level 2 is:

Θ+
2 =

{(
w, z+, z−, v+1 , v−1
v+2 , v−2 , v+0 , v−0

)
∈ Θ+

1

∣∣‖v+1 +v−1 ‖2 ≤ w1γ, ‖v+2 + v−2 ‖2≤w2γ

}
.
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