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Abstract
This work aims to minimize a continuously differentiable convex function with Lip-
schitz continuous gradient under linear equality constraints. The proposed inertial
algorithm results from the discretization of the second-order primal-dual dynamical
system with asymptotically vanishing damping term addressed by Boţ and Nguyen (J.
Differential Equations 303:369–406, 2021), and it is formulated in terms of the Aug-
mented Lagrangian associated with the minimization problem. The general setting
we consider for the inertial parameters covers the three classical rules by Nesterov,
Chambolle–Dossal and Attouch–Cabot used in the literature to formulate fast gradient
methods. For these rules, we obtain in the convex regime convergence rates of order
O
(
1/k2

)
for the primal-dual gap, the feasibility measure, and the objective function

value. In addition, we prove that the generated sequence of primal-dual iterates con-
verges to a primal-dual solution in a general setting that covers the two latter rules.
This is the first result which provides the convergence of the sequence of iterates
generated by a fast algorithm for linearly constrained convex optimization problems
without additional assumptions such as strong convexity. We also emphasize that all
convergence results of this paper are compatible with the ones obtained in Boţ and
Nguyen (J. Differential Equations 303:369–406, 2021) in the continuous setting.

Keywords Augmented Lagrangian Method · Primal-dual numerical algorithm ·
Nesterov’s fast gradient method · Convergence rates · Iterates convergence
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1 Introduction

1.1 Problem formulation andmotivation

Consider the optimization problem

min f (x) ,

subject to Ax = b
(1.1)

whereH,G are real Hilbert spaces, f : H → R is a convex and Fréchet differentiable
functionwith L−Lipschitz continuous gradient, for L > 0, A : H → G is a continuous
linear operator and b ∈ G. We assume that the set S of primal-dual optimal solutions
of (1.1) (see Sect. 1.2 for a precise definition) is nonempty.

Optimization problems of type (1.1) arise in many applications in areas like image
recovery [13, 23, 26, 28], machine learning [9, 17], and network optimization [30].

Other than in the unconstrained case, for which fast continuous and discrete time
approaches have been intensively investigated in the last years, the study of solution
methods with fast convergence rates for linearly constrained convex optimization
problems of the form (1.1) is in an incipient stage.

Zeng, Lei, and Chen (in [30]) and He, Hu, and Fang (in [16]) have investigated
a dynamical system with asymptotic vanishing damping attached to (1.1), and have
shown a convergence rate of order O

(
1/t2

)
for the primal-dual gap, while Attouch,

Chbani, Fadili and Riahi have considered in [2] a more general dynamical system
with time rescaling. More recently, for a primal-dual dynamical system formulated
in the spirit of [2, 16, 30], Boţ and Nguyen have obtained in [8] fast convergence
rates for the primal-dual gap, the feasibility measure and the objective function value
along the generated trajectory, and, additionally, have proved asymptotic convergence
guarantees for the primal-dual trajectory to a primal-dual optimal solution.

Fast numerical methods for solving (1.1) have been mainly considered in the liter-
ature under additional assumptions such as strong convexity, and in several cases the
convergence rate results have been formulated in terms of ergodic sequences. In the
merely convex regime no convergence result for the iterates has been provided so far
for fast convergence algorithms. To the works addressing fast converging methods for
linearly constrained convex optimization problems belong [11–13, 15, 19, 20, 23, 24,
26–29], at which we will take a closer look in Sect. 1.3.

The aim of this paper is to propose a numerical algorithm for solving (1.1), which
results from the discretization of the dynamical system in [8], exhibits fast convergence
rates for the primal-dual gap, the feasibility measure, and the objective function value
as well as convergence of the sequence of iterates without additional assumptions such
as strong convexity. Although there is an obvious interplay between continuous time
dissipative dynamical systems and their discrete counterparts, one cannot directly and
straightforwardly transfer asymptotic results from the continuous setting to numerical
algorithms, thus, a separate analysis is needed for the latter. In this paper we will also
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comment on the similarities and the differences between the continuous and discrete
time approaches.

1.2 Augmented Lagrangian formulation

Consider the saddle point problem associated to problem (1.1)

min
x∈H

max
λ∈G

L (x, λ) ,

where L : H × G → R denotes the Lagrangian function

L (x, λ) := f (x) + 〈λ, Ax − b〉 .

Since f is a convex function,L is convex with respect to x ∈ H and affine with respect
toλ ∈ G. A pair (x∗, λ∗) ∈ H×G is said to be a saddle point of the Lagrangian function
L if for every (x, λ) ∈ H × G

L (x∗, λ) � L (x∗, λ∗) � L (x, λ∗) .

If (x∗, λ∗) ∈ H × G is a saddle point of L, then x∗ ∈ H is an optimal solution of
(1.1) and λ∗ ∈ G is an optimal solution of its Lagrange dual problem. If x∗ ∈ H is
an optimal solution of (1.1) and a suitable constraint qualification is fulfilled (see, for
instance, [5, 7]), then there exists an optimal solution λ∗ ∈ G of the Lagrange dual
problem of (1.1) such that (x∗, λ∗) ∈ H × G is a saddle point of L.

The set of saddle points of L, called also set of primal-dual optimal solutions
of (1.1), will be denoted by S and, as stated above, throughout this paper it will
be assumed to be nonempty. The set of feasible points of (1.1) will be denoted by
F := {x ∈ H : Ax = b} and the optimal objective value of (1.1) by f∗.

The system of primal-dual optimality conditions for (1.1) reads

(x∗, λ∗) ∈ S ⇔
{

∇xL (x∗, λ∗) = 0

∇λL (x∗, λ∗) = 0
⇔

{
∇ f (x∗) + A∗λ∗ = 0

Ax∗ − b = 0
, (1.2)

where A∗ : G → H denotes the adjoint operator of A. This optimality system can be
equivalently written as

TL (x∗, λ∗) = 0,

where

TL : H × G → H × G, TL (x, λ) =
( ∇xL (x, λ)

−∇λL (x, λ)

)
=

(∇ f (x) + A∗λ
b − Ax

)
,

is the maximally monotone operator associated to the convex-concave function L.
Indeed, it is immediate to verify that TL is monotone. Since it is also continuous, it
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is maximally monotone (see, for instance, [5, Corollary 20.28]). Therefore S can be
interpreted as the set of zeros of the maximally monotone operator TL, which means
that it is a closed convex subset of H × G (see, for instance, [5, Proposition 23.39]).

Forβ � 0, we also consider the augmented LagrangianLβ : H×G → R associated
with (1.1)

Lβ (x, λ) := L (x, λ) + β

2
‖Ax − b‖2 = f (x) + 〈λ, Ax − b〉 + β

2
‖Ax − b‖2 .

For every (x, λ) ∈ F × G it holds

f (x) = Lβ (x, λ) = L (x, λ) . (1.3)

If (x∗, λ∗) ∈ S, then for every (x, λ) ∈ H × G we have

L (x∗, λ) = Lβ (x∗, λ) = L (x∗, λ∗) = Lβ (x∗, λ∗) � L (x, λ∗) � Lβ (x, λ∗) .(1.4)

In addition,

(x∗, λ∗) ∈ S ⇔
{

∇xLβ (x∗, λ∗) = 0

∇λLβ (x∗, λ∗) = 0
⇔

{
∇ f (x∗) + A∗λ∗ = 0

Ax∗ − b = 0
.

1.3 Related works

In this sectionwewill recall themost significant fast primal-dual numerical approaches
for linearly constrained convex optimization problems and for convex optimization
problems involving compositions with continuous linear operators.

In [11], Chambolle and Pock have studied in a finite-dimensional setting the conver-
gence rates of their celebrated primal-dual algorithm for solving theminimax problem

min
x∈H

max
λ∈G

L(x, λ) := f (x) + 〈Ax, λ〉 − g∗ (λ) , (1.5)

which is naturally attached to the convex optimization problem

min
x∈H

f (x) + g(Ax), (1.6)

with f : H → R∪{+∞} and g : G → R∪{+∞} proper, convex and lower semicon-
tinuous functions and g∗ : G → R ∪ {+∞} the Fenchel conjugate of g. The problem
(1.6) becomes (1.1) for g the indicator function of the set {b}. For the primal-dual
sequence of iterates {(xk, λk)}k�0 the corresponding ergodic sequence

{
(�xk,�λk)

}
k�0

is defined for every k � 0 as

�xk := 1
∑k

i=0 σi

k∑

i=0

σi xi and �λk := 1
∑k

i=0 σi

k∑

i=0

σiλi ,
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where {σk}k�0 is a sequence of properly chosen positive step sizes. The Chambolle-
Pock primal-dual algorithm exhibits for the restricted primal-dual gap an ergodic
convergence rate of

sup
(x,λ)∈X×Y

(
L (�xk, λ) − L

(
x,�λk

)) = O
(
1

k

)
as k → +∞,

where X ⊆ H and Y ⊆ G are bounded sets. If f is strongly convex, then the acceler-
ated variant of this primal-dual algorithm exhibits for the same restricted primal-dual
gap an ergodic convergence rate of

sup
(x,λ)∈X×Y

(
L (�xk, λ) − L

(
x,�λk

)) = O
(

1

k2

)
as k → +∞

whereas, if both f and g∗ are strongly convex, then even linear convergence can be
achieved.

In [12], Chen, Lan and Ouyang have considered the same minimax problem (1.5),
but for f : H → R a convex and Fréchet differentiable function with L-Lipschitz
continuous gradient, for L > 0, and have proposed a primal-dual algorithm that
exhibits for the restricted primal-dual gap an ergodic convergence rate of

sup
(x,λ)∈X×Y

(
L (�xk, λ) − L

(
x,�λk

)) = O
(
L

k2
+ ‖A‖

k

)
as k → +∞. (1.7)

A stochastic counterpart of the primal-dual algorithm along with corresponding
convergence rate results and, for both the deterministic and the stochastic setting,
convergence rates when either X or Y is unbounded have been also provided.

Later on, Ouyang, Chen, Lan and Pasiliao Jr. have developed in [23] an accel-
erated ADMM algorithm for the optimization problem (1.6) with f assumed to be
Fréchet differentiable with L-Lipschitz continuous gradient, for L > 0, on its effec-
tive domain. In the case when f and g∗ have bounded domains this method has been
proved to exhibit an ergodic convergence rate for the objective function value of type
(1.7), with the coefficient of 1/k2 depending on L and the diameter of dom f and the
coefficient of 1/k depends on ‖A‖ and of the diameter of domg∗. On the other hand,
without assuming boundedness for the domains of f and g∗, the accelerated ADMM
algorithms has been proved to exhibit ergodic convergence rates for the feasibility
measure and the objective function value of O (1/k) as k → +∞.

By using a smoothing approach, Tran-Dinh, Fercoq and Cevher have designed
in [26] a primal-dual algorithm for solving (1.6) and its particular formulation (1.1)
that exhibits last iterates convergence rates for the objective function value and the
feasibility measure in the convex regime ofO (1/k), and in the strongly convex regime
of O

(
1/k2

)
as k → +∞.

Goldstein, O’Donoghue, Setzer and Baraniuk have studied in [13] the two-block
separable optimization problem with linear constraints
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min f (x) + h (y) ,

subject to Ax + By = b
(1.8)

where K is another real Hilbert space, f : H → R ∪ {+∞} and h : K → R ∪ {+∞}
are proper, convex and lower semicontinuous functions, A : H → G and B : K → G
are continuous linear operators and b ∈ G. It is obvious that (1.1) can be reformulated
as (1.8) and vice versa. In [13] a numerical algorithm for solving (1.8) has been
proposed that exhibits, when f and h are strongly convex, convergence rates for the
dual objective function of O

(
1/k2

)
and for the feasibility measure of O (1/k) as

k → +∞. For a fast version of the Alternating Minimization Algorithm (see [27]) a
convergence rate for the dual objective function of O

(
1/k2

)
as k → +∞ has been

also proved.
Xu has proposed in [28] a linearized Augmented Lagrangian Method for the opti-

mization problem (1.1) for which he has shown that it exhibits for constant step sizes
ergodic convergence rates ofO (1/k) as k → +∞ for the feasibility measure and the
objective function value, whereas the sequence of primal-dual iterates has been shown
to converge to a primal-dual solution. He has also proved that for appropriately chosen
variable step sizes, in particular when allowing the dual step sizes to be unbounded,
the convergence rates of the feasibility measure and the objective function value can
be improved to O

(
1/k2

)
as k → +∞, without saying anything about the conver-

gence of the primal-dual iterates in this setting. In addition, a linearized Alternating
Direction Method of Multipliers for (1.8) has been proposed in [28], for which similar
statements as for the linearized Augmented Lagrangian Method have been proved,
whereby the fast convergence rates have been obtained by assuming that one of the
summands in the objective function is strongly convex.

In [14], He and Yuan have enhanced the Augmented Lagrangian Method for the
linearly constrained convex optimization problem (1.1) with a Nesterov’s momentum
update rule for the sequence of dual iterates. They have proved that the expression
L(x∗, λ∗) − L (xk, λk) has an upper bound of order 1/k2, where (xk, λk)k�0 denotes
the generated sequence of primal-dual iterates and (x∗, λ∗) is an arbitrary optimal
solution of the Wolfe dual problem of (1.1).

In [29], Yan and He have proposed for optimization problems of type (1.1), with
a proper, convex and lower semicontinuous objective function, a numerical algorithm
which combines the Augmented Lagrangian Method with a Bregman proximal eval-
uation of the objective. When choosing the sequence of proximal parameter to fulfil
ηk := η (k + 1)p for every k � 0, where η > 0 and p � 0, ergodic convergence rates
of

sup
(x,λ)∈X×Y

(
L (�xk, λ) − L

(
x,�λk

)) = O
(

1

k p+2

)
as k → +∞,

‖A�xk − b‖ = O
(
log (k)

k p+2

)
and | f (�xk) − f∗| = O

(
log (k)

k p+2

)
as k → +∞

have been obtained.
In [24], Sabach and Teboulle have considered a unified algorithmic framework for

proving faster convergence rates for various Lagrangian-based methods designed to
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solve optimization problems of type (1.1) with a proper, convex and lower semicontin-
uous objective function. In the convex regime thesemethods exhibit a non-ergodic rate
of convergence of O (1/k) as k → +∞ for the feasibility measure and the objective
function value, namely,

f (xk) − f∗ has an upper bound of order O
(
1

k

)
and ‖Axk − b‖ = O

(
1

k

)
as k → +∞.

In the strongly convex regime the convergence rates can be improved to O
(
1/k2

)
as

k → +∞.
For the same class of optimization problems, He, Hu, and Fang have proposed

in [15] an accelerated primal-dual Lagrangian-based method, with inertial parame-
ters following the choice of Chambolle–Dossal, that achieves a convergence rate of
O
(
1/k2

)
as k → +∞ for the feasibility measure and the objective function value

without any strong convexity assumption.
Recently, in [19], Lou have introduced in the same context an unifying algorithmic

scheme which covers both the convex and the strongly convex setting. In the convex
regime a convergence rate of O (1/k) as k → +∞ is obtained for the primal-dual
gap, the feasibility measure, and the objective function value, while in the strongly
convex regime these rates are improved to O

(
1/k2

)
as k → +∞. These results have

been extended to optimization problems of type (1.8) in [20], where it has been shown
that, in order to achieve a convergence rate of O

(
1/k2

)
as k → +∞, it is enough to

assume that only one of the functions in the objective is strongly convex.
Noticeably none of theses works has addressed to convergence of the sequences

of primal-dual iterates, with very few exceptions in the strongly convex regime. This
phenomenon could be noticed for unconstrained convex optimization problems, too.
The convergence of the sequences of iterates generated by fast numerical methods has
been proved much later (by Chambolle and Dossal in [10] and by Attouch and Pey-
pouquet in [3]) after the derivation of the convergence rates for Nesterov’s accelerated
gradient method [21] and FISTA [6]. One explanation for this is that the analysis of
the first is much more involved.

1.4 Our contributions

We consider as starting point a second-order dynamical system with asymptotic van-
ishing damping term associated with the optimization problem (1.1). This dynamical
system is formulated in terms of the augmented Lagrangian and it has been studied in
[8]. By an appropriate time discretization this system gives rise to an inertial primal-
dual numerical algorithm, which allows a flexible choice of the inertial parameters.
This choice covers the three classical inertial parameters rules by Nesterov [6, 21],
Chambolle–Dossal [10] and Attouch–Cabot [1] used in the literature to formulate
fast gradient methods. We show that for these rules the resulting algorithm exhibits
in the convex regime convergence rates of order O

(
1/k2

)
for the primal-dual gap,

the feasibility measure, and the objective function value. In addition, we prove that
the generated sequence of primal-dual iterates converges weakly to a primal-dual
solution of the underlying problem, which is nothing else than a saddle-point of the
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Lagrangian. The convergence of the iterates is stated in a general setting that covers the
inertial parameters rules by Chambolle–Dossal and Attouch–Cabot. This is the first
result which provides the convergence of the sequence of iterates generated by a fast
algorithm for linearly constrained convex optimization problems without additional
assumptions such as strong convexity. All convergence and convergence rate results
of this paper are compatible with the ones obtained in [8] in the continuous setting.

The proposed Fast Augmented Lagrangian Method and all convergence results can
be easily extended by using the product space approach to two-block separable linearly
constrained optimization problems of the form (1.8) with f and h convex and Fréchet
differentiable functions with Lipschitz continuous gradients.

1.5 Notations and preliminaries

We denote by B (x; ε) := {y ∈ H : ‖x − y‖ � ε} the closed ball centered at x ∈ H
with radius ε > 0.

Let x, y ∈ H. We have

‖x + y‖2 = ‖x‖2 + ‖y‖2 + 2 〈x, y〉 . (1.9)

For every s, t ∈ R such that s + t = 1 it holds ( [5, Corollary 2.15])

‖sx + t y‖2 = s ‖x‖2 + t ‖y‖2 − st ‖x − y‖2 . (1.10)

From here one can easily deduce that for s, t ∈ R such that s + t �= 0 it holds

1

s + t
‖sx + t y‖2 = s ‖x‖2 + t ‖y‖2 − st

s + t
‖x − y‖2 . (1.11)

Wedenote byS+ (H) the family of self-adjoint and positive semidefinite continuous
linear operatorsW : H → H. EveryW ∈ S+ (H) induces onH a semi-norm defined
by

‖x‖2W = 〈x, x〉W := 〈Wx, x〉 ∀x ∈ H.

The Loewner partial ordering on S+ (H) is defined forW,W ′ ∈ S+ (H) as

W � W ′ ⇔ ‖x‖2W � ‖x‖2W ′ ∀x ∈ H.

Thus W ∈ S+ (H) is nothing else than W � 0. If there exists α > 0 such that
W � αId then the semi-norm ‖·‖W becomes a norm.

In the spirit of (1.9) and (1.11), respectively, for every x, y ∈ H it holds

‖x + y‖2W = ‖x‖2W + ‖y‖2W + 2 〈x, y〉W , (1.12)

123



Fast Augmented Lagrangian Method in the convex… 155

and for every real numbers s, t such that s + t �= 0

1

s + t
‖sx + t y‖2W = s ‖x‖2W + t ‖y‖2W − st

s + t
‖x − y‖2W . (1.13)

Let f : H → R be a continuously differentiable and convex function such that ∇ f
is L−Lipschitz continuous, for L > 0. For every x, y ∈ H it holds (see [22, Theorem
2.1.5] or [5, Theorem 18.15])

0 � 1

2L
‖∇ f (x) − ∇ f (y)‖2 � f (x) − f (y) − 〈∇ f (y) , x − y〉 � L

2
‖x − y‖2 .

(1.14)

The second inequality is also known as the Descent Lemma.
The following result is a particular instance of [5, Lemma 5.31] and will be used

several times in this paper.

Lemma 1.1 Let {ak}k�1, {bk}k�1 and {dk}k�1 be sequences of real numbers. Assume
that {ak}k�1 is bounded from below, and {bk}k�1 and {dk}k�1 are nonnegative such
that

∑
k�1 dk < +∞. Suppose further that for every k � 1 it holds

ak+1 � ak − bk + dk . (1.15)

Then the following statements are true

(i) the sequence {bk}k�1 is summable, namely
∑

k�1 bk < +∞;
(ii) the sequence {ak}k�1 is convergent.

In order to establish the weak convergence of the iterates, we will use Opial’s
Lemma in discrete form (see, for instance, [5, Theorem 5.5]), which we recall as
follows.

Lemma 1.2 Let C be a nonempty subset of H and {xk}k�1 a sequence in H. Assume
that

(i) for every x∗ ∈ C, lim
k→+∞ ‖xk − x∗‖ exists;

(ii) every weak sequential cluster point of {xk}k�1 belongs to C.

Then the sequence {xk}k�1 converges weakly to an element in C as k → +∞.

2 Continuous time approaches and their discrete counterparts

In this section we want to derive by time discretization a primal-dual numerical algo-
rithm from the second-order dynamical system investigated in [8]. The employed
discretization technique replicates the one used when relating fast gradient algorithms
with the second-order dynamical system proposed by Su, Boyd and Candès in [25] in
the unconstrained case.
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2.1 The primal-dual dynamical approach with vanishing damping

The second-order primal-dual dynamical systemwith asymptotically vanishing damp-
ing term associated in [8] with the augmented Lagrangian formulation of (1.1) reads

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẍ (t) + α

t
ẋ (t) + ∇xLβ

(
x (t) , λ (t) + θ t λ̇ (t)

) = 0

λ̈ (t) + α

t
λ̇ (t) − ∇λLβ (x (t) + θ t ẋ (t) , λ (t)) = 0

(x (t0) , λ (t0)) = (x0, λ0) and
(
ẋ (t0) , λ̇ (t0)

) = (
ẋ0, λ̇0

)
,

(PD-AVD)

where t0 > 0, α � 3, β � 0, θ > 0 and (x0, λ0) ,
(
ẋ0, λ̇0

) ∈ H × G.
Plugging the expressions of the partial gradients of Lβ into the system leads to the

following formulation for (PD-AVD)

⎧
⎪⎪⎨

⎪⎪⎩

ẍ (t) + α

t
ẋ (t) + ∇ f (x (t)) + A∗ (λ (t) + θ t λ̇ (t)

) + βA∗ (Ax (t) − b) = 0

λ̈ (t) + α

t
λ̇ (t) − (A (x (t) + θ t ẋ (t)) − b) = 0

(x (t0) , λ (t0)) = (x0, λ0) and
(
ẋ (t0) , λ̇ (t0)

) = (
ẋ0, λ̇0

)
.

(2.1)

In [8] it has been shown that, supposing that

α � 3, β � 0 and
1

2
� θ � 1

α − 1
,

for a solution (x, λ) : [t0,+∞) → H×G of (PD-AVD) and (x∗, λ∗) ∈ S it holds for
every t � t0

0 � L (x (t) , λ∗) − L (x∗, λ (t)) + ‖Ax (t) − b‖ � Ĉ

θ2t2

and

−‖λ∗‖ Ĉ
θ2t2

� f (x (t)) − f∗ � (1 + ‖λ∗‖) Ĉ
θ2t2

,

where Ĉ > 0.

If, in addition, ∇ f is L−Lipschitz continuous, α > 3 and
1

2
> θ >

1

α − 1
, then it

holds

∥
∥A∗ (λ (t) − λ∗)

∥
∥ = o

(
1√
t

)
and ‖∇ f (x (t)) − ∇ f (x∗)‖ = o

(
1√
t

)
as t → +∞

(2.2)
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and, consequently,

‖∇xL (x (t) , λ (t))‖ = ∥∥∇ f (x (t)) + A∗λ (t)
∥∥ = o

(
1√
t

)
as t → +∞,

whereas

‖∇λL (x (t) , λ (t))‖ = ‖Ax (t) − b‖ = O
(
1

t2

)
as t → +∞.

By additionally requiring that β > 0, it has been also proved in [8] that the trajectory
(x (t) , λ (t)) converges weakly to a primal-dual optimal solution of (1.1) as t → +∞.

2.2 Fast gradient scheme: from continuous to discrete time

We recall in this section for reader’s convenience the connection between the second-
order dynamical system by Su, Boyd and Candès [25] and the fast gradient numerical
methods formulated in [1, 10] in the spirit of Nesterov’s accelerated gradient algorithm
[21]. To this end we consider the unconstrained optimization problem

min
x∈H

f (x) , (2.3)

where f : H → R is a convex and Fréchet differentiable function with L-Lipschitz
continuous gradient, for L > 0.

The continuous time approach proposed in [25] in connectionwith this optimization
problem reads

ẍ (t) + α

t
ẋ (t) + ∇ f (x (t)) = 0, (AVD)

where t0 > 0 and α � 3. One can easily notice that for A = 0 and b = 0 the
optimization problem (1.1) becomes (2.3), while (PD-AVD) reduces to (AVD).

For every t � t0, we define

z (t) := x (t) + t

α − 1
ẋ (t) .

This leads to

ż (t) = ẋ (t) + 1

α − 1
ẋ (t) + t

α − 1
ẍ (t) = t

α − 1
ẍ (t) + α

α − 1
ẋ (t) = − t

α − 1
∇ f (x (t))

and (AVD) can be written as a first-order ordinary differential equation

⎧
⎪⎨

⎪⎩

ż (t) = − t

α − 1
∇ f (x (t))

z (t) = x (t) + t

α − 1
ẋ (t) .

(2.4)
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Let σ > 0. For every k � 1 we take as time step

σk := σ

(
1 + α − 1

k

)
> 0,

and set τk := √
σkk = √

σk (k + α − 1) ≈ √
σ (k + 1), x (τk) ≈ xk+1 and z (τk) ≈

zk+1. We “approximate” τk with
√

σ (k + 1) since it is closer to this value than to√
σk. This also explains why we consider x (τk) ≈ xk+1 and z (τk) ≈ zk+1 instead of

the seemingly more natural choices x (τk) ≈ xk and z (τk) ≈ zk , respectively.
The implicit finite-difference scheme for (2.4) at time t := τk gives

⎧
⎪⎪⎨

⎪⎪⎩

zk+1 − zk√
σk

= −
√

σkk

α − 1
∇ f (yk)

zk+1 = xk+1 +
√

σkk

α − 1

xk+1 − xk√
σk

or, equivalently,

⎧
⎪⎨

⎪⎩

zk+1 − zk = −σ

(
1 + α − 1

k

)
k

α − 1
∇ f (yk)

zk+1 = xk+1 + k

α − 1
(xk+1 − xk) ,

(2.5)

where the gradient ∇ f is evaluated at the point yk , which is to be determined as a
suitable convex combination of xk and zk such that xk+1−yk → 0 as k → +∞. Notice
that, since∇ f is L−Lipschitz continuous, this implies that∇ f (xk+1)−∇ f (yk) → 0
as k → +∞.

The second equation in (2.5) is equivalent with

xk+1 = α − 1

k + α − 1
zk+1 + k

k + α − 1
xk

and consequently suggests the following choice for yk

yk = α − 1

k + α − 1
zk + k

k + α − 1
xk . (2.6)

From the second equation in (2.5) we further obtain

yk = α − 1

k + α − 1
zk + k

k + α − 1
xk

= α − 1

k + α − 1

(
xk + k − 1

α − 1
(xk − xk−1)

)
+ k

k + α − 1
xk

= xk + k − 1

k + α − 1
(xk − xk−1) .
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In addition,

zk+1 − zk = k + α − 1

α − 1
(xk+1 − yk) =

(
1 + k

α − 1

)
(xk+1 − yk) .

Consequently, (2.5) can be equivalently written as

⎧
⎨

⎩
yk := xk + k − 1

k + α − 1
(xk − xk−1)

xk+1 := yk − σ∇ f (yk) .
(2.7)

This is nothing else than the algorithm considered by Chambolle and Dossal in [10]
(see also [3]).

Furthermore, if we write for every k � 1

tk := 1 + k − 1

α − 1
= k + α − 2

α − 1
, (2.8)

so that

tk+1 − 1 = k

α − 1
and

tk − 1

tk+1
= k − 1

k + α − 1
,

then (2.7) becomes

(∀k � 1)

⎧
⎨

⎩
yk := xk + tk − 1

tk+1
(xk − xk−1)

xk+1 := yk − σ∇ f (yk) .

(2.9)

Modifications of the sequence {tk}k�1 which preserve its asymptotic behaviour lead
to various acceleration schemes from the literature.

For instance, the classical Nesterov’s accelerated gradient method [21] is precisely
(2.9), where the sequence {tk}k�1 satisfies the recurrence rule

t1 := 1 and tk+1 :=
1 +

√
1 + 4t2k
2

∀k � 1. (2.10)

Another example is the algorithm proposed by Attouch and Cabot in [1] that cor-
responds to (2.9) with the choice

tk := k − 1

α − 1
∀k � 1. (2.11)

It can also be interpreted as a discretization of (2.4) with time step
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σk := σk

k − α + 1
∀k � 1,

and by setting τk := √
σk (k − α + 1) = √

σk (k − α + 1) ≈ √
σ (k + 1) , x (τk) ≈

xk+1 and z (τk) ≈ zk+1.

2.3 The time discretization of (PD-AVD)

In order to provide a useful time discretization of the dynamical system (PD-AVD)
we follow the approach of the previous section and define for every t � t0

z (t) := x (t) + t

α − 1
ẋ (t) and ν (t) := λ (t) + t

α − 1
λ̇ (t) . (2.12)

Further, we set

γ := 1

θ (α − 1)
∈
[

2

α − 1
, 1

]
. (2.13)

The parameter γ will play an essential role in our analysis. For every t � t0 we define

zγ (t) := γ (x (t) + θ t ẋ (t)) = γ x (t) + t

α − 1
ẋ (t) = z (t) + (γ − 1) x (t) ,

(2.14a)

νγ (t) := γ
(
λ (t) + θ t λ̇ (t)

) = γ λ (t) + t

α − 1
λ̇ (t) = ν (t) + (γ − 1) λ (t) .

(2.14b)

Using these notations, the system (PD-AVD) (see also its equivalent formulation (2.1))
can be written as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẍ (t) + α

t
ẋ (t) + ∇ f (x (t)) + 1

γ
A∗νγ (t) + βA∗ (Ax (t) − b) = 0

λ̈ (t) + α

t
λ̇ (t) − 1

γ
(Azγ (t) − γ b) = 0

(x (t0) , λ (t0)) = (x0, λ0) and
(
ẋ (t0) , λ̇ (t0)

) = (
ẋ0, λ̇0

)
.

(2.15)

Using that for every t � t0

ż (t) = t

α − 1

(
ẍ (x) + α

t
ẋ (t)

)
and ν̇ (t) = t

α − 1

(
λ̈ (x) + α

t
λ̇ (t)

)
,
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the first two lines in (2.15) can be equivalently written as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ż (t) = − t

α − 1
∇ f (x (t)) − t

α − 1

1

γ
A∗νγ (t) − t

α − 1
βA∗ (Ax (t) − b)

ν̇ (t) = 1

γ

t

α − 1
(Azγ (t) − γ b)

z (t) = x (t) + t

α − 1
ẋ (t)

zγ (t) = γ x (t) + t

α − 1
ẋ (t)

ν (t) = λ (t) + t

α − 1
λ̇ (t)

νγ (t) = γ λ (t) + t

α − 1
λ̇ (t) .

(2.16)

Let σ, ρ > 0. For every k � 1 we take for x and λ two different time steps

σk := σ

(
1 + α − 1

k

)
> 0 and ρk := ρ

(
1 + α − 1

k

)
> 0,

respectively, and set τk := √
σkk ≈ √

σ (k + 1) , x (τk) ≈ xk+1, z (τk) ≈
zk+1, zγ (τk) ≈ zγk+1, and τ ′

k := √
ρkk ≈ √

ρ (k + 1) , λ
(
τ ′
k

) ≈ λk+1, ν
(
τ ′
k

) ≈ νk+1

and νγ
(
τ ′
k

) ≈ ν
γ

k+1.
The implicit finite-difference scheme for (2.16) at time t := τk for x and time

t := τ ′
k for λ gives

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zk+1 − zk√
σk

= −
√

σkk

α − 1
∇ f (yk) −

√
σkk

α − 1
A∗ 1

γ
ν̃k+1 −

√
σkk

α − 1
βA∗ (Ayk − b)

νk+1 − νk√
ρk

= 1

γ

√
ρkk

α − 1

(
Azγk+1 − γ b

)

zk+1 = xk+1 +
√

σkk

α − 1

xk+1 − xk√
σk

zγk+1 = γ xk+1 +
√

σkk

α − 1

xk+1 − xk√
σk

νk+1 = λk+1 +
√

σkk

α − 1

λk+1 − λk√
σk

ν
γ

k+1 = γ λk+1 +
√

σkk

α − 1

λk+1 − λk√
σk

,

(2.17)
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where yk and ν̃k+1 will be chosen appropriately to obtain an easily implementable
iterative scheme. Notice that ν̃k+1 must be an approximation of ν

γ

k+1.
Once again we take as in the previous section (see (2.6))

yk = α − 1

k + α − 1
zk + k

k + α − 1
xk = xk + k − 1

k + α − 1
(xk − xk−1),

which, by using the third equation in (2.17), gives

zk+1 − zk = k + α − 1

α − 1
(xk+1 − yk) =

(
1 + k

α − 1

)
(xk+1 − yk) .

Following (2.6) we set also for the sequence of dual variables

μk = α − 1

k + α − 1
νk + k

k + α − 1
λk = λk + k − 1

k + α − 1
(λk − λk−1) ,

which, by using the fifth equation in (2.17), gives

νk+1 − νk = k + α − 1

α − 1
(λk+1 − μk) = tk+1 (λk+1 − μk) . (2.18)

For these choices, and by taking into consideration the definition of {tk}k�1 in (2.8)
and (2.17) becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yk = xk + tk − 1

tk+1
(xk − xk−1)

xk+1 = yk − σ∇ f (yk) − σ

γ
A∗ν̃k+1 − σβA∗ (Ayk − b)

μk = λk + tk − 1

tk+1
(λk − λk−1)

zγk+1 = γ xk+1 + (tk+1 − 1) (xk+1 − xk)

λk+1 = μk + ρ

γ

(
Azγk+1 − γ b

)

ν
γ

k+1 = γ λk+1 + (tk+1 − 1) (λk+1 − λk) ,

(2.19)

where ν̃k+1 is still to be chosen such that ν̃k+1 − ν
γ

k+1 → 0 as k → +∞. We will not
opt for ν̃k+1 = ν

γ

k+1 in order to avoid an implicit iterative scheme, but choose instead
(see also (2.18))
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ν̃k+1 := ν
γ

k+1 + (1 − γ ) (λk+1 − λk) = γ λk+1

+ (tk+1 − γ ) (λk+1 − λk) = γ λk + tk+1 (λk+1 − λk)

= γ λk + (tk − 1) (λk − λk−1) + tk+1

(
λk+1 − λk − tk − 1

tk+1
(λk − λk−1)

)

= ν
γ

k + tk+1 (λk+1 − μk) = ν
γ

k + νk+1 − νk = ν
γ

k + ρ

γ
tk+1

(
Azγk+1 − γ b

)

= ν
γ

k + ρ

γ
tk+1 ((tk+1 − 1 + γ ) Axk+1 − (tk+1 − 1) Axk − γ b)

= ν
γ

k + ρ

γ
tk+1 (tk+1 − 1 + γ )

(
Axk+1− 1

tk+1 − 1+γ
((tk+1 − 1) Axk + γ b)

)
,

Such a choice is reasonable as long as λk+1 − λk → 0 as k → +∞, which will then
imply that ν̃k+1 − ν

γ

k+1 → 0 as k → +∞. By setting

sk+1 := ρ

γ
tk+1 (tk+1 − 1 + γ ) and ηk := 1

tk+1 − 1 + γ
((tk+1 − 1) Axk + γ b) ,

the second line in (2.19) becomes

xk+1 = yk − σ∇ f (yk) − σ

γ
A∗ (νγ

k + sk+1 (Axk+1 − ηk)
) − σβA∗ (Ayk − b)

or, equivalently,

xk+1 + σ

γ
sk+1A

∗Axk+1 =
(
Id + σ

γ
sk+1A

∗A
)
xk+1

= yk − σ∇ f (yk) − σ

γ
A∗ν

γ
k + σ

γ
sk+1A

∗ηk − σβA∗ (Ayk − b) .

After rearranging the order in which the sequences are updated, (2.19) leads to the fast
Augmented Lagrangian Method which we propose in this paper, and also investigate
from the point of view of its convergence properties.

3 Fast Augmented LagrangianMethod

In this sectionwewill give a precise formulation of theAugmentedLagrangianMethod
for solving (1.1) and prove that it exhibits convergence rates of orderO

(
1/k2

)
for the

primal-dual gap, the feasibility measure, and the objective function value.
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3.1 The algorithm

Algorithm 1 Let β � 0 and m, γ, ρ, σ > 0 be such that

0 < m � γ � 1 and 0 < σ � γ

L + γβ ‖A‖2 . (3.1)

Let {tk}k�1 be a nondecreasing sequence such that

t1 := 1 and t2k+1 − mtk+1 � t2k ∀k � 1. (3.2)

Given x0 = x1 ∈ H and λ0 = λ1 ∈ G, for every k � 1 we set

yk := xk + tk − 1

tk+1
(xk − xk−1) , (3.3a)

μk := λk + tk − 1

tk+1
(λk − λk−1) , (3.3b)

ηk := Axk + γ

tk+1 − 1 + γ
(b − Axk), (3.3c)

ν
γ

k := γ λk + (tk − 1) (λk − λk−1) , (3.3d)

sk+1 := ρ

γ
tk+1 (tk+1 − 1 + γ ) , (3.3e)

xk+1 := arg min
x∈H

{〈∇ f (yk) + βA∗ (Ayk − b) , x − yk
〉 + 1

γ

〈
ν

γ

k , Ax − b
〉

(3.3f)

+ 1

2γ
sk+1 ‖Ax − ηk‖2 + 1

2σ
‖x − yk‖2

}
,

zγk+1 := γ xk+1 + (tk+1 − 1) (xk+1 − xk) , (3.3g)

λk+1 := μk + ρ

γ

(
Azγk+1 − γ b

)
. (3.3h)
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One can notice that Algorithm 1 can be written in a concise way only in terms of the
sequences of primal-dual iterates {(xk, λk)}k�0, however, this elaborated formulation
using auxiliary sequences is more convenient for its analysis.

Even though the choice γ = 1 would give a simplified version of Algorithm 1,
without affecting its fast convergence properties, we will see that in order to guarantee
the convergence of {(xk, λk)}k�0 to a primal-dual optimal solution it will be crucial to
choose γ ∈ (0, 1). A similar phenomenon is known from the continuous and discrete
schemes in the unconstrained case, where fast convergence rates have been obtained
for α � 3, while the convergence of the sequence of iterates/trajectory could be shown
only for α > 3. In view of (2.13), in order to be allowed to choose γ ∈ (0, 1), one
must have α > 3.

Example 3.1 (The case A = 0 and b = 0) If A = 0 and b = 0, then (1.1) becomes
the unconstrained optimization problems (2.3) and Algorithm 1 reduces to the well-

knownaccelerated gradient schemewhich, given 0 < σ � 1

L
, {tk}k�1 a nondecreasing

sequence fulfilling (3.2) and x0 = x1 ∈ H, reads for every k � 1

yk := xk + tk − 1

tk+1
(xk − xk−1)

xk+1 := yk − σ∇ f (yk) ,

as the dual sequence {λk}k�0 can be neglected.

Remark 3.2 By denoting for every k � 1

zk := xk + (tk − 1) (xk − xk−1) (3.4a)

= xk + tk+1 (yk − xk) (3.4b)

= tk xk − (tk − 1) xk−1, (3.4c)

it yields

yk =
(
1− 1

tk+1

)
xk+ 1

tk+1
zk =

(
1 − 1

tk+1

)
xk+ 1

tk+1
(xk + (tk − 1) (xk − xk−1)) .

(3.5)

On the other hand, (3.4c) with index k + 1 reads

zk+1 = tk+1xk+1 − (tk+1 − 1) xk, (3.6)

which is equivalent to

xk+1 =
(
1 − 1

tk+1

)
xk + 1

tk+1
zk+1. (3.7)
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Subtracting (3.5) from (3.7), we obtain

xk+1 − yk = 1

tk+1
(zk+1 − zk) . (3.8)

Furthermore, by the definition of zγk and zk in (3.3g) and (3.4a), it holds

zγk = zk + (γ − 1) xk,

which leads to

zγk+1 − zγk = zk+1 − zk + (γ − 1) (xk+1 − xk) (3.9a)

= tk+1 (xk+1 − yk) + (γ − 1) (xk+1 − xk) . (3.9b)

By a similar argument, denoting for every k � 1

νk := λk + (tk − 1) (λk − λk−1) , (3.10)

we can derive that

ν
γ

k+1 − ν
γ

k = tk+1 (λk+1 − μk) + (γ − 1) (λk+1 − λk) and

λk+1 − μk = 1

tk+1
(νk+1 − νk) . (3.11)

Example 3.3 (The choice γ = 1) In case γ = 1 we denote zk := z1k and νk := ν1k
for every k � 1, which is consistent with the notations in the remark above. Given

0 < σ � 1

L + β‖A‖2 , {tk}k�1 a nondecreasing sequence fulfilling (3.2) x0 = x1 ∈ H
and λ0 = λ1 ∈ G, Algorithm 1 simplifies for every k � 1 to

yk := xk + tk − 1

tk+1
(xk − xk−1) ,

μk := λk + tk − 1

tk+1
(λk − λk−1) ,

ηk :=
(
1 − 1

tk+1

)
Axk + 1

tk+1
b,

νk := λk + (tk − 1) (λk − λk−1) ,

xk+1 := arg min
x∈H

{ 〈∇ f (yk) + βA∗ (Ayk − b) , x − yk
〉 + 〈νk, Ax − b〉

+1

2
ρt2k+1 ‖Ax − ηk‖2 + 1

2σ
‖x − yk‖2

}
,

λk+1 := μk + ρ (Axk+1 − b + (tk+1 − 1) A (xk+1 − xk)) .
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The fact that this iterative scheme exhibits fast convergence rates for the primal-
dual gap, the feasibility measure, and the objective function value will follow from
the analysis we will do for Algorithm 1. However, nothing can be said about the
convergence of the primal-dual iterates. To this end we will have to assume that
γ ∈ (0, 1), which will be a crucial assumption.

Remark 3.4 He, Hu and Fang have considered in [15] for α > 3, σ, σ ′ > 0 and

tk := 1 + k − 2

α − 1
∀k � 1

the following iterative scheme which reads for every k � 1

yk := xk + tk − 1

tk+1
(xk − xk−1) ,

μk := λk + tk − 1

tk+1
(λk − λk−1) ,

ηk :=
(
1 − 1

tk+1

)
Axk + 1

tk+1
b,

νk := λk + (tk − 1) (λk − λk−1) ,

xk+1 := arg min
x∈H

{
〈∇ f (yk) , x−yk〉 + 〈νk, Ax−b〉+ σ (tk+2 − 1) tk+1

2
‖Ax − ηk‖2

+ σ ′tk+1

σ (tk+2 − 1)
‖x − yk‖2

}
,

λk+1 := μk + σ (tk+2 − 1)

tk+1
(Axk+1 − b + (tk+1 − 1) A (xk+1 − xk)) .

This algorithm differs from Algorithm 1 for the choice γ = 1 (as formulated in
the above example) in the way the primal-dual iterates {(xk, λk)}k�0 are defined.
The formulation of the first allows a more direct derivation of the fast convergence
rates for the feasibility measure and the objective function value. The convergence of
{(xk, λk)}k�0 has been not addressed in [15], and it is by far not clear whether this
sequence converges.

The following lemma collects some properties of the sequence {tk}k�1 fulfilling
(3.2).

Lemma 3.5 Let 0 < m � 1 and {tk}k�1 a nondecreasing sequence fulfilling

t1 := 1 and t2k+1 − mtk+1 � t2k ∀k � 1.

Then for every k � 1 it holds

tk+1 − tk � ϕm := m − 2 + √
m2 + 4

2
�

√
5 − 1

2
< 1, (3.12)

tk+1 � (1 + ϕm) tk and tk+1 � 1 + kϕm � (1 + ϕm) k. (3.13)
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Proof Let k � 1. From the assumption we have that

1 � tk+1 �
m +

√
m2 + 4t2k
2

,

which further gives

tk+1 − tk �
m +

√
m2 + 4t2k
2

− tk .

We define the function ψ : [1,+∞) → R as s �→ m + √
m2 + 4s2

2
− s. Since

ψ ′ (s) = 2s√
m2 + 4s2

− 1 < 0,

ψ is nonincreasing, consequently

tk+1 − tk � ψ (1) = m + √
m2 + 4

2
− 1 = ϕm �

√
5 − 1

2
.

The statements in (3.13) follow from the fact that tk � 1 for every k � 1 and ϕm � 0
and by telescoping arguments, respectively. ��

3.2 Some important estimates and an energy function

In this section we will provide some important estimates which will be useful when
proving that the sequence of values of a discrete energy function, which we will
associate with Algorithm 1, takes at a saddle point is nonincreasing.

Lemma 3.6 Let {(xk, λk)}k�0 be the sequence generated by Algorithm 1. Then for
every x ∈ H and every k � 1 the following inequality holds

f (xk+1) � f (x) − 1

γ

〈
ν

γ

k+1, Axk+1 − Ax
〉 + 1

γ
(1 − γ ) 〈λk − λk+1, Axk+1 − Ax〉

+ 1

σ
〈yk − xk+1, xk+1 − x〉 − β 〈Ayk − b, Axk+1 − Ax〉

+ L

2
‖xk+1 − yk‖2 − 1

2L
‖∇ f (yk) − ∇ f (x)‖2 . (3.14)

Proof Let x ∈ H and k � 1 be fixed. According to (3.3f) we have that

∇ f (yk) + 1

γ
A∗νγ

k + 1

γ
sk+1A

∗(Axk+1 − ηk) + 1

σ
(xk+1 − yk) + βA∗ (Ayk − b) = 0.

(3.15)
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On the other hand, from (3.3c), (3.3e) and (3.3h) we have

1

γ
sk+1 (Axk+1 − ηk) = ρ

γ 2 tk+1 ((tk+1 − 1 + γ ) Axk+1 − (tk+1 − 1) Axk − γ b)

= ρ

γ 2 tk+1
(
Azγk+1 − γ b

) = 1

γ
tk+1 (λk+1 − μk)

= 1

γ

(
ν

γ

k+1 − ν
γ

k + (1 − γ ) (λk+1 − λk)
)
, (3.16)

where the last equation follows from (3.11). Hence, replacing (3.16) in (3.15) we have

∇ f (yk) = − 1

γ
A∗νγ

k+1 + 1

γ
(1 − γ ) A∗ (λk − λk+1)

+ 1

σ
(yk − xk+1) − βA∗ (Ayk − b) . (3.17)

The Descent Lemma inequality (1.14) provides

f (xk+1) � f (yk) + 〈∇ f (yk) , xk+1 − yk〉 + L

2
‖xk+1 − yk‖2

and

f (yk) � f (x) + 〈∇ f (yk) , yk − x〉 − 1

2L
‖∇ f (yk) − ∇ f (x)‖2 .

By summing up these relations it yields

f
(
xk+1

)
� f (x) + 〈∇ f (yk) , xk+1 − x

〉 + L

2

∥
∥xk+1 − yk

∥
∥2 − 1

2L
‖∇ f (yk) − ∇ f (x)‖2

= f (x) − 1

γ

〈
ν
γ
k+1, Axk+1 − Ax

〉
+ 1

γ
(1 − γ )

〈
λk − λk+1, Axk+1 − Ax

〉

+ 1

σ

〈
yk − xk+1, xk+1 − x

〉 − β
〈
Ayk − b, Axk+1 − Ax

〉

+ L

2

∥∥xk+1 − yk
∥∥2 − 1

2L
‖∇ f (yk) − ∇ f (x)‖2 ,

which is nothing else than (3.14). ��
In the following we denote

Q := 1

σ
Id − βA∗A. (3.18)

Assumption (3.1) guarantees that γQ − LId ∈ S+ (H), as

γQ − LId =
(γ

σ
− L

)
Id − γβA∗A �

(γ

σ
− L − γβ ‖A‖2

)
Id. (3.19)
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Lemma 3.7 Let {(xk, λk)}k�0 be the sequence generated by Algorithm 1. Then for
every (x, λ) ∈ F × G and every k � 1 the following two inequalities hold

Lβ (xk+1, λ) − Lβ (x, λk+1)

� 1

γ
(1 − γ ) 〈λk − λk+1, Axk+1 − b〉 + 〈yk − xk+1, xk+1 − x〉Q

+ 1

ρ
〈μk − λk+1, λk+1 − λ〉 − β

2
‖Axk+1 − b‖2 + L

2
‖xk+1 − yk‖2

− 1

2L
‖∇ f (yk) − ∇ f (x)‖2

− 1

γ
(tk+1 − 1) 〈λk+1 − λk, Axk+1 − b〉

+ 1

γ
(tk+1 − 1) 〈λk+1 − λ, Axk+1 − Axk〉 , (3.20)

and

Lβ (xk+1, λ) − Lβ (x, λk+1)

� Lβ (xk, λ) − Lβ (x, λk)

+ 1

γ
(1 − γ ) 〈λk − λk+1, Axk+1 − Axk〉 + 〈yk − xk+1, xk+1 − xk〉Q

+ 1

ρ
〈μk − λk+1, λk+1 − λk〉 − β

2
‖Axk+1 − Axk‖2 + L

2
‖xk+1 − yk‖2

− 1

2L
‖∇ f (yk) − ∇ f (xk)‖2 + 〈λ − λk+1, Axk+1 − Axk〉

+ 〈λk+1 − λk, Axk+1 − b〉 . (3.21)

Proof Let x ∈ F , which means that Ax = b, λ ∈ G, and k � 1 be fixed. We deduce
from Lemma 3.6 that

f (xk+1) + 〈λ, Axk+1 − b〉
� f (x) + 〈λk+1, Ax − b〉 + β

2
‖Ax − b‖2 +

〈
λ − 1

γ
ν

γ

k+1, Axk+1 − b

〉

+ 1

γ
(1 − γ ) 〈λk − λk+1, Axk+1 − b〉 + 1

σ
〈yk − xk+1, xk+1 − x〉

− β 〈Ayk − b, Axk+1 − Ax〉 + L

2
‖xk+1 − yk‖2 − 1

2L
‖∇ f (yk) − ∇ f (x)‖2

= f (x) + 〈λk+1, Ax − b〉 + β

2
‖Ax − b‖2 +

〈
λ − 1

γ
ν

γ

k+1, Axk+1 − b

〉

+ 1

γ
(1 − γ ) 〈λk − λk+1, Axk+1 − b〉 + 〈yk − xk+1, xk+1 − x〉Q

− β ‖Axk+1 − b‖2 + L

2
‖xk+1 − yk‖2 − 1

2L
‖∇ f (yk) − ∇ f (x)‖2 , (3.22)
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where, by using the definition of Q, the last identity follows from

1

σ
〈yk − xk+1, xk+1 − x〉 − β 〈Ayk − b, Axk+1 − Ax〉

= 1

σ
〈yk − xk+1, xk+1 − x〉 − β 〈Ayk − Axk+1, Axk+1 − Ax〉 − β ‖Axk+1 − b‖2

= 1

σ
〈yk − xk+1, xk+1 − x〉 − β

〈
yk − xk+1, A

∗A(xk+1 − x)
〉 − β ‖Axk+1 − b‖2

= 〈yk − xk+1, xk+1 − x〉Q − β ‖Axk+1 − b‖2 .

Recall that from (3.3h) we have

0 = μk − λk+1 + ρ

γ

(
Azγk+1 − γ b

)
,

which yields further

0 = 1

ρ
〈μk − λk+1, λk+1 − λ〉 + 1

γ

〈
λk+1 − λ, Azγk+1 − γ b

〉
. (3.23)

Moreover, from (3.3d) and (3.3g) we have

〈
λ − 1

γ
ν
γ
k+1, Axk+1 − b

〉
+ 1

γ

〈
λk+1 − λ, Azγk+1 − γ b

〉

=
〈
λ − λk+1 − 1

γ
(tk+1 − 1)(λk+1 − λk), Axk+1 − b

〉

+
〈
λk+1 − λ, Axk+1 + 1

γ

(
tk+1 − 1

)
A(xk+1 − xk) − b

〉

= 〈
λ − λk+1, Axk+1 − b

〉 − 1

γ

(
tk+1 − 1

) 〈
λk+1 − λk , Axk+1 − b

〉

+ 〈
λk+1 − λ, Axk+1 − b

〉 + 1

γ

(
tk+1 − 1

) 〈
λk+1 − λ, Axk+1 − Axk

〉

= − 1

γ

(
tk+1 − 1

) 〈
λk+1 − λk , Axk+1 − b

〉 + 1

γ

(
tk+1 − 1

) 〈
λk+1 − λ, Axk+1 − Axk

〉
,

therefore, by summingup (3.22) and (3.23) and after rearranging the terms, the estimate
(3.20) follows.

Next we will prove the second estimate. By take x := xk in inequality (3.14) we
get

f (xk+1) + 〈λ, Axk+1 − b〉
� f (xk) + 〈λ, Axk − b〉 +

〈
λ − 1

γ
ν

γ

k+1, Axk+1 − Axk

〉

+ 1

γ
(1 − γ ) 〈λk − λk+1, Axk+1 − Axk〉
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+ 1

σ
〈yk − xk+1, xk+1 − xk〉 − β 〈Ayk − b, Axk+1 − Axk〉

+ L

2
‖xk+1 − yk‖2 − 1

2L
‖∇ f (yk) − ∇ f (xk)‖2

= f (xk) + 〈λ, Axk − b〉 +
〈
λ − 1

γ
ν

γ

k+1, Axk+1 − Axk

〉

+ 1

γ
(1 − γ ) 〈λk − λk+1, Axk+1 − Axk〉

+ 〈yk − xk+1, xk+1 − xk〉Q − β 〈Axk+1 − b, Axk+1 − Axk〉
+ L

2
‖xk+1 − yk‖2 − 1

2L
‖∇ f (yk) − ∇ f (xk)‖2 , (3.24)

where, by using again the definition of Q, the last identity follows from

1

σ
〈yk − xk+1, xk+1 − xk〉 − β 〈Ayk − b, Axk+1 − Axk〉

= 1

σ
〈yk − xk+1, xk+1 − xk〉 − β 〈Ayk − Axk+1, Axk+1 − Axk〉

− β 〈Axk+1 − b, Axk+1 − Axk〉
= 1

σ
〈yk − xk+1, xk+1 − xk〉 − β

〈
yk − xk+1, A

∗A(xk+1 − xk)
〉

− β 〈Axk+1 − b, Axk+1 − Axk〉
= 〈yk − xk+1, xk+1 − xk〉Q − β 〈Axk+1 − b, Axk+1 − Axk〉 .

The identity (1.9) gives us

−β 〈Axk+1 − b, Axk+1 − Axk〉 = −β

2
‖Axk+1 − b‖2

−β

2
‖Axk+1 − Axk‖2 + β

2
‖Axk − b‖2 ,

hence, by recalling relation (1.3) and (3.24) can be equivalently written as

Lβ (xk+1, λ) − Lβ (x, λk+1)

� Lβ (xk, λ) − Lβ (x, λk) +
〈
λ − 1

γ
ν

γ

k+1, Axk+1 − Axk

〉

+ 1

γ
(γ − 1) 〈λk+1 − λk, Axk+1 − Axk〉

+ 〈yk − xk+1, xk+1 − xk〉Q − β

2
‖Axk+1 − Axk‖2 + L

2
‖xk+1 − yk‖2

− 1

2L
‖∇ f (yk) − ∇ f (xk)‖2 . (3.25)
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In addition, by taking λ := λk in (3.23) gives

0 = 1

ρ
〈μk − λk+1, λk+1 − λk〉 + 1

γ

〈
λk+1 − λk, Az

γ

k+1 − γ b
〉
. (3.26)

Moreover, we have from (3.3d) and (3.3g)

〈
λ − 1

γ
ν

γ

k+1, Axk+1 − Axk

〉
+ 1

γ

〈
λk+1 − λk, Az

γ

k+1 − γ b
〉

= 〈λ − λk+1, Axk+1 − Axk〉 − 1

γ
(tk+1 − 1) 〈λk+1 − λk, Axk+1 − Axk〉

+ 〈λk+1 − λk, Axk+1 − b〉 + 1

γ
(tk+1 − 1) 〈λk+1 − λk, Axk+1 − Axk〉

= 〈λ − λk+1, Axk+1 − Axk〉 + 〈λk+1 − λk, Axk+1 − b〉 ,

therefore, by summing up (3.25) and (3.26) and after rearranging terms, the estimate
(3.21) follows. ��

For (x, λ) ∈ F×G and k � 1we introduce the following energy function associated
with Algorithm 1

Ek (x, λ) := tk (tk − 1 + γ )
(
Lβ (xk, λ) − Lβ (x, λk)

)

+ 1

2

∥∥zγk − γ x
∥∥2Q + 1

2ρ

∥∥νγ

k − γ λ
∥∥2

+ 1

2
γ (1 − γ ) ‖xk − x‖2Q + 1

2ρ
γ (1 − γ ) ‖λk − λ‖2

+ 1 − γ

2ρ
(tk − 1) ‖λk − λk−1‖2 .

According to (1.4), for every (x∗, λ∗) ∈ S and every k � 1 it holds

Ek (x∗, λ∗) � 0.

The following estimate for the energy function will play a fundamental role in our
analysis.

Proposition 3.8 Let {(xk, λk)}k�0 be the sequence generated by Algorithm 1. Then
for every (x, λ) ∈ F × G and every k � 1 it holds

Ek+1 (x, λ) � Ek (x, λ) +
(
t2k+1 − tk+1 − t2k + (1 − γ ) tk

) (Lβ (xk , λ) − Lβ (x, λk)
)

− βγ

2
tk+1

∥
∥Axk+1 − b

∥
∥2 − β

2
tk+1

(
tk+1 − 1

) ∥∥Axk+1 − Axk
∥
∥2

− γ

2L
tk+1 ‖∇ f (yk)−∇ f (x)‖2− 1

2L
tk+1

(
tk+1−1

) ‖∇ f (yk)−∇ f (xk)‖2
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− (1 − γ )
(
tk+1 − 1

) ∥∥xk+1 − xk
∥
∥2Q − 1 − γ

2ρ

(
2tk+1 − 1

) ∥∥λk+1 − λk
∥
∥2

− 1

2
t2k+1

∥∥xk+1 − yk
∥∥2
γQ−LId − γ

2ρ
t2k+1

∥∥λk+1 − μk
∥∥2 . (3.27)

Proof Let (x, λ) ∈ F×G and k � 1 be fixed. Multiplying (3.21) by tk+1 (tk+1 − 1) �
0 and (3.20) by γ tk+1, and adding the resulting inequalities, yields

tk+1 (tk+1 − 1 + γ )
(
Lβ (xk+1, λ) − Lβ (x, λk+1)

)

� tk+1 (tk+1 − 1)
(
Lβ (xk, λ) − Lβ (x, λk)

)

+ 1

γ
(1 − γ ) tk+1 〈λk − λk+1, γ (Axk+1 − b) + (tk+1 − 1) (Axk+1 − Axk)〉

+ tk+1 〈yk − xk+1, γ (xk+1 − x) + (tk+1 − 1) (xk+1 − xk)〉Q
+ 1

ρ
tk+1 〈μk − λk+1, γ (λk+1 − λ) + (tk+1 − 1) (λk+1 − λk)〉

− βγ

2
tk+1 ‖Axk+1 − b‖2 − β

2
tk+1 (tk+1 − 1) ‖Axk+1 − Axk‖2

− γ

2L
tk+1 ‖∇ f (yk) − ∇ f (x)‖2 − 1

2L
tk+1 (tk+1 − 1) ‖∇ f (yk) − ∇ f (xk)‖2

+ L

2
tk+1 (tk+1 − 1 + γ ) ‖xk+1 − yk‖2 . (3.28)

According to (3.3b), (3.3g) and (3.3h) we have

1

γ
(1 − γ ) tk+1 〈λk − λk+1, γ (Axk+1 − b) + (tk+1 − 1) (Axk+1 − Axk)〉

= 1

γ
(1 − γ ) tk+1

〈
λk − λk+1, Az

γ

k+1 − γ b
〉

= 1

ρ
(1 − γ ) tk+1 〈λk − λk+1, λk+1 − μk〉

= −1−γ

2ρ
tk+1 ‖λk+1−λk‖2− 1−γ

2ρ
tk+1 ‖λk+1 − μk‖2 + 1 − γ

2ρ
tk+1 ‖μk − λk‖2

� −1 − γ

2ρ
tk+1 ‖λk+1 − λk‖2 + 1 − γ

2ρ

(tk − 1)2

tk+1
‖λk − λk−1‖2

� −1 − γ

2ρ
tk+1 ‖λk+1 − λk‖2 + 1 − γ

2ρ
(tk − 1) ‖λk − λk−1‖2 , (3.29)

where in the last inequality we use that {tk}k�1 is nondecreasing and that tk � 1 for
every k � 1.

On the other hand, (3.3g), (3.9a) and (1.12) give

tk+1 〈yk − xk+1, γ (xk+1 − x) + (tk+1 − 1) (xk+1 − xk)〉Q
= 〈

zγk − zγk+1, z
γ

k+1 − γ x
〉
Q + (γ − 1)
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〈xk+1 − xk, γ (xk+1 − x) + (tk+1 − 1) (xk+1 − xk)〉Q
= −1

2

∥
∥zγk+1 − zγk

∥
∥2Q − 1

2

∥
∥zγk+1 − γ x

∥
∥2Q

+ 1

2

∥∥zγk − γ x
∥∥2Q + 1

2
γ (γ − 1) ‖xk+1 − xk‖2Q

+ 1

2
γ (γ − 1) ‖xk+1 − x‖2Q − 1

2
γ (γ − 1) ‖xk − x‖2Q

+ (γ − 1) (tk+1 − 1) ‖xk+1 − xk‖2Q . (3.30)

From (1.13), (3.9b) and (3.8) we have

−1

2

∥∥zγk+1 − zγk
∥∥2Q = −1

2
‖zk+1 − zk + (γ − 1) (xk+1 − xk)‖2Q

= −1

2
γ ‖zk+1 − zk‖2Q − 1

2
γ (γ − 1) ‖xk+1 − xk‖2Q

+ 1

2
(γ − 1) ‖zk+1 − zk − (xk+1 − xk)‖2Q

� −1

2
γ t2k+1 ‖xk+1 − yk‖2Q − 1

2
γ (γ − 1) ‖xk+1 − xk‖2Q ,

which we combine with (3.30) to obtain

tk+1 〈yk − xk+1, γ (xk+1 − x) + (tk+1 − 1) (xk+1 − xk)〉Q
� −1

2
γ t2k+1 ‖xk+1 − yk‖2Q − 1

2

∥∥zγk+1 − γ x
∥∥2Q

+ 1

2

∥
∥zγk − γ x

∥
∥2Q − 1

2
γ (1 − γ ) ‖xk+1 − x‖2Q

+ 1

2
γ (1 − γ ) ‖xk − x‖2Q + (γ − 1) (tk+1 − 1) ‖xk+1 − xk‖2Q . (3.31)

By using the same technique, we can derive that

1

ρ
tk+1 〈μk − λk+1, γ (λk+1 − λ) + (tk+1 − 1) (λk+1 − λk)〉

� − γ

2ρ
t2k+1 ‖λk+1 − μk‖2 − 1

2ρ

∥∥νγ

k+1 − γ λ
∥∥2

+ 1

2

∥
∥νγ

k − γ λ
∥
∥2 − γ

2ρ
(1 − γ ) ‖λk+1 − λ‖2

+ γ

2ρ
(1 − γ ) ‖λk − λ‖2 + 1

ρ
(γ − 1) (tk+1 − 1) ‖λk+1 − λk‖2 . (3.32)

Plugging (3.29), (3.31) and (3.32) into (3.28), and taking into consideration the fact
that γ ∈ (0, 1], gives the desired statement. ��

Next we record some direct consequences of the above estimate.
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Proposition 3.9 Let {(xk, λk)}k�0 be the sequence generated by Algorithm 1 and
(x∗, λ∗) ∈ S. Then the sequence {Ek (x∗, λ∗)}k�1 is nonincreasing and the following
statements are true

(
1 − m

γ

)∑

k�1

tk
(
Lβ (xk, λ∗) − Lβ (x∗, λk)

)
< +∞

∑

k�1

tk+1

(
β ‖Axk+1 − b‖2 + 1

L
‖∇ f (yk) − ∇ f (x∗)‖2

)
< +∞

∑

k�1

tk+1 (tk+1 − 1)

(
β ‖Axk+1 − Axk‖2 + 1

L
‖∇ f (yk) − ∇ f (xk)‖2

)
< +∞

(1 − γ )
∑

k�1

(tk+1 − 1) ‖xk+1 − xk‖2Q < +∞

(1 − γ )
∑

k�1

(2tk+1 − 1) ‖λk+1 − λk‖2 < +∞

∑

k�1

t2k+1

(
‖xk+1 − yk‖2γQ−LId + γ

ρ
‖λk+1 − μk‖2

)
< +∞.

Proof Since {tk}k�1 is an nondecreasing sequence that satisfies (3.2) and 0 < m �
γ � 1, we have for every k � 1

t2k+1 − tk+1 − t2k + (1 − γ ) tk � (m − 1) tk+1 + (1 − γ ) tk � (m − γ ) tk � 0.

Moreover, as (x∗, λ∗) ∈ S, we must have x∗ ∈ F and Lβ (xk, λ∗) − Lβ (x∗, λk) � 0
for every k � 1 due to (1.4). Combining these observations, we deduce from the
inequality (3.27) applied to (x, λ) = (x∗, λ∗) that for every k � 1

Ek+1 (x∗, λ∗) � Ek (x∗, λ∗) − (γ − m) tk
(
Lβ (xk, λ∗) − Lβ (x∗, λk)

)

− βγ

2
tk+1 ‖Axk+1 − b‖2 − β

2
tk+1 (tk+1 − 1) ‖Axk+1 − Axk‖2

− γ

2L
tk+1 ‖∇ f (yk) − ∇ f (x∗)‖2 − 1

2L
tk+1 (tk+1 − 1) ‖∇ f (yk) − ∇ f (xk)‖2

− (1 − γ ) (tk+1 − 1) ‖xk+1 − xk‖2Q − 1 − γ

2ρ
(2tk+1 − 1) ‖λk+1 − λk‖2

− 1

2
t2k+1 ‖xk+1 − yk‖2γQ−LId − γ

2ρ
t2k+1 ‖λk+1 − μk‖2 . (3.33)

By applying Lemma 1.1 we obtain all conclusions. ��
Remark 3.10 Since the sequence {Ek (x∗, λ∗)}k�1 is nonincreasing and for every k � 1

γ t2k � tk (tk − 1 + γ ) ⇔ tk � 1, (3.34)
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we deduce that

βγ

2
t2k ‖Axk − b‖2 � γ t2k

(
Lβ (xk, λ∗) − Lβ (x∗, λk)

)

� tk (tk − 1 + γ )
(
Lβ (xk, λ∗) − Lβ (x∗, λk)

)

� Ek (x∗, λ∗) � · · · � E1 (x∗, λ∗) .

Consequently, for every k � 1 we have

t2k (L (xk, λ∗) − L (x∗, λk)) � t2k
(
Lβ (xk, λ∗) − Lβ (x∗, λk)

)
� E1 (x∗, λ∗)

γ

and, when β > 0, tk ‖Axk − b‖ �
√
2E1 (x∗, λ∗)

βγ
. (3.35)

Remark 3.11 Recall that from Proposition 3.9 we have

∑

k�1

(tk+1 − 1)

(
‖xk+1 − xk‖2Q + 1

2ρ
‖λk+1 − λk‖2

)
< +∞, (3.36)

whenever γ < 1. Taking into account the way γ has arisen in the context of the
dynamical system (PD-AVD) (see (2.13)), this corresponds to

γ = 1

θ (α − 1)
< 1 ⇔ 1

α − 1
< θ.

In the continuous case it has been proved (see [8, Theorem 3.2]) that, if
1

α − 1
< θ ,

then

∫ +∞

t0
t
∥∥(ẋ (t) , λ̇ (t)

)∥∥2 < +∞,

which can be seen as the continuous counterpart of (3.36). Both statements play a
crucial role in the proof of the convergence of the sequence of iterates generated by
Algorithm 1 and of the trajectory generated by (PD-AVD), respectively.

The following result, which complements the statements of Proposition 3.9, will
also play a crucial role in the proof of the convergence of the sequence of iterates.

Proposition 3.12 Let {(xk, λk)}k�0 be the sequence generated by Algorithm 1 with

0 < σ <
γ

L + γβ‖A‖2 ,
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and (x∗, λ∗) ∈ S. Then the following statements are true

(
1 − m

γ

)∑

k�1

tk
∥∥A∗ (λk − λ∗)

∥∥2 < +∞, (3.37a)

tk+1 (tk+1 − 1)2
∑

k�1

∥∥A∗ (λk+1 − λk)
∥∥2 < +∞. (3.37b)

In addition, there exists C0 > 0 such that for every k � 1

∥∥A∗ (λk − λ∗)
∥∥ � C0

tk
.

Proof From (3.17), after rearranging some terms, we have for every k � 1

A∗
(
1

γ
ν
γ
k+1 − λ∗

)
= 1

γ
(1 − γ ) A∗ (λk − λk+1

) + ∇ f (x∗) − ∇ f (yk) + 1

σ

(
yk − xk+1

)

+ βA∗A
(
xk+1 − yk

) − βA∗ (Axk+1 − b
)
.

It follows from Proposition 3.9, by using (3.19) and the fact that tk � 1, that for every
k � 1

∑

k�1

tk+1

∥∥∥∥A
∗
(
1

γ
ν

γ

k+1 − λ∗
)∥∥∥∥

2

� 5

γ 2 (1 − γ )2 ‖A‖2
∑

k�1

tk+1 ‖λk+1 − λk‖2 + 5
∑

k�1

tk+1 ‖∇ f (yk) − ∇ f (x∗)‖2

+ 5

σ 2

∑

k�1

tk+1 ‖xk+1 − yk‖2 + 5β2
∥
∥A∗A

∥
∥2

∑

k�1

tk+1 ‖xk+1 − yk‖2

+ 5β2 ‖A‖2
∑

k�1

tk+1 ‖Axk+1 − b‖2 < +∞.

According to (3.3d) we have for every k � 1

A∗
(
1

γ
ν
γ
k+1 − λ∗

)
=
(
1+ 1

γ

(
tk+1−1

)
)
A∗ (λk+1−λ∗

)− 1

γ

(
tk+1−1

)
A∗ (λk − λ∗) ,

hence, by applying the identity (1.10), we get

∥∥
∥
∥A

∗
(
1

γ
ν

γ

k+1−λ∗
)∥∥
∥
∥

2

=
(
1+ 1

γ
(tk+1−1)

)∥
∥A∗ (λk+1−λ∗)

∥
∥2− 1

γ
(tk+1−1)

∥
∥A∗ (λk−λ∗)

∥
∥2

+ 1

γ
(tk+1 − 1)

(
1 + 1

γ
(tk+1 − 1)

)∥∥A∗ (λk+1 − λk)
∥∥2 . (3.38)
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On the other hand, it follows from condition (3.2) and the fact that {tk}k�1 is nonde-
creasing that for every k � 1

1

γ
tk+1 (tk+1 − 1) − tk

(
1 + 1

γ
(tk − 1)

)
= 1

γ

(
t2k+1 − tk+1 − t2k + tk

)
− tk

� 1

γ
((m − 1) tk+1 + tk) − tk

= m − 1

γ
(tk+1 − tk) +

(
m

γ
− 1

)
tk

�
(
m

γ
− 1

)
tk, (3.39)

Combining (3.38) and (3.39), it yields for every k � 1

tk+1

(
1 + 1

γ
(tk+1 − 1)

)∥∥A∗ (λk+1 − λ∗)
∥∥2

= tk

(
1 + 1

γ
(tk − 1)

)∥
∥A∗ (λk − λ∗)

∥
∥2

+
(
1

γ
tk+1 (tk+1 − 1) − tk

(
1 + 1

γ
(tk − 1)

))∥∥A∗ (λk − λ∗)
∥∥2

− 1

γ
tk+1 (tk+1 − 1)

(
1 + 1

γ
(tk+1 − 1)

)

∥∥A∗ (λk+1 − λk)
∥∥2 + tk+1

∥∥∥∥A
∗
(
1

γ
ν

γ

k+1 − λ∗
)∥∥∥∥

2

� tk

(
1 + 1

γ
(tk − 1)

)∥∥A∗ (λk − λ∗)
∥∥2 −

(
1 − m

γ

)
tk
∥∥A∗ (λk − λ∗)

∥∥2

− 1

γ 2 tk+1 (tk+1 − 1)2
∥∥A∗ (λk+1 − λk)

∥∥2 + tk+1

∥∥∥
∥A

∗
(
1

γ
ν

γ

k+1 − λ∗
)∥∥∥
∥

2

.

We are in the setting of inequality (1.15) with

ak := tk

(
1 + 1

γ
(tk − 1)

)∥∥A∗ (λk − λ∗)
∥∥2 � 0,

bk :=
(
1 − m

γ

)
tk
∥∥A∗ (λk − λ∗)

∥∥2 + 1

γ 2 tk+1 (tk+1 − 1)2
∥∥A∗ (λk+1 − λk)

∥∥2 � 0,

dk := tk+1

∥∥∥
∥A

∗
(
1

γ
ν

γ

k+1 − λ∗
)∥∥∥
∥

2

� 0,
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for every k � 1. According to Lemma 1.1, (3.37a) and (3.37b) are fulfilled and the

sequence

{
tk

(
1 + 1

γ
(tk − 1)

)
‖A∗ (λk − λ∗)‖2

}

k�1
is convergent, therefore it is

bounded. Consequently, there exists C0 > 0 such that for every k � 1

t2k
∥∥A∗ (λk − λ∗)

∥∥2 � tk

(
1 + 1

γ
(tk − 1)

)∥∥A∗ (λk − λ∗)
∥∥2 � C0,

which provides the conclusion. ��

3.3 On the boundedness of the sequences

In this section we will discuss the boundedness of the sequence of primal-dual iterates
{(xk, λk)}k�0 and also of other related sequences which play a role in the convergence
analysis.

To this end we define on H × G the inner product

〈
u, u′〉

W = 〈
(x, λ) ,

(
x ′, λ′)〉

W = 〈
x, x ′〉

Q + 1

ρ

〈
λ, λ′〉 ∀u := (x, λ) , u′ := (

x ′, λ′) ∈ H × G,

whereQ is the operator defined in (3.18) which we proved to be positive definite under
assumption (3.1). The norm induced by this scalar product is

‖u‖W = ‖(x, λ)‖W =
√

‖x‖2Q + 1

ρ
‖λ‖2 ∀u := (x, λ) .

The condition on the sequence {tk}k�1 whichwewill assume in the next proposition
in order to guarantee boundedness for the sequences generated by Algorithm 1 has
been proposed in [4]. Later we will see that it is satisfied by the three classical inertial
parameters rules by Nesterov, Chambolle–Dossal and Attouch–Cabot.

Proposition 3.13 Let {(xk, λk)}k�0 be the sequence generated by Algorithm 1. Sup-
pose that

κ := inf
k�1

tk
k

> 0. (3.40)

Then the sequences {(xk, λk)}k�0,
{(
zγk , ν

γ

k

)}
k�1 and {(tk+1(xk+1− xk), tk+1(λk+1−

λk))}k�0 arebounded. If, in additionβ > 0, then the sequence {tk+1(tk+1−1)(Axk+1−
Axk)}k�0 is also bounded.

Proof Let (x∗, λ∗) ∈ S be fixed. For brevity we will write

u∗ := (x∗, λ∗) ∈ S and uk := (xk, λk) ∈ H × G ∀k � 0.

123



Fast Augmented Lagrangian Method in the convex… 181

By applying (1.13), we have from (3.3g) that for every k � 1

∥∥zγk − γ x∗
∥∥2Q = ‖(tk − 1 + γ ) (xk − x∗) − (tk − 1) (xk−1 − x∗)‖2Q

= γ (tk − 1 + γ ) ‖xk − x∗‖2Q − γ (tk − 1) ‖xk−1 − x∗‖2Q
+ (tk − 1 + γ ) (tk − 1) ‖xk − xk−1‖2Q .

By applying (1.11), we have from (3.3d) that for every k � 1

∥∥νγ

k − γ λ∗
∥∥2 = ‖(tk − 1 + γ ) (λk − λ∗) − (tk − 1) (λk−1 − λ∗)‖2

= γ (tk − 1 + γ ) ‖λk − λ∗‖2 − γ (tk − 1) ‖λk−1 − λ∗‖2
+ (tk − 1 + γ ) (tk − 1) ‖λk − λk−1‖2 .

This means the energy function at (x∗, λ∗) can be written for every k � 1 as

Ek (x∗, λ∗) = tk (tk − 1 + γ )
(
Lβ (xk, λ∗) − Lβ (x∗, λk)

)

+ γ

2
tk ‖uk − u∗‖2W − γ

2
(tk − 1) ‖uk−1 − u∗‖2W

+ 1

2
(tk−1+γ ) (tk−1) ‖uk−uk−1‖2W+ 1−γ

2ρ
(tk − 1) ‖λk − λk−1‖2 .

(3.41)

According to Proposition 3.9, the sequence {Ek (x∗, λ∗)}k�1 is nonincreasing, there-
fore for every k � 1

γ

2
tk ‖uk − u∗‖2W − γ

2
(tk − 1) ‖uk−1 − u∗‖2W + 1

2
(tk − 1 + γ ) (tk − 1) ‖uk − uk−1‖2W

� 1

2

∥
∥zγk − γ x∗

∥
∥2Q + 1

2ρ

∥
∥νγ

k − γ λ∗
∥
∥2 � Ek (x∗, λ∗) � · · · � E1 (x∗, λ∗) < +∞.

From here we conclude that the sequence
{(
zγk , ν

γ

k

)}
k�1 is bounded. In addition, for

every k � 1 it holds

γ

2
tk ‖uk − u∗‖2W � γ

2
(tk − 1) ‖uk−1 − u∗‖2W + E1 (x∗, λ∗)

� γ

2
tk−1 ‖uk−1 − u∗‖2W + E1 (x∗, λ∗) ,

where the last inequality is due to (3.12),with the convention t0 := 0.After telescoping,
we get

γ

2
tk ‖uk − u∗‖2W � kE1 (x∗, λ∗) ∀k � 1.
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Then thanks to (3.40) we obtain

‖uk − u∗‖2W � 2k

γ tk
E1 (x∗, λ∗) � 2

γ κ
E1 (x∗, λ∗) < +∞,

whichmeans that {uk := (xk, λk)}k�0 is bounded. That {(tk+1(xk+1−xk), tk+1(λk+1−
λk))}k�0 is bounded follows from the fact that for all k � 1

tk (xk − xk−1) = zγk − (γ − 1)xk − xk−1,

tk (λk − λk−1) = ν
γ

k − (γ − 1)λk − λk−1

Finally, recall that from (3.11), (3.3h) and (3.3g), we have for every k � 1

ν
γ

k+1 − ν
γ

k + (1 − γ ) (λk+1 − λk)

= tk+1 (λk+1 − μk) = ρ

γ
tk+1

(
Azγk+1 − γ b

)

= ρ

γ
(γ tk+1 (Axk+1 − b) + tk+1 (tk+1 − 1) (Axk+1 − Axk)) .

The last statement of the proposition follows from here and (3.35). ��
In the following, we will see that the two most prominent choices for the sequence

{tk}k�1 from the literature, namely, the ones following the rules by Nesterov and by
Chambolle–Dossal satisfy not only (3.2), but also (3.40).

Example 3.14 (Nesterov rule) The classical construction proposed Nesterov in [21]
for {tk}k�1 satisfies the following rule

t1 := 1 and tk+1 :=
1 +

√
1 + 4t2k
2

∀k � 1. (3.42)

The sequence {tk}k�1 is strictly increasing and verifies relation (3.2) for m := 1 with

equality. In addition (see, for instance, [6, Lemma 4.3]), it holds tk � k + 1

2
for every

k � 1, which means that (3.40) is satisfied for κ � 1

2
.

Example 3.15 (Chambolle–Dossal rule) The construction proposed by Chambolle
and Dossal in [10] (see also [3]) for {tk}k�1 satisfies for α � 3 the following rule

tk := 1 + k − 1

α − 1
= k + α − 2

α − 1
∀k � 1. (3.43)

First we show that this sequence fulfills (3.2) withm := 2

α − 1
� 1. Indeed, for every

k � 1 we have
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t2k+1 − mtk+1 − t2k = (tk+1 − tk) (tk+1 + tk) − mtk+1

= 1

α − 1

(
2 + 2k − 1

α − 1

)
− 2

α − 1

k + α − 1

α − 1

= − 1

(α − 1)2
< 0. (3.44)

Furthermore, one can see that for every k � 1 it holds

tk
k

= 1

α − 1
+ α − 2

k (α − 1)
,

which proves that (3.40) is verified for κ = 1

α − 1
.

Finally, we observe that, by taking into consideration the choice of γ in (2.13) in
the context of the dynamical system (PD-AVD) and assumption (3.1) in Algorithm 1,
it holds

m = 2

α − 1
� γ = 1

θ (α − 1)
⇔ θ � 1

2
. (3.45)

This connects the choice of the parameter m in Algorithm 1 with the one of the
parameter θ in (PD-AVD).

3.4 Fast convergence rates for the primal-dual gap, the feasibility measure and
the objective function value

We have seen in Remark 3.10 that, for the general choice of the sequence {tk}k�1 in
(3.2), the convergence rate of the primal-dual gap is of order O

(
1/t2k

)
as k → +∞.

In addition, if β > 0, then the convergence rate of the feasibility measure is of order
O (1/tk) as k → +∞. In this section we will prove that convergence rates of the
feasibility measure and of the objective function value are O

(
1/t2k

)
as k → +∞

when the sequence {tk}k�1 is chosen by following the rules by Nesterov, Chambolle–
Dossal and also Attouch–Cabot.

In view of (3.40), this will lead for the primal-dual sequence {(xk, λk)}k�0 gener-
ated by Algorithm 1 and a given primal-dual solution (x∗, λ∗) to the following fast
convergence rates

L (xk, λ∗) − L (x∗, λk) = O
(

1

k2

)
as k → +∞,

‖Axk − b‖ = O
(

1

k2

)
and | f (xk) − f∗| = O

(
1

k2

)
as k → +∞.

We start with the following lemma which holds in the very general setting of
Algorithm 1.
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Lemma 3.16 Let {(xk, λk)}k�0 be the sequence generated by Algorithm 1 and
(x∗, λ∗) ∈ S. Then the quantity

C1 := sup
μ∈B(λ∗;1)

E1 (x∗, μ) < +∞.

Proof Let (x∗, λ∗) ∈ S and μ ∈ B (λ∗; 1). The Cauchy-Schwarz inequality gives

Lβ (x1, μ) − Lβ (x∗, λ1) = f (x1) − f (x∗) + 〈μ, Ax1 − b〉 + β

2
‖Ax1 − b‖2

� f (x1) − f (x∗) + ‖μ‖ ‖Ax1 − b‖ + β

2
‖Ax1 − b‖2

� C2 := f (x1) − f (x∗) + (1 + ‖λ∗‖) ‖Ax1 − b‖
+ β

2
‖Ax1 − b‖2 .

On the other hand, as ν
γ
1 = γ λ1 and μ ∈ B (λ∗; 1), it holds

1

2ρ

∥
∥νγ

1 − γμ
∥
∥2 + γ

2ρ
(1 − γ ) ‖λ1 − μ‖2

� 1

ρ

(∥∥νγ
1 − γ λ∗

∥∥2 + γ 2 ‖μ − λ∗‖2
)

+ γ

ρ
(1 − γ )

(
‖λ1 − λ∗‖2 + ‖μ − λ∗‖2

)

� C3 := γ 2

ρ
‖λ1 − λ∗‖2 + γ

ρ
(1 − γ ) ‖λ1 − λ∗‖2 + γ

ρ
= γ

ρ

(
‖λ1 − λ∗‖2 + 1

)
.

Combining these estimates, as zγ1 = γ x1, we have

E1 (x∗, μ) = t1 (t1 − 1 + γ )
(
Lβ (x1, μ) − Lβ (x∗, λ1)

)

+ 1

2

∥∥zγ1 − γ x∗
∥∥2Q + 1

2ρ

∥∥νγ
1 − γμ

∥∥2

+ 1

2
γ (1 − γ ) ‖x1 − x∗‖2Q

+ γ

2ρ
(1 − γ ) ‖λ1 − μ‖2 + 1 − γ

2ρ
(t1 − 1) ‖λ1 − λ0‖2

� γC2 + C3 + γ

2
‖x1 − x∗‖2Q < +∞,

which proves the statement. ��
3.4.1 The Nesterov [21] rule

We have seen that by choosing {tk}k�1 as in (3.42) and (3.2) is fulfilled as equality for
m = 1, which also yields γ = 1 due to (3.1). Consequently, from Proposition 3.8 it
follows that for every (x, λ) ∈ F × G and every k � 1 it holds

Ek+1 (x, λ) � Ek (x, λ) , (3.46)
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which means that the sequence {Ek (x, λ)}k�1 is nonincreasing. This statement is
stronger than the one in Proposition 3.9, where we have proved that the sequence
of function values of the energy function taken at a primal-dual optimal solution is
nonincreasing, and will play an important role in the following.

Theorem 3.17 Let {(xk, λk)}k�0 be the sequence generated by Algorithm 1, with the
sequence {tk}k�1 chosen to satisfy Nesterov rule (3.42), and (x∗, λ∗) ∈ S. Then for
every k � 1 it holds

0 � L (xk, λ∗) − L (x∗, λk) + ‖Axk − b‖ � C1

t2k
(3.47)

and

− ‖λ∗‖C1

t2k
� f (xk) − f (x∗) � (1 + ‖λ∗‖)C1

t2k
. (3.48)

Proof As mentioned earlier in (3.46), for every (x, λ) ∈ F × G and every k � 1 we
have (take into account that γ = 1)

t2k ( f (xk) − f (x) + 〈λ, Axk − b〉) � Ek (x, λ) � · · · � E1 (x, λ) . (3.49)

We fix n � 1 and define

rn :=
⎧
⎨

⎩

λ∗, if Axn − b = 0

λ∗ + Axn − b

‖Axn − b‖ , if Axn − b �= 0
.

Then x∗ ∈ F and rn ∈ B (λ∗; 1). Hence, (x∗, rn) ∈ F×B (λ∗; 1), therefore, according
to (3.49) and Lemma 3.16,

t2n ( f (xn) − f (x∗) + 〈rn, Axn − b〉) � E1 (x∗, rn) � sup
μ∈B(λ∗;1)

E1 (x∗, μ) = C1.(3.50)

If Axn − b �= 0, then

f (xn) − f (x∗) + 〈rn, Axn − b〉 = f (xn) − f (x∗) + 〈λ∗, Axn − b〉 + ‖Axn − b‖
= L (xn, λ∗) − L (x∗, λn) + ‖Axn − b‖ .

On the other hand, if Axn − b = 0, we have
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f (xn) − f (x∗) + 〈rn, Axn − b〉
= f (xn) − f (x∗) + 〈λ∗, Axn − b〉 = L (xn, λ∗) − L (x∗, λn)
= L (xn, λ∗) − L (x∗, λn) + ‖Axn − b‖ ,

thus, in both scenarios, (3.50) becomes

0 � t2n (L (xn, λ∗) − L (x∗, λn) + ‖Axn − b‖) � C1.

Since n � 1 has been arbitrarily chosen, we obtain (3.47).
AsL (xk, λ∗)−L (x∗, λk) � 0, a direct consequent of (3.47) is that for every k � 1

0 � ‖Axk − b‖ � C1

t2k
.

From (3.47) and the Cauchy-Schwarz inequality, we deduce from here that for every
k � 1

f (xk) − f (x∗) � C1

t2k
− 〈λ∗, Axk − b〉 � C1

t2k
+ ‖λ∗‖ ‖Axk − b‖

� (1 + ‖λ∗‖)C1

t2k
. (3.51)

On the other hand, the convexity of f together with (1.2) guarantee that for every
k � 1

f (xk) − f (x∗) � 〈∇ f (x∗) , xk − x∗〉 = − 〈
A∗λ∗, xk − x∗

〉

= −〈λ∗, Axk − b〉 � −‖λ∗‖ ‖Axk − b‖ � −‖λ∗‖C1

t2k
. (3.52)

By combining (3.51) and (3.52), we obtain (3.48). ��

3.4.2 The Chambolle–Dossal [10] rule

In this section we prove fast convergence rates for the primal-dual gap, the feasibility
measure and the objective functionvalue for the sequenceof inertial parameters {tk}k�1
following for α � 3 the Chambole-Dossal rule (3.43). We have seen in Example 3.15
that in this case {tk}k�1 fulfills (3.2) for m := 2

α−1 and (3.40) for κ := 1
α−1 .

For the beginning we observe that for 2
α−1 = m � γ � 1 and every k � 1 it holds

(see (3.44))

tk (tk − 1 + γ ) − tk+1 (tk+1 − 1)

= t2k − t2k+1 + (1 − γ ) (tk+1 − tk) + γ tk+1

= − 2

α − 1
tk+1 + 1

(α − 1)2
+ 1 − γ

α − 1
+ γ tk+1
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= 1

α − 1
(γ (α − 1) − 2)tk+1 + 1

(α − 1)2
(1 − γ (α − 1)) + 1

α − 1

= 1

(α − 1)2
((γ (α − 1) − 2) k + (γ (α − 1) − 1) (α − 2))

= 1

(α − 1)2
((γ (α − 1) − 2) (k + α − 2) + α − 2) . (3.53)

Next we are going to consider two separate cases depending on the relation between
m := 2

α−1 and γ . First we will assume that they are equal, which will then also cover
the case α = 3.

Theorem 3.18 Let {(xk, λk)}k�0 be the sequence generated by Algorithm 1 with the
sequence {tk}k�1 chosen to satisfy Chambolle–Dossal rule (3.43), m := 2

α−1 = γ �
1, β > 0, and (x∗, λ∗) ∈ S. Then for every k � 2 it holds

0 � L (xk, λ∗) − L (x∗, λk) + ‖Axk − b‖ � C4

t2k
(3.54)

and

− ‖λ∗‖C5

t2k
� f (xk) − f (x∗) � (1 + ‖λ∗‖)C5

t2k
, (3.55)

where

C5 := C1

γ
+ 2(α − 2)

γ 2κ2 (α − 1)2

(

C1 + α − 2

κ (α − 1)2

√
2E1 (x∗, λ∗)

βγ

)
∑

i�1

1

i3/2
∈ R+.

Proof We fix n � 2 and define

rn :=
⎧
⎨

⎩

λ∗, if Axn − b = 0

λ∗ + Axn − b

‖Axn − b‖ , if Axn − b �= 0
.

Then x∗ ∈ F and rn ∈ B (λ∗; 1). Since γ (α − 1) = 2, according to (3.53), we have
for every k � 1

(
t2k+1 − tk+1 − t2k + (1 − γ ) tk

) (
Lβ (xk, rn) − Lβ (x∗, λk)

)

= − α − 2

(α − 1)2
(
Lβ (xk, λ∗) − Lβ (x∗, λk) + 〈rn − λ∗, Axk − b〉)

� − α − 2

(α − 1)2
〈rn − λ∗, Axk − b〉 .
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By taking (x, λ) := (x∗, rn) ∈ F × B (λ∗; 1) in (3.27), we obtain for every k � 1

Ek+1 (x∗, rn) � Ek (x∗, rn) +
(
t2k+1 − tk+1 − t2k + (1 − γ ) tk

) (Lβ (xk , rn) − Lβ (x∗, λk)
)

� Ek (x∗, rn) − α − 2

(α − 1)2
〈rn − λ∗, Axk − b〉

� Ek (x∗, rn) + α − 2

(α − 1)2
‖rn − λ∗‖ ‖Axk − b‖ (3.56a)

� Ek (x∗, rn) + α − 2

(α − 1)2

√
2E1 (x∗, λ∗)

βγ

1

tk
(3.56b)

� Ek (x∗, rn) + α − 2

κ (α − 1)2

√
2E1 (x∗, λ∗)

βγ

1

k
, (3.56c)

where (3.56b) follows from (3.35) and(3.56c) is due to (3.40). By a telescoping sum
argument and Lemma 3.16 we conclude that for every k � 1

Ek+1 (x∗, rn) � E1 (x∗, rn) + α − 2

κ (α − 1)2

√
2E1 (x∗, λ∗)

βγ

k∑

i=1

1

i

� C1 + α − 2

κ (α − 1)2

√
2E1 (x∗, λ∗)

βγ
(log (k) + 1) � C4 (log(k) + 1) ,

where

C4 := C1 + α − 2

κ (α − 1)2

√
2E1 (x∗, λ∗)

βγ
> 0.

By choosing k := n − 1, it yields

tn (tn − 1 + γ ) ( f (xn) − f (x∗) + 〈rn, Axn − b〉) � En (x∗, rn) � C4 (log(n − 1) + 1) .

We have seen in the proof of Theorem 3.17 that

f (xn) − f (x∗) + 〈rn, Axn − b〉 = L (xn, λ∗) − L (x∗, λn) + ‖Axn − b‖ ,

(3.57)

thus, by taking into account (3.40), we obtain

γ κ2n2 ‖Axn − b‖ � γ t2n ‖Axn − b‖ � tn (tn − 1 + γ ) (L (xn, λ∗) − L (x∗, λn) + ‖Axn − b‖)
� En (x∗, rn) � C4 (log(n − 1) + 1) ,

therefore, since 2 + log(n − 1) � 2(n − 1)1/2,

‖Axn − b‖ � C4 (log(n − 1) + 1)

γ κ2n2
� 2C4

γ κ2n3/2
.
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Taking into account also Lemma 3.16 and the definition of C4, we have that for every
k � 1

‖Axk − b‖ � 2C4

γ κ2k3/2
.

Using this estimate in (3.56a), we obtain for every k � 1

Ek+1 (x∗, rn) � Ek (x∗, rn) + α − 2

(α − 1)2
2C4

γ κ2k3/2
.

By using once again a the telescoping sum argument, we conclude that for every k � 1

Ek+1 (x∗, rn) � E1 (x∗, rn) + 2C4(α − 2)

γ κ2 (α − 1)2

k∑

i=1

1

i3/2

� C1 + 2C4(α − 2)

γ κ2 (α − 1)2
∑

i�1

1

i3/2
< +∞.

Fromhere, (3.54) followsby choosing k := n−1, andbyusing thatγ t2n � tn(tn−1+γ )

and (3.57). Statement (3.55) follows from (3.54) by repeating the arguments at the
end of the proof of Theorem 3.17. ��

Now we come to the second case, namely, when m := 2
α−1 < γ � 1, which

implicitly requires that α > 3. For the proof of the fast convergence rates we will
make use of the following result which can be found in [18, Lemma 2] (see, also, [17,
Lemma 3.18]).

Lemma 3.19 Let {ζk}k�1 ⊆ G be a sequence such that there exist δ > 1 and M > 0
with the property that for every K � 1

∥∥∥∥
∥
((δ − 1) K + δ) ζK+1 +

K∑

k=1

ζk

∥∥∥∥
∥

� M .

Then for every K � 1 it holds

∥∥∥∥
∥

K∑

k=1

ζk

∥∥∥∥
∥

� M .

Theorem 3.20 Let {(xk, λk)}k�0 be the sequence generated by Algorithm 1 with the
sequence {tk}k�1 chosen to satisfy Chambolle–Dossal rule (3.43), m := 2

α−1 < γ �
1, β > 0, and (x∗, λ∗) ∈ S. Then for every k � 1 it holds

0 � L (xk, λ∗) − L (x∗, λk) � E1 (x∗, λ∗)
γ t2k

, (3.58)
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0 � ‖Axk − b‖ � C6

t2k
, (3.59)

and

− ‖λ∗‖C6

t2k
� f (xk) − f (x∗) � 1

t2k

(E1 (x∗, λ∗)
γ

+ ‖λ∗‖C6

)
, (3.60)

where

C6 := 2 (1 + ϕm)2

(

2 (α − 1)2
γ

ρ
sup
k�1

‖νk‖ + (α − 1)2γ ‖Ax1 − b‖

+ 1

κ
(|ω0| + |ω1|)

√
2E1 (x∗, λ∗)

βγ

)

,

with

δ := 1 + 1

γ (α − 1) − 2
> 1,

ω0 := δ (α − 2) − 2 (α − 1) and ω1 := (δ − 1) (α − 2) − 1.

Proof Relation (3.58) follows from (3.35). We fix K � 1. For every 1 � k � K ,
according to (3.3g), we have

tk+1
(
Azγk+1 − γ b

) = tk+1 (tk+1 − 1 + γ ) (Axk+1 − b) − tk+1 (tk+1 − 1) (Axk − b)

= tk+1 (tk+1 − 1 + γ ) (Axk+1 − b) − tk (tk − 1 + γ ) (Axk − b)

+ (tk (tk − 1 + γ ) − tk+1 (tk+1 − 1)) (Axk − b) .

Taking into consideration (3.11), (3.3h) and (3.53), by a telescoping argument it yields

(α − 1)2
γ

ρ
(νK+1 − ν1)

= (α − 1)2
γ

ρ

K∑

k=1

(νk+1 − νk) = (α − 1)2
K∑

k=1

tk+1
(
Azγk+1 − γ b

)

= (α − 1)2 tK+1 (tK+1 − 1 + γ ) (AxK+1 − b) − (α − 1)2 γ (Ax1 − b)

+ (α − 1)2
K∑

k=1

(tk (tk − 1 + γ ) − tk+1 (tk+1 − 1)) (Axk − b)

= (K + α − 1) (K + γ (α − 1)) (AxK+1 − b) − (α − 1)2 γ (Ax1 − b)

+
K∑

k=1

((γ (α − 1) − 2) (k + α − 2) + α − 2) (Axk − b) . (3.61)
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We define

δ := 1 + 1

γ (α − 1) − 2
> 1,

ω0 := δ (α − 2) − 2 (α − 1) and ω1 := (δ − 1) (α − 2) − 1,

and

ζk := ((γ (α − 1) − 2) (k + α − 2) + α − 2) (Axk − b) for k = 1, . . . , K .

It holds

(K + α − 1) (K + γ (α − 1))
(
AxK+1 − b

)

= (δ − 1) K ((γ (α − 1) − 2) (K + α − 1) + α − 2)
(
AxK+1 − b

)

+ δ ((γ (α − 1) − 2) (K + α − 1) + α − 2)
(
AxK+1 − b

) − (ω1K + ω0)
(
AxK+1 − b

)

= ((δ − 1) K + δ) ζK+1 − (ω1K + ω0)
(
AxK+1 − b

)
. (3.62)

Furthermore, it follows from (3.40) and (3.35) that

‖(ω1K + ω0) (AxK+1 − b)‖ � (|ω0| + |ω1|) (K + 1) ‖AxK+1 − b‖
� 1

κ
(|ω0| + |ω1|) tK+1 ‖AxK+1 − b‖

� 1

κ
(|ω0| + |ω1|)

√
2E1 (x∗, λ∗)

βγ
. (3.63)

Combining the relations (3.61), (3.62) and (3.63), we get via the triangle inequality

∥∥∥
∥∥
((δ − 1) K + δ) ζK+1 +

K∑

k=1

ζk

∥∥∥
∥∥

=
∥∥∥∥(α − 1)2

γ

ρ
(νK+1 − ν1) + (α − 1)2γ (Ax1 − b) + (ω1K + ω0) (AxK+1 − b)

∥∥∥∥

� (α − 1)2
γ

ρ
‖νK+1 − ν1‖ + (α − 1)2γ ‖Ax1 − b‖

+ ‖(ω1K + ω0) (AxK+1 − b)‖
� C7 := 2 (α − 1)2

γ

ρ
sup
k�1

‖νk‖ + (α − 1)2γ ‖Ax1 − b‖

+ 1

κ
(|ω0| + |ω1|)

√
2E1 (x∗, λ∗)

βγ
< +∞, (3.64)

where we also recall that, due to Proposition 3.13, it holds supk�1 ‖νk‖ < +∞.
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Inequality (3.64) holds for every K � 1 (notice that C7 is independent of K ),

consequently, we can apply Lemma 3.19 to conclude that
∥∥∥
∑K

k=1 ζk

∥∥∥ � C7 for every

K � 1. By using again the triangle inequality and (3.64), we obtain for every K � 1
that

(δ − 1) K ‖ζK+1‖ � ‖((δ − 1) K + δ) ζK+1‖ � 2C7. (3.65)

Using the inequality (3.13) in Lemma 3.5, we see that for every K � 1 it holds

t2K+1

(1 + ϕm)2
‖AxK+1 − b‖ � K 2 ‖AxK+1 − b‖ � (δ − 1) K ‖ζK+1‖ . (3.66)

By combining (3.65) and (3.66), we obtain (3.59).
Statement (3.60) follows from (3.58) and (3.59) by repeating the arguments at the

end of the proof of Theorem 3.17. ��

3.4.3 The Attouch–Cabot [1] rule

Another inertial parameter rule used in the literature in the context of fast numerical
algorithms is the one proposed by Attouch and Cabot in [1], which reads for α � 3

tk := k − 1

α − 1
∀k � 1.

This sequence is monotonically increasing and it fulfills (3.2) with m := 2

α − 1
� 1

as, for every k � 1, it holds

t2k+1−mtk+1−t2k =(tk+1 − tk) (tk+1 + tk) − mtk+1 = 1

α − 1

2k − 1

α − 1
− 2

α − 1

k

α − 1

= − 1

(α − 1)2
< 0.

This shows that the sequence {tk}k�1 has very much in common with the Chambolle–
Dossal parameter rule. The only significant difference is that is starts at 0 and that
tk � 1 holds only for k � k1 := �α� + 1. Consequently, the fast convergence rate
results for the primal-dual gap, the feasibility measure and the objective function
value are valid also for the Attouch–Cabot rule. This can be easily seen by slightly
adapting the proofs made in the setting of the Chambolle–Dossal rule by taking into
consideration that some of the estimates hold only for k � k1. This exercise is left to
the reader.
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4 Convergence of the iterates

In this section we will turn our attention to the convergence of the sequence of primal-
dual iterates generated by Algorithm 1 to a primal-dual solution of (1.1). First, we will
prove that the first assumption in the Opial Lemma is verified and to this end we will
need the following technical lemma.

Lemma 4.1 Let {θk}k�1 , {ak}k�1 , {tk}k�1 be real sequences such that {ak}k�1 is
bounded from below and {tk}k�1 is nondecreasing and bounded from below by 1,
and {dk}k�1 be a nonnegative sequence such that for every k � 1

ak+1 � ak + θk+1, (4.1a)

tk+1θk+1 � (tk − 1) θk + dk . (4.1b)

If
∑

k�1 dk < +∞, then the sequence {ak}k�1 is convergent.

Proof It follows from (4.1b) that for every k � 1

tk+1θk+1 � (tk − 1) θk + dk � (tk − 1) [θk]+ + dk, (4.2)

where [·]+ denotes the positive part. Since the right-hand side of this inequality is
nonnegative, it yields that for every k � 1

[θk]+ � tk [θk]+ − tk+1
[
θk+1

]
+ + dk .

which, by telescoping cancellation, gives
∑

k�1 [θk]+ < +∞.
According to (4.1a), we have that for every k � 1 it holds

ak+1 � ak + θk+1 � ak + [
θk+1

]
+ .

By using Lemma 1.1 we obtain from here that the sequence {ak}k�1 is convergent. ��
Proposition 4.2 Let {(xk, λk)}k�0 be the sequence generated by Algorithm 1with 0 <

m < γ < 1. Then for every (x∗, λ∗) ∈ S the limit limk→+∞ ‖(xk, λk) − (x∗, λ∗)‖W
exists.

Proof Let (x∗, λ∗) ∈ S be fixed. For brevity we will write

u∗ := (x∗, λ∗) ∈ S and uk := (xk, λk) ∈ H × G ∀k � 0.

It follows from (3.33) that Ek+1 (x∗, λ∗) � Ek (x∗, λ∗) for every k � 1. In view of
(3.41), after rearranging some terms, we get for every k � 1

tk+1 (tk+1 − 1 + γ )

(
Lβ (xk+1, λ∗) − Lβ (x∗, λk+1) + 1

2
‖uk+1 − uk‖2W

)

+ γ

2
tk+1

(
‖uk+1 − u∗‖2W − ‖uk − u∗‖2W

)
+ 1 − γ

2ρ
tk+1 ‖λk+1 − λk‖2
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� (tk − 1) (tk − 1 + γ )

(
Lβ (xk, λ∗) − Lβ (x∗, λk) + 1

2
‖uk − uk−1‖2W

)

+ γ

2
(tk − 1)

(
‖uk − u∗‖2W − ‖uk−1 − u∗‖2W

)
+ 1 − γ

2ρ
(tk − 1) ‖λk − λk−1‖2

+ (tk − 1 + γ )
(
Lβ (xk, λ∗) − Lβ (x∗, λk)

) + 1

2
(tk+1 − 1 + γ ) ‖uk+1 − uk‖2W

+ 1 − γ

2ρ
‖λk+1 − λk‖2 . (4.3)

Set a0 := γ

2
‖u0 − u∗‖2W � 0 and for every k � 1

ak := d f racγ 2 ‖uk − u∗‖2W � 0,

θk := (tk − 1 + γ )

(
Lβ (xk, λ∗) − Lβ (x∗, λk) + 1

2
‖uk − uk−1‖2W

)

+ (ak − ak−1) + 1 − γ

2ρ
‖λk − λk−1‖2 ,

dk := (tk − 1 + γ )
(
Lβ (xk, λ∗) − Lβ (x∗, λk)

) + 1

2
(tk+1 − 1 + γ ) ‖uk+1 − uk‖2W

+ 1 − γ

2ρ
‖λk+1 − λk‖2 � 0.

We notice that for every k � 1 the estimate (4.3) becomes (4.1b), while (4.1a) obvi-
ously holds. As 0 < m < γ < 1, it follows fromProposition 3.9 that

∑
k�1 dk < +∞.

Hence, we can apply Lemma 4.1 to conclude that {‖(xk, λk) − (x∗, λ∗)‖W }k�1 is
convergent. ��
The following result is the discrete counterpart of [8, Theorem 4.7] (see (2.2)). Its
proof is a direct consequence of Proposition 3.9 and Proposition 3.12.

Theorem 4.3 Let {(xk, λk)}k�0 be the sequence generated by Algorithm 1 with the

sequence {tk}k�1 chosen to satisfy (3.40), 0 < m < γ � 1, 0 < σ <
γ

L + γβ‖A‖2 ,
β > 0, and (x∗, λ∗) ∈ S. Then it holds

‖∇ f (xk)−∇ f (x∗)‖=o

(
1√
k

)
and

∥∥A∗λk − A∗λ∗
∥∥=o

(
1√
k

)
as k → +∞.

consequently,

‖∇xL (xk, λk)‖ = ∥∥∇ f (xk) + A∗λk
∥∥ = o

(
1√
k

)
as k → +∞,

and

‖∇λL (xk, λk)‖ = ‖Axk − b‖ = o

(
1√
k

)
as k → +∞.
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As seen in Sect. 3.4, if, in addition, {tk}k�1 is chosen to satisfy Chambolle–Dossal or
Attouch–Cabot rule and m := 2

α−1 , then

‖∇λL (xk, λk)‖ = ‖Axk − b‖ = O
(

1

k2

)
as k → +∞.

Now we can prove the main theorem of this section establishing the convergence
of the sequence of iterates generated by Algorithm 1.

Theorem 4.4 Let {(xk, λk)}k�0 be the sequence generated by Algorithm 1 with the

sequence {tk}k�1 chosen to satisfy (3.40), 0 < m < γ < 1, 0 < σ <
γ

L + γβ‖A‖2
and β > 0. Then the sequence {(xk, λk)}k�0 converges weakly to a primal-dual
optimal solution of (1.1).

Proof FromProposition 4.2 it follows that the limit lim
k→+∞ ‖(xk, λk) − (x∗, λ∗)‖ exists

for every (x∗, λ∗) ∈ S. This proves the first condition of Lemma 1.2.
In order to prove condition (ii), let

(
x̃, λ̃

) ∈ H × G be an arbitrary weak
sequential cluster point of {(xk, λk)}k�0. This means that there exists a subsequence{(
xkn , λkn

)}
n�0 which converges weakly to

(
x̃, λ̃

)
as n → +∞. According to Theo-

rem 4.3 we have ∇ f (xk) + A∗λk → 0 and Axk − b → 0 as k → +∞, hence,

∇ f
(
xkn

) + A∗λkn → 0 and Axkn − b → 0 as n → +∞.

Since the graph of the operator TL is sequentially closed in (H × G)weak ×
(H × G)strong (cf. [5, Proposition 20.38]), it follows from here that

{∇ f (̃x) + A∗̃λ = 0
Ax̃ − b = 0

.

In other words,
(
x̃, λ̃

) ∈ S and the proof is complete. ��
Remark 4.5 If the sequence {tk}k�1 is chosen to satisfy the Chambolle–Dossal or the
Attouch–Cabot rule with

α > 3, m := 1

α − 2
< γ < 1, 0 < σ <

γ

L + γβ‖A‖2 and β > 0,

then Theorem 4.4 guarantees that the sequence {(xk, λk)}k�0 converges weakly to a
primal-dual optimal solution of (1.1). This statement is in addition to the fast conver-
gence rates of orderO

(
1/k2

)
for the primal-dual gap, the feasibility measure, and the

objective function value.
If the sequence {tk}k�1 is chosen to satisfy the Nesterov rule, then, as we have seen,

the fast convergence rate results also hold, however, since in this setting m = γ =
1, one cannot apply Theorem 4.4 to obtain the convergence of the iterates. This is
consistent with the unconstrained case for which it is also not known if the sequence
of iterates generated by the fast gradient method with inertial parameters following
the Nesterov rule converges.
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7. Boţ, R.I.: Conjugate Duality in Convex Optimization. Lecture Notes in Economics and Mathematical
Systems, vol. 637. Springer, Berlin Heidelberg (2010)
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