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Abstract

In this paper, we study multistage stochastic mixed-integer nonlinear programs (MS-
MINLP). This general class of problems encompasses, as important special cases,
multistage stochastic convex optimization with non-Lipschitzian value functions and
multistage stochastic mixed-integer linear optimization. We develop stochastic dual
dynamic programming (SDDP) type algorithms with nested decomposition, determin-
istic sampling, and stochastic sampling. The key ingredient is a new type of cuts based
on generalized conjugacy. Several interesting classes of MS-MINLP are identified,
where the new algorithms are guaranteed to obtain the global optimum without the
assumption of complete recourse. This significantly generalizes the classic SDDP algo-
rithms. We also characterize the iteration complexity of the proposed algorithms. In
particular, for a (7' + 1)-stage stochastic MINLP satisfying L-exact Lipschitz regular-
ization with d-dimensional state spaces, to obtain an e-optimal root node solution, we
prove that the number of iterations of the proposed deterministic sampling algorithm
is upper bounded by O((zLTT)d ), and is lower bounded by (’)((%)d ) for the general
case or by (’)((LS—Z)W 2=1 for the convex case. This shows that the obtained complexity
bounds are rather sharp. It also reveals that the iteration complexity depends polyno-
mially on the number of stages. We further show that the iteration complexity depends
linearly on T , if all the state spaces are finite sets, or if we seek a (7 ¢)-optimal solution
when the state spaces are infinite sets, i.e. allowing the optimality gap to scale with
T. To the best of our knowledge, this is the first work that reports global optimiza-
tion algorithms as well as iteration complexity results for solving such a large class
of multistage stochastic programs. The iteration complexity study resolves a conjec-

B Xu Andy Sun
sunx @mit.edu

Shixuan Zhang

szhang483 @gatech.edu

H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of
Technology, Atlanta, GA, USA

Sloan School of Management, Operations Research Center, Massachusetts Institute of Technology,
Cambridge, MA, USA

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-022-01875-8&domain=pdf
http://orcid.org/0000-0003-3917-9418

936 S.Zhang, X. A. Sun

ture by the late Prof. Shabbir Ahmed in the general setting of multistage stochastic
mixed-integer optimization.
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1 Introduction

A multistage stochastic mixed-integer nonlinear program (MS-MINLP) is a sequential
decision making problem under uncertainty with both continuous and integer deci-
sions and nonconvex nonlinear objective function and constraints. This provides an
extremely powerful modeling framework. Special classes of MS-MINLP, such as mul-
tistage stochastic linear programming (MS-LP) and mixed-integer linear programming
(MS-MILP), have already found a wide range of applications in diverse fields such
as electric power system scheduling and expansion planning [3, 36, 37, 39], portfolio
optimization under risk [8, 21, 26], and production and capacity planning problems
[2, 4,9, 12], just to name a few.

Significant progress has been made in the classic nested Benders decomposition
(NBD) algorithms for solving MS-LP with general scenario trees, and an efficient
random sampling variation of NBD, the stochastic dual dynamic programming (SDDP)
algorithm, is developed for MS-LP with scenario trees having stagewise independent
structures. In the past few years, these algorithms are extended to solve MS-MILP [31].
For example, SDDP is generalized to Stochastic Dual Dynamic integer Programming
(SDDiP) algorithm for global optimization of MS-MILP with binary state variables
[38, 39]. Despite the rapid development, key challenges remain in further extending
SDDP to the most general problems in MS-MINLP: 1) There is no general cutting plane
mechanism for generating exact under-approximation of nonconvex, discontinuous,
or non-Lipschitzian value functions; 2) The computational complexity of SDDP-type
algorithms is not well understood even for the most basic MS-LP setting, especially the
interplay between iteration complexity of SDDP, optimality gap of obtained solution,
number of stages, and dimension of the state spaces of the MS-MINLP.

This paper aims at developing new methodologies for the solution of these chal-
lenges. In particular, we develop a unified cutting plane mechanism in the SDDP
framework for generating exact under-approximation of value functions of a large
class of MS-MINLP, and develop sharp characterization of the iteration complexity
of the proposed algorithms. In the remaining of this section, we first give an overview
of the literature, then summarize more details of our contributions.

1.1 Literature review

Benders decomposition [6], Dantzig-Wolfe decomposition [11], and the L-shaped
method [35] are standard algorithms for solving two-stage stochastic LPs. Nested
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decomposition procedures for deterministic models are developed in [16, 20]. Lou-
veaux [25] first generalized the two-stage L-shaped method to multistage quadratic
problems. Nested Benders decomposition for MS-LP was first proposed in Birge [7]
and Pereira and Pinto [28]. SDDP, the sampling variation of NBD, was first proposed
in [29]. The largest consumer of SDDP by far is in the energy sector, see e.g. [14, 23,
29, 34].

Recently, SDDP has been extended to SDDiP [38]. Itis observed that the cuts gener-
ated from Lagrangian relaxation of the nodal problems in an MS-MILP are always tight
at the given parent node’s state, as long as all the state variables only take binary values
and have complete recourse. From this fact, the SDDiP algorithm is proved to find an
exact optimal solution in finitely many iterations with probability one. In this way, the
SDDiP algorithm makes it possible to solve nonconvex problems through binarization
of the state variables [19, 39]. In addition, when the value functions of MS-MILP
with general integer state variables are assumed to be Lipschitz continuous, which is a
critical assumption, augmented Lagrangian cuts with an additional reverse norm term
to the linear part obtained via augmented Lagrangian duality are proposed in [1].

The convergence analysis of the SDDP-type algorithms begins with the linear cases
[10, 18, 24, 30, 33], where almost sure finite convergence is established based on the
polyhedral nodal problem structures. For convex problems, if the value functions are
Lipschitz continuous and the state space is compact, asymptotic convergence of the
under-approximation of the value functions leads to asymptotic convergence of the
optimal value and optimal solutions [15, 17]. By constructing over-approximations
of value functions, an SDDP with a deterministic sampling method with asymptotic
convergence is proposed for the convex case in [5]. Upon completion of this paper,
we became aware of the recent work [22], which proves iteration complexity upper
bounds for multistage convex programs under the assumption that all the value func-
tions and their under-approximations are all Lipschitz continuous. It is shown that
for discounted problems, the iteration complexity depends linearly on the number of
stages. However, the following conjecture (suggested to us by the late Prof. Shab-
bir Ahmed) remains to be resolved, especially for the problems without convexity,
Lipschitz continuity, or discounts:

Conjecture 1 The number of iterations needed for SDDP/SDDiP to find an optimal
first-stage solution grows linearly in terms of the number of stages 7', while it may
depend nonlinearly on other parameters such as the diameter D and the dimension d
of the state space.

Our study resolves this conjecture by giving a full picture of the iteration complexity of
SDDP-type algorithms in a general setting of MS-MINLP problems that allow exact
Lipschitz regularization (defined in Sect. 2.3). In the following, we summarize our
contributions.

1.2 Contributions
1. To tackle the MS-MINLP problems without Lipschitz continuous value functions,

which the existing SDDP algorithms and complexity analyses cannot handle, we
propose a regularization approach to provide a surrogate of the original problem
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such that the value functions become Lipschitz continuous. In many cases, the
regularized problem preserves the set of optimal solutions.

2. We use the theory of generalized conjugacy to develop a cut generation scheme,
referred to as generalized conjugacy cuts, that are valid for value functions of
MS-MINLP. Moreover, generalized conjugacy cuts are shown to be tight to the
regularized value functions. The generalized conjugacy cuts can be replaced by
linear cuts without compromising such tightness when the problem is convex.

3. With the regularization and the generalized conjugacy cuts, we propose three algo-
rithms for MS-MINLP, including nested decomposition for general scenario trees,
SDDP algorithms with random sampling as well as deterministic sampling similar
to [5] for stagewise independent scenario trees.

4. We obtain upper and lower bounds on the iteration complexity for the proposed
SDDP with both sampling methods for MS-MINLP problems. The complexity
bounds show that in general, Conjecture 1 holds if only we seek a (T ¢)-optimal
solution, instead of an e-optimal first-stage solution for a (7" 4 1)-stage problem,
or when all the state spaces are finite sets.

In addition, this paper contains the following contributions compared with the recent
independent work [22]: (1) We consider a much more general class of problems which
are not necessarily convex. As aresult, all the iteration complexity upper bounds of the
algorithms are also valid for these nonconvex problems. (2) We use the technique of
regularization to make the iteration complexity bounds independent of the subproblem
oracles. This is particularly important for the conjecture, since the Lipschitz constants
of the under-approximation of value functions may exceed those of the original value
functions. (3) We propose matching lower bounds on the iteration complexity of the
algorithms and characterize important cases for the conjecture to hold.

This paper is organized as follows. In Sect. 2 we introduce the problem formulation,
regularization of the value functions, and the approximation scheme using generalized
conjugacy. Sect. 3 proposes SDDP algorithms. Sect. 4 investigates upper bounds on
the iteration complexity of the proposed algorithm, while Sect. 5 focuses on lower
bounds, therefore completes the picture of iteration complexity analysis. We finally
provide some concluding remarks in Sect. 6.

2 Problem formulations

In this section, we first present the extensive and recursive formulations of multistage
optimization. Then we characterize the properties of the value functions, with examples
to show that they may fail to be Lipschitz continuous. With this motivation in mind,
we propose a penalty reformulation of the multistage problem through regularization
of value functions and show that it is equivalent to the original formulation for a
broad class of problems. Finally, we propose generalized conjugacy cuts for under-
approximation of value functions.

2.1 Extensive and recursive formulation

For a multistage stochastic program, let 7 = (N, £) be the scenario tree, where N is
the set of nodes and £ is the set of edges. For each node n € N, let a(n) denote the
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parent node of n, C(n) denote the set of child nodes of n, and 7 (n) denote the subtree
starting from the node n. Given a node n € N, let t(n) denote the stage that the node
n is in and let 7:= max, ¢ A7 ¢ (n) denote the last stage of the tree 7. A node in the last
stage is called a leaf node, otherwise a non-leaf node. The set of nodes in stage ¢ is
denoted as N (t):={n € N : t(n) = t}. We use the convention that the root node of
the tree is denoted as r € N with £(r) = 0 so the total number of stages is T + 1. The
parent node of the root node is denoted as a(r), which is a dummy node for ease of
notation.

For every node n € NV, let F, denote the feasibility set in some Euclidean space of
decision variables (x,, y,) of the nodal problem at node n. We refer to x,, as the state
variable and y, as the internal variable of node n. Denote the image of the projection
of F,, onto the subspace of the variable x,, as A},, which is referred to as the state space.
Let x4y = 0 serve as a dummy parameter and thus X, = {0}. The nonnegative
nodal cost function of the problem at node n is denoted as f;(X4(n), Yn, X») and is
defined on the set {(z, y, x) : 2 € Xy, (x, y) € F,}. We allow f;, to take the value
~+o00 so indicator functions can be modeled as part of the cost. Let p, > 0 for all
n € N denote the probability that node n on the scenario tree is realized. For the root
node, p, = 1. The transition probability that node m is realized conditional on its
parent node n being realized is given by pp,; := pm/pn for all edges (n, m) € £.

The multistage stochastic program considered in this paper is defined in the fol-
lowing extensive form:

vprim:z min Z Pnfn(xa(n)a Vi> Xn)- ()
X, yn)eFn,
VneN nEN

The recursive formulation of the problem (1) is defined as

On (xa(n)):z min}_ Jn (xa(n)s Yns Xn) + Z DPrm Qm (Xn) ¢ (2)

Xn,Yn)€Fn meCn)

where n € 7 is a non-leaf node and Q, (x4(n)) is the value function of node n. At
a leaf node, the sum in (2) reduces to zero, as there are no child nodes C(n) = &.
The problem on the right-hand side of (2) is called the nodal problem of node n. Its
objective function consists of the nodal cost function f, and the expected cost-to-go
function, which is denoted as Q,, for future reference, i.e.

Qu(x):=">_ PumQm(xn). 3)
meC(n)

To ensure that the minimum in problem (1) is well defined and finite, we make the
following very general assumption on f,, and F, throughout the paper.

Assumption 1 For every node n € N, the feasibility set J, is compact, and the
nodal cost function f, is nonnegative and lower semicontinuous (l.s.c.). The sum
Zne/\/ Dn [ is a proper function, i.e., there exists (x,, y,) € F, for all nodes n € N/
such that the sum ), s Pu frn (Xa(n)» Yn» Xn) < 4-00.
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Note that the state variable x,(,) only appears in the objective function f;, of node
n, not in the constraints. Perhaps the more common way is to allow x, () to appear in
the constraints of node n. It is easy to see that any such constraint can be modeled by
an indicator function of (x4 (), Xn, yn) in the objective f;,.

2.2 Continuity and convexity of value functions

The following proposition presents some basic properties of the value function Q,
under Assumption 1.

Proposition 1 Under Assumption 1, the value function Q, is lower semicontinuous
(Ls.c.) for all n € N'. Moreover, for any node n € N,

L. if fu(z,y, x) is Lipschitz continuous in the first variable z with constant I, i.e.
| fu(z, y, X) = fu (@ y, X)| < lnllz =2/ || forany z, 2’ € Xy(y and any (x, y) € Fy,
then Q,, is also Lipschitz continuous with constant l,;

2. if Xy and F,, are convex sets, and f, and Q, are convex functions, then Q, is
also convex.

The proof is given in Sect. A.1.1. When Q,, is ls.c. for all m € C(n), the sum
> <C(n) Pnm Qm 1s L.s.c.. Therefore, the minimum in the definition (2) is well define,
since JF;, is assumed to be compact.

If the objective function f;, (X4(n), Y, Xx) is not Lipschitz, e.g., when it involves
an indicator function of x,(,), or equivalently when x,(,) appears in the constraint
of the nodal problem of Q, (x4()), then the value function Q, may not be Lipschitz
continuous, as is shown by the following examples.

Example 1 Consider the convex nonlinear two-stage problem

v*:= min {x+z =D+ wr<1l, w=ux, x €0, 1]}.
X,Z,Ww
The objective function and all constraints are Lipschitz continuous. The optimal objec-
tive value v* = 0, and the unique optimal solution is (x*, z*, w*) = (0, 0, 0). At the
optimal solution, the inequality constraint is active. Note that the problem can be
equivalently written as v* = ming<y<; x + Q(x), where Q(x) is defined on [0, 1] as
Q(x):=min{z:Jw e R, st.(z— D* +w? <1, w=x} =1-+1—x2 whichis
not locally Lipschitz continuous at the boundary point x = 1. Therefore, Q(x) is not
Lipschitz continuous on [0, 1].

Example 2 Consider the mixed-integer linear two-stage problem
v i=min{l —2x+z : z>x, x €[0,1], z €{0,1}}.

The optimal objective value is v* = 0, and the unique optimal solution is (x*, z*) =
(1, 1). Note that the problem can be equivalently written as v* = min{1 —2x+ Q(x) :
0 < x < 1}, where the function Q(x) is defined on [0, 1] as Q(x):=min{z € {0, 1} :
z > x}, whichequals O if x =0, and 1 for all 0 < x < 1, i.e. Q(x) is discontinuous
at x = 0, therefore, it is not Lipschitz continuous on [0, 1].
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These examples show a major issue with the introduction of value functions Q,,
namely Q, may fail to be Lipschitz continuous even when the original problem only
has constraints defined by Lipschitz continuous functions. This could lead to failure of
algorithms based on approximation of the value functions. In the next section, we will
discuss how to circumvent this issue without compromise of feasibility or optimality
for a wide range of problems.

2.3 Regularization and penalty reformulation

The main idea of avoiding failure of cutting plane algorithms in multistage dynamic
programming is to use some Lipschitz continuous envelope functions to replace the
original value functions, which we refer to as regularized value functions.

To begin with, we say a function ¥ : R? — R is a penalty function, if ¥ (x) = 0
if and only if x = 0, and the diameter of its level set lev, (V) := {x € R9 . U(x) <o}
approaches O when a — 0. In this paper, we focus on penalty functions that are locally
Lipschitz continuous, the reason for which will be clear from Proposition 2.

For each node n, we introduce a new variable z,, as a local variable of node n and
impose the duplicating constraint x,(,) = z,. Thisis a standard approach for obtaining
dual variables through relaxation (e.g. [38]). The objective function can then be written
as f,(zu, Yn» xn). Let ¥, be a penalty function for node n € A. The new coupling
constraint is relaxed and penalized in the objective function by o, ¥, (X4(n) — zs) for
some o, > 0. Then the DP recursion with penalization becomes

Qs(xa(n))::( min fn(znv)’naxn)+Un¢n(xa(n)_zn)+ Z anQnR1(xn) , (4)

Xn,Yn)€Fn,
20 €Xam) meC(n)

foralln € N, and Q,lf is referred to as the regularized value function. By convention,
Xary = {xa} = {0} and therefore, penalization ¥, (x4 — z-) = 0 for any z, €
Xu(ry. Since the state spaces are compact, without loss of generality, we can scale the
penalty functions v, such that the Lipschitz constant of yr,, on Xy (,) — &) is 1. The
following proposition shows that QE is a Lipschitz continuous envelope function of
0, for all nodes n.

Proposition 2 Suppose ,, is a 1-Lipschitz continuous penalty function on the compact
set Xy — Xa) foralln € N. Then QE(x) < Qu(x) forall x € Xy, and Qs(x)
is 0,-Lipschitz continuous on Xy,). Moreover, if the original problem (2) and the
penalty functions Vr, are convex, then Qg(x) is also convex.

The key idea is that by adding a Lipschitz function v, into the nodal problem, we
can make Q,If (x) Lipschitz continuous even when O, (x) is not. The proof is given in
Sect. A.1.2. The optimal value of the regularized root nodal problem

V= min 3 fr (e e %)+ D prn @ () 3)
. yr)eFs meC(r)
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942 S.Zhang, X. A. Sun

is thus an underestimation of vP™™, j.e. v™8 < P For notational convenience, we
also define the regularized expected cost-to-go function for each node n as:

Q@)=Y Pam Oy (n). 6)
meC(n)

Definition 1 For any ¢ > 0, a feasible root node solution (x,, y,) € F is said to be
g-optimal to the regularized problem (4) if it satisfies f,(xq¢r), yr, Xr) + QB (x) <
V'8 4 g,

Next we discuss conditions under which v™¢ = vP"™ and any optimal solution
(X1, Yn)nen to the regularized problem (4) is feasible and hence optimal to the original
problem (2). Note that by expanding QEL in the regularized problem (4) for all nodes,
we obtain the extensive formulation for the regularized problem:

V' = Cno )Igg} e Z Pn (fn (Zns Yns Xn) + on¥n(Xan) — Zn)) . (7N
" ZZIEXC:ZI’I) neN

We refer to problem (7) as the penalty reformulation and make the following assump-
tion on its exactness for the rest of the paper.

Assumption 2 We assume that the penalty reformulation (7) is exact for the given
penalty parameters o, > 0,n € N, i.e., any optimal solution of (7) satisfies z, = X4(n)
foralln € .

Assumption 2 guarantees the solution of the regularized extensive formulation (7) is
feasible for the original problem (1), then by the fact that v™8 < vP"™ s also optimal
to the original problem, we have v™8 = vP"™ Thus regularized value functions
serve as a surrogate of the original value function, without compromise of feasibility
of its optimal solutions. A consequence of Assumption 2 is that the original and
regularized value functions coincide at all optimal solutions, the proof of which is
given in Sect. A.1.3.

Lemma 1 Under Assumption 2, any optimal solution (X, yn),eN to problem (1) sat-
isfies QE(xa(n)) =0y (xa(n))far alln #r.

We illustrate the regularization on the examples through Fig. 1a and b. In Fig. 1a, the
value function Q(x) derived in Example 1 is not Lipschitz continuous at x = 1. With
Y (x) = ||x|| and 0 = 4/3, we obtain the regularized value function, which coincides
with the original one on [0, 0.8] and is Lipschitz continuous on the entire interval
[0, 1]. In Fig. 1b, the value function Q(x) derived in Example 1 is not continuous at
x = 0. With ¥ (x) = ||x|l, 0 = 5, we obtain the regularized value function, which
coincides with the primal one on {0}U[0.2, 1] and is Lipschitz continuous on the entire
interval [0, 1]. In both examples, it can be easily verified that the penalty reformulation
is exact and thus preserves optimal solution.

We comment that Assumption 2 can hold for appropriately chosen penalty factors
in various mixed-integer nonlinear optimization problems, including
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(a) Value Functions in Example 1 (b) Value Functions in Example 2

Fig.1 Value functions in Examples 1 and 2

— convex problems with interior feasible solutions,
problems with finite state spaces,

— problems defined by mixed-integer linear functions, and
problems defined by continuously differentiable functions,

if certain constraint qualification is satisfied and proper penalty functions are chosen.
We refer the readers to Sect. B in the Appendix for detailed discussions. We emphasize
that Assumption 2 should be interpreted as a restriction on the MS-MINLP problem
class studied in this paper. Namely all problem instances in our discussion must satisfy
Assumption 2 with a given set of penalty functions ¥, and penalty parameters o,
while they can have other varying problem data such as the numbers of stages 7" and
characteristics of the state spaces A),. In general, it is possible that a uniform choice
of 0, needs to grow with T to satisfy the assumption.

2.4 Generalized conjugacy cuts and value function approximation

In this part, we first introduce generalized conjugacy cuts for nonconvex functions and
then apply it to the under-approximation of value functions of MS-MINLP.

2.4.1 Generalized conjugacy cuts
Let Q : X — R4 U {+00} be a proper, l.s.c. function defined on a compact set
X C RY. Let U be a nonempty set for dual variables. Given a continuous function

@ : X xU — R, the @-conjugate of Q (see e.g., Chapter 11-L in [32]) is defined as

0%w) = max (& (x, u) = Q(x)} ®)

The following generalized Fenchel-Young inequality holds by definition forany x € X
andu € U,

0x) + Q%) > & (x, u).
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944 S.Zhang, X. A. Sun

For any & € U and an associated maximizer x in (8), we define
CP(x|i, D) =0+ @(x, i) 9)

where 0:= — Q@ (&). Then, the following inequality, derived from the generalized
Fenchel-Young inequality, is valid for any x € X,

Q) = CP(x i, D), (10)
which we call a generalized conjugacy cut for the target function Q.
2.4.2 Value function approximation

The generalized conjugacy cuts can be used in the setting of an augmented Lagrangian
dual [1] with bounded dual variables. For a nodal problem n € A/, n # r and a point
¥ € Xy(n), define @ (x, u):=— (A, ¥ — x) — p, (¥ —x), where u := (A, p) € Rén+!
are parameters. Consider a compact set of parameters U, = {(A, p) : [|All, < ;2,0 <
p =l ,} with nonnegative bounds [, ; and [, ,, where ||-||, is the dual norm of |-||.
Consider the following dual problem

U, ;= max { min [Qn(z)+()»,)?—Z)+p1,ﬁn()?—z)]}- (11)
(A, p)ely ZeXa(n)

Denote Zz,, and ()A\n, On) as an optimal primal-dual solution of (11). The dual problem
(11) can be viewed as choosing ()A\n, On) as the value of & in (9), which makes the
constant term —Q® (i1) as large as possible, thus makes the generalized conjugacy cut
(10) as tight as possible. With this choice of the parameters, a generalized conjugacy
cut for Q,, at x is given by

@ A A A
Qn(x)zcnn(x“"n,pmvn)
= (s ¥ = x) = Pp¥n(E —x) 4 Dy, VX € Xy(n)- (12)

Proposition 3 Given the above definition of (11)-(12), if (X5, Yn)neN IS an optimal
solution to problem (1) and the bound 1, , satisfies I, , > o, for all nodes n, then
for every node n, the generalized conjugacy cut (12) is tight at Xy, i.e. Qy(X;) =

L N
Cn" (Xn | Aus Pn> Un).

The proofiis given in Sect. A.1.4. The proposition guarantees that, under Assumption 2,
the generalized conjugacy cuts are able to approximate the value functions exactly at
any state associated to an optimal solution.

In the special case where problem (2) is convex and v, (x) = ||x|| foralln € N,
the exactness of the generalized conjugacy cut holds even if we set [, , = 0, i.e. the
conjugacy cut is linear. To be precise, we begin with the following lemma.

Lemma2 Let X C R? be a convex, compact set. Given a convex, proper, L.s.c. function
0: X — RU{+4o0}, for any x € X, the inf-convolution satisfies
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Qo(o [|-D(x):=min{Q(z) + o [|x — zl[} = max min{Q(z) + (A, x —2)}. (13)
zeX Al <o zeX

The proof are given in Sect. A.1.5. Next we show the tightness in the convex case
similar to Proposition 3. The proof is given in Sect. A.1.6.

Proposition 4 Suppose (2) is convex and ,,(x) = ||x|| for all nodes n. Given the
above definition of (11)—(12), if (Xn, Yn)neN is an optimal solution to problem (1)
and the bounds satisfy l,, ;, > oy, I, = 0 for all nodes n, then for every node n, the

generalized conjugacy cut (12) is exact at xy, i.e. Q, (k) = C,;p”n G | dons P D)

In this case, the generalized conjugacy reduces to the usual conjugacy for convex
functions and the generalized conjugacy cut is indeed linear. This enables approxima-
tion of the value function that preserves convexity.

Remark 1 This proposition can be generalized to special nonconvex problems with
Q extensible to a Lipschitz continuous convex function defined on the convex hull
conv X. This is true if X’ is the finite set of extreme points of a polytope, e.g., {0, 1}<.
The above discussion provides an alternative explanation of the exactness of the
Lagrangian cuts in SDDiP [38] assuming relatively complete recourse.

3 Nested decomposition and dual dynamic programming algorithms

In this section, we introduce a nested decomposition algorithm for general scenario
trees, and two dual dynamic programming algorithms for stagewise independent sce-
nario trees. Since the size of the scenario tree could be large, we focus our attention to
finding an e-optimal root node solution x* (see definition (5),) rather than an optimal
solution {x;i},<7 for the entire tree.

3.1 Subproblem oracles

Before we propose the new algorithms, we first define subproblem oracles, which we
will use to describe the algorithms and conduct complexity analysis. A subproblem
oracle is an oracle that takes subproblem information together with the current algo-
rithm information to produce a solution to the subproblem. With subproblem oracles,
we can describe the algorithms consistently regardless of convexity.

We assume three subproblem oracles in this paper, corresponding to the forward
steps and backward steps of non-root nodes, and the root node step in the algorithms.
For non-root nodes, we assume the following two subproblem oracles.

Definition 2 (Forward Step Subproblem Oracle for Non-Root Nodes) Consider the

following subproblem for a non-root node n,

min_ { fu(2, v, X) + 0¥ (Xa) — 2) + Ou(x)} . (F)
(x,y)eFy,
ZEXa(,,)
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where the parent node’s state variable x,(,) € X4y IS a given parameter and @), :
X, — R is a Ls.c. function, representing an under-approximation of the expected
cost-to-go function Q,, (x) defined in (3). The forward step subproblem oracle finds an
optimal solution of (F) given x,,) and @,, that is, we denote this oracle as a mapping
ﬁf that takes (x4(), ®,) as input and outputs an optimal solution (x,, Yu, z,) of (F)
forn #r.

Recall that the values o, for all n € A in (F) are the chosen penalty parameters that
satisfy Assumption 2. In view of Propositions 3 and 4, we set [, , > o, and [, , =0
for the convex case with ¥, = ||-||; or [, , > o, otherwise for the dual variable set
Up :={(X, p) t 1Ml < a5, 0 < p <1, p) in the next definition.

Definition 3 (Backward Step Subproblem Oracles for Non-Root Nodes) Consider the
following subproblem for a non-root node 7,

max min Z,y,x)+ (A, x —-z2)+ X, -2+6,x)t, B
wm%wmﬂjn(y> (A, Xany — 2) + PYn(Xany — 2) + O ()}, (B)

ZEXa(n)

where the parent node’s state variable x,(;) € Xy(n) is a given parameter and @, :
X, — R is a Ls.c. function, representing an under-approximation of the expected
cost-to-go function. The backward step subproblem oracle finds an optimal solution
of (B) for the given x,(,) and @,. Similarly, we denote this oracle as a mapping ﬁ’,]?
that takes (x4(n), @) as input and outputs an optimal solution (x;, Yu, Zn; An, Pn) Of
(B) forn # r.

For the root node, we assume the following subproblem oracle.

Definition 4 (Subproblem Oracle for the Root Node) Consider the following subprob-
lem for the root node r € N,

ug&{mmmym+@@m (R)

where ©, : X, — R is a Ls.c. function, representing an under-approximation of the
expected cost-to-go function. The subproblem oracle for the root node is denoted as
O, that takes ®, as input and outputs an optimal solution (x,, y,) of (R) for the given
function ©,.

These subproblem oracles ﬁf s ﬁf, including the parameters oy, .5, and /,, , for all
n # r,and 0, will be given as inputs to the algorithms. They may return any optimal
solution to the corresponding nodal subproblem. For numerical implementation, they
are usually handled by subroutines or external solvers.

3.2 Under- and over-approximations of cost-to-go functions
We first show how to iteratively construct under-approximation of expected cost-to-go

functions using the generalized conjugacy cuts developed in Sect. 2.4. The under-
approximation serves as a surrogate of the true cost-to-go function in the algorithm.
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Leti € N be the iteration index of an algorithm. Assume (x!, y}),cpr are feasible
solutions to the regularized nodal problem (4) in the i-th iteration. Then the under-
approximation of the expected cost-to-go function is defined recursively from leaf
nodes to the root node, and inductively for i € N as

Q ()=max { Q7' (), D pamCh (x| Ay Bl Vb))t VX € X, (14)
meC(n)

where 22 = 0 on &),. In the definition (14), Cfn is the generalized conjugacy cut for

QO ati-th iteration and qﬁ,ﬁ’ (x, A, p) = —(A, xfl —X)— pYy, (xfl —x) (cf. (11)=(12)),
that is,

Cl(x A, ph, vl = — (AL xl — x) — Bl W (x] — x) + 0l (15)

where (7, 9,20 ;A ply = OB (xl, Qﬁn) and v, satisfies

Uy = fn G S K + (s X = 20) + D ¥ (vl — 230 + Q1 (Br). (16)

The next proposition shows that g; is indeed an under-approximation of Q,,, the proof
of which is given in Sect. A.2.1.

Proposition5 For anyn € N, and i € N, g;(x) is (Zmec(n) Prm s + lnp))-
Lipschitz continuous and

Q(x) = @ (x), VxeX,

Now, we propose the following over-approximation of the regularized expected
cost-to-go functions, which is used in the sampling and termination of the proposed
nested decomposition and dual dynamic programming algorithms. For i € N, at root
node r, let (x!, y!) = O, (gi_l), and, at each non-root node n, let (x, yi,zl) =
oF (xa (n)’ Qfl’l ). Then the over-approximation of the regularized expected cost-to-go
functlon is defined recursively, from leaf nodes to the child nodes of the root node,
and inductively for i € N by

conv @L_l(x), Z Pnm (Dﬁn + omllx — xf,||> , if (4) is convex
meC(n)
0, (x):= (17)
min @; 1(x), Z Pnm (17;,1 + onllx — xf, ||> , otherwise
meC(n)

where Q, = +oo for any non-leaf node n € N, Q; = 0 for any iteration i € N and
any leaf node n, and v}, satisfies
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By = Fon(Zhys iy X) + W (5 = 21,) + Ty (L), (18)

Here, the operation conv{ f, g} forms the convex hull of the union of the epigraphs
of any continuous functions f and g defined on the space R“. More precisely using
convex conjugacy, we define

conv{ f, g}(x) := (min{ f(x), g(x)})**
= sup infd {min{ f(2), g(2)} + (A, x — 2)}. (19)

rcRd z€R

The key idea behind the upper bound function (17) is to exploit the Lipschitz continuity
of the regularized value function Q ,ﬁ (x). In particular, it would follow from induction
that v, is an upper bound on QX (x!), and then, by the o,-Lipschitz continuity of
OR(x), wehave 0}, + oy [|x —xL || > QR (xi)+opmllx —xl|| > QR (x) forall x € X,,.
The next proposition summarizes this property, with the proof given in Sect. A.2.2.

Proposition 6 For any non-root noden € N andi > 1, @; (x) is (ZmeC(n) PrnmOm)-

Lipschitz continuous. Moreover, we have ﬁfn > Q}}l (x,’;) for any node m € C(n) and
thus

0 (x) > QR(x), Vxe X,

3.3 A nested decomposition algorithm for general trees

We first propose a nested decomposition algorithm in Algorithm 1 for a general sce-
nario tree. In each iteration i, Algorithm 1 carries out a forward step, a backward step,
and a root node update step. In the forward step, the algorithm proceeds from ¢ = 1 to
T by solving all the nodal subproblems with the current under-approximation of their
cost-to-go functions in stage . After all the state variables x/ are obtained for nodes
n € N, the backward step goes from ¢ = T back to 1. At each node n in stage ¢, it first
updates the under-approximation of the expected cost-to-go function. Next it solves
the dual problem to obtain an optimal primal-dual solution pair (£, $%,2; AL, pl),
which is used to construct a generalized conjugacy cut using (15), together with val-
ues Qi, and D,’; calculated with (16) and (18). Finally the algorithm updates the root
node solution using the updated under-approximation of the cost-to-go function, and
determines the new lower and upper bounds. The incumbent solution (x;, y*) may
also be updated as the algorithm output at termination, although it is not used in the
later iterations.

Algorithm 1 solves the regularized problem (4) for an e-optimal root node solution.
To justify the e-optimality of the output of the algorithm, we have the following
proposition, the proof of which is given in Sect. A.2.3.

Proposition 7 Given any ¢ > 0, if UPPERBOUND — LOWERBOUND < ¢, then the
returned solution (x)', y¥) is an g-optimal root node solution to the regularized prob-

lem (4). In particular, lfélr (xﬁ“) — g’r (xﬁ“) < ¢ for some iteration index i, then
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Algorithm 1 A nested decomposition algorithm for a general tree

Require: scenario tree 7 = (N, £) with subproblem oracles O, ﬁ,f R ﬁ}?, n#r,ande >0
*

Ensure: an g-optimal root node solution (x;", y;¥) to the regularized problem (4)
ce . . —=0 —=0
1: Initialize: i < 1;%(1) <0, Q, < +ooVn:C(n) #2and Q,, < 0Vn:Cn) =02
2: Evaluate (xrl, yrl) = 0,(0)
3: Set LOWERBOUND < f;-(x4(r), ¥}, x}), UPPERBOUND < +00
4: while UPPERBOUND — LOWERBOUND > ¢ do

5 forr=1,...,T —1do > i-th forward step
6: for n € N'(t) do )

7: Evaluate (x), y}, zh) = ﬁf(x;(n),gifl)

8: end for

9:  end for

10: fort=T,...,1do > i-th backward step
11: for n € N(¢) do .

12: Update gjq and @:1 using (14) and (17)

13: Evaluate (%], $}, 2 My, A) = Op (xL ). QF)

14: Calculate C,, vi;, and ¥, using (15), (16), and (18)

15: end for

16: end for .

17:  Update Q’r and é’r using (14) and (17) > root node update

18:  Evaluate (x£+1 R yi“) =0 (gﬁ)
19:  Update LOWERBOUND < f;-(xg(ry, yiT !, xi ) + Q1 (xi 1)
20:  if UPPERBOUND > f; (xa(ry, yi ', xi1) + Q). (xI 1) then

21 Update UPPERBOUND < fy (xq(ry, yiT 1, i) 4+ QL (xit1)
22: Set (xf, y¥) = (it it

23:  endif

24 i <«i+1

25: end while

UPPERBOUND — LOWERBOUND < ¢ and Algorithm 1 terminates after the i-th itera-
tion.

3.4 A deterministic sampling dual dynamic programming algorithm

Starting from this subsection, we turn our attention to stagewise independent stochastic
problems, which is defined in the following assumption.

Assumption3 For any t+ = 1,...,T7 — 1 and any n,n’ € N(¢), the state space,
the transition probabilities, as well as the data associated with the child nodes C(n)
and C(n') are identical. In particular, this implies O, (x) = Q,(x)=:9Q;(x) for all
xeX, =Xy=2X, CR%.

We denote n ~ n’ for n,n’ € N(¢t) forsomet = 1,...,T — 1, if the nodes n, n’
are defined by identical data. We then use N (t) := N(t)/ ~ to denote the set of
nodes with size N; := |J\~/' (t)| that are defined by distinct data in stage ¢ for all
t=1,....,T — 1, ie. N = UtTZON(t) forms a recombining scenario tree [39].
For each node m € ./\7(1‘), we denote p;_i,, = pum for any n € ./\7(t — 1) since
Pnom = Pp.m forany n,n’ € N(t —1). Due to stagewise independence, it suffices
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to keep track of the state of each stage in the algorithm, instead of the state of each
node. To be consistent, we also denote the root node solution as (x(i), yé) fori € N.
We present the algorithm in Algorithm 2.

Similar to Algorithm 1, each iteration in Algorithm 2 consists of a forward step,
a backward step, and a root node update step. In particular, at a node n € N(@)
with t < T, the forward step proceeds to a child node m € N (t + 1), where the
approximation gap y,i, = @i_l(xfn) — gifl(x,’.n) is among the largest of all the
approximation gaps of states xfn , of nodes m’ € N(t + 1). Then the state variable of
node m is considered the state variable of stage # () in the iteration i. Due to stagewise
independence, the backward step at each stage ¢ only need to generate cuts for the
nodes in the recombining tree N. The optimality of the returned solution (xg, y;) is
guaranteed by Proposition 7.

Algorithm 2 Deterministic sampling dual dynamic programming algorithm

Require: recombining scenario tree N with subproblem oracles O, ﬁf R ﬁ,],?’, n#r,ande >0
Ensure: an g-optimal root node solution (xa‘ , ya‘ ) to the regularized problem (4)

1: Initialize: i < 1; Q0 < 0, V1, dt) <« 4ooVt<T -1 andd; <~ 0

2: Evaluate (x}. y}) = 0,(0)

3: Set LOWERBOUND <« f (xa(,), yé, xé), UPPERBOUND <« +o00

4: while UPPERBOUND — LOWERBOUND > ¢ do

5: fort=1,...,T —1do > i-th forward step
6 forne N(t)do ) )

7: Evaluate (x},, y},. z},) = (75(x;71v2;_1)

8: Calculate the gap v, = @;_l(x,il) - Qifl (x})

9: end for ) ) _ ) )

10: Select any n*(r) € {n e N'(1) : v} > y’i,, Vn' € N(1)}, and let x} « x;l*([)

11:  end for

12: fort=7T,...,1do > i-th backward step
13: Update Q! and O; using (14) and (17)

14: forne N(yde A '

15: Evaluate (£, $, 20: 2%, p8) = 0B (x|, Q)

16: Calculate C, vi,, 3], using (15), (16), and (18)

17: end for

18: end for ) .

19:  Update gg) and Qb using (14) and (17) > root node update

20:  Evaluate (xg)+1 R y(i)H) =0 (Q{))
21:  Update LOWERBOUND < fr (xa(ry. yo T xgth) + Qf (xh™)

22:  if UPPERBOUND > f; (x,(), yé“, x6+1) + @é(xéﬂ) then

23: Update UPPERBOUND < f; (xa(ry, ™1, x5!y + Ty (i1
240 Set (o) = (T g™
25:  endif

26 i<« i+1
27: end while
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3.5 A stochastic sampling dual dynamic programming algorithm

Now we present a stochastic dual dynamic programming algorithm, which uses
stochastic sampling rather than deterministic sampling. So, instead of traversing the
scenario tree and finding a path with the largest approximation gap, the stochastic sam-
pling algorithm generates M scenario paths before an iteration begins for some M > 1.
To be precise, we introduce the following notations. Let P = ]_[szl N (1) denote all
possible scenario paths from stage 1 to stage T'. A scenario path is denoted as a 7'-
element sequence P = (ny, ...,n7) € P,wheren; € N(r) foreachr = 1,...,T.In
the i-th iteration, we sample M independent scenario paths 2! = {P""!, ... PHM}),
and we use P,/ to denote the 7-th node in the scenario path P%/, i.e., the node in the
t-th stage of the j-th scenario path in the i-th iteration, for 1 < j < Mand1 <t <T.
Since in each iteration, the solutions and the approximations depend on the scenario
path P~/ we use two superscripts i and j for solutions and cuts, where a single
superscript i is used in the deterministic sampling algorithm. In addition, for every
node n € N'(r) for some stage ¢, the under-approximation of the expected cost-to-go

function is updated over all scenario path index j = 1,..., M, with M cuts in total,
ie.,
Qiwy=max { Q7). Y pmC @A e w1 << M (20)
meN (1+1)

where C./ is the generalized conjugacy cut generated with (35,7, $57, 25:7: 357 phJy

= ﬁ,% (xﬁ,’ , gé 4l ) using formula (15). With these notations, the algorithm is displayed
in Algorithm 3.

Unlike the preceding two algorithms, Algorithm 3 does not need to construct the
over-approximation of the regularized value functions for selecting the child node to
proceed with. Instead, it determines the scenario paths before the forward step starts.
In the forward step, each nodal problem in the sampled scenario path is solved. Then
in the backward step, the dual problems are solved at the nodes that are defined by
distinct data, dependent on the parent node’s state variable obtained in the forward
step. The termination criterion is flexible. In the existing literature [33, 38], statistical
upper bounds based on the sampled scenario paths are often used together with the
lower bound for terminating the algorithm. In particular for the convex problems, if
we set o, = +00, which implies /,, ;. = 400 in the backward step subproblem oracles
ﬁ}? for all n € N, then Algorithm 3 reduces to the usual SDDP algorithm in the
literature [15, 33].

4 Upper bounds on iteration complexity of proposed algorithms

In this section, we derive upper bounds on the iteration complexity of the three pro-
posed algorithms, i.e. the bound on the iteration index when the algorithm terminates.
These upper bounds on the iteration complexity imply convergence of the algorithm
to an g-optimal root node solution for any & > 0.
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Algorithm 3 Stochastic sampling dual dynamic programming algorithm

Require: recombining scenario tree A/ with subproblem oracles &, ﬁ’,f , ﬁ,‘?, n#r
1: Initialize: i < 1;%0 «~ 0, Vt

2: Evaluate (x}, y)) = 6,(0)

3: while some stopping criterion is not satisfied do

4 Sample M scenario paths - {Pi’l, A Pi’M}

5 forj=1,...,Mdo > i-th forward step
6: fort:l,...,_T_—](_lo__ o

7 Evaluate (xtl'], y;’], z;’]) = ﬁ,f(x;fl,gé_l)

8: end for

9:  end for

10: fort=T,...,1do > i-th backward step
11: Update g; using (20)

12: forj=1,...,Mdo

13: forn e N(t)/ ~ do

14: Evaluate (2,7, 357, 207 o7 o)y = /f,}? (x;;jl,gf)

15: Calculate C);” and v};’ using (15) and (16)

16: end for

17: end for

18:  end for

19:  Update Qf) using (20) > root node update
20:  Evaluate 0, (96) = (x6+1, y6+1)

21: i<« i+1

22: end while

4.1 Upper bound analysis on iteration complexity of algorithm 1

In this section, we discuss the iteration complexity of Algorithm 1. We begin with the
definition of a set of parameters used in the convergence analysis. Let ¢ denote the
desired root-node optimality gap ¢ in Algorithm 1. Let § = (84)nen,c(n)£ 2 bE a set
of positive numbers such that ¢ = ZneN,C(n);ﬁ@ Pnéy. Since ¢ > 0, such §,,’s clearly
exist. Then, we define recursively for each non-leaf node n

Y @®):=8+ D Pum¥m(®), @1)
meC(n)

and y,(8) = O for leaf nodes n. For i € N, recall the approximation gap v} =

@;_l(x,’;) — Q'=!(xi) for n € N For leaf nodes, ;| = 0 by definition for all i € N.
In addition, we define the sets of indices Z,,(§) for each n € N as

T, (8):= [i eN:y > y,(8) and y! < y,,(8),Vm € C(n)] . (22)

Intuitively, the index set Z,,(§) consists of the iteration indices when all the child nodes
of n have good approximations of the expected cost-to-go function at the forward step
solution, while the node #n itself does not. The next lemma shows that the backward
step for node n in the iteration i € Z,(8) will reduce the expected cost-to-go function
approximation gap at node n to be no more than y;, ().

@ Springer



Stochastic dual dynamic programming... 953

Lemma 3 If an iteration index i € 1,(5), i.e., @;_1(x£l) — gz_l(xfl) > yYu(8) and
@:n_l(xfn) — gf;l(x,in) < yYm(8) for allm € C(n), then

. . . )
0, (x) — Q' (x) < yu(8), Yx e X, [lx—xi| < an , (23)
n

where L, := ZmeC(n) Pnm (o + I, p) is determined by the input parameters.

The proof is given in Sect. A.3.1. Lemma 3 shows that an iteration being in the index
set would imply an improvement of the approximation in a neighborhood of the current
state. In other words, each i € Z,, would carve out a ball of radius §,/(2L,) in the
state space A, such that no point in the ball can be the forward step solution of some
iteration i in Z,. This implies that we could bound the cardinality |Z,| of Z, by the
size and shape of the corresponding state space &;,.

Lemma4 Let # = {B,x C Rd"}lskan,neN be a collection of balls, each with
diameter Dy, ;. > 0, such that X, C U]f:nl By k- Then,

Ky

2L, Dy i \™
|In(8)|sz<1+’;—"”‘> :
n

k=1

The proof is by a volume argument of the covering balls with details given in
Sect. A.3.2. We have an upper bound on the iteration complexity of Algorithm 1.

Theorem 1 Given ¢ > 0, choose values § = (8,)neN ,C(n)2 Such that 8, > 0 and
ZneN,C(n);éra Pnbn = €. Let B = {Bp i }1<k<k,.neN be a collection of balls, each
with diameter Dy > 0, such that X, C U,f:”l By for n € N. If Algorithm 1
terminates with an e-optimal root node solution (x}, y¥) at the end of i-th iteration,
then

Ky d,
2Ly Dy i \™
| < 14+ —- .
=y (12
neN, k=1
Cn)#9

Proof After the i-th iteration, at least one of the following two situations must happen:

i. At the root node, it holds that @lr (xitly — glr (xit1y < 9,(8), where y, is defined
in (21). |
ii. There exists a node n € N such that Q, (x/*+1) — Qﬁl (xi+1y > y,/(8), but all of its

child nodes satisfy Q,, (xi+1) — Q! (xi) < yw(8), Vm € C(n). In other words,
i+1eZ,).
Note that y,(8) = §, + ZmeC(r) DrmYm(@) = -+ = ZneN,C(n);é@ Pndp. If case i
happens, then by Proposition 7, (xi“ , yﬁ“) is an g-optimal root node solution. Note
that case ii can only happen at most ), s |Z,(8)| times by Lemma 4. Therefore, we
have that
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K,

. < ZLnDn,k>dn
l - < b
k=1 On

n E

Cm#2
when the algorithm terminates. O

Theorem 1 implies the e-convergence of the algorithm for any ¢ > 0. We remark that
the form of the upper bound depends on the values § and the covering balls B, x, and
therefore the right-hand-side can be tightened to the infimum over all possible choices.
While it may be difficult to find the best bound in general, in the next section we take
some specific choices of § and & and simplify the complexity upper bound, based on
the stagewise independence assumption.

4.2 Upper bound analysis on iteration complexity of algorithm 2

Before giving the iteration complexity bound for Algorithm 2, we slightly adapt the
notations in the previous section to the stagewise independent scenario tree. We take
the values § = (5")ne/\7.6(n);ez such that 8, = §, for all n,n’ € N (¢) for some

t =1,...,T. Thus we denote §; = §, forany n € ./\N/'(t), and 69 = §,. The vector of
¢ (8) is defined recursively for non-leaf nodes as

vi(®) == yi410) + 6, ift =T —1, (24)

and y7(6) = 0. Let y[i :=§i71 (xf ) — gi_l (xf) and recall that yé::yri for each index
i. The sets of indices Z;(§) are defined forr =0,...,7 — 1 as

L®:={i eN:y/ > 7@ and v\ <y ®)]. ©5)

Note that y = max, 57 ¥} (line 10 in Algorithm 2). By Lemma 3, an iteration
i € Z;(8) implies @;(x) - gi(x) < 7/(8) for all x € &, with ||x — x!|| < &/Q2L,),
where L; = L, forany n € N (t). Moreover, since X;, = A} forn € N (1), for any

covering balls B,y C R% with diameters Dy r = 0, such that X; C Uf;lB,,k, by the
same argument of Lemma 4, we know that

K;

d
mw§20+“@ﬂ. 26)

k=1 8

We summarize the upper bound on the iteration complexity of Algorithm 2 in the next
theorem, and omit the proof since it is almost a word-for-word repetition with the
notation adapted as above.

Theorem 2 Given any ¢ > 0, choose values § = ((St)tT;()l such that §; > 0 and
ITZ_OI 8 = e Let B = (B, C R¥} <4<k, 0<1<T—1 be a collection of balls, each
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with diameter D; ; > 0, such that X; C U,f;l Bixfor0 <t <T — 1. If Algorithm 2
terminates with an g-optimal root node solution (xf)k, y(’)k) ini iterations, then

g gt 2L,Ds g
; §§<1+—, )

We next discuss some special choices of the values § and the covering ball collec-
tions 4. First, since X; are compact, suppose B; is the smallest ball containing X;.
Then we have diam &X; < D; < 2diam &; where D; = diam B;. Moreover, suppose
L; < L forsome L > 0 and d; < d for some d > 0. Then by taking §; = ¢/T for all
0 <t <T — 1, we have the following bound.

t

Corollary 1 If Algorithm 2 terminates with an e-optimal root node solution (x, yy),
then the iteration index is bounded by

, 2LDT\?
i<T\|1+ ,
&

where L, d, D are the upper bounds for L;, d;, and Dy, 0 <t < T — 1, respectively.
Proof Take §; = ¢/T forall0 <t < T — 1 and apply Theorem 2. O

Note that the iteration complexity bound in Corollary 1 grows asymptotically O(T4+1)
as T — oo. Naturally such bound is not satisfactory since it is nonlinear in 7" with
possibly very high degree d. However, by changing the optimality criterion, we next
derive an iteration complexity bound that grows linearly in 7', while all other param-
eters, L, D, ¢, d, are independent of 7.

Corollary 2 IfAlgorithm 2 terminates with a (T &)-optimal root node solution (x, y;),
then the iteration index is bounded by

where L, d, D are the upper bounds for L;, d;, and D;, 0 <t < T — 1, respectively.
Proof Take §; = ¢ forall0 <t < T — 1 and apply Theorem 2. O

The termination criterion in Corollary 2 corresponds to the usual relative optimality
gap, if the total objective is known to grow at least linearly with 7', as is the case for
many practical problems. Last, we consider a special case where X; are finite for all
0<tr<T-1.

Corollary 3 Suppose the cardinality |X;| < K < oo forall0 <t < T — 1, for some
positive integer K. In this case, if Algorithm 2 terminates with an g-optimal root node
solution (xg, y), then the iteration index is bounded by

i <TK.
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Proof Note that when X is finite, it can be covered by degenerate balls By(x), x € X;.
Thus Dy =0fork =1, ..., K; and K; < K by assumption. Apply Theorem 2, we

geti <YM 1< TK. o

The bound in Corollary 3 grows linearly in 7" and does not depend on the value of ¢.
In other words, we are able to obtain exact solutions to the regularized problem (4)
assuming the subproblem oracles.

Remark 2 All the iteration complexity bounds in Theorem 2, Corollaries 1, 2 and 3
are independent of the size of the scenario tree in each stage N;, | <t < T. This can
be explained by the fact that Algorithm 2 evaluates 1 + N7 + 2 ZZT;ll N; times of the
subproblem oracles in each iteration.

4.3 Upper bound analysis on iteration complexity of algorithm 3

In the following we study the iteration complexity of Algorithm 3. For clarity, we model
the subproblem oracles &} and &8 as random functions, that are X™*-measurable
in each iteration i € N, for any node n # r, where {Efrade};’io is a filtration of
o-algebras in the probability space. Intuitively, this model says that the information
given by Z‘i"rade could be used to predict the outcome of the subproblem oracles. We
now make the following assumption on the sampling step.

Assumption 4 In each iteration i, the M scenario paths are sampled uniformly with
replacement, independent from each other and the outcomes of the subproblem oracles.
That is, the conditional probability of the j-th sample P’/ taking any scenario n, €
N(1) in stage ¢ is almost surely

- Y 1
Prob <Pt[’/ = Ny | Egéade, U{Ptl/ J }(i,,j/,l/)#(i,j,t)) = ﬁ, (27)
t

where Z‘g;ac}e =U2, Ei"”‘de, and a{P;, ’/ }(i/,j./’[/)#,-,j’[) is.the q-algebra generated
by scenario samples other than the j-th sample in stage ¢ of iteration i.

In the sampling step in the i-th iteration, let y, "/ :=QR (x,;"/) — Qi_l (x;"') for any
t < T — 1, which is well defined by Assumption 3, and let 7,/ :=max{OR (x,) —
gi_l(xn) T (Xny Yy 2n) = ﬁf(xt’;jl , gﬁl_l), ne ./\N/(t)} for each scenario path index
1 < j < M. Note that by definition, we have y,”f < )7,” foranyt=1,...,T — 1,
everywhere in the probability space. We define the sets of indices Z;(§) for each
t=0,...,T — 1, similar to those in the deterministic sampling case, as

(C=x

n@:=UJ{i eN:y’ > n@ and 7 < vn @] 28)

j=1

With the same argument, we know that the upper bound (26) on the sizes of Z;(§)
holds everywhere foreacht = 0, ..., T — 1. However, since the nodes in the forward
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steps are sampled randomly, we do not necessarily have i € UIT:_OII, (8) for each

iteration index i € N before Algorithm 3 first finds an e-optimal root node solution.
. T-1 i—1,j

Instead, we defme an event A,-(S).:: i eV, I’(‘S.)} uuﬁ’;l{.yé I < .)/0('8) = g)

for each iteration i, that means either some approximation is improved in iteration

i or the algorithm has found an e-optimal root node solution in iteration i — 1. The

next lemma estimates the conditional probability of A; (§) given any oracles outcomes
sample |

i =

and samplings up to iteration i. For simplicity, we define two o -algebras X'

,,,,,

Lemma5 Fixanye = ZZT;OI 8:. Then the conditional probability inequality
Prob(A;(8) | Zi—1) zvi=1-(1 - 1/MY,

holds almost surely, where N:= H,T:_ll N: if T > 2 and N:=1 otherwise.

The proof is given in Sect. A.3.3. Now we are ready to present the probabilistic
complexity bound of Algorithm 3, the proof of which is given in Sect. A.3.4.

Theorem3 Let I = 1(8, %) denote the iteration complexity bound in Theorem 2,
determined by the vector § and the collection of state space covering balls %, and
v denote the probability bound proposed in Lemma 5. Moreover; let ¢ be the random
variable of the smallest index such that the root node solution ()C(L)Jrl , y(‘)Jrl ) is e-optimal

in Algorithm 3. Then for any real number k > 1, the probability

il —Iv(k — 1)?
Probl:>1+ — ) <exp| ——— | .
v 16k

Remark 3 Theorem 3 shows that for a fixed problem (such that I = I(§, %) and
N = N;--- Nr_ are fixed), given any probability threshold g € (0, 1), the number
of iterations needed for Algorithm 3 to find an e-optimal root node solution with prob-
ability greater than 1 — ¢ is O(— In g /v?), which does not depend on /. In particular,
if we set M = 1, then the number of iterations needed is O(—N? In g), which is expo-
nential in the number of stage 7 if N; > 2forallr = 1, ..., T — 1. Itremains unknown
to us whether there exists a complexity bound for Algorithm 3 that is polynomial in
T in general.

5 Lower bounds on iteration complexity of proposed algorithms

In this section, we discuss the sharpness of the iteration complexity bound of Algo-
rithm 2 given in Sect. 4. In particular, we are interested in the question whether it
is possible that the iteration needed for Algorithm 2 to find an ¢-optimal root node
solution grows linearly in 7 when the state spaces are infinite sets. We will see that in
general it is not possible, with or without the assumption of convexity. The following
lemma simplifies the discussion in this section.
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Lemma6 Suppose f,(z,y, x) is l,-Lipschitz continuous in z for each n € N. If we
choose Y, (x) = ||x|| and o,, > 1,,, then Qg(x) = Qn(x) on Xy for all non-root
nodesn € N.

The proof exploits the Lipschitz continuity of f, and the fact QR (x) is an under-
approximation of Q, (x) in an inductive argument. The details are given in Sect. A.4.1.
In other words, for problems that already have Lipschitz continuous value functions,
the regularization does not change the function value at any point. Thus the examples
in the rest of this section serve the discussion not only for Algorithm 2, but for more
general algorithms including SDDP and SDDiP.

5.1 General lipschitz continuous problems

We discuss the general Lipschitz continuous case, i.e., the nodal objective functions
fn(z, v, x) are [,-Lipschitz continuous in z but not necessarily convex. In this case
we choose to approximate the value function using ¥, (x) = ||x| and assume that
lno = I,. Wecanset [, = O foralln € N, without loss of exactness of the
approximation by the Proof of Proposition 3. We begin with the following lemma on
the complexity of such approximation.

Lemma 7 Consider anormball X = {x € R? : ||x|| < D/2} and a finite set of points
W = {wk}f:1 C X. Suppose that there is f > 0 and an L-Lipschitz continuous
Sfunction f : X — Ry suchthat B < f(wy) < 2B fork =1,..., K. Define
- Q@)= max {0, f(wi) — L |lx — will} and
= QW= min {f(we) + L llx — wll}

.....

4p

The proof is given in Sect. A.4.2. The lemma shows that if the number of points in
Wis too small,i.e. K < (DL/ 2,3)d, then the difference between the upper and lower
bounds could be big, i.e. Q(X) — Q(¥) > B for some X. In other words, in order to
have a small gap between the upper and lower bounds, we need sufficient number of
sample points. This lemma is directly used to provide a lower bound on the complexity

d —
IfK < (ﬂ) , then mi)l} Qx)=0and mi)r; Ox) > B.
xe - xe

of Algorithm 2.
Now we construct a Lipschitz continuous multistage problem defined on a chain,
i.e., a scenario tree, where each stage has a single node, N(t) = 1 fort =1,...,T.

The problem is given by the value functions in each stage as,
O, = minxoeX, 01(x0),
Qi (x—1) =ming ex, {fi(xi—1) + Qry1(x)}, 1 =t =T — 1, (29)

Or(xr-1) = fr(xr-1).

Here forallr = 1,..., T, f; : X — R4 is an L-Lipschitz continuous function that
satisfies B < f;(x) < 2B for all x € A; with B := ¢/T, the number of stages T > 1,
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and ¢ > 0 is a fixed constant. The state space X; := B¢(D/2) c R? is a ball with
radius D/2 > 0. We remark that & will be the optimality gap in Theorem 4. So for a
fixed optimality gap e, we construct an instance of multistage problem (29) that will
prove to be difficult for Algorithm 2 to solve. Also (29) is constructed such that there
is no constraint coupling the state variables x; in different stages.

By Lemma 6, if we choose ¥, (x) = |lx|| forall n € N and l,, = L for the
problem (29), then we have Qf(x) = Q;(x) forallt =1, ..., T. The next theorem
shows a lower bound on the iteration complexity of problem (29) with this choice of
penalty functions.

Theorem 4 For any optimality gap ¢ > 0, there exists a problem of the form (29)
with subproblem oracles ﬁ’,lf, ﬁf, n € N, and O,, such that if Algorithm 2 gives

UPPERBOUND — LOWERBOUND < ¢ in the i-th iteration, then

, DLT\?
[ .
4e
The proof is given in Sect. A.4.3. The theorem shows that in general Algorithm 2
needs at least O(T'?) iterations before termination. We comment that this is due to the
fact that the approximation using generalized conjugacy is tight only locally. Without
convexity, one may need to visit many states to cover the state space to achieve tight

approximations of the value functions before the algorithm is guaranteed to find an
g-optimal solution.

5.2 Convex lipschitz continuous problems

In the above example for general Lipschitz continuous problem, we see that the com-
plexity of Algorithm 2 grows at arate of O(T'¢). It remains to answer whether convexity
could help us avoid this possibly undesirable growth rate in terms of d. We show that
even by using linear cuts, rather than generalized conjugacy cuts, for convex value
functions, the complexity lower bound of the proposed algorithms could not be sub-
stantially improved. We begin our discussion with a definition.

Definition 5 Given a d-sphere S¢(R) = {x € R?*! : ||x|, = R} with radius R > 0,
a spherical cap with depth 8 > 0 centered at a point x € S¢(R) is the set

SE(R x)=(y € S(R) : {y = x.x) = —BR).

The next lemma shows that we can put many spherical caps on a sphere, the center
of each is not contained in any other spherical cap, the proof of which is given in
Sect. A.4.4.

Lemma 8 Given a d-sphere Sd(R), d > 2 anddepth B < (1 — 4)& there exists a
finite set of points VV with

2 _ (d=1)/2
|W|Z(d D7 (d/2+1) (R) ’

d rd/2+3/2) \28
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such that, for any w € W, Sg(R, w) N W = {w}

Hereafter, we denote a set of points that satisfies Lemma 8 as Wg(R) c SY(R).
Next we construct an L-Lipschitz convex function for any L > 0, ¢ > 0 that satisfies
certain properties on Wj/ 1 (R). The proof is given in Sect. A.4.5.

Lemma9 Given positive constants ¢ > 0,L > 0 and a set Wg/L(R). Let
K:= Wg/L(R)I. For any values vy € (¢/2,¢), k = 1,..., K, define a function

F : B4*Y(R) > Ras F(x) = maxg_; x {0, vk—i—% (Wi, x — wg)}. Then F satisfies
the following properties:

.....

F is an L-Lipschitz convex function;

F(wy) = vg for all wy € WS/L(R);

F is differentiable at all wy, with vy + (VF (wg), w; — wi) < 0foralll # k;
For any w; € Wg/L(R), 0, (x):=maxy£{0, ve + (VF(wi),x —wg)} and

0;(x):= convi{ve + L ||x — well} satisfy

-

_ 3e
01(wr) = Q,(wn) > =

Now we present the multistage convex dual dynamic programming example based
on the following parameters: 7 > 2 (number of stages), L > 0 (Lipschitz constant),
d > 3 (state space dimension), D = 2R > 0 (state space diameter), and ¢ > 0
(optimality gap). Choose any Li,..., L7 suchthat L/2 < L7 < Ly_1 < -+ <
L; < L, and then construct finite sets W,::Wf/_((lT_l)Lm)(R) = {w,,k}ﬁl, K, =
[W| as defined in Lemma 8 forr = 1,..., T — 1. Moreover, define convex L4 |-
Lipschitz continuous functions F; for some values v; x € (¢/Q2T —2),¢/(T — 1)),
k =1,..., K;, and the finite sets W;. By Assumption 3, we define the stagewise
independent scenario tree as follows. There are K; distinct nodes in each stage t =
1,..., T —1, which can be denoted by an index pairn = (¢, k) fork =1, ..., K;,and
all nodes are defined by the same data in the last stage 7. Then we define our problem
by specifying the nodal cost functions f = 0, fi.x(xo0, y1, x1) := L1||x1 — wy «|| for
k=1,..., K1, frae@r—1, ¥, %) = Fr1 (1) + Lellxr —wel fork =1,..., K,
andt = 2,...,T — 1, and fr1(xr—1,yr,x7) = Fr_i(x7—1), and state spaces
X, = X = BYT1(R). Alternatively, the value functions can be written as

Qi =miny ex {L1 |x1 —wigl| + QixD} . Vk < Ky,
O k(X—1) = miny ey {Ft—l(xt—l) + L, ”-xt — Wy k ” + Qt(xt)} k< Ki,

Or1(xr-1) = Fr_1(xr-1),
(30
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where the second equation is defined forall 2 < ¢ < T — 1, and the expected cost-to-go
functions as

K,
1
Q)= k_Z] Qrix(x), t=0,...,T—1.
By Lemma 8§,

K;

_ @~ D27 I'(d—-1/2+1) (RLI(T - 1)><d—2’/2
= d—1 r'(d—1/2+3/2) 26 ’
_dd =27 [(@/2+1/2) (DL(T - 1)>(d—2>/2

= d-1 rd/p2+1) 8¢

Since for each value function Q;  is L;-Lipschitz continuous, we choose 0, = L;
with ¢, (x) = ||x|| forany n = (¢, k) € /\~/'(t) and? =1, ..., T such that by Lemma 6
we have Q; x(x) = Q}%k (x) forall x € X. Moreover, due to convexity, we setl, , = 0
foralln € N and [, ; = L, foreachn € ./\7(t) andtr = 1,..., T, i.e., the cuts are
linear. Following the argument of Proposition 4, we know that such linear cuts are
capable of tight approximations. With such a choice of regularization we have the
following theorem on the complexity of Algorithm 2.

Theorem 5 For any optimality gap ¢ > 0, there exists a multistage stochastic
convex problem of the form (30) such that, if Algorithm 2 gives UPPERBOUND —
LOWERBOUND < ¢ at i-th iteration, then

1d(d —2)y/7 I'(d/2+1/2) (DL(T = 1)\
T3 d-1  Tditn < 8¢ ) :

The proof is given in Sect. A.4.6. The theorem implies that, even if problem (2)
is convex and has Lipschitz continuous value functions, the minimum iteration for
Algorithm 2 to get a guaranteed e-optimal root node solution grows as a polynomial
of the ratio 7' /e, with the degree being d/2 — 1.

We remark that Theorems 4 and 5 correspond to two different challenges of the
SDDP type algorithms. The first challenge is that the backward step subproblem oracle
may not give cuts that provide the desired approximation, which could happen when
the value functions are nonconvex or nonsmooth. Theorem 4 results from the worst
case that the backward step subproblem oracle leads to approximations of the value
function in the smallest neighborhood.

The second challenge is that different nodes, or more generally, different scenario
paths give different states in each stage, so sampling and solving the nodal problem on
one scenario path provides little information to the nodal problem on another scenario
path. In example (30), the linear cut obtained in each iteration does not provide any
information on the subsequent iteration states (unless the same node is sampled again).
From this perspective, we believe that unless some special structure of the problem
is exploited, any algorithm that relies on local approximation of value functions will
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face the “curse of dimensionality,” i.e., the exponential growth rate of the iteration
complexity in the state space dimensions.

6 Conclusions

In this paper, we propose three algorithms in a unified framework of dual dynamic pro-
gramming for solving multistage stochastic mixed-integer nonlinear programs. The
first algorithm is a generalization of the classic nested Benders decomposition algo-
rithm, which deals with general scenario trees without the stagewise independence
property. The second and third algorithms generalize SDDP with sampling procedures
on a stagewise independent scenario tree, where the second algorithm uses a determin-
istic sampling approach, and the third one uses a randomized sampling approach. The
proposed algorithms are built on regularization of value functions, which enables them
to handle problems with value functions that are non-Lipschitzian or discontinuous.
We show that the regularized problem preserves the feasibility and optimality of the
original multistage program, when the corresponding penalty reformulation satisfies
exact penalization. The key ingredient of the proposed algorithms is a new class of cuts
based on generalized conjugacy for approximating nonconvex cost-to-go functions of
the regularized problems.

We obtain upper and lower bounds on the iteration complexity of the proposed
algorithms on MS-MINLP problem classes that allow exact Lipschitz regularization
with predetermined penalty functions and parameters. The complexity analysis is new
and deepens our understanding of the behavior of SDDP. For example, it is the first time
to prove that the iteration complexity of SDDP depends polynomially on the number
of stages, not exponentially, for both convex and nonconvex multistage stochastic
programs, and this complexity dependence can be reduced to linear if the optimality
gap is allowed to scale linearly with the number of stages, or if all the state spaces are
finite sets. These findings resolve a conjecture of the late Prof. Shabbir Ahmed, who
inspired us to work on this problem.

Funding Open Access funding provided by the MIT Libraries Funding was provided by Directorate for
Engineering (Grant Number 1751747).
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A Proofs

In this section, we present the proofs to the theorems, propositions, and lemmas that
are not displayed in the main text.
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A.1 Proofs for statements in Sect. 2
A.1.1 Proof for Proposition 1

Proof We show that Q, is l.s.c. by showing the lower level sets lev,(Q,) = {z €
Xan) : On(z) < a}are closed for all @ € R. At any leaf node n, the expected cost-to-
go function Q,, (x,) is zero, thus z is in lev,(Q,,) if and only if z is in the projection of
the following set {(z, y, x) : (x,y) € Fu, fu(z,y,x) < a}. Since f, is defined on a
compact set {(z, y, x) : z € Xym), (x,y) € F,} and Ls.c. by Assumption 1, we know
that the set {(z, y, x) : fu(z,y,x) < a} is compact. Moreover, since the projection
(z, ¥, x) — zis continuous, the image lev,(Q;,) is still compact, hence closed.

At any non-leaf node n, suppose Q,, is l.s.c. for all its child nodes m € C(n). Then, Q,
is L.s.c. since Q,, is defined in (3) and p,,,, > O for all m. A point z € lev,(Q,) if and
only if z is in the projection of the set {(z, y, x) : (v, x) € Fu, fu(z, ¥, %)+ Qu(x) <
a}. Similarly, this shows lev, Q, is closed since f,, O, are l.s.c. and the projection
(z,y,x) — z is continuous. We thus conclude Q, is Ls.c. for every node n in the
scenario tree.

To show claims 1 and 2 in the proposition, take any two points z1,z2 € Xy@).
Suppose (x1, y1), (x2, y2) € F, are the corresponding minimizers in the definition (2).
Therefore, 0, (z1) = fu(z1, y1, X1) + Qn(x1) and Q,,(22) = fu (22, ¥2, x2) + Dn (x2).
If £, is Lipschitz continuous in the first variable, then we have

0n(z21) — On(z22) = fulz1, ¥1, x1) + Qn(x1) — fu(z2, ¥2, x2) — Qp(x2)
< fu(z1, y2, x2) + Qn(x2) — fu(z2, 2, %2) — Qn(x2)
< fu(z1, 2, x2) — fu(z2, y2,x2) <l llz1 — 22|l

Likewise, by exchanging z; and z, we know that Q,,(z2) — On(z1) < I, llz1 — 22|l.
This proves that Q,, is Lipschitz continuous with the constant /,,.

To show that Q,, is convex, take any ¢ € [0, 1]. Since X, is convex, Q, is defined
attz; + (1 — t)zo. Thus,

On(tz1 + (1 =0z2) < futzi + (1 = Dzo, tyr + (1 =)y, tx1 + (1 — H)x2)
+ Qu(tx + (1 —1)x2)
< tfu(z1, y1,x1) + (1 = 1) fu(z2, y2, x2) + 1 Qn(x1)
+ (1 —1)Qu(x2)
=10n(z1) + (1 = 1) 0n(22).

The first inequality follows from the definition (2), while the second inequality follows
from the convexity of f, and Q,,. This shows Q, is convex. O

A.1.2 Proof for Proposition 2

Proof First we show that the partial inf-convolution

fn B (O'nl/fn)(xa(n)s Vs Xp) 1= n;{in fn (@ns Yn, Xp) + on¥n (xa(n) — Zn)

Z€Aq(n)
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is o,-Lipschitz continuous in the first variable x,(,). Note that the minimum is
well-defined since Xy (,) is compact and the functions f,, 0, are ls.c.. Besides,
since z = Xq(n) i a feasible solution in the minimization, we know that f, o
©On¥u) Xamys Yn> Xn) = fu(Xam), Yn, Xn) for all x,() € Xy and (X, yu) € Fa.
Pick any x1,x2 € Xym), (x,y) € Fy, and let 21,220 € Ay be the correspond-
ing minimizers in the definition of f, o (0, ¢,)(x1, y, x) and f, o (0,¥,)(x2, ¥, X),
respectively. By definition,

Ju o (V) (x1,y,x) — fu o (0n¥n)(x2, Y, X)
= fn(Zlv YJC) + 1/f(.X1 - Zl) - f;‘l(zz’ y’-x) - I/f(xz - Z2)
< fu(z2, ¥, %) + ¥ (x1 — 22) — fa(z2, ¥, X) — Y (x2 — 22) < op X1 — x2.

Similarly, we can get fy, 0 (0, ¥n) (x2) — fu 0 (0n¥n) (x1) < oy |lx1 — x2|| by exchang-
ing x1, x3 and z1, z2 in the above inequality. Therefore, f, o (0,¥,) is o,-Lipschitz
continuous in the first variable x ;).

The regularized problem (4) can be viewed as replacing the nodal objective function
fn with the inf-convolution f;, o (¢;,%,). Then by Proposition 1, Qg(x) is 0y, -Lipschitz
continuous on &y ,). Moreover, if the original problem (2) is convex and 1, are convex
penalty functions, then f, o (o,Yy) is also convex. Proposition 1 ensures Qﬁ(x) is
also convex on X ). O

A.1.3 Proof for Lemma 1

Proof By definition, we have Q,lf(x,,) < Qu(xy) foralln € N, n # r. We show
the other direction by contradiction. Suppose there exists a node n € N such that
OR(xam)) < Qn(xa@m))- By definition, there exist z}, € X,m) and (x,,, y,) € Fp, for
all nodes in the subtree m € 7 (n), such that

1
Qﬁ(xa(n)) = — Z Pm [fm(zin, y,/n, x,/n) + Gmwm(x,;(m) - Z,/n)] .
n meT (n)

We can extend (x},, Y5, Zo)meT (n) to a feasible solution (), y,,. X, )meN’ Of the
regularized problem by setting z,, = Xq(m), ¥y, = Ym, and x,, = x,, forallm ¢ 7 (n).
Thus

Ureg S Z pmfm(z;ns y;yp-x;n)—i_ Z pmfm(Z;nv y;nsx;n)
meT (n) m¢T (n)

= Pn Q,},{(xa(n)) + Z pmfm(xa(m)v Yims Xm)
m¢T (n)

< pnQn (xa(n)) + Z D fm (xa(m)a Yms Xm)
m¢T (n)

= Z pmfm(xa(m)a Yim> Xm) + Z mem(xa(m), Yms Xm) = vprim.
meT (n) m¢T (n)
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This leads to a contradiction with the assumption that v™8 = vPim  Therefore, we
conclude that QR (x,(1)) = Qn(xam)) foralln e Ny n #r. O

A.1.4 Proof for Proposition 3

Proof 1f I, , > oy, then (X, p) = (0, 0,,) is contained in U4, and therefore, is a dual
feasible solution for (11). Thus, we have

0nGn) = CO Gy |3 fins D) = B0 > Min (0 (@) + 0w ¥ Gon — 2)} = ORGn)

Z€Ag(n)

= Qn(in%

where the first inequality is the validity of the generalized conjugacy cut (10) and the
second and the last equality are due to Lemma 1 for (X,, ¥,),eA being an optimal
solution to problem (1). This completes the proof. O

A.1.5 Proof for Lemma 2

Proof The minimums in (13) are well-defined because of the compactness of X and
lower semicontinuity of Q. Take any x € &". Since both the primal set X and the dual
set {\ € R4 : IL]l, < o} are bounded, by strong duality (cf. Theorem 3.1.30 in [27]),
we have

max min{Q(z) + (A, x —z)} = mm max {Q()+ (A, x —2)} = mm{Q(Z)
Al <o zeX eX Al <o

+ollx —zl},
which completes the proof. O

A.1.6 Proof for Proposition 4

Proof By definition, Qs(x) < Oy, o (oY) (x). Since ¥, (x) = ||x|| is convex, by
Proposition 2, Qﬁ(x) is convex. Then by Lemma 2, we have

OR(x) = max min {Q,(2)+ (A, x —2)}.

1Al <on ZE‘X‘a(n)

Therefore,
in - > A A ~ . —_
C;Z)" Xn | Ans Pns Uy) = Uy =  max min {Q,(z) + (A, X, — 2)}
120 <ln 3 z€Xo(m)

> max min {Q,(2) + (A, Xy — 2)} > OR(Zn).

IM]l«<on ZGXa(n)

By Lemma 1, QE()EH) =0, ()En)_if (X1, Yn)neN 1s an optimal solution to problem (1).
Therefore, we conclude that C,? " Zn | Ans Py On) = On(%n) due to the validness of

2" by (10). O
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A.2 Proofs for statements in Sect. 3
A.2.1 Proof for Proposition 5

Proof Let L, :=)_,, C(n) Pnm (U5 + Iy, p) for simplicity. We prove the proposition
recursively fornodesn € A/, and inductively for iteration indicesi € N. For leaf nodes
and the first iteration, it holds obviously because Q) (x) = 0 for any leaf node n € N

with C(n) = &, and 92 (x) = 0 from the definition (14). Now suppose for some
neN,andi € N, itholds forallm € C(n) that @ (x) < Qu(x), Q7' (x) < Q,(x),
and that Qi_l(x) is L,-Lipschitz continuous. Then it follows from (12), (16), and

(B) that Cl (x |Am,pm,_m) < Qmx) for all m € C(n). By (15), C’ is (Iny +
In,p)- L1psch1tz continuous so ) . eCn) pnmC is L, LlpSChltZ continuous. Thus the

pointwise maximum of Q’ (x) and > Cmn) anC (x| A O _n) (cf. (14)) is still
dominated by Q,,(x) and L »-Lipschitz continuous. O

A.2.2 Proof for Proposition 6

Proof let L, = Zmec(n) Pnmom for simplicity in this proof. We prove the
statement by induction on the number of iterations i. When i = 1, @,Il x) =
min{+o00, ZmeC(n) Pnm (ﬁlln + Om ”x - xriz ”)} = ZmeC(n) Pnm (ﬁrln + Om ”x - le ”)
which is clearly L,-Lipschitz continuous. For any leaf node n, @n =0= QE by

definition. Going recursively from leaf nodes to the root node, suppose @,ln > Q}}, for
all m € C(n) for some node n, then we have

BL = fu(zh v ) + 0¥ () — 2h) + Ty (x))
> min{ £, (2, ¥, %) + O () — 2) + Ty (6) : (x, ) € Fins 2 € X}
> min{ fn (2, ¥, X) + Om¥m (6 — 2) + O (x) : (x,Y) € Fu, 2 € Xy}
= OR(x)). 31)

Thus @,1, (x) = ZmEC(n) pnm(l'),h + om ||x - x,i ||) > QE()C) for all x € A, by the
o, -Lipschitz continuity of the regularized value functions an(x) for all m € C(n)
shown in Proposition 2.

Now assume that the statement holds for all iterations up to i — 1. For any leaf node n,

@i =0= QR still holds by definition. For any non-leaf node n, suppose @in > Q}}l
for all m € C(n). Then by the same argument (31), we know that v}, > QR (x).

By induction hypothesis, Q (x) > OR(x) for all x € X;,. So for the cases without
convexity, Qn (x) = mln{Q (x) > meCn) Prm Ui +0m | x — x4 |)}is L,-Lipschitz
continuous and satisfies Qn (x) = QR (x) since Y, ccny Pum (T + Om |« —=xi|) =
QE (x) for all x € &), following Proposition 2.
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It remains to show that in the convex case @; (x) is still L,-Lipschitz continuous and

satisfies 9, (x) > OR(x) for any x € X,,. Note that QR (x) can be naturally extended
to the entire space R > X, since QE o (L, |I-IHx) = Qﬁ(x) for any x € A}, by
the L,-Lipschitz continuity of QE. The above argument of the base case i = 1 for the
nonconvex case can be directly applied to the convex case over x € R% . Now assume

that @;71 (x) is L,-Lipschitz continuous on R% and @;71 (x) = OR(x) for x € R
. . . —=i—1 — i .
up to i — 1. Since 0, (x) := mln{Q; (x), ZmEC(n) DPum (U, + O ||x — X}, ||)} is L,-
Lipschitz continuous in x € R%, we claim that the supremum in the definition (19)
can be attained within the dual norm ball B, (L,) := {} € Rén . M« < Ly} In fact,
for any A ¢ B,(L,), the infimum
inf {Q)(2) + (A, z—x)} < inf {Q,(x) + Ly lz — x[l + (A, 2 — x)} = —o0.
zeRdn zeRdn

As a result, @; (x) is a supremum of L,-Lipschitz linear functions (of the forms

[(x) = @;(2) + (A, 2 — x) where A € Bi(Ly,) and 2 € X,) and thus is also an
L,-Lipschitz continuous function. Therefore, Q/,(x) > QE (x) for all x € R, By

(19), @;(x) = (Q))™(x) = (Q®)™(x) = QR(x) for all x € R%. This completes
the proof. O

A.2.3 Proof for Proposition 7
Proof From the definition of v™& and Proposition 6,
V% < £ (R i 1)+ QRO < fr(ags v, x7) + O (x}) < UPPERBOUND.
Since UPPERBOUND — LOWERBOUND < ¢, we have
Fr@a@y: Y3 + Qo) < fr Gy ¥ ) + QL) e,

Then, using the optimality of (x’“, y,H) given by O, (Ql) and the fact that Q’ x) <
Q,(x), we see that

Fr(tar. y1+17 z+1) + Qz (xz+1) < . m)m]__ {fr(xa(r)’ v, x) + Qr(-x)} — pPrim

Under Assumption 2, v™8 = vP"™ Therefore, combining all the above inequalities,
we have shown that

U < fr (g, ¥ x5) + DL (x)) < U™ fg,

which means (x, y)) is an e-optimal root node solution to the regularized prob-
lem (4). Now suppose Ql (xH‘l) — g'r (x;"H) < ¢ for some iteration index i. Note that

UPPERBOUND < f; (x4(ry, yit1, xit1) 4+ Q) (x/*!), we have
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UPPERBOUND — LOWERBOUND < f; (xa(r). y. 71, xi1) + QL (xI 1)

— (fr (agy, YL XD + QL (i)

=0, - 9t <.
Therefore the algorithm terminates after the i-th iteration. O
A.3 Proofs for statements in Sect. 4

A.3.1 Proof for Lemma 3

Proof By definition (14), Q' (x) > Q'~!(x) on A,, for all m € C(n). If the problem
is convex with v, = |||, then by Lemma 2, we have

vl = max min { 2oy, %)+ (b xl —z) + ix}
S e Sl (69)EFn, Jm(z, ¥, x) +( n ) gm()

ZE.X‘H
= min zZ,v,x)+1 xi—z+iX}
min | ey, 0 4 bl = 2l + 2,0
zeX,
>min{ Z,y,X)+ o0 xi—z—i—ix]
Z i (@ ¥, %) + omllx, —zll + ,, (x)
ZEXn

as Iy 5 > oy, in Definition 3. Otherwise, by definition (16) and the fact that (A, p) =
(0, 0,,) is a dual feasible solution for the problem (B), we have

vl = max min { Z, ,x—i—k,xi—z—i- X —2)+ ix}
Up = max  min_ Sz ¥, %) + (A, x, — 2) + p¥n(x, —2) + Q, (x)

ZE€Ay
= min | fule 0 + o lxh - 2+ Q0
. Y)EFm,
Z€X,

Thus in both cases, we have

1=

Wz min Sy 0 oo -9+ Q)]
. y)eFm,
zeX;,

= fon @y Vs X0+ 0¥ (xh — 2h) + Q1 (xl)

for all m € C(n). The last equality is due to the forward step subproblem oracle
OF (xi, gjn’]) in the algorithm. Meanwhile, note that O, (x) < @:n_l(x) forx € &,.
By definition (18), we have

O = @b, i, XY+ onn (6 — 28 + @, (x)
< fu(@, vh ) F ol — )+ O, ()
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and by definitions (14) and (15), @' (x}) = 3,.cc(m PamCh Gl | ALy By 1) =
ZmeC(n) p,,myfn. Therefore,

for all m € C(n). Note that by definition (17), @;(x;',) < YmeCin) PrmVhy

Q) - Q)< Y puml, — vl

meC(n)
—i—1 . i .
< > pamlQ, (h) = QIS D Pam¥Ym(8).
meC(n) meC(n)

Note that @; (x) is (ZmeC(n) pnmam)-LipschitZ continuous by Proposition 6, and
g;n (x) is [ZmeC(n) Prm (Ln 5. + ln,p)]-LipschitZ continuous on &, by Proposition 5.
Since we have [, + L, > o5, regardless of convexity of the problem, it holds

that @:Z (x) and 22 (x) are both L, -Lipschitz continuous. Therefore, for any x € &),
lx — xill < 8,/(2Ly), we have

Q) — Q1) < Q) — Q) +2Lullx — x| < Y Pun¥in(®) + 8
meC(n)

= ¥u(8).

This completes the proof. O

A.3.2 Proof for Lemma 4

Proof We claim that for any i, j € Z,,i # j, then ||xf1 — x,{ | > 6,/(2L,). Assume
for contradiction that ||le —xj|| <8,/QL,) forsomei < jandi, j € Z,(8). By the
definition of Z,,(8), y,fl < ym(8) for all m € C(n). By Lemma 3, @; (x) — gfl(x) <
Yu(8) forall x € X, |x — xi|| < 8,/(2L,). Since j > i and ||x! — x; || < 8,/(2L,),
this implies y;/ = O (x;)) — QJ(x)) < ya(8), whichis a contradiction with j € Z,,(8).
Hence we prove the claim.

Let B(R), B(R, x) € R? denote the closed balls with radius R > 0, centered at 0
and x, respectively. It follows from the claim that the closed balls B(6,/(4L,), x},) are
non-overlapping foralli € Z,(§), each with the volume Vol3(8,,/(4L,)). Thus the sum
of the vqlumes of these balls_ is |Z,,(8)| Vol B(8,/(4Ly)). Note that for each inde;g i €
7Z,(8), x}, € &, and hence x}, € B,  for some k. The closed ball B(8,/(4L,), x,) <
By x + B(8,/(4Ly)), and therefore

Ky
U BGw/@Lw). x8) € B + BGu/GL))).

ieZ,(5) k=1
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It follows that

Vol U B(6,/@4Ly), x,il = |Z,(8)| - VolB(5,/(4L,)) <
i€Zy(8)
Ky Ky
Vol [U(Bn,k + B(Sn/(4Ln))] < 3" Vol (Byk + B/ (4Ly))) .
k=1 k=1
Therefore,

Ky Ky d,
Vol (Bn,k + B(an/(4Ln))) _ 2Ln Dn,k "
) S T R S (1+5524)

This completes the proof. O

A.3.3 Proof for Lemma 5

Proof For each iteration i € N, the event Uyzl{yoi_l’j < () = e} is Xi_y-
measurable, so it suffices to prove this inequality for its complement in A;(5). Note
that

Prob{y,/ = 7/ | Zi_1} = Prob{ P} = n(77) | 51},

where n(7,"’) is the smallest node index n € N(r) such that QR (x,) — 9 (xy) =
v for (Xu, Yn, zn) = ﬁf(x;‘fl,gil_l), which is determined given X;_;. Using
the same argument as in the Proof of Theorem 1, Lemma 3 shows that the
event ﬂ,T:_ll{)/,l'] = 7/} implies the event {i € UtT:_OlIt(S)} and hence the
event A;(8) for each j = 1,..., M. Therefore, since X;_; is contained in
o (X (P} inzi ), by the independent, uniform sampling (Assump-
tion 4), we have

Prob(A; (8) | Zi—1)

v =n@) ‘ 5

M

T—1
—1- (1 —Prob(ﬂ{y,i’j =n()) ' 2,-_1)> =1-(1-1/NM,
t=1
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Here, the last step follows from Prob(ﬂtT:_ll{yti’j = n()?ti’j)} | Xic1) =

[T/ Prob({y," = n(7/ )} | Zimp) = [T (1/N) = N. o
A.3.4 Proof for Theorem 3

Proof Leta; := 1 4, denote the indicator of the event A; fori € N,and S; := ZS’:l a;.
Note that the event {¢ > i} implies the event {S; < I}, so we want to bound probability
of the latter for sufficiently large indices i.

By Lemma 5, we see that the adapted sequence {S; — iv}7°, is a submartingale
with respect to the filtration {X;}7°, because

ES —iv|Zi—)=Si-1— (@ — Dv+ E(a | Zi—1) —v) = Si—1 — (G — Dv.
Moreover, it has a bounded difference as S; +iv — (S;_1+ (@ — Dv) =a; +v <2

almost surely. Now apply the one-sided Azuma-Hoeffding inequality and we get for
any k > O that

k2
Prob(S; <iv —k) <exp <—8—) .
i

For any « > 1, take the smallest iteration index i such that iv > «/, and set k =
(k — 1)I. Since I > %, the probability bound can be then written as

, (k — 1)21? (k — 1)2Iv
Prob(t > i) < Prob(S; < 1) <exp BT < exp T lee
i K

Substitute the left-hand-side with Prob(t > 1 + %) using the definition of i and we
have obtained the desired inequality. O

A.4 Proofs for statements in Sect. 5
A.4.1 Proof for Lemma 6

Proof We prove the lemma recursively starting from the leaf nodes. For leaf nodes
neN,Cn) =, OR(x) = minex,, On(2)+0uPn(x —2) > miney,, On(2)+
Iy l|x — z||. Since Q,, is [,,-Lipschitz continuous, Q,(z) > Q,(x)—1, ||x — z||. There-
fore, Qﬁ(x) > Q,(x) and by Proposition 2, we know Qﬁ(x) = Q,(x) for all
X € Xa(n)~

Now suppose for a node n € A/, we know that all of its child nodes satisfy Qfl x) =
Om(x),Yx € &,, for all m € C(n). Then by definition,

Qg(xa(n)) = min fa(z, y7x)+(7n¢n(xa(n) —-2)+ Q,l,{(x)
(x,y)Efn»ZEXa(n)

By assumption, we know that QE(x) = 9, (x) forall x € X,,. Therefore, Qf(xa(n)) =
mianXa(,l) 0n(2) + on¥n(Xamy — 2) = minzeXa(n) 0n(2) + Iyllxamy — zll. Then
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again by /,-Lipschitz continuity of f,, we conclude that QE (x) = Qu(x) for all x
€ Xa(n). O

A.4.2 Proof for Lemma 7

d
Proof We claim that if K < (%) , then there exists a point X € X such that

H)E — wg || > % forallk =1, ..., K. We prove the claim by contradiction. Suppose
such a point does not exist, or equivalently, for any point x € X, there exists wy € W
such that ||x — wg|| < % This implies that the balls B(28/L, wi) cover the set X,
which leads to

K K
VolX < Vol (U BQB/L, wk)> < ZVOIB(Z/B/L, wr) = K - VolBB/L).

k=1 k=1

Therefore, it must hold that K > VolX'/VolB(2B/L) = (g—é)d, hence a contradic-
tion.

The existence of X guarantees that f (wy) — L||X —wi || < f(wr)—28 < 0foreach
k=1,2,..., K. Therefore, 0 < min,cx Q(x) < Q(%) = maxj<k<k {0, f(wi) —
L||X — w|l} = 0. From compactness of X and the continuity of Q(x), we have
the inequality min,cy @(x) > minj<k<k @(wk) = minj<x<k f(wr) > B, which
completes the proof.

O

A.4.3 Proof for Theorem 4

Proof Let us define the forward subproblem oracle &% in iteration i and stage ¢ as
mapping (x;_;, _;;}) to an optimal solution (x;, z}) of the forward subproblem

min, {f,(zt) +Lx_ — )+ Q"“(xt)} :

X1,2t €A =i+l

and the backward subproblem oracle &2 in iteration i and stage ¢ as mapping
(xff1 , Qi ) to an optimal solution ()?} , 25; ):ﬁ =0, ,6[’ = L) of the backward sub-

t+1
problem
i - " : 32
max min | fiGe) + ol —all + 0, 0 (32)
0<p=<L

Note that in the backward subproblem (32), we choose that/,, , = Oand/, , = L Itis
observed that the objective function in (32) is nondecreasing in p. Therefore, p; = L
is always an optimal solution for the outer maximization in (32). The root-node oracle

O} in iteration i simply solves miny ¢y 2’1 (x0) and outputs xé“.
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In the backward step (Algorithm 2, step 14) and c.f. the definition (15), the new
generalized conjugacy cut in iteration k < i is generated by

Ctk(x|O,L )—v, L||x—xt 1||—v,—L||x—xt 1l

for node t > 1, where gﬁ‘ is computed and upper bounded as

v = fiE) + Ly — 21 + min OF (),

smﬁm+mmgﬂmx
< fitxl)) + mm QIH(X:),

where the first inequality directly follows from (32), as z = xt‘;l is a feasible solution
of the inner minimization problem, and the second inequality is due to the monotonicity

Qt_H(x) < t+1(x) for k < i. Therefore,

Q) = n
:rMﬁpxg—Lw—mqﬂ,

Ao sy — L —ak i} + min 0 00 33

Similarly, by (18), the upper approximation of the value function is computed and
lower bounded as
5 = £+ Llek — 1+ Oy (),
>mﬁn+Qmu>
> fi(x) 1)+ mln Q;+1(Xt)

> ft(xtfl) -+ min Q;+1(xt)y
x €X;

where )th '=argming .y, Qt i ! (x;). Therefore, the over-approximation satisfies

0,(0) =

.....

T k=l,...,
A - . 34
> 7 +x1,1321}, Q,H(xz) (34)

where (34) follows from the construction that f;(x) > ¢/T for all x € &;
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Now using (33) and (34), we can prove the statement of the theorem. Sup-
pose the iteration index i < (D4—I;T)d. Denote wy; = xf‘_l for k = 1,...,1.
Since ¢/T < fi(wx) < 2&/T by construction, applying Lemma 7, we get
ming, e x, {maxi=1, i {0, fi(xf_)) = Lllx; — x/_,}} = 0.By(33),min,,_,cx,_, Q'
(x;—1) < miny, ¢y, Q;H(x,) fort = 1,...,T. Note at stage 7T, QITH = 0. There-
fore, miny, ,ex,_, Q;(xt_l) <Oforallt =1,...,T. But since Q; (x) > 0 for all
x € X,_1, we have min, ¢y, | Q;(x) = O0forall 1 <t < T. Hence we see that
LOWERBOUND = minycx, Q’l (xp) = O in iteration i.
Since &} is a norm ball, it is compact. So by (34), we have

. —i -]
min Xi—1) > &/T + min x;), Vli<t<T.
L, min 0,(x;—1) > ¢/ min, O1(xr)

This recursion implies that min,,¢ x, Ell (x0) > T(¢/T) = e. According to Algo-
rithm 2, Steps 18-19, we have that in iteration i, UPPERBOUND = . nllin {5’; (xIO‘H)} >
=1,...,i

krrllin {@ll (xé“)} > Ini/,Ié all (x0) > &. Combining the above analysis, we have
= 1 XpEAQ

.....

UPPERBOUND — LOWERBOUND > ¢ in iteration i. Therefore, we conclude that if
. . . . d
UPPERBOUND —LOWERBOUND < ¢ atthe i-thiteration, then we have i > (%) .o

A.4.4 Proof for Lemma 8

Proof Let v, denote the d-volume for a d-dimensional unit ball. Recall that the d-

volume of S%(R) s given by Volg (54(R)) = (d + gy Y = @F DT
r(+1)

We next estimate the d-volume for the spherical cap Sg (R, x).Leta € (0, 7/2) denote

the central angle for the spherical cap, i.e.,cosa = 1 — B8/R. Since 8 < (1 — */TE)R,
we know that & < 7/4. Then for any x € S¢(R), the d-volume of the spherical cap
can be calculated through

Vold(sg(R,x))Z/ Voly_1 (S~ (R sin6))Rd6 :dvde/ (sin6)?~1do.
0 0

Note that when 6 € (0, @), sin6 > 0 and cos/ sin > 1. Therefore, since d > 2,

)d—l

o 9 3
Voly(S4(R, x)) < dvgR* / (sin )1 22 49 — qugpe . SR
0 sin 0 d—1

By substituting sina = /1 — (1 — 8/R)?2, we have that

Vol(S§(R, x)) d va .
< (sin
Volg(S4(R))  ~ d? — 1 vay

d—1
)
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d—1)/2
4 1 1 5 o\ d=1)/
Cd?— gy R

d va <2,3>(d1)/2

< ¢
_dz—lvd_H R

Now suppose W = {u),-}f:1 is a maximal set satisfying the assumption, that is, for
any w € Sd(R), w ¢ W, there exists wy € VW such that w € Sg(R, wy). Then,

Kz Sd(R, wi) 2 SY(R), therefore
k=1°8

K
Volyg(S4(R)) <> Vola(S§(R, wy)) = [W|Vola(S§(R, w)).
k=1

Therefore we have

W] > I >
Volg (Sg (R, wi))

@ -Dym r'dp2+1) (R ><d—1)/z

d rd/2+3/2) \28

This completes the proof. O

d2 —1 Vd+1 R

Voly (S?(R)) >[ d v (§>(d—1>/2]1

A.4.5 Proof for Lemma 9

Proof 1. By construction, F is a convex piecewise linear function. Since each linear
piece has a Lipschitz constant (L/R)||wg|| = L, as ||wg|| = R. Thus, F, as the
maximum of these linear functions, is also an L-Lipschitz function.

2. Since wy ¢ SS/L(wl) for I # k, (w;,wy —w;) < —eR/L. Hence, v; +
L/R (w;, wy —w;) < vy — e < 0. Therefore, F(wg) = max{0, vy} = vg.

3. Notice that the above maximum for F(wy) is achieved at a unique linear piece,
which implies that F is differentiable at wy for all k. The gradient VF(wy) =
(L/R)wg. This gives the inequality in property 3 from the Proof of property 2.

4. The inequality of property 3 also implies that Ql(wl) = 0. Now we show
0, (wy) > 3e/2. Since w; ¢ Sf/L(wk) for any k # [, then ||w; — wi|| > €/L
by the Pythagorean theorem. Also vy > €/2. So gi := vx + L||lw; — wi| > 3¢/2.
Since El(wz) is the convex combination of g;’s, we have El(wl) > 3¢/2.

This completes the proof. O

A.4.6 Proof for Theorem 5
Proof First we claim that in any iteration i, for any nodal problem k in stage ¢, the
optimal solution in the forward step (Algorithm 2 line 7) must be x; = wy; ;. To see

this, recall that we set/,, , = L; and/, , = Oforalln € /\7(t), so by Proposition 5, the
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under-approximation of the cost-to-go function g; (x) is Ly4+1-Lipschitz continuous
for all iteration i € N. So consider the forward step subproblem for node n = (¢, k)
with r > 2 in iteration i

min {Ft(x,i_l) + L ”xt - wt,k” +2i(xz)}
x€X
= FyGxi_p) + min L Jx = wee]| + Qe | (35)
xe€X
Note that by the L;-Lipschitz continuity of Q!,

3

Ly |xe — wege] + Q(xr) = Qi(wr ) + (Ly — Lig1) | x — wek

which, alongside with the fact that L, < L;, implies that x;, = wy;  is the unique
optimal solution to the forward step problem (35). The above argument also works
for any node in the stage t = 1 by simply removing the constant term F; (x;;l) in the
nodal problem (35).

Now we define over- and under-approximations of the value functions for the pur-
pose of this proof. For node n = (¢, k), let

gz;k<x>::=fgfégo,cfk<x|iik,o,;5k>L
and

—i s ;
O, (x) := COHVlfjfi{Ut/,k + Lt||x,1_1 —x|I},

where for each j, by formula (16),

QtJ,k = ||§r||13’2, er(lg/}\) {F;_l(z) + ()»,xt]_l —2)+ Ly ||x — w,,k” —|—g[j(x)} ,

= max min {F,,l(z) + (X,xtjfl — z)} + min {Lt ||x — Wy k H —I—Qtj(x)}
IRMI<L: zeX xeX

= Foi () + Q) (wep)

with —ii ¢ €0F (xtjfl) being an optimal solution to the outer maximization prob-
lem, and by formula (18)
» . . . i
U,],k = Ft—l(th’k) + L ”xtJ_l - Z,j,k” + Q; (xtj’k)
= Fo(x_)+ 9/ (] .
The last equalities of ytj  and ﬁtj « are due to the L,-Lipschitz continuity of F;_. So we

have by the monotonicity of the under- and over-approximations that for each j < i,

Q1) = max (0, Froy (L) + (o 3y = %) + Qf (wia))
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< max {0, F_1 (x]_ ) + (3 oxl ) — 20} + Qw0

1<j<i

and
0400 = convi i | o1 ) + Lilla_y — 1+ Q) (wi )}

> comvizjzi { Fiot ) + Ll = x| + Qi wio).
Therefore,

0k (0) = 0 (1) = Qpwy k) — Q) (wi k)
+ convi< ,-g{Ft_l(x,f_n + Lellx]_y = xl} = max (0, Fio1(x]_p)

+ 0‘1 o z | — ) (36)
Thus we have @iyk(wt—l,k’) - 2; k(wt—l,k’) > é;(wt,k) - gi(wt,k) for any k' =

1,..., K;_1,since the last two terms on the right hand side of (36) are over- and under-

approx1mat10ns of the function F;_1, respectively. Moreover, note thatx 1= Wik
forsomek’ =1, ..., K;_] asitis the unique solution in the forward step. By Lemma9,
whenever the node n’ = (r — 1, k') is never sampled up to iteration i, we further have

+ 0w p) — 9 (wrp).

. . 3e
Qre(wi—t ) = @y (Wr—r) > 57—

Recall the definitions (14) and (17), for any x € X,

K,
. 1 .
J
L) = max { : Zc NeapEm ,yt,k)} < E};Q;’k(x),
and
: & ~ [
9, (x) = convi<j<i {; > @+ Ly - x||>} > =2 0.
k=1 ! k=1
Consequently, forany k' =1, ..., K;_1,
. 1 Ky .
_ . . .
Q_ (w1 ) — 9 (w1 k) = e > 10w k) — Q(wi i),
T k=1

and in addition, for any node n’ = (t — 1, k") not sampled up to iteration i,

K
— ; 3e 1 —i ;
Q[_l(wt—l,k’) — gt—l(wt_Lk,) > m + Z kz::l[Qt(wt,k) - Q,(wr,k)l
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Therefore, for any iteration index i < %lW,L t = 1,...,T — 1, then there are
K, —i> %|Wt| nodes not sampled in stage ¢, which implies

Kr—l K,
—i i ) 1 —i ;
o ;[Q,_l(wm,m — Q) > ;[Q,(w,.w - Ol (w0)]-
Consequently, @lr — g’r > (T —-1)- _& = ¢. Therefore, if UPPERBOUND —

T—-1
LOWERBOUND = @lr — g’r < ¢ in the iteration i, then

min |[W| >
T-1

P> 1 ldd-2)m I'd/2+1/2) (DL(T_1)><d—2)/2
3t=l,.., .

3 d-1 rd/r2+1 8¢

This completes the proof. O

B Problem classes with exact penalization

In this section, we discuss the problem classes that allows exact penalty reformulation,
as stated in Assumption 2. A penalty function ¥ : RY — R, is said to be sharp, if
Y(x) > cllx|| forall x € V c R¢, for some open neighborhood V > 0 and some
positive scalar ¢ > 0.

B.1 Convex problems with interior points

For convex problems, the Slater condition implies that the intersection of the domain
dom(}_, s fu) and the feasible sets [T,z F, has a non-empty interior. We have the
following proposition.

Proposition 8 Suppose the problem (1) is convex and satisfies the Slater condition For
any sharp penalty functions ,, there exist o, > 0 such that the penalty reformulation
is exact.

Proof Consider a perturbation vector w = (wy,),ens such that w, € &) — Xy for
each n € NV, and define the perturbation function

T(w):= min Z P Su@Zns Yus Xn) | Wp = Xa@n) — Zn, VR € Nt
(vaxann)EXa(n)X}—n neN

The function 7 is convex and vP"™ = 7(0) by definition. By the Slater condition,
0 € int(dom(t)) so there exists a vector A € RW1 such that T(w) > t(0) + (1, w) for
all perturbation w. Since v, are sharp, there existo;, > Osuch that neN OnWn(Wp)+
(A, w) > O for all w # 0. Consequently the penalty reformulation is exact since
V'8 = min,, T(w) + Y, 0n¥n(wy,) and all optimal solutions must satisfy w, =
Xam) — 2n = Oforalln € N. O
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B.2 Problems with finite state spaces

We say a problem (2) has finite state spaces if the state spaces A, are finite sets for all
nodes n. Such problems appear in multistage integer programming [38], or when the
original state spaces can be approximated through finite ones [19, 39]. The following
proposition shows the penalty reformulation is exact whenever the state spaces are
finite.

Proposition 9 For any penalty functions Yy, n € N, if the state spaces are finite, then
there exists a finite o, > 0 such that the penalty reformulation (7) is exact.

Proof Let dp:=minyzex,, [¥n(x — 2)| for each n € N. Since v, is a penalty
function and the state space &), is finite, we know d,, > 0. Define c as

Cc .= min - x). .
(@ Yn s Xn) EXg(ny X F nEZNp”f"( ns Yns Xn) (37)

Since (37) is a relaxation of the original problem (1) by ignoring coupling constraint
Zn = Xq(n), then ¢ < VP We choose o, = 1 + (vP"™ — ¢)/(p,d,) foralln € N.
Now let (X, Y, Zn)neN be an optimal solution to the regularized problem (4). Then
if there exists Xy(n) 7# zm for some m # r, then puomV¥m Xam) — Zm) > pPrim _ ¢
Consequently,

v >+ Z DPnOn¥n (xa(n) —2Zp) = Cc+ pmo'ml/fm(xa(m) —Zm) >C+ vprim —-C
neN

— vprim‘

This is a contradiction since v™& < vPim Thys, any optimal solution to the reformu-
lation (7) must have x,(,) = z, for all n # r, which means the penalty reformulation
is exact. O

B.3 Problems defined by mixed-integer linear functions

The problem (1) is said to be defined by mixed-integer linear functions, if all the feasi-
ble sets F,, and the epigraphs epi f;, are representable by mixed-integer variables and
non-strict linear inequalities with rational coefficients. Recall that by Assumption 1,
the primal problem is feasible, vP™ > —oo. We have the following proposition on
the exact penalty reformulation.

Proposition 10 ([13], Theorem 5) If problem (1) is defined by mixed-integer linear

functions and the penalty functions v, are sharp foralln € N, then there exist o, > 0,
such that the penalty reformulation is exact.
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B.4 Problems defined by C'-functions

The problem (1) is said to be defined by C!-functions if it is defined by functional
constraints using indicator functions in each node n € N:

fn,O(xa(n)v Yns Xn), ifgn,i(xa(n)v Y, Xn) <0,i=1,...,1,,
400 otherwise.

fn(xa(n)» Vs Xn) = :

withall f;, 0, gn.i»i =1, ..., I, being continuously differentiable. The Karush-Kuhn-
Tucker condition at a feasible point (x,,, y,),ea of (1) says that there exist multipliers
Mni >0,i=1,..., I, such that

Vx,,,y,l { Z (fn,O(xa(n)v Yn> Xn) — Mn,ign,i(xa(n)s Y, Xp) ¢ =0,
neN

Mn,ign,i(xa(n)’ ynaxn)zov l= 1"'-71}1'
We have the following proposition on the exactness.

Proposition 11 Suppose the problem (1) is defined by C'-functions and the Karush-
Kuhn-Tucker condition holds for every local minimum solution of (1). If the penalty
functions v, are sharp for all n € N, then there exist 0, > 0 such that the penalty
reformulation is exact.

We give the Proof of Proposition 11 below.

B.4.1 Proof for Proposition 11

We begin by stating a general exact penalization result for problems defined by C'-
functions. Consider the following perturbation function

p(u):=min f(x, u)
xeRd
s.t. gi(x,u) <0, i=1,...,1,
hj(x,u)=0, j=1,...,J, (38)

Here u is the perturbation vector and u = 0 corresponds to the original primal problem.
Let ¢ be a penalty function on R? and o > 0 a penalty factor. A penalization of the
original primal problem p(0) is given by

min  f(x,u) +o¥(u)
xeRd

s.t. gi(x,u) <0, i=1,...,1,
hj(x,u)=0, j=1,...,J. 39)
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Naturally we could impose some bound on the perturbation as ||u|| < R,. We assume
that f, g;, h; are continuously differentiable in x and u for all i, j. Moreover, the com-
pactness in Assumption 1 implies that the feasible region prescribed by the inequality
constraints g; (x, #) < 0 are compact in x for any u, i.e., X = {x € R? : Ju, Jull <
Ry, st.gi(x,u) <0,i =1,...,J}is compact. For example, some of the inequalities
are bounds on the variables, ||x|| o, < 1. We will show that there exists a penalty factor
o > 0 such that any optimal solution to (39) is feasible to (38). We next characterize
the property of the perturbation function p(u).

Lemma 10 The perturbation function p(u) is lower semicontinuous.

Proof Let X (#) C X denote the feasible set in x dependent on u. The minimum in
the definition is well defined for every u due to the compactness of X (u).

We show that p(u) is lower semicontinuous (Isc) by showing lim inf,_,,, p(v) >
p(u) for any u. Assume for contradiction that for any ¢ > 0, there exists a sequence
{vk}g2, such that vz — u and p(v) < p(u) — e. Let x; € argmin f(x, vg)
and thus p(vy) = f(x,v). Since X is compact, there exists a subsequence Xk;
and z € X such that x;; — z as j — oo. Then by continuity of f, f(z,u) =
lim; . f (xkj, vkj) < p(u) — €. This contradicts with the definition of p(u), since
p(u) =mingex) f(x,u) < f(z,u) < p(u) — &. Therefore p(u) is lsc. O

Now we give the theorem of exact penalization for problems defined by C!-
functions.

Proposition 12 If the Karush-Kuhn-Tucker condition is satisfied at every local min-
imum solution of (38), then the penalty reformulation (39) is exact for some finite
o > 0.

Proof Let X (u) denote the feasible region of x defined by constraints g; (x, u) <
0,i=1,....,7and hj(x,u) =0, j=1,...,J. Then X(u) is compact for any u
by the continuity of the constraint functions. We show that for every optimal solution
xp € X(0), there exists a neighborhood V (xg) > x¢ in the x space, U(xp) > u = 0
in the u space, and constant L(xg) > 0, such that for all x € V(xp) and u € U (xp),
we have f(x,u) > f(x9,0) — L(xp) - ||#||. Then we use this fact together with
compactness of X (0) to show the existence of exact penalization. In this proof, the
little-o is used to simplify notation, i.e., o(|la||) denotes a function b(a) such that
limy— 0 |b(a)|/ llall = 0.

Pick any optimal solution xg € X(0). By definition, it is also a local minimum
solution. By hypothesis, the KKT condition is satisfied at xq, that is, there exist A; €
R,i=1,...,1,and u; >0, j=1,...,J such that

1 J

Vi f (0, 0) + Y 4 Vegi(x0,0) + > 1 Vihj(x0,0) =0,
i=l1 j=1

hj(x0,0)=0, j=1,...,J,
8i(x0,0) <0, A;-gi(x,0)=0,i=1,...,1I (40)
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Since h’s are continuously differentiable and % (xo, 0) = 0, we have

<Vxhj(x0» O)v-x - xO) + (Vuhj(x07 0), l/l)
F+o(lx — xoll + llul) =0, j=1,...,J. 41)

Let A C I denote the set of active inequality constraints. Then similarly we have
(Vxgi(x0,0), x — x0) + (Vi gi(x0, 0), u) + o(llx — xoll + llull) =0, i € A. (42)
For any i ¢ A, by the continuity of g;, there exist neighborhoods W; of xq and U; of

u = 0 such that for any (x, u) € W; x Ui/ , i (x, u) < 0 remains inactive. Now, from
(40), (41), (42), and f being continuously differentiable, we have

[, u) — f(xo,0)
= (V, f(x0,0), x —x0) + (Vi f(x0,0), u) +o(llx — xoll + llull)

J
= (= %iVigi(x0,0) = Y 1jVihj(xo,0), x — x0)
ieA j=1
+ (Vi f (x0, 0), ) + o(llx — xoll + lul)
J
> (Vi f (X0, 0) + D 4 Viugi(x0,0) + Y 1 Vihj(x0, 0), u)
icA j=I1

+o(llx — xoll + Izl
> —L(xo) - llull + o(llx — xoll + llul),

where L(x0):=[|V,,.f (x0. 0) + Y cp A Vugi (x0. 0) + Y 1_y 1 Vuh j(x0. )l + 1 >
0. By the definition of the little-o notation, there exists a neighborhood V (xg) C
NigaWi, xo € V(xo) and U (xp) C NjgaU;, 0 € U(xp) such that

S u) — f(x0,0) = =L(xo) - l[ull, ¥ (x,u) € V(xo) x Ul(xo).

Now, let Xop(0) denote the set of optimal solutions of x when u = 0. Note
that X, (0) C X(0) is closed due to the continuity of f, h;, g;, hence compact.
The collection of open sets {V (x)},c Xopt (0) COVErS Xopt(0). By compactness, there
exists a finite subcollection {V (xx)}X_| such that Xop(0) C UK, V(xp)=:V. Let
L:=maxy=, g L(xx) and U = ﬁleU(xk). Let f* denote the optimal value for
u = 0. Then we have

f,u)> f*—=L-|ull, Y&x,u)eV xU.
To show the inequality for x ¢ V, define p(u) := minyexw)\v f(x, u). Note that
p(0) > f* by the definition of X,(0). Then by Lemma 10, p(u) is lower semicon-

tinuous, and we know that there exists a neighborhood U’ of 0 such that p(u) > f*
forallu € U'. Therefore, forallu € UNU’, we have f(x,u) > f*— L-| ull.Finally,
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we can show that the penalization is exact. Since ¥ is sharp, there exist an open set
U C U NU’, and positive constants ¢ > 0 such that

Y () > cllull onU.

Let M = minueBRu O\ pu) > f*,m = minuEBRu O\ ¥ (u) > 0 because ¥ is a
penalty function. Leto = (M — f*)/m+1. Wehave f(x,u) > f*—o-|ull, Vue
BRH (0)\{0}, x € U, X (u). As a result, any optimal solution to the penalization (39)
would satisfy u = 0. O

Note that our problem (7) can be written into the form (39) by letting u =
(Xa(n)» Zn)nenN> and including the duplicate constraints z, — x4y = O for any
n # r € N in the equality constraints #;(x,u) = 0. And other constraints
gi(x, u) < 0 correspond to the functional constraints in the problem (1). Since v, are
sharp, the aggregate penalty function defined by ¥ (1) = D, cnr Pn¥n (Xa(n) — 2n) i8
also sharp. Let o denote the penalty factor in Proposition 12. Proposition 11 follows
from this by letting 0;, = o/ p,, foralln € N.
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