
Mathematical Programming (2022) 196:935–985
https://doi.org/10.1007/s10107-022-01875-8

FULL LENGTH PAPER

Series B

Stochastic dual dynamic programming for multistage
stochastic mixed-integer nonlinear optimization

Shixuan Zhang1 · Xu Andy Sun2

Received: 8 January 2020 / Accepted: 29 July 2022 / Published online: 20 August 2022
© The Author(s) 2022

Abstract
In this paper, we study multistage stochastic mixed-integer nonlinear programs (MS-
MINLP). This general class of problems encompasses, as important special cases,
multistage stochastic convex optimization with non-Lipschitzian value functions and
multistage stochastic mixed-integer linear optimization. We develop stochastic dual
dynamic programming (SDDP) type algorithmswith nested decomposition, determin-
istic sampling, and stochastic sampling. The key ingredient is a new type of cuts based
on generalized conjugacy. Several interesting classes of MS-MINLP are identified,
where the new algorithms are guaranteed to obtain the global optimum without the
assumptionof complete recourse. This significantly generalizes the classic SDDPalgo-
rithms. We also characterize the iteration complexity of the proposed algorithms. In
particular, for a (T +1)-stage stochastic MINLP satisfying L-exact Lipschitz regular-
ization with d-dimensional state spaces, to obtain an ε-optimal root node solution, we
prove that the number of iterations of the proposed deterministic sampling algorithm
is upper bounded by O((2LT

ε
)d), and is lower bounded by O((LT4ε)d) for the general

case or byO((LT8ε)d/2−1) for the convex case. This shows that the obtained complexity
bounds are rather sharp. It also reveals that the iteration complexity depends polyno-
mially on the number of stages. We further show that the iteration complexity depends
linearly on T , if all the state spaces are finite sets, or if we seek a (T ε)-optimal solution
when the state spaces are infinite sets, i.e. allowing the optimality gap to scale with
T . To the best of our knowledge, this is the first work that reports global optimiza-
tion algorithms as well as iteration complexity results for solving such a large class
of multistage stochastic programs. The iteration complexity study resolves a conjec-

B Xu Andy Sun
sunx@mit.edu

Shixuan Zhang
szhang483@gatech.edu

1 H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of
Technology, Atlanta, GA, USA

2 Sloan School of Management, Operations Research Center, Massachusetts Institute of Technology,
Cambridge, MA, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-022-01875-8&domain=pdf
http://orcid.org/0000-0003-3917-9418

936 S. Zhang, X. A. Sun

ture by the late Prof.Shabbir Ahmed in the general setting of multistage stochastic
mixed-integer optimization.

Keywords Multistage stochastic programming ·MINLP · SDDP · Complexity
analysis

Mathematics Subject Classification 90C15 · 90C11 · 90C30 · 90C60 · 90C39 · 49N15

1 Introduction

Amultistage stochastic mixed-integer nonlinear program (MS-MINLP) is a sequential
decision making problem under uncertainty with both continuous and integer deci-
sions and nonconvex nonlinear objective function and constraints. This provides an
extremely powerful modeling framework. Special classes ofMS-MINLP, such asmul-
tistage stochastic linear programming (MS-LP) andmixed-integer linear programming
(MS-MILP), have already found a wide range of applications in diverse fields such
as electric power system scheduling and expansion planning [3, 36, 37, 39], portfolio
optimization under risk [8, 21, 26], and production and capacity planning problems
[2, 4, 9, 12], just to name a few.

Significant progress has been made in the classic nested Benders decomposition
(NBD) algorithms for solving MS-LP with general scenario trees, and an efficient
randomsamplingvariationofNBD, the stochastic dual dynamicprogramming (SDDP)
algorithm, is developed for MS-LP with scenario trees having stagewise independent
structures. In the past few years, these algorithms are extended to solveMS-MILP [31].
For example, SDDP is generalized to Stochastic Dual Dynamic integer Programming
(SDDiP) algorithm for global optimization of MS-MILP with binary state variables
[38, 39]. Despite the rapid development, key challenges remain in further extending
SDDP to themost general problems inMS-MINLP: 1)There is nogeneral cutting plane
mechanism for generating exact under-approximation of nonconvex, discontinuous,
or non-Lipschitzian value functions; 2) The computational complexity of SDDP-type
algorithms is not well understood even for themost basicMS-LP setting, especially the
interplay between iteration complexity of SDDP, optimality gap of obtained solution,
number of stages, and dimension of the state spaces of the MS-MINLP.

This paper aims at developing new methodologies for the solution of these chal-
lenges. In particular, we develop a unified cutting plane mechanism in the SDDP
framework for generating exact under-approximation of value functions of a large
class of MS-MINLP, and develop sharp characterization of the iteration complexity
of the proposed algorithms. In the remaining of this section, we first give an overview
of the literature, then summarize more details of our contributions.

1.1 Literature review

Benders decomposition [6], Dantzig-Wolfe decomposition [11], and the L-shaped
method [35] are standard algorithms for solving two-stage stochastic LPs. Nested

123

Stochastic dual dynamic programming… 937

decomposition procedures for deterministic models are developed in [16, 20]. Lou-
veaux [25] first generalized the two-stage L-shaped method to multistage quadratic
problems. Nested Benders decomposition for MS-LP was first proposed in Birge [7]
and Pereira and Pinto [28]. SDDP, the sampling variation of NBD, was first proposed
in [29]. The largest consumer of SDDP by far is in the energy sector, see e.g. [14, 23,
29, 34].

Recently, SDDP has been extended to SDDiP [38]. It is observed that the cuts gener-
ated fromLagrangian relaxation of the nodal problems in anMS-MILP are always tight
at the given parent node’s state, as long as all the state variables only take binary values
and have complete recourse. From this fact, the SDDiP algorithm is proved to find an
exact optimal solution in finitely many iterations with probability one. In this way, the
SDDiP algorithmmakes it possible to solve nonconvex problems through binarization
of the state variables [19, 39]. In addition, when the value functions of MS-MILP
with general integer state variables are assumed to be Lipschitz continuous, which is a
critical assumption, augmented Lagrangian cuts with an additional reverse norm term
to the linear part obtained via augmented Lagrangian duality are proposed in [1].

The convergence analysis of the SDDP-type algorithms begins with the linear cases
[10, 18, 24, 30, 33], where almost sure finite convergence is established based on the
polyhedral nodal problem structures. For convex problems, if the value functions are
Lipschitz continuous and the state space is compact, asymptotic convergence of the
under-approximation of the value functions leads to asymptotic convergence of the
optimal value and optimal solutions [15, 17]. By constructing over-approximations
of value functions, an SDDP with a deterministic sampling method with asymptotic
convergence is proposed for the convex case in [5]. Upon completion of this paper,
we became aware of the recent work [22], which proves iteration complexity upper
bounds for multistage convex programs under the assumption that all the value func-
tions and their under-approximations are all Lipschitz continuous. It is shown that
for discounted problems, the iteration complexity depends linearly on the number of
stages. However, the following conjecture (suggested to us by the late Prof. Shab-
bir Ahmed) remains to be resolved, especially for the problems without convexity,
Lipschitz continuity, or discounts:

Conjecture 1 The number of iterations needed for SDDP/SDDiP to find an optimal
first-stage solution grows linearly in terms of the number of stages T , while it may
depend nonlinearly on other parameters such as the diameter D and the dimension d
of the state space.

Our study resolves this conjecture by giving a full picture of the iteration complexity of
SDDP-type algorithms in a general setting of MS-MINLP problems that allow exact
Lipschitz regularization (defined in Sect. 2.3). In the following, we summarize our
contributions.

1.2 Contributions

1. To tackle the MS-MINLP problems without Lipschitz continuous value functions,
which the existing SDDP algorithms and complexity analyses cannot handle, we
propose a regularization approach to provide a surrogate of the original problem

123

938 S. Zhang, X. A. Sun

such that the value functions become Lipschitz continuous. In many cases, the
regularized problem preserves the set of optimal solutions.

2. We use the theory of generalized conjugacy to develop a cut generation scheme,
referred to as generalized conjugacy cuts, that are valid for value functions of
MS-MINLP. Moreover, generalized conjugacy cuts are shown to be tight to the
regularized value functions. The generalized conjugacy cuts can be replaced by
linear cuts without compromising such tightness when the problem is convex.

3. With the regularization and the generalized conjugacy cuts, we propose three algo-
rithms for MS-MINLP, including nested decomposition for general scenario trees,
SDDP algorithms with random sampling as well as deterministic sampling similar
to [5] for stagewise independent scenario trees.

4. We obtain upper and lower bounds on the iteration complexity for the proposed
SDDP with both sampling methods for MS-MINLP problems. The complexity
bounds show that in general, Conjecture 1 holds if only we seek a (T ε)-optimal
solution, instead of an ε-optimal first-stage solution for a (T + 1)-stage problem,
or when all the state spaces are finite sets.

In addition, this paper contains the following contributions comparedwith the recent
independent work [22]: (1)We consider a much more general class of problems which
are not necessarily convex. As a result, all the iteration complexity upper bounds of the
algorithms are also valid for these nonconvex problems. (2) We use the technique of
regularization tomake the iteration complexity bounds independent of the subproblem
oracles. This is particularly important for the conjecture, since the Lipschitz constants
of the under-approximation of value functions may exceed those of the original value
functions. (3) We propose matching lower bounds on the iteration complexity of the
algorithms and characterize important cases for the conjecture to hold.

This paper is organized as follows. In Sect. 2 we introduce the problem formulation,
regularization of the value functions, and the approximation scheme using generalized
conjugacy. Sect. 3 proposes SDDP algorithms. Sect. 4 investigates upper bounds on
the iteration complexity of the proposed algorithm, while Sect. 5 focuses on lower
bounds, therefore completes the picture of iteration complexity analysis. We finally
provide some concluding remarks in Sect. 6.

2 Problem formulations

In this section, we first present the extensive and recursive formulations of multistage
optimization.Thenwecharacterize the properties of the value functions,with examples
to show that they may fail to be Lipschitz continuous. With this motivation in mind,
we propose a penalty reformulation of the multistage problem through regularization
of value functions and show that it is equivalent to the original formulation for a
broad class of problems. Finally, we propose generalized conjugacy cuts for under-
approximation of value functions.

2.1 Extensive and recursive formulation

For a multistage stochastic program, let T = (N , E) be the scenario tree, whereN is
the set of nodes and E is the set of edges. For each node n ∈ N , let a(n) denote the

123

Stochastic dual dynamic programming… 939

parent node of n, C(n) denote the set of child nodes of n, and T (n) denote the subtree
starting from the node n. Given a node n ∈ N , let t(n) denote the stage that the node
n is in and let T :=maxn∈N t(n) denote the last stage of the tree T . A node in the last
stage is called a leaf node, otherwise a non-leaf node. The set of nodes in stage t is
denoted as N (t):={n ∈ N : t(n) = t}. We use the convention that the root node of
the tree is denoted as r ∈ N with t(r) = 0 so the total number of stages is T + 1. The
parent node of the root node is denoted as a(r), which is a dummy node for ease of
notation.

For every node n ∈ N , let Fn denote the feasibility set in some Euclidean space of
decision variables (xn, yn) of the nodal problem at node n. We refer to xn as the state
variable and yn as the internal variable of node n. Denote the image of the projection
ofFn onto the subspace of the variable xn asXn , which is referred to as the state space.
Let xa(r) = 0 serve as a dummy parameter and thus Xa(r) = {0}. The nonnegative
nodal cost function of the problem at node n is denoted as fn(xa(n), yn, xn) and is
defined on the set {(z, y, x) : z ∈ Xa(n), (x, y) ∈ Fn}. We allow fn to take the value
+∞ so indicator functions can be modeled as part of the cost. Let pn > 0 for all
n ∈ N denote the probability that node n on the scenario tree is realized. For the root
node, pr = 1. The transition probability that node m is realized conditional on its
parent node n being realized is given by pnm := pm/pn for all edges (n,m) ∈ E .

The multistage stochastic program considered in this paper is defined in the fol-
lowing extensive form:

vprim:= min
(xn ,yn)∈Fn ,∀ n∈N

∑

n∈N
pn fn(xa(n), yn, xn). (1)

The recursive formulation of the problem (1) is defined as

Qn(xa(n)):= min
(xn ,yn)∈Fn

⎧
⎨

⎩ fn(xa(n), yn, xn)+
∑

m∈C(n)

pnmQm(xn)

⎫
⎬

⎭ , (2)

where n ∈ T is a non-leaf node and Qn(xa(n)) is the value function of node n. At
a leaf node, the sum in (2) reduces to zero, as there are no child nodes C(n) = ∅.
The problem on the right-hand side of (2) is called the nodal problem of node n. Its
objective function consists of the nodal cost function fn and the expected cost-to-go
function, which is denoted as Qn for future reference, i.e.

Qn(xn):=
∑

m∈C(n)

pnmQm(xn). (3)

To ensure that the minimum in problem (1) is well defined and finite, we make the
following very general assumption on fn and Fn throughout the paper.

Assumption 1 For every node n ∈ N , the feasibility set Fn is compact, and the
nodal cost function fn is nonnegative and lower semicontinuous (l.s.c.). The sum∑

n∈N pn fn is a proper function, i.e., there exists (xn, yn) ∈ Fn for all nodes n ∈ N
such that the sum

∑
n∈N pn fn(xa(n), yn, xn) < +∞.

123

940 S. Zhang, X. A. Sun

Note that the state variable xa(n) only appears in the objective function fn of node
n, not in the constraints. Perhaps the more common way is to allow xa(n) to appear in
the constraints of node n. It is easy to see that any such constraint can be modeled by
an indicator function of (xa(n), xn, yn) in the objective fn .

2.2 Continuity and convexity of value functions

The following proposition presents some basic properties of the value function Qn

under Assumption 1.

Proposition 1 Under Assumption 1, the value function Qn is lower semicontinuous
(l.s.c.) for all n ∈ N . Moreover, for any node n ∈ N ,

1. if fn(z, y, x) is Lipschitz continuous in the first variable z with constant ln, i.e.
| fn(z, y, x)− fn(z′, y, x)| ≤ ln‖z− z′‖ for any z, z′ ∈ Xa(n) and any (x, y) ∈ Fn,
then Qn is also Lipschitz continuous with constant ln;

2. if Xa(n) and Fn are convex sets, and fn and Qn are convex functions, then Qn is
also convex.

The proof is given in Sect. A.1.1. When Qm is l.s.c. for all m ∈ C(n), the sum∑
m∈C(n) pnmQm is l.s.c.. Therefore, the minimum in the definition (2) is well define,

since Fn is assumed to be compact.
If the objective function fn(xa(n), yn, xn) is not Lipschitz, e.g., when it involves

an indicator function of xa(n), or equivalently when xa(n) appears in the constraint
of the nodal problem of Qn(xa(n)), then the value function Qn may not be Lipschitz
continuous, as is shown by the following examples.

Example 1 Consider the convex nonlinear two-stage problem

v∗:= min
x,z,w

{
x + z : (z − 1)2 + w2 ≤ 1, w = x, x ∈ [0, 1]

}
.

The objective function and all constraints are Lipschitz continuous. The optimal objec-
tive value v∗ = 0, and the unique optimal solution is (x∗, z∗, w∗) = (0, 0, 0). At the
optimal solution, the inequality constraint is active. Note that the problem can be
equivalently written as v∗ = min0≤x≤1 x + Q(x), where Q(x) is defined on [0, 1] as
Q(x):=min

{
z : ∃w ∈ R, s.t. (z − 1)2 + w2 ≤ 1, w = x

} = 1−√1− x2, which is
not locally Lipschitz continuous at the boundary point x = 1. Therefore, Q(x) is not
Lipschitz continuous on [0, 1].
Example 2 Consider the mixed-integer linear two-stage problem

v∗:=min {1− 2x + z : z ≥ x, x ∈ [0, 1], z ∈ {0, 1}} .

The optimal objective value is v∗ = 0, and the unique optimal solution is (x∗, z∗) =
(1, 1). Note that the problem can be equivalently written as v∗ = min{1−2x+Q(x) :
0 ≤ x ≤ 1}, where the function Q(x) is defined on [0, 1] as Q(x):=min{z ∈ {0, 1} :
z ≥ x}, which equals 0 if x = 0, and 1 for all 0 < x ≤ 1, i.e. Q(x) is discontinuous
at x = 0, therefore, it is not Lipschitz continuous on [0, 1].

123

Stochastic dual dynamic programming… 941

These examples show a major issue with the introduction of value functions Qn ,
namely Qn may fail to be Lipschitz continuous even when the original problem only
has constraints defined by Lipschitz continuous functions. This could lead to failure of
algorithms based on approximation of the value functions. In the next section, we will
discuss how to circumvent this issue without compromise of feasibility or optimality
for a wide range of problems.

2.3 Regularization and penalty reformulation

The main idea of avoiding failure of cutting plane algorithms in multistage dynamic
programming is to use some Lipschitz continuous envelope functions to replace the
original value functions, which we refer to as regularized value functions.

To begin with, we say a function ψ : R
d → R+ is a penalty function, if ψ(x) = 0

if and only if x = 0, and the diameter of its level set leva(ψ) := {x ∈ R
d : ψ(x) ≤ α}

approaches 0 when a → 0. In this paper, we focus on penalty functions that are locally
Lipschitz continuous, the reason for which will be clear from Proposition 2.

For each node n, we introduce a new variable zn as a local variable of node n and
impose the duplicating constraint xa(n) = zn . This is a standard approach for obtaining
dual variables through relaxation (e.g. [38]). The objective function can then bewritten
as fn(zn, yn, xn). Let ψn be a penalty function for node n ∈ N . The new coupling
constraint is relaxed and penalized in the objective function by σnψn(xa(n) − zn) for
some σn > 0. Then the DP recursion with penalization becomes

QR
n (xa(n)):= min

(xn ,yn)∈Fn ,
zn∈Xa(n)

⎧
⎨

⎩ fn(zn, yn, xn)+ σnψn(xa(n) − zn)+
∑

m∈C(n)

pnmQR
m(xn)

⎫
⎬

⎭ , (4)

for all n ∈ N , and QR
n is referred to as the regularized value function. By convention,

Xa(r) = {xa(r)} = {0} and therefore, penalization ψr (xa(r) − zr) ≡ 0 for any zr ∈
Xa(r). Since the state spaces are compact, without loss of generality, we can scale the
penalty functions ψn such that the Lipschitz constant of ψn on Xa(n)−Xa(n) is 1. The
following proposition shows that QR

n is a Lipschitz continuous envelope function of
Qn for all nodes n.

Proposition 2 Supposeψn is a 1-Lipschitz continuous penalty function on the compact
set Xa(n) − Xa(n) for all n ∈ N . Then QR

n (x) ≤ Qn(x) for all x ∈ Xa(n) and QR
n (x)

is σn-Lipschitz continuous on Xa(n). Moreover, if the original problem (2) and the
penalty functions ψn are convex, then QR

n (x) is also convex.

The key idea is that by adding a Lipschitz function ψn into the nodal problem, we
can make QR

n (x) Lipschitz continuous even when Qn(x) is not. The proof is given in
Sect. A.1.2. The optimal value of the regularized root nodal problem

vreg:= min
(xr ,yr)∈Fr

⎧
⎨

⎩ fr (xa(r), yr , xr)+
∑

m∈C(r)

prmQ
R
m(xr)

⎫
⎬

⎭ (5)

123

942 S. Zhang, X. A. Sun

is thus an underestimation of vprim, i.e. vreg ≤ vprim. For notational convenience, we
also define the regularized expected cost-to-go function for each node n as:

QR
n (xn):=

∑

m∈C(n)

pnmQ
R
m(xn). (6)

Definition 1 For any ε > 0, a feasible root node solution (xr , yr) ∈ Fr is said to be
ε-optimal to the regularized problem (4) if it satisfies fr (xa(r), yr , xr) + QR

r (xr) ≤
vreg + ε.

Next we discuss conditions under which vreg = vprim and any optimal solution
(xn, yn)n∈N to the regularized problem (4) is feasible and hence optimal to the original
problem (2). Note that by expanding QR

m in the regularized problem (4) for all nodes,
we obtain the extensive formulation for the regularized problem:

vreg = min
(xn ,yn)∈Fn ,n∈N

zn∈Xa(n)

∑

n∈N
pn
(
fn(zn, yn, xn)+ σnψn(xa(n) − zn)

)
. (7)

We refer to problem (7) as the penalty reformulation and make the following assump-
tion on its exactness for the rest of the paper.

Assumption 2 We assume that the penalty reformulation (7) is exact for the given
penalty parameters σn > 0, n ∈ N , i.e., any optimal solution of (7) satisfies zn = xa(n)

for all n ∈ N .

Assumption 2 guarantees the solution of the regularized extensive formulation (7) is
feasible for the original problem (1), then by the fact that vreg ≤ vprim, is also optimal
to the original problem, we have vreg = vprim. Thus regularized value functions
serve as a surrogate of the original value function, without compromise of feasibility
of its optimal solutions. A consequence of Assumption 2 is that the original and
regularized value functions coincide at all optimal solutions, the proof of which is
given in Sect. A.1.3.

Lemma 1 Under Assumption 2, any optimal solution (xn, yn)n∈N to problem (1) sat-
isfies QR

n (xa(n)) = Qn(xa(n)) for all n �= r .

We illustrate the regularization on the examples through Fig. 1a and b. In Fig. 1a, the
value function Q(x) derived in Example 1 is not Lipschitz continuous at x = 1. With
ψ(x) = ‖x‖ and σ = 4/3, we obtain the regularized value function, which coincides
with the original one on [0, 0.8] and is Lipschitz continuous on the entire interval
[0, 1]. In Fig. 1b, the value function Q(x) derived in Example 1 is not continuous at
x = 0. With ψ(x) = ‖x‖, σ = 5, we obtain the regularized value function, which
coincides with the primal one on {0}∪[0.2, 1] and is Lipschitz continuous on the entire
interval [0, 1]. In both examples, it can be easily verified that the penalty reformulation
is exact and thus preserves optimal solution.

We comment that Assumption 2 can hold for appropriately chosen penalty factors
in various mixed-integer nonlinear optimization problems, including

123

Stochastic dual dynamic programming… 943

(a) (b)

Fig. 1 Value functions in Examples 1 and 2

– convex problems with interior feasible solutions,
– problems with finite state spaces,
– problems defined by mixed-integer linear functions, and
– problems defined by continuously differentiable functions,

if certain constraint qualification is satisfied and proper penalty functions are chosen.
We refer the readers to Sect. B in the Appendix for detailed discussions.We emphasize
that Assumption 2 should be interpreted as a restriction on the MS-MINLP problem
class studied in this paper. Namely all problem instances in our discussionmust satisfy
Assumption 2 with a given set of penalty functions ψn and penalty parameters σn ,
while they can have other varying problem data such as the numbers of stages T and
characteristics of the state spaces Xn . In general, it is possible that a uniform choice
of σn needs to grow with T to satisfy the assumption.

2.4 Generalized conjugacy cuts and value function approximation

In this part, we first introduce generalized conjugacy cuts for nonconvex functions and
then apply it to the under-approximation of value functions of MS-MINLP.

2.4.1 Generalized conjugacy cuts

Let Q : X → R+ ∪ {+∞} be a proper, l.s.c. function defined on a compact set
X ⊆ R

d . Let U be a nonempty set for dual variables. Given a continuous function
Φ : X ×U → R, the Φ-conjugate of Q (see e.g., Chapter 11-L in [32]) is defined as

QΦ(u) = max
x∈X

{Φ(x, u)− Q(x)} . (8)

The following generalizedFenchel-Young inequality holds by definition for any x ∈ X
and u ∈ U ,

Q(x)+ QΦ(u) ≥ Φ(x, u).

123

944 S. Zhang, X. A. Sun

For any û ∈ U and an associated maximizer x̂ in (8), we define

CΦ(x | û, v̂) := v̂ +Φ(x, û) (9)

where v̂:= − QΦ(û). Then, the following inequality, derived from the generalized
Fenchel-Young inequality, is valid for any x ∈ X ,

Q(x) ≥ CΦ(x | û, v̂), (10)

which we call a generalized conjugacy cut for the target function Q.

2.4.2 Value function approximation

The generalized conjugacy cuts can be used in the setting of an augmented Lagrangian
dual [1] with bounded dual variables. For a nodal problem n ∈ N , n �= r and a point
x̄ ∈ Xa(n), defineΦ x̄

n (x, u):=−〈λ, x̄ − x〉−ρψn(x̄− x), where u := (λ, ρ) ∈ R
dn+1

are parameters. Consider a compact set of parametersUn = {(λ, ρ) : ‖λ‖∗ ≤ ln,λ, 0 ≤
ρ ≤ ln,ρ} with nonnegative bounds ln,λ and ln,ρ , where ‖·‖∗ is the dual norm of ‖·‖.
Consider the following dual problem

v̂n := max
(λ,ρ)∈Un

{
min

z∈Xa(n)

[Qn(z)+ 〈λ, x̄ − z〉 + ρψn(x̄ − z)]

}
. (11)

Denote ẑn and (λ̂n, ρ̂n) as an optimal primal-dual solution of (11). The dual problem
(11) can be viewed as choosing (λ̂n, ρ̂n) as the value of û in (9), which makes the
constant term−QΦ(û) as large as possible, thus makes the generalized conjugacy cut
(10) as tight as possible. With this choice of the parameters, a generalized conjugacy
cut for Qn at x̄ is given by

Qn(x) ≥ C
Φ x̄
n

n (x | λ̂n, ρ̂n, v̂n)
= −〈λ̂n, x̄ − x〉 − ρ̂nψn(x̄ − x)+ v̂n, ∀ x ∈ Xa(n). (12)

Proposition 3 Given the above definition of (11)–(12), if (x̄n, ȳn)n∈N is an optimal
solution to problem (1) and the bound ln,ρ satisfies ln,ρ ≥ σn for all nodes n, then
for every node n, the generalized conjugacy cut (12) is tight at x̄n, i.e. Qn(x̄n) =
CΦ

x̄n
n

n (x̄n | λ̂n, ρ̂n, v̂n).
The proof is given in Sect. A.1.4. The proposition guarantees that, underAssumption 2,
the generalized conjugacy cuts are able to approximate the value functions exactly at
any state associated to an optimal solution.

In the special case where problem (2) is convex and ψn(x) = ‖x‖ for all n ∈ N ,
the exactness of the generalized conjugacy cut holds even if we set ln,ρ = 0, i.e. the
conjugacy cut is linear. To be precise, we begin with the following lemma.

Lemma 2 LetX ⊂ R
d be a convex, compact set. Given a convex, proper, l.s.c. function

Q : X → R ∪ {+∞}, for any x ∈ X , the inf-convolution satisfies

123

Stochastic dual dynamic programming… 945

Q˝(σ ‖·‖)(x):=min
z∈X

{Q(z)+ σ ‖x − z‖} = max‖λ‖∗≤σ
min
z∈X

{Q(z)+ 〈λ, x − z〉}. (13)

The proof are given in Sect. A.1.5. Next we show the tightness in the convex case
similar to Proposition 3. The proof is given in Sect. A.1.6.

Proposition 4 Suppose (2) is convex and ψn(x) = ‖x‖ for all nodes n. Given the
above definition of (11)–(12), if (x̄n, ȳn)n∈N is an optimal solution to problem (1)
and the bounds satisfy ln,λ ≥ σn, ln,ρ = 0 for all nodes n, then for every node n, the

generalized conjugacy cut (12) is exact at x̄n, i.e. Qn(x̄n) = CΦ
x̄n
n

n (x̄n | λ̂n, ρ̂n, v̂n).
In this case, the generalized conjugacy reduces to the usual conjugacy for convex

functions and the generalized conjugacy cut is indeed linear. This enables approxima-
tion of the value function that preserves convexity.

Remark 1 This proposition can be generalized to special nonconvex problems with
Q extensible to a Lipschitz continuous convex function defined on the convex hull
convX . This is true if X is the finite set of extreme points of a polytope, e.g., {0, 1}d .
The above discussion provides an alternative explanation of the exactness of the
Lagrangian cuts in SDDiP [38] assuming relatively complete recourse.

3 Nested decomposition and dual dynamic programming algorithms

In this section, we introduce a nested decomposition algorithm for general scenario
trees, and two dual dynamic programming algorithms for stagewise independent sce-
nario trees. Since the size of the scenario tree could be large, we focus our attention to
finding an ε-optimal root node solution x∗r (see definition (5),) rather than an optimal
solution {x∗n }n∈T for the entire tree.

3.1 Subproblem oracles

Before we propose the new algorithms, we first define subproblem oracles, which we
will use to describe the algorithms and conduct complexity analysis. A subproblem
oracle is an oracle that takes subproblem information together with the current algo-
rithm information to produce a solution to the subproblem. With subproblem oracles,
we can describe the algorithms consistently regardless of convexity.

We assume three subproblem oracles in this paper, corresponding to the forward
steps and backward steps of non-root nodes, and the root node step in the algorithms.
For non-root nodes, we assume the following two subproblem oracles.

Definition 2 (Forward Step Subproblem Oracle for Non-Root Nodes) Consider the
following subproblem for a non-root node n,

min
(x,y)∈Fn ,
z∈Xa(n)

{
fn(z, y, x)+ σnψn(xa(n) − z)+Θn(x)

}
. (F)

123

946 S. Zhang, X. A. Sun

where the parent node’s state variable xa(n) ∈ Xa(n) is a given parameter and Θn :
Xn → R̄ is a l.s.c. function, representing an under-approximation of the expected
cost-to-go functionQn(x) defined in (3). The forward step subproblem oracle finds an
optimal solution of (F) given xa(n) and Θn , that is, we denote this oracle as a mapping
OF
n that takes (xa(n), Θn) as input and outputs an optimal solution (xn, yn, zn) of (F)

for n �= r .

Recall that the values σn for all n ∈ N in (F) are the chosen penalty parameters that
satisfy Assumption 2. In view of Propositions 3 and 4, we set ln,λ ≥ σn and ln,ρ = 0
for the convex case with ψn = ‖·‖; or ln,ρ ≥ σn otherwise for the dual variable set
Un := {(λ, ρ) : ‖λ‖∗ ≤ ln,λ, 0 ≤ ρ ≤ ln,ρ} in the next definition.
Definition 3 (Backward Step Subproblem Oracles for Non-Root Nodes) Consider the
following subproblem for a non-root node n,

max
(λ,ρ)∈Un

min
(x,y)∈Fn ,
z∈Xa(n)

{
fn(z, y, x)+ 〈λ, xa(n) − z〉 + ρψn(xa(n) − z)+Θn(x)

}
, (B)

where the parent node’s state variable xa(n) ∈ Xa(n) is a given parameter and Θn :
Xn → R̄ is a l.s.c. function, representing an under-approximation of the expected
cost-to-go function. The backward step subproblem oracle finds an optimal solution
of (B) for the given xa(n) and Θn . Similarly, we denote this oracle as a mapping OB

n
that takes (xa(n), Θn) as input and outputs an optimal solution (xn, yn, zn; λn, ρn) of
(B) for n �= r .

For the root node, we assume the following subproblem oracle.

Definition 4 (SubproblemOracle for the Root Node) Consider the following subprob-
lem for the root node r ∈ N ,

min
(x,y)∈Fr

{
fr (xa(r), y, x)+Θr (x)

}
, (R)

where Θr : Xr → R̄ is a l.s.c. function, representing an under-approximation of the
expected cost-to-go function. The subproblem oracle for the root node is denoted as
Or that takes Θr as input and outputs an optimal solution (xr , yr) of (R) for the given
function Θr .

These subproblem oracles OF
n , O

B
n , including the parameters σn , ln,λ, and ln,ρ for all

n �= r , and Or will be given as inputs to the algorithms. They may return any optimal
solution to the corresponding nodal subproblem. For numerical implementation, they
are usually handled by subroutines or external solvers.

3.2 Under- and over-approximations of cost-to-go functions

We first show how to iteratively construct under-approximation of expected cost-to-go
functions using the generalized conjugacy cuts developed in Sect. 2.4. The under-
approximation serves as a surrogate of the true cost-to-go function in the algorithm.

123

Stochastic dual dynamic programming… 947

Let i ∈ N be the iteration index of an algorithm. Assume (xin, y
i
n)n∈N are feasible

solutions to the regularized nodal problem (4) in the i-th iteration. Then the under-
approximation of the expected cost-to-go function is defined recursively from leaf
nodes to the root node, and inductively for i ∈ N as

Qi
n(x):=max

⎧
⎨

⎩Q
i−1
n (x),

∑

m∈C(n)

pnmC
i
m(x | λ̂im, ρ̂i

m, vim)

⎫
⎬

⎭ , ∀x ∈ Xn, (14)

where Q0
n ≡ 0 on Xn . In the definition (14), Ci

m is the generalized conjugacy cut for

Qm at i-th iteration and Φ
xin
m (x, λ, ρ) = −〈λ, xin − x〉 − ρψn(xin − x) (cf. (11)–(12)),

that is,

Ci
m(x | λ̂im, ρ̂i

m, vim):= − 〈λ̂im, xin − x〉 − ρ̂i
mψm(xin − x)+ vim, (15)

where (x̂ im, ŷim ẑ
i
m; λ̂im, ρ̂i

m) = OB
m(xin,Qi

m), and vim satisfies

vim = fm(ẑim, ŷim, x̂ im)+ 〈λ̂im, xin − ẑim〉 + ρ̂i
mψm(xin − ẑim)+Qi

m(x̂ im). (16)

The next proposition shows thatQi
n is indeed an under-approximation ofQn , the proof

of which is given in Sect. A.2.1.

Proposition 5 For any n ∈ N , and i ∈ N, Qi
n(x) is (

∑
m∈C(n) pnm(lm,λ + lm,ρ))-

Lipschitz continuous and

Qn(x) ≥ Qi
n(x), ∀x ∈ Xn .

Now, we propose the following over-approximation of the regularized expected
cost-to-go functions, which is used in the sampling and termination of the proposed
nested decomposition and dual dynamic programming algorithms. For i ∈ N, at root
node r , let (xir , y

i
r) = Or (Qi−1

r), and, at each non-root node n, let (xin, y
i
n, z

i
n) =

OF
n (xia(n),Qi−1

n). Then the over-approximation of the regularized expected cost-to-go
function is defined recursively, from leaf nodes to the child nodes of the root node,
and inductively for i ∈ N by

Qi
n(x):=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

conv

⎧
⎨

⎩Q
i−1
n (x),

∑

m∈C(n)

pnm
(
v̄im + σm‖x − xin‖

)
⎫
⎬

⎭ , if (4) is convex

min

⎧
⎨

⎩Q
i−1
n (x),

∑

m∈C(n)

pnm
(
v̄im + σm‖x − xin‖

)
⎫
⎬

⎭ , otherwise

(17)

where Q0
n ≡ +∞ for any non-leaf node n ∈ N , Qi

n ≡ 0 for any iteration i ∈ N and
any leaf node n, and v̄im satisfies

123

948 S. Zhang, X. A. Sun

v̄im = fm(zim, yim, xim)+ σmψm(xin − zim)+Qi
m(xim). (18)

Here, the operation conv{ f , g} forms the convex hull of the union of the epigraphs
of any continuous functions f and g defined on the space R

d . More precisely using
convex conjugacy, we define

conv{ f , g}(x) := (min{ f (x), g(x)})∗∗
= sup

λ∈Rd
inf
z∈Rd

{min{ f (z), g(z)} + 〈λ, x − z〉} . (19)

The key idea behind the upper bound function (17) is to exploit the Lipschitz continuity
of the regularized value function QR

m(x). In particular, it would follow from induction
that v̄im is an upper bound on QR

m(xin), and then, by the σm-Lipschitz continuity of
QR

m(x), we have v̄im+σm‖x− xin‖ ≥ QR
m(xin)+σm‖x− xin‖ ≥ QR

m(x) for all x ∈ Xn .
The next proposition summarizes this property, with the proof given in Sect. A.2.2.

Proposition 6 For any non-root node n ∈ N and i ≥ 1,Qi
n(x) is (

∑
m∈C(n) pnmσm)-

Lipschitz continuous. Moreover, we have v̄im ≥ QR
m(xin) for any node m ∈ C(n) and

thus

Qi
n(x) ≥ QR

n (x), ∀ x ∈ Xn .

3.3 A nested decomposition algorithm for general trees

We first propose a nested decomposition algorithm in Algorithm 1 for a general sce-
nario tree. In each iteration i , Algorithm 1 carries out a forward step, a backward step,
and a root node update step. In the forward step, the algorithm proceeds from t = 1 to
T by solving all the nodal subproblems with the current under-approximation of their
cost-to-go functions in stage t . After all the state variables xin are obtained for nodes
n ∈ N , the backward step goes from t = T back to 1. At each node n in stage t , it first
updates the under-approximation of the expected cost-to-go function. Next it solves
the dual problem to obtain an optimal primal-dual solution pair (x̂ in, ŷ

i
n, ẑ

i
n; λ̂in, ρ̂i

n),
which is used to construct a generalized conjugacy cut using (15), together with val-
ues vin and v̄in calculated with (16) and (18). Finally the algorithm updates the root
node solution using the updated under-approximation of the cost-to-go function, and
determines the new lower and upper bounds. The incumbent solution (x∗r , y∗r) may
also be updated as the algorithm output at termination, although it is not used in the
later iterations.

Algorithm 1 solves the regularized problem (4) for an ε-optimal root node solution.
To justify the ε-optimality of the output of the algorithm, we have the following
proposition, the proof of which is given in Sect. A.2.3.

Proposition 7 Given any ε > 0, if UpperBound − LowerBound ≤ ε, then the
returned solution (x∗r , y∗r) is an ε-optimal root node solution to the regularized prob-

lem (4). In particular, if Qi
r (x

i+1
r) − Qi

r (x
i+1
r) ≤ ε for some iteration index i , then

123

Stochastic dual dynamic programming… 949

Algorithm 1 A nested decomposition algorithm for a general tree

Require: scenario tree T = (N ,E) with subproblem oracles Or ,OF
n ,OB

n , n �= r , and ε > 0
Ensure: an ε-optimal root node solution (x∗r , y∗r) to the regularized problem (4)

1: Initialize: i ← 1;Q0
n ← 0, Q0

n ←+∞∀ n : C(n) �= ∅ andQ0
n ← 0 ∀ n : C(n) = ∅

2: Evaluate (x1r , y1r) = Or (0)
3: Set LowerBound← fr (xa(r), y

1
r , x1r), UpperBound←+∞

4: while UpperBound− LowerBound > ε do
5: for t = 1, . . . , T − 1 do � i-th forward step
6: for n ∈ N (t) do
7: Evaluate (xin , yin , zin) = OF

n (xia(n)
,Qi−1

n)

8: end for
9: end for
10: for t = T , . . . , 1 do � i-th backward step
11: for n ∈ N (t) do

12: Update Qi
n andQi

n using (14) and (17)

13: Evaluate (x̂ in , ŷin , ẑin; λ̂in , ρ̂in) = OB
n (xia(n)

,Qi
n)

14: Calculate Ci
n , vin , and v̄in using (15), (16), and (18)

15: end for
16: end for
17: Update Qi

r and Qi
r using (14) and (17) � root node update

18: Evaluate (xi+1r , yi+1r) = Or (Qi
r)

19: Update LowerBound← fr (xa(r), y
i+1
r , xi+1r)+Qi

r (x
i+1
r)

20: if UpperBound > fr (xa(r), y
i+1
r , xi+1r)+Qi

r (x
i+1
r) then

21: Update UpperBound← fr (xa(r), y
i+1
r , xi+1r)+Qi

r (x
i+1
r)

22: Set (x∗r , y∗r) = (xi+1r , yi+1r)

23: end if
24: i ← i + 1
25: end while

UpperBound− LowerBound ≤ ε and Algorithm 1 terminates after the i-th itera-
tion.

3.4 A deterministic sampling dual dynamic programming algorithm

Starting from this subsection,we turn our attention to stagewise independent stochastic
problems, which is defined in the following assumption.

Assumption 3 For any t = 1, . . . , T − 1 and any n, n′ ∈ N (t), the state space,
the transition probabilities, as well as the data associated with the child nodes C(n)

and C(n′) are identical. In particular, this implies Qn(x) = Qn′(x)=:Qt (x) for all
x ∈ Xn = Xn′=:Xt ⊆ R

dt .

We denote n ∼ n′ for n, n′ ∈ N (t) for some t = 1, . . . , T − 1, if the nodes n, n′
are defined by identical data. We then use Ñ (t) := N (t)/ ∼ to denote the set of
nodes with size Nt := |Ñ (t)| that are defined by distinct data in stage t for all
t = 1, . . . , T − 1, i.e. Ñ := ∪T

t=0Ñ (t) forms a recombining scenario tree [39].
For each node m ∈ Ñ (t), we denote pt−1,m := pnm for any n ∈ Ñ (t − 1) since
pn,m = pn′,m for any n, n′ ∈ Ñ (t − 1). Due to stagewise independence, it suffices

123

950 S. Zhang, X. A. Sun

to keep track of the state of each stage in the algorithm, instead of the state of each
node. To be consistent, we also denote the root node solution as (xi0, y

i
0) for i ∈ N.

We present the algorithm in Algorithm 2.
Similar to Algorithm 1, each iteration in Algorithm 2 consists of a forward step,

a backward step, and a root node update step. In particular, at a node n ∈ Ñ (t)
with t < T , the forward step proceeds to a child node m ∈ Ñ (t + 1), where the

approximation gap γ i
m := Qi−1

t (xim) − Qi−1
t (xim) is among the largest of all the

approximation gaps of states xim′ of nodes m′ ∈ Ñ (t + 1). Then the state variable of
nodem is considered the state variable of stage t(m) in the iteration i . Due to stagewise
independence, the backward step at each stage t only need to generate cuts for the
nodes in the recombining tree Ñ . The optimality of the returned solution (x∗0 , y∗0) is
guaranteed by Proposition 7.

Algorithm 2 Deterministic sampling dual dynamic programming algorithm

Require: recombining scenario tree Ñ with subproblem oracles Or ,OF
n ,OB

n , n �= r , and ε > 0
Ensure: an ε-optimal root node solution (x∗0 , y∗0) to the regularized problem (4)

1: Initialize: i ← 1;Q0
t ← 0, ∀ t, Q0

t ,←+∞∀ t ≤ T − 1 andQ0
T ← 0

2: Evaluate (x10 , y10) = Or (0)

3: Set LowerBound← fr (xa(r), y
1
0 , x10), UpperBound←+∞

4: while UpperBound− LowerBound > ε do
5: for t = 1, . . . , T − 1 do � i-th forward step
6: for n ∈ Ñ (t) do
7: Evaluate (xin , yin , zin) = OF

n (xit−1,Qi−1
t)

8: Calculate the gap γ i
n = Qi−1

t (xin)−Qi−1
t (xin)

9: end for
10: Select any n∗(t) ∈ {n ∈ N (t) : γ i

n ≥ γ i
n′ , ∀ n′ ∈ Ñ (t)}, and let xit ← xin∗(t)

11: end for
12: for t = T , . . . , 1 do � i-th backward step
13: Update Qi

t andQ
i
t using (14) and (17)

14: for n ∈ Ñ (t) do
15: Evaluate (x̂ in , ŷin , ẑin; λ̂in , ρ̂in) = OB

n (xit−1,Qi
t)

16: Calculate Ci
n , vin , v̄in using (15), (16), and (18)

17: end for
18: end for
19: Update Qi

0 andQi
0 using (14) and (17) � root node update

20: Evaluate (xi+10 , yi+10) = Or (Qi
0)

21: Update LowerBound← fr (xa(r), y
i+1
0 , xi+10)+Qi

0(x
i+1
0)

22: if UpperBound > fr (xa(r), y
i+1
0 , xi+10)+Qi

0(x
i+1
0) then

23: Update UpperBound← fr (xa(r), y
i+1
0 , xi+10)+Qi

0(x
i+1
0)

24: Set (x∗0 , y∗0) = (xi+10 , yi+10)

25: end if
26: i ← i + 1
27: end while

123

Stochastic dual dynamic programming… 951

3.5 A stochastic sampling dual dynamic programming algorithm

Now we present a stochastic dual dynamic programming algorithm, which uses
stochastic sampling rather than deterministic sampling. So, instead of traversing the
scenario tree and finding a path with the largest approximation gap, the stochastic sam-
pling algorithmgeneratesM scenario paths before an iteration begins for someM ≥ 1.
To be precise, we introduce the following notations. Let P = ∏T

t=1 Ñ (t) denote all
possible scenario paths from stage 1 to stage T . A scenario path is denoted as a T -
element sequence P = (n1, . . . , nT) ∈ P , where nt ∈ Ñ (t) for each t = 1, . . . , T . In
the i-th iteration, we sample M independent scenario paths P i = {Pi,1, . . . , Pi,M },
and we use Pi, j

t to denote the t-th node in the scenario path Pi, j , i.e., the node in the
t-th stage of the j-th scenario path in the i-th iteration, for 1 ≤ j ≤ M and 1 ≤ t ≤ T .
Since in each iteration, the solutions and the approximations depend on the scenario
path Pi, j , we use two superscripts i and j for solutions and cuts, where a single
superscript i is used in the deterministic sampling algorithm. In addition, for every
node n ∈ Ñ (t) for some stage t , the under-approximation of the expected cost-to-go
function is updated over all scenario path index j = 1, . . . , M , with M cuts in total,
i.e.,

Qi
t (x):=max

⎧
⎨

⎩Q
i−1
t (x),

∑

m∈Ñ (t+1)
ptmC

i, j
m (x | λ̂i, jm , ρ̂

i, j
m , v

i, j
m), 1 ≤ j ≤ M

⎫
⎬

⎭ , (20)

whereCi, j
m is the generalized conjugacy cut generated with (x̂ i, jm , ŷi, jm , ẑi, jm ; λ̂i, jm , ρ̂

i, j
m)

= OB
m(xi, jn ,Qi

t+1) using formula (15).With these notations, the algorithm is displayed
in Algorithm 3.

Unlike the preceding two algorithms, Algorithm 3 does not need to construct the
over-approximation of the regularized value functions for selecting the child node to
proceed with. Instead, it determines the scenario paths before the forward step starts.
In the forward step, each nodal problem in the sampled scenario path is solved. Then
in the backward step, the dual problems are solved at the nodes that are defined by
distinct data, dependent on the parent node’s state variable obtained in the forward
step. The termination criterion is flexible. In the existing literature [33, 38], statistical
upper bounds based on the sampled scenario paths are often used together with the
lower bound for terminating the algorithm. In particular for the convex problems, if
we set σn = +∞, which implies ln,λ = +∞ in the backward step subproblem oracles
OB
n for all n ∈ N , then Algorithm 3 reduces to the usual SDDP algorithm in the

literature [15, 33].

4 Upper bounds on iteration complexity of proposed algorithms

In this section, we derive upper bounds on the iteration complexity of the three pro-
posed algorithms, i.e. the bound on the iteration index when the algorithm terminates.
These upper bounds on the iteration complexity imply convergence of the algorithm
to an ε-optimal root node solution for any ε > 0.

123

952 S. Zhang, X. A. Sun

Algorithm 3 Stochastic sampling dual dynamic programming algorithm

Require: recombining scenario tree Ñ with subproblem oracles Or ,OF
n ,OB

n , n �= r
1: Initialize: i ← 1;Q0

t ← 0, ∀ t
2: Evaluate (x10 , y10) = Or (0)
3: while some stopping criterion is not satisfied do
4: Sample M scenario paths P i = {Pi,1, . . . , Pi,M }
5: for j = 1, . . . , M do � i-th forward step
6: for t = 1, . . . , T − 1 do
7: Evaluate (xi, jt , yi, jt , zi, jt) = OF

n (xi, jt−1,Qi−1
t)

8: end for
9: end for
10: for t = T , . . . , 1 do � i-th backward step
11: Update Qi

t using (20)
12: for j = 1, . . . , M do
13: for n ∈ N (t)/ ∼ do
14: Evaluate (x̂ i, jn , ŷi, jn , ẑi, jn ; λ̂i, jn , ρ̂

i, j
n) = OB

n (xi, jt−1,Qi
t)

15: Calculate Ci, j
n and v

i, j
n using (15) and (16)

16: end for
17: end for
18: end for
19: Update Qi

0 using (20) � root node update

20: Evaluate Or (Qi
0) = (xi+10 , yi+10)

21: i ← i + 1
22: end while

4.1 Upper bound analysis on iteration complexity of algorithm 1

In this section, we discuss the iteration complexity of Algorithm 1. We begin with the
definition of a set of parameters used in the convergence analysis. Let ε denote the
desired root-node optimality gap ε in Algorithm 1. Let δ = (δn)n∈N ,C(n) �=∅ be a set
of positive numbers such that ε =∑n∈N ,C(n) �=∅

pnδn . Since ε > 0, such δn’s clearly
exist. Then, we define recursively for each non-leaf node n

γn(δ):=δn +
∑

m∈C(n)

pnmγm(δ), (21)

and γn(δ) = 0 for leaf nodes n. For i ∈ N, recall the approximation gap γ i
n =

Qi−1
n (xin)−Qi−1

n (xin) for n ∈ N . For leaf nodes, γ i
n ≡ 0 by definition for all i ∈ N.

In addition, we define the sets of indices In(δ) for each n ∈ N as

In(δ):=
{
i ∈ N : γ i

n > γn(δ) and γ i
m ≤ γm(δ),∀m ∈ C(n)

}
. (22)

Intuitively, the index set In(δ) consists of the iteration indices when all the child nodes
of n have good approximations of the expected cost-to-go function at the forward step
solution, while the node n itself does not. The next lemma shows that the backward
step for node n in the iteration i ∈ In(δ) will reduce the expected cost-to-go function
approximation gap at node n to be no more than γn(δ).

123

Stochastic dual dynamic programming… 953

Lemma 3 If an iteration index i ∈ In(δ), i.e., Q
i−1
n (xin) − Qi−1

n (xin) > γn(δ) and

Qi−1
m (xim)−Qi−1

m (xim) ≤ γm(δ) for all m ∈ C(n), then

Qi
n(x)−Qi

n(x) ≤ γn(δ), ∀ x ∈ Xn, ‖x − xin‖ ≤
δn

2Ln
, (23)

where Ln :=∑m∈C(n) pnm(lm,λ + lm,ρ) is determined by the input parameters.

The proof is given in Sect. A.3.1. Lemma 3 shows that an iteration being in the index
set would imply an improvement of the approximation in a neighborhood of the current
state. In other words, each i ∈ In would carve out a ball of radius δn/(2Ln) in the
state space Xn such that no point in the ball can be the forward step solution of some
iteration i in In . This implies that we could bound the cardinality |In| of In by the
size and shape of the corresponding state space Xn .

Lemma 4 Let B = {Bn,k ⊂ R
dn }1≤k≤Kn ,n∈N be a collection of balls, each with

diameter Dn,k ≥ 0, such that Xn ⊆⋃Kn
k=1 Bn,k . Then,

|In(δ)| ≤
Kn∑

k=1

(
1+ 2LnDn,k

δn

)dn
.

The proof is by a volume argument of the covering balls with details given in
Sect. A.3.2. We have an upper bound on the iteration complexity of Algorithm 1.

Theorem 1 Given ε > 0, choose values δ = (δn)n∈N ,C(n) �=∅ such that δn > 0 and∑
n∈N ,C(n) �=∅

pnδn = ε. Let B = {Bn,k}1≤k≤Kn ,n∈N be a collection of balls, each

with diameter Dn,k ≥ 0, such that Xn ⊆ ⋃Kn
k=1 Bn,k for n ∈ N . If Algorithm 1

terminates with an ε-optimal root node solution (x∗r , y∗r) at the end of i-th iteration,
then

i ≤
∑

n∈N ,
C(n) �=∅

Kn∑

k=1

(
1+ 2LnDn,k

δn

)dn
.

Proof After the i-th iteration, at least one of the following two situations must happen:

i. At the root node, it holds thatQi
r (x

i+1
r)−Qi

r (x
i+1
r) ≤ γr (δ), where γr is defined

in (21).

ii. There exists a node n ∈ N such thatQi
n(x

i+1
n)−Qi

n(x
i+1
n) > γn(δ), but all of its

child nodes satisfy Qi
m(xi+1m)−Qi

m(xi+1m) ≤ γm(δ), ∀m ∈ C(n). In other words,
i + 1 ∈ In(δ).

Note that γr (δ) = δr +∑m∈C(r) prmγm(δ) = · · · = ∑
n∈N ,C(n) �=∅

pnδn . If case i

happens, then by Proposition 7, (xi+1r , yi+1r) is an ε-optimal root node solution. Note
that case ii can only happen at most

∑
n∈N |In(δ)| times by Lemma 4. Therefore, we

have that

123

954 S. Zhang, X. A. Sun

i ≤
∑

n∈N
C(n) �=∅

Kn∑

k=1

(
1+ 2LnDn,k

δn

)dn
,

when the algorithm terminates. ��
Theorem 1 implies the ε-convergence of the algorithm for any ε > 0. We remark that
the form of the upper bound depends on the values δ and the covering balls Bn,k , and
therefore the right-hand-side can be tightened to the infimum over all possible choices.
While it may be difficult to find the best bound in general, in the next section we take
some specific choices of δ andB and simplify the complexity upper bound, based on
the stagewise independence assumption.

4.2 Upper bound analysis on iteration complexity of algorithm 2

Before giving the iteration complexity bound for Algorithm 2, we slightly adapt the
notations in the previous section to the stagewise independent scenario tree. We take
the values δ = (δn)n∈Ñ ,C(n) �=∅

such that δn = δn′ for all n, n′ ∈ Ñ (t) for some

t = 1, . . . , T . Thus we denote δt = δn for any n ∈ Ñ (t), and δ0 = δr . The vector of
γt (δ) is defined recursively for non-leaf nodes as

γt (δ) := γt+1(δ)+ δt , if t ≤ T − 1, (24)

and γT (δ) = 0. Let γ i
t :=Qi−1

t (xit)−Qi−1
t (xit) and recall that γ

i
0 :=γ i

r for each index
i . The sets of indices It (δ) are defined for t = 0, . . . , T − 1 as

It (δ):=
{
i ∈ N : γ i

t > γt (δ) and γ i
t+1 ≤ γt+1(δ)

}
. (25)

Note that γ i
t = maxn∈Ñ (t) γ i

n (line 10 in Algorithm 2). By Lemma 3, an iteration

i ∈ It (δ) implies Qi
t (x) −Qi

t (x) ≤ γt (δ) for all x ∈ Xn with ‖x − xit ‖ ≤ δt/(2Lt),

where Lt = Ln for any n ∈ Ñ (t). Moreover, since Xn = Xt for n ∈ Ñ (t), for any
covering balls Bt,k ⊂ R

dt with diameters Dt,k ≥ 0, such that Xt ⊆ ∪Kt
k=1Bt,k , by the

same argument of Lemma 4, we know that

|It (δ)| ≤
Kt∑

k=1

(
1+ 2Lt Dt,k

δt

)dt
. (26)

We summarize the upper bound on the iteration complexity of Algorithm 2 in the next
theorem, and omit the proof since it is almost a word-for-word repetition with the
notation adapted as above.

Theorem 2 Given any ε > 0, choose values δ = (δt)
T−1
t=0 such that δt > 0 and∑T−1

t=0 δt = ε. Let B = {Bt,k ⊂ R
dt }1≤k≤Kt ,0≤t≤T−1 be a collection of balls, each

123

Stochastic dual dynamic programming… 955

with diameter Dt,k ≥ 0, such that Xt ⊆⋃Kt
k=1 Bt,k for 0 ≤ t ≤ T − 1. If Algorithm 2

terminates with an ε-optimal root node solution (x∗0 , y∗0) in i iterations, then

i ≤
T−1∑

t=0

Kt∑

k=1

(
1+ 2Lt Dt,k

δt

)dt
.

We next discuss some special choices of the values δ and the covering ball collec-
tions B. First, since Xt are compact, suppose Bt is the smallest ball containing Xt .
Then we have diamXt ≤ Dt ≤ 2diamXt where Dt = diamBt . Moreover, suppose
Lt ≤ L for some L > 0 and dt ≤ d for some d > 0. Then by taking δt = ε/T for all
0 ≤ t ≤ T − 1, we have the following bound.

Corollary 1 If Algorithm 2 terminates with an ε-optimal root node solution (x∗0 , y∗0),
then the iteration index is bounded by

i ≤ T

(
1+ 2LDT

ε

)d

,

where L, d, D are the upper bounds for Lt , dt , and Dt , 0 ≤ t ≤ T − 1, respectively.

Proof Take δt = ε/T for all 0 ≤ t ≤ T − 1 and apply Theorem 2. ��
Note that the iteration complexity bound inCorollary 1 grows asymptoticallyO(T d+1)
as T → ∞. Naturally such bound is not satisfactory since it is nonlinear in T with
possibly very high degree d. However, by changing the optimality criterion, we next
derive an iteration complexity bound that grows linearly in T , while all other param-
eters, L, D, ε, d, are independent of T .

Corollary 2 If Algorithm 2 terminates with a (T ε)-optimal root node solution (x∗0 , y∗0),
then the iteration index is bounded by

i ≤ T

(
1+ 2LD

ε

)d

,

where L, d, D are the upper bounds for Lt , dt , and Dt , 0 ≤ t ≤ T − 1, respectively.

Proof Take δt = ε for all 0 ≤ t ≤ T − 1 and apply Theorem 2. ��
The termination criterion in Corollary 2 corresponds to the usual relative optimality
gap, if the total objective is known to grow at least linearly with T , as is the case for
many practical problems. Last, we consider a special case where Xt are finite for all
0 ≤ t ≤ T − 1.

Corollary 3 Suppose the cardinality |Xt | ≤ K < ∞ for all 0 ≤ t ≤ T − 1, for some
positive integer K . In this case, if Algorithm 2 terminates with an ε-optimal root node
solution (x∗0 , y∗0), then the iteration index is bounded by

i ≤ T K .

123

956 S. Zhang, X. A. Sun

Proof Note that whenXt is finite, it can be covered by degenerate balls B0(x), x ∈ Xt .
Thus Dt,k = 0 for k = 1, . . . , Kt and Kt ≤ K by assumption. Apply Theorem 2, we
get i ≤∑T−1

t=0
∑Kt

k=1 1 ≤ T K . ��
The bound in Corollary 3 grows linearly in T and does not depend on the value of ε.
In other words, we are able to obtain exact solutions to the regularized problem (4)
assuming the subproblem oracles.

Remark 2 All the iteration complexity bounds in Theorem 2, Corollaries 1, 2 and 3
are independent of the size of the scenario tree in each stage Nt , 1 ≤ t ≤ T . This can
be explained by the fact that Algorithm 2 evaluates 1+ NT + 2

∑T−1
t=1 Nt times of the

subproblem oracles in each iteration.

4.3 Upper bound analysis on iteration complexity of algorithm 3

In the followingwe study the iteration complexity ofAlgorithm3. For clarity,wemodel
the subproblem oracles OF

n and OB
n as random functions, that are Σoracle

i -measurable
in each iteration i ∈ N, for any node n �= r , where {Σoracle

i }∞i=0 is a filtration of
σ -algebras in the probability space. Intuitively, this model says that the information
given by Σoracle

i could be used to predict the outcome of the subproblem oracles. We
now make the following assumption on the sampling step.

Assumption 4 In each iteration i , the M scenario paths are sampled uniformly with
replacement, independent fromeach other and the outcomes of the subproblemoracles.
That is, the conditional probability of the j-th sample Pi, j taking any scenario nt ∈
Ñ (t) in stage t is almost surely

Prob
(
Pi, j
t = nt | Σoracle∞ , σ {Pi ′, j ′

t ′ }(i ′, j ′,t ′) �=(i, j,t)

)
= 1

Nt
, (27)

where Σoracle∞ := ∪∞i=1Σoracle
i , and σ {Pi ′, j ′

t ′ }(i ′, j ′,t ′) �=(i, j,t) is the σ -algebra generated
by scenario samples other than the j-th sample in stage t of iteration i .

In the sampling step in the i-th iteration, let γ i, j
t :=QR

t (xi, jt)−Qi−1
t (xi, jt) for any

t ≤ T − 1, which is well defined by Assumption 3, and let γ̃
i, j
t :=max{QR

t (xn) −
Qi−1

t (xn) : (xn, yn, zn) = OF
n (xi, jt−1,Qi−1

n), n ∈ Ñ (t)} for each scenario path index

1 ≤ j ≤ M . Note that by definition, we have γ
i, j
t ≤ γ̃

i, j
t for any t = 1, . . . , T − 1,

everywhere in the probability space. We define the sets of indices It (δ) for each
t = 0, . . . , T − 1, similar to those in the deterministic sampling case, as

It (δ):=
M⋃

j=1

{
i ∈ N : γ i, j

t > γt (δ) and γ̃
i, j
t+1 ≤ γt+1(δ)

}
. (28)

With the same argument, we know that the upper bound (26) on the sizes of It (δ)
holds everywhere for each t = 0, . . . , T − 1. However, since the nodes in the forward

123

Stochastic dual dynamic programming… 957

steps are sampled randomly, we do not necessarily have i ∈ ∪T−1
t=0 It (δ) for each

iteration index i ∈ N before Algorithm 3 first finds an ε-optimal root node solution.
Instead, we define an event Ai (δ) := {i ∈ ∪T−1

t=0 It (δ)}
⋃∪M

j=1{γ i−1, j
0 ≤ γ0(δ) = ε}

for each iteration i , that means either some approximation is improved in iteration
i or the algorithm has found an ε-optimal root node solution in iteration i − 1. The
next lemma estimates the conditional probability of Ai (δ) given any oracles outcomes
and samplings up to iteration i . For simplicity, we define two σ -algebras Σ

sample
i :=

σ {Pi ′, j ′ }i ′≤i, j ′=1,...,M and Σi := σ(Σoracle
i ,Σ

sample
i) for each i .

Lemma 5 Fix any ε =∑T−1
t=0 δt . Then the conditional probability inequality

Prob(Ai (δ) |Σi−1) ≥ ν := 1− (1− 1/N)M ,

holds almost surely, where N :=∏T−1
t=1 Nt if T ≥ 2 and N :=1 otherwise.

The proof is given in Sect. A.3.3. Now we are ready to present the probabilistic
complexity bound of Algorithm 3, the proof of which is given in Sect. A.3.4.

Theorem 3 Let I = I (δ,B) denote the iteration complexity bound in Theorem 2,
determined by the vector δ and the collection of state space covering balls B, and
ν denote the probability bound proposed in Lemma 5. Moreover, let ι be the random
variable of the smallest index such that the root node solution (x ι+1

0 , yι+1
0) is ε-optimal

in Algorithm 3. Then for any real number κ > 1, the probability

Prob

(
ι ≥ 1+ κ I

ν

)
≤ exp

(−Iν(κ − 1)2

16κ

)
.

Remark 3 Theorem 3 shows that for a fixed problem (such that I = I (δ,B) and
N = N1 · · · NT−1 are fixed), given any probability threshold q ∈ (0, 1), the number
of iterations needed for Algorithm 3 to find an ε-optimal root node solution with prob-
ability greater than 1− q isO(− ln q/ν2), which does not depend on I . In particular,
if we set M = 1, then the number of iterations needed isO(−N 2 ln q), which is expo-
nential in the number of stage T if Nt ≥ 2 for all t = 1, . . . , T−1. It remains unknown
to us whether there exists a complexity bound for Algorithm 3 that is polynomial in
T in general.

5 Lower bounds on iteration complexity of proposed algorithms

In this section, we discuss the sharpness of the iteration complexity bound of Algo-
rithm 2 given in Sect. 4. In particular, we are interested in the question whether it
is possible that the iteration needed for Algorithm 2 to find an ε-optimal root node
solution grows linearly in T when the state spaces are infinite sets. We will see that in
general it is not possible, with or without the assumption of convexity. The following
lemma simplifies the discussion in this section.

123

958 S. Zhang, X. A. Sun

Lemma 6 Suppose fn(z, y, x) is ln-Lipschitz continuous in z for each n ∈ N . If we
choose ψn(x) = ‖x‖ and σn ≥ ln, then QR

n (x) = Qn(x) on Xa(n) for all non-root
nodes n ∈ N .

The proof exploits the Lipschitz continuity of fn and the fact QR
n (x) is an under-

approximation of Qn(x) in an inductive argument. The details are given in Sect. A.4.1.
In other words, for problems that already have Lipschitz continuous value functions,
the regularization does not change the function value at any point. Thus the examples
in the rest of this section serve the discussion not only for Algorithm 2, but for more
general algorithms including SDDP and SDDiP.

5.1 General lipschitz continuous problems

We discuss the general Lipschitz continuous case, i.e., the nodal objective functions
fn(z, y, x) are ln-Lipschitz continuous in z but not necessarily convex. In this case
we choose to approximate the value function using ψn(x) = ‖x‖ and assume that
ln,ρ ≥ ln . We can set ln,λ = 0 for all n ∈ N , without loss of exactness of the
approximation by the Proof of Proposition 3. We begin with the following lemma on
the complexity of such approximation.

Lemma 7 Consider a norm ballX = {x ∈ R
d : ‖x‖ ≤ D/2} and a finite set of points

W = {wk}Kk=1 ⊂ X . Suppose that there is β > 0 and an L-Lipschitz continuous
function f : X → R+ such that β < f (wk) < 2β for k = 1, . . . , K. Define

– Q(x):= max
k=1,...,K{0, f (wk)− L ‖x − wk‖} and

– Q(x):= min
k=1,...,K{ f (wk)+ L ‖x − wk‖}.

If K <
(
DL
4β

)d
, then min

x∈X
Q(x) = 0 and min

x∈X
Q(x) > β.

The proof is given in Sect. A.4.2. The lemma shows that if the number of points in
W is too small, i.e. K < (DL/2β)d , then the difference between the upper and lower
bounds could be big, i.e. Q(x̄) − Q(x̄) > β for some x̄ . In other words, in order to
have a small gap between the upper and lower bounds, we need sufficient number of
sample points. This lemma is directly used to provide a lower bound on the complexity
of Algorithm 2.

Now we construct a Lipschitz continuous multistage problem defined on a chain,
i.e., a scenario tree, where each stage has a single node, N (t) = 1 for t = 1, . . . , T .
The problem is given by the value functions in each stage as,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Qr = minx0∈Xr Q1(x0),

Qt (xt−1) = minxt∈Xt { ft (xt−1)+ Qt+1(xt)} , 1 ≤ t ≤ T − 1,

QT (xT−1) = fT (xT−1).

(29)

Here for all t = 1, . . . , T , ft : Xt → R+ is an L-Lipschitz continuous function that
satisfies β < ft (x) < 2β for all x ∈ Xt with β := ε/T , the number of stages T ≥ 1,

123

Stochastic dual dynamic programming… 959

and ε > 0 is a fixed constant. The state space Xt := Bd(D/2) ⊂ R
d is a ball with

radius D/2 > 0. We remark that ε will be the optimality gap in Theorem 4. So for a
fixed optimality gap ε, we construct an instance of multistage problem (29) that will
prove to be difficult for Algorithm 2 to solve. Also (29) is constructed such that there
is no constraint coupling the state variables xt in different stages.

By Lemma 6, if we choose ψn(x) = ‖x‖ for all n ∈ N and ln,ρ = L for the
problem (29), then we have QR

t (x) = Qt (x) for all t = 1, . . . , T . The next theorem
shows a lower bound on the iteration complexity of problem (29) with this choice of
penalty functions.

Theorem 4 For any optimality gap ε > 0, there exists a problem of the form (29)
with subproblem oracles OF

n ,OB
n , n ∈ N , and Or , such that if Algorithm 2 gives

UpperBound− LowerBound ≤ ε in the i-th iteration, then

i ≥
(
DLT

4ε

)d

.

The proof is given in Sect. A.4.3. The theorem shows that in general Algorithm 2
needs at leastO(T d) iterations before termination. We comment that this is due to the
fact that the approximation using generalized conjugacy is tight only locally. Without
convexity, one may need to visit many states to cover the state space to achieve tight
approximations of the value functions before the algorithm is guaranteed to find an
ε-optimal solution.

5.2 Convex lipschitz continuous problems

In the above example for general Lipschitz continuous problem, we see that the com-
plexity ofAlgorithm2grows at a rate ofO(T d). It remains to answerwhether convexity
could help us avoid this possibly undesirable growth rate in terms of d. We show that
even by using linear cuts, rather than generalized conjugacy cuts, for convex value
functions, the complexity lower bound of the proposed algorithms could not be sub-
stantially improved. We begin our discussion with a definition.

Definition 5 Given a d-sphere Sd(R) = {x ∈ R
d+1 : ‖x‖2 = R} with radius R > 0,

a spherical cap with depth β > 0 centered at a point x ∈ Sd(R) is the set

Sd
β (R, x):={y ∈ Sd(R) : 〈y − x, x〉 ≥ −βR}.

The next lemma shows that we can put many spherical caps on a sphere, the center
of each is not contained in any other spherical cap, the proof of which is given in
Sect. A.4.4.

Lemma 8 Given a d-sphere Sd(R), d ≥ 2 and depth β < (1 −
√
2
2)R, there exists a

finite set of points W with

|W| ≥ (d2 − 1)
√

π

d

Γ (d/2+ 1)

Γ (d/2+ 3/2)

(
R

2β

)(d−1)/2
,

123

960 S. Zhang, X. A. Sun

such that, for any w ∈W , Sd
β (R, w) ∩W = {w}.

Hereafter, we denote a set of points that satisfies Lemma 8 as Wd
β (R) ⊂ Sd(R).

Next we construct an L-Lipschitz convex function for any L > 0, ε > 0 that satisfies
certain properties on Wd

ε/L(R). The proof is given in Sect. A.4.5.

Lemma 9 Given positive constants ε > 0, L > 0 and a set Wd
ε/L(R). Let

K :=|Wd
ε/L(R)|. For any values vk ∈ (ε/2, ε), k = 1, . . . , K, define a function

F : Bd+1(R) → R as F(x) = maxk=1,...,K {0, vk+ L
R 〈wk, x − wk〉}. Then F satisfies

the following properties:

1. F is an L-Lipschitz convex function;
2. F(wk) = vk for all wk ∈Wd

ε/L(R);
3. F is differentiable at all wk , with vk + 〈∇F(wk), wl − wk〉 < 0 for all l �= k;
4. For any wl ∈ Wd

ε/L(R), Q
l
(x):=maxk �=l{0, vk + 〈∇F(wk), x − wk〉} and

Ql(x):= convk �=l{vk + L ‖x − wk‖} satisfy

Ql(wl)− Q
l
(wl) >

3ε

2
.

Now we present the multistage convex dual dynamic programming example based
on the following parameters: T ≥ 2 (number of stages), L > 0 (Lipschitz constant),
d ≥ 3 (state space dimension), D = 2R > 0 (state space diameter), and ε > 0
(optimality gap). Choose any L1, . . . , LT such that L/2 ≤ LT < LT−1 < · · · <

L1 ≤ L , and then construct finite sets Wt :=Wd−1
ε/((T−1)Lt+1)(R) = {wt,k}Kt

k=1, Kt =
|Wt | as defined in Lemma 8 for t = 1, . . . , T − 1. Moreover, define convex Lt+1-
Lipschitz continuous functions Ft for some values vt,k ∈ (ε/(2T − 2), ε/(T − 1)),
k = 1, . . . , Kt , and the finite sets Wt . By Assumption 3, we define the stagewise
independent scenario tree as follows. There are Kt distinct nodes in each stage t =
1, . . . , T −1, which can be denoted by an index pair n = (t, k) for k = 1, . . . , Kt , and
all nodes are defined by the same data in the last stage T . Then we define our problem
by specifying the nodal cost functions fr ≡ 0, f1,k(x0, y1, x1) := L1‖x1 −w1,k‖ for
k = 1, . . . , K1, ft,k(xt−1, yt , xt) := Ft−1(xt−1)+ Lt‖xt − wt,k‖ for k = 1, . . . , Kt

and t = 2, . . . , T − 1, and fT ,1(xT−1, yT , xT) := FT−1(xT−1), and state spaces
Xt = X = Bd+1(R). Alternatively, the value functions can be written as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Q1,k = minx1∈X
{
L1
∥∥x1 − w1,k

∥∥+Q1(x1)
}
, ∀k ≤ K1,

Qt,k(xt−1) = minxt∈X
{
Ft−1(xt−1)+ Lt

∥∥xt − wt,k
∥∥+Qt (xt)

}
, k ≤ Kt ,

QT ,1(xT−1) = FT−1(xT−1),
(30)

123

Stochastic dual dynamic programming… 961

where the second equation is defined for all 2 ≤ t ≤ T−1, and the expected cost-to-go
functions as

Qt (xt):= 1

Kt

Kt∑

k=1
Qt+1,k(xt), t = 0, . . . , T − 1.

By Lemma 8,

Kt ≥ ((d − 1)2 − 1)
√

π

d − 1

Γ ((d − 1)/2+ 1)

Γ ((d − 1)/2+ 3/2)

(
RLt (T − 1)

2ε

)(d−2)/2
,

≥ d(d − 2)
√

π

d − 1

Γ ((d/2+ 1/2)

Γ (d/2+ 1)

(
DL(T − 1)

8ε

)(d−2)/2
.

Since for each value function Qt,k is Lt -Lipschitz continuous, we choose σn = Lt

withψn(x) = ‖x‖ for any n = (t, k) ∈ Ñ (t) and t = 1, . . . , T such that by Lemma 6
we have Qt,k(x) = QR

t,k(x) for all x ∈ X . Moreover, due to convexity, we set ln,ρ = 0

for all n ∈ N and ln,λ = Lt for each n ∈ Ñ (t) and t = 1, . . . , T , i.e., the cuts are
linear. Following the argument of Proposition 4, we know that such linear cuts are
capable of tight approximations. With such a choice of regularization we have the
following theorem on the complexity of Algorithm 2.

Theorem 5 For any optimality gap ε > 0, there exists a multistage stochastic
convex problem of the form (30) such that, if Algorithm 2 gives UpperBound −
LowerBound < ε at i-th iteration, then

i >
1

3

d(d − 2)
√

π

d − 1

Γ (d/2+ 1/2)

Γ (d/2+ 1)

(
DL(T − 1)

8ε

)(d−2)/2
.

The proof is given in Sect. A.4.6. The theorem implies that, even if problem (2)
is convex and has Lipschitz continuous value functions, the minimum iteration for
Algorithm 2 to get a guaranteed ε-optimal root node solution grows as a polynomial
of the ratio T /ε, with the degree being d/2− 1.

We remark that Theorems 4 and 5 correspond to two different challenges of the
SDDP type algorithms. The first challenge is that the backward step subproblem oracle
may not give cuts that provide the desired approximation, which could happen when
the value functions are nonconvex or nonsmooth. Theorem 4 results from the worst
case that the backward step subproblem oracle leads to approximations of the value
function in the smallest neighborhood.

The second challenge is that different nodes, or more generally, different scenario
paths give different states in each stage, so sampling and solving the nodal problem on
one scenario path provides little information to the nodal problem on another scenario
path. In example (30), the linear cut obtained in each iteration does not provide any
information on the subsequent iteration states (unless the same node is sampled again).
From this perspective, we believe that unless some special structure of the problem
is exploited, any algorithm that relies on local approximation of value functions will

123

962 S. Zhang, X. A. Sun

face the “curse of dimensionality,” i.e., the exponential growth rate of the iteration
complexity in the state space dimensions.

6 Conclusions

In this paper, we propose three algorithms in a unified framework of dual dynamic pro-
gramming for solving multistage stochastic mixed-integer nonlinear programs. The
first algorithm is a generalization of the classic nested Benders decomposition algo-
rithm, which deals with general scenario trees without the stagewise independence
property. The second and third algorithms generalize SDDPwith sampling procedures
on a stagewise independent scenario tree, where the second algorithm uses a determin-
istic sampling approach, and the third one uses a randomized sampling approach. The
proposed algorithms are built on regularization of value functions, which enables them
to handle problems with value functions that are non-Lipschitzian or discontinuous.
We show that the regularized problem preserves the feasibility and optimality of the
original multistage program, when the corresponding penalty reformulation satisfies
exact penalization. The key ingredient of the proposed algorithms is a new class of cuts
based on generalized conjugacy for approximating nonconvex cost-to-go functions of
the regularized problems.

We obtain upper and lower bounds on the iteration complexity of the proposed
algorithms on MS-MINLP problem classes that allow exact Lipschitz regularization
with predetermined penalty functions and parameters. The complexity analysis is new
and deepens our understanding of the behavior of SDDP. For example, it is the first time
to prove that the iteration complexity of SDDP depends polynomially on the number
of stages, not exponentially, for both convex and nonconvex multistage stochastic
programs, and this complexity dependence can be reduced to linear if the optimality
gap is allowed to scale linearly with the number of stages, or if all the state spaces are
finite sets. These findings resolve a conjecture of the late Prof. Shabbir Ahmed, who
inspired us to work on this problem.

Funding Open Access funding provided by the MIT Libraries Funding was provided by Directorate for
Engineering (Grant Number 1751747).

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Proofs

In this section, we present the proofs to the theorems, propositions, and lemmas that
are not displayed in the main text.

123

http://creativecommons.org/licenses/by/4.0/

Stochastic dual dynamic programming… 963

A.1 Proofs for statements in Sect. 2

A.1.1 Proof for Proposition 1

Proof We show that Qn is l.s.c. by showing the lower level sets leva(Qn) = {z ∈
Xa(n) : Qn(z) ≤ a} are closed for all a ∈ R. At any leaf node n, the expected cost-to-
go functionQn(xn) is zero, thus z is in leva(Qn) if and only if z is in the projection of
the following set {(z, y, x) : (x, y) ∈ Fn, fn(z, y, x) ≤ a}. Since fn is defined on a
compact set {(z, y, x) : z ∈ Xa(n), (x, y) ∈ Fn} and l.s.c. by Assumption 1, we know
that the set {(z, y, x) : fn(z, y, x) ≤ a} is compact. Moreover, since the projection
(z, y, x) �→ z is continuous, the image leva(Qn) is still compact, hence closed.
At any non-leaf node n, suppose Qm is l.s.c. for all its child nodesm ∈ C(n). Then,Qn

is l.s.c. sinceQn is defined in (3) and pnm > 0 for all m. A point z ∈ leva(Qn) if and
only if z is in the projection of the set {(z, y, x) : (y, x) ∈ Fn, fn(z, y, x)+Qn(x) ≤
a}. Similarly, this shows levaQn is closed since fn,Qn are l.s.c. and the projection
(z, y, x) �→ z is continuous. We thus conclude Qn is l.s.c. for every node n in the
scenario tree.

To show claims 1 and 2 in the proposition, take any two points z1, z2 ∈ Xa(n).
Suppose (x1, y1), (x2, y2) ∈ Fn are the correspondingminimizers in the definition (2).
Therefore, Qn(z1) = fn(z1, y1, x1)+Qn(x1) and Qn(z2) = fn(z2, y2, x2)+Qn(x2).
If fn is Lipschitz continuous in the first variable, then we have

Qn(z1)− Qn(z2) = fn(z1, y1, x1)+Qn(x1)− fn(z2, y2, x2)−Qn(x2)

≤ fn(z1, y2, x2)+Qn(x2)− fn(z2, y2, x2)−Qn(x2)

≤ fn(z1, y2, x2)− fn(z2, y2, x2) ≤ ln ‖z1 − z2‖ .

Likewise, by exchanging z1 and z2, we know that Qn(z2) − Qn(z1) ≤ ln ‖z1 − z2‖.
This proves that Qn is Lipschitz continuous with the constant ln .
To show that Qn is convex, take any t ∈ [0, 1]. Since Xa(n) is convex, Qn is defined
at t z1 + (1− t)z2. Thus,

Qn(t z1 + (1− t)z2) ≤ fn(t z1 + (1− t)z2, t y1 + (1− t)y2, t x1 + (1− t)x2)

+Qn(t x1 + (1− t)x2)

≤ t fn(z1, y1, x1)+ (1− t) fn(z2, y2, x2)+ tQn(x1)

+ (1− t)Qn(x2)

= t Qn(z1)+ (1− t)Qn(z2).

The first inequality follows from the definition (2), while the second inequality follows
from the convexity of fn and Qn . This shows Qn is convex. ��

A.1.2 Proof for Proposition 2

Proof First we show that the partial inf-convolution

fn ˝ (σnψn)(xa(n), yn, xn) := min
z∈Xa(n)

fn(zn, yn, xn)+ σnψn(xa(n) − zn)

123

964 S. Zhang, X. A. Sun

is σn-Lipschitz continuous in the first variable xa(n). Note that the minimum is
well-defined since Xa(n) is compact and the functions fn, σnψn are l.s.c.. Besides,
since z = xa(n) is a feasible solution in the minimization, we know that fn ˝
(σnψn)(xa(n), yn, xn) ≤ fn(xa(n), yn, xn) for all xa(n) ∈ Xa(n) and (xn, yn) ∈ Fn .
Pick any x1, x2 ∈ Xa(n), (x, y) ∈ Fn , and let z1, z2 ∈ Xa(n) be the correspond-
ing minimizers in the definition of fn ˝ (σnψn)(x1, y, x) and fn ˝ (σnψn)(x2, y, x),
respectively. By definition,

fn ˝ (σnψn)(x1, y, x)− fn ˝ (σnψn)(x2, y, x)

= fn(z1, y, x)+ ψ(x1 − z1)− fn(z2, y, x)− ψ(x2 − z2)

≤ fn(z2, y, x)+ ψ(x1 − z2)− fn(z2, y, x)− ψ(x2 − z2) ≤ σn ‖x1 − x2‖ .

Similarly, we can get fn ˝ (σnψn)(x2)− fn ˝ (σnψn)(x1) ≤ σn ‖x1 − x2‖ by exchang-
ing x1, x2 and z1, z2 in the above inequality. Therefore, fn ˝ (σnψn) is σn-Lipschitz
continuous in the first variable xa(n).

The regularized problem (4) can be viewed as replacing the nodal objective function
fn with the inf-convolution fn ˝(σnψn). Then by Proposition 1, QR

n (x) is σn-Lipschitz
continuous onXa(n).Moreover, if the original problem (2) is convex andψn are convex
penalty functions, then fn ˝ (σnψn) is also convex. Proposition 1 ensures QR

n (x) is
also convex on Xa(n). ��

A.1.3 Proof for Lemma 1

Proof By definition, we have QR
n (xn) ≤ Qn(xn) for all n ∈ N , n �= r . We show

the other direction by contradiction. Suppose there exists a node n ∈ N such that
QR

n (xa(n)) < Qn(xa(n)). By definition, there exist z′m ∈ Xa(m) and (x ′m, y′m) ∈ Fm for
all nodes in the subtree m ∈ T (n), such that

QR
n (xa(n)) = 1

pn

∑

m∈T (n)

pm
[
fm(z′m, y′m, x ′m)+ σmψm(x ′a(m) − z′m)

]
.

We can extend (x ′m, y′m, z′m)m∈T (n) to a feasible solution (z′m, y′m, x ′m)m∈N of the
regularized problem by setting z′m = xa(m), y′m = ym , and x ′m = xm for allm /∈ T (n).
Thus

vreg ≤
∑

m∈T (n)

pm fm(z′m, y′m, x ′m)+
∑

m /∈T (n)

pm fm(z′m, y′m, x ′m)

= pnQ
R
n (xa(n))+

∑

m /∈T (n)

pm fm(xa(m), ym, xm)

< pnQn(xa(n))+
∑

m /∈T (n)

pm fm(xa(m), ym, xm)

=
∑

m∈T (n)

pm fm(xa(m), ym, xm)+
∑

m /∈T (n)

pm fm(xa(m), ym, xm) = vprim.

123

Stochastic dual dynamic programming… 965

This leads to a contradiction with the assumption that vreg = vprim. Therefore, we
conclude that QR

n (xa(n)) = Qn(xa(n)) for all n ∈ N , n �= r . ��
A.1.4 Proof for Proposition 3

Proof If ln,ρ ≥ σn , then (λ, ρ) = (0, σn) is contained in Un , and therefore, is a dual
feasible solution for (11). Thus, we have

Qn(x̄n) ≥ CΦ
x̄n
n

n (x̄n | λ̂n, ρ̂n, v̂n) = v̂n ≥ min
z∈Xa(n)

{Qn(z)+ σnψn(x̄n − z)} = QR
n (x̄n)

= Qn(x̄n),

where the first inequality is the validity of the generalized conjugacy cut (10) and the
second and the last equality are due to Lemma 1 for (x̄n, ȳn)n∈N being an optimal
solution to problem (1). This completes the proof. ��
A.1.5 Proof for Lemma 2

Proof The minimums in (13) are well-defined because of the compactness of X and
lower semicontinuity of Q. Take any x ∈ X . Since both the primal set X and the dual
set {λ ∈ R

d : ‖λ‖∗ ≤ σ } are bounded, by strong duality (cf. Theorem 3.1.30 in [27]),
we have

max‖λ‖∗≤σ
min
z∈X

{Q(z)+ 〈λ, x − z〉} = min
z∈X

max‖λ‖∗≤σ
{Q(z)+ 〈λ, x − z〉} = min

z∈X
{Q(z)

+ σ ‖x − z‖},
which completes the proof. ��
A.1.6 Proof for Proposition 4

Proof By definition, QR
n (x) ≤ Qn ˝ (σnψn)(x). Since ψn(x) = ‖x‖ is convex, by

Proposition 2, QR
n (x) is convex. Then by Lemma 2, we have

QR
n (x) = max‖λ‖∗≤σn

min
z∈Xa(n)

{Qn(z)+ 〈λ, x − z〉} .

Therefore,

CΦ
x̄n
n

n (x̄n | λ̂n, ρ̂n, v̂n) = v̂n = max‖λ‖∗≤ln,λ

min
z∈Xa(n)

{Qn(z)+ 〈λ, x̄n − z〉}

≥ max‖λ‖∗≤σn
min

z∈Xa(n)

{Qn(z)+ 〈λ, x̄n − z〉} ≥ QR
n (x̄n).

By Lemma 1, QR
n (x̄n) = Qn(x̄n) if (x̄n, ȳn)n∈N is an optimal solution to problem (1).

Therefore, we conclude that CΦ
x̄n
n

n (x̄n | λ̂n, ρ̂n, v̂n) = Qn(x̄n) due to the validness of

CΦ
x̄n
n

n by (10). ��

123

966 S. Zhang, X. A. Sun

A.2 Proofs for statements in Sect. 3

A.2.1 Proof for Proposition 5

Proof Let Ln :=∑m∈C(n) pnm(lm,λ + lm,ρ) for simplicity. We prove the proposition
recursively for nodes n ∈ N , and inductively for iteration indices i ∈ N. For leaf nodes
and the first iteration, it holds obviously becauseQi

n(x) = 0 for any leaf node n ∈ N
with C(n) = ∅, and Q0

n(x) = 0 from the definition (14). Now suppose for some
n ∈ N , and i ∈ N, it holds for allm ∈ C(n) thatQi

m(x) ≤ Qm(x),Qi−1
n (x) ≤ Qn(x),

and that Qi−1
n (x) is Ln-Lipschitz continuous. Then it follows from (12), (16), and

(B) that Ci
m(x | λ̂im, ρ̂i

m, vim) ≤ Qm(x) for all m ∈ C(n). By (15), Ci
m is (lm,λ +

lm,ρ)-Lipschitz continuous so
∑

m∈C(n) pnmC
i
m is Ln-Lipschitz continuous. Thus the

pointwise maximum ofQi−1
n (x) and

∑
m∈C(n) pnmC

i
m(x | λ̂in, ρ̂i

n, v
i
n) (cf. (14)) is still

dominated by Qn(x) and Ln-Lipschitz continuous. ��

A.2.2 Proof for Proposition 6

Proof Let Ln = ∑
m∈C(n) pnmσm for simplicity in this proof. We prove the

statement by induction on the number of iterations i . When i = 1, Q1
n(x) =

min{+∞,
∑

m∈C(n) pnm(v̄im + σm
∥∥x − xin

∥∥)} = ∑
m∈C(n) pnm(v̄im + σm

∥∥x − xin
∥∥)

which is clearly Ln-Lipschitz continuous. For any leaf node n, Q1
n ≡ 0 = QR

n by

definition. Going recursively from leaf nodes to the root node, supposeQ1
m ≥ QR

m for
all m ∈ C(n) for some node n, then we have

v̄1m = fm(z1m, y1m, x1m)+ σmψm(x1n − z1m)+Q1
m(x1m)

≥ min{ fm(z, y, x)+ σmψm(x1n − z)+Q1
m(x) : (x, y) ∈ Fm, z ∈ Xn}

≥ min{ fm(z, y, x)+ σmψm(x1n − z)+QR
m(x) : (x, y) ∈ Fm, z ∈ Xn}

= QR
m(x1n). (31)

Thus Q1
n(x) =

∑
m∈C(n) pnm(v̄1m + σm

∥∥x − x1n
∥∥) ≥ QR

n (x) for all x ∈ Xn by the
σm-Lipschitz continuity of the regularized value functions QR

m(x) for all m ∈ C(n)

shown in Proposition 2.
Nowassume that the statement holds for all iterations up to i−1. For any leaf node n,

Qi
n ≡ 0 = QR

n still holds by definition. For any non-leaf node n, suppose Qi
m ≥ QR

m
for all m ∈ C(n). Then by the same argument (31), we know that v̄im ≥ QR

m(xin).

By induction hypothesis, Qi−1
n (x) ≥ QR

n (x) for all x ∈ Xn . So for the cases without

convexity,Qi
n(x) = min{Qi−1

n (x),
∑

m∈C(n) pnm(v̄im+σm
∥∥x − xin

∥∥)} is Ln-Lipschitz

continuous and satisfies Qi
n(x) ≥ QR

n (x) since
∑

m∈C(n) pnm(v̄im + σm
∥∥x − xin

∥∥) ≥
QR

n (x) for all x ∈ Xn following Proposition 2.

123

Stochastic dual dynamic programming… 967

It remains to show that in the convex caseQi
n(x) is still Ln-Lipschitz continuous and

satisfies Qi
n(x) ≥ QR

n (x) for any x ∈ Xn . Note that QR
n (x) can be naturally extended

to the entire space R
dn ⊃ Xn since QR

n ˝ (Ln ‖·‖)(x) = QR
n (x) for any x ∈ Xn by

the Ln-Lipschitz continuity ofQR
n . The above argument of the base case i = 1 for the

nonconvex case can be directly applied to the convex case over x ∈ R
dn . Now assume

that Qi−1
n (x) is Ln-Lipschitz continuous on R

dn and Qi−1
n (x) ≥ QR

n (x) for x ∈ R
dn

up to i − 1. Since Q′
n(x) := min{Qi−1

n (x),
∑

m∈C(n) pnm(v̄im + σm
∥∥x − xin

∥∥)} is Ln-
Lipschitz continuous in x ∈ R

dn , we claim that the supremum in the definition (19)
can be attained within the dual norm ball B∗(Ln) := {λ ∈ R

dn : ‖λ‖∗ ≤ Ln}. In fact,
for any λ /∈ B∗(Ln), the infimum

inf
z∈Rdn

{Q′
n(z)+ 〈λ, z − x〉} ≤ inf

z∈Rdn
{Q′

n(x)+ Ln ‖z − x‖ + 〈λ, z − x〉} = −∞.

As a result, Qi
n(x) is a supremum of Ln-Lipschitz linear functions (of the forms

l(x) := Qi
n(ẑ) + 〈λ̂, ẑ − x〉 where λ̂ ∈ B∗(Ln) and ẑ ∈ Xn) and thus is also an

Ln-Lipschitz continuous function. Therefore, Q′
n(x) ≥ QR

n (x) for all x ∈ R
dn . By

(19), Qi
n(x) = (Q′

n)
∗∗(x) ≥ (QR

n)∗∗(x) = QR
n (x) for all x ∈ R

dn . This completes
the proof. ��

A.2.3 Proof for Proposition 7

Proof From the definition of vreg and Proposition 6,

vreg ≤ fr (xa(r), y
∗
r , x∗r)+QR

r (x∗r) ≤ fr (xa(r), y
∗
r , x∗r)+Qi

r (x
∗
r) ≤ UpperBound.

Since UpperBound− LowerBound ≤ ε, we have

fr (xa(r), y
∗
r , x∗r)+Qi

r (x
∗
r) ≤ fr (xa(r), y

i+1
r , xi+1r)+Qi

r (x
i+1
r)+ ε.

Then, using the optimality of (xi+1r , yi+1r) given byOr (Qi
r) and the fact thatQ

i
r (x) ≤

Qr (x), we see that

fr (xa(r), y
i+1
r , xi+1r)+Qi

r (x
i+1
r) ≤ min

(x,y)∈Fr

{
fr (xa(r), y, x)+Qr (x)

} = vprim.

Under Assumption 2, vreg = vprim. Therefore, combining all the above inequalities,
we have shown that

vreg ≤ fr (xa(r), y
∗
r , x∗r)+Qi

r (x
∗
r) ≤ vreg + ε,

which means (x∗r , y∗r) is an ε-optimal root node solution to the regularized prob-

lem (4). Now supposeQi
r (x

i+1
r)−Qi

r (x
i+1
r) ≤ ε for some iteration index i . Note that

UpperBound ≤ fr (xa(r), yi+1r , xi+1r)+Qi
r (x

i+1
r), we have

123

968 S. Zhang, X. A. Sun

UpperBound− LowerBound ≤ fr (xa(r), y
i+1
r , xi+1r)+Qi

r (x
i+1
r)

− (fr (xa(r), y
i+1
r , xi+1r)+Qi

r (x
i+1
r))

= Qi
r (x

i+1
r)−Qi

r (x
i+1
r) ≤ ε.

Therefore the algorithm terminates after the i-th iteration. ��

A.3 Proofs for statements in Sect. 4

A.3.1 Proof for Lemma 3

Proof By definition (14), Qi
m(x) ≥ Qi−1

m (x) on Xm for all m ∈ C(n). If the problem
is convex with ψn = ‖·‖, then by Lemma 2, we have

vim = max‖λ‖∗≤lm,λ

min
(x,y)∈Fm ,

z∈Xn

{
fm(z, y, x)+ 〈λ, xin − z〉 +Qi

m(x)
}

= min
(x,y)∈Fm ,

z∈Xn

{
fm(z, y, x)+ ln,λ‖xin − z‖ +Qi

m(x)
}

≥ min
(x,y)∈Fm ,

z∈Xn

{
fm(z, y, x)+ σm‖xin − z‖ +Qi

m(x)
}

as lm,λ ≥ σm in Definition 3. Otherwise, by definition (16) and the fact that (λ, ρ) =
(0, σn) is a dual feasible solution for the problem (B), we have

vim = max
(λ,ρ)∈Um

min
(x,y)∈Fm ,

z∈Xn

{
fm(z, y, x)+ 〈λ, xin − z〉 + ρψn(x

i
n − z)+Qi

m(x)
}

≥ min
(x,y)∈Fm ,

z∈Xn

{
fm(z, y, x)+ σnψn(x

i
n − z)+Qi

m(x)
}

.

Thus in both cases, we have

vim ≥ min
(x,y)∈Fm ,

z∈Xn

{
fm(z, y, x)+ σnψn(x

i
n − z)+Qi−1

m (x)
}

= fm(zim, yim, xim)+ σnψn(x
i
n − zim)+Qi−1

m (xim)

for all m ∈ C(n). The last equality is due to the forward step subproblem oracle

OF
m(xin,Qi−1

m) in the algorithm. Meanwhile, note thatQi
m(x) ≤ Qi−1

m (x) for x ∈ Xm .
By definition (18), we have

v̄im = fm(zim, yim, xim)+ σnψn(x
i
n − zim)+Qi

m(xim)

≤ fm(zim, yim, xim)+ σnψn(x
i
n − zim)+Qi−1

m (xim)

123

Stochastic dual dynamic programming… 969

for all m ∈ C(n). Note that by definition (17), Qi
n(x

i
n) ≤ ∑

m∈C(n) pnm v̄im

and by definitions (14) and (15), Qi
n(x

i
n) ≥ ∑

m∈C(n) pnmC
i
m(xin | λ̂im, ρ̂i

m, vim) =∑
m∈C(n) pnmvim . Therefore,

Qi
n(x

i
n)−Qi

n(x
i
n) ≤

∑

m∈C(n)

pnm(v̄im − vim)

≤
∑

m∈C(n)

pnm[Qi−1
m (xim)−Qi−1

m (xim)] ≤
∑

m∈C(n)

pnmγm(δ).

Note that Qi
n(x) is

(∑
m∈C(n) pnmσm

)
-Lipschitz continuous by Proposition 6, and

Qi
m(x) is

[∑
m∈C(n) pnm(ln,λ + ln,ρ)

]
-Lipschitz continuous on Xn by Proposition 5.

Since we have lm,λ + lm,ρ ≥ σm regardless of convexity of the problem, it holds

that Qi
n(x) and Qi

n(x) are both Ln-Lipschitz continuous. Therefore, for any x ∈ Xn ,
‖x − xin‖ ≤ δn/(2Ln), we have

Qi
n(x)−Qi

n(x) ≤ Qi
n(x

i
n)−Qi

n(x
i
n)+ 2Ln‖x − xin‖ ≤

∑

m∈C(n)

pnmγm(δ)+ δn

= γn(δ).

This completes the proof. ��

A.3.2 Proof for Lemma 4

Proof We claim that for any i, j ∈ In , i �= j , then ‖xin − x j
n‖ > δn/(2Ln). Assume

for contradiction that ‖xin − x j
n‖ ≤ δn/(2Ln) for some i < j and i, j ∈ In(δ). By the

definition of In(δ), γ i
m ≤ γm(δ) for all m ∈ C(n). By Lemma 3, Qi

n(x) − Qi
n(x) ≤

γn(δ) for all x ∈ Xn , ‖x − xin‖ ≤ δn/(2Ln). Since j > i and ‖xin − x j
n‖ ≤ δn/(2Ln),

this implies γ
j
n = Q j

n(x
j
n)−Q j

n(x
j
n) ≤ γn(δ), which is a contradiction with j ∈ In(δ).

Hence we prove the claim.
Let B(R),B(R, x) ⊆ R

d denote the closed balls with radius R ≥ 0, centered at 0
and x , respectively. It follows from the claim that the closed balls B(δn/(4Ln), xin) are
non-overlapping for all i ∈ In(δ), eachwith the volumeVolB(δn/(4Ln)). Thus the sum
of the volumes of these balls is |In(δ)|VolB(δn/(4Ln)). Note that for each index i ∈
In(δ), xin ∈ Xn and hence xin ∈ Bn,k for some k. The closed ball B(δn/(4Ln), xin) ⊆
Bn,k + B(δn/(4Ln)), and therefore

⋃

i∈In(δ)
B(δn/(4Ln), x

i
n) ⊆

Kn⋃

k=1
(Bn,k + B(δn/(4Ln))).

123

970 S. Zhang, X. A. Sun

It follows that

Vol

⎡

⎣
⋃

i∈In(δ)
B(δn/(4Ln), x

i
n)

⎤

⎦ = |In(δ)| · VolB(δn/(4Ln)) ≤

Vol

[Kn⋃

k=1
(Bn,k + B(δn/(4Ln))

]
≤

Kn∑

k=1
Vol

(
Bn,k + B(δn/(4Ln))

)
.

Therefore,

|In(δ)| ≤
Kn∑

k=1

Vol
(
Bn,k + B(δn/(4Ln))

)

VolB(δn/(4Ln))
=

Kn∑

k=1

(
1+ 2LnDn,k

δn

)dn
.

This completes the proof. ��

A.3.3 Proof for Lemma 5

Proof For each iteration i ∈ N, the event ∪M
j=1{γ i−1, j

0 ≤ γ0(δ) = ε} is Σi−1-
measurable, so it suffices to prove this inequality for its complement in Ai (δ). Note
that

Prob{γ i, j
t = γ̃

i, j
t |Σi−1} ≥ Prob{Pi, j

t = n(γ̃
i, j
t) |Σi−1},

where n(γ̃
i, j
t) is the smallest node index n ∈ Ñ (t) such that QR

t (xn) −Qi−1
t (xn) =

γ̃
i, j
t for (xn, yn, zn) = OF

n (xi, jt−1,Qi−1
n), which is determined given Σi−1. Using

the same argument as in the Proof of Theorem 1, Lemma 3 shows that the
event ∩T−1

t=1 {γ i, j
t = γ̃

i, j
t } implies the event {i ∈ ∪T−1

t=0 It (δ)} and hence the
event Ai (δ) for each j = 1, . . . , M . Therefore, since Σi−1 is contained in
σ(Σoracle∞ , σ {Pi ′, j ′ }(i ′, j ′) �=(i, j)), by the independent, uniform sampling (Assump-
tion 4), we have

Prob(Ai (δ) |Σi−1)

≥ Prob

⎛

⎝
M⋃

j=1

T−1⋂

t=1
{γ i, j

t = γ̃
i, j
t }

∣∣∣∣ Σi−1

⎞

⎠

≥ Prob

⎛

⎝
M⋃

j=1

T−1⋂

t=1
{γ i, j

t = n(γ̃
i, j
t)}

∣∣∣∣ Σi−1

⎞

⎠

= 1−
(
1− Prob

(
T−1⋂

t=1
{γ i, j

t = n(γ̃
i, j
t)}

∣∣∣∣ Σi−1

))M

= 1− (1− 1/N)M .

123

Stochastic dual dynamic programming… 971

Here, the last step follows from Prob(
⋂T−1

t=1 {γ i, j
t = n(γ̃

i, j
t)} | Σi−1) =∏T−1

t=1 Prob({γ i, j
t = n(γ̃

i, j
t)} | Σi−1) =∏T−1

t=1 (1/Nt) = N . ��
A.3.4 Proof for Theorem 3

Proof Let ai := 1Ai denote the indicator of the event Ai for i ∈ N, and Si :=∑i
i ′=1 ai .

Note that the event {ι ≥ i} implies the event {Si ≤ I }, so we want to bound probability
of the latter for sufficiently large indices i .

By Lemma 5, we see that the adapted sequence {Si − iν}∞i=1 is a submartingale
with respect to the filtration {Σi }∞i=1, because

E(Si − iν | Σi−1) = Si−1 − (i − 1)ν + (E(ai | Σi−1)− ν) ≥ Si−1 − (i − 1)ν.

Moreover, it has a bounded difference as Si + iν − (Si−1 + (i − 1)ν) = ai + ν ≤ 2
almost surely. Now apply the one-sided Azuma-Hoeffding inequality and we get for
any k > 0 that

Prob(Si ≤ iν − k) ≤ exp

(
−k2

8i

)
.

For any κ > 1, take the smallest iteration index i such that iν ≥ κ I , and set k :=
(κ − 1)I . Since I ≥ iν

2κ , the probability bound can be then written as

Prob(ι ≥ i) ≤ Prob(Si ≤ I) ≤ exp

(
− (κ − 1)2 I 2

8i

)
≤ exp

(
− (κ − 1)2 Iν

16κ

)

Substitute the left-hand-side with Prob(ι ≥ 1 + κ I
ν

) using the definition of i and we
have obtained the desired inequality. ��

A.4 Proofs for statements in Sect. 5

A.4.1 Proof for Lemma 6

Proof We prove the lemma recursively starting from the leaf nodes. For leaf nodes
n ∈ N , C(n) = ∅, QR

n (x) = minz∈Xa(n)
Qn(z)+ σnψn(x − z) ≥ minz∈Xa(n)

Qn(z)+
ln ‖x − z‖. Since Qn is ln-Lipschitz continuous, Qn(z) ≥ Qn(x)−ln ‖x − z‖. There-
fore, QR

n (x) ≥ Qn(x) and by Proposition 2, we know QR
n (x) = Qn(x) for all

x ∈ Xa(n).
Now suppose for a node n ∈ N , we know that all of its child nodes satisfy QR

m(x) =
Qm(x),∀ x ∈ Xn , for all m ∈ C(n). Then by definition,

QR
n (xa(n)) = min

(x,y)∈Fn ,z∈Xa(n)

fn(z, y, x)+ σnψn(xa(n) − z)+QR
n (x).

By assumption, we know thatQR
n (x) = Qn(x) for all x ∈ Xn . Therefore, QR

n (xa(n)) =
minz∈Xa(n)

Qn(z) + σnψn(xa(n) − z) ≥ minz∈Xa(n)
Qn(z) + ln‖xa(n) − z‖. Then

123

972 S. Zhang, X. A. Sun

again by ln-Lipschitz continuity of fn , we conclude that QR
n (x) = Qn(x) for all x

∈ Xa(n). ��

A.4.2 Proof for Lemma 7

Proof We claim that if K <
(
DL
4β

)d
, then there exists a point x̂ ∈ X such that

∥∥x̂ − wk
∥∥ ≥ 2β

L for all k = 1, . . . , K . We prove the claim by contradiction. Suppose
such a point does not exist, or equivalently, for any point x ∈ X , there exists wk ∈W
such that ‖x − wk‖ <

2β
L . This implies that the balls B(2β/L, wk) cover the set X ,

which leads to

VolX ≤ Vol

(
K⋃

k=1
B(2β/L, wk)

)
≤

K∑

k=1
VolB(2β/L, wk) = K · VolB(2β/L).

Therefore, it must hold that K ≥ VolX /VolB(2β/L) =
(
DL
4β

)d
, hence a contradic-

tion.
The existence of x̂ guarantees that f (wk)−L‖x̂−wk‖ ≤ f (wk)−2β < 0 for each

k = 1, 2, . . . , K . Therefore, 0 ≤ minx∈X Q(x) ≤ Q(x̂) = max1≤k≤K {0, f (wk) −
L‖x̂ − wk‖} = 0. From compactness of X and the continuity of Q(x), we have
the inequality minx∈X Q(x) ≥ min1≤k≤K Q(wk) = min1≤k≤K f (wk) > β, which
completes the proof.

��

A.4.3 Proof for Theorem 4

Proof Let us define the forward subproblem oracle OF
n in iteration i and stage t as

mapping (xit−1, Qi−1
t+1) to an optimal solution (xit , z

i
t) of the forward subproblem

min
xt ,zt∈Xt

{
ft (zt)+ L‖xit−1 − zt‖ + Qi−1

t+1(xt)
}

,

and the backward subproblem oracle OB
n in iteration i and stage t as mapping

(xit−1, Qi
t+1) to an optimal solution (x̂ it , ẑ

i
t ; λ̂it = 0, ρ̂i

t = L) of the backward sub-
problem

max
λ=0

0≤ρ≤L

min
xt ,zt∈Xt

{
ft (zt)+ ρ‖xit−1 − zt‖ + Qi

t+1(xt)
}

. (32)

Note that in the backward subproblem (32), we choose that ln,λ = 0 and ln,ρ = L . It is
observed that the objective function in (32) is nondecreasing in ρ. Therefore, ρ̂i

t = L
is always an optimal solution for the outer maximization in (32). The root-node oracle
Or in iteration i simply solves minx0∈X Qi

1
(x0) and outputs xi+10 .

123

Stochastic dual dynamic programming… 973

In the backward step (Algorithm 2, step 14) and c.f. the definition (15), the new
generalized conjugacy cut in iteration k ≤ i is generated by

Ck
t (x | 0, L, vkt) = vkt − L‖x − xkt−1‖ = vkt − L‖x − xkt−1‖,

for node t ≥ 1, where vkt is computed and upper bounded as

vkt = ft (ẑ
k
t)+ L‖xkt−1 − ẑkt ‖ + min

xt∈Xt

Qk
t+1(xt),

≤ ft (x
k
t−1)+ min

xt∈Xt

Qk
t+1(xt),

≤ ft (x
k
t−1)+ min

xt∈Xt

Qi
t+1(xt),

where the first inequality directly follows from (32), as z = xit−1 is a feasible solution
of the innerminimization problem, and the second inequality is due to themonotonicity
Qk

t+1(x) ≤ Qi
t+1(x) for k ≤ i . Therefore,

Qi
t
(x) = max

k=1,...,i

{
0, Ck

t (x | 0, L, vkt)
}

, (by (14)),

= max
k=1,...,i

{
0, vkt − L‖x − xkt−1‖

}
,

≤ max
k=1,...,i

{
0, ft (x

k
t−1)− L‖x − xkt−1‖

}
+ min

xt∈Xt

Qi
t+1(xt). (33)

Similarly, by (18), the upper approximation of the value function is computed and
lower bounded as

v̄kt = ft (z
k
t)+ L‖zkt − xkt−1‖ + Q

k
t+1(xkt),

≥ ft (x
k
t−1)+ Q

k
t+1(xkt),

≥ ft (x
k
t−1)+ min

xt∈Xt

Q
k
t+1(xt),

≥ ft (x
k
t−1)+ min

xt∈Xt

Q
i
t+1(xt),

where X̂ k
t := argminxt∈Xt

Qk−1
t+1 (xt). Therefore, the over-approximation satisfies

Q
i
t (x) = min

k=1,...,i

{
v̄kt + L‖x − xkt−1‖

}
, (by (17)),

≥ min
k=1,...,i

{
ft (x

k
t−1)+ L

∥∥∥x − xkt−1
∥∥∥
}
+ min

xt∈Xt

Q
i
t+1(xt),

>
ε

T
+ min

xt∈Xt

Q
i
t+1(xt), (34)

where (34) follows from the construction that ft (x) > ε/T for all x ∈ Xt .

123

974 S. Zhang, X. A. Sun

Now using (33) and (34), we can prove the statement of the theorem. Sup-

pose the iteration index i <
(DLT

4ε

)d
. Denote wk := xkt−1 for k = 1, . . . , i .

Since ε/T < ft (wk) < 2ε/T by construction, applying Lemma 7, we get
minxt∈Xt

{
maxk=1,...,i

{
0, ft (xkt−1)− L‖xt − xkt−1‖

}} = 0.By (33),minxt−1∈Xt−1 Q
i
t

(xt−1) ≤ minxt∈Xt Q
i
t+1(xt) for t = 1, . . . , T . Note at stage T , Qi

T+1 ≡ 0. There-

fore, minxt−1∈Xt−1 Q
i
t
(xt−1) ≤ 0 for all t = 1, . . . , T . But since Qi

t
(x) ≥ 0 for all

x ∈ Xt−1, we have minx∈Xt−1 Q
i
t
(x) = 0 for all 1 ≤ t ≤ T . Hence we see that

LowerBound = minx0∈X0 Q
i
1
(x0) = 0 in iteration i .

Since Xt is a norm ball, it is compact. So by (34), we have

min
xt−1∈Xt−1

Q
i
t (xt−1) > ε/T + min

xt∈Xt

Q
i
t+1(xt), ∀1 ≤ t ≤ T .

This recursion implies that minx0∈X0 Q
i
1(x0) > T (ε/T) = ε. According to Algo-

rithm2, Steps 18-19,wehave that in iteration i ,UpperBound = min
k=1,...,i{Q

k
1(x

k+1
0)} ≥

min
k=1,...,i{Q

i
1(x

k+1
0)} ≥ min

x0∈X0

Q
i
1(x0) > ε. Combining the above analysis, we have

UpperBound − LowerBound > ε in iteration i . Therefore, we conclude that if
UpperBound−LowerBound ≤ ε at the i-th iteration, thenwehave i ≥ (DLT

4ε

)d
. ��

A.4.4 Proof for Lemma 8

Proof Let vd denote the d-volume for a d-dimensional unit ball. Recall that the d-

volume of Sd(R) is given by Vold(Sd(R)) = (d+ 1)vd+1Rd = (d + 1)π(d+1)/2

Γ (d+12 + 1)
Rd .

We next estimate the d-volume for the spherical capSd
β (R, x). Letα ∈ (0, π/2) denote

the central angle for the spherical cap, i.e., cosα = 1− β/R. Since β < (1−
√
2
2)R,

we know that α < π/4. Then for any x ∈ Sd(R), the d-volume of the spherical cap
can be calculated through

Vold(Sd
β (R, x)) =

∫ α

0
Vold−1(Sd−1(R sin θ))Rdθ = dvd R

d
∫ α

0
(sin θ)d−1dθ.

Note that when θ ∈ (0, α), sin θ > 0 and cos θ/ sin θ > 1. Therefore, since d ≥ 2,

Vold(Sd
β (R, x)) ≤ dvd R

d
∫ α

0
(sin θ)d−1 cos θ

sin θ
dθ = dvd R

d · (sin α)d−1

d − 1
.

By substituting sin α = √1− (1− β/R)2, we have that

Vold(Sd
β (R, x))

Vold(Sd(R))
≤ d

d2 − 1

vd

vd+1
(sin α)d−1,

123

Stochastic dual dynamic programming… 975

= d

d2 − 1

vd

vd+1

(
1−

(
1− β

R

)2
)(d−1)/2

≤ d

d2 − 1

vd

vd+1

(
2β

R

)(d−1)/2
.

Now suppose W = {wi }Kk=1 is a maximal set satisfying the assumption, that is, for
any w ∈ Sd(R), w /∈ W , there exists wk ∈ W such that w ∈ Sd

β (R, wk). Then,⋃K
k=1 Sd

β (R, wk) ⊇ Sd(R), therefore

Vold(Sd(R)) ≤
K∑

k=1
Vold(Sd

β (R, wk)) = |W|Vold(Sd
β (R, w1)).

Therefore we have

|W| ≥ Vold(Sd(R))

Vold(Sd
β (R, w1))

≥
[

d

d2 − 1

vd

vd+1

(
2β

R

)(d−1)/2]−1

= (d2 − 1)
√

π

d

Γ (d/2+ 1)

Γ (d/2+ 3/2)

(
R

2β

)(d−1)/2
.

This completes the proof. ��

A.4.5 Proof for Lemma 9

Proof 1. By construction, F is a convex piecewise linear function. Since each linear
piece has a Lipschitz constant (L/R)‖wk‖ = L , as ‖wk‖ = R. Thus, F , as the
maximum of these linear functions, is also an L-Lipschitz function.

2. Since wk /∈ Sd
ε/L(wl) for l �= k, 〈wl , wk − wl〉 < −εR/L . Hence, vl +

L/R 〈wl , wk − wl〉 < vl − ε < 0. Therefore, F(wk) = max{0, vk} = vk .
3. Notice that the above maximum for F(wk) is achieved at a unique linear piece,

which implies that F is differentiable at wk for all k. The gradient ∇F(wk) =
(L/R)wk . This gives the inequality in property 3 from the Proof of property 2.

4. The inequality of property 3 also implies that Q
l
(wl) = 0. Now we show

Ql(wl) > 3ε/2. Since wl /∈ Sd
ε/L(wk) for any k �= l, then ‖wl − wk‖ > ε/L

by the Pythagorean theorem. Also vk > ε/2. So qk := vk + L‖wl −wk‖ > 3ε/2.
Since Ql(wl) is the convex combination of qk’s, we have Ql(wl) > 3ε/2.
This completes the proof. ��

A.4.6 Proof for Theorem 5

Proof First we claim that in any iteration i , for any nodal problem k in stage t , the
optimal solution in the forward step (Algorithm 2 line 7) must be xit = wt,k . To see
this, recall that we set ln,λ = Lt and ln,ρ = 0 for all n ∈ Ñ (t), so by Proposition 5, the

123

976 S. Zhang, X. A. Sun

under-approximation of the cost-to-go function Qi
t (x) is Lt+1-Lipschitz continuous

for all iteration i ∈ N. So consider the forward step subproblem for node n = (t, k)
with t ≥ 2 in iteration i

min
xt∈X

{
Ft (x

i
t−1)+ Lt

∥∥xt − wt,k
∥∥+Qi

t (xt)
}

= Ft (x
i
t−1)+ min

xt∈X

{
Lt
∥∥xt − wt,k

∥∥+Qi
t (xt)

}
. (35)

Note that by the Lt+1-Lipschitz continuity of Qi
t ,

Lt
∥∥xt − wt,k

∥∥+Qi
t (xt) ≥ Qi

t (wt,k)+ (Lt − Lt+1)
∥∥xt − wt,k

∥∥ ,

which, alongside with the fact that Lt+1 < Lt , implies that xt = wt,k is the unique
optimal solution to the forward step problem (35). The above argument also works
for any node in the stage t = 1 by simply removing the constant term Ft (xit−1) in the
nodal problem (35).

Now we define over- and under-approximations of the value functions for the pur-
pose of this proof. For node n = (t, k), let

Qi
t,k

(x) := max
1≤ j≤i{0,C

j
t,k(x | λ̂ j

t,k, 0, v
j
t,k)},

and

Q
i
t,k(x) := conv1≤ j≤i {v̄ j

t,k + Lt‖x j
t−1 − x‖},

where for each j , by formula (16),

v
j
t,k := max‖λ‖≤Lt

min
z,x∈X

{
Ft−1(z)+ 〈λ, x j

t−1 − z〉 + Lt
∥∥x − wt,k

∥∥+Q j
t (x)

}
,

= max‖λ‖≤Lt
min
z∈X

{
Ft−1(z)+ 〈λ, x j

t−1 − z〉
}
+ min

x∈X

{
Lt
∥∥x − wt,k

∥∥+Q j
t (x)

}

= Ft−1(x j
t−1)+Q j

t (wt,k)

with −λ̂
j
t,k ∈ ∂Ft−1(x j

t−1) being an optimal solution to the outer maximization prob-
lem, and by formula (18)

v̄
j
t,k := Ft−1(z jt,k)+ Lt‖x j

t−1 − z jt,k‖ +Q j
t (x

j
t,k)

= Ft−1(x j
t−1)+Q j

t (x
j
t,k).

The last equalities of v j
t,k and v̄

j
t,k are due to the Lt -Lipschitz continuity of Ft−1. Sowe

have by the monotonicity of the under- and over-approximations that for each j ≤ i ,

Qi
t,k

(x) = max
1≤ j≤i{0, Ft−1(x

j
t−1)+ 〈λ̂ j

t,k, x
j
t−1 − x〉 +Q j

t (wt,k)}

123

Stochastic dual dynamic programming… 977

≤ max
1≤ j≤i{0, Ft−1(x

j
t−1)+ 〈λ̂ j

t,k, x
j
t−1 − x〉} +Qi

t (wt,k),

and

Q
i
t,k(x) = conv1≤ j≤i

{
Ft−1(x j

t−1)+ Lt‖x j
t−1 − x‖ +Q j

t (wt,k)
}

≥ conv1≤ j≤i
{
Ft−1(x j

t−1)+ Lt‖x j
t−1 − x‖

}
+Qi

t (wt,k).

Therefore,

Q
i
t,k(x)− Qi

t,k
(x) ≥ Qi

t (wt,k)−Qi
t (wt,k)

+ conv1≤ j≤i {Ft−1(x j
t−1)+ Lt‖x j

t−1 − x‖} − max
1≤ j≤i{0, Ft−1(x

j
t−1)

+ 〈λ̂ j
t,k, x

j
t−1 − x〉}. (36)

Thus we have Q
i
t,k(wt−1,k′) − Qi

t,k
(wt−1,k′) ≥ Qi

t (wt,k) − Qi
t (wt,k) for any k′ =

1, . . . , Kt−1, since the last two terms on the right hand side of (36) are over- and under-
approximations of the function Ft−1, respectively. Moreover, note that x j

t−1 = wt−1,k′
for some k′ = 1, . . . , Kt−1 as it is the unique solution in the forward step. ByLemma9,
whenever the node n′ = (t − 1, k′) is never sampled up to iteration i , we further have

Q
i
t,k(wt−1,k′)− Qi

t,k
(wt−1,k′) >

3ε

2(T − 1)
+Qi

t (wt,k)−Qi
t (wt,k).

Recall the definitions (14) and (17), for any x ∈ X ,

Qi
t−1(x) = max

1≤ j≤i

{
0,

1

Kt

Kt∑

k=1
C j
t,k(x | λ̂ j

t,k, 0, v
j
t,k)

}
≤ 1

Kt

Kt∑

k=1
Qi

t,k
(x),

and

Qi
t−1(x) = conv1≤ j≤i

{
1

Kt

Kt∑

k=1
(v̄

j
t,k + Lt‖x j

t−1 − x‖)
}
≥ 1

Kt

Kt∑

k=1
Q

i
t,k(x).

Consequently, for any k′ = 1, . . . , Kt−1,

Qi
t−1(wt−1,k′)−Qi

t−1(wt−1,k′) ≥ 1

Kt

Kt∑

k=1
[Qi

t (wt,k)−Qi
t (wt,k)],

and in addition, for any node n′ = (t − 1, k′) not sampled up to iteration i ,

Qi
t−1(wt−1,k′)−Qi

t−1(wt−1,k′) >
3ε

2(T − 1)
+ 1

Kt

Kt∑

k=1
[Qi

t (wt,k)−Qi
t (wt,k)].

123

978 S. Zhang, X. A. Sun

Therefore, for any iteration index i ≤ 1
3 |Wt |, t = 1, . . . , T − 1, then there are

Kt − i ≥ 2
3 |Wt | nodes not sampled in stage t , which implies

1

Kt−1

Kt−1∑

k′=1
[Qi

t−1(wt−1,k′)−Qi
t−1(wt−1,k′)] >

ε

T − 1
+ 1

Kt

Kt∑

k=1
[Qi

t (wt,k)−Qi
t (wt,k)].

Consequently, Qi
r − Qi

r > (T − 1) · ε

T − 1
= ε. Therefore, if UpperBound −

LowerBound = Qi
r −Qi

r ≤ ε in the iteration i , then

i >
1

3
min

t=1,...,T−1 |Wt | ≥ 1

3

d(d − 2)
√

π

d − 1

Γ (d/2+ 1/2)

Γ (d/2+ 1)

(
DL(T − 1)

8ε

)(d−2)/2
.

This completes the proof. ��

B Problem classes with exact penalization

In this section, we discuss the problem classes that allows exact penalty reformulation,
as stated in Assumption 2. A penalty function ψ : R

d → R+ is said to be sharp, if
ψ(x) ≥ c ‖x‖ for all x ∈ V ⊂ R

d , for some open neighborhood V 0 and some
positive scalar c > 0.

B.1 Convex problems with interior points

For convex problems, the Slater condition implies that the intersection of the domain
dom(

∑
n∈N fn) and the feasible sets Πn∈NFn has a non-empty interior. We have the

following proposition.

Proposition 8 Suppose the problem (1) is convex and satisfies the Slater condition For
any sharp penalty functionsψn, there exist σn > 0 such that the penalty reformulation
is exact.

Proof Consider a perturbation vector w = (wn)n∈N such that wn ∈ Xa(n)−Xa(n) for
each n ∈ N , and define the perturbation function

τ(w):= min
(zn ,xn ,yn)∈Xa(n)×Fn

{
∑

n∈N
pn fn(zn, yn, xn)

∣∣∣∣ wn = xa(n) − zn, ∀ n ∈ N
}

.

The function τ is convex and vprim = τ(0) by definition. By the Slater condition,
0 ∈ int(dom(τ)) so there exists a vector λ ∈ R

|N | such that τ(w) ≥ τ(0)+〈λ,w〉 for
all perturbationw. Sinceψn are sharp, there exist σn > 0 such that

∑
n∈N σnψn(wn)+

〈λ,w〉 > 0 for all w �= 0. Consequently the penalty reformulation is exact since
vreg = minw τ(w) +∑n∈N σnψn(wn) and all optimal solutions must satisfy wn =
xa(n) − zn = 0 for all n ∈ N . ��

123

Stochastic dual dynamic programming… 979

B.2 Problems with finite state spaces

We say a problem (2) has finite state spaces if the state spaces Xn are finite sets for all
nodes n. Such problems appear in multistage integer programming [38], or when the
original state spaces can be approximated through finite ones [19, 39]. The following
proposition shows the penalty reformulation is exact whenever the state spaces are
finite.

Proposition 9 For any penalty functions ψn, n ∈ N , if the state spaces are finite, then
there exists a finite σn > 0 such that the penalty reformulation (7) is exact.

Proof Let dn :=minx �=z∈Xa(n)
|ψn(x − z)| for each n ∈ N . Since ψn is a penalty

function and the state space Xn is finite, we know dn > 0. Define c as

c := min
(zn ,yn ,xn)∈Xa(n)×Fn

∑

n∈N
pn fn(zn, yn, xn). (37)

Since (37) is a relaxation of the original problem (1) by ignoring coupling constraint
zn = xa(n), then c ≤ vprim. We choose σn = 1+ (vprim − c)/(pndn) for all n ∈ N .
Now let (xn, yn, zn)n∈N be an optimal solution to the regularized problem (4). Then
if there exists xa(m) �= zm for some m �= r , then pmσmψm(xa(m) − zm) > vprim − c.
Consequently,

vreg ≥ c +
∑

n∈N
pnσnψn(xa(n) − zn) ≥ c + pmσmψm(xa(m) − zm) > c + vprim − c

= vprim.

This is a contradiction since vreg ≤ vprim. Thus, any optimal solution to the reformu-
lation (7) must have xa(n) = zn for all n �= r , which means the penalty reformulation
is exact. ��

B.3 Problems defined bymixed-integer linear functions

The problem (1) is said to be defined by mixed-integer linear functions, if all the feasi-
ble sets Fn and the epigraphs epi fn are representable by mixed-integer variables and
non-strict linear inequalities with rational coefficients. Recall that by Assumption 1,
the primal problem is feasible, vprim > −∞. We have the following proposition on
the exact penalty reformulation.

Proposition 10 ([13], Theorem 5) If problem (1) is defined by mixed-integer linear
functions and the penalty functionsψn are sharp for all n ∈ N , then there exist σn > 0,
such that the penalty reformulation is exact.

123

980 S. Zhang, X. A. Sun

B.4 Problems defined by C1-functions

The problem (1) is said to be defined by C1-functions if it is defined by functional
constraints using indicator functions in each node n ∈ N :

fn(xa(n), yn, xn) =
{

fn,0(xa(n), yn, xn), if gn,i (xa(n), yn, xn) ≤ 0, i = 1, . . . , In,

+∞ otherwise.

with all fn,0, gn,i , i = 1, . . . , In being continuously differentiable. TheKarush-Kuhn-
Tucker condition at a feasible point (xn, yn)n∈N of (1) says that there exist multipliers
μn,i ≥ 0, i = 1, . . . , In , such that

∇xn ,yn

{
∑

n∈N
(fn,0(xa(n), yn, xn)− μn,i gn,i (xa(n), yn, xn)

}
= 0,

μn,i gn,i (xa(n), yn, xn) = 0, i = 1, . . . , In .

We have the following proposition on the exactness.

Proposition 11 Suppose the problem (1) is defined by C1-functions and the Karush-
Kuhn-Tucker condition holds for every local minimum solution of (1). If the penalty
functions ψn are sharp for all n ∈ N , then there exist σn > 0 such that the penalty
reformulation is exact.

We give the Proof of Proposition 11 below.

B.4.1 Proof for Proposition 11

We begin by stating a general exact penalization result for problems defined by C1-
functions. Consider the following perturbation function

p(u):= min
x∈Rd

f (x, u)

s.t. gi (x, u) ≤ 0, i = 1, . . . , I ,

h j (x, u) = 0, j = 1, . . . , J , (38)

Here u is the perturbation vector and u = 0 corresponds to the original primal problem.
Let ψ be a penalty function on R

d and σ > 0 a penalty factor. A penalization of the
original primal problem p(0) is given by

min
x∈Rd

f (x, u)+ σψ(u)

s.t. gi (x, u) ≤ 0, i = 1, . . . , I ,

h j (x, u) = 0, j = 1, . . . , J . (39)

123

Stochastic dual dynamic programming… 981

Naturally we could impose some bound on the perturbation as ‖u‖ ≤ Ru . We assume
that f , gi , h j are continuously differentiable in x and u for all i, j . Moreover, the com-
pactness in Assumption 1 implies that the feasible region prescribed by the inequality
constraints gi (x, u) ≤ 0 are compact in x for any u, i.e., X = {x ∈ R

d : ∃u, ‖u‖ ≤
Ru, s.t.gi (x, u) ≤ 0, i = 1, . . . , J } is compact. For example, some of the inequalities
are bounds on the variables, ‖x‖∞ ≤ 1. We will show that there exists a penalty factor
σ > 0 such that any optimal solution to (39) is feasible to (38). We next characterize
the property of the perturbation function p(u).

Lemma 10 The perturbation function p(u) is lower semicontinuous.

Proof Let X(u) ⊂ X denote the feasible set in x dependent on u. The minimum in
the definition is well defined for every u due to the compactness of X(u).

We show that p(u) is lower semicontinuous (lsc) by showing lim infv→u p(v) ≥
p(u) for any u. Assume for contradiction that for any ε > 0, there exists a sequence
{vk}∞k=1 such that vk → u and p(vk) ≤ p(u) − ε. Let xk ∈ argmin f (x, vk)
and thus p(vk) = f (x, vk). Since X is compact, there exists a subsequence xk j
and z ∈ X such that xk j → z as j → ∞. Then by continuity of f , f (z, u) =
lim j→∞ f (xk j , vk j) ≤ p(u) − ε. This contradicts with the definition of p(u), since
p(u) = minx∈X(u) f (x, u) ≤ f (z, u) ≤ p(u)− ε. Therefore p(u) is lsc. ��

Now we give the theorem of exact penalization for problems defined by C1-
functions.

Proposition 12 If the Karush-Kuhn-Tucker condition is satisfied at every local min-
imum solution of (38), then the penalty reformulation (39) is exact for some finite
σ > 0.

Proof Let X(u) denote the feasible region of x defined by constraints gi (x, u) ≤
0, i = 1, . . . , I and h j (x, u) = 0, j = 1, . . . , J . Then X(u) is compact for any u
by the continuity of the constraint functions. We show that for every optimal solution
x0 ∈ X(0), there exists a neighborhood V (x0) x0 in the x space, U (x0) u = 0
in the u space, and constant L(x0) > 0, such that for all x ∈ V (x0) and u ∈ U (x0),
we have f (x, u) ≥ f (x0, 0) − L(x0) · ‖u‖. Then we use this fact together with
compactness of X(0) to show the existence of exact penalization. In this proof, the
little-o is used to simplify notation, i.e., o(‖a‖) denotes a function b(a) such that
lima→0 |b(a)|/ ‖a‖ = 0.

Pick any optimal solution x0 ∈ X(0). By definition, it is also a local minimum
solution. By hypothesis, the KKT condition is satisfied at x0, that is, there exist λi ∈
R, i = 1, . . . , I , and μ j ≥ 0, j = 1, . . . , J such that

∇x f (x0, 0)+
I∑

i=1
λi∇x gi (x0, 0)+

J∑

j=1
μ j∇xh j (x0, 0) = 0,

h j (x0, 0) = 0, j = 1, . . . , J ,

gi (x0, 0) ≤ 0, λi · gi (x0, 0) = 0, i = 1, . . . , I . (40)

123

982 S. Zhang, X. A. Sun

Since h j ’s are continuously differentiable and h j (x0, 0) = 0, we have

〈∇xh j (x0, 0), x − x0
〉+ 〈∇uh j (x0, 0), u

〉

+o(‖x − x0‖ + ‖u‖) = 0, j = 1, . . . , J . (41)

Let A ⊂ I denote the set of active inequality constraints. Then similarly we have

〈∇x gi (x0, 0), x − x0〉 + 〈∇ugi (x0, 0), u〉 + o(‖x − x0‖ + ‖u‖) ≤ 0, i ∈ A. (42)

For any i /∈ A, by the continuity of gi , there exist neighborhoods Wi of x0 and U ′
i of

u = 0 such that for any (x, u) ∈ Wi ×U ′
i , gi (x, u) < 0 remains inactive. Now, from

(40), (41), (42), and f being continuously differentiable, we have

f (x, u)− f (x0, 0)

= 〈∇x f (x0, 0), x − x0〉 + 〈∇u f (x0, 0), u〉 + o(‖x − x0‖ + ‖u‖)

= 〈−
∑

i∈A
λi∇x gi (x0, 0)−

J∑

j=1
μ j∇xh j (x0, 0), x − x0〉

+ 〈∇u f (x0, 0), u〉 + o(‖x − x0‖ + ‖u‖)

≥ 〈∇u f (x0, 0)+
∑

i∈A
λi∇ugi (x0, 0)+

J∑

j=1
μ j∇uh j (x0, 0), u〉

+ o(‖x − x0‖ + ‖u‖)
> −L(x0) · ‖u‖ + o(‖x − x0‖ + ‖u‖),

where L(x0):=‖∇u f (x0, 0) +∑i∈A λi∇ugi (x0, 0) +∑J
j=1 μ j∇uh j (x0, 0)‖ + 1 >

0. By the definition of the little-o notation, there exists a neighborhood V (x0) ⊂
∩i /∈AWi , x0 ∈ V (x0) and U (x0) ⊂ ∩i /∈AUi , 0 ∈ U (x0) such that

f (x, u)− f (x0, 0) ≥ −L(x0) · ‖u‖ , ∀ (x, u) ∈ V (x0)×U (x0).

Now, let Xopt(0) denote the set of optimal solutions of x when u = 0. Note
that Xopt(0) ⊂ X(0) is closed due to the continuity of f , hi , g j , hence compact.
The collection of open sets {V (x)}x∈Xopt(0) covers Xopt(0). By compactness, there
exists a finite subcollection {V (xk)}Kk=1 such that Xopt(0) ⊂ ∪K

k=1V (xk)=:V . Let
L:=maxk=1,...,K L(xk) and U = ∩K

k=1U (xk). Let f ∗ denote the optimal value for
u = 0. Then we have

f (x, u) ≥ f ∗ − L · ‖u‖ , ∀ (x, u) ∈ V ×U .

To show the inequality for x /∈ V , define p̃(u) := minx∈X(u)\V f (x, u). Note that
p̃(0) > f ∗ by the definition of Xopt(0). Then by Lemma 10, p(u) is lower semicon-
tinuous, and we know that there exists a neighborhood U ′ of 0 such that p̃(u) > f ∗
for all u ∈ U ′. Therefore, for all u ∈ U ∩U ′, we have f (x, u) ≥ f ∗−L ·‖u‖. Finally,

123

Stochastic dual dynamic programming… 983

we can show that the penalization is exact. Since ψ is sharp, there exist an open set
Ũ ⊂ U ∩U ′, and positive constants c > 0 such that

ψ(u) ≥ c ‖u‖ on Ũ .

Let M = minu∈B̄Ru (0)\Ũ p̃(u) > f ∗, m = minu∈B̄Ru (0)\Ũ ψ(u) > 0 because ψ is a
penalty function. Let σ = (M− f ∗)/m+1.We have f (x, u) ≥ f ∗−σ ·‖u‖ , ∀ u ∈
B̄Ru (0)\{0}, x ∈ ∪u X(u). As a result, any optimal solution to the penalization (39)
would satisfy u = 0. ��

Note that our problem (7) can be written into the form (39) by letting u =
(xa(n), zn)n∈N , and including the duplicate constraints zn − xa(n) = 0 for any
n �= r ∈ N in the equality constraints h j (x, u) = 0. And other constraints
gi (x, u) ≤ 0 correspond to the functional constraints in the problem (1). Since ψn are
sharp, the aggregate penalty function defined by ψ(u) =∑n∈N pnψn(xa(n) − zn) is
also sharp. Let σ denote the penalty factor in Proposition 12. Proposition 11 follows
from this by letting σn = σ/pn for all n ∈ N .

References

1. Ahmed, S., Cabral, F.G., da Costa, B.F.P.: Stochastic Lipschitz dynamic programmingMath. Program.
191, 755–793 (2022)

2. Ahmed, S., King, A.J., Parija, G.: AMulti-stage Stochastic Integer Programming Approach for Capac-
ity Expansion under Uncertainty. Journal of Global Optimization 26, 3–24 (2003)

3. Baringo, L., Conejo, A.J.: Risk-Constrained Multi-Stage Wind Power Investment. IEEE Transac-
tions on Power Systems 28(1), 401–411 (2013) https://doi.org/10.1109/TPWRS.2012.2205411. http://
ieeexplore.ieee.org/document/6247489/

4. Basciftci, B., Ahmed, S., Gebraeel, N.: Adaptive Two-stage Stochastic Programming with an Appli-
cation to Capacity Expansion Planning. arXiv:1906.03513 [math] (2019)

5. Baucke, R., Downward, A., Zakeri, G.: A deterministic algorithm for solving multistage stochastic
programming problems. Optim. Online p. 25 (2017)

6. Benders, J.F.: Partitioning procedures for solvingmixed-variables programming problems.Numerische
Mathematik 4, 238–252 (1962)

7. Birge, J.R.: Decomposition and PartitioningMethods forMultistage Stochastic Linear Programs. Oper.
Res. 33(5), 989–1007 (1985). https://doi.org/10.1287/opre.33.5.989

8. Bradley, S.P., Crane, D.B.: A Dynamic Model for Bond Portfolio Management. Manage. Sci. 19(2),
139–151 (1972). https://doi.org/10.1287/mnsc.19.2.139

9. Chen, Z.L., Li, S., Tirupati, D.: A scenario-based stochastic programming approach for technology
and capacity planning. Computers & Operations Research 29(7), 781–806 (2002) https://doi.org/10.
1016/S0305-0548(00)00076-9. http://linkinghub.elsevier.com/retrieve/pii/S0305054800000769

10. Chen, Z.L., Powell, W.B.: Convergent Cutting-Plane and Partial-Sampling Algorithm for Multistage
Stochastic Linear Programs with Recourse. J. Optim. Theory Appl. 102(3), 497–524 (1999). https://
doi.org/10.1023/A:1022641805263

11. Dantzig, G.B., Wolfe, P.: Decomposition Principle for Linear Programs. Oper. Res. 8(1), 101–111
(1960). https://doi.org/10.1287/opre.8.1.101

12. Escudero, L.F., Kamesam, P.V., King, A.J., Wets, R.J.B.: Production planning via scenario modelling.
Annals of Operations Research 43, 309–335 (1993)

13. Feizollahi, M.J., Ahmed, S., Sun, A.: Exact augmented lagrangian duality for mixed integer linear
programming. Math. Program. 161(1–2), 365–387 (2017)

14. Flach, B., Barroso, L., Pereira, M.: Long-term optimal allocation of hydro generation for a price-maker
company in a competitive market: latest developments and a stochastic dual dynamic programming

123

https://doi.org/10.1109/TPWRS.2012.2205411
http://ieeexplore.ieee.org/document/6247489/
http://ieeexplore.ieee.org/document/6247489/
http://arxiv.org/abs/1906.03513
https://doi.org/10.1287/opre.33.5.989
https://doi.org/10.1287/mnsc.19.2.139
https://doi.org/10.1016/S0305-0548(00)00076-9
https://doi.org/10.1016/S0305-0548(00)00076-9
http://linkinghub.elsevier.com/retrieve/pii/S0305054800000769
https://doi.org/10.1023/A:1022641805263
https://doi.org/10.1023/A:1022641805263
https://doi.org/10.1287/opre.8.1.101

984 S. Zhang, X. A. Sun

approach. IET Generation, Transmission & Distribution 4(2), 299 (2010). https://doi.org/10.1049/iet-
gtd.2009.0107

15. Girardeau, P., Leclere, V., Philpott, A.B.: On the Convergence of Decomposition Methods for Multi-
stage Stochastic Convex Programs. Math. Oper. Res. 40(1), 130–145 (2015). https://doi.org/10.1287/
moor.2014.0664

16. Glassey, C.R.: Nested Decomposition andMulti-Stage Linear Programs. Manage. Sci. 20(3), 282–292
(1973). https://doi.org/10.1287/mnsc.20.3.282

17. Guigues, V.: Convergence analysis of sampling-based decomposition methods for risk-averse multi-
stage stochastic convex programs. SIAM J. Optim. 26(4), 2468–2494 (2016)

18. Guigues, V.: Dual dynamic programing with cut selection: Convergence proof and numerical experi-
ments. Eur. J. Oper. Res. 258(1), 47–57 (2017)

19. Hjelmeland,M.N., Zou, J., Helseth,A.,Ahmed, S.:NonconvexMedium-TermHydropower Scheduling
by Stochastic Dual Dynamic Integer Programming. IEEE Transactions on Sustainable Energy 10(1),
481–490 (2019) https://doi.org/10.1109/TSTE.2018.2805164. http://ieeexplore.ieee.org/document/
8289405/

20. Ho, J.K., Manne, A.S.: Nested decomposition for dynamic models. Math. Program. 6(1), 121–140
(1974). https://doi.org/10.1007/BF01580231

21. Kusy, M.I., Ziemba, W.T.: A Bank Asset and Liability Management Model. Oper. Res. 34(3), 356–376
(1986). https://doi.org/10.1287/opre.34.3.356

22. Lan, G.: Complexity of stochastic dual dynamic programming. Mathematical Programming pp. 1–38
(2020)

23. Lara, C.L., Mallapragada, D.S., Papageorgiou, D.J., Venkatesh, A., Grossmann, I.E.: Deterministic
electric power infrastructure planning: Mixed-integer programming model and nested decomposition
algorithm. European Journal of Operational Research 271(3), 1037–1054 (2018) https://doi.org/10.
1016/j.ejor.2018.05.039. http://linkinghub.elsevier.com/retrieve/pii/S0377221718304466

24. Linowsky, K., Philpott, A.B.: On the Convergence of Sampling-Based Decomposition Algorithms for
Multistage Stochastic Programs. J. Optim. Theory Appl. 125(2), 349–366 (2005). https://doi.org/10.
1007/s10957-004-1842-z

25. Louveaux, F.V.:ASolutionMethod forMultistageStochastic ProgramswithRecoursewithApplication
to an Energy Investment Problem. Oper. Res. 28(4), 889–902 (1980). https://doi.org/10.1287/opre.28.
4.889

26. Mulvey, J.M., Vladimirou, H.: Stochastic Network Programming for Financial Planning Problems.
Manage. Sci. 38(11), 1642–1664 (1992). https://doi.org/10.1287/mnsc.38.11.1642

27. Nesterov, Y.: Lectures on Convex Optimization, vol. 137. Springer, Berlin (2018)
28. Pereira, M.V.F., Pinto, L.M.V.G.: Stochastic Optimization of a Multireservoir Hydroelectric Sys-

tem: A Decomposition Approach. Water Resour. Res. 21(6), 779–792 (1985). https://doi.org/10.1029/
WR021i006p00779

29. Pereira,M.V.F., Pinto, L.M.V.G.:Multi-stage stochastic optimization applied to energy planning.Math.
Program. 52(1–3), 359–375 (1991). https://doi.org/10.1007/BF01582895

30. Philpott, A., Guan, Z.: On the convergence of stochastic dual dynamic programming and related
methods. Operations Research Letters 36(4), 450–455 (2008) https://doi.org/10.1016/j.orl.2008.01.
013. http://linkinghub.elsevier.com/retrieve/pii/S0167637708000308

31. Philpott, A., Wahid, F., Bonnans, F.: MIDAS: A Mixed Integer Dynamic Approximation Scheme.
Mathematical Programming 181, 19–50 (2020)

32. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis, vol. 317. Springer Science & Business Media,
Berlin (2009)

33. Shapiro, A.: Analysis of stochastic dual dynamic programmingmethod. European J. Oper. Res. 209(1),
63–72 (2011) https://doi.org/10.1016/j.ejor.2010.08.007. http://linkinghub.elsevier.com/retrieve/pii/
S0377221710005448

34. Shapiro, A., Tekaya, W., da Costa, J.P., Soares, M.P.: Risk neutral and risk averse Stochastic Dual
Dynamic Programming method. European J. Oper. Res. 224(2), 375–391 (2013) https://doi.org/10.
1016/j.ejor.2012.08.022. http://linkinghub.elsevier.com/retrieve/pii/S0377221712006455

35. Slyke, R.M.V.,Wets, R.: L-ShapedLinear ProgramswithApplications toOptimal Control and Stochas-
tic Programming. SIAM J. Appl. Math. 17(4), 638–663 (1969). http://www.jstor.org/stable/2099310

36. Takriti, S., Krasenbrink, B., Wu, L.S.Y.: Incorporating Fuel Constraints and Electricity Spot Prices
into the Stochastic Unit Commitment Problem. Oper. Res. 48(2), 268–280 (2000). https://doi.org/10.
1287/opre.48.2.268.12379

123

https://doi.org/10.1049/iet-gtd.2009.0107
https://doi.org/10.1049/iet-gtd.2009.0107
https://doi.org/10.1287/moor.2014.0664
https://doi.org/10.1287/moor.2014.0664
https://doi.org/10.1287/mnsc.20.3.282
https://doi.org/10.1109/TSTE.2018.2805164
http://ieeexplore.ieee.org/document/8289405/
http://ieeexplore.ieee.org/document/8289405/
https://doi.org/10.1007/BF01580231
https://doi.org/10.1287/opre.34.3.356
https://doi.org/10.1016/j.ejor.2018.05.039
https://doi.org/10.1016/j.ejor.2018.05.039
http://linkinghub.elsevier.com/retrieve/pii/S0377221718304466
https://doi.org/10.1007/s10957-004-1842-z
https://doi.org/10.1007/s10957-004-1842-z
https://doi.org/10.1287/opre.28.4.889
https://doi.org/10.1287/opre.28.4.889
https://doi.org/10.1287/mnsc.38.11.1642
https://doi.org/10.1029/WR021i006p00779
https://doi.org/10.1029/WR021i006p00779
https://doi.org/10.1007/BF01582895
https://doi.org/10.1016/j.orl.2008.01.013
https://doi.org/10.1016/j.orl.2008.01.013
http://linkinghub.elsevier.com/retrieve/pii/S0167637708000308
https://doi.org/10.1016/j.ejor.2010.08.007
http://linkinghub.elsevier.com/retrieve/pii/S0377221710005448
http://linkinghub.elsevier.com/retrieve/pii/S0377221710005448
https://doi.org/10.1016/j.ejor.2012.08.022
https://doi.org/10.1016/j.ejor.2012.08.022
http://linkinghub.elsevier.com/retrieve/pii/S0377221712006455
http://www.jstor.org/stable/2099310
https://doi.org/10.1287/opre.48.2.268.12379
https://doi.org/10.1287/opre.48.2.268.12379

Stochastic dual dynamic programming… 985

37. Zou, J., Ahmed, S., Sun, X.A.: Partially Adaptive Stochastic Optimization for Electric Power Genera-
tion Expansion Planning. INFORMS J. Comput. 30(2), 388–401 (2018). https://doi.org/10.1287/ijoc.
2017.0782

38. Zou, J., Ahmed, S., Sun, X.A.: Stochastic dual dynamic integer programming. Math. Program. (2018).
https://doi.org/10.1007/s10107-018-1249-5

39. Zou, J., Ahmed, S., Sun, X.A.: Multistage Stochastic Unit Commitment Using Stochastic Dual
Dynamic Integer Programming. IEEE Trans. Power Syst. 34(3), 1814–1823 (2019) https://doi.org/
10.1109/TPWRS.2018.2880996. http://ieeexplore.ieee.org/document/8532315/

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1287/ijoc.2017.0782
https://doi.org/10.1287/ijoc.2017.0782
https://doi.org/10.1007/s10107-018-1249-5
https://doi.org/10.1109/TPWRS.2018.2880996
https://doi.org/10.1109/TPWRS.2018.2880996
http://ieeexplore.ieee.org/document/8532315/

	Stochastic dual dynamic programming for multistage stochastic mixed-integer nonlinear optimization
	Abstract
	1 Introduction
	1.1 Literature review
	1.2 Contributions
	2 Problem formulations
	2.1 Extensive and recursive formulation
	2.2 Continuity and convexity of value functions
	2.3 Regularization and penalty reformulation
	2.4 Generalized conjugacy cuts and value function approximation
	2.4.1 Generalized conjugacy cuts
	2.4.2 Value function approximation
	3 Nested decomposition and dual dynamic programming algorithms
	3.1 Subproblem oracles
	3.2 Under- and over-approximations of cost-to-go functions
	3.3 A nested decomposition algorithm for general trees
	3.4 A deterministic sampling dual dynamic programming algorithm
	3.5 A stochastic sampling dual dynamic programming algorithm

	4 Upper bounds on iteration complexity of proposed algorithms
	4.1 Upper bound analysis on iteration complexity of algorithm 1
	4.2 Upper bound analysis on iteration complexity of algorithm 2
	4.3 Upper bound analysis on iteration complexity of algorithm 3

	5 Lower bounds on iteration complexity of proposed algorithms
	5.1 General lipschitz continuous problems
	5.2 Convex lipschitz continuous problems

	6 Conclusions
	A Proofs
	A.1 Proofs for statements in Sect. 2
	A.1.1 Proof for Proposition 1
	A.1.2 Proof for Proposition 2
	A.1.3 Proof for Lemma 1
	A.1.4 Proof for Proposition 3
	A.1.5 Proof for Lemma 2
	A.1.6 Proof for Proposition 4

	A.2 Proofs for statements in Sect. 3
	A.2.1 Proof for Proposition 5
	A.2.2 Proof for Proposition 6
	A.2.3 Proof for Proposition 7

	A.3 Proofs for statements in Sect. 4
	A.3.1 Proof for Lemma 3
	A.3.2 Proof for Lemma 4
	A.3.3 Proof for Lemma 5
	A.3.4 Proof for Theorem 3

	A.4 Proofs for statements in Sect. 5
	A.4.1 Proof for Lemma 6
	A.4.2 Proof for Lemma 7
	A.4.3 Proof for Theorem 4
	A.4.4 Proof for Lemma 8
	A.4.5 Proof for Lemma 9
	A.4.6 Proof for Theorem 5

	B Problem classes with exact penalization
	B.1 Convex problems with interior points
	B.2 Problems with finite state spaces
	B.3 Problems defined by mixed-integer linear functions
	B.4 Problems defined by C1-functions
	B.4.1 Proof for Proposition 11
	References

