
Mathematical Programming (2023) 200:1–35
https://doi.org/10.1007/s10107-022-01874-9

FULL LENGTH PAPER

Series A

The role of optimization in some recent advances in
data-driven decision-making

Lennart Baardman1 · Rares Cristian2 · Georgia Perakis2 · Divya Singhvi3 ·
Omar Skali Lami2 · Leann Thayaparan2

Received: 17 December 2021 / Accepted: 21 July 2022 / Published online: 11 August 2022
© The Author(s) 2022

Abstract
Data-driven decision-making has garnered growing interest as a result of the increasing
availability of data in recent years.With that growthmany opportunities and challenges
have sprung up in the areas of predictive and prescriptive analytics. Often, optimization
can play an important role in tackling these issues. In this paper, we review some
recent advances that highlight the difference that optimization canmake in data-driven
decision-making. We discuss some of our contributions that aim to advance both
predictive and prescriptive models. First, we describe how we can optimally estimate
clustered models that result in improved predictions. Next, we consider how we can
optimize over objective functions that arise from tree ensemble models in order to
obtain better prescriptions. Finally, we discuss how we can learn optimal solutions
directly from the data allowing for prescriptions without the need for predictions. For

B Georgia Perakis
georgiap@mit.edu

Lennart Baardman
baardman@umich.edu

Rares Cristian
raresc@mit.edu

Divya Singhvi
ds6844@stern.nyu.edu

Omar Skali Lami
oskali@mit.edu

Leann Thayaparan
lpgt@mit.edu

1 Ross School of Business, University of Michigan, 701 Tappan Avenue, Ann Arbor, MI 48109,
USA

2 Operations Research Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue,
Cambridge, MA 02139, USA

3 Stern School of Business, New York University, 44 West Fourth Street, New York 10012, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-022-01874-9&domain=pdf
http://orcid.org/0000-0002-0888-9030


2 L. Baardman et al.

all these newmethods, we stress the need for good performance but also the scalability
to large heterogeneous datasets.

Keywords Data-driven decision-making · Offline learning

Mathematics Subject Classification 90B50: Management decision making including
multiple objectives · 90C11: Mixed Integer Optimization · 90C90: Applications
of mathematical programming · 68T05: Learning and adaptive systems · 62H30:
Classification and discrimination; cluster analysis · 62J05: Linear regression · 62J02:
General nonlinear regression · 62-07: Data analysis

1 Introduction

Data-driven decision-making has been brought front and center in society over the
recent years, particularly due to a wide variety of difficult challenges that have sur-
faced in many areas such as manufacturing, services, supply chains, healthcare, and
sustainability.With the ever-growing availability of data aswell as the increasing speed
of computation, we have been able to build methods utilizing optimization, machine
learning, and statistics to significantly improve decision-making. These approaches
have also enabled decision-makers to make more and more granular, sometimes even
personalized, decisions very quickly. The aim of data-driven analytics has been to
cater to each individual’s heterogeneous preferences in real-time.

Generally, data-driven methodologies tackle real-world problems in a two phased
approach. First, data is used to develop a model of the uncertainties related to the
problem, e.g., estimating a customer demand model for a product. Second, this model
of uncertainty is then used in solving an optimization model, e.g., solving a price
optimization model for a product. While the first step is predictive, the second step is
prescriptive. Naturally, the complexity of the prescriptive problem of interest directly
depends on the complexity of the underlying predictive model. Simple parametric
predictive models are easy to optimize over. Nevertheless, they are restricted in their
predictive power and might not be as accurate in predicting uncertainties. On the
other hand, complex non-parametric predictive models are very expressive and can be
highly accurate in predicting uncertainties. Unfortunately, they are difficult to optimize
over. Hence, there is a trade-off in modeling the predictive and prescriptive problems:
generating data-driven decisions that perform well in the real-world versus keeping
the models tractable with today’s computational power. This is where the importance
of optimization arises, namely, to help balance this trade-off and help us understand
what is possible and what is not.

In this paper, we shed some light on the power that optimization can have inmolding
data-driven methods. We focus on several of our own works that highlight examples
where data-driven decision-making can benefit by taking an optimization perspective.
These works have developed optimization tools for both predictive and prescriptive
problems. In more detail, this paper discusses the following:
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The role of optimization in some recent advances… 3

1. We first discuss clustered predictive models and how they can be learned from
data using the Cluster-while-Estimate method. Clustered models aim to address
heterogeneity that exists within datasets by clustering the homogenous observa-
tions together and simultaneously predicting each observation’s outcome in the
group. While this is ideal for learning from large, unstructured data, the underlying
optimization problem is theoretically and computationally difficult to solve. This
is where developing a new optimization-based estimation method is necessary. In
this paper, we discuss the tractable Cluster-while-Estimate algorithm that is able
to estimate clustered models.

2. We further expand our discussion on developments in predictive tasks and opti-
mization by discussing how ensemble trees can be optimized over in a tractable
way. This task of prescription using ensemble trees has been shown to be NP-hard
so we discuss several approximation algorithms that have been developed in the
literature in the recent years.

3. Finally, we consider the loss in quality of prescription when blindly using a pre-
diction model as an intermediary step. Such a process can produce significantly
suboptimal decisions even if the prediction loss is low. Instead, we discuss a
methodwedeveloped for prescribing decisions directly frompast data. Thismethod
encapsulates as a special case both a feature-based SAA (Sample Average Approx-
imation) approach as well as robust optimization. This discussion illustrates the
role optimization research plays in moving from data directly to decisions.

There is a wide range of data-driven methods that have been developed in the
literature in the recent years. In this paper we will provide an overview of some of
this literature. In particular, we consider three parts (i) clustered learning methods,
(ii) tree-based optimization methods, and (iii) model-free optimization methods. For
each part, we will review some related literature, although we mainly focus on our
own related research, particularly in [1–3], and [4].

2 Learning clusteredmodels

In predictive problems, we often deal with big datasets that are marked by heterogene-
ity across observations and high-dimensionality across features. Within the statistics
and machine learning literature, there are many strong predictive models that have
been developed. However, in heterogeneous settings, these models generally become
weaker as they only capture the heterogeneity that can be described by the available
features. Even in high-dimensional settings, we often miss some of the features that
are necessary to explain heterogeneity. When these features are missing, we propose
to use clustered models to describe the heterogeneous groups of observations. In the
following, we discuss a clustered learning method, which uses clustering and regular-
ization to learn homogeneous groups within the dataset and to learn which features
are important to predict outcomes within that cluster. Our interest in developing these
methods arose from our collaborations with industry where we encountered several
operational challenges that could only be dealt with by learning predictive models
from large unstructured datasets.
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4 L. Baardman et al.

As an example, consider a firm introducing a new product for which it wants to
forecast sales to schedule production. After the seminal paper in product diffusion [5],
the new product forecasting challenge has garnered vast attention from varied fields
of study [6–9]. Clearly, the major difficulty in this problem is the absence of historical
data on the new product. However, theremight be sales data from comparable products
that were introduced previously. Still, it remains a question which products are most
informative about the new product’s sales. This challenge is addressed by the clustered
learning method: cluster the old products and jointly fit a model on their historical
sales, then assign the new product to the right cluster and forecast its sales with the
corresponding model. Instead of us specifying which product department, category,
or subcategory to fit sales on and which features to use, this clustered learning method
picks the most comparable products and the most predictive features by itself.

The literature has considered clustering in offline learning beforewe proposed novel
learning and optimization methods in [1] and [2]. As an early form of incorporating
clusters in learning [10], the clusterwise regression problem considers outcomes of
each observation to be described by a linear regression. This framework has subse-
quently been applied to various application domains including market segmentation
[11], income prediction [12], product lifecycles [13], rainfall prediction [14], andmany
others. One of the first algorithms to address this problem was also proposed by [10],
which iteratively reassigned data points to different clusters if it would result in a
reduction of the prediction error. Since then, improved heuristic algorithms have been
proposed to solve the clusterwise regression problem. Simulated annealing is used
in [15], maximum likelihood estimation and expectation-maximization in [16], and
Gibbs sampling in [17]. Mathematical programming based approaches have also been
proposed. For example, while [18] propose a nonlinear formulation, [19] propose a
compact mixed-integer linear formulation, and [20–22] propose a heuristic based on
column generation for an integer linear formulation. In contrast to this literature, in
[1] and [2], we move beyond linear regression and propose a more general clustered
learning approach that can consider logistic regression, regression trees, classification
trees, and others.

Another form of incorporating clusters, is the renowned Latent Class Analysis
(LCA) [23], which aims at discovering underlying latent clusters in the data, and
fit different response functions inside each of these clusters. Our optimization-based
approach to the problem offers more flexibility in terms of which response functions
that can be fit (classical regression methods, tree-based methods, etc), which types of
data that can be considered (discrete versus continuous), without needing to specify
distributional assumptions on the data. These differences are further discussed in more
details in [1] and [2].

2.1 General clusteredmodel

Our clustered learning approach, the Cluster-while-Estimate method (or CWE
method), was developed in [1] for regression models and extended to classification
models by [2]. The aim of this approach is to cluster observations (e.g., grouping
similar products) whose outcomes (e.g., sales forecasts) can be predicted through a
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The role of optimization in some recent advances… 5

similar model. The CWE method clusters observations based on how similar their
outcomes can be predicted as a function of their features, not based on how close the
observations’ features are.

This shift in perspective grants tremendous flexibility, which causes the model to
be more scalable and accurate. The model is highly scalable as it can deal with big
datasets where observations are not clearly linked or features might be redundant.
When there are many heterogeneous observations, the method will find a model that
suits each homogeneous cluster within the large dataset. When the features are high-
dimensional, the algorithmwill find the features within the large dataset that need to be
included in each cluster’s sparse model. The model also improves predictive accuracy
as clustering and fitting models jointly will eliminate harmful clusters. When just
having similar features does not mean having similar outcomes, the clusters found by
sequential methods have low predictive power.

For our method, we assume to have data on N observations with D features con-
tained in the matrix X ∈ R

N×D , and their outcomes are contained in the vector
y ∈ R

N . We assume that there are L different clusters, and the matrix Z ∈ R
N×L

indicates which observation belongs to which cluster. Finally, the model’s error of
every observation is denoted by the vector ε ∈ R

N . The distribution of this error
varies across regression and classification models.

In a clustered model, we presume that the observations are heterogeneous. This
means there are multiple clusters of observations whose outcomes are generated
through different models. If the underlying data is homogeneous, our model would
still be applicable by considering a single cluster. With this interpretation, we define
the clustered model for any observation i = 1, . . . , N :

yi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f1(xi , εi ) if zi1 = 1

f2(xi , εi ) if zi2 = 1

· · ·
fL(xi , εi ) if zi L = 1

or yi =
L∑

l=1

zil fl(xi , εi ) (1)

where fl is the prediction model of each cluster. This clustered model is extremely
general as each cluster can be described by any conventional regression model, or
classification model if we let the above model describe the probability P(yi = k)
that yi equals some class k ∈ {1, . . . , K }. Our interest lies in estimating the cluster
assignments Z denoted by Ẑ , and estimating the cluster models fl denoted by f̂l . We
intend to estimate the cluster assignments and the cluster models jointly by solving
the mixed-integer non-linear optimization formulation (2):

min
z, f

N∑

i=1

L∑

l=1

(zil · L (yi , fl(xi ))) + λR( f1, . . . , fL) (2a)

s.t.
L∑

l=1

zil = 1, i = 1, . . . , N (2b)

zil ∈ {0, 1}, i = 1, . . . , N , l = 1, . . . , L. (2c)
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6 L. Baardman et al.

In this problem, we estimate our parameters by minimizing the regularized loss,
which consists of two parts. The first part is the loss due to prediction error, namely the
further our prediction

∑L
l=1 zil fl(x) is from the observed outcome yi the larger the loss

we incur. The second part is the loss due to the regularizer which penalizes complex
models. In the case of linear regression, the loss L can be the squared error while
the regularizerR can be the LASSO or Ridge regularizer. The hyperparameter λ ≥ 0
balances howmuch to minimize errors and penalize complexity. Clearly, we minimize
the errors to make sure that our model predict accurately. However, we also penalize
complexity to allow the model to expressly state which features are unimportant to a
cluster.

Both theoretically and practically, the optimization problem (2) is difficult to solve.
Theoretically, even in the case of linear regression, the problem is proven to be NP-
hard by [24]. Practically, even though some cases of the problem can be reformulated
as tractable mixed-integer optimization problems, commercial solvers are unable to
solve large-scale instances.

Instead, in [1] and [2], we propose the CWE algorithm that can find an approximate
solution to problem (2) within polynomial time. Notably, this algorithm can be used
for any type of regression or classification model within the clusters. At its core, this
algorithm initializes cluster assignments, fixes these and estimates cluster models,
fixes these and estimates cluster assignments, and then repeats this process. For given
data, lossL, and regularizationR, our CWE algorithm runs along the following steps:

1. Initialize the assignment of products to clusters ẑ(0)il , either randomly, or through
a clustering method like k-means or hierarchical clustering.

2. Iteratively re-estimate the cluster models and cluster assignments. For iteration
t = 1, . . . , T :

a. Solve (2) with zil = ẑ(t−1)
il to find f̂ (t)

l , i.e., estimate each cluster model given
the currently assigned observations.

b. Solve (2) with fl = f̂ (t)
l to find ẑ(t)il , i.e., assign each observation to the cluster

whose model results in the least error prediction.
c. Terminate with ẑil and f̂l if t = T or ẑ(t)il = ẑ(t−1)

il , otherwise return to step 2a.

For a large variety of cluster models, both steps 2a and 2b have tractable solution
methods. In step 2awe solve L separate estimation problems for each estimated cluster,
which can be done with existing algorithms from statistics and machine learning. In
step 2b, observations are reassigned simply by calculating their loss within a cluster
and assigning them to the onewith the smallest loss. Overall, we show in Proposition 1,
which is proven in [1, 2], that this CWE algorithm converges to a local optimumwhen
the clusters do not change anymore.

Proposition 1 ([1, 2]) TheCWEalgorithm converges to a local optimum in polynomial
time.

With the CWE algorithm, we can estimate the cluster assignments and cluster mod-
els based on historical observations. To predict outcomes for new observations, we
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The role of optimization in some recent advances… 7

need to understand how we can assign the new observation to a cluster. Our approach
uses a probabilistic model pl(x), which provides the probability of belonging to clus-
ter l given the observation’s features x . This model is estimated with the historical
observations by fitting their previously generated cluster assignments ẑil on their fea-
tures xi . Having estimated the cluster assignment model p̂l(x), we can use a weighted
average prediction as our forecast for a new observation with features x :

ŷ =
L∑

l=1

p̂l(x) f̂l(x). (3)

2.2 Clustered linear regressionmodel

To give an example of a regression problem, we will discuss the version of the CWE
method that uses a LASSO regularized linear regression model. This version of the
model is also used in [1]. In this case, the cluster models are linear regressions and the
clustered model becomes:

yi =
L∑

l=1

zil

D∑

j=1

βl j xi j + εi ,

where βl ∈ R
D are the linear regression coefficients for cluster l. To estimate the

parameters Z and β of this model, we are interested in solving the joint estimation
problem that was proposed earlier. In particular, we want to solve the mixed-integer
non-linear optimization problem (4):

min
z,β

N∑

i=1

L∑

l=1

zil

⎛

⎝yi −
D∑

j=1

βl j xi j

⎞

⎠

2

+ λ

L∑

l=1

D∑

j=1

|βl j | (4a)

s.t.
L∑

l=1

zil = 1, i = 1, . . . , N (4b)

zil ∈ {0, 1}, i = 1, . . . , N , l = 1, . . . , L. (4c)

In this problem, we have two sets of decision variables. First, the binary decision
variable zil ∈ {0, 1} indicates whether observation i belongs to cluster l, and second,
the decision variable βl j is the linear regression coefficient in cluster l of feature j .
As mentioned, we want every cluster to be able to decide whether it needs to use all
features, for which we add a regularizer to the model weighted by the hyperparameter
λ ≥ 0.

As mentioned before, solving problem (4) is difficult, and hence, we use the CWE
algorithm to estimate the parameters instead. In this case, it means that in step 2a we
fit cluster models f̂l based on LASSO regularized linear regression, and in step 2b we
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8 L. Baardman et al.

assign observations to clusters ẑil that minimizes their LASSO regularized squared
error. In our applications, we like to estimate a multinomial logistic regression as p̂l
to determine cluster assignments for new observations.

To assess the strength of the overall approach, we analyze its performance both in
theory and in practice. In [1], we prove that the mean squared error of our estimates
shrinks as the number of observations grows, which shows that our estimates are
consistent. Then, in [1], we apply our method to forecast sales for new products
with data from a consumer goods manufacturer as well as a fashion clothing retailer.
For new products of the consumer goods manufacturer, our CWE approach yields
MAPEs between 0.21 and 0.41 andWMAPEs of 0.22 to 0.42 depending on the product
category. In comparison, for a LASSO regularized linear regression, the MAPEs are
on the order of 0.46 to 0.92 and WMAPEs are on the order of 0.31 to 0.83. Even in
the most conservative case, our CWE approach performs substantially better than the
unclustered benchmark model, improving MAPEs by at least 0.16 and WMAPES by
at least 0.09. Applying our model to data from a fashion clothing retailer, we observe
that our CWEmethod is robust.When predicting individual product sales in individual
stores, the WMAPEs of our model were around 0.55 to 0.66 and were at least 0.12
lower than those from unclustered models. Also, we observed that aggregating data
across their stores allowed our model to perform even better, gettingWMAPEs around
0.29 to 0.37 depending on the product category. Overall, these results indicate that our
model generates strong robust predictions and it outperforms traditional methods that
do not utilize clustering.

2.3 Clusteredmultinomial logistic regressionmodel

As an example of a classification problem, we will present the version of the CWE
method that uses a multinomial logistic regression model. This is the version of the
model that is described in [2]. In a multinomial logistic regression where an observa-
tion’s outcome can be one of K different classes, the clustered model becomes:

P(yi = k) =
L∑

l=1

zil
exp(−β�

lk xi )

1 + ∑
j=1,...,K exp(−β�

l j xi )
. (5)

where βlk ∈ R
D are the multinomial logistic regression parameters for belonging to

class k according to cluster l. Within our CWE framework, we estimate the parameters
Z and β by solving the aforementioned joint estimation problem. Specifically, we
reformulate to the following mixed-integer non-linear optimization problem (6):

min
z,β,p

N∑

i=1

L∑

l=1

zil

K∑

k=1

δik log pikl (6a)

s.t. pikl = exp(−βlk(Z)�xi )
1 + ∑

j=1,...,K exp(−βl j (Z)�xi )
, i = 1, .., n, k = 1, .., K , l = 1, .., L

(6b)
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The role of optimization in some recent advances… 9

L∑

l=1

zil = 1, i = 1, . . . , N (6c)

zil ∈ {0, 1}, i = 1, . . . , N , l = 1, . . . , L. (6d)

In the formulation above, zil ∈ {0, 1} is a binary decision variable indicating
whether observation i belongs to cluster l, δik is data indicating whether observa-
tion i belongs to class k, and pikl is the probability estimate that observation i belongs
to class k based on the model in cluster l. Notably, we ignore how the coefficient βl
exactly depends on the cluster assignments Z , as we can clearly see the complexity of
the problem. Additionally, we have not included any regularization in the above for-
mulation, but this can be added as it would be for a conventional multinomial logistic
regression.

Due to the complexity of solving problem (4), we apply our CWE algorithm to
estimate the parameters. In step 2a of the CWE algorithm, we fit our multinomial
logistic regression, while in step 2b we re-assign our observations to the best fitting
cluster. With the CWE algorithm, we are able to predict outcomes for new observa-
tions, allowing us to test the accuracy of the model. In the computational experiments
described in [2], we observe that our CWE approach yields accurate classifications,
and is robust to a variety of settings. One particular practical finding is that the algo-
rithm’s performance can be substantially improved by running it multiple times from
different starting points.

3 Optimizing tree-basedmodels

In prescriptive problems, we strive to alwaysmake better decisions. In doing so, we use
offline learning on data to better understand uncertainties and then use optimization to
improve decisions. This process of going from available data to better decisions calls
on both predictive and prescriptive analytical models. Data is the input to predictive
models that feed into prescriptive models which recommend good decisions. Over
the last few decades, tree-based models have become increasingly popular to pre-
dict uncertainties. Based on the original classification and regression trees, machine
learning and optimization has made many advances in the field of tree ensemble meth-
ods, including random forests, XGBoost, and XSTrees proposed in [25]. This section
focuses on optimizing over tree ensemble methods in general.

Tree ensemble methods have a long history and are also very popular in practice.
The best-performing model in Kaggle1 by number competitions won, based on pre-
dictive accuracy only, is XGBoost [26–28]. Inspired by the success of XGBoost, as
well as the wide popularity of Random Forests [29], there has been a tremendous
growth in the development of new tree ensemble methods, such as AdaBoost [30] and
LightGBM [31]. Tree based ensemble methods commonly use single decision trees,
often CART [32], which are called “weak learners” for predictions and then aggregate
individual predictions together. Different methods use different techniques to generate

1 https://www.kaggle.com/competitions
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10 L. Baardman et al.

individual trees. For example, Random Forests construct these single trees by sam-
pling different subsets, both in terms of observations and features, from the data, then
training CART trees on each of these subsets. XGBoost does this construction in a
sequential way, by training a CART tree on the entire data, then subsequent CART
trees on the residuals of the predictions of the ensemble of previously trained trees.
However, while unarguably powerful, similarly to ensembles like Random Forests
[29], AdaBoost [30], and LightGBM [31], XGBoost lacks both in terms of theoretical
guarantees and interpretability, and sometimes needs a significant amount of data to
achieve good performances. Inspired by the success of these methods, XSTrees [25]
aggregates tree-based weak learners, usually single CARTs [32] which are used for all
of the ensembles above, but does it in a more structured way, which allows it to train
an entire distribution on the tree space, instead of an independent, finite, collection of
trees. This results in more interpretability, better theoretical guarantees, and improved
computational performances.

Additionally, in recent years there has been a significant increase in research on how
predictive tools can be incorporated into prescriptive tasks. Specifically, researchers
are interested in how machine learning models can be used as an input function in the
objective when optimizing decisions. In [33], ridge regression is used to predict out-
comes of clinical trials, which is then optimized along to select chemotherapy regimes
for cancer. In [34], linear-log regression is used to model demand for subsequently
optimizing the schedule of promotion vehicles to maximize profits in grocery stores.
Additionally, in [35, 36], a ranking-based choicemodel is estimatedwhich is then used
to maximize revenues. There has been significant work on using neural networks as
part of an objective function in mixed integer optimization [37–42]. A general frame-
work for incorporating eventual prescriptive decisions into the evaluation of a model’s
statistical validity is proposed by [43], specifically in the area of price optimization
where demand is determined by a predictive model. In [44], it is shown how account-
ing for the downstream optimization when selecting splits for decision trees in the
training process of ensemble forests improves the optimality of the end-result.

In this part of the paper, we focus on optimizing decisions based on the predictions
from tree ensembles. Methods for doing so efficiently are found in [45, 46], and [3].
Specifically, these works explain how to incorporate tree structures into the mathemat-
ical optimization formulations. In this section, we will explore the relative advantages
of these works. The problem that will be considered is closely related to that of [47].
They consider how to optimize prices in order to maximize revenues and prices (that
correspond to decision variables in the optimization formulation) come from a discrete
price ladder while demand is predicted through a random forest. The paper formu-
lates the mixed integer optimization (MIO) by determining first the expected demand
through the random forest for each item at each price point and subsequently using
these values as coefficients in the objective function of the optimization formulation. In
doing so, [47] avoids many of the computational challenges that come from directly
encoding the random forest into the optimization formulation. However while this
works well for the pricing problem considered in [47], this approach is less efficient
when there are many variables that are being optimized and which the decision maker
would need to forecast for all possible combinations of their realizations.
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The role of optimization in some recent advances… 11

Once decision makers have learned a strong predictive model, for example through
XSTrees, the question becomes how to leverage this information to make better deci-
sions. Compared to traditional linear predictive models, ensemble tree methods have
been shown to have better model representation which in turn translates into improved
predictive accuracy. However, the nature of their prediction structure means there is
no longer a linear relationship between the features and the outcome. As a result,
new optimization methods need to be developed so that objective functions that are
outcomes from ensemble tree predictive methods can then be optimized efficiently.
The goal of this section is to discuss how an optimal feature vector, x , can be found to
maximize an objective which is a function of the output of an ensemble tree model.

The nature of the models based on decision trees is that there is a criterion satis-
faction question being asked at each branch-point of the tree (e.g. is feature xi greater
than b?). Whether the criterion is satisfied or not is binary and as a result, it can be
represented in optimization formulations using binary decision variables. However,
since the number of branch-points increase exponentially with the depth of the tree,
there is an exponential number of binary decision variables and constraints that must
be represented in the optimization formulation. As a result, the key challenge is how to
approximate the optimization in a way that is scalable and yet near optimal relative to
the original optimization formulation. In what follows, we will discuss three methods
that propose such approximations and are based on the work in [45, 46], and [3]. The
first two will formulate a version of a mixed-integer optimization. Then for scalability
purposes, the papers approximate either the depth of the tree ensemble or the breath
(that is, sample only a handful number of trees). The third method discussed in this
paper, leverages the upper bound of the objective function on either side of a branch-
point to create an algorithm which scales linearly both in terms of the tree depth and
the number of trees.

3.1 Model

Consider an ensemble forest model of T trees, where each tree has weight wt . Let Nt

represent the set of interior nodes in tree t and Lt represent the set of terminal or leaf
nodes in tree t . At each node i in tree t , let us define pi , li and ri as respectively the
parent node of i , the left child node and the right child node, if they exist. For every
leaf node i ∈ Lt , there is some payoff associated with it, defined as Sti . S

t
i is usually

calculated based on averaging either the dependent variable, y, or a function on this
variable f (y), of all the points that fall in the leaf.

For each interior node i ∈ Nt , there is a linear condition of the form (ati )
�x ≥ bti .

If this condition is satisfied by x , then the model would move right in the binary tree,
and if it is not, then the model would move left. We represent this process using binary
variable qti, j . q

t
i, j = 1 if (and only if) j is a child-node of i and the solution to x exists

in a descendant leaf of j . Each interior node i also has a depth associated with it, d(i),
which represents the number of branch-points it is from the root node.

Since the notation can get dense, we present a concrete example to illustrate the
different models in Fig. 1. Here we will describe a random forest of two trees, with a
max depth of two built on a dataset of two features: price and discounts. The random
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12 L. Baardman et al.

Fig. 1 Sample Random Forest

forest is built to predict retail sales of a item. We label each node of tree by both its
tree number and node number.

Big-M formulation

Given this we can define the optimization of how to find the values to x that maximizes
the prediction value of the ensemble tree model. The first formulation is based on the
work of [45].

The prediction of the ensemble tree model can be represented by
∑T

t=1
∑

i∈Lt

wt qpi ,i Si . Here wt is weight placed on each tree in the final prediction of the ensem-
ble model. We are maximizing this value, so the objective function of this problem
becomes:

max
x,q

T∑

t=1

∑

i∈Lt

wt q
t
pi ,i S

t
i

Weneed constraints to enforce that qt represents accurately the leaf of tree t which x
results in. For every interior node i , we need qti,li = 1 and qti,ri = 0 if (ati )

�x ≥ bti and

qti,li = 0 and qti,ri = 1 if (ati )
�x ≤ bti . We can enforce this using big M-constraints:

(ati )
�x + M(1 − qti,li ) ≥ bti

(ati )
�x − M(1 − qti,ri ) ≤ bti

This can be paired with flow or genealogy constraints that establishes if x ends up
in interior node i of tree t , meaning qtpi ,i = 1, then it must end up in one of i’s children,
either qti,li = 1 or qti,ri = 1. If x does not end up in interior node i , qtpi ,i = 0, then it
cannot end up in either of i’s children, qti,li = qti,ri = 0. This can be represented as
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the following constraint:

qtpi ,i = qti,li + qti,ri

We need to guarantee that x is represented in ending up in exactly one leaf of tree
t , so we have:

∑

i∈Lt

qtpi ,i = 1

Finally we account for any other business constraints which are relevant to this
problem using:

Ax ≤ f

Putting this together gives us Formulation (7):

max
x,q

T∑

t=1

∑

i∈Lt

wt q
t
pi ,i S

t
i (7a)

s.t. (ati )
�x + M(1 − qti,li ) ≥ bti , ∀t ∈ {1, . . . , T }, i ∈ Nt (7b)

(ati )
�x − M(1 − qti,ri ) ≤ bti , ∀t ∈ {1, . . . , T }, i ∈ Nt (7c)

qtpi ,i = qti,li + qti,ri , ∀t ∈ {1, . . . , T }, i ∈ Nt (7d)
∑

i∈Lt

qtpi ,i = 1, ∀t ∈ {1, . . . , T } (7e)

Ax ≤ f (7f)

qtpi ,i , q
t
i,li , q

t
i,ri ∈ 0, 1 ∀t ∈ {1, . . . , T }, i ∈ Nt (7g)

To create Formulation (7) for the forest shown in Fig. 1, we assume that we are
just optimizing sales, therefore Sti is just the sales of leaf i , and because the model is
a random forest, weight on tree t is wt = 1

T = 1
2 . We assume no additional business

constraints. Given this we substitute in in the values of the tree to get the formulation:

max
x,q

1

2

(
20q11,2 + 7q13,6 + 16q13,7 + 9q21,2 + 18q21,3

)
(8a)

s.t. xdiscount + M(1 − q11,2) ≥ 0.9 (8b)

xdiscount − M(1 − q11,3) ≤ 0.9 (8c)

xprice + M(1 − q13,6) ≥ 20 (8d)

xprice − M(1 − q13,7) ≤ 20 (8e)

xprice + M(1 − q21,2) ≥ 24 (8f)

xprice − M(1 − q21,3) ≤ 24 (8g)
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1 = q11,2 + q11,3 (8h)

q11,3 = q13,6 + q13,7 (8i)

1 = q21,2 + q21,3 (8j)

q11,2 + q13,6 + q13,7 = 1, (8k)

q11,2, q
1
1,3, q

1
3,6, q

1
3,7, q

2
1,2, q

2
1,3 ∈ 0, 1 (8l)

Formulation with pre-processing

The second formulation we consider is based on the work of [46]. This formulation
introduces a pre-processing step to streamline the optimization.

Let us consider the split criterion as before of (ati )
�x ≥ bti . If the tree has only

parallel splits (as is the case in most implementations of ensemble forests), then ati
is a vector of all zeros except for a single one, which indicates the feature of x being
considered in the split. Thus all split criteria in the tree can be simplified into xp(i) ≥ bti ,
where p(i) represents the feature being considered in node i , or the index of ati that is
1.

This second formulation groups all split criteria in the tree by the feature being
considered. Let P be the set of independent features used to create the ensemble
model. For each feature p ∈ P , let Bp be the set of unique split points on that feature,
or the set of values b such that some tree in ensemble has a split criteria xp ≥ b. Let
Kp = |Bp| be the number of unique splits of feature p, so that we can denote the set of
all parallel splits as {c1, . . . , cKp }. And let the bp, j ∈ Bp be the j th smallest split point
of feature p, such that bp,1 < bp,2 < · · · < bp,Kp . We define function C(i) = { j}
which for node i identifies the index j ∈ 1, . . . , Kp(i) such that that the split query
of node i can be written as xp(i) ≥ bp(i), j . When we consider the sample forest from
Fig. 1, we have that, P = {discount, price}, Bdiscount = {0.9}, Bprice = {20, 24},
Kdiscount = 1, Kprice = 2. Then for each of the splits we write C as: C(n11) = 1,
C(n12) = 1, C(n21) = 2. This results in for example, the split at node n21 can be written
as xprice ≥ bprice,2 = 24.

For every interior node in the ensemble, i ∈ ∪T
t=1Nt , we define left(i) as the set

of leaves that are descendants of the left branch of node i and right(i) as the set of
leaves that are descendants of the right branch of node i . This means that if the optimal
solution x ends up in a leaf found in left(i), we know that the criteria of node i must
hold and conversely if it is in a leaf of right(i), the criteria of node i must be false.

With this we can now define our decision variables for the second formulation.
Before we used qpi ,i to determine if a solution x ends up in some leaf i . In this
formulation we will define yt,i to represent if solution x ends up in leaf i of tree t . We
also define z which specifies the optimal solution x , by defining which splits in the
ensemble are satisfied or failed. Specifically we say that z p, j = 1 if pth independent
variable in x should be greater than or equal to the j th split point inBp and 0 otherwise.
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In the second formulation, the objective function stays relatively similar to the first
but we replace q with y:

max
z,y

T∑

t=1

∑

i∈Lt

wt yt,i S
t
i

Like before, the optimal solution can only end up in a single leaf of a given tree.

∑

i∈Lt

yt,i = 1

To enforce that the split constraints are held, we introduce the following constraints.
If the constraint in node i is not satisfied, then z p(i),C(i) = 0 and the solution of x
cannot fall into any of the leaves defined by left(i). Similarly if the constraint in node
i is satisfied then z p(i),C(i) = 1 and the solution of x cannot fall into any of the leaves
defined by right(i). Therefore we define the following constraints:

∑

i∈left(i)
yt,i ≤ z p(i),C(i)

∑

i∈right(i)
yt,i ≤ 1 − z p(i),C(i)

If z p, j = 1 this means that xp ≥ bp, j . It must then hold that, xp ≥ bp, j−1 ≥
· · · ≥ bp,1, which means for k ∈ {1, . . . , j − 1}, z p,k = 1. To enforce this, we add the
following constraint:

z p, j ≥ z p, j+1

And of course, we need z to be binary and y ≥ 0 (we do not need y to be explicitly
bounded from above because it is already bounded by z). Putting this together we get
Formulation (9):

max
z,y

T∑

t=1

∑

i∈Lt

wt yt,i S
t
i (9a)

s.t.
∑

i∈Lt

yt,i = 1, ∀t ∈ {1, . . . , T } (9b)

∑

i∈left(i)
yt,i ≤ z p(i),C(i), ∀t ∈ {1, . . . , T }, i ∈ Nt (9c)

∑

i∈right(i)
yt,i ≤ 1 − z p(i),C(i), ∀t ∈ {1, . . . , T }, i ∈ Nt (9d)

z p, j ≥ z p, j+1 ∀p ∈ P, j ∈ {1, . . . , Kp − 1} (9e)
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z p, j ∈ {0, 1} ∀p ∈ P, j ∈ {1, . . . , Kp} (9f)

yt,i ≥ 0 ∀t ∈ {1, . . . , T }, i ∈ Lt (9g)

We can again write Formulation (9) for the forest described in Fig. 1. Like before,
we assume we are optimizing sales in a random forest without any additional business
constraints.

max
z,y

1

2

(
20y1,2 + 7y1,6 + 16y1,7 + 9y2,2 + 18y2,3

)
(10a)

s.t. y1,2 + y1,6 + y1,7 = 1 (10b)

y2,2 + y2,3 = 1 (10c)

y1,2 ≤ zdiscount,1 (10d)

y1,6 + y1,7 ≤ 1 − zdiscount,1 (10e)

y1,6 ≤ zprice,1 (10f)

y1,7 ≤ 1 − zprice,1 (10g)

y2,2 ≤ zprice,2 (10h)

y2,3 ≤ 1 − zprice,2 (10i)

zprice,1 ≥ zprice,2 (10j)

zprice,1, zprice,2, zdiscount,1 ∈ {0, 1} (10k)

y1,2, y1,6, y1,7, y2,2, y2,3 ≥ 0 (10l)

We see in the example that z fully describes what leaf the solution will end up in.
If zdiscount,0 = 1, then the discount is less than 0.9, otherwise it is greater than 0.9.
Similarly if zprice,1 = 0, then price is less than 20, if zprice,1 = 1 and zprice,2 = 0, then
price is between 20 and 24 and if zprice,2 = 1 then price is greater than 24.

When we compare Formulations (7) and (9), we see a few interesting differences
emerge. In practice Formulation (9) has fewer binary variables than Formulation (7),
as the number of binary variables in Formulation (9) are based on the number of split
points of a variable rather than interior nodes. While this might not initially seem
like a significant difference, ensemble trees within a model will often split a feature
at the same point across trees. By comparison, Formulation (7)’s strength is in its
flexibility. Formulation (7) does not require parallel splits and can also be used to
optimize hyperplane trees. Furthermore it can easily account for additional business
constraints.

However, while both formulations have their strengths they both have the same
significant limitation. In fact Formulation (9) has been shown to be NP-hard.

Proposition 2 ([46]) The tree ensemble optimization problem is NP-Hard.

Both formulations have an exponential growth in binary variables as the trees get
deeper. Thismeans that these optimization formulationswill have scaling and tractabil-
ity issues with larger ensemble tree models. Both [46] and [45] propose using Benders
Decomposition to increase tractability, however this does not address the exponential
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growth of binary variables. Therefore we discuss next approximations of the optimiza-
tion formulations.

3.2 Methods

In this section we will discuss three approximations to the optimization formulations.
The first two will be direct extensions of Formulations (7) and (9), while the third will
be a linear approximation of the optimization process.

Breadth-based approximation

[45] propose approximating the optimal solution using tree sampling. We can define
T ⊂ {1, . . . , T }, as a randomly selected subset of the ensemble’s trees. Because all
the constraints in Formulation (7), other than the business constraints, are indexed
by t ∈ {1, . . . , T }, it is relatively straightforward to only consider the constraints for
t ∈ T . Thus the Formulation (7) becomes:

max
x,q

T∑

t=1

∑

i∈Lt

wt q
t
pi ,i S

t
i (11a)

s.t. (ati )
�x + M(1 − qti,li ) ≥ bti , ∀t ∈ T , i ∈ Nt (11b)

(ati )
�x − M(1 − qti,ri ) ≤ bti , ∀t ∈ T , i ∈ Nt (11c)

qpi ,i = qi,li + qi,ri , ∀t ∈ T , i ∈ Nt (11d)
∑

i∈Lt

qtpi ,i = 1, ∀t ∈ T (11e)

Ax ≤ f (11f)

qtpi ,i , q
t
i,li , q

t
i,ri ∈ 0, 1 ∀t ∈ T , i ∈ Nt (11g)

For the forest described in Fig. 1, this could be thought of running the optimization
only for Tree 1. The size of the sample can be set based on computational capabilities
and [45] bound the suboptimality in terms of the total number of leaves in the ensemble
forest, ∪T

t=1L
t , and the size of the sample, |T |.

Depth-based approximation

[46] propose approximating the optimal solution by approximating along depth.Rather
than defining a sample of trees, like in [45], we subset the nodes of each tree by only
consider the nodes whose depth is less than d. We can define an �t

d ⊂ Nt such that
for any i ∈ �t

d , d(i) ≤ d. We now only consider constraints generated by nodes in
�t

d . Thus Formulation 9 becomes:

max
z,y

T∑

t=1

∑

i∈Lt

wt yt,i S
t
i (12a)

123



18 L. Baardman et al.

s.t.
∑

i∈Lt

y(t, i) = 1, ∀t ∈ {1, . . . , T } (12b)

∑

i∈left(i)
yt,i ≤ z p(i),C(i), ∀t ∈ {1, . . . , T }, i ∈ �t

d (12c)

∑

i∈right(i)
yt,i ≤ 1 − z p(i),C(i), ∀t ∈ {1, . . . , T }, i ∈ �t

d (12d)

z p, j ≥ z p, j+1 ∀p ∈ P, j ∈ {1, . . . , Kp − 1} (12e)

z p, j ∈ {0, 1} ∀p ∈ P, j ∈ {1, . . . , Kp} (12f)

yt,i ≥ 0 ∀t ∈ {1, . . . , T }, i ∈ Lt (12g)

For the forest described in Fig. 1, an example would be to set d = 0. The opti-
mization would only consider the split constraints induced by n11 and n21 and treat
n16 and n17 as being the same leaf. Here the programmer must decide the maximum
depth, d, at which to consider constraints. [46] provide computational results in order
to demonstrate rates of convergence to optimality as d increases.

MOTEM

The final approximation method we discuss comes from [3]. This process uses the
calculated upper bounds on the payoff of the best leaf in the descendants of the left
and right children of a given node. Rather than optimizing the entire ensemble at once,
the algorithm optimizes each level of the trees iteratively, narrowing in the optimal
region with each iteration.

This algorithm, called MOTEM, or Method for Optimizing over Tree Ensemble
Methods, starts at the root node of every tree in the ensemble and follows a three
step process to optimize along: (1) calculate the upper bound of the left and right
child of the indicated note, (2) optimize across all trees where child node is optimal
based on the upper bound and feasibility constraints and (3) update optimal region
feasibility constraints and move down the tree to the optimal child node. In doing
this, the algorithm traces a single branch of each tree in the ensemble until it reaches
a leaf. The final solution provided is a range for each independent feature that is
approximately optimal given the business constraints. We explain each step of the
optimization process further in the following.

1. Upper Bound Calculation
First we calculate the upper bound of each of the children of the node we are

considering.Without exploring deeper in the tree it is impossible to always tell whether
the left or right branch has the more optimal leaf. However we can calculate an upper
boundon the payoff of the optimal leaf. For each randomforest there is a pre-designated
minimum leaf size, which we can designate as m. Consider that we are in node i of
tree t , which has a split criterion of (ati )

�x ≥ bti . Of all the training data points
that pass through node i , we can consider those that satisfy the business constraints
and split criterion. Among these we can average the m points that have the highest
value in terms of our objective. In other words we can average the m points with the
highest values of f (y). It is impossible for the left branch of node i to have a leaf of
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Fig. 2 Sample Random Forest, Depth 0 Approximation

higher value, so we call this the upper bound of the left branch’s payoff. Similarly to
calculate the upper bound of the right branch, we consider all training data points that
pass through i which satisfy the business constraints and fail the split criterion and
average the topm. We call these left and right branch upper bounds of node i , uti,L and
uti,R respectively. Note that uti,L and uti,R require no knowledge of the tree structure
below the depth of node i . We show an example of what these upper bounds might
look like for the Sample Random Forest in Fig. 2.

2. Optimize to Select Child Node
Next, we optimize across all trees which child node to pass to. Given uti,L and uti,R

for all trees t in the forest we need to decide whether the optimization algorithm should
focus on the left or right branch. The objective is to maximize the expected payoff
as calculated through the upper bounds, rather than the final payoffs (because the
algorithm doesn’t know the final payoffs). Therefore the objective function becomes:

max
x,q

T∑

t=1

wt

(
qti,li u

t
i,L + qti,ri u

t
i,R

)

As before q is a binary variable representing whether the optimal solution lies in
the left or right branch of node i .

Similar to before we need to enforce that q accurately represents moving to the left
or right child of i , so we introduce the big-M constraints.

(ati )
�x + M(1 − qti,li ) ≥ bti

(ati )
�x − M(1 − qti,ri ) ≤ bti

Unlike before the optimization algorithm isn’t considering all branches of the tree
at once, it is considering only one branch in which it believes the optimal solution
lies. Therefore rather than needing qi,li + qi,ri = qpi ,i , the algorithm assumes that
the optimal solution lies in a descendent of i meaning that qpi ,i = 1. Therefore we
include the following constraint:

qti,li + qti,ri = 1
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We have constraints on the selection of our intermediary optimal solution x . x
needs to satisfy the business constraints Ax ≤ f , so that the selection of the optimal
child node is feasible in terms of business constraints. Second x needs to satisfy any
previous spit criteria decided upon in the algorithm at higher levels of the tree. This
is not a problem when optimizing a single tree, or when optimizing all trees in an
ensemble together, however because the algorithm iteratively optimizes each level of
the tree separately, we need to make sure that the solution for x doesn’t violate any of
the previous split criteria. When the forest is built on parallel splits (as is the case with
almost all implementations of ensemble trees), this is an easy process of remembering
box constraints (higher and lower bounds of each independent variable). We will use
xmin and xmax as vectors to represent these bounds for each feature:

Ax ≤ f

x ≤ xmax

x ≥ xmin

Finally we need q to be binary:

qti,li , q
t
i,ri ∈ {0, 1}

Pulling this all together we get the optimization formulation for step 2:

max
x,q

T∑

t=1

wt

(
qti,li u

t
i,L + qti,ri u

t
i,R

)
(13a)

s.t. (ati )
�x + M(1 − qti,li ) ≥ bti , ∀t ∈ {1, . . . , T } (13b)

(ati )
�x − M(1 − qti,ri ) ≤ bti , ∀t ∈ {1, . . . , T } (13c)

qti,li + qti,ri = 1, ∀t ∈ {1, . . . , T } (13d)

Ax ≤ f (13e)

x ≤ xmax (13f)

x ≥ xmin (13g)

qti,li , q
t
i,ri ∈ {0, 1}, ∀t ∈ {1, . . . , T } (13h)

For example, this formulation can be written for the depth 0 approximation shown
in Fig. 2 as:

max
x,q

1

2

(
22q11,2 + 18q11,3 + 13q21,2 + 24q21,3

)
(14a)

s.t. xdiscount + M(1 − q11,2) ≥ 0.9 (14b)

xdiscount − M(1 − q11,3) ≤ 0.9 (14c)

xprice + M(1 − q21,2) ≥ 24 (14d)

xprice − M(1 − q21,3) ≤ 24 (14e)
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1 = q11,2 + q11,3 (14f)

1 = q21,2 + q21,3 (14g)

x ≤ xmax (14h)

x ≥ xmin (14i)

q11,2, q
1
1,3, q

2
1,2, q

2
1,3 ∈ 0, 1 (14j)

The key output of Formulation (13) are values for qti,li and qti,ri which tell us for
each tree t whether to go to left or right child. It also provides a sample solution x
which guarantees that the selected child nodes are feasible.

3. Update Optimal Feasible Region
This brings us to the update step of each iteration. First the bounds for feasibility,

xmin and xmax. Each selected child node represents a new constraint that needs to
be satisfied by the solution x . Therefore keeping the qti,li and qti,ri constant from the
output of Formulation (13), we update as follows:

max
x̂

x̂ (15a)

s.t. (ati )
� x̂ − M(1 − qti,li ) ≥ bti , ∀t ∈ {1, . . . , T } (15b)

(ati )
� x̂ + M(1 − qti,ri ) ≤ bti , ∀t ∈ {1, . . . , T } (15c)

x̂ ≤ xmax (15d)

The solution x̂ of 15 becomes the new xmax. Similarly to determine the new lower
bound, we solve the following:

min
x̂

x̂ (16a)

s.t. (ati )
� x̂ − M(1 − qti,li ) ≥ bti , ∀t ∈ {1, . . . , T } (16b)

(ati )
� x̂ + M(1 − qti,ri ) ≤ bti , ∀t ∈ {1, . . . , T } (16c)

x̂ ≥ xmin (16d)

The solution x̂ of (16) becomes the new xmin.
The pointer for which nodewe are considering needs to be updated. In tree t if qi,li = 1
thenwemove our considered node to the left child of i . If qi,ri = 1 thenwemove to the
right child of i . In doing so we move one level deeper into the tree, having updated our
feasibility conditions through xmin and xmax and we repeat the process until we reach
a leaf node in all the trees. For example, if the optimal solution from Formulation 14,
included q11,3 = 1, in the next iteration of the algorithm would be considering the split
constraint Price≥ 20, and would have as a constraint in the optimization that Discount
had to be less than 0.9. For further details, we reference [3].
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3.3 Approximationmethod comparison

Both approximation methods introduced in [46] and [45] have their merits. Formu-
lation (11) provides a way of increasing tractability with probabilistic guarantees on
sub-optimality. Formulation (12) directly tackles the issue of exponential runtime
growth by cutting off the depth of trees considered. However both also have their
limitations. Formulation (11) still suffers from exponential growth in runtime as depth
increases and Formulation (12) does not have a clear indication of the optimal max-
depth to select. If d is too large the problem remains intractable, if d is too small, the
loss in sub-optimality can be significant.Without prior knowledge of actual optimality,
it is unclear what depth to select.

The benefit of MOTEM is that unlike the optimization methods discussed above,
this algorithm does not have an exponential number of binary variables. Rather, for-
mulation (13) has 2T binary variables, namely, two binary variables (qi,li and qi,ri )
per tree. Furthermore, formulations (15) and (16) are pure linear optimization formu-
lations. We will repeat this iterative process for each tree level, till at most the depth
of the deepest tree. This leads us the complexity of the method ( [3] for more details):

Proposition 3 ([3]) Let T be the number of trees in the ensemble and dmax be the
maximum depth. Then the binary variables in the optimization algorithm MOTEM
grows in O(Tdmax).

This comes from the fact that the algorithm traces only a single branch through
each tree, optimizing only which child node to continue on to, rather than all branches
at once.

[3] also provides bounds on the expected sub-optimality gap specifically when
running MOTEM on random forests. This is done in terms of two key features of
the random forest: how disparate the top leaves of the forest are and in-sample error.
They show that if the random forest fits the data perfectly, then MOTEM will always
find the optimal solution. However as the in-sample error grows, especially relative
to the separation between the highest payoff values in the tree, then so does the sub-
optimality gap. For more information on both the Proposition 3, and this bound, please
see [3].

MOTEM will always scale better than either Formulation (7) or (9). MOTEM will
also scale better than Formulation (11) because the formulation doesn’t address the
exponentially growingwith depth binary variables. Depending onwhere the cut off for
Formulation (12), the optimizationwill scale similarly toMOTEM.HoweverMOTEM
provides a much clearer insight to the optimality-gap. Without running the full depth
version of Formulation (9), it is hard to tell how sub-optimal the Formulation (12)’s
solution is.

The quality and scalability of theMOTEMapproximation can also be demonstrated
numerically on a variety of datasets. For this section we will use the winequalityred
dataset from [48] and the UCI Machine Learning Repository. This dataset aims to
predict the quality of red Portugese wines on a scale from one to eight based on
physiochemical tests such as citric acid, pH and residual sugar levels. The dataset
consists of 4,898 data points and 12 features. For this dataset we built several random
forests, with the number of trees ranging from 20 to 200, set the maximum tree depth
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Fig. 3 Objective function achieved by MOTEM and Formulation (9)

to 26 and the minimum leaf size to 15. Once the random forests are built, we aim to
find the “ideal” wine by using MOTEM and Formulation (9) to find the set of features
which maximizes the quality of wine. We compare the objective value achieved by
both Formulation (9) andMOTEM.We use the formulation from [46] because it is the
faster MIO between Formulation (7) and (9). We see in Figs. 3 and 4 that MOTEM is
able to capture almost all of optimality. For example, at 200 trees, MOTEM captures
98.9% of optimality. It is able to do this while scaling well as the number of trees
increases, while Formulation (9) grows rapidly in the time it takes to run. For a more
comprehensive numerical comparison of MOTEM, Formulation (7) and (9) as well as
the approximations, please see [3].

4 Learning optimal decisions directly from data

So far we have discussed how to predict in an accurate, efficient, and interpretable
way, and subsequently how to use these predictions to optimize prescriptive tasks.
For many real world problems, prediction tasks are an intermediate goal and not the
final goal. Namely, forecasts of uncertain parameters are important for a downstream
optimization problem, but ultimately, only the quality of the final decision is the
true measure of cost. For example, a model may be trained to forecast travel times
for a transportation problem, but only the travel time of the route that we decide to
travel matters. The traditional approach has been to predict independent of optimizing,
which might lead to suboptimal decisions. In this section, we will discuss how to make
prescriptions directly from data without performing a predictive task separately.

Recent work has focused on combining the offline learning stage (forecasting) with
the downstream optimization task — investigating ways to perform gradient descent
through the optimization problem itself. Some early work in the area can be found
in [49], minimizing task loss for unconstrained quadratic optimization problems. The
introduction of constraints naturally complicates the task of computing gradients. In
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Fig. 4 Runtime required by MOTEM and Formulation (9)

[50], an explicit method has been developed that uses the KKT conditions for optimal-
ity. This is extended further by [51] to linear optimization problems by approximating
the problem through adding a quadratic regularization to the objective. For linear
tasks, the primary issue stems from the fact that for linear programs, the gradient
of the optimal solution with respect to the cost vector is zero or undefined. This is
because a small change in the cost vector either results in the same optimal solution,
or a discontinuous jump to a new vertex. As an example to resolve this, [52] introduces
a convex and differentiable approximation of the objective function. If the forecasting
function is given by a linear model, the learning problem can be formulated by a linear
optimization problem as shown for a classical newsvendor problem in [53]. This is
broadly generalized in [54] to nonlinear decision rules by using reproducing kernel
Hilbert spaces. For more details on different approaches, see [55–57] and [58] for a
general survey for end-to-end combinatorial learning.

We may also view this problem of end-to-end learning through the lens of online
learning and bandit problems in order to learn convex functions. For instance, [59]
uses a semi-bandit setting for combinatorial problems, in which the set of possible
actions is the set of decisions (e.g. paths on a graph). They aim to minimize the
regret of their decisions given adversarial costs. Along these lines, [60] considers
the problem of minimizing an unknown convex function given point samples. The
book in [61] provides a more comprehensive review of related work to online convex
optimization. However, the key difference with our work is that we also incorporate
feature information.

There has been significant work within the robust optimization literature over the
years (see for example, the books by [62] and by [63] and the survey paper by [64]). In
robust optimization careful construction of the underlying uncertainty sets is required

123



The role of optimization in some recent advances… 25

to ensure the models are not overly conservative. Various formulations have been
constructed startingwith [65–67]. Nevertheless, these uncertainty setsmay themselves
be unknown as we can only gain information about them from data (for example,
because they rely on estimates of the mean and standard deviation from the available
data). For example, [68] takes a data-driven robust optimization view. Furthermore,
uncertainty sets could themselves vary as a function of the features, as for example in
[69–71] as well as in the case of our work in [4].

There has also been a non-parametric stream of literature along the lines of Sample
Average Approximation (SAA) [72]. However, SAA uniformly weights past data and
makes no use of covariate information. To address these issues, [73] introduced a new
framework that generates weights by usingmachine learningmethods. However, these
weights are still independent of the optimization problem itself. To directly target task
loss, [74] uses an optimal prescriptive tree framework. Furthermore, [44] designs a
paradigm to learn effective forest-based decision policies that integrate prediction and
optimization. In [75] the ideas of [73] and [54] are applied specifically to a complex
two-stage capacity planning problem. However, much of this work is not robust to
uncertainty in the data. In the case of a feature-based newsvendor problem, [76] tackles
the important problem of finding robust policies.

Nevertheless, much of the work discussed is not applicable to general optimization
problems or has no mechanisms to incorporate robustness to data changes. For our
setting, robustness to uncertainty and error in the data is crucial: we want to provide
decisions that result in good objective values even in the face of perturbations to the
data. Thus, in this paper, we will discuss an approach we have introduced in [4] that
goes from the data to the prescription in robust and direct way.

4.1 Method

We consider the following optimization problem with feasible region P and convex
objective function gν(·) parameterized by ν:

w∗(ν) := arg min
w∈P

gν(w). (17)

As an example, gν(w) may simply be a linear function of ν, so that gν(w) = cTw

where ν = c, or a quadratic one such as gν(w) = μTw+wT�w whered ν = (μ,�).
But, the objective function itself is unknown and is a function of some features x .
Crucially, for any x , the corresponding cost vector which we will denote by νx is some
random variable with unknown distribution dependent on x . Hence, we assume we
are given training data consisting of pairs (x1, ν1), . . . , (xn, νn) of observed features
and realized costs, respectively. For out-of-sample x , we aim to make a decision ŵ(x)
which incurs a low regret. Specifically, we define:

Definition 1 (Regret) The regret of a decision vector w when the realized cost is ν is
the difference between the objective value of w and the true optimal solution w∗(ν)

under the realized cost ν, namely:

gν(w) − gν(w
∗(ν)) (18)
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Two possible goals arise. One is to make a decision which minimizes the expected
regret, and the other is to produce a robust solution which minimizes the maximum
regret across all possible realizations of the cost vector.Wewill showhowour approach
performs a combination of these two goals.

To build some intuition, we first briefly discuss existing approaches. For instance,
a traditional two-stage method separates the learning from the optimization steps and
simply learns a mapping from feature vectors to cost vectors. That is, learn some
ν̂(x) = ν2-stage(x) within some function space (such as linear functions, or neural
networks) by minimizing a loss function such as the mean-squared error between the
predictions and the observed costs:

ν2-stage = argmin
ν̂(x)

n∑

i=1

∥
∥
∥νi − ν̂(xi )

∥
∥
∥
2

2
. (19)

Then, it would take the optimal decision w∗(ν2-stage(x)) with respect to the forecast
made. By contrast, an end-to-end method directly aims to learn ν̂(x) = νtask(x) to
minimize the task loss (as in for example [50, 52]):

νtask(x) = argmin
ν̂(x)

n∑

i=1

gνi (w
∗(ν̂(xi ))) (20)

Often, one wishes to learn such a ν̂(x) through gradient descent. But, much of the
complexity of the end-to-end approach lies in calculating the gradient of w∗(ν̂(x)).
Consider instead prescribing a solution directly from the data: learn some function
wtask(x) that prescribes a decision minimizing task loss:

wtask(x) = argmin
ŵ(x)

n∑

i=1

gνi (ŵ(xi )) (21)

Now, the difficulty of the optimization problem is transferred into learning ŵtask(x).
Additionally, this requires some way to ensure that wtask(x) satisfies feasibility con-
straints.

Motivatedby this,wepropose amethod that does not explicitly learn such awtask(x),
but rather learns its actions over subsets of the feasible region. Consider choosing some
fixed subsets P1, . . . ,PK of the feasible region. Instead of deciding a specific value
for ŵtask(x), we solve the simpler problem of deciding if it should belong to each
subset Pk . The final decision we prescribe should belong to the intersection of the
subsets we predicted the solution should belong to. See Fig. 5 for an illustration. This
approach gives rise to a discretized approximation of wtask. As we introduce more
and more subsets, the resulting intersections will be smaller and smaller, honing in to
the correct decision. Moreover, each individual learning problem that determines if
w∗(νx ) should belong to Pk is a much simpler classification problem.

In addition, these subsets are the key idea for robustness. In particular, suppose
we have some data point νi whose corresponding solution w∗(νi ) belongs to Pk .
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Fig. 5 Three subsets P1,P2,P3
are illustrated and we suppose
we predicted the solution should
belong to subsets P1 and P3.
Hence, we can choose any
decision belonging to their
intersection, highlighted in blue

Then, even under small perturbations of νi , the corresponding solution will likely still
belong to Pk . As the subsets Pk get larger, the likelihood of this happening increases
further. Hence, deciding whether a solution should belong to a subset is more robust to
uncertainty in the data. This ultimately makes our decisions more robust to uncertainty
as well. We see this explicitly for instance in experiments in Sect. 4.2 (Effect of cap
size against noise).

We will structure our approach (see Sect. 2.3 for more details) as follows: (1) We
propose a specific class of subsets Pi , which we denote by ε-caps. We generate these
caps from the data available and as a function of the optimization problem. (2) We
discuss an approach to learn how the features map into each particular ε-cap. That is,
how to learn if w∗(νx ) ∈ Pi . (3) For out-of-sample data points with features x , we
then predict which caps the corresponding decision should belong to. We describe a
method to choose a feasible solution that “best matches” these predictions by solving
an optimization problem, which is of the same difficulty to solve as the nominal
problem, where one knows all the information on the objective function.

�-caps

Consider constructing one subset Pi for each datapoint (xi , νi ). Ultimately, the goal
is to propose decisions with low cost. Therefore, if some solution w belongs to Pi ,
then the cost ofw should be low with respect to realised cost νi associated with setPi .
To quantify this, we define the notion of an ε-cap. This is the set of solutions whose
objective is within ε of the optimal objective. That is, the set of solutions with regret
at most ε. Below we define this notion more formally.

Definition 2 (ε-cap) An ε-cap Hε(ν) is the set of points inP which produce a solution
within ε of optimality:

Hε(ν) := {w ∈ P : gν(w) − G∗(ν) ≤ ε}, (22)

where G∗(ν) = gν(w
∗(ν)) is the optimal objective value for cost realization ν.

Therefore, for each datapoint (xi , νi ), we will take the subsets Pi to be Hε(ν
i ).
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Local mappings from features to decisions

Recall our goal is the following: for a given x , choose some ŵ(x) that results in low
regret. We aim to do so by first deciding which ε-caps such a decision ŵ(x) should
belong to. In particular, since νx is a random variable, we wish to determine the
probability that w∗(νx ) belongs to cap Hε(x j ).

We aim to learn this information. For the training data, we can quantify this exactly
since we have access to the realized costs. For point xi , the optimal decision is known
to be w∗(νi ). Hence, the probability that w∗(νi ) belongs to cap Hε(x j ) is only a 0/1
value. We can determine this by simply calculating if the regret is at most ε. This
allows to generate the following labelling for each datapoint (x j , ν j ):

lε
νi

(x j ) =
{
1, if w∗(ν j ) ∈ Hε(ν

i )

0, otherwise
(23)

where note that ν j is a function of data point x j . We wish to learn this labelling
for out-of-sample points x . We can learn an approximation of this labelling through
any traditional classification method (e.g., logistic regression, decision trees, neural
networks among others). We denote this approximation by l̂ε

ν j . In short, l̂ε
ν j can be

viewed as the probability that the optimal solution w∗(νx ) should belong to ε-cap
Hε(ν

j ).

Merging predictions

For an out-of-sample set of features x , we wish to find a solution ŵ which best
matches the predictions of l̂ε

ν j (x). To do so, we devise a scoring system for feasi-
ble solutions, and construct an optimization problem to determine the solution with
minimum penalty. Specifically, for each νi , a solution is not assigned any penalty if
it belongs to Hε(ν

i ) and otherwise, it is penalized by l̂ε
νi

(x) (the model’s confidence
that it should have belonged to the cap) scaled by the distance from the cap. This is
naturally described by the following optimization task:

ŵε(x) = arg minw∈P
n∑

i=1

l̂ε
νi

(x) · max{0, gνi (w) − gνi (w
∗(νi )) − ε}. (24)

We now succinctly describe the general framework.

1. For the training data ν j , j = 1, . . . , n, pre-compute the optimal solutions w∗(ν j )

and their corresponding objective function values G∗(ν j ).
2. Generate the corresponding labels so that the datapoints on features, xi , have true

labelling lε
ν j (x

i ) = 1, if w∗(νi ) ∈ Hε(ν
j ) and 0 otherwise.

3. Learn function l̂ε
ν j to approximate the labelling using any machine learning method

(e.g., decision trees among others).
4. For any out-of-sample data point with features x , we prescribe as near optimal

solution the solution of optimization problem (24).
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Connection to SAA and robust optimization

Wenowdiscuss the optimization formulation (24) and connect it to theSampleAverage
Approximation (SAA) method as well as robust optimization. First, we consider a
more general formulation by allowing the cap size in the objective function to vary
independently of the cap size used to train l̂ε . We denote this cap size by γ . That is,
we consider the following

ŵε,γ (x) = arg minw∈P
n∑

j=1

l̂ε
ν j (x) · max{0, gν j (w) − G∗(ν j ) − γ } (25)

In [4], three cases are analyzed and interpreted:

1. γ = 0: feature-based SAA. Specifically, it is shown at γ = 0 that this approach is
equivalent to

ŵε,0(x) = arg min
w∈P

n∑

j=1

l̂ε
ν j (x) · gν j (w). (26)

Indeed, if the values l̂ε
ν j (x) were uniform, then the approach is identical to SAA.

In [73], another approach is taken to learn these weights by some machine learn-
ing methods. Unlike our approach, these weights are chosen independently of the
optimization problem.

2. γ = γ̃ : robust optimization. The goal of traditional robust optimization is to min-
imize the maximum regret incurred in the data. That is,

γ̃ = min
w∈P

max
j=1,...,n

(gν j (w) − G∗(ν j )) (27)

If we let w̃ be the corresponding optimal solution, then by construction, w̃ belongs
to the γ̃ -cap of each datapoint. Therefore, it incurs zero penalty according to our
formulation in (25) and so the solution wε,γ̃ (x) is exactly this robust solution γ̃ .

3. 0 < γ < γ̃ : combination of SAA and robust optimization. In [4] it is shown that
for any γ there exists some subset of costs V ⊂ {ν1, . . . , νn} so that ŵε,γ (x) is
guaranteed to have regret at most γ with respect to costs in V and which minimizes
the expected cost with respect to costs not belonging to V . Note that this is in line
with our understanding from the cases γ = 0 and γ = γ̃ . Specifically, for γ = 0
we can take V = ∅, as we minimize expected cost with respect to the entire data.
And for γ = γ̃ , we can take V = {ν1, . . . , νn} as it is robust with respect to errors
the entire data. As γ increases from 0, the resulting solution becomes robust against
larger subsets of the data.

Stability and generalization bounds for nonlinear Lipschitz continuous objectives

It has been shown in [77] that stable learning algorithms have “good” generalization
bounds. In short, a learner is stable if its prediction changes very little with the addition
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of one new training data-point. In our setting, we will show that given each l̂ε
ν j (x) is

stable, our solution ŵε,0(x) is also stable when w∗(ν) is Lipschitz with respect to ν.
This in turn proves generalization bounds for our algorithm. See Theorem 4 for more
details.

Next, we formally define the notion of stability. Denote a training set of size n as
S = {(x1, ν1), . . . , (xn, νn)}. For ease of notation, let l Sν (x) be the labels we learn to
determine if w∗(νx ) ∈ Hε(ν) when training on dataset S.

Definition 3 A learning algorithm with single output l Sν has uniform stability β if

∀S ∈ Zn,∀i = 1, . . . , n, sup
x∈X

|l Sν (x) − l S
\i

ν (x)| ≤ β, (28)

where S\i is the same data set as S, but with i th point removed.

Theorem 4 (( [4]) Generalization for Optimization Problems with Lipschitz Objec-
tive) Under the Lipschitz Assumption 1 and given that each l̂ S

v j (x) is uniformly stable

with parameter βn = O( 1n ), we can bound the generalization error by the empirical
error with probability δ as follows:

∣
∣
∣
∣
∣
∣
E

[
gνx (ŵ(x))

] − 1

n

n∑

j=1

gν j (ŵ(x j ))

∣
∣
∣
∣
∣
∣
= O

(

L1L2

√
ln 1/δ

n

)

(29)

Assumption 1 The optimal solution to the nominal optimization problem is Lipschitz
with respect to the uncertainty ν. That is, there exists some constant L1 such that for any
ν1, ν2 ∈ V ,

∥
∥w∗(ν1) − w∗(ν2)

∥
∥
2 ≤ L1

∥
∥ν1 − ν2

∥
∥
2.Moreover, we assume that gν(w)

is L2-Lipschitz with respect to w. That is, |gν(w
1) − gν(w

2)| ≤ L2
∥
∥w1 − w2

∥
∥
2.

The theorem crucially depends on two assumptions, (1) that w∗(ν) is Lipchitz with
respect to ν and (2) that l̂ is trained by a O(1/n)-stable learning algorithm. There are
many stable learning algorithms that can be applied here. For instance, support vectors
machines, logistic regression, K-nearest-neighbors (see [77]), as well as certain neural
networks, such as single layer graph convolutional networks (see [78]). The Lipschitz
continuity assumption holds for instance for quadratic optimization problems (see
[79]). Nevertheless, note that it does not hold for linear optimization problems. Indeed,
in that case the optimal solution can jump discontinuously from one vertex to another
given an arbitrarily small change in the cost vector.

4.2 Computational results

In this subsection, we will present numerical evidence of the advantages of our
approach, showing that it is competitive in terms of average regret incurred while
simultaneously providing more robust solutions in the presence of noise and uncer-
tainty in the data.

We consider a nearly identical problem as the one used in [52]: an uncapacitated
min-cost flow problem on a 5× 5 grid network, with a source at the bottom left node,
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Fig. 6 (left) Average relative regret as noise is increased in the data data. (right) Maximum regret incurred

and a sink at the top right node and directed edges that only move from left to right,
and bottom to top. This can easily be modelled as a linear optimization problem.

In this case, the costs ν correspond to the a vector describing the costs of each
edge in the flow problem. For the data (x1, ν1), . . . , (xn, νn), each x j is generated at
random, and ν j is some linear function of x j with additional noise. The magnitude of
the noise is measure by a parameter δ. For the sake of brevity, we omit the details of
the data-generation process here, but they may be found in [4].

We examine and compare four different approaches—our cap approach is in red,
and the labelling problem is modelled using logistic regression. The green is a two
stage approach using a regression tree to predict costs, the red is a K-NN approach
which falls under the framework of [73], and the orange is the smart-predict-optimize
method, an end-to-end learning framework from [52]. See Fig. 6 (left). We report
the average relative regret of decisions taken by each approach. In particular, given a
realization ν and the model-prescribed decisions ŵ, the relative regret is the percent
error

gν(ŵ) − G∗(ν)

G∗(ν)
. (30)

We can see the SPO approach is doing particularly well. We attribute this to the fact
that the underlying true distribution of the data is linear, and the hypothesis class it is
learning from is also linear - so it can learn the true costs very well. Our cap approach
is competitive with the others, and also does well as we increase noise in the data.
Robustness Experiment We also measure the robustness of each method against
uncertainty in the data. In particular, for each out-of-sample x , we generate 1000
different random cost vectors using different samples of noise δij . Then, we determine
the solution each method produces for the given out-of-sample x and measure the
maximum regret incurred on these 1000 points.

Note the comparison of the maximum regret incurred in the different approaches
(Fig 6 (right)). The maximum regret of our method is much lower than it is for the
other approaches, even compared to the SPO, which had a much better average regret.
As we have explained, we see that as the cap size γ increases, the cap approach indeed
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Table 1 Average accuracy for the min-cost flow problem as we vary the cap size (vertical) and the noise in
the observed cost vectors (horizontal). Data generated with covariates of 10 dimensions

Noise
ε 0.00 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.01 0.452 0.457 0.536 0.587 0.551 0.961 1.15 1.29 1.41 2.38 1.93

0.02 0.432 0.456 0.505 0.561 0.557 0.908 1.07 1.17 1.49 2.46 1.88

0.03 0.449 0.485 0.497 0.549 0.550 0.888 1.03 1.24 1.50 2.32 1.77

0.04 0.472 0.456 0.512 0.529 0.621 0.869 0.993 1.22 1.66 2.23 1.67

0.05 0.502 0.484 0.536 0.529 0.622 0.941 1.07 1.14 1.80 2.22 1.78

becomes more robust. Note that past a certain point as γ increases, the maximum
regret actually begins to increase as our solution becomes too conservative.

Effect of cap size against noise A crucial hyperparameter to tune is the cap size ε

used to learn the labelling. As ε increases, the resulting regret should increase accord-
ingly. However, when increasing the cap size, the corresponding labelling problemwill
be more balanced (due to the fact that the number of points labelled as 1 increases).
Generally, this improves the accuracy of our labelling, hence reducing regret. Experi-
mentally, we see that the regret of our decisions is a roughly convex function of the cap
size: for very small ε, there are too few positive labels to learn lε efficiently, resulting in
high error; then the model accuracy improves as ε increases. We can see this trade-off
explicitly in Table 1 for the min-cost flow problem.
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