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Abstract
We propose a random-subspace algorithmic framework for global optimization of
Lipschitz-continuous objectives, and analyse its convergence using novel tools from
conic integral geometry. X-REGO randomly projects, in a sequential or simultaneous
manner, the high-dimensional original problem into low-dimensional subproblems
that can then be solved with any global, or even local, optimization solver. We esti-
mate the probability that the randomly-embedded subproblem shares (approximately)
the same global optimum as the original problem. This success probability is then used
to show almost sure convergence of X-REGO to an approximate global solution of the
original problem, under weak assumptions on the problem (having a strictly feasible
global solution) and on the solver (guaranteed to find an approximate global solution
of the reduced problem with sufficiently high probability). In the particular case of
unconstrained objectives with low effective dimension, we propose an X-REGO vari-
ant that explores random subspaces of increasing dimension until finding the effective
dimension of the problem, leading to X-REGO globally converging after a finite num-
ber of embeddings, proportional to the effective dimension. We show numerically that
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this variant efficiently finds both the effective dimension and an approximate global
minimizer of the original problem.

Keywords Global optimization · Random subspaces · Conic integral geometry ·
Dimensionality reduction techniques · Functions with low effective dimensionality

Mathematics Subject Classification 65K05 · 90C30 · 90C26 · 49K45 · 15A52

1 Introduction

We address the global optimization problem

f ∗ := min
x∈X

f (x), (P)

where f : X → R is Lipschitz continuous1 and possibly non-convex, and where
X ⊆ R

D is a setwith non-empty interior, and possibly unbounded,which thus includes
the unconstrained caseX = R

D .We propose a generic algorithmic framework, named
X-REGO (X -Random Embeddings for Global Optimization) that (approximately)
solves a sequence of realizations of the following randomized reduced problem,

min
y∈Rd

f (Ay + p)

subject to Ay + p ∈ X ,

(RPX )

where A is a D × d Gaussian random matrix (see Definition A.1) with d � D,
and where p ∈ X may vary between realizations, may be arbitrary/user-defined,
and provides additional flexibility that can be exploited algorithmically. For example,
choosing pk adaptively, as the best point found so far, allows us to maintain and
exploit the progress of the algorithm over iterations. The reduced problem (RPX ) can
be solved by any global, or even local or stochastic, optimization solver.

When a (possibly stochastic) global solver is used in the subproblems, we prove that
X-REGO converges, with probability one, to a global ε-minimizer of (P) (namely, a
feasible point x satisfying f (x) ≤ f ∗ + ε for some accuracy ε > 0); we also provide
estimates of the corresponding convergence rate. For this, we need to evaluate the
ε-success of the reduced problem (RPX ).

Definition 1.1 (RPX ) is ε-successful if there exists y ∈ R
d such that Ay + p ∈ X

and f (Ay+ p) ≤ f ∗ +ε, where ε > 0 is the desired/user-chosen accuracy tolerance.

Our analysis heavily relies on the probability of (RPX ) to be ε-successful. Equiva-
lently, this success probability can be rephrased as follows.

What are the chances that a random low-dimensional subspace spanned by the
columns of a (rectangular) Gaussian matrix contains a global ε-minimizer of (P)?

1 Our convergence analysis also hold if the objective is not globally Lipschitz continuous, but is Lipschitz
continuous on a sufficiently large neighbourhood of a global minimizer of (P). This requirement is made
precise in Remark 6.10.
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Global optimization using random embeddings 783

We use crucial tools from conic integral geometry to estimate the probability above.
Applications of these bounds to functions with low effective dimensionality (see Def-
inition 7.1) are also provided.

1.1 Related work

Dimensionality reduction is essential for solving efficiently high-dimensional opti-
mization problems. Sketching techniques reduce the ambient dimension of a given
subspace by projecting it randomly onto a lower dimensional one while preserving
lengths [69]; such techniques have been used successfully for improving the efficiency
of linear and nonlinear least squares (local) solvers and of those for more general func-
tions; see for example, [8, 18, 48, 54, 57, 66] and the references therein.Here,we sketch
the problem variables/search space in order to reduce its dimension with the specific
aim of global optimization; furthermore, our results are not derived using sketching
techniques but conic integral geometry ones.

In a huge-scale setting, where full-dimensional vector operations are computa-
tionally expensive, Nesterov [50] advocates the use of coordinate descent, a local
optimization method that updates successively one of the coordinates of a candi-
date solution using a coordinate-wise variant of a first-order method, while keeping
other coordinates fixed. Coordinate descent methods and their block counterparts have
become methods of choice for many large-scale applications, see, e.g., [4, 56, 70] and
have been extended to random subspace descent [44, 46] that operates over a succes-
sion of random low-dimensional subspaces, not necessarily aligned with coordinate
axes. See also [38] for a random proximal subspace descent algorithm, and [35, 40]
for higher-order random subspace methods for local nonlinear optimization.

In local derivative-free optimization, several algorithms explore successively one-
dimensional [9, 51, 60] and low-dimensional [16] random subspaces.Gratton et al. [36,
37] propose and explore a randomized version of direct search where at each iteration
the function is explored along a collection of directions, i.e., one-dimensional half-
spaces. Golovin et al. [34] develop convergence rates to a ball of ε-minimizers for
a variant of randomized direct search for a special class of quasi-convex objectives.
Their convergence analysis heavily relies on high-dimensional geometric arguments:
they show that sublevel sets contain a sufficiently large ball tangent to the level set, so
that at each iteration, with a given probability, sampling the next iterate from a suitable
distribution centred at the current iterate decreases the cost.

Unlike the above-mentioned works, our focus here is on the global optimization
of generic Lipschitz-continuous objectives. Stochastic global optimization methods
abound, such as simulated annealing [32], random search [59], multistart methods
[32], and genetic algorithms [41]. Our proposal here is connected to random search
methods, namely, it can be viewed as a multi-dimensional random search, where a
deterministic or stochastic method is applied to the subspace minimization. Recently,
random subspace methods have been developed/applied for the global optimization
of objectives with special structure, assuming typically, low-effective dimensionality
of the objective [10, 11, 15, 20, 43, 55, 68]. These functions only vary over a low-
dimensional subspace, and are also called multi-ridge functions [29, 63], functions
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784 C. Cartis et al.

with active subspaces [22], or functions with functional sparsity when the subspace
of variation is aligned with coordinate axes [67]. Assuming the random subspace
dimension d (in (RPX )) to be an overestimate of the objective’s effective dimension de
(the dimension of the subspace of variation), these works have proven that one random
embedding is sufficient with probability one to solve the original problem (P) in the
unconstrained case (X = R

d) [15, 68] while several random embeddings are required
in the constrained case [20]. In particular, in [20], an X-REGO variant is proposed that
is designed specifically for the bound-constrained optimization of functions with low
effective dimensionality. As such it sets the random subspace dimension d in (RPX )
to be constant over the iterations and greater or equal than the effective dimension,
that is assumed to be known. Here, X-REGO is designed and analysed for a generic
objective and a possibly unbounded/unconstrained and nonconvex domainX , and the
random subspace dimension d is arbitrary and allowed to vary during the optimization.
Despite sharing the same name, the X-REGO framework considered in this paper is
thus significantlymore generic that theX-REGOvariant explored in [20], and analysed
under much more general assumptions than in [20].

Recently, random projections have been successfully applied to highly over-
parametrized settings, such as in deep neural network training [42, 47] and adversarial
attacks in deep learning [14, 64]. Though there is no theoretical guarantee at present
that a precise low-dimension subspace exists in these problems, it is a reasonable
assumption to make given the high dimensionality of the search space and the sup-
porting numerical evidence. Our approach here investigates the validity of random
subspace methods when low effective dimensionality is absent or unknown to the
user; we find - both theoretically and numerically - that for large scale problems, such
techniques are still beneficial, and furthermore, at least in the unconstrained case, they
can naturally adapt and capture such special structures efficiently. We hope that this
provides a general theoretical justification to a broader application of such techniques.

The second part of the paper applies the generic X-REGO convergence results and
the (RPX ) related probabilistic bounds to the case when the objective is unconstrained
and has low effective dimension, but the effective dimension de is unknown. Related
results have been proposed that aim to learn the effective subspace before [25, 27, 29,
63] or during the optimization process [21, 23, 30, 71]; additional costs/evaluations are
needed in these approaches. Some apply a principal component analysis (PCA) to the
gradient evaluated at a collection of random points [22, 23, 27]. Alternatively, [25, 29,
63] recast the problem into a low-rank matrix recovery problem, and [30] proposes a
Bayesian optimization algorithm that sequentially updates a posterior distribution over
effective subspaces, and over the objective, using new functions evaluations. Still in
the context of Bayesian optimization, Zhang et al. [71] estimate the effective subspace
using Sliced Inverse Regression, a supervised dimensionality reduction technique in
contrast with the above-mentioned PCA, while Chen et al. [21] extend Sliced Inverse
Regression to learn the effective subspace in a semi-supervised way. Instead, our
proposed algorithm explores a sequence of random subspaces of increasing dimension
until it discovers the effective dimension of the problem. Independently, a similar idea
has been recently used in sketchingmethods for regularized least-squares optimization
[45].
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Global optimization using random embeddings 785

Our contributions.We explore the use of random embeddings for the generic global
optimization problem (P). Our proposed algorithmic framework, X-REGO, replaces
(P) by a sequence of reduced random subproblems (RPX ), that are solved (possibly
approximately and probabilistically) using any global optimization solver. As such,
X-REGO extends block coordinate descent and local random subspace methods to the
global setting.

Our convergence analysis for X-REGO crucially relies on a lower bound on
the probability of ε-success of (RPX ), whose computation, exploiting connections
between (RPX ) and the field of conic integral geometry, is a key contribution of
this paper2. Using asymptotic expansions of integrals, we derive interpretable lower
bounds in the setting where the random subspace dimension d is fixed and the original
dimension D grows to infinity. In the box-constrained case X = [−1, 1]D , we also
compare these bounds with the probability of success of the simplest random search
strategy, where a point is sampled in the domain uniformly at random at each itera-
tion. We show that when the point p at which the random subspace is drawn is close
enough to a global solution x∗ of (P), the random subspace is more likely to intersect
a neighbourhood of a global minimizer than random search would be in finding such
a neighbourhood. Provided that the reduced problem can be solved at a reasonable
cost, random subspace methods are thus provably better than random search in some
cases; and even more so, numerically.

In the second part of the paper, we address global optimization of functionswith low
effective dimension, and propose an X-REGO variant that progressively increases the
random subspace dimension. Instead of requiring a priori knowledge of the effective
dimension of the objective, we show numerically that this variant is able to learn
the effective dimension of the problem. We also provide convergence results for this
variant after a finite number of embeddings, using again our conic integral geometry
bounds. Noticeably, these convergence results have no dependency on D. We compare
numerically several instances of X-REGO when the reduced problem is solved using
the (global and local)KNITRO solver [13].We also discuss several strategies to choose
the parameter p in (RPX ).

Paper outline. Section 2 presents the geometry of the problem, and motivates the use
of conic integral geometry to estimate the probability of (RPX ) being ε-successful.
Section 3 summarizes key results from conic integral geometry that are used later in
the paper. In Sect. 4, we derive lower bounds on the probability of (RPX ) to be ε-
successful, obtain asymptotic expansions of this probability, and compare the search
within random embeddings with random search. Section 5 presents the X-REGO
algorithmic framework, and Sect. 6 the corresponding convergence analysis. Finally,
Sect. 7 proposes a specific instance of X-REGO for global optimization of functions
with low effective dimension, with associate convergence results, and Sect. 8 contains
numerical illustrations.

Notation. We use bold capital letters for matrices (A) and bold lowercase letters (a)
for vectors. In particular, ID is the D × D identity matrix and 0D , 1D (or simply

2 Note that this is not the first work applying conic integral geometry to optimization, see [1] for an
application to the study of phase transitions in random convex optimization problems.
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786 C. Cartis et al.

0, 1) are the D-dimensional vectors of zeros and ones, respectively. We write ai to
denote the i th entry of a and write ai : j , i < j , for the vector (ai ai+1 · · · a j )

T . We let
range(A) denote the linear subspace spanned in R

D by the columns of A ∈ R
D×d .

We write 〈·, ·〉, ‖ · ‖ (or equivalently ‖ · ‖2) for the usual Euclidean inner product and
Euclidean norm, respectively.

Given two random variables (vectors) x and y (x and y), the expression x
law= y

(x
law= y) means that x and y (x and y) have the same distribution. We reserve the

letter A for a D × d Gaussian random matrix (see Definition A.1).
Given a point a ∈ R

D and a set S of points in R
D , we write a + S to denote the

set {a + s : s ∈ S}. Given functions f (x) : R → R and g(x) : R → R
+, we write

f (x) = �(g(x)) as x → ∞ to denote the fact that there exist positive reals M1, M2
and a real number x0 such that, for all x ≥ x0, M1g(x) ≤ | f (x)| ≤ M2g(x).

2 Geometric description of the problem

Let ε > 0 denote the accuracy to which problem (P) is to be solved, and so let Gε be
the set of ε-minimizers of (P),

Gε = {x ∈ X : f (x) ≤ f ∗ + ε}. (2.1)

Note that, by Definition 1.1, the reduced problem (RPX ) is ε-successful if and only
if the intersection of the (affine) subspace p + range(A) and Gε is non-empty:

P[(RPX )is ε-successful] = P[ p + range(A) ∩ Gε �= ∅]. (2.2)

To further characterize this probability, let us now introduce the following assump-
tions.

Assumption LipC (Lipschitz continuity3 of f ) The objective function f : X → R is
Lipschitz continuous with constant L , i.e., there holds | f (x) − f ( y)| ≤ L‖x − y‖2
for all x, y ∈ X .

Assumption FeasBall (Existence of a ball of ε-minimizers) There exists a global
minimizer x∗ of (P) that satisfies Bε/L(x∗) ⊂ X ,where Bε/L(x∗) is the D-dimensional
closedEuclidean ball of radius ε/L and centred at x∗, where L is the Lipschitz constant
of f and ε > 0 is the desired accuracy tolerance.

In the remainder of this section, we relate the probability (2.2) to the probability
of the random subspace range(A) + p to intersect a ball of ε-minimizers Bε/L(x∗),
defined in Assumption FeasBall; this probability will then be quantified in the follow-
ing sections using tools from conic integral geometry.

3 Throughout the paper, we assume that the objective function f is globally Lipschitz continuous on X .
However, our convergence analysis (see Remark 6.10) still holds if we assume that f is Lipschitz continuous
in a neighbourhood of a global minimizer x∗, and that the ball Bε/L in Assumption FeasBall, centred at
x∗, is a subset of the neighbourhood where f is Lipschitz continuous.
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Global optimization using random embeddings 787

Remark 2.1 Note that, in general, the point x∗ in Assumption FeasBall is not uniquely
defined; in that case,we select arbitrarily one such point for our analysis. For simplicity,
we refer to the selected point x∗ as “the point in Assumption FeasBall”.

We then have the following result.

Proposition 2.2 Let Assumption LipC hold. Let A be a D×d Gaussian matrix, ε > 0
an accuracy tolerance, x∗ the point in Assumption FeasBall and p ∈ X a given vector.
Then,

P[(RPX ) is ε-successful] ≥ P[ p + range(A) ∩ Bε/L(x∗) �= ∅]. (2.3)

Proof Let x ∈ Bε/L(x∗). Then, x ∈ Gε due to the Lipschitz continuity property of f ,
namely

| f (x) − f (x∗)| ≤ L‖x − x∗‖2 ≤ L
ε

L
= ε. (2.4)

The result follows then simply from (2.2). ��
Following on from Remark 2.1, if x∗ is not uniquely defined by Assumption Feas-

Ball, each such x∗ provides a different lower bound in Proposition 2.2. If all the balls
Bε/L(x∗) associated with different x∗ are disjoint, the probability of ε-success of
RPX is lower bounded by the sum over all such minimizers x∗, of the probability
P[ p+ range(A)∩ Bε/L(x∗) �= ∅]. In this paper, we estimate the latter probability for
an arbitrary x∗; this is a worst-case bound in the sense that it clearly underestimates
the chance of subproblem success (for a(ny) x∗) in the presence of multiple global
minimizers of (P).

Given x∗, the point in Assumption FeasBall, let us assume that p /∈ Bε/L(x∗)
(otherwise, the reduced problem (RPX ) is always ε-successful, which can be seen by
simply taking y = 0). To estimate the right-hand side of (2.3), we first construct a set
C p(x∗) containing the rays connecting p with points in Bε/L(x∗),

C p(x∗) = { p + θ(x − p) : θ ≥ 0, x ∈ Bε/L(x∗)} for p /∈ Bε/L(x∗). (2.5)

Note that C p(x∗) is a convex cone that has been translated by p (see Fig. 1). We can
easily verify this fact by recalling the definition of a convex cone.

Definition 2.3 A convex set C is called a convex cone if for every c ∈ C and any
non-negative scalar ρ, ρc ∈ C .

Remark 2.4 Note that, according to Definition 2.2, a d-dimensional linear subspace in
R

D is a cone. Hence, range(A) is a cone.

The next result indicates that, based on (2.3) and the definition of C p(x∗), we can
rewrite the right-hand side of (2.3) as

P[ p + range(A) ∩ Bε/L(x∗) �= ∅] = P[ p + range(A) ∩ C p(x∗) �= { p}] (2.6)
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788 C. Cartis et al.

Fig. 1 Abstract illustration of the embedding of an affine d-dimensional subspace p + range(A) into

R
D , in the case X = [−1, 1]D . The red line represents the set of solutions along p + range(A) that are

contained in X and the blue dot represents a global minimizer x∗ of (P). (RPX ) is ε-successful when the
red line intersects Bε/L (x∗). We construct a cone C p(x∗) in such a way that the following condition holds:
p + range(A) intersects Bε/L (x∗) if and only if p + range(A) and C p(x∗) share a ray

— the probability of the event that translated cones p+ range(A) and C p(x∗) share a
ray. It turns out that this probability has a quantifiable expression based on conic inte-
gral geometry, where a broad concern is the quantification/estimation of probabilities
of a random cone (e.g., p + range(A)) and a fixed cone (e.g., C p(x∗)) sharing a ray.
We then present in Sect. 3 key tools from conic integral geometry to help us estimate
the probability of ε-success of (RPX ).

Theorem 2.5 Let Assumption LipC hold. Let A be a D × d Gaussian matrix, ε > 0
an accuracy tolerance, x∗ the point in Assumption FeasBall and p ∈ X \ Gε a given
vector. Let C p(x∗) be defined in (2.5). Then,

P[(RPX ) is ε-successful] ≥ P[ p + range(A) ∩ C p(x∗) �= { p}]. (2.7)

Proof Note that the result immediately follows from (2.3) and (2.6), where the latter
was stated without a proof. Instead of proving (2.6), we prove a weaker result, which
suffices to establish (2.7):

P[ p + range(A) ∩ Bε/L(x∗) �= ∅] ≥ P[ p + range(A) ∩ C p(x∗) �= { p}].

We prove this by showing that the event { p + range(A) ∩ C p(x∗) �= { p}} is a subset
of the event { p + range(A) ∩ Bε/L(x∗) �= ∅}. In other words, we must show that
if there exists a point in p + range(A) ∩ C p(x∗) that is different from p, then there
exists a point in p + range(A) ∩ Bε/L(x∗), i.e., this set is non-empty.

Suppose that there exists a point x′ �= p in p + range(A) ∩ C p(x∗). Define
R = { p + θ(x′ − p) : θ ≥ 0} and note that R ⊂ p + range(A). Now, since
x′ ∈ C p(x∗), by definition of C p(x∗) there exists x̃ ∈ Bε/L(x∗) and θ̃ > 0 such
that x′ = p + θ̃ (x̃ − p). We express x̃ in terms of x′: x̃ = p + θ ′(x′ − p), where
θ ′ = 1/θ̃ > 0. By definition of R, x̃ ∈ R and, thus, x̃ also lies in p + range(A). This
proves that the set p + range(A) ∩ Bε/L(x∗) is non-empty. ��
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Global optimization using random embeddings 789

3 A snapshot of conic integral geometry

A central question posed in conic integral geometry is the following:

What is the probability that a randomly rotated convex cone shares a ray with a fixed
convex cone?

The answer to this question is given by the conic kinematic formula [58].

Theorem 3.1 (Conic kinematic formula) Let C and F be closed convex cones in R
D

such that atmost one of them is a linear subspace. Let Q be a D×D randomorthogonal
matrix drawn uniformly from the set of all D × D real orthogonal matrices. Then,

P[QF ∩ C �= {0}] =
D∑

k=0

(1 + (−1)k+1)

D∑

j=k

vk(C)vD+k− j (F), (3.1)

where vk(C) denotes the kth intrinsic volume of cone C.

Proof A proof can be found in [58, p. 261]. ��
We plan to use the conic kinematic formula to estimate (2.6). This formula expresses
the probability of the intersection of the two cones in terms of quantities known as
conic intrinsic volumes. It is thus important to understand the conic intrinsic volumes
and ways to compute them.

3.1 Conic intrinsic volumes

Conic intrinsic volumes are commonly defined through the spherical Steiner formula
(see [2]), which we do not define here as it is beyond the scope of this work/not needed
here. Instead, we will familiarise ourselves with the conic intrinsic volumes through
their properties and specific examples. This is a short introductory review of conic
intrinsic volumes; for more details, an interested reader is directed to [1–3, 49, 58]
and the references therein.

For a closed convex cone C in R
D , there are exactly D+1 conic intrinsic volumes:

v0(C), v1(C),. . . , vD(C). Conic intrinsic volumes have useful properties, some of
which are summarized below. Given a closed convex cone C ⊆ R

D , we have (see [3,
Fact 5.5]):

(1) Probability distribution. The intrinsic volumes of the cone C are all nonnegative
and sum up to 1, namely

D∑

k=0

vk(C) = 1 and vk(C) ≥ 0 for k = 0, 1, . . . , D. (3.2)

In other words, they form a discrete probability distribution on {0, 1, . . . , D}.
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790 C. Cartis et al.

(2) Invariance under rotations. Given any orthogonal matrix Q ∈ R
D×D , the intrin-

sic volumes of the rotated cone QC and the original cone C are equal:

vk(QC) = vk(C). (3.3)

(3) Gauss-Bonnet formula. If C is not a subspace, we have

D∑

k=0
k even

vk(C) =
D∑

k=1
k odd

vk(C) = 1

2
. (3.4)

The Gauss-Bonnet formula implies that vk(C) ≤ 1/2 for any k ∈ {0, . . . , D}.
Remark 3.2 Conic intrinsic volumes can be viewed as ‘cousins’ of the more familiar
Euclidean intrinsic volumes. For a compact convex set K ⊂ R

D , Euclidean intrinsic
volumes vE

0 (K ), vE
D−1(K ) and vE

D(K ) have familiar geometric interpretations: vE
0 (K )

— Euler characteristic, 2vE
D−1(K ) — surface area and vE

D(K ) is the usual volume.

Remark 3.3 Conic intrinsic volumes can also be understood using polyhedral cones
— cones that can be generated by intersecting a finite number of halfspaces. If C is a
polyhedral cone in R

D , then the kth intrinsic volume of C is defined as follows (see
[3, Definition 5.1])

vk(C) := P[�C (a) belongs to the relative interior4of a k-dimensional face of C].
(3.5)

Here, a denotes the standard Gaussian vector5 in R
D and �Y (x) := argmin y{‖x −

y‖ : y ∈ Y } denotes the Euclidean/orthogonal projection of x onto the set Y , namely
the vector in Y that is the closest to x.

Example 3.4 Let us consider a simple two-dimensional polyhedral cone Cπ/3 illus-
trated in Fig. 2 and let us calculate v0(Cπ/3), v1(Cπ/3) and v2(Cπ/3) using (3.5).

The cone Cπ/3 has a single two-dimensional face (filled with blue), which is the
interior of Cπ/3. If a random vector a belongs to this face then �Cπ/3(a) = a and,
therefore,

v2(Cπ/3) = P[a ∈ Cπ/3] = π/3

2π
= 1

6
.

4 The formal definition of relative interior of a set S is as follows: relint(S) := {x ∈ S : ∃δ > 0, Bδ(x) ∩
aff(S) ⊆ S}, where the affine hull aff(S) is the smallest affine set containing S. For example, the relative
interior of a line segment [A, B] ⊂ R

2 is (A, B); the relative interior of a two-dimensional square in R
3 is

the square without its boundary.
5 A random vector for which each entry is an independent standard normal variable.
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Fig. 2 A depiction of the
two-dimensional polyhedral
cone Cπ/3 in Example 3.4. The
projection �Cπ/3 (a) of a onto
Cπ/3 falls onto the
one-dimensional face of the cone

Let us now calculate v0(Cπ/3). Note that Cπ/3 has only one zero-dimensional face,
which is the origin. Note also that �Cπ/3(a) = 0 if and only if a ∈ C◦

π/3. Hence,

v0(Cπ/3) = P[a ∈ C◦
π/3] = 2π/3

2π
= 1

3
.

To calculate v1(Cπ/3), we simply use (3.2) to obtain

v1(Cπ/3) = 1 − v0(Cπ/3) − v2(Cπ/3) = 1

2
.

Example 3.5 (Linear subspace) The kth intrinsic volume of a d-dimensional linear
subspace Ld in R

D is given by

vk(Ld) =
{
1 if k = d,

0 otherwise.
(3.6)

We already mentioned in Remark 2.4 that a d-dimensional linear subspace Ld is
a cone. In fact, Ld is a polyhedral cone which has only one (d-dimensional) face.
Therefore, the projection of any vector in R

D onto Ld will always belong to its (only)
d-dimensional face. Hence, (3.6) follows from (3.5).

Example 3.6 (Circular cone) A circular cone is another important example; they have
a number of applications in convex optimization (see, e.g., [7, Section 3] and [12,
Section 4]). The circular cone of angle α in R

D is denoted by CircD(α) and is defined
as

CircD(α) := {x ∈ R
D : x1 ≥ ‖x‖ cos(α)} for 0 ≤ α ≤ π/2. (3.7)

The circular cone can be viewed as a collection of rays connecting the origin and
some D-dimensional ball which does not contain the origin in its interior. The intrinsic
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volumes of CircD(α) are given by the formulae (see [3, Appendix D.1]):

vk(CircD(α)) = 1

2

(
(D − 2)/2

(k − 1)/2

)
sink−1(α) cosD−k−1(α) (3.8)

for k = 1, 2, . . . , D − 1, where
(i
j

)
is the extension of the binomial coefficient to

noninteger i and j through the gamma function,

(
i

j

)
= 	(i + 1)

	( j + 1)	(i − j + 1)
. (3.9)

The 0th and Dth intrinsic volumes of the circular cone are given by (see [1, Ex. 4.4.8]):

v0(CircD(α)) = D − 1

2

(
(D − 2)/2

−1/2

)∫ π/2−α

0
sinD−2(x)dx, (3.10)

vD(CircD(α)) = D − 1

2

(
(D − 2)/2

(D − 1)/2

)∫ α

0
sinD−2(x)dx . (3.11)

The following property of circular cones will be needed later.

Lemma 3.7 LetCircD(α) andCircD(β) be two circular cones with 0 ≤ α ≤ β ≤ π/2.
Then, CircD(α) ⊆ CircD(β).

Proof Let v be any point in CircD(α). By definition of CircD(α), v1 ≥ ‖v‖ cos(α).
Since 0 ≤ α ≤ β ≤ π/2, it follows that v1 ≥ ‖v‖ cos(β), which by definition of
CircD(β), implies that v must also belong to CircD(β). ��

3.2 The Crofton formula

We now present a useful corollary of the conic kinematic formula. If one of the cones
in Theorem 3.1 is given by a linear subspace then the conic kinematic formula reduces
to the Crofton formula.

Corollary 3.8 (Crofton formula) Let C be a closed convex cone in R
D and Ld be a

d-dimensional linear subspace. Let Q be a D × D random orthogonal matrix drawn
uniformly from the set of all D × D real orthogonal matrices. We have

P[QLd ∩ C �= {0}] = 2hD−d+1, (3.12)

with

hD−d+1 :=
{

vD−d+1(C) + vD−d+3(C) + · · · + vD(C) if d is odd,

vD−d+1(C) + vD−d+3(C) + · · · + vD−1(C) if d is even.
(3.13)

The Crofton formula is easily derived from (3.1) using the fact that the kth intrinsic
volume of a linear subspace Ld is 1 if d = k and 0 otherwise. The Crofton formula
will be essential in estimating the probability of ε-success of (RPX ).
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4 Bounding the probability of �-success of the reduced problem
(RPX )

Building on the tools developed in the last section, we can estimate the right-hand side
of (2.7) in Theorem 2.5, and thereby obtain bounds on the probability of ε-success of
(RPX ). This probability is key for the convergence analysis of our proposed X-REGO
algorithm.

Let us first provide a roadmap of this section. Corollary 4.2 relates the probability
of ε-success of (RPX ) to the probability of intersection of a (random) linear subspace
with a (fixed) circular cone, whose angle depends on the distance between p and the
point x∗ in Assumption FeasBall. This probability is quantified in Theorem 4.3 using
Crofton formula; this theorem provides a lower bound, which depends on p, on the
probability of success of (RPX ). As our convergence analysis requires a bound that is
independent of p, in Theorem 4.4, we derive a uniform lower bound on the probability
of success of (RPX ) under the assumption that ‖ p − x∗‖ < Rmax for some constant
Rmax. The latter boundedness assumption can be shown to hold under several natural
selection rules for p, e.g., if p is a random variable with compact support or if p is
selected as the best point found over previous embeddings and the objective is coercive
(see Corollary 6.8).

As a second step, we propose in Sect. 4.2 an asymptotic analysis to characterize
explicitly the dependency of the lower bounds in Theorems 4.3 and 4.4 on D and d,
as D → ∞. The main result of our analysis, summarized in Corollary 4.7, shows an
exponential decrease of the probability of ε-success as D increases. In Sect. 4.3, for
the case X = [−1, 1]D , we compare the probability of ε-success of (RPX ) with the
probability to select an ε-minimizer when sampling points uniformly in X . We show
that there exists a threshold �0 such that, if ‖ p − x∗‖2 ≤ �0, (RPX ) is more likely
to find an ε-minimizer than the uniform sampling strategy.

4.1 Rewriting the probability of success using Crofton formula

Note that if p /∈ Bε/L(x∗), then C p(x∗) defined in (2.5) is a circular cone CircD(α∗
p)

with α∗
p = arcsin(ε/(L‖x∗ − p‖)) that has been rotated and then translated by p,

see (3.7). Therefore, the intersection p + range(A) ∩ C p(x∗) in (2.7) is that of a
random d-dimensional linear subspace and the rotated circular cone both translated
by p. We can translate these ‘cones’ back to the origin and then, using the Crofton
formula, evaluate the right-hand side of (2.7) exactly since the expressions for the conic
intrinsic volumes of the circular cone C p(x∗) are known (see (3.8), (3.10) and (3.11)).
The Crofton formula and the right-hand side of (2.7) only differ in the formulation of
a random linear subspace: in the former, a random linear subspace is given as QLd ,
whereas in (2.7) it is represented by range(A). The following theorem states that these
two representations are equivalent.
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Theorem 4.1 Let A ∈ R
D×d be a Gaussian matrix. Let Q be a D × D random

orthogonal matrix drawn uniformly from the set of all D×D real orthogonal matrices
and let Ld be a d-dimensional linear subspace in R

D. Then,

range(A)
law= QLd . (4.1)

Proof See proof of [33, Theorem 1.2]. ��

The transformation of (2.7) into a form suitable for the application of Crofton
formula is given in the following corollary.

Corollary 4.2 Let Assumption LipC hold. Let A be a D × d Gaussian matrix, Q be
a D × D random orthogonal matrix drawn uniformly from the set of all D × D real
orthogonal matrices and Ld be a d-dimensional linear subspace in R

D. Let ε > 0 be
an accuracy tolerance, x∗ the point in Assumption FeasBall and p ∈ X \ Gε a given
vector. Let CircD(α∗

p) be the circular cone with α∗
p = arcsin(ε/(L‖x∗ − p‖)). Then,

P[(RPX ) is ε-successful] ≥ P[QLd ∩ CircD(α∗
p) �= {0}]. (4.2)

Proof As mentioned earlier, by definition, C p(x∗) is the rotated and translated (by p)
circular cone CircD(α∗

p). That is, there exists a D × D orthogonal matrix S such that
C p(x∗) = p + SCircD(α∗

p). Then, Theorem 2.5 implies

P[(RPX ) is ε-successful] ≥ P[ p + range(A) ∩ p + SCircD(α∗
p) �= { p}]

= P[range(A) ∩ SCircD(α∗
p) �= {0}]

= P[ST range(A) ∩ CircD(α∗
p) �= {0}]

= P[range(A) ∩ CircD(α∗
p) �= {0}]

= P[QLd ∩ CircD(α∗
p) �= {0}],

(4.3)

where the penultimate equality follows from the orthogonal invariance of Gaussian
matrices and where the last equality follows from Theorem 4.1. ��

Corollary 4.2 now allows us to use the Crofton formula to quantify the lower bound
in (4.2). In the next theorem, we derive our first lower bound, that is dependent on the
location of p inX . In particular, note that p is assumed to be at a distance at least ε/L
from x∗.

Theorem 4.3 (A lower bound on the success probability) Let Assumption LipC hold.
Let A be a D × d Gaussian matrix, ε > 0 an accuracy tolerance, x∗ the point in
Assumption FeasBall and p ∈ X \ Gε be a given vector. Let r p := ε/(L‖x∗ − p‖).
Then,

P[(RPX ) is ε-successful] ≥ τ = τ(r p, d, D), (4.4)
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where the function τ(r , d, D) for 0 < r < 1 and 1 ≤ d < D is defined as

τ(r , d, D) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(D − 1) ·
( D−2

2
D−1
2

)∫ arcsin(r)

0
sinD−2(x)dx if d = 1,

( D−2
2

D−d
2

)
r D−d(1 − r2)

d−2
2 if 1 < d < D.

(4.5)

Here,
(i
j

)
denotes the general binomial coefficient defined in (3.9).

Proof Let α∗
p = arcsin(r p) and let C denote CircD(α∗

p) for notational convenience.
First, note that by (3.8) and (3.11), τ(r , d, D) = 2vD−d+1(CircD(arcsin(r))). Thus,
all we need to show is thatP[(RPX ) is ε-successful] is lower bounded by 2vD−d+1(C).

By (4.2) and the Crofton formula (3.12), we have

P[(RPX ) is ε-successful]

≥
{
2(vD−d+1(C) + vD−d+3(C) + · · · + vD(C)) if d is odd,

2(vD−d+1(C) + vD−d+3(C) + · · · + vD−1(C)) if d is even

≥ 2vD−d+1(C),

(4.6)

where the inequality follows from the fact that vk(C)’s are all nonnegative (see (3.2)).
��

Theorem 4.3 provides us with a first lower bound on the probability of success
of (RPX ); recall that this is a bound on the probability of the random subspace to
intersect a ball of ε-minimizers. In its current form, this bound is not much useful, for
two reasons. Firstly, it depends on p; we would like to remove this dependency to be
able to use the bound in our convergence analysis in Sect. 6. Secondly, the integral in
(4.5) is difficult to interpret. These two issues are addressed below, in Theorem 4.4
and Sect. 4.2, respectively.

Let us explainwhywe choose to bound the ε-success of (RPX ) in (4.6) by amultiple
of vD−d+1(C) in particular, whereas we could have chosen any other intrinsic volume
or the entire sum of these volumes. Our reason for such a choice for the lower bound
is underpinned by the following observation: using the formulae (3.8) and (3.11) for
the intrinsic volumes, one can verify that vD−d+i (C)/vD−d+1(C) = O(D(1−i)/2) for
i = 1, 2, . . . , d as D → ∞ with other parameters kept fixed6. Hence,

vD−d+1(C) + vD−d+3(C) + · · · = vD−d+1(C) · (1 + O(1/D)).

Therefore, approximating the sum by its leading term vD−d+1(C) is reasonable for
large values of D.

6 The term vD−d+1(C) is dominant also in the scenario when ‖x∗ − p‖ → ∞ as D → ∞ with other
parameters fixed. In this case, vD−d+i (C)/vD−d+1(C) = O((r p/

√
D)i−1) for i = 1, 2, . . . , d as D →

∞.
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Letting x∗ be the point in Assumption FeasBall, and Rmax be a positive constant,
the following result provides a lower bound on the probability of ε-success of (RPX )
that holds for all p ∈ X satisfying ‖x∗ − p‖ ≤ Rmax < ∞. Note that, in contrast
with the last theorem, this result holds for p arbitrarily close to x∗; as such, it will
be crucial to the convergence of our algorithmic proposals in Sect. 6. The existence
of such a Rmax, crucial for our convergence analysis, is naturally guaranteed in some
cases:

• If a sequence of reduced problems (RPX ) is being considered such that the random
subspaces are drawn at the same p ∈ X , on can simply take Rmax = ‖x∗ − p‖.

• If the sequence of reduced problems (RPX ) corresponds to a bounded parameter
sequence { p0, p1, . . . }, one can choose Rmax to be the (finite) supremum over the
sequence {‖x∗ − pi‖} for i ≥ 0.

• IfX is bounded, since p ∈ X and x∗ ∈ X , one can simply let Rmax be the diameter
of X .

Note that when X is not bounded, it is in general difficult to derive a uniform
lower bound on the probability of ε-success of (RPX ) that is valid for all p ∈ X (if
‖ pk‖2 → ∞ then the lower bound goes to zero). The above list provides two examples
of rules for selecting p that guarantee that the result below holds even in the case X
bounded. Other examples are given in Sect. 5.

Theorem 4.4 (Auniform lower boundon the success probability)LetAssumptionLipC
hold. Let A be a D × d Gaussian matrix, ε > 0 an accuracy tolerance, and x∗ the
point in Assumption FeasBall. For all p ∈ X satisfying ‖ p − x∗‖ < Rmax for some
suitably chosen constant Rmax, we have

P[(RPX ) is ε-successful] ≥ τ = τ(rmin, d, D), (4.7)

where τ(·, ·, ·) is defined in (4.5) and rmin := ε/(LRmax).

Proof Let r p be defined in Theorem 4.3 and let α∗
p = arcsin(r p). We consider the two

cases p ∈ X \ Gε and p ∈ Gε separately.
First, let p be any point in X \ Gε . Then,

r p = ε

L‖ p − x∗‖ ≥ rmin,

α∗
p ≥ arcsin(rmin) := α∗

min .

(4.8)

Now, define Cmin := CircD(α∗
min). By (4.8) and Lemma 3.7, it follows that Cmin ⊆

CircD(α∗
p). Using Corollary 4.2, we then obtain

P[(RPX ) is ε-successful] ≥ P[QLd ∩ CircD(α∗
p) �= {0}]

≥ P[QLd ∩ Cmin �= {0}]
≥ 2vD−d+1(Cmin),

(4.9)
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where the last inequality follows from the same line of argument as in (4.6). Using
(3.8) and (3.11), it is easy to verify that 2vD−d+1(Cmin) = τ(rmin, d, D). We have
shown (4.7) for p ∈ X \ Gε .

For p ∈ Gε , (4.7) holds trivially, since if p ∈ Gε , (RPX ) is ε-successful with
probability 1. As a sanity check, 1 ≥ 2v(Cmin) = τ(rmin, d, D) where the inequality
is implied by the Gauss-Bonnet formula (3.4). ��

Unfortunately, the formula defining τ(r , d, D) is not easy to interpret. To better
understand the dependence of the lower bounds (4.4) and (4.7) on the parameters of
the problem, we now analyse the behaviour of τ(r , d, D) in the asymptotic regime.

4.2 Asymptotic expansions

We establish the asymptotic behaviour of τ(r , d, D) for large D. The other parameters
are kept fixed except for r which we allow to decrease with D. Note indeed that r p in
Theorem 4.3 is inversely proportional to ‖x∗ − p‖, which typically increases with D.
Before we begin, we first need to establish the following lemma.

Lemma 4.5 Let 0 < α < π/2 be either a fixed angle or a function of D that tends to
0 as D → ∞. Then, as D → ∞,

∫ α

0
sinD(x)dx = 1

D

sinD+1(α)

cos(α)
+ O

(
sinD+1(α)

D2

)
. (4.10)

Proof We write

∫ α

0
sinD(x)dx =

∫ α

0

sin(x)

D cos(x)
· (D cos(x) sinD−1(x))dx . (4.11)

Integration by parts with u = sin(x)/(D cos(x)) and dv = D cos(x) sinD−1(x)dx
yields

∫ α

0
sinD(x)dx = sinD+1(α)

D cos(α)
− 1

D

∫ α

0

sinD(x)

cos2(x)
dx . (4.12)

Let I denote
∫ α

0
sinD(x)
cos2(x)

dx . It remains to show that I = O(sinD+1(α)/D). We express
I as

∫ α

0

sin(x)

D cos3(x)
· (D cos(x) sinD−1(x))dx . (4.13)

We integrate I bypartswithu = sin(x)/(D cos3(x)) anddv = D cos(x) sinD−1(x)dx
to obtain

I = 1

D

sinD+1(α)

cos3(α)
− 1

D

∫ α

0

1 + 2 sin2(x)

cos4(x)
sinD(x)dx (4.14)
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Since the latter integral is positive, we have

I ≤ 1

cos3(α)
· sin

D+1(α)

D
. (4.15)

Since I is positive for any 0 < α < π/2, (4.15) implies that I = O(sinD+1(α)/D). ��

We establish the asymptotic behaviours of τ(r p, d, D) and τ(rmin, d, D) by analysing
the asymptotics of τ(r , d, D) defined in (4.5) and later substituting r p and rmin for r
in τ(r , d, D).

Theorem 4.6 Let τ(r , d, D) be defined in (4.5). Let d be fixed and let r be either fixed
or tend to zero as D → ∞. Then, as D → ∞,

τ(r , d, D) = �
(
D

d−2
2 r D−d

)
(4.16)

and the constants in �(·) are independent of D.

Proof We prove (4.16) for d = 1 and 1 < d < D separately.
First, assume that d > 1. By definition of τ(r , d, D), we have

τ(r , d, D) =
( D−2

2
D−d
2

)
r D−d(1 − r2)

d−2
2 . (4.17)

Let us first determine the asymptotic behaviour of the binomial coefficient. Using the
fact that 	(z + a)/	(z + b) = �(za−b) for large z (see, e.g., [62]), we obtain

( D−2
2

D−d
2

)
= 	( D2 )

	( D−d+2
2 )	( d2 )

= 	( D−d+2
2 + d−2

2 )

	( D−d+2
2 )	( d2 )

= �

((
D − d + 2

2

) d−2
2

)
= �

(
D

d−2
2

)
. (4.18)

To obtain7 (4.16), we substitute (4.18) into (4.17). Note that (1 − r2)
d−2
2 is bounded

above and bounded away from zero by constants independent of D; thus, it can be
absorbed into the constants of �.

Let us now prove (4.16) for d = 1. We have

τ(r , d, D) = (D − 1) ·
( D−2

2
D−1
2

)∫ arcsin(r)

0
sinD−2(x)dx, (4.19)

7 Here, we have also used the fact that if functions f (x), f ′(x), g(x) and g′(x) satisfy f (x) = �(g(x))
and f ′(x) = �(g′(x)) (as x → ∞), then f (x) f ′(x) = �(g(x)g′(x)).
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where, by (4.18),

( D−2
2

D−1
2

)
= �

(
D− 1

2

)
(4.20)

and, by Lemma 4.5,

∫ arcsin(r)

0
sinD−2(x)dx = �

(
1

D − 1

r D−1

√
1 − r2

)
. (4.21)

By substituting (4.20) and (4.21) into (4.19), we obtain (4.16) for d = 1. For similar
reasons as stated above,we can relegate the term1/

√
1 − r2 in (4.21) into the constants

of �. ��
Now, to obtain the asymptotics for τ(r p, d, D) and τ(rmin, d, D), we simply apply
Theorem 4.6 for r = r p = ε/(L‖x∗ − p‖) and r = rmin = ε/(LRmax), respectively.

Corollary 4.7 Let d, ε, L be fixed and let ‖x∗ − p‖ be either fixed or tend to infinity
as D → ∞. Then the lower bounds (4.4) and (4.7) satisfy

τ(r p, d, D) = �

(
D

d−2
2

(
ε

L‖x∗ − p‖
)D−d

)
as D → ∞, (4.22)

with r p = ε/(L‖x∗ − p‖) and where the constants in �(·) are independent of D.
Similarly,

τ(rmin, d, D) = �

(
D

d−2
2

(
ε

LRmax

)D−d
)

as D → ∞, (4.23)

with rmin = ε/(LRmax).

Proof Note that r p = ε/(L‖x∗ − p‖) is either fixed or tends to zero as D → ∞.
Then, the result follows from Theorem 4.6. ��

Corollary 4.7 shows that for any p not in Gε , the lower bounds in Theorems 4.3
and 4.4 decrease exponentially with D, which is as expected since problem (P) is
generally NP-hard. Note that this decrease is slower for larger values of d or p closer
to x∗, which is reassuring.

4.3 Comparing (RPX ) to simple random search

Using the above lower bounds on the probability of ε-success of the reduced problem
(RPX ), we now compare (RPX ) to a simple random search method to understand the
relative performance of (RPX ) and when it is beneficial to use it for general functions.
As abaseline for comparison,weuseUniformSampling (US) andwe restrict ourselves,
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in this section, to the specific case X = [−1, 1]D (as this will allow us to estimate the
probability of success of US). We start off with the derivation of a lower bound for
the probability of ε-success of US and the computation of its asymptotics.

Note that if a uniformly sampled point falls inside Bε/L(x∗) thenUS is ε-successful.
This implies that

P[US is ε-successful] ≥ Vol(Bε/L(x∗))
Vol(X )

= πD/2

2D	( D2 + 1)

( ε

L

)D := τus, (4.24)

where we have used the fact that Vol(Bε/L(x∗)) = πD/2

	( D
2 +1)

(
ε
L

)D (see [52, Equation

5.19.4]) and that Vol(X ) = 2D .
Using Stirling’s approximation, it is straightforward to establish the asymptotic

behaviour of the lower bound τus .

Lemma 4.8 Let τus be defined in (4.24) and let ε and L be fixed. Then,

τus = �

(
D− D

2 − 1
2

(πe

2

) D
2

( ε

L

)D
)

as D → ∞. (4.25)

Proof By Stirling’s approximation (see [52, Equation 5.11.7]),

	

(
D

2
+ 1

)
= �

(
e− D

2

(
D

2

) D+1
2

)
as D → ∞. (4.26)

By substituting (4.26) into (4.24), we obtain the desired result. ��

Let us now compare the lower bound τus of US to the lower bound τ(r p, d, D) for
(RPX ). It is clear from the analysis of τ(r p, d, D) in Sect. 4.2 that the probability of
ε-success of (RPX ) is higher if p is closer to the set of global minimizers. In the next
theorem, we determine a threshold distance �0 between p and a global minimizer
x∗ such that τ(r p, d, D) and τus are approximately equal to each other. This would
tell us how close p should be to x∗ for (RPX ) to have a larger lower bound for the
probability of success than that of US. The analysis is done in the asymptotic regime.

Theorem 4.9 Let Assumption LipC hold, let X = [−1, 1]D and x∗ be the point in
Assumption FeasBall. Let τ(r p, d, D) and τus be defined in Theorem 4.3 and (4.24),

respectively. Let ε, L, d be fixed and let �0 =
√

2D
πe . Then,

a) If limD→∞
�0

‖x∗ − p‖ = ψ > 1, then τ(r p, d, D)/τus → ∞ as D → ∞.

b) If limD→∞
�0

‖x∗ − p‖ = ψ < 1, then τ(r p, d, D)/τus → 0 as D → ∞.
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Proof From (4.23) and (4.25), we have

τ(r p, d, D)

τus
=

�

(
D

d−2
2

(
ε

L‖x∗− p‖
)D−d

)

�

(
1√
D

(
πe
2D

) D
2

(
ε
L

)D
)

8
= �

(( ε

L

)−d
(

2

πe

)D/2

D
D+d−1

2 ‖x∗ − p‖d−D

)

= �

(([ √
2D/πe

‖x∗ − p‖
]

︸ ︷︷ ︸
=�0/‖x∗− p‖

·D 2d−1
2(D−d)

)D−d)
,

(4.27)

Note that in the second line there is a term
(

ε
L

)−d ( 2
πe

)d/2
missing inside �, which

we removed as it is independent of D. Now, by definition of �, (4.27) implies that
there exist positive constants M1 and M2 such that

M1

(
�0

‖x∗ − p‖D
2d−1

2(D−d)

)D−d

≤ τ(r p, d, D)

τus
≤ M2

(
�0

‖x∗ − p‖D
2d−1

2(D−d)

)D−d

(4.28)

as D → ∞. Note that D
2d−1

2(D−d) → 1 as D → ∞. Hence, if �0/‖x∗ − p‖ →
ψ > 1 then both lower and upper bounds in (4.28) tend to infinity implying that
τ(r p, d, D)/τus → ∞. On the other hand, if�0/‖x∗ − p‖ → ψ < 1 then both lower
and upper bounds in (4.28) tend to zero implying that τ(r p, d, D)/τus → 0. ��
Theorem 4.9 shows that the distance between p and x∗ (in the asymptotic setting)
must be no greater than �0 ≈ 0.48

√
D for τ(r p, d, D) to be larger than τus in the

case X = [−1, 1]D . Note that, since the distance between the origin and a corner of
X is equal to

√
D (> 0.48

√
D), there is no point p such that the ball of radius �0

centred at p covers all points inX . In other words, in the specific caseX = [−1, 1]D ,
for any p in X , there always exists x∗ for which τ(r p, d, D) is smaller than τus . Note
also that �0 has no dependence on the embedding subspace dimension d. This is due
to the asymptotic nature of the analysis: in (4.28), we see that both inequalities depend
on d, but the dependence diminishes as D → ∞ since d is kept fixed. Although
the asymptotic analysis shows no significant dependence on the subspace dimension,
numerical experiments show that the value of d has a notable effect on success of
(RPX ). In Fig. 3, we plot τ(r p, d, D) as a function of ‖x∗ − p‖ for different values of
d with D fixed at 200. The lower bound τus of US is represented by a black horizontal
line. We see that, for larger d, τ(r p, d, D) decreases at a slower rate and has greater
threshold distance before becoming smaller than τus .

8 Here, we use the fact that if functions f (x), f ′(x), g(x) and g′(x) satisfy f (x) = �(g(x)) and f ′(x) =
�(g′(x)) (as x → ∞), then f (x)/ f ′(x) = �(g(x)/g′(x)).
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Fig. 3 A plot of τ(r p) versus ‖x∗ − p‖ for different values of the subspace embedding dimension d. The
lower bound τus of US does not depend on ‖x∗ − p‖ and, thus, it is displayed as a straight horizontal line

Remark 4.10 An important distinction must be made between the implications of the
ε-success of (RPX ) and the ε-success of US in solving the original problem (P). Note
that the ε-success of US means that US has sampled a point that lies in Gε , which
in turn implies that US has successfully (approximately) solved (P). This is not the
case for (RPX ). Recall that ε-success of (RPX ) by definition means that there is an
approximate solution x∗ to (P) that lies in the embedded d-dimensional subspace.
One needs to perform an additional global search over the subspace to locate x∗.
Therefore, for an entirely fair comparison between the two approaches, this additional
computational complexity should be taken into account.

5 X-REGO: an algorithmic framework for global optimization using
random embeddings

This section presents the proposed algorithmic framework for global optimization
using random embeddings, named X-REGO by analogy with [20] (see the Intro-
duction for distinctions between these variants). X-REGO is a generic algorithmic
framework that replaces the high-dimensional original problem (P) by a sequence of
low-dimensional random problems of the form (RPX ); these reduced random prob-
lems can thenbe solvedusing anyglobal—and in practice, even a local—optimization
solver.

Note that the kth embedding in X-REGO is determined by a realization Ã
k =

Ak(ωk) of the random Gaussian matrix Ak ∈ R
D×dk , for some (deterministic) dk ∈

{1, . . . , D − 1}. For generality of our analysis, we also assume that the parameter
p in (RPX ) is a random variable. The kth embedding is drawn at the point p̃k−1 =
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pk−1(ωk−1), a realization of the random variable pk−1, assumed to have support
included in X . Note that this definition includes deterministic choices for pk−1, by
writing it as a random variable with support equal to a singleton (deterministic and
stochastic selection rules for the p are given below). Each iteration of X-REGO solves

Algorithm 1 X -Random Embeddings for Global Optimization (X-REGO) applied
to (P)
1: Initialize d1 ∈ {1, 2, . . . , D − 1} and p̃0 ∈ X .
2: for k ≥ 1 until termination do

3: Draw Ã
k
, a realization of the D × dk Gaussian matrix Ak .

4: Calculate ỹk by solving approximately and possibly, probabilistically,

f̃ kmin = min
y∈Rd

f ( Ã
k
y + p̃k−1)

subject to Ã
k
y + p̃k−1 ∈ X .

(R̃PX k)

5: Let

x̃k := Ã
k
ỹk + p̃k−1. (5.1)

6: Choose (deterministically or randomly) p̃k ∈ X .
7: Choose dk+1 ∈ {1, 2, . . . , D − 1}.
8: end for

– approximately and possibly, with a certain probability – a realization (R̃PX k) of the
random problem

f kmin = min
y

f (Ak y + pk−1)

subject to Ak y + pk−1 ∈ X .

(RPX k)

As such, X-REGO can be seen as a stochastic process: additionally to p̃k , and

Ã
k
, each algorithm realization provides sequences x̃k = xk(ωk), ỹk = yk(ωk) and

f̃ kmin = f kmin(ω
k), for k ≥ 1, that are realizations of the random variables xk , yk and

f kmin , respectively. To calculate ỹk , (R̃PX k) may be solved to some required accuracy
using a deterministic global optimization algorithm that is allowed to fail with a certain
probability; or employing a stochastic algorithm, so that ỹk is only guaranteed to be

an approximate global minimizer of (R̃PX k) (at least) with a certain probability. This
allows us to account for solvers having some stochastic component (such as multistart
methods, genetic algorithms), or deterministic solvers that may fail in some cases due,
for example, to a computational budget.

Note also that the choice of the random variable pk and of the subspace dimension
dk provide some flexibility in the algorithm. For pk , possibilities include:
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• pk = p: all the random embeddings explored are drawn at the same point (in case
p is a fixed vector in X ), or according to the same distribution (if p is a random
variable),

• the sequence p0, p1, . . . can be constructed dynamically during the optimization,
e.g., based on the information gathered so far on the objective. For example,
one may choose pk = xkopt , where xkopt is the best point found up to the kth
embedding:

xkopt := argmin{ f (x1), f (x2), . . . , f (xk)}. (5.2)

Note that (R̃PX k) is always feasible for all choices of pk ( y = 0 is feasible since
p̃k ∈ X ). However, it may happen that this is the only feasible point of (R̃PX k); to
avoid this situationwemay assume that pk is in the interior ofX . This latter assumption
is not needed for our convergence results to hold, but it is a desirable feature from a
numerical point of view. We expect this assumption to be satisfied in most problems
of interest.

Regarding the subspace dimension dk , one can for example choose a fixed value
based on the computational budget available for the reduced problem, or dk can be
progressively increased, using a warm start in each embedding. We refer the reader to
Sect. 8 for a numerical comparison of some of those strategies.

The termination Line 2 could be set to a given maximum number of embeddings, or
could check that no significant progress in decreasing the objective function has been
achieved over the last few embeddings, compared to the value f (x̃kopt ). For generality,
we leave it unspecified here.

6 Global convergence of X-REGO to a set of global �-minimizers

The convergence results presented in this paper extend the ones given in [20], in
which X-REGO (with fixed subspace dimension dk = d ≥ de for all k) is proven
to converge for functions with low-effective dimension de. Section 6.1 is devoted
to a generic convergence analysis of X-REGO, under generic assumptions on the
probability of ε-success of (RPX k) and on the probability of success of the solver
to find an approximate minimizer of its realisation (R̃PX k), while Sect. 6.2 presents
the application of these results to arbitrary Lipschitz-continuous objectives, building
on the results presented in the previous sections to show the validity of the ε-success
assumption.

6.1 A general convergence framework for X-REGO

This section recalls results in [20] that are needed for our main convergence results in
the next section.We show that xkopt defined in (5.2) converges to the set of ε-minimizers
Gε almost surely as k → ∞ (see Theorem 6.3). Intuitively, our proof relies on the
fact that any vector x̃k defined in (5.1) belongs to Gε if the following two conditions
hold simultaneously:
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(a) the reduced problem (RPX k) is (ε − λ)-successful in the sense of Definition 1.1,
namely,

f kmin ≤ f ∗ + ε − λ; (6.1)

(b) the reduced problem (R̃PX k) is solved (by a deterministic/stochastic algorithm)
to an accuracy λ ∈ (0, ε) in the objective function value, namely,

f (Ak yk + pk−1) ≤ f kmin + λ (6.2)

holds (at least) with a certain probability, that is independent of k.

Note that in order to prove convergence ofX-REGO to (global) ε-minimizers, the value
of ε in the success probability of the reduced problem (RPX ) needs to be replaced by
(ε − λ). This change is motivated by the fact that we allow inexact solutions (up to
accuracy λ) of the reduced problem (R̃PX k). We also emphasize that, according to the
discussion in Sect. 5, and for the sake of generality, the parameter pk in (RPX k) is now
a random variable (in contrast with Sect. 4 where it was assumed to be deterministic).

Let us introduce two additional random variables that capture the conditions in (a)
and (b) above,

Rk = 1{(RPX k) is (ε − λ)-successful in the sense of (6.1)}, (6.3)

Sk = 1{(RPX k) is solved to accuracy λ in the sense of (6.2)}, (6.4)

where 1 is the usual indicator function for an event.
Let Fk = σ(A1, . . . , Ak, y1, . . . , yk, p0, . . . , pk) be the σ -algebra generated by

the random variables A1, . . . , Ak, y1, . . . , yk, p0, . . . , pk (a mathematical concept
that represents the history of theX-REGO algorithm aswell as its randomness until the
kth embedding)9, with F0 = σ( p0). We also construct an ‘intermediate’ σ -algebra,
namely,

Fk−1/2 = σ(A1, . . . , Ak−1, Ak, y1, . . . , yk−1, p0, . . . , pk−1),

withF1/2 = σ( p0, A1). Note that xk , Rk and Sk areFk-measurable10, and Rk is also
Fk−1/2-measurable; thus they are well-defined random variables.

Remark 6.1 The randomvariables A1, . . . , Ak , y1, . . . , yk , x1, . . . , xk , p0, p1, . . . , pk ,
R1, . . . , Rk , S1, . . . , Sk are Fk-measurable since F0 ⊆ F1 ⊆ · · · ⊆ Fk .
Also, A1, . . . , Ak , y1, . . . , yk−1, x1, . . . , xk−1, p0, p1, . . . , pk−1, R1, . . . , Rk ,
S1, . . . , Sk−1 are Fk−1/2-measurable since F0 ⊆ F1/2 ⊆ F1 ⊆ · · · ⊆ Fk−1 ⊆
Fk−1/2.

9 A similar setup regarding random iterates of probabilistic models can be found in [5, 17] in the context
of local optimization.
10 Itwould be possible to restrict the definition of theσ -algebraFk so that it contains strictly the randomness
of the embeddings Ai and pi for i ≤ k; then we would need to assume that yk is Fk -measurable, which
would imply that Rk , Sk and xk are also Fk -measurable. Similar comments apply to the definition of
Fk−1/2.
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We introduce the following (weak) assumption on the solver. Namely, we require
that the reduced problem (RPX k) needs to be solved to required accuracy with some
positive probability.

Assumption Success-Solv For all k ≥ 1, there exists ρk ∈ [ρlb, 1], with ρlb > 0 such
that11

P[Sk = 1|Fk−1/2] = E[Sk |Fk−1/2] ≥ ρk,

i.e., with (conditional) probability at least ρk ≥ ρlb, the solution yk of (RPX k) satisfies
(6.2).12

Remark 6.2 If a deterministic (global optimization) algorithm is used to solve (R̃PX k),
then Sk is always Fk−1/2

k -measurable and Assumption Success-Solv is equivalent to
Sk ≥ ρk > 0. Since Sk is an indicator function, this further implies that Sk ≡ 1.

The next assumption says that the drawn subspaces are (ε − λ)-successful with a
positive probability.

Assumption Succes-Emb For all k ≥ 1, there exists τ k ∈ [τlb, 1], with τlb > 0 such
that

P[Rk = 1|Fk−1] = E[Rk |Fk−1] ≥ τ k, (6.5)

i.e., with (conditional) probability at least τ k ≥ τlb > 0, (RPX k) is (ε−λ)-successful.
Note that Assumption Success-Solv and Assumption Succes-Emb have been

slightly modified compared to [20]: here, the dimension of the reduced problem is
varying, so in general the probabilities of success of the solver and embedding depend
on k as well. Under Assumption Success-Solv and Assumption Succes-Emb, the fol-
lowing result shows the convergence of X-REGO to the set of ε-minimizers.

Theorem 6.3 (Global convergence) Suppose Assumption Success-Solv and Succes-
Emb hold. Then,

lim
k→∞ P[xkopt ∈ Gε] = lim

k→∞ P[ f (xkopt ) ≤ f ∗ + ε] = 1 (6.6)

where xkopt and Gε are defined in (5.2) and (2.1), respectively. Furthermore, for any
ξ ∈ (0, 1),

P[xkopt ∈ Gε] = P[ f (xkopt ) ≤ f ∗ + ε] ≥ ξ for all k ≥ Kξ , (6.7)

where Kξ :=
⌈ | log(1 − ξ)|

τlbρlb

⌉
.

11 The equality in the displayed equation follows from E[Sk |Fk−1] = 1 · P[Sk = 1|Fk−1] + 0 · P[Sk =
0|Fk−1].
12 In general, ρk will depend on the dimension dk of the kth random embedding.

123



Global optimization using random embeddings 807

Proof The proof is a straightforward extension of the one given in [20], and can be
found in the preprint version of this work, see [19, Appendix B]. ��
Remark 6.4 If the original problem (P) is convex (and known a priori to be so), then
clearly, a local (deterministic or stochastic) optimization algorithm may be used to
solve (R̃PX k) and achieve (6.2).Apart from this important speed-up and simplification,
it seems difficult at present to see how else problem convexity could be exploited in
order to improve the success bounds and convergence of X-REGO.

6.2 Global convergence of X-REGO for general objectives

The previous section provides a convergence result, with associate convergence rate,
that depends on some parameters ρlb and τlb defined in Assumption Success-Solv and
Succes-Emb. The former intrinsically depends on the solver used to solve the reduced
subproblems, and will not be discussed further here. However, the latter parameter τlb
can be estimated for general Lipschitz-continuous objectives using the results derived
in Sect. 4.We also introduce some parameter dlb, which is simply a lower bound on the
subspace dimension explored in the algorithm (i.e., dk ≥ dlb for all k). If the subspace
dimensions are chosen arbitrarily, simply set dlb = 1.

Corollary 6.5 Let Assumption LipC hold, x∗ be the point in Assumption FeasBall
(replacing ε by ε − λ in Assumption FeasBall), p̃k satisfy ‖ p̃k − x∗‖ ≤ Rmax for
all k and for some suitably chosen Rmax, and dk ≥ dlb for some dlb > 0. Then,
Assumption Succes-Emb holds with

τlb = τ(rmin, dlb, D),

with rmin = (ε − λ)/(LRmax).

Proof Let us first recall that for all k, there holds by Corollary 4.2:

P[(RPX k) is (ε − λ)-successful] ≥ P[QLdk ∩ CircD(α∗
p̃k−1) �= {0}],

where Q is a D × D random orthogonal matrix drawn uniformly from the set of all
D × D real orthogonal matrices, Ldk a d

k-dimensional linear subspace, and α∗
p̃k−1 :=

arcsin((ε − λ)/‖x∗ − p̃k−1‖). Let α∗
min := arcsin((ε − λ)/(LRmax)), and note that

α∗
min ≤ α∗

p̃k−1 for all k. By Lemma 3.7, for any α∗
min ≤ α ≤ π/2, there holds

CircD(α∗
min) ⊆ CircD(α) so that

P[QLdk ∩ CircD(α∗
p̃k−1) �= {0}] ≥ P[QLdk ∩ CircD(α∗

min) �= {0}]

for all k. By the Crofton formula, there holds

P[QLdk ∩ CircD(α∗
min) �= {0}] = 2hD−dk+1.
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By [3, Prop. 5.9], hk ≥ hk+1 for all k = 0, . . . , D − 1. We deduce that

P[QLdk ∩ CircD(α∗
min) �= {0}] = 2hD−dk+1 ≥ 2hD−dlb+1.

Using the fact that the intrinsic volumes are all non-negative, and the definition of hk ,
we get:

P[QLdk ∩ CircD(α∗
min) �= {0}] ≥ 2vD−dlb+1 = τ(rmin, dlb, D).

Note finally that, in terms of conditional expectation, we can write E[Rk |Fk−1] =
1 · P[Rk = 1|Fk−1] + 0 · P[Rk = 0|Fk−1] ≥ τlb. This shows that (6.5) in Assump-
tion Succes-Emb holds. ��

We now estimate the rate of convergence of X-REGO for Lipschitz continuous
functions using the estimates for τ provided in Corollary 4.7.

Theorem 6.6 Let Assumptions LipC and Success-Solv hold, x∗ be the point in Assump-
tion FeasBall (replacing ε by ε − λ in Assumption FeasBall), p̃k satisfy ‖ p̃k − x∗‖ ≤
Rmax for all k and for some suitably chosen Rmax, and dk ≥ dlb for some dlb > 0.
Then, xkopt defined in (5.2) converges to the set of ε-minimizers Gε almost surely as
k → ∞, and

P[xkopt ∈ Gε] = P[ f (xkopt ) ≤ f ∗ + ε] ≥ ξ for all k ≥ Kξ ,

with

Kξ = |log(1 − ξ)|
ρlb

O

(
D

2−dlb
2

(
LRmax

ε − λ

)D−dlb
)

as D → ∞. (6.8)

Proof The result follows from Theorem 6.3, Corollary 6.5 and Corollary 4.7. ��

6.3 Ensuring boundedness of p̃k

So far, our convergence results rely on the assumption that, for each k, ‖ p̃k − x∗‖ ≤
Rmax for some suitably chosen Rmax and for some global minimizer x∗ surrounded by
a ball of radius (ε−λ) of feasible solutions, see Assumption FeasBall. We show in this
section that the following strategies for choosing the random variable pk guarantee
that xkopt defined in (5.2) converges to the set of ε-minimizers Gε almost surely as
k → ∞.

1. pk is deterministic and does not vary with k (e.g., pk = 0 for all k).
2. ( pk)k=1,2,... is a bounded sequence of deterministic values.
3. pk is any random variable with support contained in X , and X is bounded.
4. pk is a random variable defined as pk = xkopt , where x

k
opt is the best point found

over the k first embeddings, see (5.2), and the objective is coercive.
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Note that for the strategies 6.3, 6.3 and 6.3, the validity of Theorem 6.6 follows
simply from the triangular inequality:

‖ p̃k − x∗‖ ≤ ‖ p̃k‖ + ‖x∗‖ < ∞,

and the fact that ‖ p̃k‖ is bounded. We prove next that xkopt defined in (5.2) converges
to the set of ε-minimizers Gε almost surely as k → ∞ for strategy 6.3 if the objective
is coercive.

Assumption 6.7 (Coerciveness, see [6])WhenX is unbounded, the (continuous) func-
tion f : X → R in (P) satisfies

lim‖x‖→∞ f (x) = ∞. (6.9)

Corollary 6.8 Let Assumption 6.7 hold, and let x∗ be a global minimizer of (P). Let
pk = xkopt for k ≥ 1, with xkopt defined in (5.2), and let p0 ∈ X be such that

f ( p̃0) < ∞. Then, there exists Rmax < ∞ such that, for all k,

‖ p̃k − x∗‖ ≤ Rmax. (6.10)

Proof Note that the sequence ( f ( p̃k))k=0,1,2,... is decreasing by definition of the ran-
dom variable xkopt . Therefore, for all k there holds

f ( p̃k) ≤ f ( p̃0) < ∞.

By coerciveness of f , there exists R < ∞ such that for any deterministic vector
y ∈ X , ‖ y‖ > R implies f ( y) > f ( p̃0). We deduce that ‖ p̃k‖ < R for all k,
so that ‖ p̃k − x∗‖ ≤ ‖ p̃k‖ + ‖x∗‖ ≤ R + ‖x∗‖. The result follows by writing
Rmax = R + ‖x∗‖. ��
Corollary 6.9 Let Assumptions LipC, Success-Solv and 6.7 hold, x∗ be the point in
Assumption FeasBall (replacing ε by ε − λ in Assumption FeasBall), and pk = xkopt
for k ≥ 1, with xkopt defined in (5.2), and let p0 ∈ X be such that f ( p̃0) < ∞. Let

dk ≥ dlb for some dlb > 0. Then, xkopt converges to the set of ε-minimizers Gε almost
surely as k → ∞, and there exists Rmax such that

P[xkopt ∈ Gε] = P[ f (xkopt ) ≤ f ∗ + ε] ≥ ξ for all k ≥ Kξ ,

with

Kξ = |log(1 − ξ)|
ρlb

O

(
D

2−dlb
2

(
LRmax

ε − λ

)D−dlb
)

as D → ∞. (6.11)

Proof The result follows from Theorem 6.6 and Corollary 6.8. ��
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Note that Corollary 6.9 provides us with a worst case convergence bound, as for
each iteration k, the random subspace dimension dk and the probability to solve to
λ-accuracy the reduced problem (RPX k) have been lower bounded by dlb and ρlb,
respectively. We also remind the reader that this rate involves a lower bound, derived
in Sect. 4, on the probability of (RPX k) to be ε-successful, which is in general not
tight either.

Remark 6.10 Note that our convergence results still hold if we relax the global Lips-
chitz continuity requirement, and assume instead that f is Lipschitz continuous in a
sufficiently large neighbourhood of an arbitrary global minimizer x∗ of (P). Indeed,
if f is Lipschitz continuous, with constant L , in an open ball of radius δ > ε/L
centered at x∗, and where x∗ is the point in Assumption FeasBall. One can check that
Proposition 2.2, and consequently, our convergence analysis, hold.

7 Applying X-REGO to functions with low effective dimensionality

Recent papers [15, 20] explore random embedding algorithms for functions with low
effective dimension, that only vary over a subspace of dimension de < D, and address
respectively the case X = R

D and X = [−1, 1]D . Both papers assume that the
dimension of the random subspace d in (RPX ) is the same or exceeds the effective
dimension de, and derive bounds on the probability of (RPX ) to be ε-successful in
that setting; these bounds are then used to prove convergence of respective random
subspace methods. For the remainder of this paper, we explore the use of X-REGO
for unconstrained global optimization of functions with low effective dimension, for
any random subspace dimension d, thus removing the assumption d ≥ de. To prove
convergence of X-REGO in that setting, we rely on the results derived in Sect. 4.

7.1 Definitions and existing results

Definition 7.1 (Functions with low effective dimensionality, see [68]) A function
f : R

D → R has effective dimension de < D if there exists a linear subspace T
of dimension de such that for all vectors x� in T and x⊥ in T ⊥ (the orthogonal
complement of T ), we have

f (x� + x⊥) = f (x�), (7.1)

and de is the smallest integer satisfying (7.1).

The linear subspaces T and T ⊥ are respectively named the effective and constant
subspaces of f . In this section, we make the following assumption on the function f .

Assumption LowED The function f : R
D → R has effective dimensionality de

with effective subspace13 T and constant subspace T ⊥ spanned by the columns of
the orthonormal matrices U ∈ R

D×de and V ∈ R
D×(D−de), respectively. We write

13 Note that T in Assumption LowED may not be aligned with the standard axes.
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x� = UUT x and x⊥ = VV T x, the unique Euclidean projections of any vector
x ∈ R

D onto T and T ⊥, respectively.
As discussed in [20], functions with low effective dimension have the nice property

that their global minimizers are not isolated: to any global minimizer x∗ of (P), with
Euclidean projection x∗� on the effective subspace T , one can associate a subspace
G∗ on which the objective reaches its minimal value. Indeed, writing

G∗ = {x∗� + Vh : h ∈ R
D−de }, (7.2)

Assumption LowED implies that f (x) = f ∗ for all x ∈ G∗.
In the unconstrained case X = R

D , the exact global solution of a single reduced
problem (RPX ) with subspace dimension d ≥ de provides an exact global minimizer
of the original problem (P) with probability one, see [68, Theorem 2], [53, Rem. 2.22].
In the next section, we address the case d < de; in other words, de is unknown/not
known a priori.

7.2 Probability of success of the reduced problem for lower dimensional
embeddings

When d < de, we quantify the probability of the random embedding to contain a
(global) ε-minimizer. Similarly to the definition of G∗ above, one may associate to any
globalminimizer x∗ of (P) a connected setG∗

ε of ε-minimizers. Denoting the Euclidean
projection of x∗ on the effective subspace by x∗�, under Assumption LipC (Lipschitz
continuity of f ), G∗

ε is the Cartesian product of a de-dimensional ball (contained in
the effective subspace) by the constant subspace T ⊥ (see Assumption LowED):

G∗
ε := {x∗� + Ug + Vh : g ∈ R

de , ‖g‖ ≤ ε/L, h ∈ R
D−de }, (7.3)

where L is the Lipschitz constant of f . Indeed, let x := x∗�+Ug+Vh ∈ G∗
ε , for some

g ∈ R
de satisfying ‖g‖ ≤ ε/L and for some h ∈ R

D−de . Then, f (x) = f (x∗� +Ug)

by Assumption LowED, since Vh ∈ T ⊥. By Lipschitz continuity of f , we get:

f (x) = f (x∗� + Ug) ≤ f (x∗�) + L‖Ug‖ ≤ f ∗ + ε. (7.4)

As already discussed in Sect. 2, the reduced problem (RPX ) is ε-successful if the
random subspace p + range(A) intersects the set of approximate global minimizers,
which by Lemma 7.2 contains any connected components G∗

ε defined in (7.3) for some
global minimizer x∗ of (P). Figure 4 shows an abstract representation of the situation
where the random subspace p+range(A1) intersects the connected componentG∗

ε , the
corresponding embedding is therefore ε-successful; conversely, the random subspace
p + range(A2) does not intersect G∗

ε . If G∗
ε = Gε defined in (2.1), this implies that

the corresponding embedding is not ε-successful.
The following result further characterizes the probability of success of (RPX ).

Theorem 7.2 Let X = R
D, and let Assumptions LipC and LowED hold. Let A be a

D × d Gaussian matrix, p ∈ R
D be a fixed vector, ε > 0 an accuracy tolerance and
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Fig. 4 Abstract illustration of embeddings for functions with low effective dimension. The reduced problem
is ε-successful if the random subspace intersects the connected component G∗

ε

x∗ any global minimizer of (P) with associate connected component G∗
ε as in (7.3).

Then,
P[(RPX ) is ε-successful] ≥ P[ p + range(A) ∩ G∗

ε �= ∅],
= P[UT p + range(B) ∩ Bε/L(UT x∗) �= ∅],

where U is an orthonormal matrix whose columns span the effective subspace T (see
Assumption LowED), B := UT A, a de × d Gaussian matrix and Bε/L(UT x∗), the
de-dimensional ball of radius ε/L centered at UT x∗.

Proof The first inequality simply follows from (2.2) and from the fact that G∗
ε ⊆ Gε ,

see (7.4). For the second relationship, since the matrix Q := [
U V

]
(with V defined

in Assumption LowED) is orthogonal, for all y ∈ R
d

Ay + p = QQT (Ay + p) = [
U V

] [
UT

V T

]
(Ay + p) = (UUT + VV T )(Ay + p).

Writing B := UT A ∈ R
de×d and C := V T A ∈ R

(D−de)×d , we get for any global
minimizer x∗ of (P) (with associate Euclidean projection x∗� on the effective subspace)

Ay + p = U(B y + UT p) + V (C y + V T p) (7.5)

= x∗� + U(B y + UT p − UT x∗) + V (C y + V T p). (7.6)

By definition of G∗
ε , there follows that Ay + p ∈ G∗

ε if and only if B y + UT p ∈
Bε/L(UT x∗). By Theorem A.2, B is a de × d Gaussian matrix, which completes the
proof. ��

The probability of ε-success of (RPX ) can thus be lower bounded by the proba-
bility of the d-dimensional random subspace range(B) + UT p intersecting the ball
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Bε/L(UT x∗) in R
de . We now estimate the latter probability using the conic integral

geometry results presented inSects. 3 and4: the next result canbe seen as the immediate
counterpart of Theorems 4.3 and 4.4 for functions with low effective dimensionality.

Corollary 7.3 LetX = R
D, and let Assumptions LipC and LowED hold, with effective

dimension de > d. Let A be a D × d Gaussian matrix and ε > 0 an accuracy
tolerance. The following claims hold.

• Let p ∈ R
D \ Gε be a given vector, let r effp := ε/

(
L‖UT x∗ − UT p‖), where x∗

is any global minimizer of (P). Then,

P[(RPX ) is ε-successful] ≥ τ(r effp , d, de), (7.7)

where the function τ(r , d, de) for 0 < r < 1 is defined in (4.5).
• Let p ∈ R

D be a given vector that satisfies ‖UT p − UT x∗‖ ≤ Rmax, for some
suitably chosen Rmax, and let r effmin := ε/ (LRmax). Then

P[(RPX ) is ε-successful] ≥ τ(r effmin, d, de). (7.8)

Proof This result is a direct extension of the analysis in Sect. 4, and more precisely,
of Theorem 4.3 and Theorem 4.4, and is obtained by replacing A by B, x∗ by UT x∗,
p by UT p and D by de. ��
Note that adding some constraints (setting X ⊂ R

D) makes the analysis much
more complicated as even if a random subspace p + range(A) intersects G∗

ε , this
intersection may be outside the feasible domain; we therefore restrict ourselves to the
unconstrained case in this paper.

7.3 X-REGO for functions with low effective dimension

We present an X-REGO variant dedicated to the optimization of functions with low
effective dimension.This algorithmstarts by exploring an embeddingof lowdimension
dlb, assuming dlb ≤ de, and the dimension is progressively increased until capturing
the effective dimension of the problem, see Algorithm 2. Note that Line 3 to Line 6
are exactly the same as in Algorithm 1. Recall that [68, Theorem 2] guarantees that
the algorithm finds the global minimum of (P) with probability one if the reduced
problem is solved exactly and if dk ≥ de, so that in this ideal case we can terminate
the algorithm after de − dlb + 1 random embeddings; thus, Algorithm 2 terminates
in finitely many random embeddings. Since the effective dimension is unknown, we
typically terminate the algorithm when no progress is observed in the objective value,
see Sect. 8 for numerical illustrations.

7.4 Convergence of X-REGO for functions with low effective dimension

Similarly to Sects. 5 and 6, for each k, pk is a random variable. The particular case of a
deterministic pk is represented using a random variable whose support is a singleton.
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Algorithm 2 X-REGO for (P) when f has low effective dimension

1: Initialize d1 = dlb for some dlb ≥ 1 and p̃0 ∈ X
2: for k ≥ 1 until termination do
3: Run lines 3 to 6 in Algorithm 1.
4: Let dk+1 = dk + 1.
5: end for

To prove convergence of Algorithm 2 to an ε-minimizer while allowing the reduced
problems to be solved approximately, we again require the reduced problems to be
(ε −λ)-successful, see Assumption Success-Solv and Assumption Succes-Emb. Note
that unlike Sect. 6.2, the results below are finite termination results, as we know that
with an ideal solver, Algorithm 2 finds an ε-minimizer after at most de − dlb + 1
embeddings. Let us first show that Assumption Succes-Emb holds, and derive the
value of τlb.

Corollary 7.4 LetX = R
D, and let Assumptions LipC and LowED hold. Let p̃k satisfy

‖UT p̃k−UT x∗‖ ≤ Rmax for all k and for some suitably chosen Rmax and let dlb < de.
Then, Assumption Succes-Emb holds with

τlb = τ(r effmin, dlb, de),

with r effmin = (ε − λ)/(LRmax) and τ(·, ·, ·) defined in (4.5).

Proof For all embeddings such that dk < de, the proof is the same as for Corollary 6.5,
replacing D by de and rmin by r effmin. Note that if d

k ≥ de, (RPX ) is successful with
probability one according to [68, Theorem 2]. The result follows then simply from the
fact that 1 ≥ τ(rmin, dlb, de) = 2vde−dlb+1 (see the Gauss-Bonnet formula (3.4), and
the fact that the intrinsic volumes are nonnegative). ��

The following result proves convergence of Algorithm 2 to the set of ε-minimizers
almost surely after at most de − dlb + 1 random embedding. Note in particular that
this convergence result has no dependency on D.

Corollary 7.5 (Global convergence of X-REGO for functions with low effective
dimension) Let X = R

D, and let Assumptions LipC, Success-Solv and LowED hold.
Let p̃k satisfy ‖UT p̃k −UT x∗‖ ≤ Rmax for all k and for some suitably chosen Rmax.
Let ε > 0 be an accuracy tolerance.

• If dlb ≥ de,

P[ f (x1opt ) ≤ f ∗ + ε] > ρ1,

where xkopt is defined in (5.2) and ρk is the probability of success of the solver for

( ˜RPX k) (see Assumption Success-Solv). In particular, if the reduced problem is
solved exactly, then f (xkmax

opt ) ≤ f ∗ + ε with probability one.

123



Global optimization using random embeddings 815

• If dlb < de, let kmax = de − dlb + 1 be the index of the first embedding with
dimension de. Then

P[ f (xkmax
opt ) ≤ f ∗ + ε] > ρkmax .

• If dlb < de, let kmax = de − dlb + 1. For 1 ≤ k < kmax, we have

P[ f (xkopt ) ≤ f ∗ + ε] ≥ 1 − (1 − ρlbτlb)
k

where τlb = τ(r effmin, dlb, de), with τ(·, ·, ·) defined in (4.5) and r effmin = (ε −
λ)/(LRmax).

Proof Note that, by Corollary 7.4, Theorem 6.3 applies. However, since we are inter-
ested in finite termination results, we do not directly use Theorem 6.3; instead, we
extract the following claim from its convergence proof, see [19, Appendix B]. For all
K ≥ 1,

P[{xK
opt ∈ Gε}] ≥ 1 − �K

k=1(1 − τ kρk). (7.9)

It follows that

P[{xK
opt ∈ Gε}] ≥ 1 − (1 − τlbρlb)

K , (7.10)

where τlb and ρlb are computed/defined in Corollary 7.4 and Assumption Success-
Solv, respectively. Finally, if K ≥ kmax, it follows that dK ≥ de, so that the probability
of (RPX k) to be (ε − λ)-successful is equal to one according to [68, Theorem 2]. So,
if K ≥ kmax,

P[{xK
opt ∈ Gε}] ≥ 1 − (1 − ρK )�K−1

k=1 (1 − τ kρk) > 1 − (1 − ρK ), (7.11)

which concludes the proof. ��

8 Numerical experiments

Let us illustrate the behavior of X-REGO on a set of benchmark global optimization
problems whose objectives have low effective dimension. We show empirically that
Algorithm 2 simultaneously manages to accurately estimate the effective dimension
of the problem, and outperforms significantly (and especially in the high-dimensional
regime) the no-embedding framework, in which the original problem (P) is solved
directly, with no exploitation of the special structure.

8.1 The set-up of the numerical experiments

Test set. Our synthetic test set is very similar to the one we used in [15, 20], and
contains a set of benchmark global optimization problems adapted to have loweffective
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dimensionality in the objective as explained in Appendix B. Our test set is made of
18 D-dimensional functions with low effective dimension, with D = 10, 100 and
1000. These D-dimensional functions are constructed from18 low-dimensional global
optimization problems with known global minima (some of which are in the Dixon-
Szego test set [24]), by artificially adding coordinates and then applying a rotation so
that the effective subspace is not aligned with the coordinate axes.

Solver. The reduced problems are solved using the KNITRO solver [13]. Note that, by
default, KNITRO is a local solver, but switches to a global solver by activating its mul-
tistart feature. We therefore consider three “KNITRO”-type solvers: local KNITRO
(no multistart used, referred to as KNITRO), and multistart KNITRO with a low/high
number of starting points (cheap or expensive versions of multistart KNITRO, referred
to here as ch-mKNITRO and exp-mKNITRO, respectively). The higher the number of
starting points, the more likely the solver is to find a global minimizer of the reduced
problem. See Table 1 for a detailed description of the settings of the different solvers.

Algorithms using a global solver (ch-mKNITRO and exp-mKNITRO). We test
two different instances of the algorithmic framework presented in Algorithm 2 against
the no-embedding framework, inwhich (P) is solved directlywithout using any random
embedding and with no explicit exploitation of its special structure. For each instance,
we let dlb = 1. Since the effective dimension of the problem is assumed to be unknown,
termination in Algorithm 2 is defined as the first embedding onwhich either stagnation
is observed in the computed optimal cost of the reduced problem (R̃PX k), or if not,
until dk = D. Objective stagnation is measured as follows: stop after k f embeddings,
where k f is the smallest k ≥ 2 that satisfies

∣∣∣ f ( Ãk
ỹk + p̃k−1) − f ( Ã

k−1
ỹk−1 + p̃k−2)

∣∣∣ ≤ γ = 10−5. (8.1)

If k f ≤ D, we let deste := k f − 1 be our estimate of the effective dimension of the
problem. Indeed, it follows from the paragraph after (7.2) that, two randomly-reduced
problems of dimension d and d + 1 with d ≥ de have the same optimal cost with
probability one, so that the left-hand side of (8.1)would be zero if the reduced problems
were solved exactly (i.e., under the assumption of an ideal solver). We argue that, on
the other hand, it is very unlikely that two randomly-reduced problems of dimension
d and d + 1 with d < de have the same optimal cost.14 We therefore terminate the
algorithm after either k = k f (if there exists k f ≤ D satisfying (8.1)), or else k = D
random embeddings. Regarding the choice of pk , we consider two possibilities: either
pk is a vector that does not depend on k, or pk is the best point found over the k first
embeddings (i.e., pk = xkopt ).

Algorithms relying on a local solver (KNITRO) and a resampling strategy. We
also compare several instances of Algorithm 2 with the no-embedding framework
when the reduced problem is solved using a local solver. Note that due to the possible

14 Admittedly, when optimizing difficult functions, for example that are flat almost everywhere and very
steep around the minimizer, it could happen that two successive reduced problems of dimension d and
d + 1, with d < de , have the same optimal cost though none of them intersects the set of ε-minimizers.
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nonconvexity of the problem, running a local solver on the original problem is not
expected to find the global minimizer; results combining the no-embedding frame-
work with a local solver are thus only reported for comparison. Recall also that our
convergence analysis requires the solver to be able to find an approximate global min-
imizer of the subproblem with a sufficiently high probability. We show numerically
that local solvers can be used when the points pk are suitably chosen to globalize the
search; we typically let pk , for some indices k, be a random variable with a sufficiently
large support to contain a global minimizer of (P). Similarly as with global solvers, let
k f be the smallest k ≥ 2 that satisfies (8.1), and, if k f ≤ D, let deste := k f − 1 be our
estimate of the effective dimension of the problem. However, since the solver is local,
we cannot assume that (8.1) implies that we found an approximate global minimizer of
the original problem (P). We therefore continue the optimization, fixing the subspace
dimension: dk = deste for all k > k f , and assuming that pk will be such that the next
random subspace will leave the basin of attraction of the actual local minimizer. To
prevent against local solutions, we use a stronger stopping criterion: the algorithm is
stopped either after D embeddings, or earlier, when k > k f and when the computed
optimal cost of the reduced problem did not change significantly over the last nstop
random embeddings, i.e., if

f
(
x
k−nstop+1
opt

)
− f (xkopt ) ≤ γ = 10−5. (8.2)

In our experiments, we considered two possibilities: nstop = 3 or nstop = 5. Here
again, we consider two main strategies for choosing pk : either pk does not depend on
k (e.g., pk is an identically distributed random variable, for all k), or pk is the best
point found over the past embeddings ( pk = xkopt ), resampling pk at random in a
sufficiently large domain for some values of k, see below.

Summary of the algorithms: In total, we compare four instances of Algorithm 2,
that correspond to specific choices of pk , k ≥ 0, and on the choice of a local/global
solver.

– Adaptive X-REGO (A-REGO). In Algorithm 2, the reduced problem is solved
using a global solver and the point pk is chosen as the best point found15 up to the
kth embedding: pk := Ak yk + pk−1.

– Local adaptive X-REGO (LA-REGO). In Algorithm 2, the reduced problem
(R̃PX k) is solved using a local solver (instead of global as in A-REGO). Until
we find the effective dimension (i.e., for k < k f ), we use the same update rule for
pk as in A-REGO: pk := Ak yk + pk−1. For the remaining embeddings, the point
pk is chosen as follows: pk = Ak yk + pk−1 if | f (Ak yk + pk−1) − f ( pk−1)| >

γ = 10−5, and pk is draw uniformly in [−1, 1]D otherwise, to compensate for
the local behavior of the solver16.

15 If the reduced problem ( ˜RPX k ) is solved using a global solver, then f ( p̃k ) ≤ f ( p̃k−1) since p̃k−1

belongs to the search space of ( ˜RPX k ), so that we are indeed keeping the best point found so far. If we are

using a local solver, we always initialize y = 0 when solving ( ˜RPX k ), so that the same conclusion holds.
16 We know, from the way we have constructed the test set, that for each problem there exists a global
minimizer that belongs to [−1, 1]D .
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– Nonadaptive X-REGO (N-REGO). In Algorithm 2, the reduced problem is solved
globally, and all the random subspaces are drawn at some fixed point: pk = a.
The fixed value a is simply defined as a realization of a random variable uniformly
distributed in [−1, 1]D .17

– Local nonadaptive X-REGO (LN-REGO). In Algorithm 2, the reduced problem
(R̃PX k) is solved using a local solver. Until we find the effective dimension (i.e.,
for k < k f ), we set pk = a, with a as in N-REGO. For k ≥ k f , pk is a random
variable distributed uniformly in [−1, 1]D (and resampled at each embedding), to
compensate for the local behavior of the solver.

Note that, regarding the choice of pk when using a local solver, we typically have
two phases. In the first phase, we apply the same selection rules for pk , k < k f , as
when using a global solver. For k ≥ k f , we allow resampling to avoid the algorithm
to be trapped at a local minimizer. We do not introduce some resampling in the first
phase, because then stochasticity would impact the criterion (8.1) and our estimate of
the effective dimension of the problem.

Experimental setup. For each algorithm described above, we solve the entire test set
three times. For each problem in the test set, we note whether a true global minimum
was found and record the number of function evaluations used (the termination crite-
rion is described above). Note that from the four algorithms described above,we get six
different algorithms, since algorithms A-REGO and N-REGO are endowed with two
different global solvers: exp-mKNITRO and ch-mKNITRO, corresponding respec-
tively to a low and large number of starting points. To compare with ‘no-embedding’,
we solve the full-dimensional problem (P) directly with the corresponding solver with
no use of random embeddings. The budget and termination criteria used to solve
(R̃PX k) within X-REGO or to solve (P) in the ‘no-embedding’ framework are the
default ones, summarized in Table 1.

Remark 8.1 The experiments were coded and run in MATLAB on the 16 cores (2× 8
Intel with hyper-threading) Linux machines with 256GB RAM and 3300 MHz speed.

We present the main numerical results using Dolan andMoré’s performance profile
[26] — a popular framework to compare the performance of optimization algorithms
applied to a given test set. For a given algorithmA, and for each function f in the test
set S, we define

N f (A) := min. # of fun. evals required by the algorithm to converge.

If A fails to successfully converge to a ε-minimizer of f , with ε = 10−3, within the
maximum computational budget, we set N f (A) = ∞. We further define

N∗
f := min

A
N f (A),

17 One could take simply p = 0, but due to the way we have constructed the problem set, setting p = 0
may give some advantage to the algorithm, so we let pk = a instead, where a is a random variable drawn
once at the beginning of the algorithm.

123



820 C. Cartis et al.

Table 2 Average number of embeddings per problem, estimated from 3 independent runs of the algorithms
on the test set

KNITRO (nstop = 3) KNITRO (nstop = 5) Ch-mKNITRO Exp-mKNITRO
LA-REGO LN-REGO LA-REGO LN-REGO A-REGO N-REGO A-REGO N-REGO

D = 10 5.96 6.59 7.87 8.07 4.78 5.19 4.70 4.89

D = 100 6.41 7.81 9.09 9.33 4.76 8.94 4.70 5.63

D = 1000 6.26 9.15 8.54 10.83 4.67 7.17 4.67 6.67

as the minimal computational cost required by any algorithm to optimize f . We nor-
malize all the computational costs by N∗

f and, for each A, we plot a function πA(α)

that computes the proportion of f ’s in the test set S, for which the normalized com-
putational effort spent by A was less than α. Mathematically speaking,

πA(α) := |{ f : N f (A) ≤ αN∗
f }|

|S| for α ≥ 1,

where | · | denotes the cardinality of a set. The algorithm A is considered to have
achieved better performance if it produces higher values for πA(α) for lower values
of α, i.e., on figures, the curve πA(α) is higher and lefter.

8.2 Numerical results

Comparison of X-REGO with the no-embedding framework. The comparison
between the above-mentioned instances ofX-REGOand the no-embedding framework
is given in Fig. 5. A-REGOandN-REGOclearly outperform the no-embedding frame-
work in terms of accuracy vs computational cost, especially for large D. Reducing
the number of starting points in the multistart strategy (i.e., replacing exp-mKNITRO
by ch-mKNITRO) allows to further significantly improve the performance, though
the total proportion of problems ultimately solved is slightly decreased compared to
exp-mKNITRO. Note also that the use of a local solver (LA-REGO and LN-REGO)
outperforms both global X-REGO instances and the no-embedding framework, espe-
cially for large D. They find the global minimizer in a significantly higher number
of subproblems than when directly addressing the original high-dimensional problem
with the local solver: the resampling strategy for pk described above helps to glob-
alize the search. Table 2 contains the average, over the test problems, of the number
of embeddings used per algorithm; note that for (approximately) global solvers, and
especially using pk = xkopt , the average number of embeddings is very close to the
ideal k f . Indeed, the average effective dimension on our problem sets is equal to 3.7,
so the ideal average number of embeddings should be 4.7, as we need an additional
embedding for the stopping criterion (8.1) to be satisfied. For local solvers, the aver-
age number of embeddings is slightly higher due to the need to resample candidate
solutions to globalize the search and due to the stronger stopping criterion.
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Global optimization using random embeddings 821

Fig. 5 Comparison between the X-REGO algorithms and ‘no-embedding’ with KNITRO. Each algorithm
was run three times on the whole dataset; since all three runs returned similar curves, we display only one
of them

Estimation of the effective dimension. As described earlier, instances of X-REGO
naturally provide an estimate deste of the effective dimension of the problem: deste =
k f − 1, where k f is the smallest integer that satisfies (8.1). In case there exists no
k f ≤ D satisfying (8.1), we set deste = D. For several instances of Algorithm 2, Table
3 reports the number of problems of the data set on which deste ∈ [de, de+2], where de
is the exact effective dimension of the problem, for D = 10, D = 100 and D = 1000.
Typically, adaptive choices of pk result in a slightly larger estimate of the effective
dimension; we expect this to be a consequence of the fact that pk is varying, inducing
more variability when evaluating criterion (8.1) than for non-adaptive variants, for
which case pk is fixed. We also note that the use of a local solver is comparable to a
global one regarding the ability of the algorithm to estimate the effective dimension
on this problem set when pk is chosen adaptively, and significantly lower otherwise
(Table 5 and 6). The values given in Table 3,5 and 6 have been averaged over three
independent runs of our experiment, on the whole dataset, to account for randomness
in the algorithms.

What if we know the effective dimension of the problem? In the favorable situa-
tion when the effective dimension de of each problem is known, we can set dlb = de
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Table 3 Percentage of problems for which the estimated effective dimension lies in the interval [de, de +2]
, where de is the true effective dimension of the problem

LA-REGO LN-REGO A-REGO N-REGO A-REGO N-REGO
KNITRO KNITRO ch-mKNITRO ch-mKNITRO exp-mKNITRO exp-mKNITRO

D = 10 94.44 79.63 94.44 83.33 94.44 88.89

D = 100 94.44 68.52 94.44 79.63 94.44 85.19

D = 1000 94.44 66.67 88.89 81.48 90.74 85.19

in Algorithm 2, and theoretically, for an ideal global solver, Algorithm 2 is guaran-
teed to solve exactly the original problem using one embedding. Figure 6 explores
numerically the validity of this claim. We compare several instances of X-REGOwith
corresponding counterparts, where the effective dimension is known. When using
an (approximately) global solver (ch-mKNITRO or exp-mKNITRO), we stop Algo-
rithm 2 after one embedding of dimension de. When the solver is local (KNITRO), we
let Algorithm 2 explore several embeddings of dimension de, and stop the algorithm
when (8.2) is satisfied, with nstop = 3, or otherwise after 50 embeddings. Figure 6
shows the corresponding performance profiles, when comparing these strategies with
the ones presented on Fig. 4, and the corresponding no-embedding algorithms. In
general, and except when using local solvers, knowing de allows to solve a signif-
icant proportion of the problems in a considerably smaller time. Admittedly, these
conclusions strongly depend on the probability of the solver to be successful, i.e., of
the number of starting points of the multistart procedure. Note also than in our test
set, the effective dimension is typically low (average value is 3.7), which might also
decrease the benefit of knowing the effective dimension and thus avoiding to explore
lower-dimensional subspaces; we expect the gap between Algorithm 2 and algorithms
where de is known to increase with the effective dimension of the problem.

8.3 Conclusions to numerical experiments

We have compared several instances of Algorithm 2 with the no-embedding frame-
work, where the original problem is addressed directly, with no use of random
embeddings nor exploitation of the special structure. Overall, Algorithm 2 outper-
forms the no-embedding framework, and this observation becomes more and more
apparent when the dimension of the original problem increases. We have also com-
bined Algorithm 2 with a local solver; though our convergence theory does not cover
this situation, we have shown that the resulting algorithm can outperform both the
no-embedding framework and instances of Algorithm 2 relying on global solver when
the parameters pk are sampled at random in a sufficiently large domain to “global-
ize” the search. Regarding the estimation of the effective dimension, we noticed that
instances of Algorithm 2 relying on adaptive rules for selecting pk (A-REGO and LA-
REGO) significantly outperform their fixed pk counterparts. Finally, we have shown
that, in the favourable case when the effective dimension is known, letting dlb ≥ de
in Algorithm 2 leads to a substantial improvement in performance.
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Fig. 6 Comparison ofX-REGOwith no-embedding, and variants ofX-REGO inwhich the random subspace
dimension is equal to the effective dimension (assumed to be known)

9 Conclusions and future work

We explored a generic algorithmic framework, X-REGO, for global optimization of
Lipschitz-continuous functions. X-REGO is based on successively generating reduced
problems (RPX ), where there is flexibility in the choice of the parameter p. Flexibility
in choosing p allows the user to calibrate the level of exploration of X .

Our central result is the proof of global convergence of X-REGO, that heavily relies
on an estimate of the probability of the reduced problem (RPX ) to be ε-successful.
By looking at the reduced problem through the prism of conic geometry, we have
developed a new type of analysis to bound the probability of ε-success of (RPX ).
The bounds are expressed in terms of the so-called conic intrinsic volumes of circular
cones which have exact formulae and thus are quantifiable. Using these formulae, we
analysed the asymptotic behaviour of the bounds for large D. The analysis suggests
that the success rate of (RPX ) (as expected) decreases exponentially with growing D.
Confirming our intuition, the analysis also shows that (RPX ) has a high success rate
for larger d and smaller distances between the location where subspaces are embedded
(i.e., the point p) and the location of a global minimizer x∗. This latter property of
(RPX ) for generalLipschitz continuous functions is remindful of the dependence of the
success rates of (RPX ) for functions with low effective dimensionality on the distance
between p� and x∗�, see [20]. Furthermore, to understand the relative performance
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of (RPX ), we compared it with a uniform sampling technique. We looked at lower
bounds for the probability of ε-success of the two techniques and found that the lower
bound τ(r p, d, D) for (RPX ) is greater than the lower bound τus for uniform sampling
if the distance ‖x∗ − p‖ is smaller than 0.48

√
D in the asymptotic regime (D → ∞).

In the asymptotic analysis, the embedding subspace d was kept fixed. The analysis
showed that in this regime d has no significant effect on the relative performance of
(RPX ). Future research may involve comparison of the performances of (RPX ) and
uniform sampling in different asymptotic settings, for example, when d = βD for
some fixed constant β.

Our derivations are conceptual in nature, exploring new connections of global opti-
mization to other areas such as conic integral geometry. As an illustration, in the
second part of the paper, we used our analysis to obtain lower bounds — that are
independent of D — for the probability of ε-success of (RPX ) for functions with low
effective dimensionality in the case d < de. This analysis is exploited algorithmically
and allows lifting the restriction of needing to know de for random embeddings algo-
rithms for functions with low effective dimensionality. We tested the effectiveness of
X-REGO numerically using global and local KNITRO for solving the reduced prob-
lem on a set of benchmark global optimization problemsmodified to have low effective
dimensionality. We proposed different variants of X-REGO each corresponding to a
specific rule for choosing p’s and contrasted them against each other and against the
‘no-embedding’ framework in which the solvers were applied to (P) directly with no
use of subspace embeddings. The results of the experiments showed that the difference
in performance between X-REGO and ‘no-embedding’ becomes more prominent for
larger D, in favour of X-REGO. The results further suggest that the effectiveness of
X-REGO, just like of REGO in [15], is solver-dependent. In our experiments, the
best results were achieved by the local solver. In the future, we plan to investigate
the performance of X-REGO when applied to general objectives and compare it with
popular global optimization solvers.
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A Technical definitions and results

A.1 Gaussian randommatrices

Definition A.1 (Gaussian matrix)AGaussian (random) matrix is a matrix whose each
entry is an independent standard normal random variable.
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Table 4 The problem set listed in alphabetical order

Function Domain Global minima

1) Beale [28] x ∈ [−4.5, 4.5]2 g(x∗) = 0

2) Branin [28] x1 ∈ [−5, 10] x2 ∈ [0, 15] g(x∗) = 0.397887

3) Brent [31] x ∈ [−10, 10]2 g(x∗) = 0

4) Easom [28] x ∈ [−100, 100]2 g(x∗) = −1

5) Goldstein-Price [28] x ∈ [−2, 2]2 g(x∗) = 3

6) Hartmann 3 [28] x ∈ [0, 1]3 g(x∗) = −3.86278

7) Hartmann 6 [28] x ∈ [0, 1]6 g(x∗) = −3.32237

8) Levy [61] x ∈ [−10, 10]6 g(x∗) = 0

9) Perm 4, 0.5 [61] x ∈ [−4, 4]4 g(x∗) = 0

10) Rosenbrock [61] x ∈ [−5, 10]7 g(x∗) = 0

11) Shekel 5 [61] x ∈ [0, 10]4 g(x∗) = −10.1532

12) Shekel 7 [61] x ∈ [0, 10]4 g(x∗) = −10.4029

13) Shekel 10 [61] x ∈ [0, 10]4 g(x∗) = −10.5364

14) Shubert [61] x ∈ [−10, 10]2 g(x∗) = −186.7309

15) Six-hump camel [61] x1 ∈ [−3, 3] x2 ∈ [−2, 2] g(x∗) = −1.0316

16) Styblinski-Tang [61] x ∈ [−5, 5]8 g(x∗) = −313.329

17) Trid [61] x ∈ [−25, 25]5 g(x∗) = −30

18) Zettl [28] x ∈ [−5, 5]2 g(x∗) = −0.00379

Gaussian matrices have been well-studied with many results available at hand; here,
we mention the following result that we use in the analysis; for a collection of results
pertaining to Gaussian matrices and other related distributions refer to [39, 65].

Theorem A.2 (see [39, Theorem 2.3.10]) Let A be a D × d Gaussian random matrix.
If U ∈ R

D×p, D ≥ p, and V ∈ R
d×q , d ≥ q, are orthonormal, then UT AV is a

Gaussian random matrix.

B Problem set

Table 4 contains the name, domain and global minimum of the functions used to
generate the high-dimensional test set. Similarly as in [15, 20], the problem set contains
18 problems taken from [28, 31, 61]. To generate this problem set, we transformed
each of the 18 functions in Table 4 into a high-dimensional function with low-effective
dimension, by adapting the method proposed by Wang et al. [68]. Let ḡ(x̄) be any
function from Table 4, with dimension de and let the given domain be scaled to
[−1, 1]de .We create a D-dimensional function g(x) by adding D−de fake dimensions
to ḡ(x̄), g(x) = ḡ(x̄) + 0 · xde+1 + 0 · xde+2 + · · · + 0 · xD . We further rotate the
function by applying a randomorthogonalmatrix Q to x to obtain a nontrivial constant
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subspace. The final form of the function we test is

f (x) = g(Qx). (B.1)

Note that the first de rows of Q now span the effective subspace T of f (x).
For each problem in the test set, we generate three functions f according to (B.1),

one for each D = 10, 100, 1000. Note that the range of effective dimension covered
by our test set is slightly larger than in [15, 20], to better assess the ability of the
algorithm to learn de (Tables 5, 6).

C Additional numerical experiments

Table 5 Percentage of problems for which the estimated effective dimension is (strictly) underestimated

LA-REGO LN-REGO A-REGO N-REGO A-REGO N-REGO
KNITRO KNITRO ch-mKNITRO ch-mKNITRO exp-mKNITRO exp-mKNITRO

D = 10 5.56 5.56 5.56 5.56 5.56 5.56

D = 100 5.56 5.56 5.56 5.56 5.56 5.56

D = 1000 5.56 5.56 11.11 5.56 9.26 5.56

Table 6 Percentage of problems for which the estimated effective dimension lies in the interval [de, de+1],
where de is the true effective dimension of the problem

LA-REGO LN-REGO A-REGO N-REGO A-REGO N-REGO
KNITRO KNITRO ch-mKNITRO ch-mKNITRO exp-mKNITRO exp-mKNITRO

D = 10 94.44 68.52 94.44 81.48 94.44 87.04

D = 100 94.44 59.26 92.59 64.81 94.44 81.48

D = 1000 94.44 61.11 88.89 75.93 90.74 81.48
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