
Mathematical Programming (2023) 199:1107–1178
https://doi.org/10.1007/s10107-022-01868-7

FULL LENGTH PAPER

Series A

Polynomial-time algorithms for multimarginal optimal
transport problems with structure

Jason M. Altschuler1 · Enric Boix-Adserà1

Received: 13 December 2020 / Accepted: 29 June 2022 / Published online: 16 August 2022
© The Author(s) 2022

Abstract
Multimarginal Optimal Transport (MOT) has attracted significant interest due to appli-
cations inmachine learning, statistics, and the sciences. However, inmost applications,
the success of MOT is severely limited by a lack of efficient algorithms. Indeed, MOT
in general requires exponential time in the number of marginals k and their support
sizes n. This paper develops a general theory about what “structure” makesMOT solv-
able in poly(n, k) time. We develop a unified algorithmic framework for solvingMOT
in poly(n, k) time by characterizing the structure that different algorithms require in
terms of simple variants of the dual feasibility oracle. This framework has several ben-
efits. First, it enables us to show that the Sinkhorn algorithm, which is currently the
most popular MOT algorithm, requires strictly more structure than other algorithms
do to solve MOT in poly(n, k) time. Second, our framework makes it much simpler
to develop poly(n, k) time algorithms for a given MOT problem. In particular, it is
necessary and sufficient to (approximately) solve the dual feasibility oracle—which
is much more amenable to standard algorithmic techniques. We illustrate this ease-of-
use by developing poly(n, k)-time algorithms for three general classes of MOT cost
structures: (1) graphical structure; (2) set-optimization structure; and (3) low-rank
plus sparse structure. For structure (1), we recover the known result that Sinkhorn
has poly(n, k) runtime; moreover, we provide the first poly(n, k) time algorithms for
computing solutions that are exact and sparse. For structures (2)-(3), we give the first
poly(n, k) time algorithms, even for approximate computation. Together, these three
structures encompass many—if not most—current applications of MOT.

Keywords Multimarginal optimal transport · Polynomial-time algorithms · Implicit
linear programming · Structured linear programs

Mathematics Subject Classification 90C08 · 90C06

Work partially supported by NSF GRFP 1122374, a TwoSigma PhD fellowship, and a Siebel Scholarship.

B Jason M. Altschuler
jasonalt@mit.edu

1 Laboratory for Information and Decision Systems (LIDS), MIT, Cambridge, MA 02139, US

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-022-01868-7&domain=pdf
http://orcid.org/0000-0001-7367-0097

1108 J. M. Altschuler and E. Boix-Adserà

Contents

1 Introduction . 1109
1.1 Contribution 1: unified algorithmic framework for MOT 1110

1.1.1 Answer to Q1: candidate poly(n, k)-time algorithms 1111
1.1.2 Answer to Q2: structure necessary to run candidate algorithms 1111
1.1.3 Answer to Q3: characterizing what MOT problems each algorithm can solve 1112
1.1.4 Answer to Q4: ease-of-use for checking if MOT is solvable in polynomial time . . . 1113
1.1.5 Practical algorithmic tradeoffs beyond polynomial-time solvability 1113

1.2 Contribution 2: applications to general classes of structured MOT problems 1114
1.2.1 Graphical structure . 1115
1.2.2 Set-optimization structure . 1116
1.2.3 Low-rank and sparse structure . 1117

1.3 Related work . 1119
1.3.1 MOT algorithms . 1119
1.3.2 Graphically structured MOT problems with constant treewidth 1120
1.3.3 Tractable MOT problems beyond graphically structured costs 1121
1.3.4 Intractable MOT problems . 1122
1.3.5 Variants of MOT . 1122
1.3.6 Optimization over joint distributions . 1123

1.4 Organization . 1123
2 Preliminaries . 1123

2.1 Multimarginal optimal transport . 1124
2.2 Regularization . 1125

3 Oracles . 1126
4 Algorithms to oracles . 1129

4.1 The Ellipsoid algorithm and the MIN oracle . 1129
4.1.1 Algorithm . 1130
4.1.2 Equivalence of bottleneck to MIN . 1131
4.1.3 Practical implementation via Column Generation 1133

4.2 The Multiplicative Weights Update and the AMIN oracle 1134
4.2.1 Algorithm . 1135
4.2.2 Equivalence of bottleneck to AMIN . 1137

4.3 The Sinkhorn algorithm and the SMIN oracle . 1140
4.3.1 Algorithm . 1141
4.3.2 Equivalence of bottleneck to SMIN . 1143

5 Application: MOT problems with graphical structure . 1145
5.1 Setup . 1145
5.2 Polynomial-time algorithms . 1147
5.3 Application vignette: Fluid dynamics . 1149

6 Application: MOT problems with set-optimization structure 1151
6.1 Setup . 1151
6.2 Polynomial-time algorithms . 1153
6.3 Application vignette: Network reliability with correlations 1156

7 Application: MOT problems with low-rank plus sparse structure 1159
7.1 Setup . 1160
7.2 Polynomial-time algorithms . 1161

7.2.1 Technical ingredients . 1162
7.2.2 Proof of Theorem 7.4 . 1166

7.3 Application vignette: Risk estimation . 1167
7.4 Application vignette: Projection to the transportation polytope 1169

8 Discussion . 1170
A Deferred proof details . 1171

A.1 Proof of Lemma 4.11 . 1171
A.2 Proof of Lemma 4.16 . 1173

B Additional numerical experiments . 1174
References . 1175

123

Polynomial-time algorithms for MOT 1109

1 Introduction

Multimarginal Optimal Transport (MOT) is the problem of linear programming over
joint probability distributions with fixed marginal distributions. In this way,MOT gen-
eralizes the classical Kantorovich formulation of Optimal Transport from 2 marginal
distributions to an arbitrary number k � 2 of them.

More precisely, anMOT problem is specified by a cost tensor C in the k-fold tensor
product space (Rn)⊗k = R

n ⊗ · · · ⊗ R
n , and k marginal distributions μ1, . . . , μk in

the simplex Δn = {v ∈ R
n
�0 : ∑n

i=1 vi = 1}.1 The MOT problem is to compute

min
P∈M(μ1,...,μk)

〈P, C〉 (MOT)

whereM(μ1, . . . , μk) is the “transportation polytope” consisting of all entrywise non-
negative tensors P ∈ (Rn)⊗k satisfying the marginal constraints

∑
j1,..., ji−1, ji+1,..., jk

Pj1,..., ji−1, j, ji+1,..., jk = [μi] j for all i ∈ {1, . . . , k} and j ∈ {1, . . . , n}.
ThisMOT problem has many applications throughout machine learning, computer

science, and the natural sciences since it arises in tasks that require “stitching” together
aggregate measurements. For instance, applications of MOT include inference from
collective dynamics [38, 49], information fusion for Bayesian learning [80], averag-
ing point clouds [2, 36], the n-coupling problem [76], quantile aggregation [60, 75],
matching for teams [28, 31], image processing [74, 79], random combinatorial opti-
mization [1, 50, 61, 65, 68, 89, 93], Distributionally Robust Optimization [30, 62, 66],
simulation of incompressible fluids [17, 26], and Density Functional Theory [16, 27,
32].

However, in most applications, the success ofMOT is severely limited by the lack of
efficient algorithms. Indeed, in general,MOT requires exponential time in the number
of marginals k and their support sizes n. For instance, applying a linear program solver
out-of-the-box takes nΘ(k) time becauseMOT is a linear programwith nk variables, nk

non-negativity constraints, and nk equality constraints. Specialized algorithms in the
literature such as the Sinkhorn algorithm yield similar nΘ(k) runtimes. Such runtimes
currently limit the applicability of MOT to tiny-scale problems (e.g., n = k = 10).
Polynomial-time algorithms forMOT. This paper develops polynomial-time algorithms
forMOT, where here and henceforth “polynomial” means in the number of marginals
k and their support sizes n—and possibly also Cmax/ε for ε-additive approximation,
where Cmax is a bound on the entries of C .

At first glance, thismay seem impossible for at least two “trivial” reasons.One is that
it takes exponential time to read the input cost C since it has nk entries. We circumvent
this issue by considering costs C with poly(n, k)-size implicit representations, which

1 For simplicity, all μi are assumed to have the same support size n. Everything in this paper extends in a
straightforward way to non-uniform sizes ni where nk is replaced by

∏k
i=1 ni , and poly(n, k) is replaced

by poly(maxi ni , k).

123

1110 J. M. Altschuler and E. Boix-Adserà

encompasses essentially allMOT applications.2 A second obvious issue is that it takes
exponential time to write the output variable P since it has nk entries. We circumvent
this issue by returning solutions P with poly(n, k)-size implicit representations, for
instance sparse solutions.

But, of course, circumventing these issues of input/output size is not enough to
actually solveMOT in polynomial time. See [6] for examples ofNP-hardMOTproblems
with costs that have poly(n, k)-size implicit representations.

Remarkably, for severalMOT problems, there are specially-tailored algorithms that
run in polynomial time—notably, forMOT problems with graphically-structured costs
of constant treewidth [47, 49, 82], variational mean-field games [15], computing gen-
eralized Euler flows [14], computing low-dimensional Wasserstein barycenters [7, 14,
29], and filtering and estimation tasks based on target tracking [38, 46, 47, 49, 77].
However, the number of MOT problems that are known to be solvable in polynomial
time is small, and it is unknown if these techniques can be extended to the many other
MOT problems arising in applications. This motivates the central question driving this
paper:

Are there general “structural properties” that make MOT solvable in poly(n, k) time?

This paper is conceptually divided into two parts. In the first part of the paper,
we develop a unified algorithmic framework for MOT that characterizes the structure
required for different algorithms to solve MOT in poly(n, k) time, in terms of simple
variants of the dual feasibility oracle. This enables us to prove that some algorithms
can solve MOT problems in polynomial time whenever any algorithm can; whereas
the popular Sinkhorn algorithm cannot. Moreover, this algorithmic framework makes
it significantly easier to design a poly(n, k) time algorithm for a given MOT problem
(when possible) because it now suffices to solve the dual feasibility oracle—and this
is much more amenable to standard algorithmic techniques. In the second part of the
paper, we demonstrate the ease-of-use of our algorithmic framework by applying it to
three general classes of MOT cost structures.

Below, we detail these two parts of the paper in Sects. 1.1 and 1.2, respectively.

1.1 Contribution 1: unified algorithmic framework forMOT

In order to understand what structural properties make MOT solvable in polynomial
time, we first lay a more general groundwork. The purpose of this is to understand the
following fundamental questions:

Q1 What are reasonable candidate algorithms for solving structured MOT problems
in polynomial time?

Q2 What structuremust anMOT problemhave for these algorithms to have polynomial
runtimes?

2 E.g., in the MOT problems of Wasserstein barycenters, generalized Euler flows, and Density Functional
Theory,C has entriesC j1,..., jk = ∑k

i,i ′=1 gi,i ′ (ji , ji ′) and thus can be implicitly input via the k2 functions

gi,i ′ : {1, . . . , n}2 → R.

123

Polynomial-time algorithms for MOT 1111

Table 1 These MOT algorithms have polynomial runtime except for a bottleneck “oracle”

Algorithm Oracle Runtime Always applicable? Exact solution? Sparse solution? Practical?

ELLIPSOID MIN Theorem 4.1 Yes Yes Yes No

MWU AMIN Theorem 4.7 Yes No Yes Yes

SINKHORN SMIN Theorem 4.18 No No No Yes

Each oracle is a simple variant of the dual feasibility oracle for MOT. The number of oracle computations
is poly(n, k) for ELLIPSOID, and poly(n, k, Cmax/ε) for both MWU and SINKHORN. From a theoretical
perspective, the most important aspect of an algorithm is whether it can solveMOT in polynomial time if and
only if any algorithm can. We show that ELLIPSOID and MWU satisfy this (Theorem 1.1), but SINKHORN
does not (Theorem 1.3). From a practical perspective, SINKHORN is the most scalable when applicable.3

Code for implementing these algorithms and reproducing all numerical simulations in this paper is provided
at https://github.com/eboix/mot

Q3 Is the structure required by a given algorithm more restrictive than the structure
required by a different algorithm (or any algorithm)?

Q4 How to check if this structure occurs for a given MOT problem?

We detail our answers to these four questions below in Sects. 1.1.1 to 1.1.4, and then
briefly discuss practical tradeoffs beyond polynomial-time solvability in Sect. 1.1.5;
see Table 1 for a summary. We expect that this general groundwork will prove useful
in future investigations of tractable MOT problems.

1.1.1 Answer to Q1: candidate poly(n, k)-time algorithms

Weconsider three algorithms forMOTwhose exponential runtimes can be isolated into
a single bottleneck—and thus can be implemented in polynomial time whenever that
bottleneck can. These algorithms are the Ellipsoid algorithm ELLIPSOID [44], the
Multiplicative Weights Update algorithm MWU [91], and the natural multidimensional
analog of Sinkhorn’s scaling algorithm SINKHORN [14, 70]. SINKHORN is specially
tailored to MOT and is currently the predominant algorithm for it. To foreshadow our
answer to Q3, the reason that we restrict to these candidate algorithms is: we show
that ELLIPSOID and MWU can solve anMOT problem in polynomial time if and only
if any algorithm can.

1.1.2 Answer to Q2: structure necessary to run candidate algorithms

These three algorithms only access the cost tensor C through polynomially many
calls of their respective bottlenecks. Thus the structure required to implement these
candidate algorithms in polynomial time is equivalent to the structure required to
implement their respective bottlenecks in polynomial time.

In Sect. 4, we show that the bottlenecks of these three algorithms are polynomial-
time equivalent to natural analogs of the feasibility oracle for the dual LP to MOT.

123

https://github.com/eboix/mot

1112 J. M. Altschuler and E. Boix-Adserà

Namely, given weights p1, . . . , pk ∈ R
n , compute

min
(j1,..., jk)∈{1,...,n}k

C j1,..., jk −
k∑

i=1

[pi] ji (1.1)

either exactly for ELLIPSOID, approximately for MWU, or with the “min” replaced
by a “softmin” for SINKHORN. We call these three tasks the MIN, AMIN, and SMIN
oracles, respectively. See Remark 3.4 for the interpretation of these oracles as variants
of the dual feasibility oracle.

These three oracles take nk time to implement in general. However, for a wide range
of structured cost tensors C they can be implemented in poly(n, k) time, see Sect. 1.2
below. For such structured costsC , our oracle abstraction immediately implies that the
MOT problemwith costC and any input marginalsμ1, . . . , μk can be (approximately)
solved in polynomial time by any of the three respective algorithms.

Our characterization of the algorithms’ bottlenecks as variations of the dual feasi-
bility oracle has two key benefits—which are the answers to Q3 and Q4, described
below.

1.1.3 Answer to Q3: characterizing whatMOT problems each algorithm can solve

A key benefit of our characterization of the algorithms’ bottlenecks as variations of the
dual feasibility oracles is that it enables us to establish whether the structure required
by a givenMOT algorithm is more restrictive than the structure required by a different
algorithm (or by any algorithm).

In particular, this enables us to answer the natural question: why restrict to just the
three algorithms described above? Can other algorithms solveMOT in poly(n, k) time
in situations when these algorithms cannot? Critically, the answer is no: restricting
ourselves to the ELLIPSOID and MWU algorithms is at no loss of generality.

Theorem 1.1 (Informal statement of part of Theorems 4.1 and 4.7) For any family of
costs C ∈ (Rn)⊗k:

– ELLIPSOID computes an exact solution for MOT in poly(n, k) time if and only
if any algorithm can.

– MWU computes an ε-approximate solution for MOT in poly(n, k, Cmax/ε) time if
and only if any algorithm can.

The statement for ELLIPSOID is implicit from classical results about LP [44]
combined with arguments from [7], see the previous work section Sect. 1.3. The
statement for MWU is new to this paper.

The oracle abstraction helps us show Theorem 1.1 because it reduces this question
of what structure is needed for the algorithms to solveMOT in polynomial time, to the
question of what structure is needed to solve their respective bottlenecks in polynomial
time. Thus Theorem 1.1 is a consequence of the following result. (The “if” part of this
result is a contribution of this paper; the “only if” part was shown in [6].)

123

Polynomial-time algorithms for MOT 1113

Theorem 1.2 (Informal statement of part of Theorems 4.1 and 4.7) For any family of
costs C ∈ (Rn)⊗k:

– MOT can be exactly solved in poly(n, k) time if and only if MIN can.
– MOT can be ε-approximately solved in poly(n, k, Cmax/ε) time if and only if AMIN

can.

Interestingly, a further consequence of our unified algorithm-to-oracle abstraction
is that it enables us to show that SINKHORN—which is currently the most popular
algorithm for MOT by far—requires strictly more structure to solve an MOT problem
than other algorithms require. This is in sharp contrast to the complete generality of
the other two algorithms shown in Theorem 1.1.

Theorem 1.3 (Informal statement of Theorem 4.19) Under standard complexity-
theoretic assumptions, there exists a family ofMOT problems that can be solved exactly
in poly(n, k) time using ELLIPSOID, however it is impossible to implement a single
iteration of SINKHORN (even approximately) in poly(n, k) time.

The reason that our unified algorithm-to-oracle abstraction helps us show The-
orem 1.3 is that it puts SINKHORN on equal footing with the other two classical
algorithms in terms of their reliance on variants of the dual feasibility oracle. This
reduces proving Theorem 1.3 to showing the following separation between the SMIN
oracle and the other two oracles.

Theorem 1.4 (Informal statement ofLemma3.7)Under standard complexity-theoretic
assumptions, there exists a family of cost tensors C ∈ (Rn)⊗k such that there are
poly(n, k)-time algorithms for MIN and AMIN, however it is impossible to solve SMIN
(even approximately) in poly(n, k) time.

1.1.4 Answer to Q4: ease-of-use for checking ifMOT is solvable in polynomial time

The second key benefit of this oracle abstraction is that it is helpful for showing
that a given MOT problem (whose cost C is input implicitly through some concise
representation) is solvable in polynomial time as it without loss of generality reduces
MOT to solving any of the three corresponding oracles in polynomial time. The upshot
is that these oracles are more directly amenable to standard algorithmic techniques
since they are phrased as more conventional combinatorial-optimization problems. In
the second part of the paper, we illustrate this ease-of-use via applications to three
general classes of structured MOT problems; for an overview see Sect. 1.2.

1.1.5 Practical algorithmic tradeoffs beyond polynomial-time solvability

From a theoretical perspective, the most important aspect of an algorithm is whether
it can solve MOT in polynomial time if and only if any algorithm can. As we have
discussed, this is true forELLIPSOID andMWU (Theorem 1.1) but not forSINKHORN
(Theorem 1.3). Nevertheless, for a wide range of MOT cost structures, all three ora-
cles can be implemented in polynomial time, which means that all three algorithms

123

1114 J. M. Altschuler and E. Boix-Adserà

ELLIPSOID, MWU, and SINKHORN can be implemented in polynomial time. Which
algorithm is best in practice depends on the relative importance of the following con-
siderations for the particular application.

– Error. ELLIPSOID computes exact solutions, whereas MWU and SINKHORN only
compute low-precision solutions due to poly(1/ε) runtime dependence.

– Solution sparsity.ELLIPSOID andMWU output solutions with polynomiallymany
non-zero entries (roughly nk), whereas SINKHORN outputs fully dense solutions
with nk non-zero entries (through a polynomial-size implicit representation, see
Sect. 4.3). Solution sparsity enables interpretability, visualization, and efficient
downstream computation—benefits which are helpful in diverse applications, for
example ranging from computer graphics [20, 71, 79] to facility location prob-
lems [10] tomachine learning [7, 33] to ecological inference [64] to fluid dynamics
(see Sect. 5.3), and more. Furthermore, in Sect. 7.4, we show that sparse solutions
for MOT (a.k.a. linear optimization over the transportation polytope) enable effi-
ciently solving certain non-linear optimization problems over the transportation
polytope.

– Practical runtime.Although all three algorithms enjoy polynomial runtimeguaran-
tees, the polynomials are smaller for some algorithms than for others. In particular,
SINKHORN has remarkably good scalability in practice as long the error ε is not
too small and its bottleneck oracle SMIN is practically implementable. By The-
orems 1.1 and 1.3, MWU can solve strictly more MOT problems in polynomial
time than SINKHORN; however, it is less scalable in practice when both MWU and
SINKHORN can be implemented. ELLIPSOID is not practical and is used solely
as a proof of concept that problems are tractable to solve exactly; in practice, we
use Column Generation (see, e.g., [18, §6.1]) rather than ELLIPSOID as it has
better empirical performance, yet still has the same bottleneck oracle MIN, see
Sect. 4.1.3. Column Generation is not as practically scalable as SINKHORN in n
and k but has the benefit of computing exact, sparse solutions.

To summarize: which algorithm is best in practice depends on the application. For
example, Column Generation produces the qualitatively best solutions for the fluid
dynamics application in Sect. 5.3, SINKHORN is the most scalable for the risk estima-
tion application in Sect. 7.3, and MWU is the most scalable for the network reliability
application in Sect. 6.3 (for that application there is no known implementation of
SINKHORN that is practically efficient).

1.2 Contribution 2: applications to general classes of structuredMOT problems

In the second part of the paper, we illustrate the algorithmic framework developed in
the first part of the paper by applying it to three general classes ofMOT cost structures:

1. Graphical structure (in Sect. 5).
2. Set-optimization structure (in Sect. 6).
3. Low-rank plus sparse structure (in Sect. 7).

Specifically, if the cost C is structured in any of these three ways, then MOT can be
(approximately) solved in poly(n, k) time for any input marginals μ1, . . . , μk .

123

Polynomial-time algorithms for MOT 1115

Table 2 In the second part of the paper, we illustrate the ease-of-use of our algorithmic framework by
applying it to three general classes of MOT cost structures. These structures encompass many—if not
most—current applications of MOT

Structure Definition Complexity measure Polynomial-time algorithm?
Approximate Exact

Graphical
(Sect. 5)

C �j = ∑
S∈S fS(�jS) Treewidth Known [49, 82] Corollary 5.6

Set-
optimization
(Sect. 6)

C �j = 1[�j /∈ S] Optimization oracle over S Corollary 6.9 Corollary 6.9

Low-rank +
sparse
(Sect. 7)

C = R + S Rank of R, sparsity of S Corollary 7.5 Unknown

Previously, it was known how to solve MOT problems with structure (1) using
SINKHORN [49, 82], but this only computes solutions that are dense (with nk non-
zero entries) and low-precision (due to poly(1/ε) runtime dependence). We therefore
provide the first solutions that are sparse and exact for structure (1). For structures
(2) and (3), we provide the first polynomial-time algorithms, even for approximate
computation. These three structures are incomparable: it is in general not possible to
model a problem falling under any of the three structures in a non-trivial way using any
of the others, for details see Remarks 6.7 and 7.3. This means that the new structures
(2) and (3) enable capturing a wide range of new applications.

Below, we detail these structures individually in Sects. 1.2.1,1.2.2, and 1.2.3. See
Table 2 for a summary.

1.2.1 Graphical structure

In Sect. 5, we apply our algorithmic framework to MOT problems with graphical
structure, a broad class of MOT problems that have been previously studied [47, 49,
82]. Briefly, an MOT problem has graphical structure if its cost tensor C decomposes
as

C j1,..., jk =
∑

S∈S
fS(�jS),

where fS(�jS) are arbitrary “local interactions” that depend only on tuples �jS := { ji }i∈S

of the k variables.
In order to derive efficient algorithms, it is necessary to restrict how local the

interactions are because otherwise MOT is NP-hard (even if all interaction sets S ∈ S
have size 2) [6].Wemeasure the locality of the interactions via the standard complexity
measure of the “treewidth” of the associated graphical model. See Sect. 5.1 for formal
definitions.While the runtimes of our algorithms (and all previous algorithms) depend
exponentially on the treewidth,we emphasize that the treewidth is a very small constant

123

1116 J. M. Altschuler and E. Boix-Adserà

(either 1 or 2) in all current applications ofMOT falling under this framework; see the
related work section.

We show that for MOT cost tensors that have graphical structure of constant
treewidth, all three oracles can be implemented in poly(n, k) time. We accomplish
this by leveraging the known connection between graphically structured MOT and
graphical models shown in [49]. In particular, the MIN, AMIN, and SMIN oracles are
respectively equivalent to the mode, approximate mode, and log-partition function of
an associated graphical model. Thus we can implement all oracles in poly(n, k) time
by simply applying classical algorithms from the graphical models community [55,
88].

Theorem 1.5 (Informal statement of Theorem 5.5) Let C ∈ (Rn)⊗k have graphical
structure of constant treewidth. Then the MIN, AMIN, and SMIN oracles can be com-
puted in poly(n, k) time.

It is an immediate corollary of Theorem 1.5 and our algorithms-to-oracles reduction
described in Sect. 1.1 that one can implement ELLIPSOID, MWU, and SINKHORN in
polynomial time. Below, we record the theoretical guarantee of ELLIPSOID since it
is the best of the three algorithms as it computes exact, sparse solutions.

Theorem 1.6 (Informal statement of Corollary 5.6) Let C ∈ (Rn)⊗k have graphi-
cal structure of constant treewidth. Then an exact, sparse solution for MOT can be
computed in poly(n, k) time.

Previously, it was known how to solve such MOT problems [49, 82] using
SINKHORN, but this only computes a solution that is fully dense (with nk non-
zero entries) and low-precision (due to poly(1/ε) runtime dependence). Details in
the related work section. Our result improves over this state-of-the-art algorithm by
producing solutions that are exact and sparse in poly(n, k) time.

In Sect. 5.3, we demonstrate the benefit of Theorem 1.6 on the application of
computing generalized Euler flows, which was historically the motivation ofMOT and
has received significant attention, e.g., [14, 17, 23–26]. While there is a specially-
tailored version of the SINKHORN algorithm for this problem that runs in polynomial
time [14, 17], it produces solutions that are approximate and fully dense. Our algorithm
produces exact, sparse solutions which lead to sharp visualizations rather than blurry
ones (see Fig. 4).

1.2.2 Set-optimization structure

In Sect. 6, we apply our algorithmic framework toMOT problems whose cost tensors
C take value 0 or 1 in each entry. That, is costs C of the form

C j1,..., jk = 1[(j1, . . . , jk) /∈ S],

for some subset S ⊆ [n]k . Such MOT problems arise naturally in applications where
one seeks to minimize the probability that some event S occurs, given marginal prob-
abilities on each variable ji , see Example 6.1.

123

Polynomial-time algorithms for MOT 1117

In order to derive efficient algorithms, it is necessary to restrict the (otherwise arbi-
trary) set S. We parametrize the complexity of suchMOT problems via the complexity
of finding theminimum-weight object in S. This opens the door to combinatorial appli-
cations ofMOT because finding the minimum-weight object in S is well-known to be
polynomial-time solvable for many “combinatorially-structured” sets S of interest—
e.g., the set S of cuts in a graph, or the set S of independent sets in a matroid.

We show that for MOT cost tensors with this structure, all three oracles can be
implemented efficiently.

Theorem 1.7 (Informal statement of Theorem 6.8) Let C ∈ (Rn)⊗k have set-
optimization structure. Then the MIN, AMIN, and SMIN oracles can be computed in
poly(n, k) time.

It is an immediate corollary of Theorem 1.7 and our algorithms-to-oracles reduction
described in Sect. 1.1 that one can implement ELLIPSOID, MWU, and SINKHORN in
polynomial time. Below, we record the theoretical guarantee for ELLIPSOID since
it is the best of these three algorithms as it computes exact, sparse solutions.

Theorem 1.8 (Informal statement of Corollary 6.9) Let C ∈ (Rn)⊗k have set-
optimization structure. Then an exact, sparse solution for MOT can be computed in
poly(n, k) time.

This is the first polynomial-time algorithm for this class ofMOT problems. We note
that a more restrictive class ofMOT problems was studied in [93] under the additional
restriction that S is upwards-closed.

In Sect. 6.3, we show how this general class of set-optimization structure captures,
for example, the classical application of computing the extremal reliability of a network
with stochastic edge failures. Network reliability is a fundamental topic in network
science and engineering [12, 13, 41] which is often studied in an average-case setting
where each edge fails independently with some given probability [52, 63, 72, 85]. The
application investigated here is a robust notion of network reliability in which edge
failures may be maximally correlated (e.g., by an adversary) or minimally correlated
(e.g., by a network maintainer) subject to a marginal constraint on each edge’s failure
probability, a setting that dates back to the 1980s [89, 93]. We show how to express
both the minimally and maximally correlated network reliability problems as MOT
problems with set-optimization structure, recovering as a special case of our general
framework the known polynomial-time algorithms in [89, 93] as well asmore practical
polynomial-time algorithms that scale to input sizes that are an order-of-magnitude
larger.

1.2.3 Low-rank and sparse structure

In Sect. 7, we apply our algorithmic framework toMOT problems whose cost tensors
C decompose as

C = R + S,

123

1118 J. M. Altschuler and E. Boix-Adserà

where R is a constant-rank tensor, and S is a polynomially-sparse tensor. We assume
that R is represented in factored form, and that S is represented through its non-zero
entries, which overall yields a poly(n, k)-size representation of C .

We show that forMOT cost tensorswith low-rankplus sparse structure, theAMIN and
SMIN oracles can be implemented in polynomial time.3 This may be of independent
interest because, by taking all oracle inputs pi = 0 in (1.1), this generalizes the
previously open problem of approximately computing the smallest entry of a constant-
rank tensor with nk entries in poly(n, k) time.

Theorem 1.9 (Informal statement of Theorem 7.4) Let C ∈ (Rn)⊗k have low-
rank plus sparse structure. Then the AMIN and SMIN oracles can be computed in
poly(n, k, Cmax/ε) time.

It is an immediate corollary of Theorem 1.9 and our algorithms-to-oracles reduction
described in Sect. 1.1 that one can implement MWU and SINKHORN in polynomial
time. Of these two algorithms, MWU computes sparse solutions, yielding the following
theorem.

Theorem 1.10 (Informal statement of Corollary 7.5) Let C ∈ (Rn)⊗k have low-rank
plus sparse structure. Then a sparse, ε-approximate solution forMOT can be computed
in poly(n, k, Cmax/ε) time.

This is the first polynomial-time result for this class of MOT problems. We note
that the runtime of our MOT algorithm depends exponentially on the rank r of R,
hence why we take r to be constant. Nevertheless, such a restriction on the rank is
unavoidable since unless P = NP, there does not exist an algorithm with runtime that
is jointly polynomial in n, k, and the rank r [6].

We demonstrate this polynomial-time algorithm concretely on two applications.
First, in Sect. 7.3 we consider the risk estimation problem of computing an investor’s
expected profit in the worst-case over all future prices that are consistent with given
marginal distributions. We show that this is equivalent to an MOT problem with a
low-rank tensor and thereby provide the first efficient algorithm for it.

Second, in Sect. 7.4, we consider the fundamental problem of projecting a joint
distribution Q onto the transportation polytope. We provide the first polynomial-
time algorithm for solving this when Q decomposes into a constant-rank and sparse
component, which models mixtures of product distributions with polynomially many
corruptions.This application illustrates the versatility of our algorithmic results beyond
polynomial-time solvability of MOT, since this projection problem is a quadratic
optimization over the transportation polytope rather than linear optimization (a.k.a.
MOT). In order to achieve this, we develop a simple quadratic-to-linear reduction
tailored to this problem that crucially exploits the sparsity of theMOT solutions enabled
by the MWU algorithm.

3 It is an interesting open question if theMIN oracle can similarly be implemented in poly(n, k) time. This
would enable implementing ELLIPSOID in poly(n, k) time by our algorithms-to-oracles reduction, and
thus would enable computing exact solutions for this class of MOT problems (cf., Theorem 1.10).

123

Polynomial-time algorithms for MOT 1119

1.3 Related work

1.3.1 MOT algorithms

MOT algorithms fall into two categories. One category consists of general-purpose
algorithms that do not depend on the specific MOT cost. For example, this includes
running an LP solver out-of-the-box, or running the Sinkhorn algorithmwhere in each
iterationone sumsover allnk entries of the cost tensor to implement themarginalization
bottleneck [40, 58, 84]. These approaches are robust in the sense that they do not need
to be changed based on the specific MOT problem. However, they are impractical
beyond tiny input sizes (e.g., n = k = 10) because their runtimes scale as nΩ(k).

The second category consists of algorithms that are much more scalable but require
extra structure of the MOT problem. Specifically, these are algorithms that somehow
exploit the structure of the relevant cost tensor C in order to (approximately) solve an
MOT problem in poly(n, k) time [1, 7, 14, 15, 17, 29, 30, 38, 46, 47, 49, 50, 61, 62,
65–68, 77, 82, 89, 93]. Such a poly(n, k) runtime is far more tractable—but it is not
well understood for which MOT problems such a runtime is possible. The purpose of
this paper is to clarify this question.

To contextualize our answer to this question with the rapidly growing literature
requires further splitting this second category of algorithms.
Sinkhorn algorithm. Currently, the predominant approach in the second category is
to solve an entropically regularized version of MOT with the Sinkhorn algorithm,
a.k.a. Iterative Proportional Fitting or Iterative Bregman Projections or RAS algo-
rithm or Iterative Scaling algorithm, see e.g., [15–17, 47, 49, 67, 82]. Recent work
has shown that a polynomial number of iterations of this algorithm suffices [40, 58,
84]. However, the bottleneck is that each iteration requires nk operations in general
because it requiresmarginalizing a tensorwith nk entries. The critical question is there-
fore: what structure of an MOT problem enables implementing this marginalization
bottleneck in polynomial time.

This paper makes two contributions to this question. First, we identify new broad
classes ofMOT problems for which this bottleneck can be implemented in polynomial
time, and thusSINKHORN can be implemented in polynomial time (see Sect. 1.2). Sec-
ond, we propose other algorithms that require strictly less structure than SINKHORN
does in order to solve an MOT problem in polynomial time (Theorem 4.19).
Ellipsoid algorithm. The Ellipsoid algorithm is among the most classical algorithms
for implicit LP [43, 44, 53], however it has taken a back seat to the SINKHORN
algorithm in the vast majority of the MOT literature.

In Sect. 4.1, we make explicit the fact that the variant of ELLIPSOID from [7] can
solveMOT exactly in poly(n, k) time if and only if any algorithm can (Theorem 4.1).
This is implicit from combining several known results [6, 7, 44]. In the process of
making this result explicit, we exploit the special structure of the MOT LP to signif-
icantly simplify the reduction from the dual violation oracle to the dual feasibility
oracle. The previously known reduction is highly impractical as it requires an indirect
“back-and-forth” use of the Ellipsoid algorithm [44, page 107]. In contrast, our reduc-
tion is direct and simple; this is critical for implementing our practical alternative to
ELLIPSOID, namely COLGEN, with the dual feasibility oracle.

123

1120 J. M. Altschuler and E. Boix-Adserà

Multiplicative Weights Update algorithm. This algorithm, first introduced by [91], has
been studied in the context of optimal transport when k = 2 [19, 73], in which case
implicit LP is not necessary for a polynomial runtime. MWU lends itself to implicit
LP [91], but is notably absent from the MOT literature.

In Sect. 4.2, we show that MWU can be applied to MOT in polynomial time if and
only if the approximate dual feasibility oracle can be solved in polynomial time. To do
this, we show that in the special case of MOT, the well-known “softmax-derivative”
bottleneck of MWU is polynomial-time equivalent to the approximate dual feasibility
oracle. Since it is known that the approximate dual feasibility oracle is polynomial-
time reducible to approximateMOT [6], we therefore establish thatMWU can solveMOT
approximately in polynomial time if and only if any algorithm can (Theorem 4.7).

1.3.2 Graphically structuredMOT problems with constant treewidth

Weisolate here graphically structured costswith constant treewidth because this frame-
work encompasses all MOT problems that were previously known to be tractable in
polynomial time [49, 82], with the exceptions of the fixed-dimensional Wasserstein
barycenter problem and MOT problems related to combinatorial optimization—both
of which are described below in Sect. 1.3.3. This family of graphical structured costs
with treewidth 1 (a.k.a. “tree-structured costs” [47]) includes applications in economics
such as variationalmean-field games [15], interpolating histogramson trees [3],match-
ing for teams [29, 67]; as well as encompasses applications in filtering and estimation
for collective dynamics such as target tracking [38, 46, 47, 49, 77] and Wasserstein
barycenters in the case of fixed support [14, 29, 38, 67]. With treewidth 2, this family
of costs also includes dynamic multi-commodity flow problems [48], as well as the
application of computing generalized Euler flows in fluid dynamics [14, 17, 67], which
was historically the original motivation of MOT [23–26].

Previous polynomial-time algorithms for graphically structuredMOT compute approx-
imate, dense solutions. Implementing SINKHORN for graphically structured MOT
problems by using belief propagation to efficiently implement the marginalization
bottleneck was first proposed twenty years ago in [82]. There have been recent
advancements in understanding connections of this algorithm to the Schrödinger
bridge problem in the case of trees [47], aswell as developingmore practically efficient
single-loop variations [49].

All of these works prove theoretical runtime guarantees only in the case of tree
structure (i.e., treewidth 1). However, this graphical model perspective for efficiently
implementing SINKHORN readily extends to any constant treewidth: simply imple-
ment the marginalization bottleneck using junction trees. This, combined with the
iteration complexity of SINKHORN which is known to be polynomial [40, 58, 84],
immediately yields an overall polynomial runtime. This is why we cite [49, 82]
throughout this paper regarding the fact that SINKHORN can be implemented in poly-
nomial time for graphical structure with any constant treewidth.

While the use of SINKHORN for graphically structured MOT is mathematically
elegant and can be impressively scalable in practice, it has two drawbacks. The
first drawback of this algorithm is that it computes (implicit representations of)

123

Polynomial-time algorithms for MOT 1121

solutions that are fully dense with nk non-zero entries. Indeed, it is well-known
that SINKHORN finds the unique optimal solution to the entropically regularized
MOT problem minP∈M(μ1,...,μk)〈P, C〉 − η−1H(P), and that this solution is fully
dense [70]. For example, in the simple case of cost C = 0, uniform marginals μi , and
any strictly positive regularization parameter η > 0, this solution P has value 1/nk in
each entry.

The second drawback of this algorithm is that it only computes solutions that are
low-precision due to poly(1/ε) runtime dependence on the accuracy ε. This is because
the number of SINKHORN iterations is known to scale polynomially in the entropic
regularization parameter η even in the matrix case k = 2 [59, §1.2], and it is known
that η = Ω(ε−1k log n) is necessary for the converged solution of SINKHORN to be
an ε-approximate solution to the (unregularized) original MOT problem [58].

Improved algorithms for graphically structured MOT problems. The contribution
of this paper to the study of graphically structured MOT problems is that we give
the first poly(n, k) time algorithms that can compute solutions which are exact and
sparse (Corollary 5.6). Our framework also directly recovers all known results about
SINKHORN for graphically structured MOT problems—namely that it can be imple-
mented in polynomial time for trees [47, 82] and for constant treewidth [49, 82].

1.3.3 TractableMOT problems beyond graphically structured costs

The two new classes ofMOT problems studied in this paper—namely, set-optimization
structure and low-rank plus sparse structure—are incomparable to each other as well
as to graphical structure. Details in Remarks 6.7 and 7.3. This lets us handle a wide
range of new MOT problems that could not be handled before.

There are two other classes ofMOT problems studied in the literature which do not
fall under the three structures studied in this paper. We elaborate on both below.

Remark 1.11 (Low-dimensional Wasserstein barycenter) This MOT problem has cost
C j1,..., jk = ∑k

i,i ′=1 ‖xi, ji − xi ′, ji ′ ‖2 where xi, j ∈ R
d denotes the j-th atom in the

distribution μi . Clearly this cost is not a graphically structured cost of constant
treewidth—indeed, representing it through the lens of graphical structure requires
the complete graph of interactions, which means a maximal treewidth of k − 1.4

This problem also does not fall under the set-optimization or constant-rank structures.
Nevertheless, thisMOT problem can be solved in poly(n, k) time for any fixed dimen-
sion d by exploiting the low-dimensional geometric structure of the points {xi, j } that
implicitly define the cost [7].

Remark 1.12 (Random combinatorial optimization)MOT problems also appear in the
random combinatorial optimization literature since the 1970s, see e.g., [50, 61, 65, 89,

4 We remark that the related but different problem of fixed-support Wasserstein barycenters has graphical
structure with treewidth 1 [14, 29, 38, 67]. However, it should be emphasized that the fixed-support Wasser-
stein barycenter problem is different from the Wasserstein barycenter problem: it only approximates the
latter to ε accuracy if the fixed support is restricted to an O(ε)-netwhich requires n = 1/εΩ(d) discretization
size for the barycenter’s support, and thus (i) even in constant dimension, does not lead to high-precision
algorithms due to poly(1/ε) runtime; and (ii) scales exponentially in the dimension d. See [8, §1.3] for
further details about the complexity of Wasserstein barycenters.

123

1122 J. M. Altschuler and E. Boix-Adserà

93], although under a different name and in a different community. These papers
consider MOT problems with costs of the form C(x) = minv∈V 〈x, v〉 for poly-
topes V ⊆ {0, 1}k given through a list of their extreme points. Applications include
PERT (Program Evaluation and Review Technique), extremal network reliability, and
scheduling.Recently, applications toDistributionallyRobustOptimizationwere inves-
tigated in [30, 62, 66] which considered general polytopes V ⊂ R

k , as well as in [68]
which considered MOT costs of the related form C(x) = 1[minv∈V 〈x, v〉 � t], and
in [1] which considers other combinatorial costs C such as sub/supermodular func-
tions. These papers show that these random combinatorial optimization problems are
in general intractable, and give sufficient conditions on when they can be solved in
polynomial time. In general, these families of MOT problems are different from the
three structures studied in this paper, although some MOT applications fall under
multiple umbrellas (e.g., extremal network reliability). It is an interesting question to
understand to what extent these structures can be reconciled (as well as the algorithms,
which sometimes use extended formulations in these papers).

1.3.4 IntractableMOT problems

These algorithmic results beg the question: what are the fundamental limitations of
this line of work on polynomial-time algorithms for structuredMOT problems? To this
end, the recent paper [6] provides a systematic investigation of NP-hardness results
for structured MOT problems, including converses to several results in this paper.
In particular, [6, Propositions 4.1 and 4.2] justify the constant-rank regime studied
in Sect. 7 by showing that unless P = NP, there does not exist an algorithm with
runtime that is jointly polynomially in the rank r and the input parameters n and
k. Similarly, [6, Propositions 5.1 and 5.2] justify the constant-treewidth regime for
graphically structured costs studied in Sect. 5 and all previous work by showing that
unless P = NP, there does not exist an algorithm with polynomial runtime even in
the seemingly simple class of MOT costs that decompose into pairwise interactions
C j1,..., jk = ∑

i �=i ′∈[k] ci,i ′(ji , j ′i). The paper [6] also shows NP-hardness for several
MOT problems with repulsive costs, including for example the MOT formulation of
Density Functional Theory with Coulomb-Buckingham potential. It is an problem
whether the Coulomb potential, studied in [16, 27, 32], also leads to an NP-hardMOT
problem [6, Conjecture 6.4].

1.3.5 Variants ofMOT

The literature has studied several other variants of the MOT problem, notably with
entropic regularization and/or with constraints on a subset of the k marginals, see,
e.g., [14–17, 38, 46–49, 58, 77]. Our techniques readily apply with little change.
Briefly, to handle entropic regularization, simply use the SMIN oracle and SINKHORN
algorithm with fixed regularization parameter 1/η > 0 (rather than 1/η of vanishing
sizeΘ(ε/ log n)) as described in Sect. 4.3. And to handle partial marginal constraints,
essentially the only change is that in theMIN, AMIN, and SMIN oracles, the potentials
pi are zero for all indices i ∈ [k] corresponding to unconstrained marginals mi (P).

123

Polynomial-time algorithms for MOT 1123

Full details are omitted for brevity since they are straightforward modifications of our
main results.

1.3.6 Optimization over joint distributions

Optimization problems over exponential-size joint distributions appear in many
domains. For instance, they arise in game theory when computing correlated equi-
libria [69]; however, in that case the optimization has different constraints which lead
to different algorithms. Such problems also arise in variational inference [87]; how-
ever, the optimization there typically constrains this distribution to ensure tractability
(e.g., mean-field approximation restricts to product distributions). The different con-
straints in these optimization problems over joint distributions versus MOT lead to
significant differences in computational complexity, and thus also necessitate differ-
ent algorithmic techniques.

1.4 Organization

In Sect. 2 we recall preliminaries about MOT and establish notation. The first part of
the paper then establishes our unified algorithmic framework for MOT. Specifically,
in Sect. 3 we define and compare three variants of the dual feasibility oracle; and in
Sect. 4 we characterize the structure thatMOT algorithms require for polynomial-time
implementation in terms of these three oracles. For an overview of these results, see
Sect. 1.1. The second part of the paper applies this algorithmic framework to three
general classes of MOT cost structures: graphical structure (Sect. 5), set-optimization
structure (Sect. 6), and low-rank plus sparse structure (Sect. 7). For an overview of
these results, see Sect. 1.2. These three application sections are independent of each
other and can be read separately. We conclude in Sect. 8.

2 Preliminaries

General notation. The set {1, . . . , n} is denoted by [n]. For shorthand, we write
poly(t1, . . . , tm) to denote a function that grows at most polynomially fast in those
parameters. Throughout, we assume for simplicity of exposition that all entries of the
input C and μ1, . . . , μk have bit complexity at most poly(n, k), and same with the
components defining C in structured settings. As such, throughout runtimes refer to
the number of arithmetic operations. The setR∪{−∞} is denoted by R̄, and note that
the value −∞ can be represented efficiently by adding a single flag bit. We use the
standard O(·) andΩ(·) notation, and use Õ(·) and Ω̃(·) to denote that polylogarithmic
factors may be omitted.

Tensor notation. The k-fold tensor product spaceRn ⊗· · ·⊗R
n is denoted by (Rn)⊗k ,

and similarly for (Rn
�0)

⊗k . Let P ∈ (Rn)⊗k . Its i-th marginal, i ∈ [k], is denoted by
mi (P) ∈ R

n and has entries [mi (P)] j := ∑
j1,..., ji−1, ji+1,..., jk Pj1,..., ji−1, j, ji+1,..., jk .

For shorthand, we often denote an index (j1, . . . , jk) by �j . The sum of P’s entries is

123

1124 J. M. Altschuler and E. Boix-Adserà

denoted by m(P) = ∑
�j P�j . The maximum absolute value of P’s entries is denoted

by ‖P‖max := max �j |P�j |, or simply Pmax for short. For �j ∈ [n]k , we write δ �j to

denote the tensor with value 1 at entry �j , and 0 elswewhere. The operations � and
⊗ respectively denote the entrywise product and the Kronecker product. The notation
⊗k

i=1di is shorthand for d1 ⊗ · · · ⊗ dk . A non-standard notation we use throughout is
that f [P] denotes a function f : R → R (typically exp, log, or a polynomial) applied
entrywise to a tensor P .

2.1 Multimarginal optimal transport

The transportation polytope between measures μ1, . . . , μk ∈ Δn is

M(μ1, . . . , μk) :=
{

P ∈ (Rn
�0)

⊗k : mi (P) = μi , ∀i ∈ [k]
}

. (2.1)

For a fixed cost C ∈ (Rn)⊗k , the MOTC problem is to solve the following linear
program, given input measures μ = (μ1, . . . , μk) ∈ (Δn)

k :

min
P∈M(μ1,...,μk)

〈P, C〉. (MOT)

In the k = 2 matrix case, (MOT) is the Kantorovich formulation of OT [86]. Its dual
LP is

max
p1,...,pk∈Rn

k∑

i=1

〈pi , μi 〉 subject to C j1,..., jk −
k∑

i=1

[pi] ji � 0, ∀(j1, . . . , jk) ∈ [n]k .

(MOT-D)

A basic, folklore fact about MOT is that it always has a sparse optimal solution
(e.g., [10, Lemma 3]). This follows from elementary facts about standard-form LP;
we provide a short proof for completeness.

Lemma 2.1 (Sparse solutions for MOT) For any cost C ∈ (Rn)⊗k and any marginals
μ1, . . . , μk ∈ Δn, there exists an optimal solution P to MOTC (μ) that has at most
nk − k + 1 non-zero entries.

Proof Since (MOT) is an LP over a compact domain, it has an optimal solution at a
vertex [18, Theorem 2.7]. Since (MOT) is a standard-form LP, these vertices are in
correspondence with basic solutions, thus their sparsity is bounded by the number of
linearly dependent constraints definingM(μ1, . . . , μk) [18, Theorem 2.4].We bound
this quantity by nk − k + 1 via two observations. First,M(μ1, . . . , μk) is defined by
nk equality constraints [mi (P)] j = [μi] j in (2.1), one for each coordinate j ∈ [n] of
each marginal constraint i ∈ [k]. Second, at least k −1 of these constraints are linearly
dependent because we can construct k distinct linear combinations of them, namely∑

j∈[n][mi (P)] j = ∑
j∈[n][μi] j for each marginal i ∈ [k], which all simplify to the

same constraint m(P) = 1, and thus are redundant with each other. ��

123

Polynomial-time algorithms for MOT 1125

Definition 2.2 (ε-approximate MOT solution) P is an ε-approximate solution to
MOTC (μ) if P is feasible (i.e., P ∈ M(μ1, . . . , μk)) and 〈C, P〉 is at most ε more
than the optimal value.

2.2 Regularization

We introduce two standard regularization operators. First is the Shannon entropy
H(P) := −∑

�j P�j log P�j of a tensor P ∈ (Rn
�0)

⊗k with entries summing to
m(P) = 1. We adopt the standard notational convention that 0 log 0 = 0. Second
is the softmin operator, which is defined for parameter η > 0 as

smin
i∈[m]

ai := −1

η
log

(
m∑

i=1

e−ηai

)

. (2.2)

This softmin operator naturally extends to ai ∈ R ∪ {∞} by adopting the standard
notational conventions that e−∞ = 0 and log 0 = −∞.

We make use of the following folklore fact, which bounds the error between the
min and smin operators based on the regularization and the number of points. For
completeness, we provide a short proof.

Lemma 2.3 (Softmin approximation bound)For any a1, . . . , am ∈ R∪{∞}andη > 0,

min
i∈[m] ai � smin

i∈[m]
ai � min

i∈[m] ai − logm

η
.

Proof Assume without loss of generality that all ai are finite, else ai can be dropped
(if all ai = ∞ then the claim is trivial). For shorthand, denote mini∈[m] ai by amin.
For the first inequality, use the non-negativity of the exponential function to bound

smin
i∈[m]

ai = −1

η
log

(
m∑

i=1

e−ηai

)

� −1

η
log

(
e−ηamin

) = amin.

For the second inequality, use the fact that each ai � amin to bound

smin
i∈[m]

ai = −1

η
log

(
m∑

i=1

e−ηai

)

� −1

η
log

(
me−ηamin

) = amin − logm

η
.

��
The entropically regularized MOT problem (RMOT for short) is the convex opti-

mization problem

min
P∈M(μ1,...,μk)

〈P, C〉 − η−1H(P). (RMOT)

123

1126 J. M. Altschuler and E. Boix-Adserà

This is the natural multidimensional analog of entropically regularized OT, which
has a rich literature in statistics [57] and transportation theory [90], and has recently
attracted significant interest in machine learning [35, 70]. The convex dual of (RMOT)
is the convex optimization problem

max
p1,...,pk∈Rn

k∑

i=1

〈pi , μi 〉 + smin
�j∈[n]k

(

C �j −
k∑

i=1

[pi] ji

)

. (RMOT-D)

In contrast toMOT, there is no analog of Lemma 2.1 for RMOT: the unique optimal
solution to RMOT is dense. Further, this solution may not even be “approximately”
sparse. For example, when C = 0, all μi are uniform, and η > 0 is any positive
number, the solution is fully dense with all entries equal to 1/nk .

We define P to be an ε-approximate RMOT solution in the analogous way as in
Definition 2.2. A basic, folklore fact about RMOT is that if the regularization η is suf-
ficiently large, then RMOT andMOT are equivalent in terms of approximate solutions.

Lemma 2.4 (MOT and RMOT are close for large regularization η) Let P ∈
M(μ1, . . . , μk), ε > 0, and η � ε−1k log n. If P is an ε-approximate solution
to (RMOT), then P is also a (2ε)-approximate solution to (MOT); and vice versa.

Proof Since a discrete distribution supported on nk atoms has entropy at most
k log n [34], the objectives of (MOT) and (RMOT) differ pointwise by at most
η−1k log n � ε. Since (MOT) and (RMOT) also have the same feasible sets, their
optimal values therefore differ by at most ε. ��

3 Oracles

Here we define the three oracle variants described in the introduction and discuss their
relations. In the below definitions, let C ∈ (Rn)⊗k be a cost tensor.

Definition 3.1 (MIN oracle) For weights p = (p1, . . . , pk) ∈ R
n×k ,MINC (p) returns

min
�j∈[n]k

C �j −
k∑

i=1

[pi] ji .

Definition 3.2 (AMIN oracle) For weights p = (p1, . . . , pk) ∈ R
n×k and accuracy

ε > 0, AMINC (p, ε) returns MINC (p) up to additive error ε.

Definition 3.3 (SMIN oracle) For weights p = (p1, . . . , pk) ∈ R̄
n×k and regulariza-

tion parameter η > 0, SMINC (p, η) returns

smin
�j∈[n]k

C �j −
k∑

i=1

[pi] ji .

123

Polynomial-time algorithms for MOT 1127

An algorithm is said to “solve” or “implement” MINC if given input p, it outputs
MINC (p). Similarly for AMINC and SMINC . Note that the weights p that are input to
SMIN have values inside R̄ = R∪ {−∞}; this simplifies the notation in the treatment
of the SINKHORN algorithm below and does not increase the bit-complexity by more
than 1 bit by adding a flag for the value −∞.

Remark 3.4 (Interpretation as variants of the dual feasibility oracle)These three oracles
can be viewed as variants of the feasibility oracle for (MOT-D). For MINC (p), this
relationship is exact: p ∈ R

n×k is feasible for (MOT-D) if and only if MINC (p)

is non-negative. For AMINC and SMINC , this relationship is approximate, with the
approximation depending on how small ε is and how large η is, respectively.

Since these oracles form the respective bottlenecks of all algorithms from the
MOT and implicit linear programming literatures (see the overview in the introduction
Sect. 1.1), an important question is: if one oracle can be implemented in poly(n, k)

time, does this imply that the other can be too?
Two reductions are straightforward: the AMIN oracle can be implemented in

poly(n, k) time whenever either the MIN oracle or the SMIN oracle can be imple-
mented in poly(n, k) time. We record these simple observations in remarks for easy
recall.

Remark 3.5 (MIN impliesAMIN) For any accuracy ε > 0, theMINC (p) oracle provides
a valid answer to the AMINC (p, ε) oracle by definition.

Remark 3.6 (SMIN implies AMIN) For any p ∈ R
n×k and regularization η �

ε−1k log n, the SMINC (p, η) oracle provides a valid answer to the AMINC (p, ε) oracle
due to the approximation property of the smin operator (Lemma 2.3).

In the remainder of this section, we show a separation between the SMIN oracle and
both theMIN andAMIN oracles by exhibiting a family of cost tensorsC for which there
exist polynomial-time algorithms forMIN and AMIN, however there is no polynomial-
time algorithm for SMIN. The non-existence of a polynomial-time algorithm of course
requires a complexity theoretic assumption; our result holds under #BIS-hardness—
which is a by-now standard complexity theory assumption introduced in [37], and
in words is the statement that there does not exist a polynomial-time algorithm for
counting the number of independent sets in a bipartite graph.

Lemma 3.7 (Restrictiveness of the SMIN oracle) There exists a family of costs C ∈
(Rn)⊗k for which MINC and AMINC can be solved in poly(n, k) time, however SMINC

is #BIS-hard.

Proof In order to prove hardness for general n, it suffices to exhibit such a family of
cost tensors when n = 2. Since n = 2, it is convenient to abuse notation slightly by
indexing a cost tensor C ∈ (Rn)⊗k by �j ∈ {−1, 1}k rather than by �j ∈ {1, 2}k . The
family we exhibit is {C(A, b) : A ∈ R

k×k
�0 , b ∈ R

k}, where the cost tensors C(A, b)

are parameterized by a non-negative square matrix A and a vector b, and have entries
of the form

C �j (A, b) := −〈 �j, A �j〉 − 〈b, �j〉, �j ∈ {±1}k .

123

1128 J. M. Altschuler and E. Boix-Adserà

Polynomial-time algorithm for MIN and AMIN. We show that given a matrix A ∈
R

k×k
�0 , vector b ∈ R

k , and weights p ∈ R
2×k , it is possible to computeMINC (p) on the

cost tensor C(A, b) in poly(k) time. Clearly this also implies a poly(k) time algorithm
for AMINC (p, ε) for any ε > 0, see Remark 3.5.

To this end, we first re-write theMINC (p) problem onC(A, b) in a more convenient
form that enables us to “ignore” the weights p. Recall that MINC (p) is the problem
of

MINC (p) = min
�j∈{±1}k

−〈�j, A �j〉 − 〈b, �j〉 −
k∑

i=1

[pi] ji .

Note that the linear part of the cost is equal to

〈b, �j〉 +
k∑

i=1

[pi] ji = 〈�, �j〉 + d, (3.1)

where � ∈ R
k is the vector with entries �i = bi + 1

2 ((pi)1 − (pi)−1), and d is the

scalar d = 1
2

∑k
i=1([pi]1+[pi]−1). Thus, since d is clearly computable in O(k) time,

the MINC problem is equivalent to solving

min
�j∈{±1}k

−〈�j, A �j〉 − 〈�, �j〉, (3.2)

when given as input a non-negative matrix A ∈ R
k×k
�0 and a vector � ∈ R

k .
To show that this task is solvable in poly(k) time, note that the objective in (3.2) is a

submodular function because it is a quadratic whose Hessian−A has non-positive off-
diagonal terms [11, Proposition 6.3]. Therefore (3.2) is a submodular optimization
problem, and thus can be solved in poly(k) time using classical algorithms from
combinatorial optimization [44, Chapter 10.2].

SMIN oracle is #BIS-hard. On the other hand, by using the definition of the SMIN
oracle, the re-parameterization (3.1), and then the definition of the softmin operator,

SMINC (p, η) = smin
�j∈{±1}k

−〈�j, A �j〉 − 〈b, �j〉 −
k∑

i=1

[pi] ji

= smin
�j∈{±1}k

−〈�j, A �j〉 − 〈�, �j〉 − d = − log Z

η
− d,

where Z = ∑
�j∈{±1}k Q(�j) is the partition function of the ferromagnetic Ising model

with inconsistent external fields given by

Q(�j) = exp
(
η〈 �j, A �j〉 + η〈�, �j〉

)
.

123

Polynomial-time algorithms for MOT 1129

Because it is #BIS hard to compute the partition function Z of a ferromagnetic Ising
model with inconsistent external fields [42], it is #BIS hard to compute the value
−η−1 log Z − d of the oracle SMINC (p, η). ��
Remark 3.8 (The restrictiveness of SMIN extends to approximate computation) The
separation between the oracles shown in Lemma 3.7 further extends to approximate
computation of the SMIN oracle under the assumption that #BIS is hard to approxi-
mate, since under this assumption it is hard to approximate the partition function of a
ferromagnetic Ising model with inconsistent external fields [42].

4 Algorithms to oracles

In this section, we consider three algorithms for MOT. Each is iterative and requires
only polynomiallymany iterations. The key issue for each algorithm is the per-iteration
runtime, which is in general exponential (roughly nk). We isolate the respective bot-
tlenecks of these three algorithms into the three variants of the dual feasibility oracle
defined in Sect. 3. See Sect. 1.1 and Table 1 for a high-level overview of this section’s
results.

4.1 The Ellipsoid algorithm and theMIN oracle

Among the most classical algorithms for implicit LP is the Ellipsoid algorithm [43,
44, 53]. However it has taken a back seat to the SINKHORN algorithm in the vast
majority of theMOT literature. The very recent paper [7], which focuses on the specific
MOT application of computing low-dimensional Wasserstein barycenters, develops a
variant of the classical Ellipsoid algorithm specialized toMOT; henceforth this is called
ELLIPSOID, see Sect. 4.1.1 for a description of this algorithm. The objective of this
section is to analyze ELLIPSOID in the context of general MOT problems in order
to prove the following.

Theorem 4.1 For any family of cost tensors C ∈ (Rn)⊗k , the following are equivalent:

(i) ELLIPSOID takes poly(n, k) time to solve the MOTC problem. (Moreover, it
outputs a vertex solution represented as a sparse tensor with at most nk − k + 1
non-zeros.)

(ii) There exists a poly(n, k) time algorithm that solves the MOTC problem.
(iii) There exists a poly(n, k) time algorithm that solves the MINC problem.

Interpretation of results. In words, the equivalence “(i) ⇐⇒ (ii)” establishes that
ELLIPSOID can solve anyMOT problem in polynomial time that any other algorithm
can. Thus from a theoretical perspective, this paper’s restriction to ELLIPSOID is
at no loss of generality for developing polynomial-time algorithms that exactly solve
MOT. In words, the equivalence “(ii) ⇐⇒ (iii)” establishes that the MOT and MIN
problems are polynomial-time equivalent. Thus we may investigate when MOT is
tractable by instead investigating themore amenable question of whenMIN is tractable
(see Sect. 1.1.4) at no loss of generality.

123

1130 J. M. Altschuler and E. Boix-Adserà

As stated in the related work section, Theorem 4.1 is implicit from combining sev-
eral known results [6, 7, 44]. Our contribution here is to make this result explicit, since
this allows us to unify algorithms from the implicit LP literature with the SINKHORN
algorithm. We also significantly simplify part of the implication “(iii) �⇒ (i)”, which
is crucial for making an algorithm that relies on theMIN oracle practical—namely, the
Column Generation algorithm discussed below.
Organization ofSect. 4.1. In Sect. 4.1.1,we recall thisELLIPSOID algorithmand how
it depends on the violation oracle for (MOT-D). In Sect. 4.1.2, we give a significantly
simpler proof that the violation and feasibility oracles are polynomial-time equivalent
in the case of (MOT-D), and use this to prove Theorem 4.1. In Sect. 4.1.3, we describe
a practical implementation that replaces the ELLIPSOID outer loop with Column
Generation.

4.1.1 Algorithm

Akey component of the proof ofTheorem4.1 is theELLIPSOID algorithm introduced
in [7] for MOT, which we describe below. In order to present this, we first define a
variant of the MIN oracle that returns a minimizing tuple rather than the minimizing
value.

Definition 4.2 (Violation oracle for (MOT-D)) Given weights p = (p1, . . . , pk) ∈
R

n×k , ARGMINC returns the minimizing solution �j and value of min �j∈[n]k C �j −
∑k

i=1[pi] ji .

ARGMINC can be viewed as a violation oracle5 for the decision set to (MOT-D).
This is because, given p = (p1, . . . , pk) ∈ R

n×k , the tuple �j output by ARGMINC (p)

either provides a violated constraint if C �j − ∑k
i=1[pi] ji < 0, or otherwise certifies p

is feasible. In [7] it is proved that MOT can be solved with polynomially many calls
to the ARGMINC oracle.

Theorem 4.3 (ELLIPSOID guarantee; Proposition 12 of [7]) Algorithm 1 finds an
optimal vertex solution for MOTC (μ) using poly(n, k) calls to the ARGMINC oracle
and poly(n, k) additional time. The solution is returned as a sparse tensor with at
most nk − k + 1 non-zero entries.

Sketch of algorithm.Full details and a proof are in [7].We give a brief overview here for
completeness. First, recall from the implicit LP literature that the classical Ellipsoid
algorithm can be implemented in polynomial time for an LP with arbitrarily many
constraints so long as it has polynomially many variables and the violation oracle for
its decision set is solvable in polynomial time [44]. This does not directly apply to
the LP (MOT) because that LP has nk variables. However, it can apply to the dual
LP (MOT-D) because that LP only has nk variables.

This suggests a natural two-step algorithm for MOT. First, compute an optimal
dual solution by directly applying the Ellipsoid algorithm to (MOT-D). Second, use

5 Recall that a violation oracle for a polytope K = {x : 〈ai , x〉 � bi , ∀i ∈ [N]} is an algorithm that given
a point p, either asserts p is in K , or otherwise outputs the index i of a violated constraint 〈ai , p〉 > bi .

123

Polynomial-time algorithms for MOT 1131

Algorithm 1 ELLIPSOID: specialization of the classical Ellipsoid algorithm toMOT
Input: Cost C ∈ (Rn)⊗k , marginals μ1, . . . , μk ∈ Δn
Output: Vertex solution to MOTC (μ)

\\ Solve dual
1: Solve (MOT-D) using the Ellipsoid algorithm, with ARGMINC as the violation oracle. Let S denote the

set of tuples returned by all calls to ARGMINC .

\\ Solve primal
2: Solve (4.1) using the Ellipsoid algorithm.

this dual solution to construct a sparse primal solution. Although this dual-to-primal
conversion does not extend to arbitrary LP [18, Exercise 4.17], the paper [7] provides
a solution by exploiting the standard-form structure ofMOT. The procedure is to solve

min
P∈M(μ1,...,μk)

s.t. P�j =0, ∀�j /∈S

〈C, P〉 (4.1)

which is theMOT problem restricted to sparsity pattern S, where S is the set of tuples
�j returned by the violation oracle during the execution of step one of Algorithm 1.
This second step takes poly(n, k) time using a standard LP solver, because running
the Ellipsoid algorithm in the first step only calls the violation oracle poly(n, k) times,
and thus S has poly(n, k) size, and therefore the LP (4.1) has poly(n, k) variables and
constraints. In [7] it is proved that this produces a primal vertex solution to the original
MOT problem.

4.1.2 Equivalence of bottleneck toMIN

Although Theorem 4.3 shows that ELLIPSOID can solve MOT in poly(n, k) time
using the ARGMIN oracle, this is not sufficient to prove the implication “(iii) �⇒ (i)”
in Theorem 4.1. In order to prove that implication requires showing the polynomial-
time equivalence between MIN and ARGMIN.

Lemma 4.4 (Equivalence of MIN and ARGMIN) Each of the oracles MINC and
ARGMINC can be implemented using poly(n, k) calls of the other oracle and poly(n, k)

additional time.

This equivalence follows from classical results about the equivalence of violation
and feasibility oracles [92]. However, the known proof of that general result requires an
involved and indirect argument based on “back-and-forth” applications of the Ellipsoid
algorithm [44, §4.3]. Here we exploit the special structure of MOT to give a direct
and elementary proof. This is essential to practical implementations (see Sect. 4.1.3).

Proof It is obvious how the MINC oracle can be implemented via a single call of the
ARGMINC oracle; we now show the converse. Specifically, given p1, . . . , pk ∈ R

n , we
show how to compute a solution �j = (j1, . . . , jk) ∈ [n]k for ARGMINC ([p1, . . . , pk])
using nk calls to the MINC oracle and polynomial additional time. We use the first n

123

1132 J. M. Altschuler and E. Boix-Adserà

calls to compute the first index j1 of the solution, the next n calls to compute the next
index j2, and so on.

Formally, for s ∈ [k], let us say that (j∗1 , . . . , j∗s) ∈ [n]s is a “partial solution”
of size s if there exists a solution j ∈ [n]k for ARGMINC ([p1, . . . , pk]) that satisfies
ji = j∗i for all i ∈ [s]. Then it suffices to show that for every s ∈ [k], it is possible to
compute a partial solution (j∗1 , . . . , j∗s) of size s from a partial solution (j∗1 , . . . , j∗s−1)

of size s − 1 using n calls to the MINC oracle and polynomial additional time.
The simple but key observation enabling this is the following. Below, for i ∈ [k]

and j ∈ [n], define qi, j to be the vector in R
n with value [pi] j on entry j , and value

−M on all other entries. In words, the following observation states that if the constant
M is sufficiently large, then for any indices j ′i , replacing the vectors pi with the vectors
qi, j ′i in a MIN oracle query effectively performs a MIN oracle query on the original

input p1, . . . , pk except that now the minimization is only over �j ∈ [n]k satisfying
ji = j ′i .

Observation 4.5 Set M := 2Cmax + 2
∑k

i=1 ‖pi‖max + 1. Then for any s ∈ [k] and
any (j ′1, . . . , j ′s) ∈ [n]s ,

MINC ([q1, j ′1 , . . . , qs, j ′s , ps+1, . . . , pk]) = min
�j∈[n]k

s.t. j1= j ′1,..., js= j ′s

C �j −
k∑

i=1

[pi] ji .

Proof By definition of the MIN oracle,

MINC ([q1, j ′1 , . . . , qs, j ′s , ps+1, . . . , pk]) = min
�j∈[n]k

C �j −
s∑

i=1

[qi, j ′i] ji −
k∑

i=s+1

[pi] ji

It suffices to prove that every minimizing tuple �j ∈ [n]k for the right hand side
satisfies ji = j ′i for all i ∈ [s]. Suppose not for sake of contradiction. Then there
exists a minimizing tuple �j ∈ [n]k for which j� �= j ′� for some � ∈ [s]. But then
[q�, j ′�] j� = −M , so the objective value of �j is at least

C �j −
s∑

i=1

[qi, j ′i] ji −
k∑

i=s+1

[pi] ji � M − Cmax −
k∑

i=1

‖pi ‖max = Cmax +
k∑

i=1

‖pi ‖max + 1.

But this is strictly larger (by at least 1) than the value of any tuple with prefix
(j ′1, . . . , j ′s), contradicting the optimality of �j . ��

Thus, given a partial solution (j∗1 , . . . , j∗s−1) of length s − 1, we construct a partial
solution (j∗1 , . . . , j∗s) of length s by setting j∗s to be a minimizer of

min
j ′s∈[n]

MINC ([q1, j∗1 , . . . , qs−1, j∗s−1
, qs, j ′s , ps+1, . . . , pk]). (4.2)

123

Polynomial-time algorithms for MOT 1133

The runtime bound is clear; it remains to show correctness. To this end, note that

min
�j∈[n]k

s.t. j1= j∗1 ,..., js= j∗s

C �j −
k∑

i=1

[pi] ji = MINC ([q1, j∗1 , . . . , qs, j∗s , ps+1, . . . , pk])

= min
j ′s∈[n]

MINC ([q1, j∗1 , . . . , qs−1, j∗s−1
, qs, j ′s , ps+1, . . . , pk])

= min
j ′s∈[n]

min
�j∈[n]k

s.t. j1= j∗1 ,..., js−1= j∗s−1, js= j ′s

C �j −
k∑

i=1

[pi] ji

= min
�j∈[n]k

s.t. j1= j∗1 ,..., js−1= j∗s−1

C �j −
k∑

i=1

[pi] ji

= MINC ([p1, . . . , pk]),

where above the first and third steps are by Observation 4.5, the second step is by
construction of j∗s , the fourth step is by simplifying, and the final step is by definition
of (j∗1 , . . . , j∗s−1) being a partial solution of size s − 1. We conclude that (j∗1 , . . . , j∗s)

is a partial solution of size s, as desired. ��
We can now conclude the proof of the main result of Sect. 4.1.

Proof of Theorem 4.1 The implication “(i) �⇒ (ii)” is trivial, and the implication “(ii)
�⇒ (iii)” is shown in [6]. It therefore suffices to show the implication “(iii) �⇒ (i)”.
This follows from combining the fact that ELLIPSOID solves MOTC in polynomial
time given an efficient implementation of ARGMINC (Theorem 4.3), with the fact that
the MINC and ARGMINC oracles are polynomial-time equivalent (Lemma 4.4). ��

4.1.3 Practical implementation via Column Generation

Although ELLIPSOID enjoys powerful theoretical runtime guarantees, it is slow
in practice because the classical Ellipsoid algorithm is. Nevertheless, whenever
ELLIPSOID is applicable (i.e., whenever the MINC oracle can be efficiently imple-
mented), we can use an alternative practical algorithm, namely the delayed Column
Generation method COLGEN, to compute exact, sparse solutions to MOT.

For completeness, we briefly recall the idea behind COLGEN; for further details see
the standard textbook [18, §6.1]. COLGEN runs the Simplex method, keeping only
basic variables in the tableau. Each time that COLGEN needs to find a Simplex variable
on which to pivot, it solves the “pricing problem” of finding a variable with negative
reduced cost. This is the key subroutine in COLGEN. In the present context of the
MOT LP, this pricing problem is equivalent to a call to the ARGMIN violation oracle
(see [18, Definition 3.2] for the definition of reduced costs). By the polynomial-time
equivalence of the ARGMIN and MIN oracles shown in Lemma 4.4, this bottleneck
subroutine in COLGEN can be computed in polynomial time whenever theMIN oracle
can. For easy recall, we summarize this discussion as follows.

Theorem 4.6 (Standard guarantee for COLGEN; Section 6.1 of [18]) For any T > 0,
one can implement T iterations of COLGEN in poly(n, k, T) time and calls to the

123

1134 J. M. Altschuler and E. Boix-Adserà

MINC oracle. When COLGEN terminates, it returns an optimal vertex solution, which
is given as a sparse tensor with at most nk − k + 1 non-zero entries.

Note that COLGEN does not have a theoretical guarantee stating that it terminates
after a polynomial number of iterations. But it often performs well in practice and
terminates after a small number of iterations, leading to much better empirical perfor-
mance than ELLIPSOID.

4.2 TheMultiplicativeWeights Update and theAMIN oracle

The second classical algorithm for solving implicitly-structured LPs that we study in
the context of MOT is the Multiplicative Weights Update algorithm MWU [91]. The
objective of this section is to prove the following guarantees for its specialization to
MOT.

Theorem 4.7 For any family of cost tensors C ∈ (Rn)⊗k , the following are equivalent:

(i) For any ε > 0, MWU takes poly(n, k, Cmax/ε) time to solve the MOTC prob-
lem ε-approximately. (Moreover, it outputs a sparse solution with at most
poly(n, k, Cmax/ε) non-zero entries.)

(ii) There exists a poly(n, k, Cmax/ε)-time algorithm that solves the MOTC problem
ε-approximately for any ε > 0.

(iii) There exists a poly(n, k, Cmax/ε)-time algorithm that solves the AMINC problem
ε-approximately for any ε > 0.

Interpretation of results. Similarly to the analogous Theorem 4.1 for ELLIPSOID,
the equivalence “(i) ⇐⇒ (ii)” establishes that MWU can approximately solve anyMOT
problem in polynomial time that any other algorithm can. Thus, from a theoretical
perspective, restricting to MWU for approximately solving MOT problems is at no loss
of generality. In words, the equivalence “(ii)⇐⇒ (iii)” establishes that approximating
MOT and approximatingMIN are polynomial-time equivalent. Thuswemay investigate
when MOT is tractable to approximate by instead investigating the more amenable
question of when MIN is tractable (see Sect. 1.1.4) at no loss of generality.

Theorem 4.7 is new to this work. In particular, equivalences between problems
with polynomially small error do not fall under the purview of classical LP theory,
which deals with exponentially small error [44]. Our use of theMWU algorithm exploits
a simple reduction of MOT to a mixed packing-covering LP that has appeared in the
k = 2 matrix case of Optimal Transport in [19, 73], where implicit LP is not necessary
for polynomial runtime.
Organization of Sect. 4.2. In Sect. 4.2.1 we present the specialization ofMultiplicative
Weights Update toMOT, and recall how it runs in polynomial time and calls to a certain
bottleneck oracle. In Sect. 4.2.2, we show that this bottleneck oracle is equivalent to
the AMIN oracle, and then use this to prove Theorem 4.7.

123

Polynomial-time algorithms for MOT 1135

4.2.1 Algorithm

Here we present the MWU algorithm, which combines the generic Multiplicative
Weights Update algorithm of [91] specialized to MOT, along with a final rounding
step that ensures feasibility of the solution.

In order to present MWU, it is convenient to assume that the cost C has entries in the
range [1, 2] ⊂ R, which is at no loss of generality by simply translating and rescaling
the cost (see Sect. 4.2.2), and can be done implicitly given a bound on Cmax. This is
why in the rest of this subsection, every runtime dependence on ε is polynomial in
1/ε for costs in the range [1, 2]; after transformation back to [−Cmax, Cmax], this is
polynomial dependence in the standard scale-invariant quantity Cmax/ε.

Since the cost C is assumed to have non-negative entries, for any λ ∈ [1, 2], the
polytope

K (λ) = {P ∈ M(μ1, . . . , μk) : 〈C, P〉 � λ}

of couplingswith cost atmostλ is amixed packing-covering polytope (i.e., all variables
are non-negative and all constraints have non-negative coefficients). Note that K (λ) is
non-empty if and only ifMOTC (μ) has value at most λ. Thus, modulo a binary search
on λ, this reduces computing the value of MOTC (μ) to the task of detecting whether
K (λ) is empty. Since K (λ) is a mixed packing-covering polytope, the Multiplicative
Weights Update algorithm of [91] determines whether K (λ) is empty, and runs in
polynomial time apart from one bottleneck, which we now define.

In order to define the bottleneck, we first define a potential function. For this, we
define the softmax analogously to the softmin as

smax(a1, . . . , at) = − smin(−a1, . . . ,−at) = log

(
t∑

i=1

eai

)

.

Here we use regularization parameter η = 1 for simplicity, since this suffices for
analyzing MWU, and thus we have dropped this index η for shorthand.

Definition 4.8 (Potential function for MWU) Fix a cost C ∈ (Rn)⊗k , target marginals
μ ∈ (Δn)k , and target value λ ∈ R. Define the potential function Φ := ΦC,μ,λ :
(Rn

�0)
⊗k → R by

Φ(P) = smax

(〈C, P〉
λ

,
m1(P)

μ1
, . . . ,

mk(P)

μk

)

.

The softmax in the above expression is interpreted as a softmax over the nk +1 values
in the concatenation of vectors and scalars in its input. (This slight abuse of notation
significantly reduces notational overhead.)

Given this potential function, we now define the bottleneck operation for MWU: find
a direction �j ∈ [n]k in which P can be increased such that the potential is increased
as little as possible.

123

1136 J. M. Altschuler and E. Boix-Adserà

Definition 4.9 (Bottleneck oracle for MWU) Given iterate P ∈ (Rn
�0)

⊗k , target

marginals μ ∈ (Δn)
k , target value λ ∈ R, and accuracy ε > 0,MWU_BOTTLENECKC

(P, μ, λ, ε) either:

– Outputs “null”, certifying that min �j∈[n]k
∂
∂h Φ(P + h · δ �j) |h=0> 1, or

– Outputs �j ∈ [n]k such that ∂
∂h Φ(P + h · δ �j) |h=0� 1 + ε.

(If min �j∈[n]k
∂
∂h Φ(P + h · δ �j) |h=0 is within (1, 1 + ε], then either return behavior is

a valid output.)

Pseudocode for the MWU algorithm is given in Algorithm 2.We prove that MWU runs
in polynomial time given access to this bottleneck oracle.

Theorem 4.10 Let the entries of the cost C lie in the range [1, 2]. Given λ ∈ R and
accuracy parameter ε > 0, MWU either certifies that MOTC (μ) � λ, or returns a
poly(n, k, 1/ε)-sparse P ∈ M(μ1, . . . , μk) satisfying 〈C, P〉 � λ + 8ε.

Furthermore, the loop in Step 1 runs in Õ(nk/ε2) iterations, and Step 2 runs in
poly(n, k, 1/ε) time.

The MWU algorithm can be used to output a O(ε)-approximate solution for MOT
time via an outer loop that performs binary search overλ; this only incurs O(log(1/ε))-
multiplicative overhead in runtime.

Algorithm 2 MWU: specialization of Multiplicative Weights Update [91] to MOT
Input: Accuracy ε > 0, marginals μ1, . . . , μk ∈ Δn , target value λ > 0
Output: Either certifies MOTC (μ) > λ by returning “infeasible”, or returns a solution P with 〈C, P〉 �

λ + 8ε
\\ Assume cost C satisfies C �j ∈ [1, 2] for all �j ∈ [n]k (without loss of generality by rescaling)
\\ Step 1: Multiplicative Weights Update

1: P ← 0 ∈ (Rn
�0)

⊗k , η ← 2(log(nk + 1))/ε
2: while m(P) < η do � While total mass is small
3: �j ← MWU_BOTTLENECKC (P, μ, λ, ε) � Bottleneck: find direction with small potential increase
4: if �j =“null” then return “infeasible” � Infeasible if no good direction
5: else P ← P + δ �j · ε · min(λ/C �j ,mini [μi] ji) � Else, increase in good direction

6: P ← P/(η(1 + ε)4) � Rescale

\\ Step 2: round to transportation polytope
7: while m(P) < 1 do � Until all constraints are satisfied
8: ji ← argmax

j∈[n]
([μi] j − [mi (P)] j) for each i ∈ [k] � For each marginal, find unsatisfied constraint

9: α ← mini∈[k]([μi] ji − [mi (P)] ji) � Maximal mass to add
10: P ← P + α · δ �j � Add mass to saturate at least one constraint

Proof We analyze Step 1 (Multiplicative Weights Update) and Step 2 (rounding) of
MWU separately. ��
Lemma 4.11 (Correctness of Step 1) Step 1 of Algorithm 2 runs in Õ(nk/ε2) iter-
ations. It either returns (i) “infeasible”, certifying that K (λ) is empty; or (ii) finds

123

Polynomial-time algorithms for MOT 1137

a poly(n, k, 1/ε)-sparse tensor P ∈ (Rn
�0)

⊗k that is approximately in K (λ), i.e., P
satisfies:

m(P) � 1 − 4ε, 〈C, P〉 � λ, and mi (P) � μi for all i ∈ [k]

Step 1 is theMultiplicativeWeightsUpdate algorithmof [91] applied to the polytope
K (λ), so correctness follows from the analysis of [91]. We briefly recall the main idea
behind this algorithm for the convenience of the reader, and provide a full proof in
Appendix A.1 for completeness. The main idea behind the algorithm is that on each
iteration, �j ∈ [n]k is chosen so that the increase in the potentialΦ(P) is approximately
boundedby the increase in the totalmassm(P). If this is impossible, then thebottleneck
oracle returns null, which means K (λ) is empty. So assume otherwise. Then once the
total mass has increased to m(P) = η + O(ε), the potential Φ(P) must be bounded
by η(1 + O(ε)). By exploiting the inequality between the max and the softmax, this
means that max(〈C, P〉/λ,maxi∈[n], j∈[k][mi (P)] j/[μi] j) � Φ(P) � η(1 + O(ε))

as well. Thus, rescaling P by 1/(η(1+ O(ε))) in Line 6 satisfies m(P) � 1− O(ε),
〈C, P〉/λ � 1, and mi (P)/μi � 1. See Appendix A.1 for full details and a proof of
the runtime and sparsity claims.

Lemma 4.12 (Correctness of Step 2) Step 2 of Algorithm 2 runs in poly(n, k, 1/ε)
time and returns P ∈ M(μ1, . . . , μk) satisfying 〈C, P〉 � λ + 8ε. Furthermore, P
only has poly(n, k, 1/ε) non-zero entries.

Proof of Lemma 4.12 By Lemma 4.11, P satisfies mi (P) � μi for all i ∈ [k]. Observe
that this is an invariant that holds throughout the execution of Step 2. This, along
with the fact that

∑n
j=1[mi (P)] j = m(P) is equal for all i , implies that the indices

(j1, . . . , jk) found in Line 8 satisfy [μi] ji − [mi (P)] ji > 0 for each i ∈ [k]. Thus in
particular α > 0 in Line 9. It follows that Line 10 makes at least one more constraint
satisfied (in particular the constraint “[μi] ji = [mi (P)] ji ” where i is the minimizer
in Line 9). Since there are nk constraints total to be satisfied, Step 2 terminates in
at most nk iterations. Each iteration increases the number of non-zero entries in P
by at most one, thus P is poly(n, k, 1/ε) sparse throughout. That P is sparse also
implies that each iteration can be performed in poly(n, k, 1/ε) time, thus Step 2 takes
poly(n, k, 1/ε) time overall.

Finally, we establish the quality guarantee on 〈C, P〉. By Lemma 4.11, this is at
most λ before starting Step 2. During Step 2, the total mass added to P is equal to
1−m(P). This is upper bounded by 4ε by Lemma 4.11. Since Cmax � 2, we conclude
that the value of 〈C, P〉 is increased by at most 8ε in Step 2. ��

Combining Lemmas 4.11 and 4.12 concludes the proof of Theorem 4.10. ��

4.2.2 Equivalence of bottleneck toAMIN

In order to prove Theorem 4.7, we show that the MWU algorithm can be implemented
in polynomial time and calls to the AMIN oracle. First, we prove this fact for the
ARGAMIN oracle, which differs from the AMIN oracle in that it also returns a tuple
�j ∈ [n]k that is an approximate minimizer.

123

1138 J. M. Altschuler and E. Boix-Adserà

Definition 4.13 (Approximate violation oracle for (MOT-D)) Given weights p =
(p1, . . . , pk) ∈ R

n×k and accuracy ε > 0, ARGAMINC returns �j ∈ [n]k that min-
imizes min �j∈[n]k C �j − ∑k

i=1[pi] ji up to additive error ε, and its value up to additive
error ε.

Lemma 4.14 Let the entries of the cost C lie in the range [1, 2]. The MWU algorithm
(Algorithm 2), can be implemented by poly(n, k, 1/ε) time and calls to the ARGAMINC

oracle with accuracy parameter ε′ = Θ(ε2/(nk)).

Proof We show that on each iteration of Step 1 of Algorithm 2 we can emulate the
call to the MWU_BOTTLENECK oracle with one call to the ARGAMIN oracle. Recall
that MWU_BOTTLENECKC (P, μ, λ, ε) seeks to find �j ∈ [n]k such that

V�j := ∂

∂h
Φ(P + hδ �j)

∣
∣
∣
h=0

is at most 1+ ε, or to certify that for all �j it is greater than 1. By explicit computation,

V�j = ∂

∂h
log

(

exp

(
(
〈C, P〉 + hC �j

)
/λ +

k∑

s=1

n∑

t=1

exp
(([ms(P)]t + δt, js

)
/[μs]t

)
)) ∣

∣
∣
∣
h=0

=
(

C �j −
k∑

i=1

[pi] ji

)
exp(〈C, P〉/λ)/λ

exp(〈C, P〉/λ) + ∑k
s=1

∑n
t=1 exp([ms(P)]t/[μs]t)

, (4.3)

where the weights p = (p1, . . . , pk) ∈ R
k×n in the last line are defined as

[pi] j = − λ

exp(〈C, P〉/λ)
· exp([mi (P)] j/[μi] j)

[μi] j
, ∀i ∈ [k], j ∈ [n].

Note that the second term in the product in (4.3) is positive and does not depend
on �j . This suggests that in order to minimize (4.3), it suffices to compute �j ←
ARGAMINC (p, ε′) for some accuracy parameter ε′ > 0. ��

The main technical difficulty with formalizing this intuitive approach is that the
weights p are not necessarily efficiently computable. Nevertheless, using poly(n, k)

extra time on each iteration, we can compute the marginals m1(P), . . . , mk(P). Since
the ARGAMIN oracle returns an ε′-additive approximation of the cost, we can also
compute a running estimate c̃ of the cost such that, on iteration T ,

c̃ − T ε′ � 〈C, P〉 � c̃ + T ε′.

Therefore, we define weights p̃ ∈ R
n×k , which approximate p and which can be

computed in poly(n, k) time on each iteration:

[p̃i] j = − λ

exp(c̃/λ)
· exp([mi (P)] j/[μi] j)

[μi] j
, ∀i ∈ [k], j ∈ [n].

123

Polynomial-time algorithms for MOT 1139

We also define the approximate value for any �j ∈ [n]k :

Ṽ�j :=
(

C �j −
k∑

i=1

[p̃i] ji

)
exp(c̃/λ)/λ

exp(c̃/λ) + ∑k
s=1

∑n
t=1 exp([ms(P)]t/[μs]t)

It holds that ARGAMINC (p̃, ε′) returns a �j ∈ [n]k that minimizes C �j − ∑k
i=1[p̃i] j up

to multiplicative error 1/(1− ε′), because the entries of the cost C are lower-bounded
by 1, and [p̃i] j � 0 for all i ∈ [n], j ∈ [k]. In particular,ARGAMINC (p̃, ε′)minimizes
Ṽ�j up to multiplicative error 1/(1− ε′). We prove the following claim relating V�j and
Ṽ�j :

Claim 4.15 For any �j ∈ [n]k , on iteration T , we have V�j/Ṽ�j ∈ [exp(−2T ε′/λ),

exp(2T ε′/λ)].
By the above claim, therefore ARGAMINC (p̃, ε′) minimizes V�j up to multi-

plicative error exp(4T ε′/λ)/(1 − ε′) � (1 + ε/3) if we choose ε′ = Ω(λε/T).
Thus one can implement MWU_BOTTLENECKC (p, μ, λ, ε) by returning the value of
ARGAMINC (p̃, ε′) if its value is estimated to be at most 1+ ε/3, and returning “null“
otherwise. The bound on the accuracy ε′ = Ω̃(ε2/(nk)) follows since λ ∈ [1, 2]
follows since λ ∈ [1, 2] and T = Õ(nk/ε2) by Theorem 4.10.

Proof of Claim We compare the expressions for V�j and Ṽ�j . Each of these is a product
of two terms. Since C �j � 0, and [p̃i] ji , [pi] ji � 0 for all i , the ratio of the first terms
is

C �j − ∑k
i=1[p̃i] ji

C �j − ∑k
i=1[pi] ji

∈ [min
i

[p̃i] ji /[pi] ji ,max
i

[p̃i] ji /[pi] ji] ⊂ [exp(−T ε′/λ), exp(T ε′/λ)],

where we have used that, for all i ∈ [k],

[p̃i] ji /[pi] ji = exp(〈C, P〉/λ)/ exp(c̃/λ) ∈ [exp(−T ε′/λ), exp(T ε′/λ)].

Similarly the ratio of the second terms in the expression for V�j and Ṽ�j is also in the
range [exp(−T ε′/λ), exp(T ε′/λ)]. This concludes the proof of the claim. ��

Finally, we show that the ARGAMIN oracle can be reduced to the AMIN oracle,
which completes the proof that MWU can be run with AMIN.

Lemma 4.16 (Equivalence of AMIN and ARGAMIN) Each of the oracles AMINC and
ARGAMINC with accuracy parameter ε > 0 can be implemented using poly(n, k) calls
of the other oracle with accuracy parameter Θ(ε/k) and poly(n, k) additional time.

It is worth remarking that the equivalence that we show between AMIN and
ARGAMIN is not known to hold for the feasibility and separation oracles of gen-
eral LPs, since the known result for general LPs requires exponentially small error
in nk [44, §4.3]. However, in the case of MOT the equivalence follows from a direct

123

1140 J. M. Altschuler and E. Boix-Adserà

and practical reduction, similar to the proof of the equivalence of the exact oracles
(Lemma 4.4). The main difference is that some care is needed to bound the propaga-
tion of the errors of the approximate oracles. For completeness, we provide the full
proof of Lemma 4.16 in Appendix A.

We conclude by proving Theorem 4.7.

Proof of Theorem 4.7 The implication “(i) �⇒ (ii)” is trivial, and the implication
“(ii) �⇒ (iii)” is shown in [6]. It therefore suffices to show the implication “(iii)
�⇒ (i)”. For costs C with entries in the range [1, 2], this follows from combining
the fact that MWU can be implemented to solve MOTC in poly(n, k, 1/ε) time given
an efficient implementation of ARGAMINC with polynomially-sized accuracy param-
eter ε′ = poly(1/n, 1/k, ε) (Lemma 4.14), along with the fact that the AMINC and
ARGAMINC oracles are polynomially-time equivalent with polynomial-sized accuracy
parameter (Lemma 4.16).

The assumption that C has entries within the range [1, 2] can be removed with no
loss by translating and rescaling the original cost C ′ ← (C + 3Cmax)/(2Cmax) and
running Algorithm 2 on C ′ with approximation parameter ε′ ← ε/(2Cmax). Each τ ′-
approximate query to the AMINC ′ oracle can be simulated by a τ -approximate query
to the AMINC oracle, where τ = 2Cmaxτ

′. ��
Remark 4.17 (Practical optimizations) Our numerical implementation of MWU has two
modifications that provide practical speedups. One is maintaining a cached list of
the tuples �j ∈ [n]k previously returned by calls to MWU_BOTTLENECK. Whenever
MWU_BOTTLENECK is called, we first check whether any tuple �j in the cache satisfies
the desiderata ∂

∂h Φ(P +h · δ �j) |h=0� 1+ε, in which case we use this �j to answer the
oracle query. Otherwise, we answer the oracle query using AMIN as explained above.
In practice, this cache allows us to avoid many calls to the potentially expensive AMIN
bottleneck. Our second optimization is that, at each iteration ofMWU, we checkwhether
the current iterate P can be rescaled in order to satisfy the guarantees in Lemma 4.11
required from Step 1. If so, we stop Step 1 early and use this rescaled P .

4.3 The Sinkhorn algorithm and the SMIN oracle

The Sinkhorn algorithm (SINKHORN) is specially tailored toMOT, and does not apply
to general exponential-size LP. Currently it is by far the most popular algorithm in the
MOT literature (see Sect. 1.3). However, in general each iteration of SINKHORN takes
exponential time nΘ(k), and it is not well-understood when it can be implemented
in polynomial-time. The objective of this section is to show that this bottleneck is
polynomial-time equivalent to the SMIN oracle, and in doing so put SINKHORN on
equal footingwith classical implicit LP algorithms in terms of their reliance on variants
of the dual feasibility oracle for MOT. Concretely, this lets us establish the following
two results.

First, SINKHORN can solveMOT in polynomial time whenever SMIN can be solved
in polynomial time.

Theorem 4.18 For any family of cost tensors C ∈ (Rn)⊗k and accuracy ε > 0,
SINKHORN solves MOTC to ε accuracy in poly(n, k, Cmax/ε) time and

123

Polynomial-time algorithms for MOT 1141

poly(n, k, Cmax/ε) calls to the SMINC oracle with regularization η = (2k log n)/ε.
(The solution is output through a polynomial-size implicit representation, see
Sect. 4.3.1.)

Second, we show that SINKHORN requires strictly more structure than other algo-
rithms do to solve an MOT problem. This is why the results about ELLIPSOID
(Theorem 4.1) and MWU (Theorem 4.7) state that those algorithms solve anMOT prob-
lem whenever possible, whereas Theorem 4.18 cannot be analogously extended to
such an “if and only if” characterization.

Theorem 4.19 There is a family of cost tensors C ∈ (Rn)⊗k for which ELLIPSOID
solves MOTC exactly in poly(n, k) time, however it is #BIS-hard to implement a single
iteration of SINKHORN in poly(n, k) time.

Organization of Sect. 4.3. In Sect. 4.3.1, we recall this SINKHORN algorithm and
how it depends on a certain marginalization oracle. In Sect. 4.3.2, we show that this
marginalization oracle is polynomial-time equivalent to the SMIN oracle, and use this
to prove Theorems 4.18 and 4.19.

4.3.1 Algorithm

Here we recall SINKHORN and its known guarantees. To do this, we first define the
following oracle. While this oracle does not have an interpretation as a dual feasibility
oracle,we showbelow that it is polynomial-time equivalent to SMIN, which is a specific
type of approximate dual feasibility oracle (Remark 3.6).

Definition 4.20 (MARG) Given scalings d = (d1, . . . , dk) ∈ R
n×k
�0 , regularization

η > 0, and an index i ∈ [k], the marginalization oracle MARGC (d, η, i) returns the
vector mi ((⊗k

i ′=1di ′) � exp[−ηC]) ∈ R
n
�0.

It is known that SINKHORN can solve MOT with only polynomially many calls to
this oracle [58]. The approximate solution that SINKHORN computes is a fully dense
tensor with nk non-zero entries, but it is output implicitly in O(nk) space through
“scaling vectors” and “rounding vectors”, described below.

Theorem 4.21 (SINKHORN guarantee, [58]) Algorithm 3 computes an ε-approximate
solution toMOTC (μ) using poly(n, k, Cmax/ε) calls to theMARGC oracle with param-
eter η = (2k log n)/ε, and poly(n, k, Cmax/ε) additional time. The solution is of the
form

P =
(
⊗k

i=1di

)
� exp[−ηC] +

(
⊗k

i=1vi

)
, (4.4)

and is output implicitly via the scaling vectors d1, . . . , dk ∈ R
n
�0 and rounding vectors

v1, . . . , vk ∈ R
n
�0.

Sketch of algorithm. Full details and a proof are in [58]. We give a brief overview
here for completeness. The main idea of SINKHORN is to solve RMOT, the entropi-
cally regularized variant of MOT described in Sect. 2.2. On one hand, this provides

123

1142 J. M. Altschuler and E. Boix-Adserà

Algorithm 3 SINKHORN: multidimensional analog of classical Sinkhorn scaling

Input: Cost C ∈ (Rn)⊗k , marginals μ1, . . . , μk ∈ Δn
Output: Implicit representation of tensor (4.4) that is an ε-approximate solution to MOTC (μ)

\\ Step 1: scale
1: d1, . . . , dk ← 1 and η ← (2k log n)/ε � Initialize (no scaling)
2: for poly(n, k, Cmax/ε) iterations do
3: Choose i ∈ [k] � Round-robin, greedily, or randomly
4: μ̃i ← MARGC (d, η, i) � Bottleneck: compute i-th marginal
5: di ← di � (μi /μ̃i) � Rescale i-th marginal (division is entrywise)

\\ Step 2: round to transportation polytope
6: for i = 1, . . . , k do � Rescale each marginal to be below marginal constraints
7: μ̃i ← MARGC (d, η, i) � Bottleneck: compute i-th marginal
8: di ← di � min[1, μi /μ̃i] � Rescale i-th marginal (operations are entrywise)

9: vi ← μi − MARGC (d, η, i) for each i ∈ [k] � Add back mass
10: v1 ← v1/‖v‖k−1

1 � Rescale so that (4.4) satisfies marginal constraints
11: Return d1, . . . , dk and v1, . . . , vk � Implicit representation of solution (4.4)

an ε-approximate solution to MOT by taking the regularization parameter η =
Θ(ε−1k log n) sufficiently high (Lemma 2.4). On the other hand, solving RMOT rather
than MOT enables exploiting the first-order optimality conditions of RMOT, which
imply that the unique solution to RMOT is the unique tensor inM(μ1, . . . , μk) of the
form

P∗ = (⊗k
i=1d∗

i) � K , (4.5)

where K denotes the entrywise exponentiated tensor exp[−ηC], and d∗
1 , . . . , d∗

k ∈
R

n
�0 are non-negative vectors. The SINKHORN algorithm approximately computes

this solution in two steps.
The first and main step of Algorithm 3 is the natural multimarginal analog of the

Sinkhorn scaling algorithm [78]. It computes an approximate solution P = (⊗k
i=1di)�

K by finding d1, . . . , dk such that P is nearly feasible in the sense that mi (P) ≈ μi

for each i ∈ [k]. Briefly, it does this via alternating optimization: initialize di to the
all-ones vector 1 ∈ R

n , and then iteratively update one di so that the i-th marginal
mi (P) of the current scaled iterate P = (⊗k

i=1di)� K is μi . Although correcting one
marginal can detrimentally affect the others, this algorithmnevertheless converges—in
fact, in a polynomial number of iterations [58].

The second step of Algorithm 3 is the natural multimarginal analog of the rounding
algorithm [5, Algorithm 2]. It rounds the solution P = (⊗k

i=1di) � K found in step
one to the transportation polytopeM(μ1, . . . , μk). Briefly, it performs this by scaling
each marginal mi (P) to be entrywise less than the desired μi , and then adding mass
back to P so that all marginals constraints are exactly satisfied. The former adjustment
is done by adjusting the diagonal scalings d1, . . . , dk , and the latter adjustment is done
by adding a rank-1 term ⊗k

i=1vi .
Critically, note that Algorithm 3 takes polynomial time except for possibly the calls

to the MARGC oracle. In the absence of structure in the cost tensor C , evaluating this

123

Polynomial-time algorithms for MOT 1143

MARGC oracle takes exponential time because it requires computing marginals of a
tensor with nk entries.

We conclude this discussion with several remarks about SINKHORN.

Remark 4.22 (Choice of update index in SINKHORN) In line 3 there are several ways
to choose update indices, all of which lead to the polynomial iteration complexity we
desire. Iteration-complexity bounds are shown for a greedy choice in [40, 58]. Similar
bounds can be shown for random and round-robin choices by adapting the techniques
of [9]. These latter two choices do not incur the overhead of k MARG computations
per iteration required by the greedy choice, which is helpful in practice. Empirically,
we observe that round-robin works quite well, and we use this in our experiments.

Remark 4.23 (Alternative implementations of SINKHORN) For simplicity, Algo-
rithm 3 provides pseudocode for the “vanilla” version of SINKHORN as it performs
well in practice and it achieves the polynomial iteration complexity we desire. There
are several variants in the literature, including accelerated versions and first rounding
small entries of the marginals—these variants have iteration-complexity bounds with
better polynomial dependence on ε and k, albeit sometimes at the expense of larger
polynomial factors in n [58, 84].

Remark 4.24 (Output of SINKHORN and efficient downstream tasks)While the output
P ofSINKHORN is fully dense with nk non-zero entries, its specific form (4.4) enables
performing downstream tasks in polynomial time. This is conditional on a polynomial-
timeMARGC oracle, which is at no loss of generality since that is required for running
SINKHORN in polynomial time in the first place. The basic idea is that P is a mixture
of two simple distributions (modulo normalization). The first is

(⊗k
i=1di

)�exp[−ηC],
which ismarginalizable usingMARGC . The second is⊗k

i=1vi ,which is easilymarginal-
izable since it is a product distribution (as the vi are non-negative). Together, this
enables efficient marginalization of P . By recursively marginalizing on conditional
distributions, this enables efficiently sampling from P . This in turn enables efficient
estimation of bounded statistics of P (e.g., the cost 〈C, P〉) by Hoeffding’s inequality.

4.3.2 Equivalence of bottleneck to SMIN

Although Theorem 4.21 shows that SINKHORN solvesMOT in polynomial time using
the MARG oracle, this is neither sufficient to prove the implication “(ii) �⇒ (i)” in
Theorem 4.18, nor to prove Theorem 4.19. In order to prove these results, we show
that SMIN and MARG are polynomial-time equivalent.

Lemma 4.25 (Equivalence ofMARG and SMIN) For any regularization η > 0, each of
the oracles MARGC and SMINC can be implemented using poly(n) calls of the other
oracle and poly(n, k) additional time.

Proof Reduction from SMIN to MARG. First, we show how to compute SMINC (p, η)

using one call to the marginalization oracle and O(n) additional time. Consider the
entrywise exponentiated matrix d = exp[ηp] ∈ R

n×k
�0 , and let μ1 = m1((⊗k

i=1di) �

123

1144 J. M. Altschuler and E. Boix-Adserà

exp[−ηC]) be the answer to MARGC (d, η, 1). Observe that

−η−1 log

⎛

⎝
n∑

j1=1

[μ1] j1

⎞

⎠ = −η−1 log

⎛

⎝
n∑

j1=1

∑

j2,..., jk∈[n]

k∏

i=1

[di] ji e
−ηC �j

⎞

⎠

= −η−1 log

⎛

⎝
∑

�j∈[n]k

e−η(C �j −
∑k

i=1[pi] ji)

⎞

⎠

= smin
�j∈[n]k

(

C �j −
k∑

i=1

[pi] ji

)

,

where above the first step is by definition of μ1, the second step is by definition of
d and combining the sums, and the third step is by definition of smin. We conclude
that −η−1 log

∑n
j1=1[μ1] j1 is a valid answer to SMINC (p, η). Since this is clearly

computable from μ1 in O(n) time, this establishes the claimed reduction.
Reduction from MARG to SMIN. Next, we show that for any marginalization index

i ∈ [k] and entry � ∈ [n], it is possible to compute the �-th entry of the vector
MARGC (d, η, i) using one call to the SMINC oracle and poly(n, k) additional time.
Define v ∈ R

n to be the vector with �-th entry equal to [di]�, and all other entries 0.
Define the matrix p = η−1 log[d1, . . . , di−1, v, di+1, . . . , dk] ∈ R̄

n×k , where recall
that log 0 = −∞ (see Sect. 2). Let s ∈ R denote the answer to SMINC (p, η). Observe
that

e−ηs =
∑

�j∈[n]k

e−η(C �j −
∑k

i=1[pi] ji) =
∑

�j∈[n]k : �ji =�

k∏

i=1

[di] ji e
−ηC �j

=
[
mi

(
(⊗k

i=1di) � exp[−ηC]
)]

�
,

where above thefirst step is by definition of s, the second step is by definition of p and v,
and the third step is by definition of the marginalization notation mi (·). We conclude
that exp(−ηs) is a valid answer for the �-th entry of the vector MARGC (d, η, i).
This establishes the claimed reduction since we may repeat this procedure n times to
compute all n entries of the the vector MARGC (d, η, i). ��

We can now conclude the proofs of the main results of Sect. 4.3.

Proof of Theorem 4.18 This follows from the fact that SINKHORN approximates
MOTC in polynomial time given a efficient implementation ofMARGC (Theorem4.21),
combinedwith the fact that theMARGC and SMINC oracles are polynomial-time equiv-
alent (Lemma 4.25).

Proof of Theorem 4.19 Consider the family of cost tensors in Lemma 3.7 for which the
MINC oracle admits a polynomial-time algorithm, but for which the SMINC oracle is
#BIS-hard. Then on one hand, theELLIPSOID algorithm solvesMOTC in polynomial
time by Theorem 4.1. And on the other hand, it is #BIS-hard to implement a single

123

Polynomial-time algorithms for MOT 1145

iteration of SINKHORN because that requires implementing theMARGC oracle, which
is polynomial-time equivalent to the SMINC oracle by Lemma 4.25. ��

5 Application: MOT problems with graphical structure

In this section, we illustrate our algorithmic framework on MOT problems with
graphical structure. Although a polynomial-time algorithm is already known for this
particular structure [49, 82], that algorithm computes solutions that are approximate
and dense; see the related work section for details. By combining our algorithmic
framework developed above with classical facts about graphical models, we show that
it is possible to compute solutions that are exact and sparse in polynomial time.

The section is organized as follows. In Sect. 5.1, we recall the definition of graph-
ical structure. In Sect. 5.2, we show that the MIN, AMIN, and SMIN oracles can be
implemented in polynomial time for cost tensors with graphical structure; from this it
immediately follows that all of the MOT algorithms discussed in part 1 of this paper
can be implemented in polynomial time. Finally, in Sect. 5.3, we demonstrate our
results on the popular application of computing generalized Euler flows, which was
the original motivation of MOT. Numerical simulations demonstrate how the exact,
sparse solutions produced by our new algorithms provide qualitatively better solutions
than previously possible in polynomial time.

5.1 Setup

Webegin by recalling preliminaries about undirected graphical models, a.k.a.,Markov
Random Fields. We recall only the relevant background; for further details we refer
the reader to the textbooks [55, 88].

In words, graphical models provide a way of encoding the independence structure
of a collection of random variables in terms of a graph. The formal definition is as
follows. Below, all graphs are undirected, and the notation 2V means the power set of
V (i.e., the set of all subsets of V).

Definition 5.1 (Graphical model structure) Let S ⊂ 2[k]. The graphical model struc-
ture corresponding to S is the graph GS = (V , E) with vertices V = [k] and edges
E = {(i, j) : i, j ∈ S, for some S ∈ S}.
Definition 5.2 (Graphical model) Let S ⊂ 2[k]. A probability distribution P over
{Xi }i∈[k] is a graphical model with structure S if there exist functions {ψS}S∈S and
normalizing constant Z such that

P
(
{xi }i∈[k]

)
= 1

Z

∏

S∈S
ψS

(
{xi }i∈S

)
.

A standard measure of complexity for graphical models is the treewidth of the
underlying graphical model structure GS because this captures not just the storage
complexity, but also the algorithmic complexity of performing fundamental tasks such

123

1146 J. M. Altschuler and E. Boix-Adserà

.eertnoitcnuJ(b).hparghtaP(a)

Fig. 1 The path graph (left) has treewidth 1 because the corresponding junction tree (right) has bags of size
at most 2

.eertnoitcnuJ(b).2eziswodniwhtiwhpargwodniW(a)

Fig. 2 The graph that has an edges between all vertices of distance at most two when ordered sequentially
(left) has treewidth 2 because the corresponding junction tree (right) has bags of size at most 3

(a) Cycle graph. (b) Junction tree.

Fig. 3 The cycle graph (left) has treewidth 2 because the corresponding junction tree (right) has bags of
size at most 3

as computing the mode, log-partition function, and marginal distributions [55, 88].
There are a number of equivalent definitions of treewidth [22]. Each requires defining
intermediate combinatorial concepts. We recall here the definition that is based on the
concept of a junction tree because this is perhaps the most standard definition in the
graphical models community.

Definition 5.3 (Junction tree, treewidth) A junction tree T = (VT , ET , {Bu}u∈VT) for
a graph G = (V , E) consists of a tree (VT , ET) and a set of bags {Bu ⊆ V }u∈VT

satisfying:

– For each variable i ∈ V , the set of nodes Ui = {u ∈ VT : i ∈ Bu} induces a
subtree of T .

– For each edge e ∈ E , there is some bag Bu containing both endpoints of e.

The width of the junction tree is one less than the size of the largest bag, i.e., is
maxu∈VT |Bu |−1. The treewidth of a graph is the width of its minimum-width junction
tree.

See Figs. 1, 2, and 3 for illustrated examples.
We now formally recall the definition of graphical structure for MOT.

Definition 5.4 (Graphical structure for MOT) An MOT cost tensor C ∈ (Rn)⊗k has
graphical structure with treewidth ω if there is a graphical model structure S ⊂ 2[k]
and functions { fS}S∈S such that

C �j =
∑

S∈S
fS

(
{ ji }i∈S

)
, ∀�j := (j1, . . . , jk) ∈ [n]k, (5.1)

123

Polynomial-time algorithms for MOT 1147

and such that the graph GS has treewidth ω.

We make three remarks about this structure. First, note that the functions { fS}S∈S
can be arbitrary so long as the corresponding graphical model structure has treewidth
at most ω.

Second, if Definition 5.4 did not constrain the treewidth ω, then every tensor C
would trivially have graphical structure with maximal treewidth ω = k − 1 (take S to
be the singleton containing [k], GS to be the complete graph, and f[k] to be C). Just
like all previous algorithms, our algorithms have runtimes that depend exponentially
(only) on the treewidth of GS . This is optimal in the sense that unless P = NP, there
is no algorithm with jointly polynomial runtime in the input size and treewidth [6].
We also point out that in all current applications of graphically structured MOT, the
treewidth is either 1 or 2, see Sect. 1.3.

Third, as in all previous work on graphically structuredMOT, we make the natural
assumptions that the cost C is input implicitly through the functions { fS}S∈S , and
that each function fS can be evaluated in polynomial time, since otherwise graphical
structure is useless for designing polynomial-time algorithms. In all applications in
the literature, these two basic assumptions are always satisfied. Note also that if the
treewidth of the graphical structure is constant, then there is a linear-time algorithm
to compute the treewidth and a corresponding minimum-width junction tree [21].

5.2 Polynomial-time algorithms

By our oracle reductions in Sect. 4, in order to design polynomial-time algorithms for
MOTwith graphical structure, it suffices to design polynomial-time algorithms for the
MIN, AMIN, or SMIN oracles. This follows directly from classical algorithmic results
in the graphical models literature [55].

Theorem 5.5 (Polynomial-time algorithms for the MIN, AMIN, and SMIN oracles for
costs with graphical structure) Let C ∈ (Rn)⊗k be a cost tensor that has graphical
structure with constant treewidth ω (see Definition 5.4). Then the MINC , AMINC , and
SMINC oracles can be computed in poly(n, k) time.

Algorithm4Polynomial-time algorithm forMIN for graphically structured costs (The-
orem 5.5).

Input: Cost C with graphical structure, matrix p ∈ R
n×k

Output: Solution to MINC (p)

1: �j ← mode of the graphical model P in (5.2) � Using the classical max-product algorithm [55, §13.3]
2: Return C �j − ∑k

i=1[pi] ji � Value of the MINC (p) oracle

123

1148 J. M. Altschuler and E. Boix-Adserà

Algorithm 5 Polynomial-time algorithm for SMIN for graphically structured costs
(Theorem 5.5).

Input: Cost C with graphical structure, matrix p ∈ R̄
n×k , regularization η > 0

Output: Solution to SMINC (p, η)

1: Z ← partition function of the graphical model P in (5.2) � Using the classical sum-product
algorithm [55, §10.2]

2: Return −η−1 log Z � Value of the SMINC (p, η) oracle

Proof Consider input p for the oracles. Let P denote the probability distribution on
[n]k given by

P(�j) = 1

Z
exp

(

−η

(

C �j −
k∑

i=1

[pi] ji

))

, ∀�j ∈ [n]k, (5.2)

where Z = ∑
�j∈[n][k] exp(−η(C �j − ∑k

i=1[pi] ji)) ensures P is normalized. Observe

that the MINC oracle amounts6 to computing the mode of the distribution P because
MINC (p) = C �j − ∑k

i=1[pi] ji , where �j ∈ [n]k is a maximizer of P�j . Also, the
SMINC oracle amounts to computing the partition function Z because SMINC (p) =
−η−1 log Z . Thus it suffices to compute the mode and partition function of P in
polynomial time. (The AMINC oracle follows from the MINC oracle by Remark 3.5).

To this end, observe that by assumption on C , there is a graphical model structure
S ∈ 2[k] and functions { fS}S∈S such that the corresponding graph GS has treewidth
ω and the distribution P factors as

P(�j) = exp

(

−η

(
∑

S∈S
fS ({ ji }i∈S) −

k∑

i=1

[pi] ji

))

.

It follows that P is a graphicalmodelwith respect to the samegraphicalmodel structure
S because the “vertex potentials” exp(η[pi] ji) do not affect the underlying graphical
model structure. Thus P is a graphical model with constant treewidth ω, so we may
compute the mode and partition function of P in poly(n, k) time using, respectively,
the classical max-product and sum-product algorithms [55, Chapters 13.3 and 10.2].
For convenience, pseudocode summarizing this discussion is provided inAlgorithms 4
and 5. ��

An immediate consequence of Theorem 5.5 combined with our oracle reductions is
that all candidate MOT algorithms in Sect. 4 can be efficiently implemented for MOT
problems with graphical structure. From a theoretical perspective, ELLIPSOID gives
the best guarantee since it produces an exact, sparse solution.

Corollary 5.6 (Polynomial-time algorithms for MOT problems with graphical struc-
ture) Let C ∈ (Rn)⊗k be a cost tensor that has graphical structure with constant
treewidth ω (see Definition 5.4). Then:

6 In fact, for the purpose of computing MINC , the distribution P(�j) can be defined using any η > 0.

123

Polynomial-time algorithms for MOT 1149

– The ELLIPSOID algorithm in Sect. 4.1 computes an exact solution to MOTC in
poly(n, k) time.

– The MWU algorithm in Sect. 4.2 computes an ε-approximate solution to MOTC in
poly(n, k, Cmax/ε) time.

– The SINKHORN algorithm in Sect. 4.3 computes an ε-approximate solution to
MOTC in poly(n, k, Cmax/ε) time.

– The COLGEN algorithm in Sect. 4.1.3 can be run for T iterations in poly(n, k, T)

time.

Moreover, ELLIPSOID, MWU, and COLGEN output a polynomially sparse tensor,
whereas SINKHORN outputs a fully dense tensor through the implicit representation
described in Sect. 4.3.1.

Proof Combine the polynomial-time implementations of the oracles in Theorem 5.5
with the polynomial-time algorithm-to-oracle reductions in Theorems 4.1, 4.7, 4.18,
and 4.6, respectively. ��

5.3 Application vignette: Fluid dynamics

In this section, we numerically demonstrate our new results for graphically struc-
tured MOT—namely the ability to compute exact, sparse solutions in polynomial
time (Corollary 5.6). We illustrate this on the problem of computing generalized
Euler flows—an MOT application which has received significant interest and which
was historically the motivation of MOT, see e.g., [14, 16, 23–26]. This MOT prob-
lem is already known to be tractable via a popular, specially-tailored modification
of SINKHORN [14]—which can be interpreted as implementing SINKHORN using
graphical structure [49, 82]. However, that algorithm is based on SINKHORN and
thus unavoidably produces solutions that are low-precision (due to poly(1/ε) run-
time dependence), fully dense (with nk non-zero entries), and have well-documented
numerical precision issues.Weoffer the first polynomial-time algorithm for computing
exact and/or sparse solutions.

We briefly recall the premise of thisMOT problem; for further background see [14,
26].An incompressible fluid (e.g.,water) ismodeled byn particleswhich are uniformly
distributed in space (due to incompressibility) at all times t ∈ {1, . . . , k + 1}. We
observe each particle’s location at initial time t = 1 and final time t = k + 1. The task
is to infer the particles’ locations at all intermediate times t ∈ {2, . . . , k}, and this is
modeled by an MOT problem as follows.

Specifically, the locations of the fluid particles are discretized to points {x j } j∈[n] ⊂
R

d , and σ is a known permutation on this set that encodes the relation between each
initial location x j at time t = 1 and final location σ(x j) at time t = k + 1. The total
movement of a particle that takes the trajectory x j1 , x j2 , . . . , x jk , σ (x j1) is given by

C j1,..., jk = ‖σ(x j1) − x jk ‖2 +
k−1∑

t=1

‖x jt+1 − x jt ‖2, (5.3)

123

1150 J. M. Altschuler and E. Boix-Adserà

t = 1

t = 2

t = 3

t = 4

t = 5

t = 6

t = 7

t = 1

t = 2

t = 3

t = 4

t = 5

t = 6

t = 7
NEGLOCNROHKNIS

Fig. 4 Transport maps computed by the fast implementation of SINKHORN [14] (left) and our COLGEN
implementation (right) on a standard fluid dynamics benchmark problem in dimension d = 1 [26]. The
pairwise transport maps between successive timesteps are plotted with opacity proportional to themass. The
SINKHORN algorithm is run at the highest precision (i.e., smallest regularization) before serious numerical
precision issues (NaNs). It returns a dense, approximate solution in 2.25 seconds. (All experiments in this
paper are run on a standard-issue Apple MacBook Pro 2020 laptop with an M1 Chip.) COLGEN returns
an exact, sparse solution in 9.52 seconds. Furthermore, in this particular problem instance, the COLGEN
method returns a Monge solution, i.e., the sparsity is n so that the particles never split in the computed
trajectories

By the principle of least action, the generalized Euler flow problem of inferring the
most likely trajectories of the fluid particles is given by the solution to theMOT problem
with this cost C and uniform marginals μt = 1n/n ∈ Δn which impose the constraint
that the fluid is incompressible.

Corollary 5.7 (Exact, sparse solutions for generalized Euler flows) The MOT problem
with cost (5.3) can be solved in d ·poly(n, k) time. The solution is returned as a sparse
tensor with at most nk − k + 1 non-zeros.

Proof This cost tensor C can be expressed in graphical form C �j = ∑
S∈S fS({ ji })

where S consists of the sets {1, 2}, . . . , {k −1, k} of adjacent time points as well as the
set {1, k}. Moreover, each function fS : [n]2 → R can be computed in O(dn2) time
since this simply requires computing ‖x j − x j ′ ‖2 for n2 pairs of points x j , x j ′ ∈ R

d .
Once this graphical representation is computed, Corollary 5.6 implies a poly(n, k)

time algorithm for this MOT problem because the graphical model structure S is a
cycle graph and thus has treewidth 2 (cf., Fig. 3). ��

Figure 4 illustrates how the exact, sparse solutions found by our new algorithm pro-
vide visually sharper estimates than the popular modification of SINKHORN in [14],
which blurs the trajectories. The latter is the state-of-the-art algorithm in the litera-
ture and in particular is the only previously known non-heuristic algorithm that has
polynomial-time guarantees. Note that this algorithm is identical to implementing
SINKHORN by exploiting the graphical structure to perform exact marginalization
efficiently [49, 82].

The numerical simulation is on a standard benchmark problem used in the literature
(see e.g., [14, Figure 9] and [26, Figure 2]) in which the particle at initial location
x ∈ [0, 1] moves to final location σ(x) = x + 1

2 (mod 1). This is run with k = 6
and marginals μ1 = · · · = μk uniformly supported on n = 51 positions in [0, 1].
See Appendix B for numerics on other standard benchmark instances. Note that this

123

Polynomial-time algorithms for MOT 1151

amounts to solving an MOT LP with nk = 516 ≈ 1.8 × 1010 variables, which is
infeasible for standard LP solvers. Our algorithm is the first to compute exact solutions
for problem instances of this scale.

Two important remarks. First, since this MOT problem is a discretization of the
underlying PDE, an exact solution is of course not necessary; however, there is
an important—even qualitative—difference between low-precision solutions (com-
putable with poly(1/ε) runtime) and high-precision solutions (computable with
polylog(1/ε) runtime) for the discretized problem. Second, a desirable feature of
SINKHORN that should be emphasized is its practical scalability, which might make it
advantageous for problemswhere veryfine discretization is required. It is an interesting
direction of practical relevance to develop algorithms that can compute high-precision
solutions at a similarly large scale in practice (see the discussion in Sect. 8).

6 Application: MOT problems with set-optimization structure

In this section, we consider MOT problems whose cost tensors C take values 0 and
1—or more generally any two values, by a straightforward reduction7. Such MOT
problems arise naturally in applications where one seeks to minimize or maximize the
probability that some event occurs given marginal probabilities on each variable (see
Example 6.1). We establish that this general class of MOT problems can be solved in
polynomial time under a condition on the sparsity pattern of C that is often simple to
check due its connection to classical combinatorial optimization problems.

The section is organized as follows. In Sect. 6.1 we formally describe this setup
and discuss why it is incomparable to all other structures discussed in this paper. In
Sect. 6.2, we show that for costs with this structure, theMIN, AMIN, and SMIN oracles
can be implemented in polynomial time; from this it immediately follows that the
ELLIPSOID, MWU, SINKHORN, and COLGEN algorithms discussed in part 1 of this
paper can be implemented in polynomial time. In Sect. 6.3, we illustrate our results
via a case study on network reliability.

6.1 Setup

Example 6.1 (Motivation for binary-valuedMOT costs: minimizing/maximizing prob-
ability of an event) Let S ⊂ [n]k . If C �j = 1[�j ∈ S], then theMOTC problem amounts
to minimizing the probability that event S occurs, given marginals on each variable.
On the other hand, if C �j = 1[�j /∈ S], then theMOTC problem amounts to maximizing
the probability that event S occurs since

MOTC (μ1, . . . , μk) = min
P∈M(μ1,...,μk)

P �j∼P [�j /∈ S] = 1 − max
P∈M(μ1,...,μk)

P �j∼P [�j ∈ S].

7 If C takes two values a < b, then define the tensor C̃ with {0, 1}-entries by C̃ �j = (C �j − a)/(b − a). It

is straightforward to see that the MOT problems with costs C and C̃ have identical solutions.

123

1152 J. M. Altschuler and E. Boix-Adserà

Even if the cost is binary-valued, there is no hope to solveMOT in polynomial time
without further assumptions—essentially because in the worst case, any algorithm
must query all nk entries if C is a completely arbitrary {0, 1}-valued tensor.

We show thatMOT is polynomial-time solvable under the general and often simple-
to-check condition that the MIN, AMIN, and SMIN oracles introduced in Sect. 3 are
polynomial-time solvable when restricted to the set S of indices �j ∈ [n]k for which
C �j = 0. For simplicity, our definition of these set oracles removes the cost C �j as it
is constant on S. Of course it is also possible to remove the negative sign in −p by
re-parameterizing the inputs as w = −p; however, we keep this notation in order to
parallel the original oracles.

Definition 6.2 (MIN set oracle) Let S ⊂ [n]k . For weights p = (p1, . . . , pk) ∈ R
n×k ,

MINC,S(p) returns

min
�j∈S

−
k∑

i=1

[pi] ji .

Definition 6.3 (AMIN set oracle)Let S ⊂ [n]k . For weights p = (p1, . . . , pk) ∈ R
n×k

and accuracy ε > 0, AMINC,S(p, ε) returns MINC,S(p) up to additive error ε.

Definition 6.4 (SMIN set oracle) Let S ⊂ [n]k . For weights p = (p1, . . . , pk) ∈ R̄
n×k

and regularization parameter η > 0, SMINC,S(p, η) returns

smin
�j∈S

−
k∑

i=1

[pi] ji .

The key motivation behind these set oracle definitions (aside from the syntactic
similarity to the original oracles) is that they encode the problem of (approximately)
finding the min-weight object in S. This opens the door to combinatorial applications
of MOT because finding the min-weight object in S is well-known to be polynomial-
time solvable for many “combinatorial-structured” sets S of interest—e.g., the set S
of cuts in a graph, or the set S of independent sets in a matroid. See Sect. 6.3 for
fully-detailed applications.

Definition 6.5 (Set-optimization structure for MOT) AnMOT cost tensor C ∈ (Rn)⊗k

has exact, approximate, or soft set-optimization structure of complexity β if

C �j = 1[�j /∈ S]

for a set S ⊂ [n]k for which there is an algorithm solving MINC,S , AMINC,S , or
SMINC,S , respectively, in β time.

We make two remarks about this structure.

Remark 6.6 (Only require set oracle for C−1(0), not for C−1(1)) Note that Defini-
tion 6.5 only requires the set oracles for the set S of entries where C is 0, and does not

123

Polynomial-time algorithms for MOT 1153

need the set oracles for the set [n]k \ S where C is 1. The fact that both set oracles are
not needed makes set-optimization structure easier to check than the original oracles
in Sect. 3, because those effectively require optimization over both S and [n]k \ S.

Remark 6.7 (Set-optimization structure is incomparable to graphical and low-rank
plus sparse structure) Costs C that satisfy Definition 6.5 in general do not have non-
trivial graphical structure or low-rank plus sparse structure. Specifically, there are
costs C that satisfy Definition 6.5, yet require maximal k − 1 treewidth to model via
graphical structure, and super-constant rank or exponential sparsity to model via low-
rank plus sparse structure. (A concrete example is the network reliability application
in Sect. 6.3.) Because of the NP-hardness of MOT problems with (k − 1)-treewidth
graphical structure or super-constant rank [6], simply modeling such problems with
graphical structure or low-rank plus rank structure is therefore useless for the purpose
of designing polynomial-time MOT algorithms.

6.2 Polynomial-time algorithms

By our oracle reductions in part 1 of this paper, in order to design polynomial-time
algorithms for MOT with set-optimization structure, it suffices to design polynomial-
time algorithms for the MIN, AMIN, or SMIN oracles. We show how to do this for all
three oracles in a straightforward way by exploiting the set-optimization structure.

Theorem 6.8 (Polynomial-time algorithms for the MIN, AMIN, and SMIN oracles for
costs with set-optimization structure) If C ∈ (Rn)⊗k is a cost tensor with exact,
approximate, or soft set-optimization structure of complexity β (see Definition 6.5),
then the MINC , AMINC , and SMINC oracles, respectively, can be computed in β +
poly(n, k) time.

Algorithm 6 Polynomial-time algorithm forMIN for costs with exact set-optimization
structure (Theorem 6.8).

Input: Access to C via MINC,S oracle, matrix p ∈ R
n×k

Output: Solution to MINC (p)

1: a ← MINC,S(p) � One oracle call

2: x ← −∑k
i=1 max j∈[n][pi] j � Takes O(nk) time

3: Return a if a � x , or min(a, 1 + x) otherwise � Takes O(1) time

Proof Polynomial-time algorithm forMIN.We first claim that Algorithm 6 implements
the MINC (p) oracle. To this end, define

a := MINC,S(p) = min
�j∈[n]k

s.t. C �j =0

−
k∑

i=1

[pi] ji and b := min
�j∈[n]k

s.t. C �j =1

−
k∑

i=1

[pi] ji . (6.1)

123

1154 J. M. Altschuler and E. Boix-Adserà

Algorithm 7 Polynomial-time algorithm for SMIN for costs with soft set-optimization
structure (Theorem 6.8).

Input: Access to C via SMINC,S oracle, matrix p ∈ R̄
n×k , regularization η

Output: Solution to SMINC (p, η)

1: a ← exp(−η · SMINC,S(p)) � One oracle call

2: x ← ∏k
i=1

∑n
j=1 exp(η[pi] ji) � Takes O(nk) time

3: Return −η−1 log(e−ηx + (1 − e−η)a) � Takes O(1) time

By re-arranging the sum and max, it follows that

x := −
k∑

i=1

max
j∈[n][pi] j = − max

�j∈[n]k

k∑

i=1

[pi] ji = min
�j∈[n]k

k∑

i=1

−[pi] ji = min(a, b). (6.2)

Therefore

MINC (p) = min
�j∈[n]k

C �j −
k∑

i=1

[pi] ji = min(a, 1 + b) =
{

a if a � b

min(a, 1 + min(a, b)) if a > b

=
{

a if a � x

min(a, 1 + x) if a > x
, (6.3)

where above the first step is by definition of MINC ; the second step is by partitioning
the minimization over �j ∈ [n]k into �j such that C �j = 0 or C �j = 1, and then plugging
in the definitions of a and b; the third step is by manipulating min(a, 1 + b) in both
cases; and the last step is because x = min(a, b) as shown above. We conclude
that Algorithm 6 correctly outputs MINC (p). Since the algorithm uses one call to the
MINC,S oracle and O(nk) additional time, the claim is proven.

Polynomial-time algorithm for AMIN. Next, we claim that the same Algorithm 6,
now runwith the approximate oracleAMINC,S(p, ε) in the first step instead of the exact
oracle MINC,S(p), computes a valid solution to AMINC (p, ε). To prove this, let a, b,
and x be as defined in (6.1) and (6.2) for theMIN analysis, and let ã = AMINC,S(p, ε).
By the same logic as in (6.3), except now reversed, the output

{
ã if ã � x

min(ã, 1 + x) if ã > x

is equal to min(ã, 1+ b). Now because ã is within additive ε error of a (by definition
of the AMINC,S oracle), it follows that the above output is within ε additive error of

min(a, 1 + b) = min
�j∈[n]k

C �j −
k∑

i=1

[pi] ji = MINC (p).

Thus the output is a valid answer to AMINC (p, ε), establishing correctness. The run-
time claim is obvious.

123

Polynomial-time algorithms for MOT 1155

Polynomial-time algorithm for SMIN. Finally,we claim thatAlgorithm7 implements
the SMINC (p, η) oracle. To this end, define

a := e−η·SMINC,S(p,η) =
∑

�j∈[n]k

s.t. C �j=0

eη
∑k

i=1[pi] ji and b :=
∑

�j∈[n]k

s.t. C �j=1

eη
∑k

i=1[pi] ji .

By re-arranging products and sums, it follows that

x :=
k∏

i=1

n∑

j=1

eη[pi] ji =
∑

�j∈[n]k

k∏

i=1

eη[pi] ji = a + b.

Therefore

SMINC (p, η) = −1

η
log

⎛

⎝
∑

�j∈[n]k

e−η(C �j −
∑k

i=1[pi] ji)

⎞

⎠ = −1

η
log

(
a + e−ηb

)

= −1

η
log

(
e−ηx + (1 − e−η)a

)
,

where above the first step is by definition of SMINC ; the second step is by partitioning
the sum over �j ∈ [n]k into �j such that C �j = 0 or C �j = 1, and then plugging in the
definitions of a and b; and the third step is because x = a + b as shown above. We
conclude that Algorithm 7 correctly outputs SMINC (p, η). Since the algorithm uses
one call to the SMINC,S oracle and O(nk) additional time, the claim is proven. ��

An immediate consequence of Theorem 6.8 combined with our oracle reductions
is that all of the candidate MOT algorithms described in Sect. 4 can be efficiently
implemented for MOT problems with set-optimization structure. From a theoretical
perspective, the ELLIPSOID algorithm gives the best guarantee since it produces an
exact, sparse solution in polynomial time.

Corollary 6.9 (Polynomial-time algorithms for MOT problems with set-optimization
structure) Let C ∈ (Rn)⊗k be a cost tensor that has set-optimization structure with
poly(n, k) complexity (see Definition 6.5).

– Exact set-optimization structure. The ELLIPSOID algorithm in Sect. 4.1 com-
putes an exact solution to MOTC in poly(n, k) time. Also, the COLGEN algorithm
in Sect. 4.1.3 can be run for T iterations in poly(n, k, T) time.

– Approximate set-optimization structure. The MWU algorithm in Sect. 4.2 computes
an ε-approximate solution to MOTC in poly(n, k, Cmax/ε) time.

– Soft set-optimization structure. The SINKHORN algorithm in Sect. 4.3 computes
an ε-approximate solution to MOTC in poly(n, k, Cmax/ε) time.

Moreover, ELLIPSOID, MWU, and COLGEN output a polynomially sparse tensor,
whereas SINKHORN outputs a fully dense tensor through the implicit representation
described in Sect. 4.3.1.

123

1156 J. M. Altschuler and E. Boix-Adserà

Proof Combine the polynomial-time implementations of the oracles in Theorem 7.4
with the polynomial-time algorithm-to-oracle reductions in Theorems 4.1, 4.6, 4.7,
and 4.18, respectively. ��

6.3 Application vignette: Network reliability with correlations

In this section, we illustrate this class ofMOT structures via an application to network
reliability, a central topic in network science, engineering, and operations research,
see e.g., the textbooks [12, 13, 41]. The basic network reliability question is: given an
undirected graph G = (V , E)where each edge e ∈ E is reliable with some probability
qe and fails with probability 1−qe, what is the probability that all vertices are reachable
from all others? This connectivity is desirable in applications, e.g., if G is a computer
cluster, the vertices are the machines, and the edges are communication links, then
connectivity corresponds to the reachability of all machines. See the aforementioned
textbooks for many other applications.

Of course, the above network reliability question is not yet well-defined since
the edge failures are only prescribed up to their marginal distributions. Which joint
distribution greatly impacts the answer.

The most classical setup posits that edge failures are independent [63]. Denote
the network reliability probability for this setting by ρind. This quantity ρind is #P-
complete [72, 85] and thus NP-hard to compute, but there exist fully polynomial
randomized approximation schemes (a.k.a.FPRAS) for multiplicatively approximat-
ing both the connection probability ρind [52] and the failure probability 1− ρind [45].

Here we investigate the setting of coordinated edge failures, which dates back to
the 1980s [89, 93]. This coordination may optimize for disconnection (e.g., by an
adversary), or for connection (e.g., maximize the time a network is connected while
performing maintenance on each edge e during 1−qe fraction of the time). We define
these notions below; see also Fig. 5 for an illustration. Below, Ber(qe) denotes the
Bernoulli distribution with parameter qe.

Definition 6.10 (Network reliability with correlations) For an undirected graph G =
(V , E) and edge reliability probabilities {qe}e∈E :

– The worst-case network reliability is

ρmin := min
P∈M({Ber(qe)}e∈E)

PH∼P
[
H is a connected subgraph of G

]
.

– The best-case network reliability is

ρmax := max
P∈M({Ber(qe)}e∈E)

PH∼P [H is a connected subgraph of G].

Clearly ρmin � ρind � ρmax. These gaps can be large (e.g., see Fig. 5), which
promises large opportunities for applications in which coordination is possible. How-
ever, in order to realize such an opportunity requires being able to compute ρmin

and ρmax, and both of these problems require solving an exponentially large LP with

123

Polynomial-time algorithms for MOT 1157

Fig. 5 Optimal decompositions for the the worst-case (top) and best-case (bottom) reliability problems on
the same graph G and edge reliability probabilities qe (left). Coordinating edge failures yields significantly
different connection probabilities: ρmin = 40%, ρind ≈ 60%, and ρmax = 90%

2|E | variables. Below we show how to use set-optimization structure to compute these
quantities in poly(|E |) time, thereby recovering as a special case of our general frame-
work the known polynomial-time algorithms for this particular problem in [89, 93],
as well as more practical polynomial-time algorithms that scale to input sizes that are
an order-of-magnitude larger.

Corollary 6.11 (Polynomial-time algorithm for network reliability with correlations)
The worst-case and best-case network reliability can both be computed in poly(|E |)
time.

Proof By the observation in Example 6.1, the optimization problems defining ρmin and
1−ρmax are instances ofMOT in which k = |E |, n = 2,μe = Ber(qe), and each entry
of the cost C ∈ {0, 1}|E | is the indicator of whether that subset of edges is a connected
or disconnected subgraph of G, respectively. It therefore suffices to show that both of
these MOT cost tensors satisfy exact set-optimization structure (Definition 6.5) since
that implies a polynomial-time algorithm for exactly solving MOT (Corollary 6.9).
Set-optimization structure for 1−ρmax. In this case, S is the set of connected subgraphs
of G. Thus the MINC,S problem is: given weights p ∈ R

2×|E |, compute

min
connected subgraph H of G

−
∑

e∈H

p2,e −
∑

e/∈H

p1,e.

Note that this objective is equal to
∑

e∈H xe − ∑
e∈E p1,e where xe := p1,e − p2,e.

Since the latter sum is independent of H , theMINC,S problem therefore reduces to the
problem of finding a minimum-weight connected subgraph in G; that is, given edge
weights x ∈ R

|E |, compute

min
connected subgraph H of G

∑

e∈H

xe. (6.4)

123

1158 J. M. Altschuler and E. Boix-Adserà

We first show how to solve this in polynomial time in the case that all edge weights xe

are positive. In this case, the optimal solution H is a minimum-weight spanning tree
of G. This can be found by Kruskal’s algorithm in O(|E | log |E |) time [56].

For the general case of arbitrary edge weights, note that the edges e with non-
positive weight x � 0 can be added to any solution without worsening the cost or
feasibility. Thus these edges are without loss of generality in every solution H , and
so it suffices to solve the same problem (6.4) on the graph G ′ obtained by contracting
these non-positively-weighted edges in G. This reduces (6.4) to the same problem of
finding a minimum-weight connected subgraph, except now in the special case that
all edge weights are positive. Since we have already shown how to solve this case in
polynomial time, the proof is complete.
Set-optimization structure for ρmin. In this case, S is the set of disconnected subgraphs
of G. We may simplify the MINC,S problem for ρmin by re-parameterizing the input
p ∈ R

2×|E | to edge weights x ∈ R
|E | as done above in (6.4) for 1 − ρmax. Thus the

MINC,S problem for ρmin is: given weights x ∈ R
|E |, compute

min
disconnected subgraph H of G

∑

e∈H

xe. (6.5)

We first show how to solve this in the case that all edge weights xe are negative. In that
case, the optimal solution is of the form H = E \ C , where C is a maximum-weight
cut of the graph G with weights xe. Equivalently, by negating all edge weights, C is a
minimum-weight cut of the graphG withweights−xe. Since aminimum-weight cut of
a graph with positive weights can be found in polynomial time [81], the problem (6.5)
can be solved in polynomial time when all xe are negative.

Now in the general case of arbitrary edge weights, note that the edges e with non-
negative weight x � 0 can be removed from any solution without worsening the cost
or feasibility. Thus these edges are without loss of generality not in every solution H ,
and so it suffices to solve the same problem (6.5) on the graph G ′ obtained by deleting
these non-negatively-weighted edges in G. This reduces (6.5) to the same problem of
finding a minimum-weight disconnected subgraph, except now in the special case that
all edge weights are negative. Since we have already shown how to solve this case in
polynomial time, the proof is complete. ��

In Fig. 6, we compare the numerical performance of the algorithms in Corol-
lary 6.11—COLGEN and MWU with polynomial-time implementation of their
bottlenecks—with the fastest previous algorithms for both best-case and worst-case
network reliability. Previously, the fastest algorithms that apply to this problem are
(1) out-of-the-box LP solvers run on MOT, (2) the brute-force implementation of
SINKHORN which marginalizes over all nk = 2|E | entries in each iteration, and (3)
this COLGEN algorithm that we recover [89, 93]. It is unknown if there is a practi-
cally efficient implementation of the SMINC,S oracle (and thus ofSINKHORN) for both
best-case orworst-case reliability. Since the previous algorithms (1) and (2) have expo-
nential runtime that scales as nΩ(k) = 2Ω(|E |), they do not scale past tiny input sizes.
In contrast, the algorithms in Corollary 6.11 scale to much larger inputs. Indeed, the
COLGEN algorithm that our framework recovers can compute exact solutions roughly

123

Polynomial-time algorithms for MOT 1159

Fig. 6 Top: comparison of the runtime (left) and accuracy (right) of the algorithms described in themain text,
for the worst-case reliability of a clique graph on t vertices and k = (t

2
)
edges with reliability probabilities

qe = 0.99. Bottom: same, but for best-case reliability and reliability probabilities qe = 0.01. For worst-
case reliability, the algorithms compute an upper bound, so a smaller value is better; reverse for best-case
reliability. The algorithms are cut off at 2 minutes, denoted by an “x”. SINKHORN is run at the highest
precision (i.e., highest η) before numerical precision issues. The COLGEN algorithm that our framework
recovers computes exact solutions an order-of-magnitude faster than the other algorithms, and the new MWU
algorithm computes reasonably approximate solutions for k = 400, which amounts to an MOT LP with
nk = 2400 ≈ 2.6 × 10120 variables

an order-of-magnitude faster than the other algorithms, and the new MWU algorithm
computes reasonably approximate solutions beyond k = 400, which amounts to an
MOT LP with nk = 2400 ≈ 2.6 × 10120 variables.

7 Application: MOT problems with low-rank plus sparse structure

In this section, we considerMOT problems whose cost tensors C decompose into low-
rank and sparse components. We propose the first polynomial-time algorithms for this
general class of MOT problems.

The section is organized as follows. In Sect. 7.1 we formally describe this setup
and discuss why it is incomparable to all other structures discussed in this paper.
In Sect. 7.2, we show that for costs with this structure, the AMIN and SMIN oracles
can be implemented in polynomial time; from this it immediately follows that MWU
and SINKHORN can be implemented in polynomial time. Finally, in Sect. 7.3 and
Sect. 7.4, we provide two illustrative applications of these algorithms. The former
regards portfolio risk management and is a direct application of our result for MOT

123

1160 J. M. Altschuler and E. Boix-Adserà

with low-rank cost tensors. The latter regards projecting mixture distributions to the
transportation polytope and illustrates the versality of our algorithmic results since this
problem is quadratic optimization over the transportation polytope rather than linear
(a.k.a. MOT).

7.1 Setup

Webegin by recalling the definition of tensor rank. It is the direct analog of the standard
concept of matrix rank. See the survey [54] for further background.

Definition 7.1 (Tensor rank) A rank-r factorization of a tensor R ∈ (Rn)⊗k is a col-
lection of rk vectors {ui,�}i∈[k],�∈[r] ⊂ R

n satisfying

R =
r∑

�=1

k⊗

i=1

ui,�.

The rank of a tensor is the minimal r for which there exists a rank-r factorization.

In this sectionwe considerMOT problemswith the following “low-rank plus sparse”
structure.

Definition 7.2 (Low-rank plus sparse structure for MOT) An MOT cost tensor C ∈
(Rn)⊗k has low-rank plus sparse structure of rank r and sparsity s if it decomposes as

C = R + S, (7.1)

where R is a rank-r tensor and S is an s-sparse tensor.

Throughout, we make the natural assumption that S is input through its s non-zero
entries, and that R is input through a rank-r factorization. We also make the natural
assumption that the entries of both R and S are of size O(Cmax)—this rules out the
case of having extremely large entries of R and S, one positive and one negative, which
cancel to yield a small entry of C = R + S.

Remark 7.3 (Neither low-rank structure nor sparse structure can be modeled by
graphical structure or set-optimization structure) In general, both rank-1 costs and
polynomially sparse costs do not have non-trivial graphical structure. Specifically,
modeling these costs with graphical structure requires the complete graph (a.k.a.,
maximal treewidth of k − 1)—and because MOT problems with graphical structure
of treewidth k − 1 are NP-hard to solve in the absence of further structure [6], mod-
eling such problems with graphical structure is useless for the purpose of designing
polynomial-time MOT algorithms. It is also clear that neither low-rank structure nor
sparse structure can be modeled by set-optimization structure because in general,
neither R nor S nor R + S has binary-valued entries.

123

Polynomial-time algorithms for MOT 1161

7.2 Polynomial-time algorithms

Froma technical perspective, themain result of this section is that there is a polynomial-
time algorithm for approximating the minimum entry of a tensor that decomposes
into constant-rank and sparse components. Previously, this was not known even for
constant-rank tensors. This result may be of independent interest. We remark that this
result is optimal in the sense that unless P = NP, there does not exist an algorithm
with runtime that is jointly polynomial in the input size and the rank r [6].

Theorem 7.4 (Polynomial-time algorithm solving AMIN and SMIN for low-rank +
sparse costs) Consider cost tensors C ∈ (Rn)⊗k that have low-rank plus sparse struc-
ture of rank r and sparsity s (see Definition 7.2). For any fixed r, Algorithm 8 runs in
poly(n, k, s, Cmax/ε) time and solves the ε-approximate AMINC oracle. Furthermore,
it also solves the SMINC̃ oracle for η = (2k log n)/ε on some cost tensor C̃ ∈ (Rn)⊗k

satisfying ‖C − C̃‖max � ε/2.

We make three remarks about Theorem 7.4. First, we are unaware of any
polynomial-time implementation of SMINC for the costC . Instead, Theorem7.4 solves
the SMINC̃ oracle for an O(ε)-approximate cost tensor C̃ since this is sufficient for
implementing SINKHORN on the original cost tensor C (see Corollary 7.5 below).
Second, it is an interesting open question if the poly(n, k, Cmax/ε) runtime for the ε-
approximate AMINC oracle can be improved to poly(n, k, log(Cmax/ε)), as this would
imply a poly(n, k) runtime for theMINC oracle and thus for this class ofMOT problems
(see also Footnote 4 in the introduction). Third, we remark about practical efficiency:
the runtime of Algorithm 8 is not just polynomially small in s and n, but in fact linear
in s and near-linear in n. However, since this improved runtime is not needed for the
theoretical results in the sequel, we do not pursue this further.

Combining the efficient oracle implementations in Theorem7.4with our algorithm-
to-oracles reductions in Sect. 4 implies the first polynomial-time algorithms for MOT
problems with costs that have constant-rank plus sparse structure. This is optimal in
the sense that unless P = NP, there does not exist an algorithm with runtime that is
jointly polynomial in the input size and the rank r [6].

Corollary 7.5 (Polynomial-time algorithms solvingMOT for low-rank + sparse costs)
Consider cost tensors C ∈ (Rn)⊗k that have low-rank plus sparse structure of constant
rank r and poly(n, k) sparsity s (see Definition 7.2). For any ε > 0:

– The MWU algorithm in Sect. 4.2 computes an ε-approximate solution to MOTC in
poly(n, k, Cmax/ε) time.

– The SINKHORN algorithm in Sect. 4.3 computes an ε-approximate solution to
MOTC in poly(n, k, Cmax/ε) time.

Moreover, MWU outputs a polynomially sparse tensor, whereas SINKHORN outputs a
fully dense tensor through the implicit representation described in Sect. 4.3.1.

Proof For MWU, simply combine the polynomial-time reduction to the AMINC oracle
(Theorem 4.7) with the polynomial-time algorithm for theAMIN oracle (Theorem 7.4).
For SINKHORN, combining the polynomial-time reduction to the SMINC̃ oracle (The-
orem 4.18) with the polynomial-time algorithm for the SMINC̃ oracle (Theorem 7.4)

123

1162 J. M. Altschuler and E. Boix-Adserà

yields a poly(n, k, Cmax/ε) algorithm for ε/2-approximating the MOT problem with
cost tensor C̃ . It therefore suffices to show that the values of the MOT problems with
cost tensors C and C̃ differ by at most ε/2, that is,

∣
∣
∣
∣ min

P∈M(μ1,...,μk)
〈P, C〉 − min

P∈M(μ1,...,μk)
〈P, C̃〉

∣
∣
∣
∣ � ε/2.

But this holds because both MOT problems have the same feasible set, and for any
feasible P ∈ M(μ1, . . . , μk) it follows from Hölder’s inequality that the objectives
of the two MOT problems differ by at most

∣
∣
∣〈P, C〉 − 〈P, C̃〉

∣
∣
∣ � ‖P‖1‖C − C̃‖max � ε/2.

��
Below, we describe the algorithm in Theorem 7.4. Specifically, in Sect. 7.2.1, we

give four helper lemmas which form the technical core of our algorithm; and then
in Sect. 7.2.2, we combine these ingredients to design the algorithm and prove its
correctness. Throughout, recall that we use the bracket notation f [A] to denote the
entrwise application of a univariate function f (e.g., exp, log, or a polynomial) to A.

7.2.1 Technical ingredients

At a high level, our approach to designing the algorithm in Theorem 7.4 is to approx-
imately compute the SMIN oracle in polynomial time by synthesizing four facts:

1. By expanding the softmin and performing simple operations, it suffices to compute
the total sum of all nk entries of the entrywise exponentiated tensor exp[−ηR]
(modulo simple transforms).

2. Although exp[−ηR] is in general a full-rank tensor, we can exploit the fact that
R is a low-rank tensor in order to approximate exp[−ηR] by a low-rank tensor
L . (Moreover, we can efficiently compute a low-rank factorization of L in closed
form.)

3. There is a simple algorithm for computing the sum of all nk entries of L in poly-
nomial time because L is low-rank. (And thus we may approximate the sum of all
nk entries of exp[−ηR] as desired in step 1.)

4. This approximation is sufficient for computing both the AMIN and SMIN oracle in
Theorem 7.4.

Of these four steps, the main technical step is the low-rank approximation in step
two.Below,we formalize these four steps individually inLemmas 7.6, 7.7, 7.8, and 7.9.
Further detail on how to synthesize these four steps is then provided afterwards, in the
proof of Theorem 7.4.

It is convenient towrite the first lemma in terms of an approximate tensor C̃ = R̃+S
rather than the original cost C = R + S.

123

Polynomial-time algorithms for MOT 1163

Lemma 7.6 (Softmin for costwith sparse component)Let C̃ = R̃+S and p1, . . . , pk ∈
R

n. Then

smin
�j∈[n]k

C̃ �j −
k∑

i=1

[pi] ji = −η−1 log(a + b),

where di := exp[ηpi] ∈ R
n
�0,

a :=
∑

�j∈[n]k

s.t. S�j �=0

k∏

i=1

[di] ji · e−η R̃ �j · (e−ηS�j − 1) (7.2)

and

b :=
∑

�j∈[n]k

k∏

i=1

[di] ji · e−η R̃ �j . (7.3)

Proof By expanding the definition of softmin, and then substituting pi with di and C̃
with R̃ + S,

smin
�j∈[n]k

C̃ �j −
k∑

i=1

[pi] ji = −1

η
log

⎛

⎝
∑

�j∈[n]k

eη
∑k

i=1[pi] ji e−ηC̃ �j

⎞

⎠

= −1

η
log

⎛

⎝
∑

�j∈[n]k

k∏

i=1

[di] ji · e−η R̃ �j e−ηS�j

⎞

⎠ .

By simple manipulations, we conclude that the above quantity is equal to the desired
quantity:

· · · = − 1

η
log

⎛

⎜
⎜
⎜
⎜
⎝

∑

�j∈[n]k

s.t. S�j �=0

k∏

i=1

[di] ji · e−η R̃ �j e−ηS�j +
∑

�j∈[n]k

s.t. S�j =0

k∏

i=1

[di] ji · e−η R̃ �j

⎞

⎟
⎟
⎟
⎟
⎠

= − 1

η
log

⎛

⎜
⎜
⎜
⎜
⎝

∑

�j∈[n]k

s.t. S�j �=0

k∏

i=1

[di] ji · e−η R̃ �j
(

e−ηS�j − 1
)

+
∑

�j∈[n]k

k∏

i=1

[di] ji · e−η R̃ �j

⎞

⎟
⎟
⎟
⎟
⎠

= − 1

η
log(a + b).

123

1164 J. M. Altschuler and E. Boix-Adserà

Above, the first step is by partitioning the sum over �j ∈ [n]k based on if S�j = 0, the

second step is by adding and subtracting
∑

�j∈[n]k s.t. S�j �=0

∏k
i=1[di] ji · e−η R̃ �j , and the

last step is by definition of a and b. ��

Lemma 7.7 (Low-rank approximation of the exponential of a low-rank tensor)There is
an algorithm that given R ∈ (Rn)⊗k in rank-r factored form, η > 0, and a precision
ε̃ < e−ηRmax , takes n · poly(k, r̃) time to compute a rank-r̃ tensor L ∈ (Rn)⊗k in
factored form satisfying ‖L − exp[−ηR]‖max � ε̃, where

r̃ �
(

r + O(log 1
ε̃
)

r

)

. (7.4)

Proof By classical results from approximation theory (see, e.g., [83]), there exists a
polynomial q of degree m = O(log 1/ε̃) satisfying

|exp(−ηx) − q(x)| � ε̃, ∀x ∈ [−Rmax, Rmax].

For instance, the Taylor or Chebyshev expansion of x �→ exp(−ηx) suffices. Thus the
tensor L with entries

L �j = q(R �j)

approximates exp[−ηR] to error

‖L − exp[−ηR]‖max � ε̃.

We now show that L has rank r̃ �
(r+m

r

)
, and moreover that a rank-r̃ factor-

ization can be computed in n · poly(k, r̃) time. Denote q(x) = ∑m
t=0 at xt and

R = ∑r
�=1 ⊗k

i=1ui,�. By definition of L , definition of q and R, and then the Multino-
mial Theorem,

L �j = q(R �j) =
m∑

t=0

at

(
r∑

�=1

k∏

i=1

[ui,�] ji

)t

=
∑

α∈Nr
0 : |α|�m

(|α|
α

)

a|α|
r∏

�=1

k∏

i=1

[ui,�]αi
ji
,

where the sum is over r -tuples α with non-negative entries summing to at most m.
Thus

L =
∑

α∈Nr
0 : |α|�m

k⊗

i=1

vi,α,

123

Polynomial-time algorithms for MOT 1165

where vi,α ∈ R
n denotes the vector with j-th entry

(|α|
α

)
a|α|

∏r
�=1[ui,�]αi

j for i = 1,

and
∏r

�=1[ui,�]αi
j for i > 1. This yields the desired low-rank factorization of L because

r̃ � #{α ∈ N
r
0 : |α| � m} =

(
r + m

r

)

.

Finally, since each of the kr̃ vectors vi,α in the factorization of L can be computed
efficiently from the closed-form expression above, the desired runtime follows. ��
Lemma 7.8 (Marginalizing a scaled low-rank tensor) Given vectors d1, . . . , dk ∈
R

n and a tensor L ∈ (Rn)⊗k through a rank r̃ factorization, we can compute
m((⊗k

i=1di) � L) in O(nkr̃) time.

Proof Denote the factorization of L by L = ∑r̃
�=1 ⊗k

i=1vi,�. Then

m((⊗k
i=1di) � L) =

∑

�j∈[n]k

[
(⊗k

i=1di) � L
]

�j =
∑

�j∈[n]k

r̃∑

�=1

k∏

i=1

[di] ji [vi,�] ji

=
r̃∑

�=1

k∏

i=1

n∑

j=1

[di] j [vi,�] j =
r̃∑

�=1

k∏

i=1

〈di , vi,�〉,

where the first step is by definition of the m(·) operation that sums over all entries,
the second step is by definition of L , and the third step is by swapping products and
sums. Thus computing the desired quantity amounts to computing r̃ k inner products
of n-dimensional vectors. This can be done in O(nr k̃) time. ��
Lemma 7.9 (Precision of the low-rank approximation) Let ε � 1. Suppose L ∈
(Rn)⊗k satisfies ‖L−exp[−ηR]‖max � ε

3e−ηRmax . Then the matrix C̃ := − 1
η
log[L]+

S satisfies

‖C̃ − C‖max � ε

2
. (7.5)

Proof Observe that the minimum entry of L is at least

e−ηRmax − ε
3e−ηRmax � 2

3e−ηRmax . (7.6)

Since this is strictly positive, the tensor R̃ := −η−1 log[L] is well defined. Further-
more,

‖η R̃ − ηR‖max = max
�j∈[n]k

∣
∣
∣η R̃ �j − ηR �j

∣
∣
∣ � max

�j∈[n]k

∣
∣
∣L �j − e−ηR �j

∣
∣
∣

min(L �j , e−ηR �j)
�

ε
3e−ηRmax

2
3e−ηRmax

= ε

2
,

where above the first step is by definition of the max norm; the second step is by the
elementary inequality | log x − log y| � |x − y|/min(x, y) which holds for positive

123

1166 J. M. Altschuler and E. Boix-Adserà

scalars x and y [4, Lemma K]; and the third step is by (7.6) and the approximation
bound of L . Since η � 1, we therefore conclude that ‖R̃ − R‖max � ε/2. By adding
and subtracting S, this implies ‖C̃ − C‖max = ‖R̃ − R‖max � ε/2. ��

7.2.2 Proof of Theorem 7.4

We are now ready to state the algorithm in Theorem 7.4. Pseudocode is in Algorithm 8.
Note that R̃ = −η−1 log[L] and C̃ = R̃ + S are never explicitly computed because in
both Lines 3 and 4, the algorithm performs the relevant operations only through the
low-rank tensor L and the sparse tensor S.

Algorithm 8 Polynomial-time algorithm for AMIN and SMIN for low-rank + sparse
costs (Theorem 7.4).

Input: Low-rank tensor R, sparse tensor S, matrix p ∈ R̄
n×k , accuracy ε > 0

Output: Solution to both AMINC (p, ε) on cost tensor C = R + S, and also SMINC̃ (p, (2k log n)/ε) on

some approximate cost tensor C̃ satisfying ‖C − C̃‖max � ε/2
1: η ← (2k log n)/ε

2: Compute low-rank approximation L of exp[−ηR] via Lemma 7.7, for precision ε̃ = ε
3 e−ηRmax

3: Compute a in (7.2) directly by enumerating over the polynomially many non-zero entries of S, where
R̃ = −η−1 log[L]

4: Compute b in (7.3) via Lemma 7.8, where R̃ = −η−1 log[L]
5: Return −η−1 log(a + b)

Proof of Theorem 7.4 Proof of correctness for SMIN. Consider any oracle inputs p =
(p1, . . . , pk) ∈ R̄

n×k . By Lemma 7.9, the tensor C̃ = R̃ + S = −η−1 log L + S
satisfies ‖C̃ − C‖max � ε/2. Therefore it suffices to show that Algorithm 8 correctly
computes SMINC̃ (p, η). This is true because that quantity is equal to −η−1 log(a +b)

by Lemma 7.6.
Proof of correctness for AMIN. We have just established that Algorithm 8 computes

SMINC̃ (p, η). Because η = (2k log n)/ε and the fact that SMIN is a special case of
AMIN (Remark 3.6), it follows that SMINC̃ (p, η) is within additive accuracy ε/2 of
MINC̃ (p, η). Therefore, by the triangle inequality, it suffices to show that MINC̃ (p) is
within ε/2 additive accuracy of MINC (p). That is, it suffices to show that

∣
∣
∣
∣
∣
min
�j∈[n]k

C �j −
k∑

i=1

[pi] ji − min
�j∈[n]k

C̃ �j −
k∑

i=1

[pi] ji

∣
∣
∣
∣
∣
� ε/2.

But this is true because ‖C − C̃‖max � ε/2 by Lemma 7.9, and thus the quantities
C �j − ∑k

i=1[pi] ji and C̃ �j − ∑k
i=1[pi] ji are within additive accuracy ε/2 for each

�j ∈ [n]k .
Proof of runtime.Weprove the claimed runtime bound simultaneously for theAMIN

and SMIN computation because we use the same algorithm for both. To this end, we
first bound the rank r̃ of the low-rank approximation L computed in Lemma 7.7. Note

123

Polynomial-time algorithms for MOT 1167

that since ε̃ = ε
3e−ηRmax and since it is assumed that Rmax = O(Cmax), we have

log 1/ε̃ = O(Cmax
ε

k log n). Therefore

r̃ �
(

r + O(log 1/ε̃)

r

)

= O(log 1/ε̃)r = O(Cmax
ε

k log n)r = poly(log n, k, Cmax/ε).

Above, the first step is by Lemma 7.7, and the final step is because r is assumed
constant.

Therefore Line 2 in Algorithm 8 takes polynomial time by Lemma 7.7, Line 3 takes
polynomial time by simply enumerating over the s non-zero entries of S, and Line 4
takes polynomial time by Lemma 7.8. ��

7.3 Application vignette: Risk estimation

Here we consider an application to portfolio risk management. For simplicity of expo-
sition, let us first describe the setting of 1 financial instrument (“stock”). Consider
investing in one unit of a stock for k years. For i ∈ {0, . . . , k}, let Xi denote the price
of the stock at year i . Suppose that the return ρi = Xi/Xi−1 of the stock between
years i − 1 and i is believed to follow some distribution ρi ∼ μi . A fundamental
question about the riskiness of this stock is to compute the investor’s expected profit
in the worst-case over all joint probability distributions on future returns (ρ1, . . . , ρk)

that are consistent with the modeled marginal distributions (μ1, . . . , μk). This is an
MOT problem with cost C given by

C(ρ1, . . . , ρk) =
∏

i∈[k]
ρi ,

where here we view C as a function rather than a tensor for notational simplicity.
If each return ρi has n possible values (e.g., after quantization), then the cost C is
equivalently represented as a rank-1 tensor in (Rn)⊗k (by assigning an index to each
of the n possible values of each ρi). Therefore our result Corollary 7.5 provides
a polynomial-time algorithm for solving this MOT problem defining the investor’s
worst-case profit.

Rather than formalize this proof for 1 stock, we directly generalize to the general
case of investing in r stocks, r � 1. This is essentially identical to the simple case of
r = 1 stock, modulo additional notation.

Corollary 7.10 (Polynomial-time algorithm for expected profit given marginals on the
returns) Suppose an investor holds 1 unit of r stocks for k years. For each stock � ∈ [r]
and each year i ∈ [k], let ρi,� denote the relative price of stock � between years
i and i − 1. Suppose ρi,� has distribution μi,�, and that each μi,� has at most n
atoms. Let Rmax = max{ρi,�}

∑r
�=1

∏k
i=1 ρi,� denote the maximal possible return. For

any constant number of stocks r , there is a poly(n, k, Rmax/ε) time algorithm for ε-
approximating the expected profit in the worst-case over all futures that are consistent
with the returns’ marginal distributions.

123

1168 J. M. Altschuler and E. Boix-Adserà

Proof This is the optimization problem

min
P∈M({μi,�}i∈[k],�∈[r])

E{ρi,�}i∈[k],�∈[r]∼P

[
r∑

�=1

k∏

i=1

ρi,�

]

over all joint distributions P on the returns {ρi,�}i∈[k],�∈[k] that are consistent with the
marginal distibutions {μi,�}i∈[k],�∈[k]. This is anMOT problemwith k′ = rk marginals,
each over n atoms, with cost function

C
(
{ρi,�}i∈[k],�∈[r]

)
=

∑

�′∈[r]

∏

(i,�)∈[k]×[r]∼=[k′]

(
ρi,� · 1[� = �′] + 1[� �= �′]). (7.7)

By viewing this cost function C as a cost tensor in the natural way (i.e., assigning
an index to each of the n possible values of ρi,�), this representation (7.7) shows that
the corresponding cost tensor C ∈ (Rn)⊗k′

has rank r . Moreover, observe that the
maximum entry of the cost is Rmax. Therefore we may appeal to our polynomial-time
MOT algorithms in Corollary 7.5 for costs with constant rank. ��

The algorithm is readily generalized, e.g., if the investor has different units of a
stock, or if a stock is held for a different number of years. The former is modeled
simply by adding an extra year in which the return of stock � is equal to the number
of units, with probability 1. The latter is modeled simply by setting the return of stock
� to be 1 for all years after it is held, with probability 1.

In Fig. 7, we provide a numerical illustration comparing our new polynomial-time
algorithms for this risk estimation taskwith the previous fastest algorithms. Previously,
the fastest algorithms that apply to this problem are out-of-the-box LP solvers run on
MOT, and the brute-force implementation of SINKHORN which marginalizes over all
nk entries in each iteration. Since both of these previous algorithms have exponential
runtime that scales asnΩ(k), they donot scale beyond tiny input sizes ofn = 10 and k =
8 even with two minutes of computation time. In contrast, our new polynomial-time
algorithms compute high-quality solutions for problems that are orders-of-magnitude
larger. For example, our polynomial-time implementation of SINKHORN takes less
than a second to solve an MOT LP with nk = 1030 variables.

Details for this numerical experiment: we consider r = 1 stock over k timesteps,
where each marginal distribution μi is uniform on [1, 1 + 1/k], discretized with
n = 10. We implement the AMIN and SMIN oracle efficiently by using our above
algorithm to exploit the rank-one structure of the cost tensor. In particular, the poly-
nomial approximation we use here to approximate exp[−ηC] is the degree-5 Taylor
approximation (cf., Lemma 7.7). This lets us run SINKHORN and MWU in polyno-
mial time, as described above. In the numerical experiment, we also implement an
approximate version of COLGEN using our polynomial-time implementation of the
approximate violation oracle AMIN. Since the algorithms compute an upper bound,
lower value is better in the right plot of Fig. 7. We observe that MWU yields the loosest
approximation for this application, whereas our implementations of SINKHORN and
COLGEN produce high-quality approximations, as is evident by comparing to the exact
LP solver in the regime that the latter is tractable to run.

123

Polynomial-time algorithms for MOT 1169

Fig. 7 Comparison of the runtime (left) and accuracy (right) of the fastest existing algorithms (naive LP
solver and naive SINKHORNwhich both have exponential runtimes that scale as nΩ(k)) with our algorithms
(SINKHORN, MWU, and COLGEN and MWU with polynomial-time implementations of their bottlenecks) for
the risk estimation problem described in themain text. The algorithms are cut off at 2minutes, denoted by an
“x”. Our new polynomial-time implementation of SINKHORN returns high-quality solutions for problems
that are orders-of-magnitude larger than previously possible: e.g., it takes less than a second to solve the
problem for k = 30, which amounts to an MOT LP with 1030 variables

7.4 Application vignette: Projection to the transportation polytope

Herewe consider the fundamental problemof projecting a joint probability distribution
Q onto the transportation polytope M(μ1, . . . , μk), i.e.,

argmin
P∈M(μ1,...,μk)

∑

�j
(P�j − Q �j)

2. (7.8)

We provide the first polynomial-time algorithm for solving this problem in the case
where Q is a distribution that decomposes into a low-rank component plus a sparse
component. The low-rank component enables modeling mixtures of product distri-
butions (e.g., mixtures of isotropic Gaussians), which arise frequently in statistics
and machine learning; see, e.g., [39]. In such applications, the number of product
distributions in the mixture corresponds to the tensor rank. The sparse component fur-
ther enables modeling arbitrary corruptions to the distribution in polynomially many
entries.

We emphasize that this projection problem (7.8) is not an MOT problem since the
objective is quadratic rather than linear. This illustrates the versatility of our algo-
rithmic results. Our algorithm is based on a reduction from quadratic optimization to
linear optimization over M(μ1, . . . , μk) that is tailored to this problem. Crucial to
this reduction is the fact that theMOT algorithms in Sect. 4 can compute sparse solu-
tions. In particular, this reduction does not workwithSINKHORN becauseSINKHORN
cannot compute sparse solutions.

Corollary 7.11 (Efficient projection to the transportation polytope) Let Q = R + S ∈
(Rn

�0)
⊗k , where R has constant rank and S is polynomially sparse. Suppose that

Rmax and Smax are O(1). Given R in factored form, S through its non-zero entries,
measures μ1, . . . , μk ∈ Δn, and accuracy ε > 0, we can compute in poly(n, k, 1/ε)
time a feasible P ∈ M(μ1, . . . , μk) that has ε-suboptimal cost for the projection

123

1170 J. M. Altschuler and E. Boix-Adserà

problem (7.8). This solution P is a sparse tensor output through its poly(n, k, 1/ε)
non-zero entries.

Proof We apply the Frank-Wolfe algorithm (a.k.a., Conditional Gradient Descent) to
solve (7.8), specifically using approximate LP solutions for the descent direction as
in [51, Algorithm 2]. By the known convergence guarantee of this algorithm [51,
Theorem 1.1], if each LP is solved to ε′ = O(ε) accuracy, then T = O(1/ε) Frank-
Wolfe iterations suffice to obtain an ε-suboptimal solution to (7.8).

The crux, therefore, is to show that each Frank-Wolfe iteration can be computed
efficiently, and that the final solution is sparse. Initialize P(0) to be an arbitrary vertex
of M(μ1, . . . , μk). Then P(0) is feasible and is polynomially sparse (see Sect. 2.1).
Let P(t) ∈ (Rn

�0)
⊗k denote the t-th Frank-Wolfe iterate. Performing the next iteration

requires two computations:

1. Approximately solve the following LP to ε′ accuracy:

D(t) ← min
P∈M(μ1,...,μk)

〈P, P(t) − Q〉. (7.9)

2. Update P(t+1) ← (1 − γt)P(t) + γt D(t), where γt = 2/(t + 2) is the current
stepsize.

For the first iteration t = 0, note that the LP (7.9) is an MOT problem with cost
C (0) = P(0)− Q = P(0)− R−S which decomposes into a polynomially sparse tensor
P(0) − S plus a constant-rank tensor −R. Therefore the algorithm in Corollary 7.5
can solve the LP (7.9) to ε′ = O(ε) additive accuracy in poly(n, k, 1/ε) time, and
it outputs a solution D(0) that is poly(n, k, 1/ε) sparse. It follows that P(1) can be
computed in poly(n, k, 1/ε) time and moreover is poly(n, k, 1/ε) sparse since it is a
convex combination of the similarly sparse tensors P(0) and D(0). By repeating this
argument identically for T = O(1/ε) iterations, it follows that each iteration takes
poly(n, k, 1/ε) time, and that each iterate P(t) is poly(n, k, 1/ε) sparse. ��

8 Discussion

In this paper, we investigated what structure enablesMOT—an LPwith nk variables—
to be solved in poly(n, k) time. We developed a unified algorithmic framework for
MOT by characterizing what “structure” is required to solveMOT in polynomial time
by different algorithms in terms of simple variants of the dual feasibility oracle. On one
hand, this enabledus to show thatELLIPSOID andMWU solveMOT in polynomial time
whenever any algorithmcan,whereasSINKHORN requires strictlymore structure.And
on the other hand, this made the design of polynomial-time algorithms forMOTmuch
simpler, as we illustrated on three general classes of MOT cost structures.

Our results suggest several natural directions for future research. One exciting
direction is to identify further tractable classes of MOT cost structures beyond the
three studied in this paper, since this may enable new applications ofMOT. Our results
help guide this search because they make it significantly easier to identify if an MOT
problem is polynomial-time solvable (see Sect. 1.1.4).

123

Polynomial-time algorithms for MOT 1171

Another important direction is practicality. While the focus of this paper is to
characterize when MOT problems can be solved in polynomial time, in practice there
is of course a difference between small and large polynomial runtimes. It is therefore a
question of practical significance to improve our “proof of concept” polynomial-time
algorithms by designing algorithmswith smaller polynomial runtimes. Our theoretical
results help guide this search for practical algorithms because theymake it significantly
easier to identify if an MOT problem is polynomial-time solvable in the first place.

In order to develop more practical algorithms, recall that, roughly speaking, our
approach for designing MOT algorithms consisted of three parts:

– An “outer loop” algorithm such as ELLIPSOID, MWU, or SINKHORN that solves
MOT in polynomial time conditionally on a polynomial-time implementation of a
certain bottleneck oracle.

– An “intermediate” algorithm that reduces this bottleneck oracle to polynomial
calls of a variant of the dual feasibility oracle.

– An “inner loop” algorithm that solves the relevant variant of the dual feasibility
oracle for the structured MOT problem at hand.

Obtaining a smaller polynomial runtime for any of these three parts immediately
implies smaller polynomial runtimes for the overallMOT algorithm. Another approach
is to design altogether different algorithms that avoid the polynomial blow-up of the
runtime that arises from composing these three parts. Understanding how to solve an
MOT problem more “directly” in this way is an interesting question.

Acknowledgements We are grateful to Jonathan Niles-Weed, Pablo Parrilo, and Philippe Rigollet for
insightful conversations; to Frederic Koehler for suggesting a simpler proof of Lemma 3.7; to Ben Edelman
and Siddhartha Jayanti who were involved in the brainstorming stages and provided helpful references; and
to Karthik Natarajan for references to the random combinatorial optimization literature.

Funding Open Access funding provided by the MIT Libraries

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

ADeferred proof details

A.1 Proof of Lemma 4.11

Our proof is based on two helper claims.

Claim A.1 (Lemma 3 of [91]) If MWU_BOTTLENECK(P, μ, λ, ε) returns “null”, then
MOTC (μ) > λ.

123

http://creativecommons.org/licenses/by/4.0/

1172 J. M. Altschuler and E. Boix-Adserà

Proof We prove the contrapositive. Let P∗ ∈ M(μ1, . . . , μk) such that 〈C, P∗〉 � λ.
Then

∑

�j∈[n]k

P∗
�j

∂

∂h
Φ(P + hδ �j) |h=0

=
∑

�j∈[n]k P∗
�j (

C �j
λ
exp(〈C, P〉/λ) + ∑k

i=1
1

[μi] ji
exp([mi (P)] ji /[μi] ji))

exp(〈C, P〉/λ) + ∑k
s=1

∑n
t=1 exp([ms(P)]t/[μs]t)

=
〈C,P∗〉

λ
exp(〈C, P〉/λ) + ∑k

s=1
∑n

t=1
[ms (P∗)]t[μs]t

exp([ms(P)]t/[μs]t)

exp(〈C, P〉/λ) + ∑k
s=1

∑n
t=1 exp([ms(P)]t/[μs]t)

� exp(〈C, P〉/λ) + ∑k
s=1

∑n
t=1 exp([ms(P)]t/[μs]t)

exp(〈C, P〉/λ) + ∑k
s=1

∑n
t=1 exp([ms(P)]t/[μs]t)

= 1.

Since P∗ is non-negative and
∑

�j∈[n]k P∗
�j = m(P∗) = 1, there must exist a �j ∈ [n]k

satisfying ∂
∂h Φ(P + hδ �j) |h=0� 1. ��

This first claim ensures that if the algorithm returns “infeasible”, then indeed
MOTC (μ) > λ. This proves the first part of the lemma. We now prove a second
claim, useful for bounding the running time and the quality of the returned solution
when the algorithm does not return “infeasible”.

Claim A.2 (Lemmas 1 and 4 of [91]) In Lines 1 to 5, we maintain the invariant that
Φ(P) − (1 + ε)2m(P) � log(nk + 1).

Proof Note that initially P = 0 and Φ(0) − (1 + ε)2m(0) = Φ(0) = log(nk + 1).
So it suffices to prove that Φ(P) − (1+ ε)2m(P) does not increase on each iteration.
Indeed, if �j is returned by MWU_BOTTLENECK, then ∂

∂h Φ(P + hδ �j) |h=0� (1 + ε).
Furthermore, let ε′ = ε · min(λ/C �j ,mini [μi] ji). By the smoothness of the softmax,
it holds that

Φ(P + ε′δ �j) � Φ(P) + ε′(1 + ε)
∂

∂h
Φ(P + hδ �j) |h=0� ε′(1 + ε)2.

So, in Line 5, (1 + ε)2m(P) increases by (1 + ε)2ε′, and Φ(P) increases by at most
(1 + ε)2ε′. This proves the claim. ��

We use this second claim to bound the running time of Step 1. Each iteration of the
loop from Line 1 to Line 5 of Algorithm 2, increases the value of

Ψ (P) := 〈C, P〉/λ +
∑

i

‖mi (P)/μi‖1

by at least ε. So after T iterations we must have

Φ(P) � Ψ (P)/(nk + 1) � T ε/(nk + 1),

123

Polynomial-time algorithms for MOT 1173

where we have used Jensen’s inequality to relate Φ and Ψ . By the claim, this means
that on any iteration T � (η+ log(nk +1))(nk +1)(1+ ε)2/ε = Õ(nk/ε2), we must
have

m(P) � (Φ(P) − log(nk + 1))/(1 + ε)2 � η,

so the loop must terminate after at most Õ(nk/ε2) iterations. Since each iteration can
increase the number of non-zero entries by at most 1, this also proves the sparsity
bound on P .

We now prove the bounds on the marginals and cost, again using the claim. When
Line 6 is reached, we must have m(P) ∈ [η, η + ε], because each iteration increases
m(P) by at most ε. Therefore,

max(〈C, P〉/λ, m1(P)/μ1, . . . , mk (P)/μk) � Φ(P) by Lemma 2.3 for softmax

� log(nk + 1) + (1 + ε)2m(P) by the claim

� log(nk + 1) + (1 + ε)2(η + ε)

� (1 + ε)4η by η � 2 log(nk + 1) � 1

Therefore, the rescaling in Line 6 yields P satisfying the guarantees of Lemma 4.11.

A.2 Proof of Lemma 4.16

It is obvious how the AMINC oracle can be implemented via a single call of the
ARGAMINC oracle; we now show the converse. Specifically, given p1, . . . , pk ∈ R

n ,
we show how to compute a solution �j = (j1, . . . , jk) ∈ [n]k for ARGAMINC

([p1, . . . , pk], ε) using nk calls to the AMINC oracle with accuracy ε/(2k). As in
the proof of Lemma 4.4, we use the first n calls to compute the first index j1 of the
solution, the next n calls to compute the next index j2, and so on.

Formally, for s ∈ [k], let us say that (j∗1 , . . . , j∗s) ∈ [n]s is a δ-approximate “partial
solution” of size s if there exists a solution j ∈ [n]k for ARGAMINC ([p1, . . . , pk], δ)
that satisfies ji = j∗i for all i ∈ [s]. Then it suffices to show that for every s ∈ [k], it
is possible to compute an (sε/k)-approximate partial solution (j∗1 , . . . , j∗s) of size s
from an ((s − 1)ε/k)-approximate partial solution (j∗1 , . . . , j∗s−1) of size s − 1 using
n calls to AMINC and polynomial additional time.

Do this by setting j∗s to be a minimizer of

min
j ′s∈[n]

AMINC

([
q1, j∗1 , . . . , qs−1, j∗s−1

, qs, j ′s , ps+1, . . . , pk

]
,

ε

2k

)
, (A.1)

123

1174 J. M. Altschuler and E. Boix-Adserà

where the q vectors are defined as in the proof of Lemma 4.4. The runtime claim is
obvious; it suffices to prove correctness. To this end, observe that

min
�j∈[n]k

s.t. j1= j∗1 ,..., js= j∗s

C �j −
k∑

i=1

[pi] ji

= MINC

([
q1, j∗1 , . . . , qs, j∗s , ps+1, . . . , pk

])

� ε

2k
+ AMINC

([
q1, j∗1 , . . . , qs, j∗s , ps+1, . . . , pk

]
,

ε

2k

)

= ε

2k
+ min

j ′s∈[n]
AMINC

([
q1, j∗1 , . . . , qs−1, j∗s−1

, qs, j ′s , ps+1, . . . , pk

]
,

ε

2k

)

� ε

k
+ min

j ′s∈[n]
MINC

([
q1, j∗1 , . . . , qs−1, j∗s−1

, qs, j ′s , ps+1, . . . , pk

])

= ε

k
+ min

j ′s∈[n]
min
�j∈[n]k

s.t. j1= j∗1 ,... js−1= j∗s−1, js= j ′s

C �j −
k∑

i=1

[pi] ji

= ε

k
+ min

�j∈[n]k

s.t. j1= j∗1 ,... js−1= j∗s−1

C �j −
k∑

i=1

[pi] ji

= sε

k
+ MINC

([
p1, . . . , pk

])
.

Above, the first and fifth steps are by Observation 4.5, the second and fourth steps are
by definition of theAMIN oracle, the third step is by construction of j∗s , the penultimate
step is by simplifying, and the final step is by definition of (j∗1 , . . . , j∗s−1) being an
((s −1)ε/k)-approximate partial solution of size s −1. We conclude that (j∗1 , . . . , j∗s)

is an (sε/k)-approximate partial solution of size s, as desired.

B Additional numerical experiments

Here, we provide additional numerics for the generalized Euler flow application in
Sect. 5.3 in order to demonstrate that similar behavior is observed on other standard
benchmark inputs in the literature [26]. See Figs. 8 and 9. These instances are identical
to Fig. 4, except with different input permutations σ between the initial and final
positions of the particles. Note that our algorithm COLGEN computes an exact, sparse
solution with at most nk − k + 1 non-zero entries (Theorem 4.6). In contrast, the
SINKHORN algorithm of [14] computes approximate, fully dense solutions with nk

non-zero entries, which leads to blurry visualizations.

123

Polynomial-time algorithms for MOT 1175

t = 1

t = 2

t = 3

t = 4

t = 5

t = 6

t = 7

t = 1

t = 2

t = 3

t = 4

t = 5

t = 6

t = 7
NEGLOCNROHKNIS

Fig. 8 Same as Fig. 4, but now with the permutation σ that sends the particle at initial location x ∈ [0, 1] to
final location σ(x) = min(2x, 2−2x).COLGEN runs in 7.88 seconds, whileSINKHORNwith regularization
η = 2000 runs in 6.97 seconds. In the COLGEN solution, roughly half the particles have trajectories that
never split

t = 1

t = 2

t = 3

t = 4

t = 5

t = 6

t = 7

t = 1

t = 2

t = 3

t = 4

t = 5

t = 6

t = 7
NEGLOCNROHKNIS

Fig. 9 Same as Fig. 4, but now with the permutation σ that sends the particle at initial location x ∈ [0, 1]
to final location σ(x) = 1 − x . COLGEN runs in 10.53 seconds, while SINKHORN with regularization
η = 1500 runs in 2.10 seconds

References

1. Agrawal, S., Ding, Y., Saberi, A., Ye, Y.: Price of correlations in stochastic optimization. Oper. Res.
60(1), 150–162 (2012)

2. Agueh, M., Carlier, G.: Barycenters in the Wasserstein space. SIAM J. on Math. Anal. 43(2), 904–924
(2011)

3. Akagi, Y., Tanaka, Y., Iwata, T., Kurashima, T., Toda, H.: Probabilistic optimal transport based on
collective graphical models. (2020). Preprint at arXiv:2006.08866

4. Altschuler, J., Bach, F.,Rudi,A.,Niles-Weed, J.:Massively scalableSinkhorn distances via theNyström
method. Adv. in Neural Inf. Process. Syst. 32, 4429–4439 (2019)

5. Altschuler, J., Weed, J., Rigollet, P.: Near-linear time approximation algorithms for optimal transport
via Sinkhorn iteration. Advances in Neural Information Processing Systems (2017)

6. Altschuler, J.M., Boix-Adserà, E.: Hardness results for Multimarginal Optimal Transport problems.
Discrete Optim. 42, 100669 (2021)

7. Altschuler, J.M., Boix-Adserà, E.: Wasserstein barycenters can be computed in polynomial time in
fixed dimension. J. of Machine Learning Res. 22, 44–1 (2021)

8. Altschuler, J.M., Boix-Adserà, E.: Wasserstein barycenters are NP-hard to compute. SIAM Journal on
Mathematics of Data Science (2022)

9. Altschuler, J.M., Parrilo, P.A.: Near-linear convergence of the Random Osborne algorithm for Matrix
Balancing. Mathematical Programming, 1–35 (2022)

10. Anderes, E., Borgwardt, S., Miller, J.: Discrete Wasserstein barycenters: Optimal transport for discrete
data. Math. Methods of Oper. Res. 84(2), 389–409 (2016)

11. Bach, F.: Learning with submodular functions: A convex optimization perspective. Found. and Trends
in Mach. Learning 6(2–3), 145–373 (2013)

123

http://arxiv.org/abs/2006.08866

1176 J. M. Altschuler and E. Boix-Adserà

12. Ball, M.O.: Computational complexity of network reliability analysis: An overview. IEEE Trans. on
Reliab. 35(3), 230–239 (1986)

13. Ball,M.O., Colbourn, C.J., Provan, J.S.: Network reliability.Handbooks inOper. Res. andManagement
Sci. 7, 673–762 (1995)

14. Benamou, J.-D., Carlier, G., Cuturi, M., Nenna, L., Peyré, G.: Iterative Bregman projections for regu-
larized transportation problems. SIAM J. on Scientific Comput. 37(2), A1111–A1138 (2015)

15. Benamou, J.-D., Carlier, G., Di Marino, S., Nenna, L.: An entropy minimization approach to second-
order variational mean-field games. Math. Models and Methods in Appl. Sci. 29(08), 1553–1583
(2019)

16. Benamou, J.-D., Carlier, G., Nenna, L.: A numerical method to solve multi-marginal optimal trans-
port problems with Coulomb cost. In: Splitting Methods in Communication, Imaging, Science, and
Engineering, pp. 577–601. Springer (2016)

17. Benamou, J.-D., Carlier, G., Nenna, L.: Generalized incompressible flows, multi-marginal transport
and Sinkhorn algorithm. Numerische Mathematik 142(1), 33–54 (2019)

18. Bertsimas, D., Tsitsiklis, J.N.: Introduction to linear optimization, vol. 6. Athena Scientific Belmont,
MA (1997)

19. Blanchet, J., Jambulapati, A., Kent, C., Sidford, A.: Towards optimal running times for optimal trans-
port. (2018). Preprint at arXiv:1810.07717

20. Blondel, M., Seguy, V., Rolet, A.: Smooth and sparse optimal transport. In: International conference
on Artificial Intelligence and Statistics, pp. 880–889. PMLR (2018)

21. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM
J. on comput. 25(6), 1305–1317 (1996)

22. Bodlaender, H.L.: Treewidth: Structure and algorithms. In: International Colloquium on Structural
Information and Communication Complexity, pp. 11–25. Springer (2007)

23. Brenier, Y.: The least action principle and the related concept of generalized flows for incompressible
perfect fluids. J. of the Am. Math. Soc. 2(2), 225–255 (1989)

24. Brenier, Y.: The dual least action problem for an ideal, incompressible fluid. Archive for Rational
Mech. and Anal. 122(4), 323–351 (1993)

25. Brenier, Y.: Minimal geodesics on groups of volume-preserving maps and generalized solutions of the
Euler equations. Commun. on Pure and Appl. Math. 52(4), 411–452 (1999)

26. Brenier, Y.: Generalized solutions and hydrostatic approximation of the Euler equations. Physica D:
Nonlinear Phenomena 237(14–17), 1982–1988 (2008)

27. Buttazzo, G., De Pascale, L., Gori-Giorgi, P.: Optimal-transport formulation of electronic density-
functional theory. Phys. Review A 85(6), 062502 (2012)

28. Carlier, G., Ekeland, I.: Matching for teams. Econ. Theory 42(2), 397–418 (2010)
29. Carlier, G., Oberman, A., Oudet, E.: Numerical methods for matching for teams and Wasserstein

barycenters. ESAIM: Math. Modelling and Numerical Anal. 49(6), 1621–1642 (2015)
30. Chen, L., Ma, W., Natarajan, K., Simchi-Levi, D., Yan, Z.: Distributionally robust linear and discrete

optimization with marginals. Operations Research (2022)
31. Chiappori, P.-A., McCann, R.J., Nesheim, L.P.: Hedonic price equilibria, stable matching, and optimal

transport: equivalence, topology, and uniqueness. Econ. Theory 42(2), 317–354 (2010)
32. Cotar, C., Friesecke, G., Klüppelberg, C.: Density functional theory and optimal transportation with

Coulomb cost. Commun. on Pure and Appl. Math. 66(4), 548–599 (2013)
33. Courty, N., Flamary, R., Tuia, D., Rakotomamonjy, A.: Optimal transport for domain adaptation. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 1, (2016)
34. Cover, T.M., Thomas, J.A.: Elements of information theory. JohnWiley&Sons , Hoboken, New Jersey,

US (2012)
35. Cuturi, M.: Sinkhorn distances: Lightspeed computation of optimal transport. Advances in Neural

Information Processing Systems (2013)
36. Cuturi, M., Doucet, A.: Fast computation of Wasserstein barycenters. International Conference on

Machine Learning (2014)
37. Dyer, M., Goldberg, L.A., Greenhill, C., Jerrum, M.: On the relative complexity of approximate

counting problems. In: InternationalWorkshop on Approximation Algorithms for Combinatorial Opti-
mization, pp. 108–119. Springer (2000)

38. Elvander, F., Haasler, I., Jakobsson, A., Karlsson, J.: Multi-marginal optimal transport using partial
information with applications in robust localization and sensor fusion. Signal Process. 171, 107474
(2020)

123

http://arxiv.org/abs/1810.07717

Polynomial-time algorithms for MOT 1177

39. Feldman, J., O’Donnell, R., Servedio, R.A.: Learning mixtures of product distributions over discrete
domains. SIAM J. on Comput. 37(5), 1536–1564 (2008)

40. Friedland, S.: Optimal transport, distance between sets of measures and tensor scaling. (2020). Preprint
at arXiv:2005.00945

41. Gertsbakh, I., Shpungin, Y.: Network reliability and resilience. Springer Science & Business Media,
Heidelberg, Germany (2011)

42. Goldberg, L.A., Jerrum, M.: The complexity of ferromagnetic Ising with local fields. Comb., Probab.
and Comput. 16(1), 43–61 (2007)

43. Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences in combinatorial
optimization. Combinatorica 1(2), 169–197 (1981)

44. Grötschel, M., Lovász, L., Schrijver, A.: Geometric algorithms and combinatorial optimization, vol.
2. Springer Science & Business Media, Heidelberg, Germany (2012)

45. Guo, H., Jerrum, M.: A polynomial-time approximation algorithm for all-terminal network reliability.
SIAM J. on Comput. 48(3), 964–978 (2019)

46. Haasler, I., Ringh, A., Chen, Y., Karlsson, J.: Estimating ensemble flows on a hidden Markov chain.
In: IEEE Conference on Decision and Control, pp. 1331–1338. IEEE (2019)

47. Haasler, I., Ringh, A., Chen, Y., Karlsson, J.:Multi-marginal optimal transport and Schrödinger bridges
on trees. (2020). Preprint at arXiv:2004.06909

48. Haasler, I., Ringh, A., Chen, Y., Karlsson, J.: Scalable computation of dynamic flow problems via
multi-marginal graph-structured optimal transport. (2021). Preprint at arXiv:2106.14485

49. Haasler, I., Singh, R., Zhang, Q., Karlsson, J., Chen, Y.: Multi-marginal optimal transport and proba-
bilistic graphical models. IEEE Transactions on Information Theory (2021)

50. Haneveld, W.K.: Robustness against dependence in PERT: An application of duality and distributions
with known marginals. In: Stochastic Programming, pp. 153–182. Springer (1986)

51. Jaggi, M.: Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In: International Con-
ference on Machine Learning, pp. 427–435 (2013)

52. Karger, D.R.: A randomized fully polynomial time approximation scheme for the all-terminal network
reliability problem. SIAM Rev. 43(3), 499–522 (2001)

53. Khachiyan, L.G.: Polynomial algorithms in linear programming. USSR Comput. Math. and Math.
Phys. 20(1), 53–72 (1980)

54. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAMRev. 51(3), 455–500 (2009)
55. Koller, D., Friedman, N.: Probabilistic graphical models: principles and techniques. MIT Press, Cam-

bridge, Massachusetts, US (2009)
56. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proc.

of the Am. Math. soc. 7(1), 48–50 (1956)
57. Léonard, C.: A survey of the Schr̈odinger problem and some of its connections with optimal transport

(2013). Preprint at arXiv:1308.0215
58. Lin, T., Ho, N., Cuturi, M., Jordan, M.I.: On the complexity of approximating multimarginal optimal

transport (2019). Preprint at arXiv:1910.00152
59. Linial,N., Samorodnitsky,A.,Wigderson,A.:Adeterministic strongly polynomial algorithm formatrix

scaling and approximate permanents. In: Symposium on Theory of Computing, pp. 644–652 (1998)
60. Makarov, G.: Estimates for the distribution function of a sum of two random variables when the

marginal distributions are fixed. Theory of Probab. and its Appl. 26(4), 803–806 (1982)
61. Meilijson, I., Nádas, A.: Convex majorization with an application to the length of critical paths. J. of

Appl. Probab. 16(3), 671–677 (1979)
62. Mishra, V.K., Natarajan, K., Padmanabhan, D., Teo, C.-P., Li, X.: On theoretical and empirical aspects

of marginal distribution choice models. Management Sci. 60(6), 1511–1531 (2014)
63. Moore, E.F., Shannon, C.E.: Reliable circuits using less reliable relays. J. of the Franklin Institute

262(3), 191–208 (1956)
64. Muzellec, B., Nock, R., Patrini, G., Nielsen, F.: Tsallis regularized optimal transport and ecological

inference. In: AAAI Conference on Artificial Intelligence, volume 31 (2017)
65. Nadas, A.: Probabilistic PERT. IBM J. of Res. and Dev. 23(3), 339–347 (1979)
66. Natarajan, K., Song, M., Teo, C.-P.: Persistency model and its applications in choice modeling. Man-

agement Sci. 55(3), 453–469 (2009)
67. Nenna, L.: Numerical methods for multi-marginal optimal transportation. PhD thesis (2016)
68. Padmanabhan, D., Ahipasaoglu, S.D., Ramachandra, A., Natarajan, K.: Extremal probability bounds

in combinatorial optimization (2021). Preprint at arXiv:2109.01591

123

http://arxiv.org/abs/2005.00945
http://arxiv.org/abs/2004.06909
http://arxiv.org/abs/2106.14485
http://arxiv.org/abs/1308.0215
http://arxiv.org/abs/1910.00152
http://arxiv.org/abs/2109.01591

1178 J. M. Altschuler and E. Boix-Adserà

69. Papadimitriou, C.H., Roughgarden, T.: Computing correlated equilibria in multi-player games. J. of
the ACM 55(3), 1–29 (2008)

70. Peyré, G., Cuturi, M.: Computational optimal transport. Foundations and Trends in Machine Learning
(2017)

71. Pitié, F., Kokaram, A.C., Dahyot, R.: Automated colour grading using colour distribution transfer.
Comput. Vision and Image Underst. 107(1–2), 123–137 (2007)

72. Provan, J.S., Ball, M.O.: The complexity of counting cuts and of computing the probability that a graph
is connected. SIAM J. on Comput. 12(4), 777–788 (1983)

73. Quanrud, K.: Approximating optimal transport with linear programs. In: Symposium on Simplicity in
Algorithms (2018)

74. Rabin, J., Peyré, G., Delon, J., Bernot, M.:Wasserstein barycenter and its application to texture mixing.
In: International Conference on Scale Space andVariationalMethods inComputerVision, pp. 435–446.
Springer (2011)

75. Rüschendorf, L.: Random variables with maximum sums. Advances in Applied Probability, pp. 623–
632 (1982)

76. Rüschendorf, L., Uckelmann, L.: On the n-coupling problem. J. of Multivar. Anal. 81(2), 242–258
(2002)

77. Singh, R., Haasler, I., Zhang, Q., Karlsson, J., Chen, Y.: Incremental inference of collective graphical
models. IEEE Control Systems Letters (2020)

78. Sinkhorn, R.: Diagonal equivalence to matrices with prescribed row and column sums. The Am.Math.
Monthly 74(4), 402–405 (1967)

79. Solomon, J., De Goes, F., Peyré, G., Cuturi, M., Butscher, A., Nguyen, A., Du, T., Guibas, L.: Con-
volutional Wasserstein distances: Efficient optimal transportation on geometric domains. ACM Trans.
on Graphics 34(4), 1–11 (2015)

80. Srivastava, S., Li, C., Dunson, D.B.: Scalable Bayes via barycenter in Wasserstein space. J. of Mach.
Learning Res. 19(1), 312–346 (2018)

81. Stoer, M., Wagner, F.: A simple min-cut algorithm. J. of the ACM 44(4), 585–591 (1997)
82. Teh,Y.W.,Welling,M.: The unified propagation and scaling algorithm.Advances inNeural Information

Processing Systems, 953–960 (2002)
83. Trefethen, L.N.: Approximation theory and approximation practice, volume 164. SIAM (2019)
84. Tupitsa, N., Dvurechensky, P., Gasnikov, A., Uribe, C.A.: Multimarginal optimal transport by accel-

erated alternating minimization. In: 2020 IEEE Conference on Decision and Control, pp. 6132–6137.
IEEE (2020)

85. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM J. on Comput. 8(3),
410–421 (1979)

86. Villani, C.: Topics in optimal transportation. Number 58. AmericanMathematical Society, Providence,
Rhode Island, US (2003)

87. Wainwright, M.J., Jordan, M.I.: Variational inference in graphical models: The view from the marginal
polytope. In Allerton Conf. on Commun., Control, and Comput. 41, 961–971 (2003)

88. Wainwright, M.J., Jordan, M.I.: Graphical models, exponential families, and variational inference.
Now Publishers Inc, Hanover, Massachusetts, US (2008)

89. Weiss, G.: Stochastic bounds on distributions of optimal value functions with applications to PERT,
network flows and reliability. Oper. Res. 34(4), 595–605 (1986)

90. Wilson, A.G.: The use of entropy maximising models, in the theory of trip distribution, mode split and
route split. Journal of Transport Economics and Policy, 108–126 (1969)

91. Young, N.E.: Sequential and parallel algorithms for mixed packing and covering. In: Symposium on
Foundations of Computer Science, pp. 538–546. IEEE (2001)

92. Yudin, D.B., Nemirovskii, A.S.: Informational complexity and efficient methods for the solution of
convex extremal problems. Matekon 13(2), 22–45 (1976)

93. Zemel, E.: Polynomial algorithms for estimating network reliability. Netw. 12(4), 439–452 (1982)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Polynomial-time algorithms for multimarginal optimal transport problems with structure
	Abstract
	1 Introduction
	1.1 Contribution 1: unified algorithmic framework for MOT
	1.1.1 Answer to Q1: candidate poly(n,k)-time algorithms
	1.1.2 Answer to Q2: structure necessary to run candidate algorithms
	1.1.3 Answer to Q3: characterizing what MOT problems each algorithm can solve
	1.1.4 Answer to Q4: ease-of-use for checking if MOT is solvable in polynomial time
	1.1.5 Practical algorithmic tradeoffs beyond polynomial-time solvability

	1.2 Contribution 2: applications to general classes of structured MOT problems
	1.2.1 Graphical structure
	1.2.2 Set-optimization structure
	1.2.3 Low-rank and sparse structure

	1.3 Related work
	1.3.1 MOT algorithms
	1.3.2 Graphically structured MOT problems with constant treewidth
	1.3.3 Tractable MOT problems beyond graphically structured costs
	1.3.4 Intractable MOT problems
	1.3.5 Variants of MOT
	1.3.6 Optimization over joint distributions

	1.4 Organization

	2 Preliminaries
	2.1 Multimarginal optimal transport
	2.2 Regularization

	3 Oracles
	4 Algorithms to oracles
	4.1 The Ellipsoid algorithm and the MIN oracle
	4.1.1 Algorithm
	4.1.2 Equivalence of bottleneck to MIN
	4.1.3 Practical implementation via Column Generation

	4.2 The Multiplicative Weights Update and the AMIN oracle
	4.2.1 Algorithm
	4.2.2 Equivalence of bottleneck to AMIN

	4.3 The Sinkhorn algorithm and the SMIN oracle
	4.3.1 Algorithm
	4.3.2 Equivalence of bottleneck to SMIN

	5 Application: MOT problems with graphical structure
	5.1 Setup
	5.2 Polynomial-time algorithms
	5.3 Application vignette: Fluid dynamics

	6 Application: MOT problems with set-optimization structure
	6.1 Setup
	6.2 Polynomial-time algorithms
	6.3 Application vignette: Network reliability with correlations

	7 Application: MOT problems with low-rank plus sparse structure
	7.1 Setup
	7.2 Polynomial-time algorithms
	7.2.1 Technical ingredients
	7.2.2 Proof of Theorem 7.4

	7.3 Application vignette: Risk estimation
	7.4 Application vignette: Projection to the transportation polytope

	8 Discussion
	Acknowledgements
	A Deferred proof details
	A.1 Proof of Lemma 4.11
	A.2 Proof of Lemma 4.16

	B Additional numerical experiments
	References

