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Abstract

We analyze the convergence of the price of anarchy (PoA) of Nash equilibria in
atomic congestion games with growing total demand 7. When the cost functions are
polynomials of the same degree, we obtain explicit rates for a rapid convergence of the
PoAs of pure and mixed Nash equilibria to 1 in terms of 1 /7T and dp, /T, Where dy,qx
is the maximum demand controlled by an individual. Similar convergence results carry
over to the random inefficiency of the random flow induced by an arbitrary mixed Nash
equilibrium. For arbitrary polynomial cost functions, we derive a related convergence
rate for the PoA of pure Nash equilibria (if they exist) when the demands fulfill certain
regularity conditions and d,;,,x is bounded as T — oo. In this general case, also the
PoA of mixed Nash equilibria converges to 1 as 7 — 0o when dj,,, is bounded.
Our results constitute the first convergence analysis for the PoA in atomic congestion
games and show that selfish behavior is well justified when the total demand is large.
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1 Introduction

The price of anarchy (PoA, [35]) is an important notion in algorithmic game theory
([32]) and has been investigated intensively during the last two decades in congestion
games ([15, 37]), starting with the pioneering paper of Roughgarden and Tardos [42]
on the PoA of pure Nash equilibria in non-atomic congestion games ([15]) with affine
linear cost functions. Much of this work has then been devoted to worst-case upper
bounds of the PoA for different types of cost functions z,(-), and the influence of the
network topology on these upper bounds, see, e.g., [32] for an overview.

Much less attention has been paid to the evolution of the PoA as a function of the
growing total demand, although this is quite important for traffic and transportation
networks in which the demands tend to be high. Only recently, it has been shown
empirically ([29, 34, 48]) and analytically ([8-10, 47]) for non-atomic congestion
games that the PoA of pure Nash equilibria actually converges to 1 with growing total
demand for a large class of cost functions that includes all polynomials.

Non-atomic congestion games have the special feature that every individual user
(player) is infinitesimal and controls a negligible amount of demand, and so has a negli-
gible influence on the performance of the whole game. This can be stated alternatively
as that the demands are arbitrarily splittable. Prototypical non-atomic congestion
games are traffic networks in which each (travel) origin-destination pair has an arbi-
trarily splittable traffic demand that need to be distributed on paths connecting the
origin and the destination. A direct consequence is the essential uniqueness ([42]) of
pure Nash equilibria in non-atomic congestion games, which plays a pivotal role in
the convergence analysis of the PoA of pure Nash equilibria by Colini-Baldeschi et al.
[8-10] and Wu et al. [47].

In general, demands may not be arbitrarily splittable or even may not be split at
all. This is captured by atomic congestion games ([37]). A prototypical such game is
a transportation network in which each user wants to transport a certain unsplittable
demand of a good along a single path of that network. In this case, the congestion
game is finite ([30]), and each individual user is no longer infinitesimal and has a
non-negligible influence on the whole game, and thus in particular on the existence
and other properties of Nash equilibria. When the game is unweighted, i.e., users have
equal demands, then pure Nash equilibria exist, but may have different cost and so are
not essentially unique, see, e.g., [37, 44]. When the game is weighted, i.e., users have
unequal demands, then pure Nash equilibria need not exist and one has to resort to
mixed Nash equilibria except for particular cases, see, e.g., [16—18, 30].

This raises an important question if and how much the non-negligible role of individ-
uals in atomic congestion games may influence the total (transportation) inefficiency
for growing total (transportation) demand compared to their negligible role in non-
atomic congestion games. This asks for a convergence analysis of the PoA of both, pure
and mixed, Nash equilibria for growing total demands in atomic congestion games.
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1.1 Our contribution

To address this question, we study the evolution of the PoA for growing total demand T
in atomic congestion games with unsplittable demands and polynomial cost functions.
While our results hold for arbitrary atomic congestion games, we will mostly use the
notation of transportation networks, since they are more intuitive.

Our analysis covers the PoAs for both, pure and mixed, Nash equilibria. When
pure Nash equilibria exist, then we call the ratio of their worst-case cost over the
social optimum cost the atomic PoA, see (2.8). This distinguishes it from the PoA of
pure Nash equilibria in non-atomic congestion games, which is called the non-atomic
PoA in this paper, see (2.9). Since mixed Nash equilibria are probability distributions,
they induce random flows on the transportation network. We then call the ratio of the
worst-case expected cost of these random flows induced by mixed Nash equilibria over
the social optimum cost the mixed PoA, see (2.10), and call the ratio of the random
cost of the random flow induced by a specific mixed Nash equilibrium over the social
optimum cost the random PoA of that mixed Nash equilibrium, see (2.11).

The atomic PoA measures the inefficiency of selfish deterministic choices, while
the mixed and random PoAs quantify the inefficiency of selfish random choices in
expectation and as a stochastic variable, respectively. They are thus different. In par-
ticular, the random PoA is a random variable, and the atomic PoA is bounded by the
mixed PoA, since pure Nash equilibria in atomic congestion games can be considered
as particular mixed Nash equilibria that result in deterministic choices of users.

We first derive upper bounds on the atomic, mixed and random PoAs for polynomial
cost functions of the same degree, which cover BPR cost functions ([5]) that are of the
form &, - x# 4 y,. In this analysis, we apply the technique of scaling that was used
implicitly in Colini-Baldeschi et al. [10] and formalized and extended in Wu et al. [47]
and Wu and Mohring [46].

Using this technique, we show that the atomic PoAis 1+ O (%) + 0/ d’”%) when
pure Nash equilibria exist, see Theorem 1. Here, T is the total demand and d,, 1s the
maximum demand over all individuals (simply, maximum individual demand), which

reflects to a certain extent the possible influence of an individual. Moreover, we show
1/6

that the mixed PoA is 1 + 0(%) + 0(%), see Theorem 2b. These upper bounds

converge quickly to 1 as T — oo and d"% — 0. We also explore the probability

distribution of the random PoA of an arbitrary mixed Nash equilibrium and obtain

with Chebyshev’s inequalities in Theorem 2a that the random PoA is bounded from
above by 14+ O (%) +O0( ‘;’l'i/‘}ﬁg ) with an overwhelming probability of 1 — O ( ‘;’1'{% ). This
shows that an arbitrary mixed Nash equilibrium is also efficient as a random variable.
We further illustrate that both conditions 7 — oo and d’”T“ — 0 are necessary for
these convergence results, see Examples 2 and 3.

We then investigate conditions for the convergence of the atomic PoA and the mixed
PoA for arbitrary polynomial cost functions. We demonstrate first that the conditions
T — oo and % — 0 are no longer sufficient for the convergence of the atomic
PoA to 1, since the cost functions may have different degrees and the (transportation)

origin-destination pairs may have asynchronous demand growth rates. This may result
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in significantly discrepant influences of different origin-destination pairs on the limits
of the PoAs, see Example 4 or Wu et al. [47].

To capture these discrepant influences, we employ the asymptotic decomposition
technique introduced by Wu et al. [47]. We show for arbitrary polynomial cost func-
tions that both, the mixed PoA and the worst-case ratio of the total cost of the expected
flow of a mixed Nash equilibrium over the social optimum cost, converge to 1 as
T — o0, when the maximum individual demand d,;,4x is bounded from above by a
constant independent of the growth of T, see Theorem 3a—b. Note that the total cost
of the expected flow of a mixed Nash equilibrium need not coincide with the expected
cost of the random flow of that mixed Nash equilibrium, which is used in the definition
of the mixed PoA, and that the condition “d,,,, is bounded from above” is necessary
for these convergence results, see Example 4. To obtain these results, we have coupled
the asymptotic decomposition technique with Chernorff-Hoeffding inequalities, see
Appendices A.6—-A.7.

Hence, the atomic PoA converges also to 1 in this general case when pure Nash
equilibria exist. To analyze its convergence speed, we show, with a result by Colini-
Baldeschi et al. [10] for the convergence rate of the non-atomic PoA and with a result
by Wu and Mohring [46] for the sensitivity of the non-atomic PoA, that the atomic

PoA (if pure Nash equilibria exist) converges to 1 at a rate of O(T_Z'ﬁﬁ), when
Bmax = maxgzea By > 0 is the maximum of the degrees S, of the polynomial cost
functions t,, the maximum individual demand d,,,, is bounded from above, and the
ratio di of the total demand dj of each origin-destination pair k over T is bounded
away from 0, see Theorem 3c.

In summary, this paper presents for atomic congestion games with growing total
demands the first convergence analysis of the atomic and mixed PoAs, and the first
probabilistic analysis of the random PoA. While individual users have a non-negligible
role in atomic congestion games, our convergence results show that this does not
significantly increase the total transportation inefficiency for a large total demand
T when the maximum individual demand d,,,, is very small compared to 7. Our
convergence results imply, in addition to Colini-Baldeschi et al. [8—10] and Wu et al.
[47], that pure Nash equilibria, mixed Nash equilibria and social optima of an atomic
congestion game with a large total demand are almost equally efficient, and even as
efficient as the social optima of the corresponding non-atomic congestion games, see
(A.28)—(A.31) in Appendix A.6.

Thus, both pure Nash equilibria and mixed Nash equilibria in congestion games
with a large total demand need not be bad. The selfish choice of strategies leads then to
an almost optimal behavior, regardless whether users employ mixed or pure strategies,
and whether their transportation demands are splittable or not. Users may then restrict
to pure strategies and need not consider mixed strategies.

Although that need not lead to an equilibrium, it simplifies their decisions, and
benefits both their own cost and the total cost of the whole transportation network.
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1.2 Related work
1.2.1 Existence of equilibria

The existence of equilibria in atomic congestion games was obtained in, e.g., [16—18,
37] and others. Rosenthal [37] showed that an arbitrary unweighted atomic congestion
game has a pure Nash equilibrium. Fotakis et al. [16] showed that an arbitrary weighted
atomic congestion game I with affine linear cost functions is a potential game ([28])
and thus has a pure Nash equilibrium. Moreover, Harks et al. [18] proved that if C is a
class of cost functions such that every weighted atomic congestion game I” with cost
functions in C is a potential game, then C contains only affine linear functions. The
existence of pure Nash equilibria in weighted atomic congestion games was further
studied by Harks and Klimm [17]. Beyond these cases, we have to consider mixed
Nash equilibria in atomic congestion games, as Nash [30] has shown that every finite
game has a mixed Nash equilibrium.

1.2.2 Worst-case upper bounds on the price of anarchy

Koutsoupias and Papadimitriou [24] proposed to quantify the inefficiency of equilibria
in arbitrary congestion games from a worst-case perspective. This resulted in the
concept of the price of anarchy (PoA) that is usually defined as the ratio of the worst-
case cost of (pure or mixed) Nash equilibria over the social optimum cost, see [35].
A wave of research has been started with the pioneering paper of Roughgarden and
Tardos [42] on the PoA of pure Nash equilibria in non-atomic congestion games with
affine linear cost functions. Examples are Roughgarden [38—41], Roughgarden and
Tardos [42, 43], Christodoulou and Koutsoupias [7], Correa et al. [12, 13], Perakis
[36] and others. They investigated the worst-case upper bounds of the PoA of pure
Nash equilibria in both atomic and non-atomic congestion games for different types
of cost functions ,(-), and analyzed the influence of the network topology on these

bounds. For non-atomic congestion games, this upper bound is % for affine linear

cost functions ([42]), and @(%) for polynomial cost functions of degree at most
B ([43]). For unweighted atomic congestion games, Christodoulou and Koutsoupias
[7] showed that this upper bound is % for affine linear cost functions, and 8€® for
polynomial cost functions of degree at most 8. Hence, the non-atomic PoA is not
larger than the atomic PoA in general. Moreover, these upper bounds are independent
of the network topology, see, e.g., [39]. Roughgarden [39, 41] also developed a (A, u)-
smooth method by which one can obtain a tight and robust worst-case upper bound.
This method was then reproved by Correa et al. [13] from a geometric perspective.
Besides, Perakis [36] generalized the analysis to non-atomic congestion games with
non-separable and asymmetric cost maps.

1.2.3 Convergence of the price of anarchy

Recent papers have empirically studied the PoA of pure Nash equilibria in non-atomic
congestion games with BPR cost functions ([5]) of the same degree 8 > 0 and real
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traffic demands. Youn et al. [48] observed that the empirical PoA of pure Nash equi-
libria depends crucially on the total demand. Starting from 1, it grows with some
oscillations, and ultimately becomes 1 again as the total demand increases. A similar
observation was made by O’Hare et al. [34]. They even conjectured that the PoA of
pure Nash equilibria in non-atomic congestion games with BPR cost functions of the
same degree B > 0 converges to 1 at a rate of O (T ~*#) when the total demand T
becomes large. Monnot et al. [29] showed that traffic choices of commuting students
in Singapore are near-optimal and that the empirical PoA of pure Nash equilibria is
much smaller than known worst-case upper bounds. Similar observations have been
reported by Jahn et al. [23].

These observations have been recently confirmed by Colini-Baldeschi et al. [8—10]
and Wu et al. [47]. Colini-Baldeschi et al. [8—10] were the first to theoretically analyze
the convergence of the PoA of pure Nash equilibria in non-atomic congestion games
with growing total demand.

Colini-Baldeschi et al. [8] showed that the PoA of pure Nash equilibria converges
to 1 as the total demand 7" — oo when the non-atomic congestion game has a single
origin-destination pair and regularly varying ([2]) cost functions. This convergence
result was then substantially extended by Colini-Baldeschi et al. [9] to multiple origin-
destination pairs for both the case T — 0 and the case T — oo, when the ratio of
the demand of each origin-destination pair over the total demand 7 remains a positive
constant as T — 0 or 0o. Colini-Baldeschi et al. [10] further extended these results to
the cases where the demands and the cost functions together fulfill certain tightness
and salience conditions that allow the ratios of demands to vary in a certain pattern as
T — 0oroco. Moreover, Colini-Baldeschi et al. [10] illustrated by an example that the
PoA of pure Nash equilibria in non-atomic congestion games need not converge to 1
as T — oo when the cost functions are not regularly varying. In addition, they showed
that the PoA of pure Nash equilibria in non-atomic congestion games with polynomial
cost functions converges to 1 at a rate of 0(%) when the ratio of the demand of each
origin-destination pair over the total demand 7 remains a positive constant as 7 — 0
or 00.

Wu et al. [47] generalized the work of Colini-Baldeschi et al. [§-10] for growing
total demand. They formalized the scaling technique used implicitly in Colini-
Baldeschi et al. [8—10], proposed a limit notion for a sequence of games with growing
total demand, and developed a general technical framework, called asymptotic decom-
position, for the convergence analysis of the PoA. With this framework, they showed
for non-atomic congestion games with arbitrary regularly varying cost functions that
the PoA of pure Nash equilibria converges to 1 as the total demand tends to oo regard-
less of the growth pattern of the demands. In particular, they proved a convergence
rate of o(T ) for BPR cost functions of degree 8 and illustrated by examples that
the conjecture proposed by O’Hare et al. [34] need not hold.

Wu and Mohring [46] extended the techniques of Wu et al. [47] to a sensitivity
analysis of the PoA. For an arbitrary non-atomic congestion game I" with Lipschitz
continuous cost functions on [0, T'], they proved that the cost of an e-approximate
equilibrium of I" deviates at most by O (y/€) from that of a pure Nash equilibrium of
I, and that O(4/€) is a tight upper bound of this deviation. Moreover, they defined
a metric |17, I2|| for two arbitrary games in a set of non-atomic congestion games
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with the same combinatorial structure. That metric induces a topological space of
such games and permits to consider continuous real-valued maps and the limit of a
sequence of non-atomic congestion games. Wu and Mohring [46] used these notions
for a comprehensive analysis of the Holder continuity of the PoA map of pure Nash
equilibria in that topological space. They showed that the PoA map is point-wise con-
tinuous, but neither Lipschitz continuous, nor uniformly Holder continuous. However,
it is point-wise Holder continuous with Holder exponent % on a dense subspace, i.e.,
| onat (I') — pnai (1) € OJ/IIT, I3]]) for any two non-atomic congestion games
I and I of that subspace, where 0,4 (1;) denotes the PoA value of pure Nash equi-
libria of the game I, i = 1, 2. This results in an approximate computation of the PoA
Pnat (+), meaning that one can approximate p,,(I") for irregular cost functions with
Onar (') for relatively simpler polynomial cost functions when the polynomial cost
functions of I'" are sufficiently close to the irregular cost functions of I.

As a byproduct of the above Holder continuity analysis, Wu and Mohring [46]
showed that the total cost difference between Nash equilibria of two non-atomic
congestion games Iy and I is in O(y/[[T7 — I3][) when I'y and I> have the same
Lipschitz continuous cost functions. Moreover, when the two non-atomic congestion
games I'1 and 1> have the same demands but different Lipschitz continuous cost func-
tions, they proved a similar upper bound on the total cost difference between their Nash
equilibria. These results together with the convergence rate of Colini-Baldeschi et al.
[10] will help us to obtain an explicit convergence rate of the atomic PoA for polyno-
mial cost functions of different degres, see Theorem 3c and its proof in Appendix A.6.

Conditions implying the convergence of mixed Nash equilibria in atomic congestion
games to pure Nash equilibria in non-atomic congestion games have also been studied
in, e.g., [11, 19, 21, 22, 26], and others.

Among these papers, Cominetti et al. [11] is the closest to our work. They showed
that mixed Nash equilibria of an atomic congestion game with strictly increasing
cost functions converge in distribution to pure Nash equilibria of a limit non-atomic
congestion game, when the total demand T converges to a constant 7Ty € (0, 00), the
maximum individual demand d,,,, converges to 0, and the number of users converges
to co. Moreover, they showed that this convergence happens at a rate of O (v/dpax)
when the cost functions have strictly positive first-order derivatives. Consequently,
the PoA of mixed Nash equilibria (i.e., the mixed PoA) in such an atomic congestion
game converges also to that of pure Nash equilibria in a “limit non-atomic congestion
game” under these conditions.

The results of Cominetti et al. [11] are inspiring and seminal. They confirm the
intuition that atomic congestion games can be thought of as non-atomic congestion
games when d,,,,x 18 tiny, the number of users is huge, and T is moderate, i.e., neither
too small nor too large. Our convergence result for the mixed PoA actually generalizes
those of Cominetti et al. [11] to the case that T — oo. This is a non-trivial generaliza-
tion, since it does not require the existence of the limit non-atomic congestion game,
which is a premise in the analysis of Cominetti et al. [11].

Our work also extends the convergence results for the PoA of pure Nash equilibria
in non-atomic congestion games that were obtained recently by Colini-Baldeschi et al.
[8-10] and Wu et al. [47] to convergence results for pure and mixed Nash equilibria
in atomic congestion games. This implies that selfishness is also good in “atomic
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congestion”. In particular, our results show for arbitrary congestion games with a
large total demand that selfish choice of users is almost as efficient as social optima,
regardless whether demands are splittable or not, and whether users use pure strategies
or mixed strategies.

1.3 Outline of the paper

The paper is organized as follows. We develop our results for arbitrary atomic conges-
tion games. These and their relevant concepts are introduced in Sect. 2. We analyze
the convergence of the PoAs for atomic congestion games in Sect. 3. Sect. 3.1 then
presents our convergence results for polynomial cost functions with the same degree.
Subsequently, Sect. 3.2 presents our convergence results for arbitrary polynomial cost
functions. We conclude with a short summary and discussion in Sect. 4. To improve
readability, all proofs have been moved to an Appendix.

2 Model and preliminaries

Our study involves both atomic and non-atomic congestion games. To facilitate the dis-
cussion, we introduce a unified notation in Sect. 2.1, and distinguish games implicitly
by properties of their strategy profiles, see Sect. 2.2.

2.1 Atomic and non-atomic congestion games

We define an arbitrary atomic congestion game with the notation of transportation
games (see, e.g., [32, 37]), since this is more intuitive and closer to practice. An atomic
congestion game I is thus associated with a transportation network G = (V, A), and
represented symbolically by a tuple (IC, P, t, U, d) with components defined in (G1)—
(GS).

— (G1) K is a finite non-empty set of (transportation) origin-destination (O/D) pairs
(ok, tx) € V x V with oy # t;. We will denote an O/D pair (og, tx) simply by its
index k when this is not ambiguous.

— (G2) P = UgexcPi with each Py € 24\ {#} denotes the non-empty set of all
paths from the origin oy to the destination #;. Here, a path is a non-empty subset
of the arc set A. Then P, NPy = @ for k, k' € K with k # k'.

— (G3) T = (t4)aeaq is a cost function vector, s.t. 7, : [0, 00) — [0, 00) is non-
negative, continuous and non-decreasing and denotes the flow-dependent latency
or cost of arc a € A. We assume that no arc can be used for free, i.e., t,(x) > 0
for all pairs (a, x) € A x (0, 00).

— (G4) Associated with each O/D pair k € K is a finite non-empty set Uy of agents
that are individual users or players. Then U/ = Uil is the agent set of I". We
assume that U N U = @ for all k, k' € K with k # k'.

— (G5)d = (dy,i)kek.icu, 1S ademandvector, where dy ; > 0 denotes an unsplittable
demand to be transported by agent i € Uj. So I" has the total (transportation)
demand T = TU,d) := ) ;i dk, where dj = Zieuk dy.i is the demand of
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O/D pair k € K. We call dypax := max;eyy, ke di,i the maximum individual
demand of I". Note that I" is unweighted if di ; = v forall k € K and all i € U,
for a constant v > 0. Otherwise, I is weighted.

To unify notation, we view a non-atomic congestion game as a variant of an atomic
congestion game, in which each agent i € U is no longer an individual user, but
a population of infinitesimal users, who together have the demand dy ;. Hence, the
demands di ; can be split arbitrarily over paths in Py when I" is non-atomic. This
differs from an atomic congestion game, in which the demands di ; cannot be split.
With a little abuse of notation, we denote a non-atomic congestion game again by the
same tuple I' = (KC, P, 7, U, d). We will simply call a tuple I" a congestion game, and
distinguish atomic and non-atomic congestion games by their atomic and non-atomic
profiles in Sect. 2.2.

The tuple (C, P) together with the transportation network G constitutes the com-
binatorial structure of I'. For ease of notation, we may fix an arbitrary network G
and an arbitrary tuple (I, P), and denote I" simply by (t, U, d). Viewed as a general
congestion game, the arcs a € A and the paths p € P correspond to resources and
(pure) strategies, see, e.g., [15] and Rosenthal [37]. Although we use the nomenclature
of transportation networks, the analysis and results below are independent of this view
and carry over to arbitrary congestion games.

2.2 Atomic, non-atomic and mixed profiles

Users distribute their demands simultaneously and independently on paths in P. This
results in a strategy profile or simply profile I1 = (I1;)jcy = I})icus, kek =
(I p)ictty, pePy.kek satisfying the condition (2.1),

Z M y=1and I; , >0 Yi el ¥pe Py Vkek. 2.1
p'€Px

We put [1; , = 0 when i € Uy and p € Py for some k, k' € K with k # k.
This extends a profile [T naturally to a vector (I1;,p);eis, pep With components I7;
satisfying condition (2.1).

A profile I7 is called atomic if I1 is binary. In this case, I1; , € {0,1},i e Uy, p €
P, k € KC, indicates whether path p isused by i, i.e., [1; , = 1, ornot,i.e., I1; , = 0.
Condition (2.1) then means that each i € U satisfies his demand di ; by a single path
P € Py in an atomic profile /7. So a congestion game " with only atomic profiles is
indeed an atomic congestion game whose demands d ; cannot be split.

In a non-atomic congestion game, each agenti € U is a population of infinitesimal
users and can split the demand dj ; arbitrarily, i.e., agents i € Uy can send their
demands dy ; along several paths p € Py. This is captured by non-atomic profiles.
The components [1; , are then fractions of the demands dy ; deposited by agents
i € Uy onpaths p € Py, i.e., agents i totally allocate dy ; - IT; , units of demands to
paths p. Hence, these IT; , can take arbitrary values in [0, 1] when 7 is non-atomic.
Condition (2.1) is then a feasibility constraint for non-atomic profiles that ensures that
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946 Z.Wuetal.

all demands are satisfied. Clearly, a congestion game is non-atomic when it has only
non-atomic profiles.

In a mixed profile I1, each I1; = (IT; p) pep, 18 a probability distribution over the
set Py for all i € Uy and all k € K. Then the decisions are random, and every
agent i € Uy delivers his demand di; on a single random path py ;(I1;) drawn
independently from [1; = (I1; p)pep,, Where I1; , € [0, 1] is the probability of
the random event “py ;(IT;) = p”. Note that we consider mixed profiles only for
atomic congestion games, although we use a unified notation for both atomic and
non-atomic congestion games. Note also that an atomic profile is a particular mixed
profile with {0, 1}-probabilities.

2.3 Multi-commodity flows and their cost

Each profile IT induces a multi-commodity flow f = (fp) pep = (fp) pep; kekc- When
IT is atomic or non-atomic, then f is deterministic with flow value f, =) ietd, i -
IT; , forall p € Prandallk € IC. We then call f atomic and non-atomic, respectively.
There are only finitely many atomic flows, as the number |U/| = )", s |Uk| of agents
is finite and the demands dj ; cannot be split in an atomic flow.

When [T is mixed, then the flow f = (fp)pep i8 @ random vector in which each
component f, is a weighted sum > Uy di,i - Lipy ( Pk,i (11 ,-)) of mutually independent
Bernoulli random variables 1) ( Dk.i (17[)), where py ;i (I1;) is the random path draw
from the distribution I7; by agent i of O/D pair k, and 1y,)(-) is the indicator function
of the membership of the singleton {p}. Then

En(fp) =Y dii- T p,
i€l

VAR (fp) = Y di; -1y (1= IT; )
il

2.2)

for all p € Py and all k € K. Here, we used that agents choose their paths mutually
independently, that B [1,) (pk,i (I1;))] = I1; p and VAR 7 [ 1y (pr,i ;)] =11; -
(I — I1; ), and that every agent i € Uy transports his demand dy ; entirely on the
single random path py ; (I1;) € Pr. We will write Er7 (f) 1= (Eﬂ(fﬂ))pep’ and call
En(f)and f = (fp)pep the expected flow and the random flow of the mixed profile
I, respectively.

The expected flow E7(f) is a non-atomic flow, and an arbitrary non-atomic flow
is the expected flow of a mixed profile. Moreover, an atomic flow f is a particular
random flow, in which the random flow values f}, have a variance of zero. Note that
each state of a random flow is an atomic flow, and the finite set of all atomic flows is
the state space of random flows, i.e., Zf, Pr[f = f'] = 1 for a mixed
profile /T with random flow f.

An arbitrary flow f induces an arc flow (f;)qea in which component f, :=
> pePacp fp is the flow value on arc a € A. When IT is atomic or non-atomic,
then f, is again deterministic for all a € A. When [T is mixed, then each f, is

is an atomic flow
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random, and has the expectation and variance in (2.3),

En(fd =Y, >, En(fp) =Y du

ke pePy:acp kel i el
> Mipi=30 Y deiMia, (2.3)
pePy:acp kel i el
VARG (f) =Y > di; Mg (1= IT;).
kel iely

Here, I1; , := Zpe'Pk:aep IT; , € [0, 1] is the probability that agent i of O/D pair
k € K uses arc a € A. Then (2.3) follows since agents use an arc a € A mutually
independently, and only if the arc a belongs to one of their random paths py ; (I1;).

For a non-atomic flow, we need only to specify the O/D pair demand vector (d)ecxc
with d, = Zi Uy d;, since the demands dj ; are arbitrarily splittable, and two con-
gestion games have the same set of non-atomic flows if and only if they have the same
(di)kek - Nonetheless, the demand vector d = (di,; )kek,icus, need to be specified for
atomic and random flows, as the demands dj ; can then be not split.

Given a flow f, an arc a € A has the cost 7,(f,), and a path p € P has the cost
T, (f) =D 4c »la (fz). When f is atomic or non-atomic, then these cost values are
deterministic. Every i € Uy then has the deterministic cost

Cri(f. 1) =Cri(f.t. U d) == diiIip-Tp(f),
P€P

and all agents together have the (deterministic) fotal cost

CUf, D) =) Y Cilf, U dy =Y fr-tp(f) = fa-Tafa)-

kelCieldy peP acA

Note that the cost Ci ; (f, I") can be expressed equivalently as Ci ; (f, I') = di.i -
Tpii(H) (f) when f is atomic and py; (f) € Py is the single path used by agent i in f.

The cost values 7, ( f;) and 7, ( f) are random when f is the random flow of a mixed
profile I7. Then each i € U has the random cost

Ci(f 1) = dii - Ty () = Y dii - 1) (pri (1)) - Tp(f),
pePy

where py ; (I1;) is again the random path of agent i € Uy. The random total cost is
then C(f, ") := Y ik 2iery, Cr.i(f, IT'). Consequently, all agents together have
the expected total cost
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EnlC(f, D)= Y EnlCi(f, ]

ke il

= Enlfu-a(fa)]
acA

=Y Ealfp-tp(H)]
peP

The expected total cost Ef[C(f, I")] of arandom flow f need not equal the total cost
CER(f), I') of its expected flow E7(f). But they coincide when I7 is atomic.

We denote atomic, non-atomic and random flows by for = (far,p) pep, frar =
(fnat,p) pep and fran = (fran,p) pep, rEspectively, and will not refer explicitly to the
corresponding profiles since they are clear from the context.

2.4 Social optima and equilibria

Consider an arbitrary congestion game I". An atomic flow f, is an atomic system
optimum (atomic SO), if C(f},, I') < C(fu, I') for every atomic flow f;,. Similarly,
a non-atomic flow f* . is a non-atomic SO it C(f,},,, I') < C(fnar, I') for every
non-atomic flow f,4;, and a random flow f% is a mixed SO if E«[C(f%,,. )] <
Er[C(fran, I')] for each random flow f;.4,, where IT* and IT are the mixed profiles
of £, and frqn, respectively.

The expected total cost of an arbitrary mixed SO flow coincides with that of an
arbitrary atomic SO flow, since the set of atomic flows is the state space of random
flows and every atomic flow is a random flow with zero variance. Moreover, the total
cost of an atomic SO flow is not smaller than that of a non-atomic SO flow, since every
atomic SO flow is also a non-atomic flow. We summarize this in Lemma 1.

Lemma 1 Consider an arbitrary congestion game I" with a mixed SO flow f}, of
a mixed profile IT*, an atomic SO flow f};,, and a non-atomic SO flow f,,.. Then

En*[C( rtzm = C(fa*t7 r)= C(f:at’ r.

Similar to the different types of SO flows in Lemma 1, congestion games admit
also Nash equilibrium flows of different types. In each of them an individual does
not benefit from unilaterally changing his strategy. Hence, a Nash equilibrium flow is
essentially a steady-state of the network that is stable under unilateral selfish behavior.
Since we consider three types of flows, i.e., atomic, non-atomic and random flows, we
define their Nash equilibria separately.

An atomic flow fu; = (far,p) pep is an atomic (pure) Nash equilibrium (NE), if

Cri(faur T) = dii - 1,y ) < Crilfgpe T) = dii - Ty (fly) forall k € K,

all i € Uy and all p’ € P, where pk,i(fa,) € Py is the path used by agent i € U
in atomic flow fq, and f;, = (fy, ,)pep is an atomic flow with components fy, ,
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defined in (2.4).

fat.p if p ¢ (pri(far), P},
Farp =3 Jarp — di if p = pri(far), VpeP. (24)
fat,p + dk,i ifp = P/,

Clearly, f,, is the atomic flow obtained by only moving i from py, i(ﬁ,t) to p’, and
so differs slightly from fa, when d,, 4 is tiny. Rosenthal [37] has shown the existence
of atomic NE flows for unweighted atomic congestion games. Weighted atomic con-
gestion games usually do not have atomic NE flows, except for particular cases, e.g.,
affine linear cost functions, see Harks et al. [18] and Harks and Klimm [17].

Since the cost functions 7, (-) are non-decreasing, non-negative and continuous, and
since each agent in a non-atomic flow is a population of infinitesimal users, non-atomic
(pure) NE are identical to Wardrop equilibria (WE, [45]), see, e.g., [1, 42]. Thus a
non-atomic flow fna, = ( f;,at, p)peP 18 a non-atomic NE if and only if it fulfills
Wardrop’s first principle, ie., T, (fnat) < t,,/(fnm) for any two paths p, p’ € Py
with f,mt p > 0 for each k € K. Here, we note that the cost of each path does
not change when an infinitesimal user unilaterally changes his path. Hence a path
p € Py is used, i.e., f,mt p > 0, in a non-atomic NE flow f,m, only if rp(f,,m) =
min,ep, Ty ( f,w,). Dafermos [14] has shown that non-atomic NE flows always exist,
and can be characterized equivalently by the variational inequality (2.5),

Z Ta (fnat,a) : (fnat,a - fnat,a) >0, (2.5)

acA

for all non-atomic flows f,,;. Moreover, Roughgarden and Tardos [42] have shown
that non-atomic NE flows are essentially unique, i.e., t,( f,m, a) = Ta( fn at.a) for each
a € A for two arbitrary non-atomic NE flows fna, and fnal. Clearly, atomic and
non-atomic NE flows differ. Nonetheless, both of them are pure Nash equilibria.
Mixed NE flows directly generalize atomic NE flows by considering random flows

of mixed profiles. Formally, a random flow fmn is a mixed NE flow if, for each i € Uy
and each k € IC,

EglChi(fran- TI=Ep_[di-tp(Franii. )] <Epg_[dei-ty Franip)] — (2:6)

when p, p’ € Py are two arbitrary paths with 1:[,-, » >0, T =1 i) jeu is the mixed
profile of ﬂun, andIT_; = (11 i) jeu\(iy s the mixed profile of all agents other than i in
1:1, see also Cominetti et al. [11]. Herein, f;,m‘,-,p = (fran’[,//“’[,)p//ep is the random

flow in which agent i uses the fixed path p and the others still follow the mixed profile
II —is i.e.,
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) Fran. P if p” € Uprero\iiy P
Fran.prtip = ) dii + 2 ey Ak - Lpny (i 1)) i p7 = p,
> jethiy G Lipry (pr, (1)) if p” e Pi\{ph

for all paths p” € UprcicPrr. Inequality (2.6) then means that each support of the
mixed strategy I7; of an L agent i € U is the best response to the mixed profile I_;
of his opponents when f is a mixed NE flow with mixed profile /1. Hence, no agent
can reduce his (expected) cost by unilaterally changing his mixed strategy when the
random flow is a mixed NE. Since atomic congestion games equipped with only atomic
profiles are finite games, mixed NE flows always exist, see [30]. Note that atomic NE
flows are mixed NE flows with zero variance, but mixed NE flows need not be atomic
NE flows, see, e.g., [32].

Remark 1 (The mixed Wardrop equilibria) Note that one may consider also ran-
dom flows f;4, in which all paths with positive expected flow values have minimum
expected cost, i.e.,

mltp(fran)] = EH[Tp’(fran)] 2.7

for two arbitrary paths p, p’ € Py with Ej (fran,p) > 0 for each k € K, where IT
is the mixed profile of f,,,. Such random flows then generalize WE flows of non-
atomic congestion games in atomic congestion games. We thus call them mixed WE
flows. Using Brouwer’s fixed point theorem ([3]) and an argument similar to that in
Dafermos [14] for the existence of WE flows in non-atomic congestion games, we
can show easily that mixed WE flows always exist in atomic congestion games, see
Lemma 7 in Appendix A.1. The convergence results presented in this paper carry also
over to the inefficiency of mixed WE flows. In fact, we can even view mixed NE
flows as mixed WE flows in the convergence analysis of the PoA of mixed NE, since
mixed NE flows approximate mixed WE flows when d”’T‘” is tiny, see, e.g., (2.6)—(2.7),
(A.11) in Appendix A.5, and Appendix A.6. Nonetheless, we will not go deeper into
the discussion of mixed WE flows, so as to save space.

Example 1 Consider the congestion game I" with one O/D pair (o, t) (i.e., K = {1})
and two parallel paths (arcs) shown in Fig. 1. We label the upper and lower arcs as
u and ¢, respectively. I' has cost functions 7,(x) = x2 and 7¢(x) = 2, and two
agents with O/D pair (o, 7) and demand 2 each. Then /" has a unique atomic NE flow
faz = (fa, us fat ¢) = (0,4), since an agent using the upper arc u has a cost of at
least 4 > 7;(x) = 2 and can always benefit by moving to the lower arc £. Moreover,
I" has the unique non-atomic NE flow f,,a, = (\/5, 4 — ﬁ), since demands can be
arbitrarily split in a non-atomic flow, and a non-atomic NE flow fulfills Wardrop’s first
principle. So the sets of atomic and non-atomic NE flows of I" do not overlap.
Clearly, f;t is also the unique mixed NE flow, since the expected cost of the upper
arc u is always larger than the constant cost of the lower arc £ when either of the two
agents uses the upper arc. Hence, neither the set of mixed NE flows nor the set of their
expectations need to intersect the set of non-atomic NE flows. Moreover, by a little
calculation, one can also see that neither the set of mixed WE flows (Remark 1) nor the
set of their expectations intersects the sets of atomic and non-atomic NE flows in this
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Fig.1 An example of atomic, 2
non-atomic, and mixed NE flows

Example. This means that these equilibrium notions are mutually different, although
atomic and mixed NE flows coincide in this Example.

2.5 The price of anarchy

Since we consider non-atomic, atomic and mixed NE flows, we define four PoAs
in (2.8)—(2.11), in which fnal, S, and f are an arbitrary non-atomic NE flow, an
arbitrary non-atomic SO flow and an arbitrary atomic SO flow, respectively. We call
Par (I') the atomic PoA, ppq (1) the non-atomic PoA, pyix(I") the mixed PoA, and
p( fmn, I') the random PoA of the mixed NE flow fmn. Here, we recall that non-
atomic NE flows are essentially unique.

pa,(F)::max{% : fa, is an atomic NE flow of 1"} 2.8)
C(fnar: T)

nat (") '= ————— 2.9

Pnat(I") C(aT) (2.9)

E4[C(frans 1]
Er<[C(f,, )]

ran?

Pmix () :=max{ * fran, S, are mixed NE and SO ﬂows}

Es[C(fran, 1))
=—maxy ————
C(f5. 1)

C(frans T)
C(fh. 1)

: fmn is a mixed NE flow of F} (2.10)

o (frans ') == Q.11

Note that p( fmn, I') is a random variable and thus differs from the deterministic
values pq(I"), ppar(I") and p,,ix(I"). Moreover, pnq: (1) differs from p,,(I") and
pmix(I"), see Example 1, in which puar (1) = 22 > pur(I) = pmin(I) = 1.
Although p,,(I") and ppi(I") coincide in Example 1, they differ in general, and
Pmix(I") = pa:(I"). In particular, neither ppar(I") > 04 (I") NOT P (I7) = piix (I7)
holds in general, see, e.g., Christodoulou and Koutsoupias [7]. Thus the known con-
vergence results of the non-atomic PoA in Colini-Baldeschi et al. [§—10] and Wu et al.
[47] do not naturally carry over to random, atomic and mixed PoAs.

Due to the “no free arc” assumption in (G3), all PoAs are different from g, and
take values in [1, 0o). This follows from Lemma 1, and the fact that the non-atomic
SO cost is strictly positive, see [46].
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3 Convergence results of the PoAs in atomic congestion games

We now analyze the convergence of the PoAs for atomic congestion games with
polynomial cost functions, i.e., all 7, (-) have the form

Ba
Ta(x) =Y nay-xPl Vx €0, 00), 3.1)
1=0
where 8, > Oisaninteger degree,andn,;,l =0, ..., B4, a € A, are the coefficients.

Since all 7, (-) are nondecreasing and no arc can be used for free, see (G3), all leading
coefficients 14,0, a € A, are strictly positive. We assume, w.l.o.g., that all other
coefficients 7, ; are also non-negative. This will simplify our analysis. Note that this
is not restrictive, and our results carry over to arbitrary polynomial cost functions. We
will come back to this later in Sects. 3.1.1, 3.1.2 and 3.2, respectively.

3.1 Convergence results for polynomial cost functions of the same degree

We consider first polynomial cost functions t,(-) of the same degree 8, = 8 > 0,
i.e., they have the form (3.2)

i
() =Y nas-xP71 Vx> 0Va e A (3.2)
=0

This covers BPR cost functions, which are of the simpler form 7,0 - xP + Na,p and
frequently used in urban traffic to model travel latency, see [5].

With these cost functions, the total cost of a non-atomic SO flow is at least
TﬁJrl"]O,min
[P|A+
there is at least one path with a flow value of at least WTI in an arbitrary non-atomic

SO flow. Note also, that x - 7,(x) > 10 min -xPtlforalla € A and all x > 0.

> 0 when T > 0, where 1o min := mingea 74,0 > 0, see [46]. Note that

3.1.1 An upper bound for the atomic PoA

Theorem 1 presents an upper bound for the atomic PoA in congestion games with
polynomial cost functions of the same degree, see (3.2). Here, nmax := max{n, :

a€Al=0,...p)>nomn>0 andk = Nmax - (1+ Y| ) > 0, which
is a Lipschitz bound for the Lipschitz continuous functions % on the compact

interval [0, 1], i.e.,  satisfies the condition that |% — %l <k -|x —y| for
allx,y € [0,1]and all a € A.
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Theorem 1 Consider an arbitrary congestion game I' = (t, U, d) with cost functions
7. (+) of the form (3.2). If I" has atomic NE flows, then

B 1
B - max - |IP|/S+1 |P|H dmax
pur(I) < 14 s TPLT AN
“ 10, min g 170, min T
+ [Al - & - |P|ﬂ+2 ) Amax
170, min T

Here, we use the convention that Zle % =0 when B =0.

The upper bound holds for all 7 and d,;,4x, and converges to 1 at a rate of O (l) +

o/ ’”‘”) as T — oo and ’"‘” — 0. So the atomic PoA decays to 1 quickly when

I' has atomic NE flows. Examples 2-3 show that the conditions “7 — o0” and
“d”’% — 07 are necessary for this convergence.

Example 2 Consider an unweighted congestion game I" with the network of Fig. 1,
but cost functions x and x + 1 for the upper and lower arc, respectively.
Assume that I" has |U| = 4 - n agents with 7 demand each. Then T = 1 and

dmpax = 4 . Clearly, I" has only one atomic NE ﬂow fa,, in which all agents use

the upper arc. So C(fat, I') = 1. I has also a unique atomic SO flow f",, in which
3-n agents use the upper arc and the remaining n agents use the lower arc. Then
C(fy. I = %, and p, (") = % for all n, which does not converge to 1 when only

d
dnar — (0 — 0.

Example 3 Consider an unweighted congestion game I again with the network of
Fig. 1, but now with cost functions x and 2 - x for the upper and lower arc, respectively.
Assume that there are two agents with demand n each. Then 7" = 2 - n, which tends
to oo asn — o0. However d’"“ — % > 0 as n — 00. Obviously, I" has only one
atomic SO flow f, 1n Wthh one agent uses the upper and the other the lower arc.
So C(f%, ') = 3-n? However, I' has two atomic NE flows. One atomic NE flow is
just the unique SO flow. In the other atomic NE flow, both agents use the upper arc,

and its total cost is 4 - n2. Consequently, p (") = % A lasT =2-n— oo.

We now prove Theorem 1 with the technique of scaling from Colini-Baldeschi
et al. [10] and Wu et al. [47].

Definition 1 (Scaled games, Wu et al. [47]) Consider an arbitrary congestion game
= (r,U, d) with arbitrary cost functions, and an arbitrary constant g > 0. The
scaled game of I' w.r.t. scaling factor g is the congestion game I'l8] = (r[g], U, d)

whose cost function vector 78] := (r,gg])aE A has a component tcgg](x) = % for
each pair (a,x) € A x [0, 1], and whose demand vector d = (C?k,i)ieuk,kelc has a
component c?k,i = % for each i € Uy and each k € K.

Lemma 2 shows that scaling does not change the four PoAs. We omit the straight-

forward proof. Note that a flow f of I" corresponds to a flow fI&! := % of '8l and
C(f. M)y =c(fle rieh. ¢ 1.
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Lemma 2 Consider an arbitrary congestion game I", an arbitrary mixed NE flow
fran of T, and an arbitrary scaling factor g > 0. Let '8! be the scaled game
with factor g. Then pat(r g]) = par(I"), pnat(r[g) = Pnat(I"), and pmix (I’ g]) =

pm,X(F) Moreover fmn = M is a mixed NE flow of the scaled game I''8!, and
p(fanv ):p(fran,

Lemma 2 enables us to prove Theorem 1 by bounding pg, (I"'¢1) instead of p,, (I").
We can thus purely concentrate on the influence of d"’% on the convergence, as the
total demand of '8l is T = TU, cj) = Zkelc,ieuk c?k,i = 1. However, the scaling
factor g must be chosen carefully, so as to ensure that the total costin I” (8] is moderate,
i.e., neither too large nor too small. Following [47], we use g := T# for polynomial
cost functions of the same degree 8. Then I''¢) has the scaled cost function

Na - (T - x)P~ _
o) = Z“"‘g —naox+§j”“’ L33
=1

for arc a € A, the bounded demand cik,,‘ = d’” € [0, 1] for i € Uy, and the bounded

demand d; := di e [0, 1] for k € K. Consequently, each flow fl&l of I8l has
bounded arc flow values £ € [0, 1], and C(f18], ['[s]) > Zomin

[PIA+L”
Definition (2.8) of the atomic PoA and Lemma 1 together imply that

| max e (71 rish—c(fisl i)

par(I") = Par (T8 < ppar (1181 4 el
C(fuar -~ D)

, 34)

where fna, and f,;; *8] are arbitrary non-atomic NE and SO flows of I"l¢], respectively,

and the maximization is taken over all atomic NE flows £ of I'[8]. With (3.4), we
can then prove Theorem 1 by upper bounding

| max C(fi8 rlsly — c (i8] iy (3.5)
fa{

and p,q; (I''81), respectively. Here, we observe that C(fna[f], rlly > Inolgf‘ > 0. To

that end, we need the notion of e-approximate non-atomic NE flow and a result from
Wu and Mohring [46].

Definition 2 We call an arbitrary non-atomic flow f,,; of I an €-approximate non-
atomic NE flow for a constant € > 0if Y4 T (fuar.a) - (fnat.a = fpar.a) < € foran
arbitrary non-atomic flow f,, of I".

Wu and Mohring [46] have shown that the total cost difference between e-
approximate and accurate non-atomic NE flows is in O (y/€), see Lemma 3.

Lemma3 (Wu and Mohring [46]) Consider an arbitrary congestion game I' =
(z,U, d) with a total demand of 1 and an arbitrary e-approximate non-atomic NE
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Sflow f,fm. If all cost functions are Lipschitz continuous (or Lipschitz bounded) on
[0, 1] with a Lipschitz constant k > 0, i.e., [Ta(x) — Ta(y)| < & - |x — y| for all
(@, x,y) € Ax [0, 11, then |C(fuar, I') = C(fy )| < |Al - K€ + €, and

|ra(fna,,a) . (f€ wat.a)| < Ak - € for all a € A and all non-atomic NE flows fyas.

Lemma 4 below shows that fa[‘,g Vis an O(d"%” )-approximate non-atomic NE flow
of I''8]. Then Lemma 3 yields a desired upper bound for (3.5), see Lemma 4c. We
move the proof of Lemma 4 to Appendix A.3.

Lemma4 Consider an arbitrary congestion game I" as in Theorem 1. Let I''8) be

its scaled game with factor g = TP, and let Sai A8 and f,,a be arbitrary atomic and
non-atomic NE flows, respectively. Then:

(a) r[g] (fm ) [[f] (fa[tg]> + m forall k € K and all p, p' € Py with
fat,p >0

(b) f[g] isa |7)HAl%—approxinmte non-atomic NE flow of I''8],

(c) |C(fif), rlehy—C(FI), rlsly| <|A] k- /IPI-| Al dae 4| P | A]-rc- e

Lemma 5 yields an upper bound for p,,4; (I"181), which results in a convergence rate
of 0(%). Note that Wu et al. [47] have shown a stronger convergence rate of 0(#)
for BPR cost functions, and that Colini-Baldeschi et al. [10] have shown a similar
rate as in Lemma 5 for arbitrary polynomial cost functions under the condition that
di > & > 0 for some constant & independent of T for each k € K. We move the
proof of Lemma 5 to Appendix A 4.

Lemma5 Consider an arbitrary congestion game I' as in Theorem 1. Let I''8] be
the scaled game with scaling factor g = T#. Then Pnat () = pna,([‘[g]) <1+
Btmax-[PIFT Zﬂ 1

70, min I=1T1!"

Theorem 1 then follows from Lemma 2, (3.4), Lemmas 4c and 5.

The above proofs build essentially on inequality (3.4), Lemma 3 and the Lipschitz
continuity of the scaled cost functions r ( ) on [0, 1], but not on the sign of the
coefficients n,;,l =1, ..., B,a € A. Thus Theorem I indeed carries over to arbitrary
polynomial cost functions of the same degree g > 0.

Whenn,; < Oforsometerms/ =1, ..., 8 and somearcsa € A, then lnpol';fl may

be larger than C( f *g] , '8y Instead, C( fna[‘,g ], I''81y can be bounded from below by
minge 4 |719| ‘L'ag ]( P ) € ©(1). The Lipschitz bound for the scaled cost functions is still
K=" Nmax (1+Zf}=] %) > 0, but with nmax := {|n411 :a € A, 1 =0,1,...,B}.
Lemma 4 then still holds, since its proof in Appendix A.3 does not involve the sign of
coefficients 7, ;, but only the Lipschitz continuity of the scaled cost functions on [0, 1].

Although the proof of Lemma 5 in Appendix A.4 does involve the sign of coefficients
n4.1, it can be adapted accordingly.
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3.1.2 Upper bounds for the mixed PoA and the random PoA

Theorem 2 below proves similar upper bounds for p( fmn, I') and py,ix (I"), respec-
tively, in terms of T, d”‘% and constants M;, i = 1, ..., 5. We hide the detailed values
of these constants M; in Theorem 2, since they are complicated expressions. Inter-
ested readers may find their values in the proof. When T — oo and d’"% — 0, these

upper bounds converge (with an overwhelming probability for p(fran, I')) to 1 at a

1/6
rate of O( )+ O( T"{‘}g ). Note that p,,;, (I") converges more slowly than p,; (") since
Par(I') < ple(F)

Theorem 2 Consider the same congestion game I" as in Theorem 1. Let fmn be an
arbitrary mixed NE flow of I". Then the following statements hold.

1/6
(@) The random event “pfran, ') < 14M1- T L+ M- T"i% ” occurs with a probability
13
of at least 1 — M3 - [;"i‘}’é-

1/6

(6) pmix(I) <1+ My -+ + Ms - s

Herein, M; > 0,i =1, ...,5, are constants independent of dpqx and T .

We also prove Theorem 2 with the scaled game I"l¢] and Lemma 2. Let f,[ﬁ} and

£18] be an arbitrary non-atomic NE flow and an arbitrary non-atomic SO flow of
sl respectively. We obtain by Lemma 1, (2.10) and (2.11) that

| max st Ef[C(fin, TEHI=C (Al T

pmix(F[g])f pnat(F[g]) + 2]
C(f at [g])

. (3.6)

and that

|C(Fis), righy—c (78], rishy)
C(f*if , Il

p(fi8), P8y < pq (118 4+ , (3.7)

where f, [5,], is an arbitrary mixed NE flow of I'l¢], Using Lemma 5, we now only

need to derive upper bounds for the numerators of the two fractions in (3.6) and (3.7),
respectively.
Lemma 6a below shows that the expected flow Ep ( fm,,) of a mixed NE fr[g,]z

is an e-approximate non-atomic NE flow w1th € € O( T”:‘;;) Lemma 3 then yields

ICEp (fi8h), el —c (7], el e o ";f;g) Then Lemma 6b—c upper bound the

total cost difference between a mixed NE flow fmn and its expected flow [E 7 ( fr[(f,l

both in expectation and as a random variable. Moreover, Lemma 6 together with
Lemma 5 and (3.6)—(3.7) prove Theorem 2.
We move the detailed proof of Lemma 6 to Appendix A.5.

Lemma 6 Consider the congestion game I' in Theorem 2, and the scaling factor

g = TP Let '8 pe the scaled game with factor g, and let fm,, be an arbitrary mixed
NE flow of I''8) with mixed profile IT.
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(a) When B > 0, then the expected Sflow E5( f,[,‘f,],) is an e-approximate non-atomic

. 1/3
NE flow with € =3 - |P| -« - |A] - (1 + 1) - (”’me)/ and |C(f18), rlsly —

( n(f,'g,‘,) F[g])| < |A|-Jk-€+e€c€ O(T"{‘/’g)for an arbitrary non-atomic
NE flow f,{ﬁ} of '8l When B = 0, then En(fm,,) is a non-atomic NE flow of
rlel
(b) Consider an arbitrary constant § € (0,1/2). The event “|C(ﬂ[ag,],, rlehy —
\0 5 .
( n(f[,f,]l F[g])| <|A]|- (K + Nmax - Zfzo %) . (d’”%) occurs with a prob-
ability of at least 1 — % (d"’T"X)l -0
() [E[ccii )]—C(Eﬁ(fran),rgl)\ < 1AL (k4 (1441 B o0 71)-

1/3
(dnzliu)/

Similar to the proof for Lemma 4 in Appendix A.3, the proof of Lemma 6 in
Appendix A.5 does neither involve the sign of the coefficients 7, ;, but only the Lip-
schitz continuity of the scaled cost functions on [0, 1] and the finite upper bound
maXgeA rag (1) € ®(1). Hence, Lemma 6 carries also over to arbitrary polynomial
cost functions of the same degree, and so does Theorem 2.

Note that Cominetti et al. [11] have shown that the mixed NE flow fm ,, of an atomic
congestion game I” converges in distribution to a non-atomic NE flow fyq, of a limit
non-atomic congestion game I"® when the cost functions 7, are strictly increasing,
T — Ty for a constant Ty > 0, dpar — 0, and the number |U/| of agents tends to
oo. Combined with the scaling technique, this may imply also that the mixed PoA in
the scaled game I"'¢] converges to 1 for polynomial cost functions of the same degree
when d’”% — 0 as T — oo, although the cost functions of the atomic congestion
games in the analysis of Cominetti et al. [11] are fixed and equal those of the limit
non-atomic congestion game, and although the scaled cost functions 7, 18] here depend
on T and vary with the growth of 7. While implying a similar convergence, we aim at
upper bounding the mixed and random PoAs, and so have results for arbitrary demand
vectors d, i.e., neither need T — oo nor need d’"% — 0 in the proofs. Moreover,
the results of Cominetti et al. [11] do not imply the convergence of the mixed PoA in
atomic congestion games with arbitrary polynomial cost functions for growing total
demand, since then the atomic congestion games cannot be scaled to have a unified
limit non-atomic congestion game for all O/D pairs, see [47].

3.2 Concergence results for polynomial cost functions with arbitrary degrees

We consider now polynomial cost functions with arbitrary degrees, i.e., B, # By may
hold for some arcs a # a’. Example 4 below shows that the conditions ¢ — 07
and “T — o00” are no longer sufficient for the convergence of p,,ix (1) and p4 (") in
this case.

Example 4 Consider a congestion game I” with the network of Fig. 2. I" has two non-

overlapping O/D pairs (o1, t1) and (02, t2), and both of them have two parallel arcs.
Assume that (o1, t;) has 2 - \/n agents with each a demand of /n, and that (0;, t;)
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z 8-x3 41

Fig.2 The PoA need not converge to 1

has 2 agents with the same demand of /n each. So d,,.x = /. Then, as n — oo,

dimax U
T:2-n+2~\/ﬁ—>ooandT:2.n£ﬁ—>0.
16

However, pq(I") — 3§ > 1asn — oo. This follows since I has the worst-case
total cost of 2 - 1 + 16 - n? for atomic NE flows, and the total cost of 2-n +9-n% + Jn
for atomic SO flows when 7 is large.

While the game " in Example 4 is artificial, it shows that the convergence of the
PoAs can be ruined by O/D pairs with small demands but polynomial cost functions
of higher degrees, since they may dominate the PoAs completely when T — o0
and d,;,4, is unbounded. To ensure the convergence of the PoAs for polynomial cost
functions of arbitrary degrees, we may thus need to impose a stronger condition that
dynax 18 bounded when T — oo. Theorem 3 below confirms this.

Theorem 3 Consider an arbitrary congestion game I” with cost functions t,(-) defined
in (3.1). Assume that dy,qx is bounded from above by a constant v > 0 independent
of T. Then the following statements hold.

max C(Eﬁ (ﬂan),F)

(a ran -

C(far- 1) ~
is taken over all possible mixed NE flows fyqn of T

(b) pmix(I') = las T — oo.

(c) If I' has atomic NE flows for all demand vectors d, if Bpax = MaXgea Ba > 0, and
edy ety Ok
Y7 =—"7 1
of T, then pg (') =1 4+ O(T ZPmax),

— las T — o0, where the maximization in the numerator

> & > Oforall k € K and some constants & > 0 independent

Theorem 3a states that the expected flow E [ fm,,] of a mixed NE flow fmn is
as efficient as a non-atomic SO flow for large 7" when the polynomial cost functions
have arbitrary degrees and d,4, is bounded. Theorem 3b then shows that p,;x (")
converges to 1 for growing 7 in this more general case. Hence, if the atomic NE
flows exist, then p (") — 1 as T — o0, since pg(I") < pmix (). In addition to
the pure convergence in Theorems 3a-b, 3c shows that p,,(I") converges at a rate of

0] (T_Z'ﬁ% ). This demonstrates how fast the convergence of the PoAs can be in this
more general case, when each O/D pair demand dj has a positive ratio di as T — oo.
So far, we are unable to remove this restrictive condition, as we do not see a way to
compute a concrete upper bound in terms of % for p,; (I") when the cost functions have
different degrees and the O/D pairs have significantly asynchronous demand growth
rates.
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Theorem 3c can be proved by a scaling technique similar to the proofs of Theo-
rem 1 and Theorem 2. However, due to the absence of a unified scaling factor, similar
arguments will not be applicable in the proofs of Theorem 3a-b, for which we need a
more sophisticated technique called asymptotic decomposition developed by Wu et al.
[47]. In fact, Example 4 has shown that different O/D pairs k € K may have signifi-
cantly discrepant influences on the limits of the PoAs for polynomial cost functions
with arbitrary degrees. These discrepant influences are caused by the different degrees
of polynomial cost functions and the asynchronous growth rates of the demands of
the O/D pairs. The asymptotic decomposition technique enables us to capture these
discrepant influences from different O/D pairs k € K. It puts O/D pairs k € K with a
similar influence on the limits of the PoAs together to form a “subgame”, then ana-
lyzes the resulting subgames independently and combines the convergence results for
these subgames to a convergence result for the whole game I". Interested readers may
refer to Wu et al. [47] for a detailed introduction of this general technique. We move
a description of the asymptotic decomposition and the very long proof of Theorem 3
to Appendix A.6 in order to save space and improve readability.

Although we have assumed at the beginning of Sect. 3 that the polynomial cost func-
tions have only non-negative coefficients, the proof of Theorem 3a—b in Appendix A.6
is essentially independent of this condition. The proof of Theorem 3c uses the non-
negativity of the coefficients to obtain explicit lower and upper bounds of the scaled
cost function values on the domain [0, 1], which carries also over to polynomials of
arbitrary degrees when we slightly adapt the constants in those bounds. Hence, the
convergence results in Theorem 3 hold for arbitrary polynomial cost functions, even
with non-negative real-valued exponents.

With the asymptotic decomposition, the convergence results for the non-atomic
PoA in Wu et al. [47], and Lemma 1, we can actually show in the proof that all the
flows, fmn, Eg (fmn), f,,a,, 1, fr,. areequally efficient when T — oo and dyy,4y is
bounded, see (A.29) in Appendix A.6. In particular, to obtain the convergence results
in Theorem 3a-b, we have considered a mixed NE flow as an approximate mixed WE
flow (see Remark 1) in the proof, and so these convergence results carry also over to
the “PoA” of mixed WE flows. Hence, we need not distinguish between atomic and
non-atomic congestion games for quantifying the inefficiency of selfish choices of
users, when the cost functions are polynomials, the total demand 7 is large, and the
individual maximum demand d,,,, is bounded.

4 Summary

We have studied the inefficiency of both pure and mixed Nash equilibria in atomic
congestion games with unsplittable demands.

When the cost functions are polynomials of the same degree, we derive upper
bounds for the atomic, mixed and random PoAs, respectively. These upper bounds
tend to 1 quickly as T — oo and d"% — 0.

When the cost functions are polynomials of arbitrary degrees and d,,,, is bounded,
we show that the mixed PoA converges againto 1 as T — oco. Moreover, we illustrate
that this need not hold when d,,,,, is unbounded. To demonstrate the convergence rates
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in this more general case, we show in addition that the atomic PoA converges to 1 at

arate of O(T %) under the relatively restrictive condition that all O/D pairs have
demand proportions di that do not vanish when 7" — oo. However, it is still open and
challenging to obtain concrete convergence rates without this condition.

Nevertheless, our results already imply, under rather mild conditions, that pure and
mixed Nash equilibria in atomic congestion games with large unsplittable demands
need not be bad. This, together with studies of Colini-Baldeschi et al. [8—10] and
Wau et al. [47], indicates that the selfish choice of strategies leads to a near-optimal
behavior in arbitrary congestion games with large total demands, regardless whether
users choose mixed or pure strategies, and whether the demands are splittable or not.

The convergence rate of the PoAs for arbitrary polynomial cost functions under
arbitrary demand growth pattern remains an important future research topic. It is a
crucial step for further bounding the PoAs in a congestion game with a high demand and
arbitrary analytic cost functions. Note that analytic cost functions can be approximated
with polynomials, and that the Holder continuity results in Wu and Mohring [46] seem
to indicate that this approximation of analytic cost functions may also be used for the
PoAs.

While pure Nash equilibria need not exist in arbitrary finite games, Nash [30] has
shown that every finite game has a mixed Nash equilibrium. Since the user choices
in a mixed Nash equilibrium are random, the probability distribution of the random
PoA might be a more suitable measure for the inefficiency of mixed Nash equilibria.
Our analysis of the random PoA for atomic congestion games with polynomial cost
functions of the same degree has already provided the first positive evidence in that
direction, which may apply also to finite games of other types. Thus another important
future research topic is to generalize the probabilistic analysis of the random PoA to
finite games of other types.

In our study, we have assumed that the cost functions are separable, i.e., each arc
a € A has a cost function depending only on its own flow value f,. However, it may
happen also that the cost of some arc @ € A depends not only on f,, but also on
flow values f; of other arcs b € A. Then the cost functions are called non-separable,
see, e.g., [36]. A convergence analysis of atomic, mixed and non-atomic PoAs for
congestion games with non-separable cost functions would also be an interesting
future research topic, as worst-case upper bounds of the non-atomic PoA in such
games have already been obtained by Chau and Sim [6] and Perakis [36]. In fact, the
expected flow Ef7[ fr4,] of amixed WE flow f,,,, introduced in Remark 1 is essentially
a non-atomic NE flow of a congestion game with the expected cost Er7[t, (fran.a)] as
non-separable cost when viewed as a non-atomic flow of that congestion game. Hence,
the proof of Theorem 3 has already provided a first positive example for a convergence
analysis of the PoAs for non-separable cost functions, although the expected cost is
still rather simple compared with general non-separable cost functions.
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A Detailed proofs
A.1 The existence of mixed WE flows

Lemma 7 Every congestion game I' = (t,U, d) has a mixed WE flow.

Proof of Lemma 7 We use Brouwer’s fixed point theorem and an argument similar to
that in Dafermos [14]. Inequality (2.7) is equivalent to the variational inequality that

> Balry(fran)l - Enlfranp) = Emlfln ;) <0

kel pePy

for an arbitrary mixed profile [T’ with random flow f;,, . Brouwer’s fixed theorem
implies that there is a fixed point I7* of the continuous map

DL (T i= argmin Y Y ‘]Em [ Honp| = B [ Franp| + @ B [r,,(f[an)]‘z

kelC pePy

for an arbitrary o > 0. This follows since D, (-) maps the space of all mixed profiles
continuously into a subspace, and since the space of all mixed profiles is convex and
compact. This fixed point /7% fulfills the condition that

> Y Enetrp (- (Enel fn ] = Errv 1)
kelC pePy (A.1)

1 2
<5— 2 2 (Bnelffon ) = EnlFl )
kelkC pePy

for an arbitrary mixed profile /7” with random flow f/ ,, where f2,, is the random flow
of IT¢. Since the mixed profile sequence (IT%)y¢(0,00) is bounded, there is an infinite
subsequence (&, ), N such that o, — oo and that (/7%"),,cn converges to a limit mixed
profile I1, as n — oo. This limit mixed profile /7 has a mixed WE flow f,,, since
inequality (A.1) holds for an arbitrary & > 0 and an arbitrary mixed profile I7”. Here,
we used that 1im,— o0 Egen [ fran. p] = Bl fran,p] and lim, o0 Epgen [T, (fran)] =
Enlty(fran)] as n — oo, when I1% — IT as n — oo. This proves the existence of
mixed WE flows. m|
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A.2 Stochastic inequalities

Our proofs will use Markov’s inequality, Chebyshev’s inequality and Jensen’s inequal-
ity. We summarize them in Lemma 8 below.

Lemma 8 Let X be a non-negative random variable whose expectation E(X) exists,
and let A > 0 be an arbitrary constant. Then

a) (Markov’s inequality, see, e.g., [31]) P(X > A) < E(ATX).
b) (Chebyshev’s inequality, see, e.g., [4]) P(|1X — E(X)| > A) < “Lg%@.

c) (Jensen’s inequality, see, e.g., [25]) E(h(X)|E) > h(E(X|E)) for every convex
function h : R — R and an arbitrary random event .

A.3 Proof of lemma 4

Note that Lemma 4 holds trivially if the integer degree § = 0, since all cost functions

8l () are then positive constants, and so the total cost of atomic and non-atomic NE
flows coincide. We thus assume that g > 1.

Proof of Lemma 4a Consider now an arbitrary k € K and an arbitrary i € U.
Lemma 4a follows if

ls] Agly _ lgl( £lsl dax

v g (al) = 00 (fa) + 141 =5 (A.2)

for all paths p’ € Pk, where we recall that py ; ( fa[f]) is the path of agent i and that

K =B Nmax - (1 + Zle %) > 0 is the Lipschitz constant of scaled cost functions
¢ on [0, 1].

To prove (A.2), we consider an arbitrary path p’ € Py. Since f;[tg 'is an atomic NE
flow, we obtain

Coa 7 11y =1L 261 (I <l rieh = Sl e,

(A3)
where f[g] is an atomic flow of I"(¢] as defined in (2.4), i.e., fa[,g]/ is the resulting flow
obtained by moving i from py ; ( fa[f ]) to p’ in the atomic NE flow fa[,g ! (A.3) implies
further that

) = X () = )
, “ka,i(f:%’])
_ [g1/ oLgl
= > 1w (futa)- (A4)
aep’

Note that the atomic flows f;; A8l and fa[f I differ only in the choice of i. Note also
that i controls an amount dk,, < d";” of demand in I'"'¢1. So we obtain for all a € A
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7 ’ 7 dmux
that | 3, — foful < dii < %
any atomic flow. This and (3.3) imply that

~ / - d
e (fare) = o (Faf) | < o1 i = Sl = - ds < - Z55 Va € AL (AS)

Here, we used that 7, L&] (x) is Lipschitz bounded on [0, 1] with the constant x, and
that all arc flow values of el are in [O 1]. Then (A.5) and (A.4) imply that

Tr[fi]i(.ﬂlfj)( 25]) =z [g]( ) +|A| - & - %mex which proves (A.2) due to arbitrary
choice of p’ € Py. This completes the proof of Lemma 4a. O

Proof of Lemma4b Lemma 4a yields that max . 79 20 11[78]( fzz[f]) < min,ep,

rl[,g]( fa[f]) + M for each k € K. This in turn implies for an arbitrary non-
atomic flow £)%] that

Z 7711 at a fnat a— atg]a) = Z ""1[7 ( ) (f[gg p f[g] )

acA e
=3 3 (D~ ) - (i )
kel pePy

= > @G - - (= )

kelC pePi: /[A’] -0

at,p

d
—|P|.|A|.K.%. (A.6)

Here, we used that the total demand of I'l81 is T = 1, and that

22 2 o (fal) - (i = fa'y)

kel pePy
=3 fL?( Y (s, - T =o.
kek pEPk

where pj is the least costly path in P, w.r.t. the atomic NE flow fm 1 By Definition 2,
Sai F18) is an e-approximate non-atomic NE flow of '8! with € := M.
In the sequel, we will use without further proof that a flow f is a |P|-e-approximate

non-atomic NE flow when it satisfies the condition that

max t¥(f) < min () +e Vkek.

pePr:fp>0
This can be justified by an argument similar to that in (A.6). O
Proof of Lemma 4c: 1t follows immediately from Lemma 4b and Lemma 3. O
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A.4 Proof of Lemma 5

Let f1¢] and £*1¢] be non-atomic NE and SO flows of the scaled game I"l$) respec-

. > g](f[g]) f[g]

tively. Then pyq; (I''81) = S acA ™ T f" . Note that f1¢] is an optimal solution
acA Tll a

of the non-linear program (NLP) (A.7),

min @ (y) := Z/ g](x)dx

acA
5 dii  di (A7)
s.t. =dy = — = — Vkelk, ‘
Z Yp k T T
PEPk iely
yp =0 VpeP,

see, e.g., [42, 44]. So @ (fl8l) < qs(f* h.
As the scaled cost functions r ( -) have the form (3.3), we obtain that

B
1
g] _ ﬂ+1 Na,l B—I+1
d i
/0 (x)dx = g1 a0 Ya ;1 Goi+Dn.10 e
1 g]( ) ﬁ l r’lll 571+]
= - T
gy e o) Yat Z( p—I+1)-(B+1) T

=1
(A.8)
foralla € A and all y, € [0, 1]. So

B

8y gy < Boma N 1
G 0w ve S T ;T,

y{l [ ]
0< / .5 (x)dx —
0

foralla € A and all y, € [0, 1]. Here, we employ the convention that Zfz I % =0
when 8 = 0. We thus obtain that

Yol = B < B 1 @)

acA
[g] [g] [g] b
< WSS B tma Y

acA =1

1
T

B+1
which in turn implies that p,q (1" 8y <14 Bmax PP 5B 4 Here, we recall
p I=1 7T

710, min
that 1o min = mingea 14,0 > 0, and that the total cost ZaeA T‘Eg](f;[g]) . fa*[g] is
bounded from below by |;73i?+"1 . This completes the proof of Lemma 5. O
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A.5 Proof of Lemma 6

Recall that B is the common degree of the polynomial cost functions, and is thus a

non-negative integer. When = 0, then the scaled cost functions rag]( -) are positive
constants, and Lemma 6 holds trivially. We thus assume g > 1.

Consider now an arbitrary mixed NE flow f,[g,], of I'l8l. Chebyshev’s inequality,

see Lemma 8b, implies that
dyyax b T \29 el
< VAR5 (fr§
( T = dmax H(f ran,a

- [
T \* dz;
. : A9
(dmax) Z 4. T2 ( )

ieldy,kekC

1 /d =24 1
< 2 Ya € AVS € (0, =).
4 T 2

r[agn a — H(f[agl]1 a

Here, we used VAR (f5)0) = Y kekc dTiz -4 - (1 = I; 4). This follows
since I1; , = ZpePk aep
the demand of agent i € Uy is =~ d in the scaled game I"l¢! and since '8! has total
demand T = dokekiclly T i _ 1

We now show that the mixed NE flow f, is an approximate mixed WE flow (see
Remark 1). Consider an arbitrary k € K and an arbitrary p € Py with 1'1,’ p > 0 for
some i € Uy.

Note that |fr[g] ”— f[g < d’"‘“ .foralla € Aandall p’, p” € Py. Here,

an alt,p ran,ali,p

II; ,p is the probability that agent i € Uy uses arc a, since

we recall that f

ran,ali,p’
p’ and the other agents j € U \ {i} still follow their random paths drawn from I7;.
Then

B [ (7)) - Ba [ (i) ]|
Z []Eﬁ-i [Tz[ﬁ] (fr[agr]lli,p”’)]_Eﬁ—i [r}ﬁ'] (

, is the random ﬂow of arc @ when agent i uses the fixed path

7lgl A
fran|i,p”):|:| ’ Hi,l’m

p///EPk
A N [g]

= Z Hiv!’m : Z Enﬂ- (fran ali, p”’) —Ta (fran ,ali, p”)}

PPy aep’

. [g] 7lgl
=K Z Hl A Z E ran ali,p" - fran,a\i,p”
PPy aep’
d,

<|A|-«k- ”;x, vp', p” e Py, (A.10)
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since each r[g lis Lipschitz bounded on [0, 1] with Lipschitz constant . (A.10) implies

that f }is an approximate mixed WE flow, i.e.,

B [ (Fin)] = B [ (imir)] = B [ (i)

A1)
~ d (
<Egj [rl[f,)] ( }5}1)] +1A] -k 2

for an arbitrary p’ € Py. This follows since f ) is a mixed NE flow and I7; ip>0.
We now show with (A.9) and (A.11) that the expected flow Eg(f; [5,]1) is an e-

approximate non-atomic NE flow with € tending to O as ";” — 0.
(A.9) implies

y dmax \°
]P)ﬁ |:Va€A: r[agrlz,a_ H(f[gllqa ( r;flx) j|
(A.12)
oy AL (dmax 172‘6=I—P
4 T >
where Ps := I’%I . (meax)l—z-a. Consequently,
. d 8
Py |:VaeA: A — i (B ( }5},,0)]5:«(%)]21-%

(A.13)
again since the scaled cost functions are Lipschitz continuous on [0, 1] with the Lip-
schitz constant « .

Note that 4 (75} ) — i (B3 (715.00) < 7 (1) < & = 37 "mes with proba-
bility 1 for all a € A. This, together with (A.13), implies that

|Ef1 (Tag](f ran,a ) Ta ( n(f[frla ) ( [g](f[fi]za - [g (En(fan a))|)
’

d )
5(1—P3).K.<$) +P;s-

dmax s |A] Amax =29 K 1
=K - 1. .— vV AVS € (0, -). A.14
K < T ) + T 5 v € € ( 2) (A.14)
(A.14) uses that the random event “ - (d";i“) < el flel g](]En(f rana))| <

£ occurs with a probability of at most Py, since the random event of (A.13) occurs

with a probability of at least 1 — Ps.
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Putting § = % in (A.14), we obtain that

‘ (ra (f,[,f,la)—ra ( n(fmna))‘ <meax>l/3+%.<meax>l/3-%

A d 1/3
1+u —nar Va € A.
4.8 T

(A.15)
(A.15) in turn implies that
B (5 (7)) = o (B (75D
1A| Ao 1/3 (A.16)
§K~|A|~<l+4 ,3> (T) Vp eP.

(A.16) and (A.11) together then yield

A dmax '
Al-(1+-—=) 2
+K||(+4ﬂ>(T
A dmax \'? dmax
A 1+ — Al -« -
>+K||(+4B)<T 1ALk
IA I dmax 1/3 dmax
2 A 14+ — Al -k ——
)+x||(+4ﬂ ) Al 7

o o) (5"
(A.17)

forall k € IC, and any two paths p, p’ € KC with expected flow value E 7 ( f ran, p) > 0.
(A.17) yields with a similar argument as in the proof of Lemma 4b that the expected

o (Bp(F5D) < Eq (214
<Eg (‘L’ (,[5,11
[g]( (

)
)
")
i) +3

non-atomic flow E [ f,[f,],] is an e-approximate non-atomic NE flow with € :=3-|P|-

1/3
-|A] - ( ‘A‘ ) (d'"%) . Lemma 6a then follows immediately from Lemma 3.

Lemma 6b then follows from (A.12) and (A.13), since they together imply that the
random event

Va e A: ran a T(Eg] ( ;[gll,a> - Eﬁ ( ;[gl]q,a> : _L_ng] (Eﬁ (fr[gr]z,a))‘
B 5 (A.18)
1 Amax
< | ¥ +"Nmax 120 Tl < T

occurs with a probability of at least 1 — Ps. Here we use that ‘L'ag]( -) is Lipschitz
boundedm [O 1] with Lipschitz constant , that |x- 7% (x)— y ) < x 7l o) -
2+ ) =yl < G+ ) Ix =y < e+l (1)) [x—y| forall x, y €
[0, 1], that I"'t8] has arc flow values in [0, 1], and that maXgeA Max[o, 1 rﬁg] x) <

Zlg Nmax
=0 1!

@ Springer



968 Z.Wuetal.

(A.12) and (A.18) yield

g (50 L 0) - n(l[ﬁi,a) o (B (o))

SEf] ( :‘[gr]z,a : [g (fran a H ( ;[5}]1,11> : Ta[g] (Eﬁ < ’;’[((lg}l,tI))‘)

B 1 d B B 1

max

=< K"‘nmax'ZF ( T ) +P8'nmax'ZF

[=0 =0

B B 1-2.8 B

1 d Al [d 1

N (%> +T'<%> oY

=0 =0

(A.19)

foralla € Aandall § € (O, %). Here, we use that max,c4 maxye[o,1]x - rﬁg](x) <

Zfzo Imax “and that the random event (A.18) occurs with a probability of at least

Tl
1 — Ps, and so the complement event of (A.18) occurs with a probability of at most
P;s. Lemma 6¢ then follows immediately from (A.19) when we put 6 = % O

A.6 Proof of Theorem 3

We first show Theorem 3c, and then prove Theorem 3a—b with the technique of asymp-
totic decomposition proposed by Wu et al. [47].

Proof of Theorem 3¢ We define f = maxyex min,ep, Maxqep Bq, and put the scaling
factor g := T#. Here, we recall that the degree 8, > 0 of arc a € A is an integer. We
callapath p € P = UpcxcPr withmax,ep B4 < B atight path, and an arca € A with
Ba < B atight arc. Clearly, each O/D pair k € K has at least one tight path p € P.
We denote by I'l¢] the resulting scaled game with scaling factor g. This has a total
demand of 1.

Let fiﬁ} be an abitrary non-atomic NE flow of I'¢], and let fa[f] be an arbitrary
atomic NE flow of I"[8],

Colini-Baldeschi et al. [10] have shown that e (I') = ppar(I'8)) = 1 4+ O()
under the condition of Theorem 3c, i.e., di > & for each k € K for constants
&, > 0 independent of T'. To obtain the convergence rate of the atomic PoA pa, (r)=
pa,(F 1]y, we again need to upper bound only the cost difference |C( fa, , sy —
C( f a,, I''&])| because of inequality (3.4). Here, we observe that non-atomic SO flows
of I'&l have a cost of £2(1), since every O/D pair k € K has a total demand of di €
©®(1)in I''#1, and since there is at least one O/D pairk € K withmin,ep, maxqep Ba =
B.

When all arcs are tight, i.e., B, < B for all a € A, then all the scaled polynomial

cost functions t(gg ] (x) of I''81 have bounded coefficients and degrees smaller than 3,
and are thus Lipschitz continuous on [0, 1] with a Lipschitz constant independent of
T. Moreover, with arguments similar to those for Theorem 1, we obtain immediately
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that (7, P8 — C(F) P € 0/ ) and so pu (P8 = 14 0(/ 1) by
inequality (3.4). Here, note that the maximum individual demand in I" iS dpax < v
for a constant v > 0 independent of 7.

Now assume that there are non-tight arcsa € A, i.e.,arcsa € A with 8, > . Then
the scaled cost functions ‘L’ag]( -) of these non-tight arcs a € A need not be Lipschitz
continuous on [0, 1], since their coefficients may tend to co with growing 7'. A natural
idea here is to remove the influence of these non-tight arcs in the analysis.

Since each O/D pair k € K has at least one tight path p € Py, we obtain that

no.min - TP P - (7181 )P < 87181y < s - (B4 1) - 1AL, Va € A, (A20)

Here, we used that a tight path p has a scaled cost of at most nmax - (8 + 1) - |A] in
an arbitrary flow, as it contains at most | A| many arcs, and has a flow value of at most
1 in an arbitrary flow of the scaled game I"l¢]. Moreover, by the definition of atomic
NE flows, the scaled cost dk’ : ‘111[5]( 7181y of an arbitrary individual i € U with an
arbitrary “pure strategy" p’ e ‘Pr will not decrease, even that individual unilaterally
moves from path p’ to a tight path p € Pk.

Hence, we obtain for each non-tight arc a € A that

Nmax - |Al- (B +1) . T—/nggigﬁ € o(1). (A21)

at a = 9 (T) -
10,min

Similarly, ,Eﬁ,] o < 6,(T) for each non-tight arc a € A. Moreover, inequality (A.21)
implies for each k € K and each non-tight path p € Py, i.e., max,ep B, > B, that

78l < 6,(1)

= min 0,(T)c®(T ™ ertes By and Fi8l<6,(T), (A22)
aep:Bap r

since the flow value of a path is not larger than the minimum flow value of arcs
contained in that path.

Inequalities (A.20)—(A.22) actually indicate that we can ignore all non-tight arcs
a € A and all non-tight paths p € P in the analysis. In particular, we have

el riey —cflsl reh <1 Y 7l A9l

acA:Ba=p
7lgl
- Z fnath Th (fnatb
beA:Bp=p
2 fmax - B+ DAl D 0a(T).

acA:f,>p
(A.23)

This provides a very good basis for further upper bounding the cost difference in this
general case.
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For each O/D pair k € Py, we denote by P, = {p € Pr : maxuep fu < B} the
subset of all tight paths p € Py, and put P’ := Ui P;.. Moreover, we denote by
A"={a € A: B, < B} the subset of all tight arcs a € A.

For each tight arc a € A’, we define an auxiliary cost function

Ul,a(x) = T¢£g] X + Z fat )2 Vx >0,
peP\P":aep

where 3 p\prac) fa[f]p = 0 when a is not included in any non-tight path, i.e.,
a ¢ p foreach p € P\ P’. Then the restricted flow f t|7” (fa[ig,]p)pepk’,kelc is an
atomic NE flow w.r.t. these tight paths p € P’ and w.r.t. the arc cost functions o7 4(-)
of these tight arcs @ € A’. This follows since 7/ (7181) = alyp(fa[fﬂp/) forall p € P

Here, we note that ol,p(fa[‘f‘]p/) =Y uep al,a(fa[f‘]am) =Y iep tﬁg](ﬂ[ﬂ) for each
p € P, and fta\'P’ = D keK 2-pePaep ﬁﬁ]p for each a € A’, and that the flow
values fat’ p on non-tight paths p € P\ ‘P’ are constant parameters of the auxiliary
arc cost functions o1 4(-).

We denote by Fl[g ! the resulting “reduced" scaled game that ignores all non-tight

paths p € P\ P’ together with their “demands" f, [f ]p, and, moreover, has the auxiliary

functions 01,4(-) as the cost functions of the tight arcs a € A’. Then the total cost
c(f1 t\7’” l[g]) of fa[f\]P/ satisfies the condition that

7lg] [ ] 7lg]
Zfaf,a (fat a) = C(f t‘pm 1g )= Z fat alP’! O'l,a(faf’awp/)

acA’ acA’

Z [g] ) [g](fa[f]u) — Nmax - AP (B+ 1) - Z 0,(T),  (A24)

acA’ peP\P’

where the quantity 6, (T) defined in inequality (A.22) is an upper bound of the atomic

flow value fa[tg ][, on a non-tight path p € P \ P’. Here, we used inequalities (A.20),
(A.22), |A’| < |A|, and the fact that

[g] Al g 7lgl
0= fara— at apr = Z Jar, p
PeP\P’

foreacha € A".
Let fl[g,}m be a non-atomic NE flow of Fl[g]. Since Fl[g] ignores all non-tight arcs
a € A\ A, all its cost functions o} ,(-) have coefficients bounded from above by a

constant independent of T and are thus Lipschitz continuous on [0, 1]. While I’ 1[g]
ignores all demands fa, » of non-tight paths p € P\ P’, inequality (A.22) implies

that Fllg ! has a total demand tending to 1 as 7 — oo. Hence, we obtain again by
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arguments similar to those for Theorem 1 that

1
S T1¥h = C( o TE¥H1 € 0/ ). (A25)

Here, we note that fa[(tg|]7>’ is an atomic NE flow of F[g !
7lgl

a1 and consider its restriction

We proceed similarly with the non-atomic NE flow f;,
f~[§2|p/ = (f’rn[z)g,p)pepli’kelc to tight paths p € P’. We define the auxiliary cost func-

n

tions o7 4 () for each tight arc a € A’ and the resulting reduced scaled game I 2[g ] by

using non-atomic flow values fna, p instead of atomic flow values fa[f]p in the above

definitions. Then we obtain also that f, fle]

moreover,

;pr is a non-atomic NE flow of F[g] and,

[] gl gl 7lgl [g]
D Fabta @ Uaira) = CFp 1

acA’
_ 7lgl
Z fnat ,alP’ 02’”(fnat,a\73/)
acA’
> RS D = max LAP (B Y 0,(T). (A26)
acA’ peP\P’

Inequalities (A.23)—(A.26) yield that

€ (fa, re) = c (7l rien))

[g] [g] 7lgl [g]
= |C (fl nat’Fl )_C(-fnat\’P“FZ >|

+0<\/;>+0 Yo b +0| D0 6,1

acA\A’ peP\P’

(A.27)

Note that Fl[g] and Fz[g] share the same path set P’ and the same arc set A’. In
particular, inequality (A.22) yields that the respective total demands of an arbitrary O/D
pair k € K in Fl[g] and Fz[g] deviate from each other by at most O(ZpeP\P’ 0,(T)),
and that |07 4(x) — 02 4(x)| € O(Zpep\p/ 0,(T)) forall x € [0,1] and alla € A".
Hence, viewed as non-atomic congestion games, the distance || Fl[g 1_ Fz[g V| between
Fl[g] and Fz[g] w.r.t. the metric defined in Wu and Méhring [46]is O (D PEP\P! 0,(T)).
Here, to save space, we recommend readers to (author?) [46] for a detailed definition
of that metrlc

Let I ¢ be the non-atomic congestion game that has the same components as
Fl[g , but with the original scaled cost functions r for each arc a € A’. Similarly,
let I, LeY be the non-atomic congestion game with all components of I, Lel , but again
with the original scaled cost functions rag] for each arc a € A’. Then we obtain also
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that | I{*! — I € O(Z ,epp 0p(M). 1135 = 1¥T 1 € O(T pepypr 0p(T)).
and |1 — 1) € O, ep\pr 0p(T)).

Since I"l[g] and Fl[g 1" differ only in their cost functions, Lemma 10d of [46] then
yields that the total cost difference between the respective non-atomic NE flows of

Fl[g] and Fl[g]/ isin O(,/>" ,ep\p 0p(T)). Here, we observe that the cost functions

of both Fl[g] and I’ 1[g]/ are Lipschitz bounded by a constant independent of T on [0, 1].
Similarly, the cost difference between the respective non-atomic NE flows of I z[g]
and Fz[g], is alsoin O( /ZpeP\P’ 6,(T)). Moreover, as Fl[g]/ and Fz[g]/ differ only at
demands, Lemma 1 1a of [46] implies that the cost difference between their non-atomic
NE flows is again in O( /ZpeP\P’ 0,(T)). In summary, we have that

€ (f8 ) = (Fp- ) 1c 0| [ 32 6,D),
peP\P’

which, combined with inequality (A.27), yields that
7 7 -1
() - (1)1 <o i),

Here, we note that both 6,(T) and 6,(T) are 0(—@) for all non-tight arcs

a € A and all non-tight paths p € P, that fl[f”] is a non-atomic NE flow of Fl[g],

nat
and that ~n[§3|7’/ is a non-atomic NE flow of Fz[g I Then Lemma 10 and Lemma 11 of
Wu and Mohring [46] apply here, since they bound the non-atomic NE cost difference
from above by the square root of the metric with constant multipliers in terms of the
total demands, of the arc cost function values at the maximum feasible arc flows w.r.t.
the total demands, and of the Lipschitz constants of the cost functions, each of which

is bounded from above by a constant independent of 7" in the four games Fl[g], Fl[g ],,

Fz[g] and I z[g]/. Again, to save space, we recommend the readers to Wu and Mohring
[46] for details.
This completes the proof of Theorem 3c. O

Proof of Theorem 3a-b The argument for the proof of Theorem 3¢ does not carry over
to Theorem 3a-b, since the non-atomic SO flow of the resulting scaled game I"!¢]
could be of o(1), and then the convergence rate of Colini-Baldeschi et al. [10] does
not apply, when we still use the same scaling factor g as above, and when the condition,
that di > & for all k € K and some constants & > 0 independent of T, does not
hold. Interested readers may refer to Wu et al. [47] for a detailed explanation.

To prove Theorem 3a—b, we now employ the technique of asymptotic decomposition
developed by Wu et al. [47], and show that Theorem 3a—b hold for an arbitrary infinite
sequence of growing total demand, which then directly implies the convergence in
Theorem 3a-b.
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To that end, we now consider an arbitrary sequence (S, ),¢N S.t. each component S,
is a tuple (U™, d™, fign AN (O :é;”) satisfying properties (S1)—(S3) below:
- (SHUM = Uperc U( " is an agent set of the game I", and ") = (d,i ; )leum) ek
is a vector of demands for the agents in /. Here, Z/[,E " is an agent set of O/D
pair k € IC, d,g"i) € (0, v] is the demand of agent i € Uy of O/D pair k € K,
and v > 0 is a finite constant upper bound of the maximum individual demand
am = maX; ey d,g?, which is independent of the sequence (S,),cn. To
facilitate our discussion, we denote the resulting game I" equipped with /™ and
d"™ by I}, := (t, U™, d™) for each n € N.

—(S2) 0 = (F ) pere £ = ) pep and £100 = (fi)) e are
an arbitrary mixed NE flow, an arbitrary non-atomic NE flow, and an arbi-
trary non-atomic SO flow of the game I7j,, respectively. Moreover, IT" =

(ﬁi(,rz)ieuk("),pepk, rejc is the mixed profile of o

— (83) lim 0o TUM, d™) = 00, where TU™,d™) = Y, ;- d™ is the total
demand of I},, and d(n) Zi eu’gm d,gll-) is the demand of O/D pair k € K. To
simplify notation, we write 7, := T (U™, d™) in this proof.

Due to the arbitrary choice of (S,,),en, Theorem 3a—b hold if and only if

C (Eqm (£ 1) Epor [CCins 1)
lim =1 and lim

n>00  C(fE L) n=>00 O (fEM )

=1 (A.28)

Here, fa*t(") is an arbitrary atomic SO flow of I7,. Note that Wu et al. [47] have proved
F(n)
that lim,,— oo prar(I7) = lim,— C(f# =lasn — oo (i.e., T, — 00). Hence,

we can obtain (A.28) with Lemma 1, if (A.29) below holds.

_ C(Egm(fm. F)
lim =)
n—oo C(f a[a
mn)[afr;’,%, rl _
n—o0 C(fn(zrzlt)v Fn)

(A.29)

Equation (A 29) means that the expected flow E 5 ( ﬁ(,f,l) is asymptotically as
efficient as f "t » and thus almost as efficient as fn*[f?) whenn is large enough. Moreover,
the mixed NE flow fmn is also asymptotically as efficient as fn*a" w.r.t. its expected
total cost. Hence, all the flows, £, £, E g ( Fmy, fm g F0 and £50
are almost equally efficient, when 7}, gets large and (A.29) holds.

To prove (A.29), we only need to consider NE flows. This avoids the difficulties
of discussing the SO flows f,,,; P and St () To facilitate our discussion, we assume,
w.l.o.g., that
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— (S4) lim,,— 0o d" € [0, 00] and 1im,,— % € [0, oo] exist for all k, k' € K.
M

Note that (A.29) holds for an arbitrary sequence (S, ), <N satisfying (S1)—(S3) if and
only if (A.29) holds for an arbitrary sequence (S,),cN satisfying (S1)—(S4). This
follows since every infinite subsequence (S, ;)jen of a sequence (Sp)nen satisfying
(S1)—(S3) has an infinite subsequence (S, i )ien fulfilling (S1)-(S4). We will use sim-
ilar subsequence arguments implicitly and repeatedly in this proof.

We now show (A.29) for an arbitrary sequence (Sy,),eN satisfying (S1)—(S4) with
the technique of asymptotic decomposition of Wu et al. [47].

Step I: The asymptotic decomposition of [, :

We put KCpep 1= {k € K1 limy— o0 d,En) =oo}and K\ Kyeg = Kirreg. We obtain
by (S3)—~(S4) that IC;e, # 9. We call k in K¢ regular, and k' in Kirreg irregular. So
d,i") is bounded for k € K, g, and unbounded for k € C; ;.

We collect these k € K, with an equal demand growth rate into one class, which,
by property (S4), thenresults in an ordered partition Ky < - -+ < K, of Ko satisfying
conditions (AD1)—(AD?2).

()
— (ADD) lim,,—, o0 ;% € (0, 00), ie., d,g") € @(d,g”), for all k, k' € K, for each
k/
ueM:={1,...,m},
)
— (AD) limy o0 %5 = 0, ic., 4" € o(d"), for all k € K,k € K for all
k/
u,l € Mwithl < u.
Here, m > 1 is an integer, and K; < K, means that these k’ € K; have demands d,gl)

converging to oo much faster than the demands d,g”) of those k € IC,,.

W.r.t. this partition, I, is decomposed into “subgames” I, i, , - . . » Iy, » I Kirreg-
Here, we call I, a subgame of I, if I i is a restriction of I, to the subset K’ of
O/D pairs, i.e., I, is the game obtained by removing all O/D pairs k € K\ K, and
all agents i € Uy ;C/Z/IIE") together with their demands d,gli) from I,. We thus ignore
completely the influence of all O/D pairs k € K \ K’ when we consider the subgame
Lk

Clearly, each regular subgame I, i, has the agent set L[f,'él = uke,cuu,ﬁ"% the

demand vector dl(lrgd = (d/gli))ieu,f"), kK, and the total demand Ty, ic, = ) ;¢ K, d,g")

that tends to oo as n — oc. The irregular subgame I'k,,,,, has the agent set

(n) n)
ullcirreg R )ieulfn) ’kelcirreg and the

total demand 7yy/ic;,.,. = D _keki,, d,g") that tends to a bounded constant asn — oo.

Moreover, we obtain by condition )fADZ) that

= Uke,ciwgz,{lfn), the demand vector dl(’lé)meg = (dlg

Y L e
hm —_— = llm _—

n—=o00 Ty 1, n—00 Tn\IC[

=0 Vu,l e Mwithl < u. (A.30)

m
Here, we observe that T, = Ty k., + Yooy Tux, and Tn|l€\uj,=]lc,/ = TuiKirree +

m
Zl’:l+1 Tn\lC,w

irreg
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Note that each flow £ of I', induces a joint total cost

Cro(f™. 0 =" 3" fm e, (f™)

ke’ pePr

and an independent total cost

CUL ) = 3 3 £ty = 3 £ wa ()

keK pePy acA

for an arbitrary subset K" of IC Where f‘(”) = ( f,S")) PGUkeIC/Pk is the restriction of
£™ into the subgame Tk f, a|IC’ = ek ZpePk aep fp is the arc flow induced
independently by the “flow” f") of rn‘ ,@ and 7, (%) = Zae » Ta(f{) is the
independent path cost under the flow f| i - Here, we use that fl IC/ is indeed a flow of
I, 7, and so the independent total cost of f ) is exactly the total cost of the flow
fl( "in I, Ik -

W.r.t. the above asymptotic decomposition, we obtain for an arbitrary flow f of
I, that

c(f(”),Fn) Kirres (f‘”) F) ZCIC (f(") F)

u=1

m
(n)
> C (‘f"Clrreg F ‘Kirreg) + Z C (f‘”gu’ Fl’ll’(:u) ?
u=1

=+ Zf(’” Va € A.

u=1

The above inequality follows since the joint path cost 7, (f (M considers all subgames
and the independent path cost rp(fl%?) considers only flow induced by agents from

k € K', and so rp(f(")) > rp(fl%?) for each subset K’ of K.

Step II: An equivalent transformation in the limit
Wu et al. [47] have shown for this decomposition of non-atomic NE flows that

lim C(f(Zg,
o C(fn ) Fnllctr)eg)+zl—] i anIICl)
i ,,,eg<fn‘23,r>+zl lczc,<f,f;’3,r>
}HOOC(f . nl’Ctr)eg)+Zl—1C( atv k)

— lim Zl 1CIC/(fnat’ n)
nee Z[ 1C(fnat s nllcl)

=1, (A31)
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F(n,D)

where f,,; and fna, are non-atomic NE flows of I}k, and I, respectively,

irreg’
and where Cic, (f), I)) = D kel 2 pePy fm " -1, (f8)) s the joint total cost

of I}, in the non-atomic NE flow f,f;’? of I;,. Note that the restriction f natlk; =

(f, (Z, .p)pePy.kek; of fn(Z; is a non-atomic flow of I, i, but need not be a non-atomic

NE flow of I}, |k, and so has a total cost that may differ from f,, fa, l).

The irregular subgame vanishes in the limit of (A.31), since it has a bounded total
demand and thus a negligible influence on the limit, see [47] for details.

Foreachn € N, let f;,(g;l), l e M =1{1,...,m}, be arbitrary non-atomic NE flows
of subgames I, and let f,,(:l’,’*) be an arbitrary non-atomic NE flow of I'ic,,,., -

Then (A.29) follows from (A.31) if and only if

C (B (fa). 1)

lim 5 - D =1, (A.32)
e C(fnat ’ Fn\lCi,reg) + Zl:l C(fnar > FHVQ)

Efgw [C(ﬁ(Z’%, I )]
lim =1. (A.33)

e C(fl’lat ) n‘Kur('g) + Zl 1 C(fn(lt ’ H‘K])

Step III: Further subsequence arguments
We will prove (A.32)—(A.33) by scaling each of the above regular subgames I, i,

independently. We define a scaling factor g(") = T for each u € M, where
Ay = MaXjef, MiNyep, MaXqep Ba = 0. To facﬂ1tate the discussion, we also call a
path p € U, Pr foru € M tight if max,ep By < Ay, and non-tight if max,c, o >
Au. Clearly, every k € K, has at least one tight path. Moreover, each tight path
p € Urek, P contains only arcs a € A with 8, < A,, while a non-tight path
p’ € Urek, Pk contains at least one arc a € A with B, > A, for each u € M. These
simple facts will be very helpful in the further discussion.

To simplify the proof, we assume further that the sequence (S, ),en satisfies prop-
erties (S5)—(S8) below.

)
(S5) limy— oo g(,) € [0, oo] exists for u,l € M. We call g\ and g mutually

comparable
) fn(Z}u) . (frf;ltu;)pepk keKu 7(00,u)
(S6) lim,_ oo P = lim,,— oo T, Jnat (f at!p )PepkakE’Cu
foru € M. ( ~ )
' E o (7 ) E"(n)(ffﬂ, )
(S7) FOr u e M’ hmn_)oo W = hmn_)oo i T‘p}c PEP kLY
Faeo) = (fieoi)y epy ek, - Here, B (flamic, = ]Eﬁ<n>(fr($|m) is the

restriction of the expected flow E ) ( f}%ﬁ) = Egm( fr(;,), p)) pep of the mixed
NE flow £, of I}, to the subgame Ik, » which is a non-atomic flow of I, k., -

(S8) lim,— oo le‘{,c d(oo “) ¢ (0, 1] for each k € K, and each u € M. This actu-
ally follows directly from property (S4) and decomposition condition (AD1).
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Note that (A.32)—(A.33) hold for an arbitrary sequence (S,),en fulfilling (S1)-
(S4) if and only if they hold for an arbitrary sequence (S;),eN satisfying (S1)—(S8).
This follows again since every infinite subsequence (S,,J. ) jen of an sequence (Sy)eN
fulfilling (S1)—(S4) contains an infinite subsequence (S, P )ien fulfilling (S1)—(S8).

Step I'V: The inductive assumptions
We will prove (A.32)—(A.33) by showing that the statements IA1-IA7 below hold

for each u € M, using an induction on u over the set {0, ..., m} = {0} | M. Here,

we put Ko := 0, g,S(’) := 0 and identify I, x, as the empty subgame and employ the

convention that IA1-TA7 hold for u = 0.
F(n) )
1A1 MaX, o (G =0 TP E g (fran) € O(maxj_, g,') for k € Uf_ Ky,
i.e., the most costly path used by agents of the subgame FnlULo K, has a cost of
at most O (maxj_, g,(,l)) in the expected flow E 7, ( Fln)y.
IA2 The joint total cost of Iy, in Egu (£ is @ (maxt_g g - Tyi). ie..

u
> Ci, Egan (£, Th)
=0

u
=33 Egw(Fm ) tEgu (F90)
1=0 kel pePy

u
€ O(max g - Tyi).

St Crey Epyon Fram T) _
SieoCFai - Tuike))
3 1
1A4 MAX LDy By (7, )50 E 70 (r,,(f,(g,)l)) € O(max]_, g,g)) fork € UK.

TA3 limyseo

IAS The expected joint total cost of FnlU;‘: N9 in f;(% isalso ® ( maxj_, g,(f) Tuik, )
i.e.,

u u
B0 [z i (7 rn)} Y Y B (- e
=0 =0 ke pePr
u 1
€O (rrllz%x g Tn|/c,> :

. E = [Xfeg Cic, (™. 1y
1A6 hmn—)oo Jud )u[Zl_0~(n’C[§ f )] -1
21=0 C(fuar - Thiic))

IA7 Foreachk € K;andeachl =0, ..., u,

~ ~ A /
max_ Egofm.,  Tp(fUn] € 0 (T,”,C, - max g,ﬁ”).
PEPx: E iy (fim p)>0 =0
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Among these inductive assumptions, IA3 and IA6 are the most crucial. We obtain
trivially that

D10 2okek, 2= pePy ]Eﬁ(m (ﬁ(gr)z ) T (Epm o )

lim =1, (A.34)
n—00 pay OC( al s Thiicey)

(n)
o 2020 2keky XpePy ]Emn)(franp T (fran ):1, (A.35)
n—00 Z[ OC(fnat > Dare)

when TA3 and IA6 hold for all u € M = {1,...,m}. Then (A.32)-(A.33) follow
immediately from (A.34)—(A.35), since the subgame DoiKirreq has a bounded total
demand and thus can be neglected in the limits by an argument similar to that in the
proof of Fact A2 below.

Moreover, IA4 implies IA7. This follows since the random event “ ;(;,)l » = Tax,”
occurs almost surely for each p € Ui, Pr and each [ € M. In fact, IA4 also implies
IA1, which we will claim later in Fact A1.

Now, we consider an arbitrary u € {0, ..., m — 1} such that [A1-IA7 hold for each
non-negative integer / < u. We will prove IA1-IA7 for u + 1, which then implies
(A.34)—(A.35) by induction, and so completes the proof of Theorem 3a-b.

Step V: Validating IA1-IA7 for u + 1

For each k € K, 11 and each p € Pk, Epq) S ») = 0 implies that ﬁi(f;) =0
for every i € Z/IIE") because of (2.2). So, for each P € Pr, Egw (ﬂ(:,l’p) =0is
equivalent to the fact that the random event “ m,, p = 07 occurs almost surely, i.e.,

Pﬁ(,”(ﬂ(;’,),,p = 0) = 1. Similarly, for each a € A, EH(")(franalU” /Cz) = 0is

equivalent to the fact that the random event * f K= 0 occurs almost surely.

ran,alJUj_

Therefore, we can directly remove fmn iU from the respective expectations of
0

the random variables t,, (f(;,)l o) and f(,f',l a l'a(f(:;,)l a) when E 56 (fmn alu [) =0.
With the above observations and the inductive assumptions IA1 and IA4 of step u,

we obtain (A.36)—(A.38) for every arc a € A and every path p € Ureic, ., Pk
Ta []Eﬁ(rl) (fr(gr)l a)]
= t[Eqm (f )+ Ego () )]
al=nmran,al0t_ K, ™ ran,a| K\ K,
)
O (maxi_ g’ if E oo L aiu_oi ] =0 (A36)
= ) _ .
Ta[ 7 (fran,allC\U;‘zolCl)] if En(u)[f,:n alut /CI] =0,
Egm [Ta (f:*(t;lr)z,a)]
. 7(n) F(n)
- EH("> [Ta(fran LalUi_o K + f ran,al K\UjZ OICI)]
0] n)
O(max 8n ) ifEx (n) f u > 07
_ =0 bi [ r(?lz; ,alU_ /Cl] (A37)

Eﬁ(") [Ta (fran,aUC\U;‘:lIC[)] if ]EH(") [fran ,alUj IC[] =
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]'[('1) [fran P ta(fr((’l?l a ]
o Z(n) 7(n)
= Eﬂ(’l) [fran,p ’ Ta(fran,a|Ul”:01C1 + fran Lal\ULL ’Cz)]

1
O(T"\]erl 'max;{ 0 g’g)) leH(”) fran a|U1 OIC[] 0’
7(n) 7(n) F(n) —_
Eﬁ(”) [fmn,p *Ta (frun allC\U;‘zolCl)] if ]EIY(”) fran alu =0.

(A.38)

(A.36) and (A.37) follow since IA1 and IA4 hold in steps / < u, and since the

expected arc flow E g, ( fr K, ) > 0 implies that arc a belongs to some path

an a|U”
P € Uiy Ukek, Pk with ]En(,,>(fm,, p) > 0. (A.38) follows immediately from (A.37)
and the fact that fm,, » < Ty, for every path p € Upci, ., Pk. Here, we observe

that (A.36)—(A.38) hold trivially when u = 0, i.e., when U}‘:OICI = 0. O
With (A.36)-(A.37), we now show [A1, IA4 and IA7 for step u + 1.
Fact A1 A1, IA4 and IA7 hold for step u + 1.

Proof of Fact A1 We only need to show A4 and 1A 1, as IA4 implies IA7.

Proof of IA4 We obtain by (A.37) that IE 7, (7, ( fr(f,)l)) € O(maX}“’O1 gn )) for every
tight path p € Ucic,,, Pr. This follows since a tight path consists of arcs a with
1 A

degrees B, < Ay+1, g,(fhL ) = T”Véulﬂ’ and Ty k,,, € @(T"\’CI\UE‘ZO’CI)’ see (A.30).
Then IA4 of step u + 1 follows immediately from the facts that every k € I, has
at least one tight path, that fr‘;’,i is a mixed NE flow, and that d;, (") <vforallkandi.

Here, we use that the choice of a single agent has a negligible 1nﬂuence on the expected
cost of a path (compared to max;‘+01 gn o ) when n is large enough, since his demand
is bounded from above by the constant v and Ty,,, — 00 as n — oo. In fact, we

1+l
can even think of f,%l as a mixed WE flow (see Remark 1) in this proof.

Proof of IA1
We show for each a € A that

talE o (F2 D1 < Egolta(F2 )1+ 0(1), (A.39)

which, combined with IA4 of step #+1, implies A1 in step u+1, since max}“’o1 g,(,l) S

£2(1) for every u = 0,...,m — 1. Note that 7,(-) is convex on [M,, o) for some
constant M, > 0, since 7,(-) is a non-decreasing polynomial with an integer degree
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Ba > 0. Jensen’s inequality from Lemma 8c then yields that

Ta [Eﬁm) (J;r(ﬂ,a)] [ faw (fran e = Ma )] fw [ rama = Ma]
+ Ta [Emn) (fn?y)l a r(;r)l a )] 7 [ r(gr)l a < Ma]
= Ego [7 (Fha) 170 = Ma| - Prw [ 700 = Mo ]
+ Ta [ am (fr(z;l% al r(an% a )] o [ ran,a < Ma ]
=Epm|* [ (fran a> |fr(gr)l aZ ] “Prm I:frgn a =M ]
+Eqwm [Ta ( ;(2',)1,a) | Fa < ] P [fran « <M ]

+ 1 (M) = B [0 (F0.0) |+ 0 1

This proves IA1 for step u + 1, and completes the proof of Fact A1 O

(u+1) (u+1)

Note that either g, € O(max;_, gn )) or g, € w(max;_, g,(,l)), since the
scaling factors are mutually comparable, i.e., the sequence (S,)neN satisfies property
(S5). To validate IA2-IA3 and IA5-1A6, we thus distinguish rwo subcases.

Subcases I: g“ ™" ¢ O (maxj’_ g

Fact A2 shows IA2-TA3, and IA5-TA6 for stepu+1 when g™ e O (max]_, gy,
Then Fact Al-Fact A2 together imply IA1-IA7 for step u 4+ 1 when g(”+l) €

O(max;_, gn )) Here, we observe that g(“H) € O(max;_, gn )) happens only when

u > 0, since g = 0and g™ € 2(1) foreachu € {0, ..., m — 1}.

FactA2 If gt € O(max, g\), then IA2-IA3, and IA5-IAG hold at step u + 1.

Proof of Fact A2 1A1 of step u + 1 yields

Eﬁ(n) [ﬂ(gy)l’p] : Tp[ ]7(") (fran)] € 0( nlICl,+1 I}laX g;gl))

= O(Tyjk,, - max gi'")

! There is an alternative proof that does not need the convexity of the polynomial cost functions. The

random variable X, := fmn A\ has a variance of at most v -[|& 7 [ X1 ], and so the random event
Footnote 1 continued

“X, < Eﬁ(n) [Xnl—./2-v- ]Eﬁ(,l) [X,,]” occurs with a probability of at most % by Chebyshev’s inequality

from Lemma 8b. This then implies 7, (En(n) [Xn) € O(Eﬁw [ta(X3)]1), and so IA1 in step u + 1 holds
by IA4 of step u + 1 and (A.36). Hence, Theorem 3 carries also over to non-decreasing polynomial cost
functions with arbitrary non-negative real-valued degrees, since only the above proof of IA1 for step u + 1
involves the convexity of the cost functions.
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for every p € Uke,,, Pk with Eg) A »1 > 0 when gD

This in turn implies with (A.30) that

€ O(maxj_, gn )

CICM+1[ H(") (fran n Z Z]En('l) [fran p] TP[ H('l) (fran ]
keKyt1 pePk (A.40)

€ O0(Tyk,,, rlnax &) Eo(r?fa(;( Tk, -83)-

Then IA2 of step u + 1 follows from (A.30), g\™" € O(maxi_, g\), and A2 of
step u.
IA3 of step u + 1 then follows from (A.40), IA3 of step u, and (A.41),

1 u
CFE  Likn) €0 (T, -85) Co(max T, g, (A.41)

see (A.43) of Fact A3 below.
(A.40)-(A.41) show that I, i, . ,
cost in the expected flow of fir and £:“*" and when g} € O(max_, gDy,

Similarly, we can obtain IA5-TIA6 of step u + 1 by showmg that Ik, is again
(u+1)

is negligible when we compute its respective total
(u+1)

+1
negligible when we compute its joint expected total cost in fmn and when g,
O(maxl —0 &n )) where we use IA4 and IA7 of step u + 1.

This completes the proof of Fact A2. O

(u+1) (l))

Subcase II: g, € w(max;_, g

We now show IA2-TA3 and IA5-IAG for step u + 1 when g(qu ) e w(max;_, g(l))
This, together with Fact A1 and Fact A2, completes the proof of IA1-IA7 for step
u+1.

Fact A3 below states a helpful result from Wu et al. [47], which shows that the
~(n,u+1)

limit f(°° utl) = lim,_ # in (S6) is a non-atomic NE flow of a limit game
Ry 41
. O™ T )
Flggjil’ and the scaled non-atomic NE cost Elnat Ttk (LE‘{T‘ of subgame I}, “

nlICy 41 ‘8n

f(oo ,u+1) fF(OO)

converges to the total cost of the non-atomic NE flow o Here,

T, EC ) isa (non-atomic) congestion game with (O/D pair) demand vector d (°° ) —
(n)

(n,utl)
(0o, utl) IKut1 1 ( kRt i
d Vkekun = iMoo 7 TS :]1 limy, - o0 T, L and cost function
0 lf ,Ba > )‘M-H .
LK1 "y .
{oath) (x) = 1_1)m+n15g10%= Na - xPaif By =N, (A42)
X

Y &n 0 if Ba <Autt,

for every x € [0, 1] and every arca € A.
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Fact A3 (See [47]) For eachu = {0, ...,m — 1} = {0} U (M \ {m}),

F(n.u+1
C(f,gzltu )F"VCIH—I)
+1
Tn\lCu_H glglu )

lim
n—0o0

(” u+1) f(n u+1)

~im Yy e
n—oQ

kelyt1 pePy Tnifcus
Ju+1 41
= 37 floent D glosut ooty ¢ (0, 00) (A43)

acA

+1
gt

and f(oo 4D i a non-atomic NE flow ofFI;go) s.t. f(f;f;“) = 0 for each non-tight

P € Ukek, s, Pk Here, we employ the convention that 0 - 0o = 0.

Properties similar to Fact A3 actually carry over to the expected flow E 7, ( fr (2,)” Ko )
IEﬁ(n) (fr(:))l\/c )
T,

wth) ¢ w(max)_ ¢y, Here, we recall that lim,_ o utl

(00, u+1)
exp , see (S7).
Consider an arbitrary arc a € A with 8, < A,4+1. Then (A.36) yields

when
g "Cqul

m Ta (Eﬁ(n) (fr(glz,a))

n—00 glg“+1)
7(n)
iy 2B
_nioo g(u+1) F 70,00 \ Pz fr“"ﬂ'ULOIQ
n
- ~(n) 7(n)
) Ta (En(") (fran,a\lcuﬂ T frun allC\U"+l )) ~(n)
T ngmw (u+1) ’ 1{0} (Eﬁ(n)[fr“”’“|u?=olcl])
F(n)
f,(:,?, alk fran,aUC\qullC]
“ (TnVCqul 'Eﬁ(n) ( Tk +1+1 + T"”CuJ:O
= nlgnoo Mt
"|’Cu+1
] 1 1 1
(TS ) e

kelyy1 pePriacp

Here, we use (A.30) to remove the influence of subgame I' K\ K and use (A.42)

to obtain the limit. The subgame Lok vanishes in the limit since g(”+1)

w(maxl_, g) and (A.36).
Hence, we obtain for each tight path p € Upcc

€

Py that

u+1

lim Tp (En(n) (fran)) — lim Tp (En(n) (franllcu+1))
700 gr(l u+1) T gr(lu-‘rl) (A.45)

=1’1(700”+1)(fe(;;”+1)) €0, 00),
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since a tight path p € Ugck, ., Pr contains only arcs a € A with 8, < Ay41.

Lemma 9 shows another helpful result when we justify IA2-TA3 and IA5—(Sto—
IA6) for the case that g(”+1) € w(max;_, g(l)) We move the long proof of Lemma 9
to Appendix A.7.

Lemma9 Consider an arbitrary a € A, an arbitrary u € {1, ..., m}, an arbitrary
polynomial function h(-) with degree B > 0 and a constant g, = Tn)‘| K, with an
arbitrary constant exponent A > 0. Assume that h(x) is non-decreasing on [0, 00).
Then

7(n)
]7(’1)( (f JC\UH— IIC )) h(]EH(Vl) (f JO\UE— IIC ))
lim ram MYz = lim ramalf\Viz € [0, o0]
=00 8n =00 8n

if either of the two limits exist.
With Lemma 9, Fact A4 confirms IA2-IA3 and IA5-IA6 for the case that g("H)
o(max;_, g< ))

Fact A4 [A2-IA3, IA5—IAG6 hold at step u + 1 when g(”H) € w(max;_, g(l))

Proof of Fact A4 We obtain by IA1 of step u + 1 that E 5, (ﬁ(;“),,,) € o(Tyic,,,)
for an arbitrary non-tight path p € Uicxc, ., Pr. Otherwise, there is a non-tight path
P € Urek,, Pr with

u+1

o E o (Fan) = D taCro (fana) = DT Cpon (frin ) € 08

aep aep

and E g ( ) ») € 2(Tyk,,,). This contradicts IA1 of step u + 1, ie., 7

(Eqm (flan) € 0™y for every p' € Uek,., Pe with B (Fpr ) > 0

when g("H) € w(max;_, g(l) ). Here, we recall again that every non-tight path

P € Ukek,,, Pk contains at least one arc a € A whose cost function has a degree

,Ba > )\.u+] .
Consequently, we obtain for each non-tight path p € Uik, ,, Pk that

F(n)
f(oo autl) lim Eﬁ(ﬂ) (frcm,p) —0.

“np n=>0 Tl
lim Eﬁ(ﬂ)(ﬁ’(gr)l,p) . Tp(Eﬁ(n) (fr(crllr)l))
n—00 Tnl’Cu+1 g’(z"’"‘]) (A.46)
i B (i) - Lo.0o g (Fanp)) T (Egn (fan))
n— 00 Tﬂl’Cu+1 g'(lu-‘rl)
=0.

Here, we used again IA1 of step u + 1.
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(A.45) and (A.46) together imply that

CKLH»I [ nm (f(n) ]

nll>ngo Tuii,s - g’(1u+1)
— lim D keKust 2-pePy E o (Fim ) - T E g (Fram)
- o 67
— lim D keKysr 2pePep s tight E o (Franp) - pE g (fr(ﬁucm))
e Ty g'(lu+1)
=) fiout) . gloonthploouth), (A47)
acA

where we again use the convention that 0 - oo = 0. So IA2 of step # + 1 holds.

When 2,41 > 0, then we obtain by Lemma 9 that fe,), Floeut ) is a non-atomic NE

(u+1)

flow of Fﬁgf) This follows since g, € w(maxj_, g )) and

(oo M-H)(f;O M-H)) lim Tp(]Eﬁ(n) (frun))

n—00 g;(1u+l)
_ i Baw@Uri)) _ L Bp @) e
s (u+1) ~ n—oo (u+1) ’
8n 8n
T Tp (Eﬁ(n) (fran)) (00,u+1) ; Z(oo,u+1)
=dm U™
8n
for an arbitrary k € K, and two arbitrary right paths p, p’ € Py with f, (f; ZH) > 0.

We used Lemma 9 to exchange the expectation and the function 7,(-) in (A.48),
used (A.45) to obtain the limits on both sides, and used (A.36)—(A.37) to remove the
influence of subgame F|Uu oK in the limits when g("H) € w(max;_, g(l)) and the

paths p and p’ are tight. Moreover, the inequality in (A.48) follows since fm,, is a
mixed NE flow, which has a similar behavior with a mixed WE flow when we scale
the path cost with g®*1 and the maximum individual demand is bounded from above
by v.

When A, 41 = 0, then every tight path has constant cost. So (A.48) holds trivially
and foyp Floout) 4 is also a non-atomic NE flow of Flggj)ﬂ Here, we recall (A.46), i.e.,

IS ;*” > 0 only if p € Ugex,., Pr is tight.
The above arguments together with Fact A3 and IA3 of step u imply IA3 for step
u—+1.

Below we show TA5-TA6 for step u + 1 when g(“+ )

€ w(max;_, g(l))
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Lemma 9 implies for each 6, € o(T,x,,,) and each a € A with B, < 4,4, that

. F(n) 7(n)
IEH(”) [(fran,allC\U;;OlC] T00) - (fran,a\IC\ULOICl)]

Jim Tuko gD

~ lim Egm [fr(anr);,a\lc\u;;olcl 'fa(ﬁ(;lr)z,am\u;‘:olc,)]
& e 50

~ im Ego [ﬁ(:i,am\uyzoicl] Ta[Eqw (fr(;lr)z,aHC\Uf:OIC])] (A49)
&= e 677

. E g [-ﬁ(ZBL‘a\ICu_,_]] - %[Eqm (J?r(:i,aucw. )]
= oo 7

_ ~E(J?[<izz+1) _ t;oo,u+1)(]z;)?[<;zz+1))_

~ +1 ~
Here, Eﬁ(n) [en . ta(fr(:llr)l,a”C\U;':lK[)] S O(Tn”Cqul : glglu ))1 as ta(fr(:llr)l,a”C\U;':lIC[)

€ O(g,(l”+l)) holds almost surely when 8, < Aj,41.

Lemma 9, (A.37)-(A.38), g,S““) € w(max}‘zo g,(ll)) and (A.46) together imply for

each non-tight path p € Ugcic,,, P that
lim E ool fran.p tpran) ]
T T gt
= lim .00l (ﬁ(g’)”l’)]‘Eﬁ(w[ ;(gr)l,p'fp(fr(gr)z ]
100 Tk, gD
i Zespbahu 10.00)(E g Faon. )1 Egyon [ Fan.p - 7a(Flin.a)]
o TalKusn 'gr(lu+l)
= lim Cacpiicun L0oAE o (Frin, p 1 E gy [ Frin.p ‘fa(JF,(Zr)z,a\IC\U;;OICl)]
n_)oo T Kot gD
< lim eyt L0o By an, p)]'Eﬁ(H)[fr(Zi)i,aVC\U?:olCz Ta (ﬁ(ﬁ,am“@m)]
o ToiCus gl
= lim S aep bt LOoE froFran, MV E ol o s Tl B o apor g )]
o Tl
o DB LoolE o Fram. ) E ol o o, ol By ()]
o Tl
_ 2ZaepBaiun 10,00 [Efm (fr(gr)l,p)] Em [ﬁ(;’r)l’a”cw]
— ,,hmoo T .0(1)
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7(n) 7(n)
Zaep:ﬂ‘p)w“ Zp’euke,cuﬂpk :aep’ ]l((),oo)[]Eﬁ(n)(fran,p)] 'Eﬁ(”[fmn,p/]

= lim -0(1)
100 Tn|lcu+]
=0. (A.50)

Here, we used that T kAU € O(T,,VCMH), that E g (ﬁ(;’,)l,p) = 0 implies

P (fanp p(f(;‘,i @) = 0) = 1forevery a € A, that Ego) (fn,) > 0
implies 'L’p(]EH(n)(fm ) € O(g(”])) that p’ is non-tight if p’ contains an arc a
with 8, > A,+1, and that

Zaep Ba<huil 1(0,00) (En(n) (fran ) En(n) (fran p Ta(fr(gr)z a )

A Tokos - 80D
- Zaeppazinn Lo Ego (Franp) - g (Fanp - 7a(From e k)
= oo Tok,., - gD
< L 2B 10,00 rnFran, ) E gron(Fran. p) -7 o )
o TokC,s gl
F(n)
~ Y paziuns 10.00) (ETH;C) (jmn,p)) Eao(frane) o0

when p € Uik, Pk is non-tight.
(A.50) means that non-tight paths are also negligible in the limit when we scale the
joint (expected) total cost of the subgame I, ., in the mixed NE flow f,?},i with the

factor T i, g,(l'”l)

(A.49)— (A 50), (A.38) and g\“"" € w(maxl, g\”) together imply that

u+1

(")
lim Zke/C,,_H ZpePk n('Z)(franp Tp(fran

+
e Tn"Cu+1 gflu )
7(n)
i ZkeICu_H Zpepk:p is tight Eﬁ(") (fran |2 TP(franUC\U“ IC[))
= l1im
+1
7(n) 7(n)
. ZaeA:ﬁaf)\M_H Eﬁ(”) (fran,a\ tight p * ‘Ca(fran,a\/C\Uf:O/C/))
= Jim, WD
Tn\ICuH 8n
7(n)
. ZQGA Ba=<hu+1 17(”) (fran all\U K (fran al\UY_,
= Jim 1) (A.51)
Tn”Cqul 8n

~(oo,u+1 1 1
— Z e(;;,z+ ). (00 u+ )(fe(xo; Ju+ ))

a€A:Ba=<hyti
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Z F(co,u+l) (oo u+1)(f(oo u+1)

exp a exp,a
acA

7(n) ;
where we put f ran,altight p - Z[’/Eukeicuﬂpk:ae[’,»[’/ is tight Srqn, 7 fOr €ach a € A with

Ba < Aus1. We also used that

F(n) 7(n) F(n)
fran Lal\U_, Ky fran ,al tight p —= Z Z fran )4 +7 \/C\U”HIC]
kelyy1 p'€Py: p’is non-tight

€ O(THUCLH,I )9

and that

F(n) F(n)
Eﬁ(n) (fran,p’ c Ty (fmn allC\U}‘zolCl))

lim

1
e T”|Ku+1 g’(1u+)
F(n)
Epo (£ )
< lim 22T o1y =0
n—00 ﬂ1|K11+1

when f, < )~u+1 and p’ € Ui, Pk is non-tight. Here, we observe that the random

u+1

event “t, (fmn alk\UY lCz) € O(g("H))” occurs almost surely when 8, < A,41.
(A.51) together W1th Fact A3 proves IA5-IA6 for step u + 1. Note that we have

already shown that foy, A(oo-u+D is a non-atomic NE flow of Flggoi T his completes the

proof of Fact A4. O

Therefore, IA1-IA7 hold for all # € M. This completes the whole proof by induc-
tion. O

A.7 Proof of Lemma 9

Consider an arbitrary arc a € A, and an arbitrary u € M = {1,...,m}. Let g, =

Tn)“ K, be a factor with an arbitrary exponent 1 > 0, and let 2 : [0, c0) — [0, 00)

be an arbitrary non-decreasing polynomial function with degree § > 0. To simplify

notation, we assume that /C,, = IC\ U;‘;()l K;. The proof still holds when /C,, is replaced

by K\ U'= Ky, since (A.30) holds and lim,,—. o i = lim, 0 £ = 1.
kAU K nKu

h(E fy oy ()
We assume, w.o.l.g., that the limit lim,, oo 1 Uranae, ) o [0, oo] exists.
To prove Lemma 9, we need tlght probability lower and upper bounds for the

random event |fmn alka 17<">(fran alky ) € OEfzm (fmn’aucu)), for which we
will need Markov’s mequalzty from Lemma 8a.
ﬁgw)(a) is a weighted sum

Note that fmn alke = ZkelCu Zieu,f’” i - lpk,i( i
of mutually independent Bernoulli random variables Ilpk " 1:,_<n>)(61), i € Z/ll(,'él =

Uge ;CMZ/{IE”). Recall that pk,i(f[l.(")) is the random path sampled by agent i using the
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probability distribution 7" = (IT l.(flp) ) pep, for each k € K, and i € U™, and that
15 (D) is the indicator function of the membership relation “b € B” for an arbitrary
set B and an arbitrary element b.

Fact A5a—d below show useful lower and upper probability bounds for a weighted

sum of arbitrary Bernoulli random variables, and thus apply to the weighted sum

Fact A5 Consider n mutually independent Bernoulli random variables X1, ..., X,
with success probabilities qy, ...,q, € [0, 1], respectively. Let vy, ..., v, be non-
negative weights with sum Vy, := Y \_, v;, and let Y, = Y !_, v; - X; be the weighted
sum of these n random variables. If v; < v for a constant v > 0, then the following
probability bounds hold.

G+1)-E(Yn)
) P(Y, = (1 +8)- E(Yy) < e~ 2 (n60=51) £t 5 > o,

=B (1 YasU=DEG) 5EGy )
b) P(Y,<(1—8) - E(Y,))<e v VBT Ve -9E0m ) for all § €
O, D).

¢) Iflim,00 E(Y,) = 0 and lim,_, .V, > 1, then there is an integer N € N such

8+1 8
that P(Y, = 1+38) < e~ (00+0=55) for 115 > 0 and all n = N.

d) If lim, s E(Vﬁ = 1 and lim, o, V;; = 00, then there is an integer N € N s.t.

_ Va(10)- (E(n)0) -(1n Va(1-8)-(E(Y)¢)___ SE(¥y)be )
p(yn <(1-98)- (]E(Yn)—c)) <e v Vi ETyie Ve (9)- &0 ) for

all 5 € (0, 1), allc € (0, E(Yy,)), andalln > N.

Proof of Fact A5a Our proof is similar to that for the usual Chernoff bound in, e.g., [27,
33]. Using Markov’s inequality and the fact that X1, ..., X, are mutually independent
Bernoulli random variables with success probabilities g1, ..., g,, we obtain for an
arbitrary ¢ > 0 and an arbitrary § > 0 that

P(Y, = (148) - E(Yy))

n 1-Xiv;
— P(et'y" > g"(1+5)"E(Yn)) - [T2; ECe )

= g (I+)EM,) (A.52)
0 v
T (g e+ (A —gn) Ty (gi v -1 = + 1)
- et-(148)-E(Yy) o et (148)-E(Yn) '
The function =1 is non-decreasing on (0, co) and 14+x < e* holdsforall x € [0, 00).

So we obtain by (A.52) that

v __
[T (qi - vi -1 St +1)
ol (1+8)-E(Y,)
nooy €Vl
< 621:1‘11 i U _eE(Yn)'(cM:_I —t-(l+8))
= el (U+)EWXy) T

P(Y, = (1+8) - E(Y,)) <
(A.53)
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(3+1)-E(¥n)
forall 7 > 0. (A.53) implies that P(¥, > (14+8)- E(¥,)) < e~ (no+—g)
when we put t = w and observe that In(6 + 1) — % > O forall § > 0.
Proof of Fact A5Sb Let Z, := ) ! _,v; - (1= X;) =V, —Y,. Then Z, + Y, = V,
and E(Z,) + E(Y,,) = V,. Fact A5a) implies for every § € (0, 1) that

5 - E(Y,
P(Z, = B(Z) + 8- EYy) = (1 + 2dny gz,
E(Z,)
_]E(Zn)+6-]E(Yy,)‘(1n E(Z)+8EWn) __ 8EYy) )
<e v E(Zn) EZn)+5 B0 )

Since the random event Z,, > E(Z,) + 6 - E(Y,) is equivalent to the random event
Y, < (1 -=6)-E(Y,), we obtain that

_ E@Zn)+8-E(Yn) -(ln E(Zp)+8-E(Yn) _ 3-E(Yn) )
P(Yl‘l < (1 — 8) . E(Y}’l)) <e v E(Zn) E(Zn)+8-E(Yn)
(A.54)
_ Vn—(1=8)-E(Yn) ~(ll’1 Vn—(1-8)E¥n) _ 3-E(Yn) )
=e¢ v Vn—E(Yn) Vin—(1-8)-E(Yn)

for all § € (0, 1). (A.54) proves Fact A5b.

Proof of Fact A5¢c We say that n mutually independent Bernoulli random vari-

ables X|,..., X, with success probabilities ¢, ..., q, are stochastically larger
than Xy, ..., X, if qi’ > g; foreachi = 1,...,n. Clearly, there are n mutually
independent Bernoulli random variables X/, ..., X/, that are stochastically larger
than X1, ..., X, and satisfy E(Y,) = EQ_j_ v - X)) = Y v - g/ = 1 for
large enough n. This follows since E(Y,) = > 7 v -¢i — 0asn — oo,
lim, .V, = lim, > . ;v > 1, and the continuous multi-variate function

a(xg, ..., xp) = Z?:l v; - (gi + xi) has [E(Y;,), V,] as its range on the compact
domain []'_,[0,1 — g;] foralln € N.

Fact A5c then follows from Fact A5a, if P(Y, > ¢) < P(Y, = Y i v - X! > ¢)
for an arbitrary constant ¢ > E(Y},), (since we can then obtain Fact A5c by applying
Fact ASa to Y, with ¢ = 1 + § for large enough n).

Consider now an arbitrary constant ¢ > E(Y},,). We prove below that P(Y,, > ¢) <
P(Y, > c) only for the particular case that ¢| > ¢ and g] = ¢; foralli =2,...,n.
One can obtain a complete proof for the general case with a simple induction over
{2,...,n}.

Note that

n n
P(Y, > ¢) =1P>(Zv,--xj. zc—vl) -P(X} =1)+]P’(Zv,--Xl/. zc) ‘P(X]=0)
i=2

i=2

" n
:]P’(Zvi.X;ZC—vl) .(q1+qi_q1)+[@(zvi.xl526)
i=2 i=

(I —q1+q1—q))
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=Py =)+ (q] —q1) - (IF’ (Zvi - Xi Zc—vl) —P(Zvi - X 20))
=2 =2

n
=1P>(Ynzc)+(q1—q1)-P(c>Zvi-X,~zc—vl) > P(Y, > o).
i=2

This follows since the Bernoulli random variables X; and X l’ can be identified for each
i =2,...,n, as they have the same success probability ¢; . O

Proof of Fact A5d 1t follows immediately from Fact A5b and the fact that there are n

mutually independent Bernoulli random variables X/, ..., X}, such that X1, ..., X,
are stochastically larger than X1, ..., X, and E(Y,) = E(Y,) — ¢ for a constant ¢ €
(0, E(Y,)). Note that such Bernoulli random variables exist since lim;, oo E&) =1
and lim,,, V,, = 00.

This completes the proof of Fact AS. O

The two probability bounds in Fact A5a-b are similar to Chernoff’s bounds and
Hoeffding’s bounds, see, e.g., [20, 27, 33]. However, a direct application of these

known bounds to fr ([';’1 alk involves either the number |Ll|(,’é) | of agents in subgame
’ u u

Iy, > or the minimum individual demand min ) Note that this minimum

(n
keIC,,,ieL{,f”) dk,l
individual demand may vanish quickly as n — oo and so the number |Z/{|(;C’) | of agents
need not be in © (T}, i, ). Therefore, we include a proof tailored to our needs.

Note also that Fact A5a does not apply when E 7, ( fr ) K, ) € o(1), and Fact ASb

an,a|
: Eqo Fanaicd) _ 7 -
does not apply when lim,,_ % = e(flsz) = 1. We will instead use

Fact AS5c—d, respectively, in the proof of Lemma 9 in these two cases.

With all these preparations, we are now ready to prove Lemma 9.

The two limits in Lemma 9 are equal to O when A > g, since both
My (Fan aiic,)) a0 By (h(ff xc,)) are in o(g) when & > B.

We assume, w.l.o.g., that 8 > A > 0. Moreover, we assume that lim, oo E 7

( fr (a"r)l alk. ) € [0, oo] exists. Otherwise, we take an arbitrary infinite subsequence
(n) jen satisfying this condition. To simplify notation, we write Y, := fr (ﬁim K,

En = Eﬁ(,,) (J;r(Zz,a\lCu)’ ]P)ﬁ(n) () = P()’ and ]Eﬁ(n) () = ]E()
We distinguish four cases.
Casel: E, € ©(1), ie., limyoo E, € (0,00). Let&:= ﬁ € (0, 1). We obtain by

_ (48 -En _ 8
Fact ASa with § := 77 that P[Y, > (1+6)-E,J <e ° (mo+D-53) _

&
o= T, 1V
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£
This in turn implies that E(h(Y;)) < efw(T"\’Cu/U)~h(T,,‘;CM)+h((1+T Ko )-E )
h(E ) EG¥n)

=0=1lim,—
gn

0(gn). So lim; 00

Case II: E, € o(1), i.e., lim,.o E;, = 0. We obtain by Fact A5c that ]P’[Yn >
£

L+ T ] < =(Tik/") Then, Timy oo BED) = 0 =Tim;y o0 21020,

Case IIL: fioo') = lim, o0 % = 1. We obtain by Fact ASd that

 Tajc,~1-9)(En) ( ,,Ucﬁw (En)-c) 5 Ep—d-c )
v

TP T Y Ny ) )

]P’[Y,,g(l—é)-(E,,—c)]ge

= e—.Q(&Tn‘)Cu) s

where § € (0, 1) is an arbitrary constant and ¢ := /T, . Therefore,

E(h(Yy)) >(1 _e_Q(S‘TnUCu)) . h((l—(S) (Ep—y/ Tn|l€,,,)) )
h(E,) h(Epy)

) > (1 —8)F by letting n — oo on both sides of the

above inequality. So lim,,_, E}(fég”;)

This implies that lim,,_, E(}E(Y”

> 1 due to the arbitrary choice of § € (0, 1).

However, on the other hand, H,HOO IE;}(’(TY))) =Tim, My— 0o E((?(;; ) Jim "Tuir,)
Ehy)) _

Hence, we have lim,,_, o HES = 1 when fex,, 0 =
n

My—c0 h(En) S 1

Case IV: /00 < 1and E, € o(l), ie., limy oo E, = 00 and Tyxc, — En €
O (T, k,)- Clearly, Fact A5a—b apply in this case. We further distinguish two subcases.

(Subcase IV-I: h(E,) € 0(g,)) Then E, € o(T)‘/ﬁ ). We obtain further by Fact ASa

that E(h(Y,)) € o(gn). This follows since P(Y, > § - T)‘/ﬁ) <e —$26 T”Cu for all

8 > 0 when E, € o(Tj ), and so Tim, o 2400 < aﬁ O(1) forall § > 0.

(Subcase IV-IL: i(E,) € £2(g,)) Then E, € Q(TW) Fact ASa yields that P[Y, >
E,,+E2/ —1/3 E, —1/3
= o (I By -2
E, +E2/3] ( 1/2) ~2(E,") . Hence,
— Eh(Y,) _ — oy (k) | —— h(E,+ESY)
lim ——— < [im ¢ “E) . “~ + lim =
no0 h(E,) T nooo h(Ey) — n>e  h(Ey)
Moreover, lim,, E,(fé(# > 1 follows from Fact A5b, since P[Y,, < (1—-08)-E,] <
e~ $Tnxu) for each § € (0, 1), when Ty, — En € O(Ty k)
All the above together prove Lemma 9. O
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