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Abstract
We analyze the convergence of the price of anarchy (PoA) of Nash equilibria in
atomic congestion games with growing total demand T . When the cost functions are
polynomials of the same degree, we obtain explicit rates for a rapid convergence of the
PoAs of pure and mixed Nash equilibria to 1 in terms of 1/T and dmax/T , where dmax

is themaximum demand controlled by an individual. Similar convergence results carry
over to the random inefficiency of the randomflow induced by an arbitrarymixedNash
equilibrium. For arbitrary polynomial cost functions, we derive a related convergence
rate for the PoA of pure Nash equilibria (if they exist) when the demands fulfill certain
regularity conditions and dmax is bounded as T → ∞. In this general case, also the
PoA of mixed Nash equilibria converges to 1 as T → ∞ when dmax is bounded.
Our results constitute the first convergence analysis for the PoA in atomic congestion
games and show that selfish behavior is well justified when the total demand is large.
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1 Introduction

The price of anarchy (PoA, [35]) is an important notion in algorithmic game theory
([32]) and has been investigated intensively during the last two decades in congestion
games ([15, 37]), starting with the pioneering paper of Roughgarden and Tardos [42]
on the PoA of pure Nash equilibria in non-atomic congestion games ([15]) with affine
linear cost functions. Much of this work has then been devoted to worst-case upper
bounds of the PoA for different types of cost functions τa(·), and the influence of the
network topology on these upper bounds, see, e.g., [32] for an overview.

Much less attention has been paid to the evolution of the PoA as a function of the
growing total demand, although this is quite important for traffic and transportation
networks in which the demands tend to be high. Only recently, it has been shown
empirically ([29, 34, 48]) and analytically ([8–10, 47]) for non-atomic congestion
games that the PoA of pure Nash equilibria actually converges to 1 with growing total
demand for a large class of cost functions that includes all polynomials.

Non-atomic congestion games have the special feature that every individual user
(player) is infinitesimal and controls a negligible amount of demand, and so has a negli-
gible influence on the performance of the whole game. This can be stated alternatively
as that the demands are arbitrarily splittable. Prototypical non-atomic congestion
games are traffic networks in which each (travel) origin-destination pair has an arbi-
trarily splittable traffic demand that need to be distributed on paths connecting the
origin and the destination. A direct consequence is the essential uniqueness ([42]) of
pure Nash equilibria in non-atomic congestion games, which plays a pivotal role in
the convergence analysis of the PoA of pure Nash equilibria by Colini-Baldeschi et al.
[8–10] and Wu et al. [47].

In general, demands may not be arbitrarily splittable or even may not be split at
all. This is captured by atomic congestion games ([37]). A prototypical such game is
a transportation network in which each user wants to transport a certain unsplittable
demand of a good along a single path of that network. In this case, the congestion
game is finite ([30]), and each individual user is no longer infinitesimal and has a
non-negligible influence on the whole game, and thus in particular on the existence
and other properties of Nash equilibria. When the game is unweighted, i.e., users have
equal demands, then pure Nash equilibria exist, but may have different cost and so are
not essentially unique, see, e.g., [37, 44]. When the game is weighted, i.e., users have
unequal demands, then pure Nash equilibria need not exist and one has to resort to
mixed Nash equilibria except for particular cases, see, e.g., [16–18, 30].

This raises an important question if and howmuch thenon-negligible roleof individ-
uals in atomic congestion games may influence the total (transportation) inefficiency
for growing total (transportation) demand compared to their negligible role in non-
atomic congestion games. This asks for a convergence analysis of the PoAof both, pure
and mixed, Nash equilibria for growing total demands in atomic congestion games.
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1.1 Our contribution

To address this question, we study the evolution of the PoA for growing total demand T
in atomic congestion games with unsplittable demands and polynomial cost functions.
While our results hold for arbitrary atomic congestion games, we will mostly use the
notation of transportation networks, since they are more intuitive.

Our analysis covers the PoAs for both, pure and mixed, Nash equilibria. When
pure Nash equilibria exist, then we call the ratio of their worst-case cost over the
social optimum cost the atomic PoA, see (2.8). This distinguishes it from the PoA of
pure Nash equilibria in non-atomic congestion games, which is called the non-atomic
PoA in this paper, see (2.9). Since mixed Nash equilibria are probability distributions,
they induce random flows on the transportation network. We then call the ratio of the
worst-case expected cost of these randomflows induced bymixedNash equilibria over
the social optimum cost the mixed PoA, see (2.10), and call the ratio of the random
cost of the random flow induced by a specific mixed Nash equilibrium over the social
optimum cost the random PoA of that mixed Nash equilibrium, see (2.11).

The atomic PoA measures the inefficiency of selfish deterministic choices, while
the mixed and random PoAs quantify the inefficiency of selfish random choices in
expectation and as a stochastic variable, respectively. They are thus different. In par-
ticular, the random PoA is a random variable, and the atomic PoA is bounded by the
mixed PoA, since pure Nash equilibria in atomic congestion games can be considered
as particular mixed Nash equilibria that result in deterministic choices of users.

We first derive upper bounds on the atomic,mixed and randomPoAs for polynomial
cost functions of the same degree, which cover BPR cost functions ([5]) that are of the
form ξa · xβ + γa . In this analysis, we apply the technique of scaling that was used
implicitly in Colini-Baldeschi et al. [10] and formalized and extended inWu et al. [47]
and Wu and Möhring [46].

Using this technique, we show that the atomic PoA is 1+O( 1
T )+O(

√
dmax
T )when

pure Nash equilibria exist, see Theorem 1. Here, T is the total demand and dmax is the
maximum demand over all individuals (simply, maximum individual demand), which
reflects to a certain extent the possible influence of an individual. Moreover, we show

that the mixed PoA is 1 + O( 1
T ) + O(

d1/6max
T 1/6 ), see Theorem 2b. These upper bounds

converge quickly to 1 as T → ∞ and dmax
T → 0. We also explore the probability

distribution of the random PoA of an arbitrary mixed Nash equilibrium and obtain
with Chebyshev’s inequalities in Theorem 2a that the random PoA is bounded from

above by 1+O( 1
T )+O(

d1/6max
T 1/6 )with an overwhelming probability of 1−O(

d1/3max
T 1/3 ). This

shows that an arbitrary mixed Nash equilibrium is also efficient as a random variable.
We further illustrate that both conditions T → ∞ and dmax

T → 0 are necessary for
these convergence results, see Examples 2 and 3.

We then investigate conditions for the convergence of the atomic PoA and themixed
PoA for arbitrary polynomial cost functions. We demonstrate first that the conditions
T → ∞ and dmax

T → 0 are no longer sufficient for the convergence of the atomic
PoA to 1, since the cost functions may have different degrees and the (transportation)
origin-destination pairs may have asynchronous demand growth rates. This may result
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in significantly discrepant influences of different origin-destination pairs on the limits
of the PoAs, see Example 4 or Wu et al. [47].

To capture these discrepant influences, we employ the asymptotic decomposition
technique introduced by Wu et al. [47]. We show for arbitrary polynomial cost func-
tions that both, the mixed PoA and the worst-case ratio of the total cost of the expected
flow of a mixed Nash equilibrium over the social optimum cost, converge to 1 as
T → ∞, when the maximum individual demand dmax is bounded from above by a
constant independent of the growth of T , see Theorem 3a–b. Note that the total cost
of the expected flow of a mixed Nash equilibrium need not coincide with the expected
cost of the random flow of that mixed Nash equilibrium, which is used in the definition
of the mixed PoA, and that the condition “dmax is bounded from above” is necessary
for these convergence results, see Example 4. To obtain these results, we have coupled
the asymptotic decomposition technique with Chernorff-Hoeffding inequalities, see
Appendices A.6–A.7.

Hence, the atomic PoA converges also to 1 in this general case when pure Nash
equilibria exist. To analyze its convergence speed, we show, with a result by Colini-
Baldeschi et al. [10] for the convergence rate of the non-atomic PoA and with a result
by Wu and Möhring [46] for the sensitivity of the non-atomic PoA, that the atomic

PoA (if pure Nash equilibria exist) converges to 1 at a rate of O(T− 1
2·βmax ), when

βmax = maxa∈A βa > 0 is the maximum of the degrees βa of the polynomial cost
functions τa , the maximum individual demand dmax is bounded from above, and the
ratio dk

T of the total demand dk of each origin-destination pair k over T is bounded
away from 0, see Theorem 3c.

In summary, this paper presents for atomic congestion games with growing total
demands the first convergence analysis of the atomic and mixed PoAs, and the first
probabilistic analysis of the randomPoA.While individual users have a non-negligible
role in atomic congestion games, our convergence results show that this does not
significantly increase the total transportation inefficiency for a large total demand
T when the maximum individual demand dmax is very small compared to T . Our
convergence results imply, in addition to Colini-Baldeschi et al. [8–10] and Wu et al.
[47], that pure Nash equilibria, mixed Nash equilibria and social optima of an atomic
congestion game with a large total demand are almost equally efficient, and even as
efficient as the social optima of the corresponding non-atomic congestion games, see
(A.28)–(A.31) in Appendix A.6.

Thus, both pure Nash equilibria and mixed Nash equilibria in congestion games
with a large total demand need not be bad. The selfish choice of strategies leads then to
an almost optimal behavior, regardless whether users employ mixed or pure strategies,
and whether their transportation demands are splittable or not. Users may then restrict
to pure strategies and need not consider mixed strategies.

Although that need not lead to an equilibrium, it simplifies their decisions, and
benefits both their own cost and the total cost of the whole transportation network.
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1.2 Related work

1.2.1 Existence of equilibria

The existence of equilibria in atomic congestion games was obtained in, e.g., [16–18,
37] and others. Rosenthal [37] showed that an arbitrary unweighted atomic congestion
game has a pureNash equilibrium. Fotakis et al. [16] showed that an arbitraryweighted
atomic congestion game Γ with affine linear cost functions is a potential game ([28])
and thus has a pure Nash equilibrium. Moreover, Harks et al. [18] proved that if C is a
class of cost functions such that every weighted atomic congestion game Γ with cost
functions in C is a potential game, then C contains only affine linear functions. The
existence of pure Nash equilibria in weighted atomic congestion games was further
studied by Harks and Klimm [17]. Beyond these cases, we have to consider mixed
Nash equilibria in atomic congestion games, as Nash [30] has shown that every finite
game has a mixed Nash equilibrium.

1.2.2 Worst-case upper bounds on the price of anarchy

Koutsoupias and Papadimitriou [24] proposed to quantify the inefficiency of equilibria
in arbitrary congestion games from a worst-case perspective. This resulted in the
concept of the price of anarchy (PoA) that is usually defined as the ratio of the worst-
case cost of (pure or mixed) Nash equilibria over the social optimum cost, see [35].

A wave of research has been started with the pioneering paper of Roughgarden and
Tardos [42] on the PoA of pure Nash equilibria in non-atomic congestion games with
affine linear cost functions. Examples are Roughgarden [38–41], Roughgarden and
Tardos [42, 43], Christodoulou and Koutsoupias [7], Correa et al. [12, 13], Perakis
[36] and others. They investigated the worst-case upper bounds of the PoA of pure
Nash equilibria in both atomic and non-atomic congestion games for different types
of cost functions τa(·), and analyzed the influence of the network topology on these
bounds. For non-atomic congestion games, this upper bound is 4

3 for affine linear

cost functions ([42]), and Θ(
β
ln β

) for polynomial cost functions of degree at most
β ([43]). For unweighted atomic congestion games, Christodoulou and Koutsoupias
[7] showed that this upper bound is 5

2 for affine linear cost functions, and βΘ(β) for
polynomial cost functions of degree at most β. Hence, the non-atomic PoA is not
larger than the atomic PoA in general. Moreover, these upper bounds are independent
of the network topology, see, e.g., [39]. Roughgarden [39, 41] also developed a (λ, μ)-
smooth method by which one can obtain a tight and robust worst-case upper bound.
This method was then reproved by Correa et al. [13] from a geometric perspective.
Besides, Perakis [36] generalized the analysis to non-atomic congestion games with
non-separable and asymmetric cost maps.

1.2.3 Convergence of the price of anarchy

Recent papers have empirically studied the PoA of pure Nash equilibria in non-atomic
congestion games with BPR cost functions ([5]) of the same degree β > 0 and real
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traffic demands. Youn et al. [48] observed that the empirical PoA of pure Nash equi-
libria depends crucially on the total demand. Starting from 1, it grows with some
oscillations, and ultimately becomes 1 again as the total demand increases. A similar
observation was made by O’Hare et al. [34]. They even conjectured that the PoA of
pure Nash equilibria in non-atomic congestion games with BPR cost functions of the
same degree β > 0 converges to 1 at a rate of O

(
T−2·β) when the total demand T

becomes large. Monnot et al. [29] showed that traffic choices of commuting students
in Singapore are near-optimal and that the empirical PoA of pure Nash equilibria is
much smaller than known worst-case upper bounds. Similar observations have been
reported by Jahn et al. [23].

These observations have been recently confirmed by Colini-Baldeschi et al. [8–10]
andWu et al. [47]. Colini-Baldeschi et al. [8–10] were the first to theoretically analyze
the convergence of the PoA of pure Nash equilibria in non-atomic congestion games
with growing total demand.

Colini-Baldeschi et al. [8] showed that the PoA of pure Nash equilibria converges
to 1 as the total demand T → ∞ when the non-atomic congestion game has a single
origin-destination pair and regularly varying ([2]) cost functions. This convergence
result was then substantially extended by Colini-Baldeschi et al. [9] tomultiple origin-
destination pairs for both the case T → 0 and the case T → ∞, when the ratio of
the demand of each origin-destination pair over the total demand T remains a positive
constant as T → 0 or ∞. Colini-Baldeschi et al. [10] further extended these results to
the cases where the demands and the cost functions together fulfill certain tightness
and salience conditions that allow the ratios of demands to vary in a certain pattern as
T → 0 or∞.Moreover, Colini-Baldeschi et al. [10] illustrated by an example that the
PoA of pure Nash equilibria in non-atomic congestion games need not converge to 1
as T → ∞when the cost functions are not regularly varying. In addition, they showed
that the PoA of pure Nash equilibria in non-atomic congestion games with polynomial
cost functions converges to 1 at a rate of O( 1

T ) when the ratio of the demand of each
origin-destination pair over the total demand T remains a positive constant as T → 0
or ∞.

Wu et al. [47] generalized the work of Colini-Baldeschi et al. [8–10] for growing
total demand. They formalized the scaling technique used implicitly in Colini-
Baldeschi et al. [8–10], proposed a limit notion for a sequence of games with growing
total demand, and developed a general technical framework, called asymptotic decom-
position, for the convergence analysis of the PoA. With this framework, they showed
for non-atomic congestion games with arbitrary regularly varying cost functions that
the PoA of pure Nash equilibria converges to 1 as the total demand tends to∞ regard-
less of the growth pattern of the demands. In particular, they proved a convergence
rate of o(T−β) for BPR cost functions of degree β and illustrated by examples that
the conjecture proposed by O’Hare et al. [34] need not hold.

Wu and Möhring [46] extended the techniques of Wu et al. [47] to a sensitivity
analysis of the PoA. For an arbitrary non-atomic congestion game Γ with Lipschitz
continuous cost functions on [0, T ], they proved that the cost of an ε-approximate
equilibrium of Γ deviates at most by O(

√
ε) from that of a pure Nash equilibrium of

Γ , and that O(
√

ε) is a tight upper bound of this deviation. Moreover, they defined
a metric ||Γ1, Γ2|| for two arbitrary games in a set of non-atomic congestion games
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with the same combinatorial structure. That metric induces a topological space of
such games and permits to consider continuous real-valued maps and the limit of a
sequence of non-atomic congestion games. Wu and Möhring [46] used these notions
for a comprehensive analysis of the Hölder continuity of the PoA map of pure Nash
equilibria in that topological space. They showed that the PoA map is point-wise con-
tinuous, but neither Lipschitz continuous, nor uniformlyHölder continuous. However,
it is point-wise Hölder continuous with Hölder exponent 1

2 on a dense subspace, i.e.,
|ρnat (Γ1) − ρnat (Γ2)| ∈ O(

√||Γ1, Γ2||) for any two non-atomic congestion games
Γ1 and Γ2 of that subspace, where ρnat (Γi ) denotes the PoA value of pure Nash equi-
libria of the game Γi , i = 1, 2. This results in an approximate computation of the PoA
ρnat (·), meaning that one can approximate ρnat (Γ ) for irregular cost functions with
ρnat (Γ

′) for relatively simpler polynomial cost functions when the polynomial cost
functions of Γ ′ are sufficiently close to the irregular cost functions of Γ .

As a byproduct of the above Hölder continuity analysis, Wu and Möhring [46]
showed that the total cost difference between Nash equilibria of two non-atomic
congestion games Γ1 and Γ2 is in O(

√‖Γ1 − Γ2‖) when Γ1 and Γ2 have the same
Lipschitz continuous cost functions. Moreover, when the two non-atomic congestion
games Γ1 and Γ2 have the same demands but different Lipschitz continuous cost func-
tions, they proved a similar upper bound on the total cost difference between their Nash
equilibria. These results together with the convergence rate of Colini-Baldeschi et al.
[10] will help us to obtain an explicit convergence rate of the atomic PoA for polyno-
mial cost functions of different degres, see Theorem 3c and its proof in Appendix A.6.

Conditions implying the convergence ofmixedNash equilibria in atomic congestion
games to pure Nash equilibria in non-atomic congestion games have also been studied
in, e.g., [11, 19, 21, 22, 26], and others.

Among these papers, Cominetti et al. [11] is the closest to our work. They showed
that mixed Nash equilibria of an atomic congestion game with strictly increasing
cost functions converge in distribution to pure Nash equilibria of a limit non-atomic
congestion game, when the total demand T converges to a constant T0 ∈ (0,∞), the
maximum individual demand dmax converges to 0, and the number of users converges
to ∞. Moreover, they showed that this convergence happens at a rate of O(

√
dmax )

when the cost functions have strictly positive first-order derivatives. Consequently,
the PoA of mixed Nash equilibria (i.e., the mixed PoA) in such an atomic congestion
game converges also to that of pure Nash equilibria in a “limit non-atomic congestion
game” under these conditions.

The results of Cominetti et al. [11] are inspiring and seminal. They confirm the
intuition that atomic congestion games can be thought of as non-atomic congestion
games when dmax is tiny, the number of users is huge, and T is moderate, i.e., neither
too small nor too large. Our convergence result for the mixed PoA actually generalizes
those of Cominetti et al. [11] to the case that T → ∞. This is a non-trivial generaliza-
tion, since it does not require the existence of the limit non-atomic congestion game,
which is a premise in the analysis of Cominetti et al. [11].

Our work also extends the convergence results for the PoA of pure Nash equilibria
in non-atomic congestion games that were obtained recently by Colini-Baldeschi et al.
[8–10] and Wu et al. [47] to convergence results for pure and mixed Nash equilibria
in atomic congestion games. This implies that selfishness is also good in “atomic
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congestion”. In particular, our results show for arbitrary congestion games with a
large total demand that selfish choice of users is almost as efficient as social optima,
regardless whether demands are splittable or not, and whether users use pure strategies
or mixed strategies.

1.3 Outline of the paper

The paper is organized as follows. We develop our results for arbitrary atomic conges-
tion games. These and their relevant concepts are introduced in Sect. 2. We analyze
the convergence of the PoAs for atomic congestion games in Sect. 3. Sect. 3.1 then
presents our convergence results for polynomial cost functions with the same degree.
Subsequently, Sect. 3.2 presents our convergence results for arbitrary polynomial cost
functions. We conclude with a short summary and discussion in Sect. 4. To improve
readability, all proofs have been moved to an Appendix.

2 Model and preliminaries

Our study involves both atomic and non-atomic congestion games. To facilitate the dis-
cussion, we introduce a unified notation in Sect. 2.1, and distinguish games implicitly
by properties of their strategy profiles, see Sect. 2.2.

2.1 Atomic and non-atomic congestion games

We define an arbitrary atomic congestion game with the notation of transportation
games (see, e.g., [32, 37]), since this is more intuitive and closer to practice. An atomic
congestion game Γ is thus associated with a transportation network G = (V , A), and
represented symbolically by a tuple (K,P, τ,U , d)with components defined in (G1)–
(G5).

– (G1) K is a finite non-empty set of (transportation) origin-destination (O/D) pairs
(ok, tk) ∈ V × V with ok �= tk . We will denote an O/D pair (ok, tk) simply by its
index k when this is not ambiguous.

– (G2) P = ∪k∈KPk with each Pk ⊆ 2A \ {∅} denotes the non-empty set of all
paths from the origin ok to the destination tk . Here, a path is a non-empty subset
of the arc set A. Then Pk ∩ Pk′ = ∅ for k, k′ ∈ K with k �= k′.

– (G3) τ = (τa)a∈A is a cost function vector, s.t. τa : [0,∞) → [0,∞) is non-
negative, continuous and non-decreasing and denotes the flow-dependent latency
or cost of arc a ∈ A. We assume that no arc can be used for free, i.e., τa(x) > 0
for all pairs (a, x) ∈ A × (0,∞).

– (G4) Associated with each O/D pair k ∈ K is a finite non-empty set Uk of agents
that are individual users or players. Then U = ∪k∈KUk is the agent set of Γ . We
assume that Uk ∩ Uk′ = ∅ for all k, k′ ∈ K with k �= k′.

– (G5)d = (dk,i )k∈K,i∈Uk is ademand vector,wheredk,i > 0 denotes anunsplittable
demand to be transported by agent i ∈ Uk . So Γ has the total (transportation)
demand T = T (U , d) := ∑

k∈K dk, where dk := ∑
i∈Uk

dk,i is the demand of
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O/D pair k ∈ K. We call dmax := maxi∈Uk ,k∈K dk,i the maximum individual
demand of Γ . Note that Γ is unweighted if dk,i ≡ υ for all k ∈ K and all i ∈ Uk,

for a constant υ > 0. Otherwise, Γ is weighted.

To unify notation, we view a non-atomic congestion game as a variant of an atomic
congestion game, in which each agent i ∈ Uk is no longer an individual user, but
a population of infinitesimal users, who together have the demand dk,i . Hence, the
demands dk,i can be split arbitrarily over paths in Pk when Γ is non-atomic. This
differs from an atomic congestion game, in which the demands dk,i cannot be split.
With a little abuse of notation, we denote a non-atomic congestion game again by the
same tupleΓ = (K,P, τ,U , d). Wewill simply call a tupleΓ a congestion game, and
distinguish atomic and non-atomic congestion games by their atomic and non-atomic
profiles in Sect. 2.2.

The tuple (K,P) together with the transportation network G constitutes the com-
binatorial structure of Γ . For ease of notation, we may fix an arbitrary network G
and an arbitrary tuple (K,P), and denote Γ simply by (τ,U , d). Viewed as a general
congestion game, the arcs a ∈ A and the paths p ∈ P correspond to resources and
(pure) strategies, see, e.g., [15] and Rosenthal [37]. Although we use the nomenclature
of transportation networks, the analysis and results below are independent of this view
and carry over to arbitrary congestion games.

2.2 Atomic, non-atomic andmixed profiles

Users distribute their demands simultaneously and independently on paths in P . This
results in a strategy profile or simply profile Π = (Πi )i∈U = (Πi )i∈Uk ,k∈K =
(Πi,p)i∈Uk ,p∈Pk ,k∈K satisfying the condition (2.1),

∑
p′∈Pk

Πi,p′ = 1 and Πi,p ≥ 0 ∀i ∈ Uk ∀p ∈ Pk ∀k ∈ K. (2.1)

We put Πi,p = 0 when i ∈ Uk and p ∈ Pk′ for some k, k′ ∈ K with k �= k′.
This extends a profile Π naturally to a vector (Πi,p)i∈U ,p∈P with components Πi,p

satisfying condition (2.1).
A profile Π is called atomic if Π is binary. In this case, Πi,p ∈ {0, 1}, i ∈ Uk, p ∈

Pk, k ∈ K, indicates whether path p is used by i, i.e.,Πi,p = 1, or not, i.e.,Πi,p = 0.
Condition (2.1) then means that each i ∈ Uk satisfies his demand dk,i by a single path
p ∈ Pk in an atomic profile Π . So a congestion game Γ with only atomic profiles is
indeed an atomic congestion game whose demands dk,i cannot be split.

In a non-atomic congestion game, each agent i ∈ Uk is a population of infinitesimal
users and can split the demand dk,i arbitrarily, i.e., agents i ∈ Uk can send their
demands dk,i along several paths p ∈ Pk . This is captured by non-atomic profiles.
The components Πi,p are then fractions of the demands dk,i deposited by agents
i ∈ Uk on paths p ∈ Pk , i.e., agents i totally allocate dk,i · Πi,p units of demands to
paths p. Hence, these Πi,p can take arbitrary values in [0, 1] when Π is non-atomic.
Condition (2.1) is then a feasibility constraint for non-atomic profiles that ensures that
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all demands are satisfied. Clearly, a congestion game is non-atomic when it has only
non-atomic profiles.

In a mixed profile Π, each Πi = (Πi,p)p∈Pk is a probability distribution over the
set Pk for all i ∈ Uk and all k ∈ K. Then the decisions are random, and every
agent i ∈ Uk delivers his demand dk,i on a single random path pk,i (Πi ) drawn
independently from Πi = (Πi,p)p∈Pk , where Πi,p ∈ [0, 1] is the probability of
the random event “pk,i (Πi ) = p”. Note that we consider mixed profiles only for
atomic congestion games, although we use a unified notation for both atomic and
non-atomic congestion games. Note also that an atomic profile is a particular mixed
profile with {0, 1}-probabilities.

2.3 Multi-commodity flows and their cost

Each profileΠ induces amulti-commodity flow f = ( f p)p∈P = ( f p)p∈Pk ,k∈K.When
Π is atomic or non-atomic, then f is deterministic with flow value f p :=∑i∈Uk

dk,i ·
Πi,p for all p ∈ Pk and all k ∈ K.We then call f atomic and non-atomic, respectively.
There are only finitely many atomic flows, as the number |U | =∑k∈K |Uk | of agents
is finite and the demands dk,i cannot be split in an atomic flow.

When Π is mixed, then the flow f = ( f p)p∈P is a random vector in which each
component f p is a weighted sum

∑
i∈Uk

dk,i ·1{p}
(
pk,i (Πi )

)
of mutually independent

Bernoulli random variables 1{p}
(
pk,i (Πi )

)
, where pk,i (Πi ) is the random path draw

from the distribution Πi by agent i of O/D pair k, and 1{p}(·) is the indicator function
of the membership of the singleton {p}. Then

EΠ( f p) =
∑
i∈Uk

dk,i · Πi,p,

VARΠ( f p) =
∑
i∈Uk

d2k,i · Πi,p · (1 − Πi,p)
(2.2)

for all p ∈ Pk and all k ∈ K. Here, we used that agents choose their paths mutually
independently, that EΠ [1{p}(pk,i (Πi ))] = Πi,p andVARΠ [1{p}(pk,i (Πi ))] = Πi,p ·
(1 − Πi,p), and that every agent i ∈ Uk transports his demand dk,i entirely on the
single random path pk,i (Πi ) ∈ Pk . We will write EΠ( f ) := (EΠ( f p)

)
p∈P , and call

EΠ( f ) and f = ( f p)p∈P the expected flow and the random flow of the mixed profile
Π, respectively.

The expected flow EΠ( f ) is a non-atomic flow, and an arbitrary non-atomic flow
is the expected flow of a mixed profile. Moreover, an atomic flow f is a particular
random flow, in which the random flow values f p have a variance of zero. Note that
each state of a random flow is an atomic flow, and the finite set of all atomic flows is
the state space of random flows, i.e.,

∑
f ′ is an atomic flow PΠ [ f = f ′] = 1 for a mixed

profile Π with random flow f .
An arbitrary flow f induces an arc flow ( fa)a∈A in which component fa :=∑
p∈P :a∈p f p is the flow value on arc a ∈ A. When Π is atomic or non-atomic,

then fa is again deterministic for all a ∈ A. When Π is mixed, then each fa is
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random, and has the expectation and variance in (2.3),

EΠ( fa) =
∑
k∈K

∑
p∈Pk :a∈p

EΠ( f p) =
∑
k∈K

∑
i∈Uk

dk,i ·
∑

p∈Pk :a∈p

Πi,p :=
∑
k∈K

∑
i∈Uk

dk,i · Πi,a,

VARΠ( fa) =
∑
k∈K

∑
i∈Uk

d2k,i · Πi,a · (1 − Πi,a).

(2.3)

Here, Πi,a := ∑
p∈Pk :a∈p Πi,p ∈ [0, 1] is the probability that agent i of O/D pair

k ∈ K uses arc a ∈ A. Then (2.3) follows since agents use an arc a ∈ A mutually
independently, and only if the arc a belongs to one of their random paths pk,i (Πi ).

For a non-atomic flow,we need only to specify theO/D pair demand vector (dk)k∈K
with dk = ∑i∈Uk

dk,i , since the demands dk,i are arbitrarily splittable, and two con-
gestion games have the same set of non-atomic flows if and only if they have the same
(dk)k∈K. Nonetheless, the demand vector d = (dk,i )k∈K,i∈Uk need to be specified for
atomic and random flows, as the demands dk,i can then be not split.

Given a flow f , an arc a ∈ A has the cost τa( fa), and a path p ∈ P has the cost
τp( f ) := ∑a∈p τa( fa). When f is atomic or non-atomic, then these cost values are
deterministic. Every i ∈ Uk then has the deterministic cost

Ck,i ( f , Γ ) = Ck,i ( f , τ,U , d) :=
∑
p∈Pk

dk,i · Πi,p · τp( f ),

and all agents together have the (deterministic) total cost

C( f , Γ ) :=
∑
k∈K

∑
i∈Uk

Ck,i ( f , τ,U , d) =
∑
p∈P

f p · τp( f ) =
∑
a∈A

fa · τa( fa).

Note that the cost Ck,i ( f , Γ ) can be expressed equivalently as Ck,i ( f , Γ ) = dk,i ·
τpk,i ( f )( f ) when f is atomic and pk,i ( f ) ∈ Pk is the single path used by agent i in f .

The cost values τa( fa) and τp( f ) are randomwhen f is the random flow of amixed
profile Π. Then each i ∈ Uk has the random cost

Ck,i ( f , Γ ) := dk,i · τpk,i (Πi )( f ) =
∑
p∈Pk

dk,i · 1{p}(pk,i (Πi )) · τp( f ),

where pk,i (Πi ) is again the random path of agent i ∈ Uk . The random total cost is
then C( f , Γ ) := ∑

k∈K
∑

i∈Uk
Ck,i ( f , Γ ). Consequently, all agents together have

the expected total cost
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EΠ [C( f , Γ )]=
∑
k∈K

∑
i∈Uk

EΠ [Ck,i ( f , Γ )]

=
∑
a∈A

EΠ

[
fa · τa( fa)

]

=
∑
p∈P

EΠ

[
f p · τp( f )

]
.

The expected total cost EΠ [C( f , Γ )] of a random flow f need not equal the total cost
C(EΠ( f ), Γ ) of its expected flow EΠ( f ). But they coincide when Π is atomic.

We denote atomic, non-atomic and random flows by fat = ( fat,p)p∈P , fnat =
( fnat,p)p∈P and fran = ( fran,p)p∈P , respectively, and will not refer explicitly to the
corresponding profiles since they are clear from the context.

2.4 Social optima and equilibria

Consider an arbitrary congestion game Γ . An atomic flow f ∗
at is an atomic system

optimum (atomic SO), ifC( f ∗
at , Γ ) ≤ C( fat , Γ ) for every atomic flow fat . Similarly,

a non-atomic flow f ∗
nat is a non-atomic SO if C( f ∗

nat , Γ ) ≤ C( fnat , Γ ) for every
non-atomic flow fnat , and a random flow f ∗

ran is a mixed SO if EΠ∗ [C( f ∗
ran, Γ )] ≤

EΠ [C( fran, Γ )] for each random flow fran, where Π∗ and Π are the mixed profiles
of f ∗

ran and fran, respectively.
The expected total cost of an arbitrary mixed SO flow coincides with that of an

arbitrary atomic SO flow, since the set of atomic flows is the state space of random
flows and every atomic flow is a random flow with zero variance. Moreover, the total
cost of an atomic SO flow is not smaller than that of a non-atomic SO flow, since every
atomic SO flow is also a non-atomic flow. We summarize this in Lemma 1.

Lemma 1 Consider an arbitrary congestion game Γ with a mixed SO flow f ∗
ran of

a mixed profile Π∗, an atomic SO flow f ∗
at , and a non-atomic SO flow f ∗

nat . Then
EΠ∗ [C( f ∗

ran, Γ )] = C( f ∗
at , Γ ) ≥ C( f ∗

nat , Γ ).

Similar to the different types of SO flows in Lemma 1, congestion games admit
also Nash equilibrium flows of different types. In each of them an individual does
not benefit from unilaterally changing his strategy. Hence, a Nash equilibrium flow is
essentially a steady-state of the network that is stable under unilateral selfish behavior.
Since we consider three types of flows, i.e., atomic, non-atomic and random flows, we
define their Nash equilibria separately.

An atomic flow f̃at = ( f̃at,p)p∈P is an atomic (pure) Nash equilibrium (NE), if
Ck,i ( f̃at , Γ ) = dk,i · τpk,i ( f̃at )

( f̃at ) ≤ Ck,i ( f ′
at , Γ ) = dk,i · τp′( f ′

at ) for all k ∈ K,

all i ∈ Uk and all p′ ∈ Pk, where pk,i ( f̃at ) ∈ Pk is the path used by agent i ∈ Uk

in atomic flow f̃at , and f ′
at = ( f ′

at,p)p∈P is an atomic flow with components f ′
at,p
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defined in (2.4).

f ′
at,p =

⎧
⎪⎨
⎪⎩

f̃at,p if p /∈ {pk,i ( f̃at ), p′},
f̃at,p − dk,i if p = pk,i ( f̃at ),

f̃at,p + dk,i if p = p′,
∀p ∈ P. (2.4)

Clearly, f ′
at is the atomic flow obtained by only moving i from pk,i ( f̃at ) to p′, and

so differs slightly from f̃at when dmax is tiny. Rosenthal [37] has shown the existence
of atomic NE flows for unweighted atomic congestion games. Weighted atomic con-
gestion games usually do not have atomic NE flows, except for particular cases, e.g.,
affine linear cost functions, see Harks et al. [18] and Harks and Klimm [17].

Since the cost functions τa(·) are non-decreasing, non-negative and continuous, and
since each agent in a non-atomic flow is a population of infinitesimal users, non-atomic
(pure) NE are identical to Wardrop equilibria (WE, [45]), see, e.g., [1, 42]. Thus a
non-atomic flow f̃nat = ( f̃nat,p)p∈P is a non-atomic NE if and only if it fulfills
Wardrop’s first principle, i.e., τp

(
f̃nat
) ≤ τp′

(
f̃nat
)
for any two paths p, p′ ∈ Pk

with f̃nat,p > 0 for each k ∈ K. Here, we note that the cost of each path does
not change when an infinitesimal user unilaterally changes his path. Hence a path
p ∈ Pk is used, i.e., f̃nat,p > 0, in a non-atomic NE flow f̃nat only if τp

(
f̃nat
) =

minp′∈Pk τp′
(
f̃nat
)
. Dafermos [14] has shown that non-atomic NE flows always exist,

and can be characterized equivalently by the variational inequality (2.5),

∑
a∈A

τa
(
f̃nat,a

) · ( fnat,a − f̃nat,a
) ≥ 0, (2.5)

for all non-atomic flows fnat . Moreover, Roughgarden and Tardos [42] have shown
that non-atomic NE flows are essentially unique, i.e., τa( f̃nat,a) = τa( f̃ ′

nat,a) for each

a ∈ A for two arbitrary non-atomic NE flows f̃nat and f̃ ′
nat . Clearly, atomic and

non-atomic NE flows differ. Nonetheless, both of them are pure Nash equilibria.
Mixed NE flows directly generalize atomic NE flows by considering random flows

of mixed profiles. Formally, a random flow f̃ran is a mixed NE flow if, for each i ∈ Uk

and each k ∈ K,

EΠ̃ [Ck,i ( f̃ran,Γ )]=EΠ̃−i

[
dk,i ·τp( f̃ran|i,p)

]≤EΠ̃−i

[
dk,i ·τp′( f̃ran|i,p′)

]
(2.6)

when p, p′ ∈ Pk are two arbitrary paths with Π̃i,p > 0, Π̃ = (Π̃ j ) j∈U is the mixed
profile of f̃ran, and Π̃−i = (Π̃ j ) j∈U\{i} is the mixed profile of all agents other than i in
Π̃, see also Cominetti et al. [11]. Herein, f̃ran|i,p = ( f̃ran,p′′|i,p)p′′∈P is the random
flow in which agent i uses the fixed path p and the others still follow the mixed profile
Π̃−i , i.e.,
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f̃ran,p′′|i,p =

⎧
⎪⎨
⎪⎩

f̃ran,p′′ if p′′ ∈ ∪k′′∈K\{k}Pk′′ ,

dk,i +∑ j∈Uk\{i} dk, j · 1{p′′}(pk, j (Π̃ j )) if p′′ = p,∑
j∈Uk\{i} dk, j · 1{p′′}(pk, j (Π̃ j )) if p′′ ∈ Pk \ {p},

for all paths p′′ ∈ ∪k′′∈KPk′′ . Inequality (2.6) then means that each support of the
mixed strategy Π̃i of an agent i ∈ U is the best response to the mixed profile Π̃−i

of his opponents when f̃ is a mixed NE flow with mixed profile Π̃ . Hence, no agent
can reduce his (expected) cost by unilaterally changing his mixed strategy when the
randomflow is amixedNE. Since atomic congestion games equippedwith only atomic
profiles are finite games, mixed NE flows always exist, see [30]. Note that atomic NE
flows are mixed NE flows with zero variance, but mixed NE flows need not be atomic
NE flows, see, e.g., [32].

Remark 1 (The mixed Wardrop equilibria) Note that one may consider also ran-
dom flows fran in which all paths with positive expected flow values have minimum
expected cost, i.e.,

EΠ [τp( fran)] ≤ EΠ [τp′( fran)] (2.7)

for two arbitrary paths p, p′ ∈ Pk with EΠ( fran,p) > 0 for each k ∈ K, where Π

is the mixed profile of fran . Such random flows then generalize WE flows of non-
atomic congestion games in atomic congestion games. We thus call them mixed WE
flows. Using Brouwer’s fixed point theorem ([3]) and an argument similar to that in
Dafermos [14] for the existence of WE flows in non-atomic congestion games, we
can show easily that mixed WE flows always exist in atomic congestion games, see
Lemma 7 in Appendix A.1. The convergence results presented in this paper carry also
over to the inefficiency of mixed WE flows. In fact, we can even view mixed NE
flows as mixed WE flows in the convergence analysis of the PoA of mixed NE, since
mixed NE flows approximate mixedWE flows when dmax

T is tiny, see, e.g., (2.6)–(2.7),
(A.11) in Appendix A.5, and Appendix A.6. Nonetheless, we will not go deeper into
the discussion of mixed WE flows, so as to save space.

Example 1 Consider the congestion game Γ with one O/D pair (o, t) (i.e., K = {1})
and two parallel paths (arcs) shown in Fig. 1. We label the upper and lower arcs as
u and , respectively. Γ has cost functions τu(x) = x2 and τ(x) ≡ 2, and two
agents with O/D pair (o, t) and demand 2 each. Then Γ has a unique atomic NE flow
f̃at = ( f̃at,u, f̃at,) = (0, 4), since an agent using the upper arc u has a cost of at
least 4 > τ(x) ≡ 2 and can always benefit by moving to the lower arc . Moreover,
Γ has the unique non-atomic NE flow f̃nat = (

√
2, 4 − √

2), since demands can be
arbitrarily split in a non-atomic flow, and a non-atomic NE flow fulfills Wardrop’s first
principle. So the sets of atomic and non-atomic NE flows of Γ do not overlap.

Clearly, f̃at is also the unique mixed NE flow, since the expected cost of the upper
arc u is always larger than the constant cost of the lower arc  when either of the two
agents uses the upper arc. Hence, neither the set of mixed NE flows nor the set of their
expectations need to intersect the set of non-atomic NE flows. Moreover, by a little
calculation, one can also see that neither the set of mixedWE flows (Remark 1) nor the
set of their expectations intersects the sets of atomic and non-atomic NE flows in this
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Fig. 1 An example of atomic,
non-atomic, and mixed NE flows

o t

x2

2

Example. This means that these equilibrium notions are mutually different, although
atomic and mixed NE flows coincide in this Example.

2.5 The price of anarchy

Since we consider non-atomic, atomic and mixed NE flows, we define four PoAs
in (2.8)–(2.11), in which f̃nat , f ∗

nat and f ∗
at are an arbitrary non-atomic NE flow, an

arbitrary non-atomic SO flow and an arbitrary atomic SO flow, respectively. We call
ρat (Γ ) the atomic PoA, ρnat (Γ ) the non-atomic PoA, ρmix (Γ ) the mixed PoA, and
ρ( f̃ran, Γ ) the random PoA of the mixed NE flow f̃ran . Here, we recall that non-
atomic NE flows are essentially unique.

ρat (Γ ) :=max

{
C( f̃at , Γ )

C( f ∗
at , Γ )

: f̃at is an atomic NE flow of Γ

}
(2.8)

ρnat (Γ ) := C( f̃nat , Γ )

C( f ∗
nat , Γ )

(2.9)

ρmix (Γ ) :=max

{
EΠ̃ [C( f̃ran, Γ )]
EΠ∗ [C( f ∗

ran, Γ )] : f̃ran, f ∗
ran are mixed NE and SO flows

}

= max

{
EΠ̃ [C( f̃ran, Γ )]

C( f ∗
at , Γ )

: f̃ran is a mixed NE flow of Γ

}
(2.10)

ρ( f̃ran, Γ ) := C( f̃ran, Γ )

C( f ∗
at , Γ )

(2.11)

Note that ρ( f̃ran, Γ ) is a random variable and thus differs from the deterministic
values ρat (Γ ), ρnat (Γ ) and ρmix (Γ ). Moreover, ρnat (Γ ) differs from ρat (Γ ) and
ρmix (Γ ), see Example 1, in which ρnat (Γ ) = 18

18−√
6

> ρat (Γ ) = ρmix (Γ ) = 1.

Although ρat (Γ ) and ρmix (Γ ) coincide in Example 1, they differ in general, and
ρmix (Γ ) ≥ ρat (Γ ). In particular, neither ρnat (Γ ) ≥ ρat (Γ ) nor ρnat (Γ ) ≥ ρmix (Γ )

holds in general, see, e.g., Christodoulou and Koutsoupias [7]. Thus the known con-
vergence results of the non-atomic PoA in Colini-Baldeschi et al. [8–10] andWu et al.
[47] do not naturally carry over to random, atomic and mixed PoAs.

Due to the “no free arc” assumption in (G3), all PoAs are different from 0
0 , and

take values in [1,∞). This follows from Lemma 1, and the fact that the non-atomic
SO cost is strictly positive, see [46].
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3 Convergence results of the PoAs in atomic congestion games

We now analyze the convergence of the PoAs for atomic congestion games with
polynomial cost functions, i.e., all τa(·) have the form

τa(x) =
βa∑
l=0

ηa,l · xβa−l , ∀x ∈ [0,∞), (3.1)

where βa ≥ 0 is an integer degree, and ηa,l , l = 0, . . . , βa, a ∈ A, are the coefficients.
Since all τa(·) are nondecreasing and no arc can be used for free, see (G3), all leading
coefficients ηa,0, a ∈ A, are strictly positive. We assume, w.l.o.g., that all other
coefficients ηa,l are also non-negative. This will simplify our analysis. Note that this
is not restrictive, and our results carry over to arbitrary polynomial cost functions. We
will come back to this later in Sects. 3.1.1, 3.1.2 and 3.2, respectively.

3.1 Convergence results for polynomial cost functions of the same degree

We consider first polynomial cost functions τa(·) of the same degree βa ≡ β ≥ 0,
i.e., they have the form (3.2)

τa(x) =
β∑

l=0

ηa,l · xβ−l ∀x ≥ 0 ∀a ∈ A. (3.2)

This covers BPR cost functions, which are of the simpler form ηa,0 · xβ + ηa,β and
frequently used in urban traffic to model travel latency, see [5].

With these cost functions, the total cost of a non-atomic SO flow is at least
T β+1·η0,min

|P |β+1 > 0 when T > 0, where η0,min := mina∈A ηa,0 > 0, see [46]. Note that

there is at least one path with a flow value of at least T
|P | in an arbitrary non-atomic

SO flow. Note also, that x · τa(x) ≥ η0,min · xβ+1 for all a ∈ A and all x ≥ 0.

3.1.1 An upper bound for the atomic PoA

Theorem 1 presents an upper bound for the atomic PoA in congestion games with
polynomial cost functions of the same degree, see (3.2). Here, ηmax := max{ηa,l :
a ∈ A, l = 0, . . . , β} ≥ η0,min > 0, and κ := β · ηmax · (1 +∑β

l=1
1
T l

)
> 0, which

is a Lipschitz bound for the Lipschitz continuous functions τa(T ·x)
T β on the compact

interval [0, 1], i.e., κ satisfies the condition that | τa(T ·x)
T β − τa(T ·y)

T β | ≤ κ · |x − y| for
all x, y ∈ [0, 1] and all a ∈ A.
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Theorem 1 Consider an arbitrary congestion game Γ = (τ,U , d)with cost functions
τa(·) of the form (3.2). If Γ has atomic NE flows, then

ρat (Γ )≤1+ β · ηmax · |P|β+1
η0,min

·
β∑

l=1

1

T l
+ |A| · κ · |P|β+1

η0,min
·
√

|P| · |A| · dmax

T

+ |A| · κ · |P|β+2

η0,min
· dmax

T
.

Here, we use the convention that
∑β

l=1
1
T l = 0 when β = 0.

The upper bound holds for all T and dmax , and converges to 1 at a rate of O( 1
T ) +

O(

√
dmax
T ) as T → ∞ and dmax

T → 0. So the atomic PoA decays to 1 quickly when
Γ has atomic NE flows. Examples 2–3 show that the conditions “T → ∞” and
“ dmax

T → 0” are necessary for this convergence.

Example 2 Consider an unweighted congestion game Γ with the network of Fig. 1,
but cost functions x and x + 1 for the upper and lower arc, respectively.

Assume that Γ has |U | = 4 · n agents with 1
4·n demand each. Then T ≡ 1 and

dmax = 1
4·n . Clearly, Γ has only one atomic NE flow f̃at , in which all agents use

the upper arc. So C( f̃at , Γ ) = 1. Γ has also a unique atomic SO flow f ∗
at , in which

3 · n agents use the upper arc and the remaining n agents use the lower arc. Then
C( f ∗

at , Γ ) = 7
8 , and ρat (Γ ) = 8

7 for all n, which does not converge to 1 when only
dmax
T = dmax → 0.

Example 3 Consider an unweighted congestion game Γ again with the network of
Fig. 1, but nowwith cost functions x and 2 · x for the upper and lower arc, respectively.
Assume that there are two agents with demand n each. Then T = 2 · n, which tends
to ∞ as n → ∞. However, dmax

T → 1
2 > 0 as n → ∞. Obviously, Γ has only one

atomic SO flow f ∗
at , in which one agent uses the upper and the other the lower arc.

So C( f ∗
at , Γ ) = 3 · n2. However, Γ has two atomic NE flows. One atomic NE flow is

just the unique SO flow. In the other atomic NE flow, both agents use the upper arc,
and its total cost is 4 · n2. Consequently, ρat (Γ ) = 4

3 �→ 1 as T = 2 · n → ∞.

We now prove Theorem 1 with the technique of scaling from Colini-Baldeschi
et al. [10] and Wu et al. [47].

Definition 1 (Scaled games, Wu et al. [47]) Consider an arbitrary congestion game
Γ = (τ,U , d) with arbitrary cost functions, and an arbitrary constant g > 0. The
scaled game of Γ w.r.t. scaling factor g is the congestion game Γ [g] = (τ [g],U , d̄

)

whose cost function vector τ [g] := (τ
[g]
a )a∈A has a component τ [g]

a (x) := τa(x ·T )
g for

each pair (a, x) ∈ A × [0, 1], and whose demand vector d̄ = (d̄k,i )i∈Uk ,k∈K has a

component d̄k,i := dk,i
T for each i ∈ Uk and each k ∈ K.

Lemma 2 shows that scaling does not change the four PoAs. We omit the straight-
forward proof. Note that a flow f of Γ corresponds to a flow f [g] := f

T of Γ [g], and
C( f , Γ ) = C( f [g], Γ [g]) · g · T .
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Lemma 2 Consider an arbitrary congestion game Γ , an arbitrary mixed NE flow
f̃ran of Γ , and an arbitrary scaling factor g > 0. Let Γ [g] be the scaled game
with factor g. Then ρat (Γ

[g]) = ρat (Γ ), ρnat (Γ
[g]) = ρnat (Γ ), and ρmix (Γ

[g]) =
ρmix (Γ ). Moreover, f̃ [g]

ran := f̃ran
T is a mixed NE flow of the scaled game Γ [g], and

ρ( f̃ [g]
ran, Γ

[g]) = ρ( f̃ran, Γ ).

Lemma 2 enables us to prove Theorem 1 by bounding ρat (Γ
[g]) instead of ρat (Γ ).

We can thus purely concentrate on the influence of dmax
T on the convergence, as the

total demand of Γ [g] is T̄ = T (U , d̄) := ∑k∈K,i∈Uk
d̄k,i = 1. However, the scaling

factor gmust be chosen carefully, so as to ensure that the total cost inΓ [g] is moderate,
i.e., neither too large nor too small. Following [47], we use g := T β for polynomial
cost functions of the same degree β. Then Γ [g] has the scaled cost function

τ
[g]
a (x) =

∑β
l=0 ηa,l · (T · x)β−l

g
= ηa,0 · xβ +

β∑
l=1

ηa,l

T l
· xβ−l (3.3)

for arc a ∈ A, the bounded demand d̄k,i = dk,i
T ∈ [0, 1] for i ∈ Uk, and the bounded

demand d̄k := dk
T ∈ [0, 1] for k ∈ K. Consequently, each flow f [g] of Γ [g] has

bounded arc flow values f [g]
a ∈ [0, 1], and C( f [g], Γ [g]) ≥ η0,min

|P |β+1 .

Definition (2.8) of the atomic PoA and Lemma 1 together imply that

ρat (Γ ) =ρat (Γ
[g]) ≤ρnat (Γ

[g])+
|max

f̃ [g]
at

C( f̃ [g]
at , Γ [g])−C( f̃ [g]

nat , Γ
[g])|

C( f ∗[g]
nat , Γ [g])

, (3.4)

where f̃ [g]
nat and f ∗[g]

nat are arbitrary non-atomic NE and SO flows of Γ [g], respectively,
and the maximization is taken over all atomic NE flows f̃ [g]

at of Γ [g]. With (3.4), we
can then prove Theorem 1 by upper bounding

|max
f̃ [g]
at

C( f̃ [g]
at , Γ [g]) − C( f̃ [g]

nat , Γ
[g])| (3.5)

and ρnat (Γ
[g]), respectively. Here, we observe that C( f ∗[g]

nat , Γ [g]) ≥ η0,min

|P |β+1 > 0. To
that end, we need the notion of ε-approximate non-atomic NE flow and a result from
Wu and Möhring [46].

Definition 2 We call an arbitrary non-atomic flow fnat of Γ an ε-approximate non-
atomic NE flow for a constant ε > 0 if

∑
a∈A τa( fnat,a) · ( fnat,a − f ′

nat,a) ≤ ε for an
arbitrary non-atomic flow f ′

nat of Γ .

Wu and Möhring [46] have shown that the total cost difference between ε-
approximate and accurate non-atomic NE flows is in O(

√
ε), see Lemma 3.

Lemma 3 (Wu and Möhring [46]) Consider an arbitrary congestion game Γ =
(τ,U , d) with a total demand of 1 and an arbitrary ε-approximate non-atomic NE
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flow f̃ ε
nat . If all cost functions are Lipschitz continuous (or Lipschitz bounded) on

[0, 1] with a Lipschitz constant κ > 0, i.e., |τa(x) − τa(y)| ≤ κ · |x − y| for all
(a, x, y) ∈ A × [0, 1]2, then |C( f̃nat , Γ ) − C( f̃ ε

nat , Γ )| ≤ |A| · √
κ · ε + ε, and

|τa( f̃nat,a) − τa( f̃ ε
nat,a)| ≤ √

κ · ε for all a ∈ A and all non-atomic NE flows f̃nat .

Lemma 4 below shows that f̃ [g]
at is an O( dmax

T )-approximate non-atomic NE flow
of Γ [g]. Then Lemma 3 yields a desired upper bound for (3.5), see Lemma 4c. We
move the proof of Lemma 4 to Appendix A.3.

Lemma 4 Consider an arbitrary congestion game Γ as in Theorem 1. Let Γ [g] be
its scaled game with factor g = T β, and let f̃ [g]

at and f̃ [g]
nat be arbitrary atomic and

non-atomic NE flows, respectively. Then:

(a) τ
[g]
p

(
f̃ [g]
at

)
≤ τ

[g]
p′
(
f̃ [g]
at

)
+ |A|·κ·dmax

T for all k ∈ K and all p, p′ ∈ Pk with

f [g]
at,p > 0.

(b) f̃ [g]
at is a |P |·|A|·κ·dmax

T -approximate non-atomic NE flow of Γ [g].
(c) |C( f̃ [g]

at , Γ [g])−C( f̃ [g]
nat , Γ

[g])|≤|A|·κ ·
√

|P|·|A|· dmax
T +|P|·|A|·κ · dmax

T .

Lemma 5 yields an upper bound for ρnat (Γ [g]),which results in a convergence rate
of O( 1

T ). Note that Wu et al. [47] have shown a stronger convergence rate of o( 1
T β )

for BPR cost functions, and that Colini-Baldeschi et al. [10] have shown a similar
rate as in Lemma 5 for arbitrary polynomial cost functions under the condition that
dk
T ≥ ξk > 0 for some constant ξk independent of T for each k ∈ K. We move the
proof of Lemma 5 to Appendix A.4.

Lemma 5 Consider an arbitrary congestion game Γ as in Theorem 1. Let Γ [g] be
the scaled game with scaling factor g = T β. Then ρnat (Γ ) = ρnat (Γ

[g]) ≤ 1 +
β·ηmax·|P |β+1

η0,min
·∑β

l=1
1
T l .

Theorem 1 then follows from Lemma 2, (3.4), Lemmas 4c and 5.
The above proofs build essentially on inequality (3.4), Lemma 3 and the Lipschitz

continuity of the scaled cost functions τ
[g]
a (·) on [0, 1], but not on the sign of the

coefficients ηa,l , l = 1, . . . , β, a ∈ A.Thus Theorem 1 indeed carries over to arbitrary
polynomial cost functions of the same degree β ≥ 0.

When ηa,l < 0 for some terms l = 1, . . . , β and some arcs a ∈ A, then η0,min

|P |β+1 may

be larger than C( f ∗[g]
nat , Γ [g]). Instead, C( f ∗[g]

nat , Γ [g]) can be bounded from below by
mina∈A

1
|P | ·τ [g]

a ( 1
|P | ) ∈ Θ(1). TheLipschitz bound for the scaled cost functions is still

κ = β ·ηmax · (1+∑β
l=1

1
T l

)
> 0, but with ηmax := {|ηa,l | : a ∈ A, l = 0, 1, . . . , β}.

Lemma 4 then still holds, since its proof in Appendix A.3 does not involve the sign of
coefficients ηa,l , but only the Lipschitz continuity of the scaled cost functions on [0, 1].
Although the proof of Lemma 5 in Appendix A.4 does involve the sign of coefficients
ηa,l , it can be adapted accordingly.
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3.1.2 Upper bounds for the mixed PoA and the random PoA

Theorem 2 below proves similar upper bounds for ρ( f̃ran, Γ ) and ρmix (Γ ), respec-
tively, in terms of T , dmax

T and constants Mi , i = 1, . . . , 5. We hide the detailed values
of these constants Mi in Theorem 2, since they are complicated expressions. Inter-
ested readers may find their values in the proof. When T → ∞ and dmax

T → 0, these
upper bounds converge (with an overwhelming probability for ρ( f̃ran, Γ )) to 1 at a

rate of O( 1
T )+O(

d1/6max
T 1/6 ).Note that ρmix (Γ ) converges more slowly than ρat (Γ ) since

ρat (Γ ) ≤ ρmix (Γ ).

Theorem 2 Consider the same congestion game Γ as in Theorem 1. Let f̃ran be an
arbitrary mixed NE flow of Γ . Then the following statements hold.

(a) The random event “ρ( f̃ran, Γ ) ≤ 1+M1 · 1T +M2 · d
1/6
max
T 1/6 ” occurs with a probability

of at least 1 − M3 · d1/3max
T 1/3 .

(b) ρmix (Γ ) ≤ 1 + M4 · 1
T + M5 · d1/6max

T 1/6

Herein, Mi > 0, i = 1, . . . , 5, are constants independent of dmax and T .

We also prove Theorem 2 with the scaled game Γ [g] and Lemma 2. Let f̃ [g]
nat and

f ∗[g]
nat be an arbitrary non-atomic NE flow and an arbitrary non-atomic SO flow of

Γ [g], respectively. We obtain by Lemma 1, (2.10) and (2.11) that

ρmix (Γ
[g])≤ ρnat (Γ

[g]) +
|max

f̃ [g]
ran

EΠ̃ [C( f̃ [g]
ran, Γ

[g])]−C( f̃ [g]
nat , Γ

[g])|
C( f ∗[g]

nat , Γ [g])
, (3.6)

and that

ρ( f̃ [g]
ran, Γ

[g])≤ρnat (Γ
[g]) + |C( f̃ [g]

ran, Γ
[g])−C( f̃ [g]

nat , Γ
[g])|

C( f ∗[g]
nat , Γ [g])

, (3.7)

where f̃ [g]
ran is an arbitrary mixed NE flow of Γ [g]. Using Lemma 5, we now only

need to derive upper bounds for the numerators of the two fractions in (3.6) and (3.7),
respectively.

Lemma 6a below shows that the expected flow EΠ̃ ( f̃ [g]
ran) of a mixed NE f̃ [g]

ran

is an ε-approximate non-atomic NE flow with ε ∈ O(
d1/3max
T 1/3 ). Lemma 3 then yields

|C(EΠ̃ ( f̃ [g]
ran), Γ

[g])−C( f̃ [g]
nat , Γ

[g])| ∈ O(
d1/6max
T 1/6 ). Then Lemma 6b–c upper bound the

total cost difference between a mixed NE flow f̃ [g]
ran and its expected flow EΠ̃ ( f̃ [g]

ran)

both in expectation and as a random variable. Moreover, Lemma 6 together with
Lemma 5 and (3.6)–(3.7) prove Theorem 2.

We move the detailed proof of Lemma 6 to Appendix A.5.

Lemma 6 Consider the congestion game Γ in Theorem 2, and the scaling factor
g = T β. Let Γ [g] be the scaled game with factor g, and let f̃ [g]

ran be an arbitrary mixed
NE flow of Γ [g] with mixed profile Π̃.
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(a) When β > 0, then the expected flow EΠ̃ ( f̃ [g]
ran) is an ε-approximate non-atomic

NE flow with ε = 3 · |P| · κ · |A| · (1 + |A|
4·β
) · ( dmax

T

)1/3
, and |C( f̃ [g]

nat , Γ
[g]) −

C
(
EΠ̃ ( f̃ [g]

ran), Γ
[g])| ≤ |A| · √

κ · ε + ε ∈ O(
d1/6max
T 1/6 ) for an arbitrary non-atomic

NE flow f̃ [g]
nat of Γ [g]. When β = 0, then EΠ̃ ( f̃ [g]

ran) is a non-atomic NE flow of
Γ [g].

(b) Consider an arbitrary constant δ ∈ (0, 1/2). The event “|C( f̃ [g]
ran, Γ

[g]) −
C
(
EΠ̃ ( f̃ [g]

ran), Γ
[g])| ≤ |A| · (κ + ηmax ·∑β

l=0
1
T l

) · ( dmax
T

)δ
” occurs with a prob-

ability of at least 1 − |A|
4 · ( dmax

T

)1−2·δ
.

(c)
∣∣∣EΠ̃

[
C( f̃ [g]

ran, Γ
[g])
]−C

(
EΠ̃ ( f̃ [g]

ran), Γ
[g])∣∣∣ ≤ |A|·(κ+(1+ |A|

4

)·ηmax ·∑β
l=0

1
T l

)·
( dmax

T

)1/3
.

Similar to the proof for Lemma 4 in Appendix A.3, the proof of Lemma 6 in
Appendix A.5 does neither involve the sign of the coefficients ηa,l , but only the Lip-
schitz continuity of the scaled cost functions on [0, 1] and the finite upper bound
maxa∈A τ

[g]
a (1) ∈ Θ(1). Hence, Lemma 6 carries also over to arbitrary polynomial

cost functions of the same degree, and so does Theorem 2.
Note that Cominetti et al. [11] have shown that the mixed NE flow f̃ran of an atomic

congestion game Γ converges in distribution to a non-atomic NE flow f̃nat of a limit
non-atomic congestion game Γ (∞) when the cost functions τa are strictly increasing,
T → T0 for a constant T0 > 0, dmax → 0, and the number |U | of agents tends to
∞. Combined with the scaling technique, this may imply also that the mixed PoA in
the scaled game Γ [g] converges to 1 for polynomial cost functions of the same degree
when dmax

T → 0 as T → ∞, although the cost functions of the atomic congestion
games in the analysis of Cominetti et al. [11] are fixed and equal those of the limit
non-atomic congestion game, and although the scaled cost functions τ

[g]
a here depend

on T and vary with the growth of T . While implying a similar convergence, we aim at
upper bounding the mixed and random PoAs, and so have results for arbitrary demand
vectors d, i.e., neither need T → ∞ nor need dmax

T → 0 in the proofs. Moreover,
the results of Cominetti et al. [11] do not imply the convergence of the mixed PoA in
atomic congestion games with arbitrary polynomial cost functions for growing total
demand, since then the atomic congestion games cannot be scaled to have a unified
limit non-atomic congestion game for all O/D pairs, see [47].

3.2 Concergence results for polynomial cost functions with arbitrary degrees

We consider now polynomial cost functions with arbitrary degrees, i.e., βa �= βa′ may
hold for some arcs a �= a′. Example 4 below shows that the conditions “ dmax

T → 0”
and “T → ∞” are no longer sufficient for the convergence of ρmix (Γ ) and ρat (Γ ) in
this case.

Example 4 Consider a congestion game Γ with the network of Fig. 2. Γ has two non-
overlapping O/D pairs (o1, t1) and (o2, t2), and both of them have two parallel arcs.
Assume that (o1, t1) has 2 · √

n agents with each a demand of
√
n, and that (o2, t2)
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o1 t1 o2 t2

x

x

x3

8 · x3 + 1

Fig. 2 The PoA need not converge to 1

has 2 agents with the same demand of
√
n each. So dmax = √

n. Then, as n → ∞,

T = 2 · n + 2 · √n → ∞ and dmax
T =

√
n

2·n+2·√n
→ 0.

However, ρat (Γ ) → 16
9 > 1 as n → ∞. This follows since Γ has the worst-case

total cost of 2 ·n+16 ·n2 for atomic NE flows, and the total cost of 2 ·n+9 ·n2 +√
n

for atomic SO flows when n is large.

While the game Γ in Example 4 is artificial, it shows that the convergence of the
PoAs can be ruined by O/D pairs with small demands but polynomial cost functions
of higher degrees, since they may dominate the PoAs completely when T → ∞
and dmax is unbounded. To ensure the convergence of the PoAs for polynomial cost
functions of arbitrary degrees, we may thus need to impose a stronger condition that
dmax is bounded when T → ∞. Theorem 3 below confirms this.

Theorem 3 Consider an arbitrary congestion gameΓ with cost functions τa(·) defined
in (3.1). Assume that dmax is bounded from above by a constant υ > 0 independent
of T . Then the following statements hold.

(a)
max f̃ran

C
(
E

Π̃

(
f̃ran
)
,Γ
)

C( f ∗
nat ,Γ )

→ 1 as T → ∞, where the maximization in the numerator

is taken over all possible mixed NE flows f̃ran of Γ .

(b) ρmix (Γ ) → 1 as T → ∞.

(c) IfΓ has atomic NE flows for all demand vectors d, if βmax = maxa∈A βa > 0, and

if dk
T =

∑
i∈Uk

dk,i
T ≥ ξk > 0 for all k ∈ K and some constants ξk > 0 independent

of T , then ρat (Γ ) = 1 + O(T− 1
2·βmax ).

Theorem 3a states that the expected flow EΠ̃ [ f̃ran] of a mixed NE flow f̃ran is
as efficient as a non-atomic SO flow for large T when the polynomial cost functions
have arbitrary degrees and dmax is bounded. Theorem 3b then shows that ρmix (Γ )

converges to 1 for growing T in this more general case. Hence, if the atomic NE
flows exist, then ρat (Γ ) → 1 as T → ∞, since ρat (Γ ) ≤ ρmix (Γ ). In addition to
the pure convergence in Theorems 3a–b, 3c shows that ρat (Γ ) converges at a rate of

O(T− 1
2·βmax ). This demonstrates how fast the convergence of the PoAs can be in this

more general case, when each O/D pair demand dk has a positive ratio
dk
T as T → ∞.

So far, we are unable to remove this restrictive condition, as we do not see a way to
compute a concrete upper bound in terms of 1

T for ρat (Γ )when the cost functions have
different degrees and the O/D pairs have significantly asynchronous demand growth
rates.
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Theorem 3c can be proved by a scaling technique similar to the proofs of Theo-
rem 1 and Theorem 2. However, due to the absence of a unified scaling factor, similar
arguments will not be applicable in the proofs of Theorem 3a–b, for which we need a
more sophisticated technique called asymptotic decomposition developed byWu et al.
[47]. In fact, Example 4 has shown that different O/D pairs k ∈ K may have signifi-
cantly discrepant influences on the limits of the PoAs for polynomial cost functions
with arbitrary degrees. These discrepant influences are caused by the different degrees
of polynomial cost functions and the asynchronous growth rates of the demands of
the O/D pairs. The asymptotic decomposition technique enables us to capture these
discrepant influences from different O/D pairs k ∈ K. It puts O/D pairs k ∈ K with a
similar influence on the limits of the PoAs together to form a “subgame”, then ana-
lyzes the resulting subgames independently and combines the convergence results for
these subgames to a convergence result for the whole game Γ . Interested readers may
refer to Wu et al. [47] for a detailed introduction of this general technique. We move
a description of the asymptotic decomposition and the very long proof of Theorem 3
to Appendix A.6 in order to save space and improve readability.

Althoughwe have assumed at the beginning of Sect. 3 that the polynomial cost func-
tions have only non-negative coefficients, the proof of Theorem 3a–b in Appendix A.6
is essentially independent of this condition. The proof of Theorem 3c uses the non-
negativity of the coefficients to obtain explicit lower and upper bounds of the scaled
cost function values on the domain [0, 1], which carries also over to polynomials of
arbitrary degrees when we slightly adapt the constants in those bounds. Hence, the
convergence results in Theorem 3 hold for arbitrary polynomial cost functions, even
with non-negative real-valued exponents.

With the asymptotic decomposition, the convergence results for the non-atomic
PoA in Wu et al. [47], and Lemma 1, we can actually show in the proof that all the
flows, f̃ran,EΠ̃ ( f̃ran), f̃nat , f ∗

at , f ∗
nat , are equally efficient when T → ∞ and dmax is

bounded, see (A.29) in Appendix A.6. In particular, to obtain the convergence results
in Theorem 3a–b, we have considered a mixed NE flow as an approximate mixed WE
flow (see Remark 1) in the proof, and so these convergence results carry also over to
the “PoA” of mixed WE flows. Hence, we need not distinguish between atomic and
non-atomic congestion games for quantifying the inefficiency of selfish choices of
users, when the cost functions are polynomials, the total demand T is large, and the
individual maximum demand dmax is bounded.

4 Summary

We have studied the inefficiency of both pure and mixed Nash equilibria in atomic
congestion games with unsplittable demands.

When the cost functions are polynomials of the same degree, we derive upper
bounds for the atomic, mixed and random PoAs, respectively. These upper bounds
tend to 1 quickly as T → ∞ and dmax

T → 0.
When the cost functions are polynomials of arbitrary degrees and dmax is bounded,

we show that the mixed PoA converges again to 1 as T → ∞.Moreover, we illustrate
that this need not hold when dmax is unbounded. To demonstrate the convergence rates
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in this more general case, we show in addition that the atomic PoA converges to 1 at

a rate of O(T− 1
2·βmax ) under the relatively restrictive condition that all O/D pairs have

demand proportions dk
T that do not vanish when T → ∞. However, it is still open and

challenging to obtain concrete convergence rates without this condition.
Nevertheless, our results already imply, under rather mild conditions, that pure and

mixed Nash equilibria in atomic congestion games with large unsplittable demands
need not be bad. This, together with studies of Colini-Baldeschi et al. [8–10] and
Wu et al. [47], indicates that the selfish choice of strategies leads to a near-optimal
behavior in arbitrary congestion games with large total demands, regardless whether
users choose mixed or pure strategies, and whether the demands are splittable or not.

The convergence rate of the PoAs for arbitrary polynomial cost functions under
arbitrary demand growth pattern remains an important future research topic. It is a
crucial step for further bounding thePoAs in a congestiongamewith a highdemandand
arbitrary analytic cost functions. Note that analytic cost functions can be approximated
with polynomials, and that the Hölder continuity results inWu andMöhring [46] seem
to indicate that this approximation of analytic cost functions may also be used for the
PoAs.

While pure Nash equilibria need not exist in arbitrary finite games, Nash [30] has
shown that every finite game has a mixed Nash equilibrium. Since the user choices
in a mixed Nash equilibrium are random, the probability distribution of the random
PoA might be a more suitable measure for the inefficiency of mixed Nash equilibria.
Our analysis of the random PoA for atomic congestion games with polynomial cost
functions of the same degree has already provided the first positive evidence in that
direction, which may apply also to finite games of other types. Thus another important
future research topic is to generalize the probabilistic analysis of the random PoA to
finite games of other types.

In our study, we have assumed that the cost functions are separable, i.e., each arc
a ∈ A has a cost function depending only on its own flow value fa . However, it may
happen also that the cost of some arc a ∈ A depends not only on fa , but also on
flow values fb of other arcs b ∈ A. Then the cost functions are called non-separable,
see, e.g., [36]. A convergence analysis of atomic, mixed and non-atomic PoAs for
congestion games with non-separable cost functions would also be an interesting
future research topic, as worst-case upper bounds of the non-atomic PoA in such
games have already been obtained by Chau and Sim [6] and Perakis [36]. In fact, the
expected flowEΠ [ fran] of amixedWEflow fran introduced inRemark 1 is essentially
a non-atomic NE flow of a congestion game with the expected cost EΠ [τa( fran,a)] as
non-separable cost when viewed as a non-atomic flow of that congestion game. Hence,
the proof of Theorem 3 has already provided a first positive example for a convergence
analysis of the PoAs for non-separable cost functions, although the expected cost is
still rather simple compared with general non-separable cost functions.
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A Detailed proofs

A.1 The existence of mixedWE flows

Lemma 7 Every congestion game Γ = (τ,U , d) has a mixed WE flow.

Proof of Lemma 7 We use Brouwer’s fixed point theorem and an argument similar to
that in Dafermos [14]. Inequality (2.7) is equivalent to the variational inequality that

∑
k∈K

∑
p∈Pk

EΠ [τp( fran)] · (EΠ [ fran,p] − EΠ ′ [ f ′
ran,p]) ≤ 0

for an arbitrary mixed profile Π ′ with random flow f ′
ran . Brouwer’s fixed theorem

implies that there is a fixed point Πα of the continuous map

Dα(Π ′) := argmin
Π ′′

∑
k∈K

∑
p∈Pk

∣∣∣EΠ ′′
[
f ′′
ran,p

]
− EΠ ′

[
f ′
ran,p

]
+ α · EΠ ′

[
τp( f

′
ran)
]∣∣∣
2

for an arbitrary α > 0. This follows since Dα(·) maps the space of all mixed profiles
continuously into a subspace, and since the space of all mixed profiles is convex and
compact. This fixed point Πα fulfills the condition that

∑
k∈K

∑
p∈Pk

EΠα [τp( f α
ran)] ·

(
EΠα [ f α

ran,p] − EΠ ′′ [ f ′′
ran,p]

)

≤ 1

2 · α
·
∑
k∈K

∑
p∈Pk

(
EΠα [ f α

ran,p] − EΠ ′′ [ f ′′
ran,p]

)2 (A.1)

for an arbitrarymixed profileΠ ′′ with randomflow f ′′
ran,where f α

ran is the randomflow
of Πα. Since the mixed profile sequence (Πα)α∈(0,∞) is bounded, there is an infinite
subsequence (αn)n∈N such thatαn → ∞ and that (Παn )n∈N converges to a limitmixed
profile Π, as n → ∞. This limit mixed profile Π has a mixed WE flow fran , since
inequality (A.1) holds for an arbitrary α > 0 and an arbitrary mixed profile Π ′′. Here,
we used that limn→∞ EΠαn [ f αn

ran,p] = EΠ [ fran,p] and limn→∞ EΠαn [τp( f αn
ran)] =

EΠ [τp( fran)] as n → ∞, when Παn → Π as n → ∞. This proves the existence of
mixed WE flows. ��
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A.2 Stochastic inequalities

Our proofs will useMarkov’s inequality, Chebyshev’s inequality and Jensen’s inequal-
ity. We summarize them in Lemma 8 below.

Lemma 8 Let X be a non-negative random variable whose expectation E(X) exists,
and let Δ > 0 be an arbitrary constant. Then

a) (Markov’s inequality, see, e.g., [31]) P(X ≥ Δ) ≤ E(X)
Δ

.

b) (Chebyshev’s inequality, see, e.g., [4]) P(|X − E(X)| ≥ Δ) ≤ VAR(X)

Δ2 .

c) (Jensen’s inequality, see, e.g., [25]) E(h(X)|E) ≥ h(E(X |E)) for every convex
function h : R → R and an arbitrary random event E .

A.3 Proof of lemma 4

Note that Lemma 4 holds trivially if the integer degree β = 0, since all cost functions
τ

[g]
a (·) are then positive constants, and so the total cost of atomic and non-atomic NE
flows coincide. We thus assume that β ≥ 1.

Proof of Lemma 4a Consider now an arbitrary k ∈ K and an arbitrary i ∈ Uk .
Lemma 4a follows if

τ
[g]
pk,i ( f̃

[g]
at )

(
f̃ [g]
at
) ≤ τ

[g]
p′
(
f̃ [g]
at
)+ |A| · κ · dmax

T
(A.2)

for all paths p′ ∈ Pk, where we recall that pk,i ( f̃
[g]
at ) is the path of agent i and that

κ = β · ηmax · (1 +∑β
l=1

1
T l

)
> 0 is the Lipschitz constant of scaled cost functions

τ
[g]
a on [0, 1].
To prove (A.2), we consider an arbitrary path p′ ∈ Pk . Since f̃ [g]

at is an atomic NE
flow, we obtain

Ck,i ( f̃
[g]
at , Γ [g]) = dk,i

T
· τ

[g]
pk,i ( f̃

[g]
at )

( f̃ [g]
at ) ≤Ck,i ( f

[g]′
at , Γ [g])= dk,i

T
· τ

[g]
p′ ( f [g]′

at ),

(A.3)

where f [g]′
at is an atomic flow of Γ [g] as defined in (2.4), i.e., f [g]′

at is the resulting flow
obtained by moving i from pk,i ( f̃

[g]
at ) to p′ in the atomic NE flow f̃ [g]

at . (A.3) implies
further that

τ
[g]
pk,i ( f̃

[g]
at )

(
f̃ [g]
at
) =

∑

a∈pk,i ( f̃
[g]
at )

τ
[g]
a
(
f̃ [g]
at,a
) ≤ τ

[g]
p′
(
f [g]′
at
)

=
∑
a∈p′

τ
[g]
a
(
f [g]′
at,a
)
. (A.4)

Note that the atomic flows f̃ [g]
at and f̃ [g]′

at differ only in the choice of i . Note also
that i controls an amount d̄k,i ≤ dmax

T of demand in Γ [g]. So we obtain for all a ∈ A
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that | f̃ [g]
at,a − f [g]′

at,a | ≤ d̄k,i ≤ dmax
T , where we recall that i uses only a single path in

any atomic flow. This and (3.3) imply that

∣∣τ [g]
a
(
f̃ [g]
at,a
)−τ

[g]
a
(
f [g]′
at,a
)∣∣ ≤ κ · | f̃ [g]

at,a − f [g]′
at,a | = κ · d̄k,i ≤ κ · dmax

T
∀a ∈ A. (A.5)

Here, we used that τ
[g]
a (x) is Lipschitz bounded on [0, 1] with the constant κ , and

that all arc flow values of Γ [g] are in [0, 1]. Then (A.5) and (A.4) imply that
τ

[g]
pk,i ( f̃

[g]
at )

(
f̃ [g]
at
) ≤ τ

[g]
p′
(
f̃ [g]
at
) + |A| · κ · dmax

T , which proves (A.2) due to arbitrary

choice of p′ ∈ Pk . This completes the proof of Lemma 4a. ��

Proof of Lemma 4b Lemma 4a yields that max
p∈Pk : f̃ [g]

at,p>0
τ

[g]
p ( f̃ [g]

at ) ≤ minp∈Pk

τ
[g]
p ( f̃ [g]

at ) + |A|·κ·dmax
T for each k ∈ K. This in turn implies for an arbitrary non-

atomic flow f [g]
nat that

∑
a∈A

τ
[g]
a
(
f̃ [g]
at,a
) · ( f [g]

nat,a− f̃ [g]
at,a
) =

∑
p∈P

τ
[g]
p
(
f̃ [g]
at
) · ( f [g]

nat,p− f̃ [g]
at,p
)

=
∑
k∈K

∑
p∈Pk

(
τ

[g]
p ( f̃ [g]

at ) − τ
[g]
p∗
k
( f̃ [g]

at )
) · ( f [g]

nat,p− f̃ [g]
at,p
)

≥
∑
k∈K

∑

p∈Pk : f̃ [g]
at,p>0

(
τ

[g]
p ( f̃ [g]

at ) − τ
[g]
p∗
k
( f̃ [g]

at )
) · ( f [g]

nat,p− f̃ [g]
at,p
)

≥−|P| · |A| · κ · dmax

T
. (A.6)

Here, we used that the total demand of Γ [g] is T̄ = 1, and that

∑
k∈K

∑
p∈Pk

τ
[g]
p∗
k

(
f̃ [g]
at
) · ( f [g]

nat,p − f̃ [g]
at,p
)

=
∑
k∈K

τ
[g]
p∗
k

(
f̃ [g]
at
) ·
∑
p∈Pk

(
f [g]
nat,p − f̃ [g]

at,p
) = 0,

where p∗
k is the least costly path in Pk w.r.t. the atomic NE flow f̃ [g]

at . By Definition 2,

f̃ [g]
at is an ε-approximate non-atomic NE flow of Γ [g] with ε := |P |·|A|·κ·dmax

T .

In the sequel, we will use without further proof that a flow f is a |P| ·ε-approximate
non-atomic NE flow when it satisfies the condition that

max
p∈Pk : f p>0

τ
[g]
p ( f ) ≤ min

p∈Pk

τ
[g]
p ( f ) + ε ∀k ∈ K.

This can be justified by an argument similar to that in (A.6). ��
Proof of Lemma 4c: It follows immediately from Lemma 4b and Lemma 3. ��
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A.4 Proof of Lemma 5

Let f̃ [g] and f ∗[g] be non-atomic NE and SO flows of the scaled game Γ [g], respec-
tively. Then ρnat (Γ

[g]) =
∑

a∈A τ
[g]
a ( f̃ [g]

a )· f̃ [g]
a∑

a∈A τ
[g]
a ( f ∗[g]

a )· f ∗[g]
a

. Note that f̃ [g] is an optimal solution

of the non-linear program (NLP) (A.7),

min Φ(y) :=
∑
a∈A

∫ ya

0
τ

[g]
a (x)dx

s.t.
∑
p∈Pk

yp = d̄k =
∑
i∈Uk

dk,i
T

= dk
T

∀k ∈ K,

yp ≥ 0 ∀p ∈ P,

(A.7)

see, e.g., [42, 44]. So Φ( f̃ [g]) ≤ Φ( f ∗[g]).
As the scaled cost functions τ

[g]
a (·) have the form (3.3), we obtain that

∫ ya

0
τ

[g]
a (x)dx = 1

β + 1
· ηa,0 · yβ+1

a +
β∑

l=1

ηa,l

(β − l + 1) · T l
· yβ−l+1

a

= 1

β + 1
· τ

[g]
a (ya) · ya +

β∑
l=1

l · ηa,l

(β − l + 1) · (β + 1) · T l
· yβ−l+1

a

(A.8)
for all a ∈ A and all ya ∈ [0, 1]. So

0 ≤
∫ ya

0
τ

[g]
a (x)dx − 1

β + 1
· τ

[g]
a (ya) · ya ≤ β · ηmax

β + 1
·

β∑
l=1

1

T l

for all a ∈ A and all ya ∈ [0, 1]. Here, we employ the convention that
∑β

l=1
1
T l = 0

when β = 0. We thus obtain that

∑
a∈A

τ
[g]
a ( f̃ [g]

a ) · f̃ [g]
a ≤ (β + 1) · Φ( f̃ [g]) ≤ (β + 1) · Φ( f ∗[g])

≤
∑
a∈A

τ
[g]
a ( f ∗[g]

a ) · f ∗[g]
a + β · ηmax ·

β∑
l=1

1

T l
,

which in turn implies that ρnat (Γ
[g]) ≤ 1 + β·ηmax·|P |β+1

η0,min
·∑β

l=1
1
T l . Here, we recall

that η0,min = mina∈A ηa,0 > 0, and that the total cost
∑

a∈A τ
[g]
a ( f ∗[g]

a ) · f ∗[g]
a is

bounded from below by η0,min

|P |β+1 . This completes the proof of Lemma 5. ��
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A.5 Proof of Lemma 6

Recall that β is the common degree of the polynomial cost functions, and is thus a
non-negative integer. When β = 0, then the scaled cost functions τ

[g]
a (·) are positive

constants, and Lemma 6 holds trivially. We thus assume β ≥ 1.
Consider now an arbitrary mixed NE flow f [g]

ran of Γ [g]. Chebyshev’s inequality,
see Lemma 8b, implies that

PΠ̃

[∣∣∣ f̃ [g]
ran,a − EΠ̃ ( f̃ [g]

ran,a)

∣∣∣ >
(
dmax

T

)δ
]

≤
(

T

dmax

)2·δ
· VARΠ̃ ( f̃ [g]

ran,a)

≤
(

T

dmax

)2·δ
·
∑

i∈Uk ,k∈K

d2k,i
4 · T 2

≤ 1

4
·
(
dmax

T

)1−2·δ
∀a ∈ A ∀δ ∈ (0,

1

2
).

(A.9)

Here, we used VARΠ̃ ( f̃ [g]
ran,a) = ∑

i∈Uk ,k∈K
d2k,i
T 2 · Π̃i,a · (1 − Π̃i,a). This follows

since Π̃i,a = ∑
p∈Pk :a∈p Π̃i,p is the probability that agent i ∈ Uk uses arc a, since

the demand of agent i ∈ Uk is dk,i
T in the scaled game Γ [g] and since Γ [g] has total

demand T̄ =∑k∈K,i∈Uk

dk,i
T = 1.

We now show that the mixed NE flow f̃ [g]
ran is an approximate mixed WE flow (see

Remark 1). Consider an arbitrary k ∈ K and an arbitrary p ∈ Pk with Π̃i,p > 0 for
some i ∈ Uk .

Note that | f̃ [g]
ran,a|i,p′′ − f̃ [g]

ran,a|i,p′ | ≤ dmax
T . for all a ∈ A and all p′, p′′ ∈ Pk . Here,

we recall that f̃ [g]
ran,a|i,p′ is the random flow of arc a when agent i uses the fixed path

p′ and the other agents j ∈ U \ {i} still follow their random paths drawn from Π̃ j .

Then

∣∣∣EΠ̃

[
τ

[g]
p′
(
f̃ [g]
ran

)]
− EΠ̃−i

[
τ

[g]
p′
(
f̃ [g]
ran|i,p′′

)]∣∣∣

=
∣∣∣∣∣∣
∑

p′′′∈Pk

[
EΠ̃−i

[
τ

[g]
p′
(
f̃ [g]
ran|i,p′′′

)]
−EΠ̃−i

[
τ

[g]
p′
(
f̃ [g]
ran|i,p′′

)]]
· Π̃i,p′′′

∣∣∣∣∣∣
≤
∑

p′′′∈Pk

Π̃i,p′′′ ·
∑
a∈p′

EΠ̃−i

∣∣∣τ [g]
a ( f̃ [g]

ran,a|i,p′′′) − τ
[g]
a ( f̃ [g]

ran,a|i,p′′)
∣∣∣

≤ κ ·
∑

p′′′∈Pk

Π̃i,p′′′ ·
∑
a∈p′

EΠ̃−i

∣∣∣ f̃ [g]
ran,a|i,p′′′ − f̃ [g]

ran,a|i,p′′
∣∣∣

≤ |A| · κ · dmax

T
, ∀p′, p′′ ∈ Pk, (A.10)
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since each τ
[g]
a is Lipschitz bounded on [0, 1]with Lipschitz constant κ . (A.10) implies

that f̃ [g]
ran is an approximate mixed WE flow, i.e.,

EΠ̃

[
τ

[g]
p

(
f̃ [g]
ran

)]
= EΠ̃−i

[
τ

[g]
p

(
f̃ [g]
ran|i,p

)]
≤ EΠ̃−i

[
τ

[g]
p′
(
f̃ [g]
ran|i,p′

)]

≤ EΠ̃

[
τ

[g]
p′
(
f̃ [g]
ran

)]
+ |A| · κ · dmax

T

(A.11)

for an arbitrary p′ ∈ Pk . This follows since f̃ [g]
ran is a mixed NE flow and Π̃i,p > 0.

We now show with (A.9) and (A.11) that the expected flow EΠ̃ ( f̃ [g]
ran) is an ε-

approximate non-atomic NE flow with ε tending to 0 as dmax
T → 0.

(A.9) implies

PΠ̃

[
∀a ∈ A :

∣∣∣ f̃ [g]
ran,a − EΠ̃ ( f̃ [g]

ran,a)

∣∣∣ ≤
(
dmax

T

)δ
]

≥ 1 − |A|
4

·
(
dmax

T

)1−2·δ
= 1 − Pδ,

(A.12)

where Pδ := |A|
4 · ( dmax

T

)1−2·δ
. Consequently,

PΠ̃

[
∀a ∈ A :

∣∣∣τ [g]
a ( f̃ [g]

ran,a) − τ
[g]
a

(
EΠ̃

(
f̃ [g]
ran,a

))∣∣∣ ≤ κ ·
(
dmax

T

)δ
]

≥ 1 − Pδ,

(A.13)
again since the scaled cost functions are Lipschitz continuous on [0, 1] with the Lip-
schitz constant κ .

Note that |τ [g]
a ( f̃ [g]

ran,a)−τ
[g]
a
(
EΠ̃ ( f̃ [g]

ran,a)
)|≤ τ

[g]
a (1)≤ κ

β
=∑β

l=0
ηmax
T l with proba-

bility 1 for all a ∈ A. This, together with (A.13), implies that

|EΠ̃

(
τ

[g]
a ( f̃ [g]

ran,a)
)
−τ

[g]
a

(
EΠ̃ ( f̃ [g]

ran,a)
)

|≤EΠ̃

(
|τ [g]
a ( f̃ [g]

ran,a)−τ
[g]
a (EΠ̃ ( f̃ [g]

ran,a))|
)

≤(1 − Pδ) · κ ·
(
dmax

T

)δ

+ Pδ · κ

β

= κ ·
(
dmax

T

)δ

+ |A|
4

·
(
dmax

T

)1−2·δ
· κ

β
∀a ∈ A ∀δ ∈ (0,

1

2
). (A.14)

(A.14) uses that the random event “κ · ( dmax
T

)δ
< |τ [g]

a ( f̃ [g]
ran,a)− τ

[g]
a (EΠ̃ ( f̃ [g]

ran,a))| ≤
κ
β
” occurs with a probability of at most Pδ, since the random event of (A.13) occurs

with a probability of at least 1 − Pδ.
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Putting δ = 1
3 in (A.14), we obtain that

∣∣∣EΠ̃

(
τ

[g]
a ( f̃ [g]

ran,a)
)

− τ
[g]
a

(
EΠ̃ ( f̃ [g]

ran,a)
)∣∣∣ ≤ κ ·

(
dmax

T

)1/3
+ |A|

4
·
(
dmax

T

)1/3
· κ

β

= κ ·
(
1 + |A|

4 · β

)
·
(
dmax

T

)1/3
∀a ∈ A.

(A.15)
(A.15) in turn implies that

∣∣∣EΠ̃

(
τ

[g]
p

(
f̃ [g]
ran

))
− τ

[g]
p

(
EΠ̃ ( f̃ [g]

ran)
)∣∣∣

≤ κ · |A| ·
(
1 + |A|

4 · β

)
·
(
dmax

T

)1/3
∀p ∈ P.

(A.16)

(A.16) and (A.11) together then yield

τ
[g]
p

(
EΠ̃ ( f̃ [g]

ran)
)

≤ EΠ̃

(
τ

[g]
p ( f̃ [g]

ran)
)

+ κ · |A| ·
(
1 + |A|

4 · β

)
·
(
dmax

T

)1/3

≤ EΠ̃

(
τ

[g]
p′
(
f̃ [g]
ran

))
+ κ · |A| ·

(
1 + |A|

4 · β

)
·
(
dmax

T

)1/3
+ |A| · κ · dmax

T

≤ τ
[g]
p′
(
EΠ̃

(
f̃ [g]
ran

))
+ 2 · κ · |A| ·

(
1 + |A|

4 · β

)
·
(
dmax

T

)1/3
+ |A| · κ · dmax

T

≤ τ
[g]
p′
(
EΠ̃ ( f̃ [g]

ran)
)

+ 3 · κ · |A| ·
(
1 + |A|

4 · β

)
·
(
dmax

T

)1/3

(A.17)
for all k ∈ K, and any two paths p, p′ ∈ Kwith expected flow value EΠ̃ ( f̃ [g]

ran,p) > 0.
(A.17) yields with a similar argument as in the proof of Lemma 4b that the expected

non-atomic flowEΠ̃ [ f̃ [g]
ran] is an ε-approximate non-atomic NE flowwith ε := 3 · |P| ·

κ · |A| ·
(
1 + |A|

4·β
)

·
(
dmax
T

)1/3
. Lemma 6a then follows immediately from Lemma 3.

Lemma 6b then follows from (A.12) and (A.13), since they together imply that the
random event

∀a ∈ A :
∣∣∣ f̃ [g]

ran,a · τ
[g]
a

(
f̃ [g]
ran,a

)
− EΠ̃

(
f̃ [g]
ran,a

)
· τ

[g]
a

(
EΠ̃

(
f̃ [g]
ran,a

))∣∣∣

≤
⎛
⎝κ+ηmax ·

β∑
l=0

1

T l

⎞
⎠ ·
(
dmax

T

)δ (A.18)

occurs with a probability of at least 1 − Pδ. Here, we use that τ
[g]
a (·) is Lipschitz

bounded in [0, 1]withLipschitz constant κ, that |x ·τ [g]
a (x)−y·τ [g]

a (y)| ≤ x ·|τ [g]
a (x)−

τ
[g]
a (y)|+τ

[g]
a (y)·|x−y| ≤ (κ+τ

[g]
a (y))·|x−y| ≤ (κ+τ

[g]
a (1))·|x−y| for all x, y ∈

[0, 1], that Γ [g] has arc flow values in [0, 1], and that maxa∈A max[0,1] τ [g]
a (x) ≤∑β

l=0
ηmax
T l .

123



968 Z. Wu et al.

(A.12) and (A.18) yield

∣∣∣EΠ̃

(
f̃ [g]
ran,a · τ

[g]
a ( f̃ [g]

ran,a)
)
−EΠ̃

(
f̃ [g]
ran,a

)
· τ

[g]
a

(
EΠ̃ ( f̃ [g]

ran,a)
)∣∣∣

≤EΠ̃

(∣∣∣ f̃ [g]
ran,a · τ

[g]
a ( f̃ [g]

ran,a)−EΠ̃

(
f̃ [g]
ran,a

)
· τ

[g]
a

(
EΠ̃

(
f̃ [g]
ran,a

))∣∣∣
)

≤
⎛
⎝κ + ηmax ·

β∑
l=0

1

T l

⎞
⎠ ·
(
dmax

T

)δ

+ Pδ · ηmax ·
β∑

l=0

1

T l

=
⎛
⎝κ + ηmax ·

β∑
l=0

1

T l

⎞
⎠ ·
(
dmax

T

)δ

+ |A|
4

·
(
dmax

T

)1−2·δ
· ηmax ·

β∑
l=0

1

T l

(A.19)

for all a ∈ A and all δ ∈ (0, 1
2 ). Here, we use that maxa∈A maxx∈[0,1] x · τ

[g]
a (x) ≤∑β

l=0
ηmax
T l , and that the random event (A.18) occurs with a probability of at least

1 − Pδ, and so the complement event of (A.18) occurs with a probability of at most
Pδ. Lemma 6c then follows immediately from (A.19) when we put δ = 1

3 . ��

A.6 Proof of Theorem 3

Wefirst showTheorem 3c, and then prove Theorem 3a–bwith the technique of asymp-
totic decomposition proposed by Wu et al. [47].

Proof of Theorem 3c We define β = maxk∈Kminp∈Pk maxa∈p βa, and put the scaling
factor g := T β. Here, we recall that the degree βa ≥ 0 of arc a ∈ A is an integer. We
call a path p ∈ P = ∪k∈KPk with maxa∈p βa ≤ β a tight path, and an arc a ∈ A with
βa ≤ β a tight arc. Clearly, each O/D pair k ∈ K has at least one tight path p ∈ Pk .

We denote by Γ [g] the resulting scaled game with scaling factor g. This has a total
demand of 1.

Let f̃ [g]
nat be an abitrary non-atomic NE flow of Γ [g], and let f̃ [g]

at be an arbitrary
atomic NE flow of Γ [g].

Colini-Baldeschi et al. [10] have shown that ρnat (Γ ) = ρnat (Γ
[g]) = 1 + O( 1

T )

under the condition of Theorem 3c, i.e., dk
T ≥ ξk for each k ∈ K for constants

ξk > 0 independent of T . To obtain the convergence rate of the atomic PoA ρat (Γ ) =
ρat (Γ

[g]), we again need to upper bound only the cost difference |C( f̃ [g]
at , Γ [g]) −

C( f̃ [g]
nat , Γ

[g])| because of inequality (3.4). Here, we observe that non-atomic SO flows
of Γ [g] have a cost of Ω(1), since every O/D pair k ∈ K has a total demand of dk

T ∈
Θ(1) inΓ [g], and since there is at least oneO/Dpair k ∈ Kwithminp∈Pk maxa∈p βa =
β.

When all arcs are tight, i.e., βa ≤ β for all a ∈ A, then all the scaled polynomial
cost functions τ

[g]
a (x) of Γ [g] have bounded coefficients and degrees smaller than β,

and are thus Lipschitz continuous on [0, 1] with a Lipschitz constant independent of
T . Moreover, with arguments similar to those for Theorem 1, we obtain immediately
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that |C( f̃ [g]
at , Γ [g]) − C( f̃ [g]

nat , Γ
[g])| ∈ O(

√
1
T ) and so ρat (Γ

[g]) = 1 + O(

√
1
T ) by

inequality (3.4). Here, note that the maximum individual demand in Γ is dmax ≤ υ

for a constant υ > 0 independent of T .

Now assume that there are non-tight arcs a ∈ A, i.e., arcs a ∈ Awith βa > β. Then
the scaled cost functions τ

[g]
a (·) of these non-tight arcs a ∈ A need not be Lipschitz

continuous on [0, 1], since their coefficients may tend to∞with growing T .A natural
idea here is to remove the influence of these non-tight arcs in the analysis.

Since each O/D pair k ∈ K has at least one tight path p ∈ Pk, we obtain that

η0,min · T βa−β · ( f̃ [g]
at,a)

βa ≤ τ
[g]
a ( f̃ [g]

at,a) ≤ ηmax · (β + 1) · |A|, ∀a ∈ A. (A.20)

Here, we used that a tight path p has a scaled cost of at most ηmax · (β + 1) · |A| in
an arbitrary flow, as it contains at most |A| many arcs, and has a flow value of at most
1 in an arbitrary flow of the scaled game Γ [g]. Moreover, by the definition of atomic
NE flows, the scaled cost dk,i

T · τ
[g]
p′ ( f̃ [g]

at ) of an arbitrary individual i ∈ Uk with an
arbitrary “pure strategy" p′ ∈ Pk will not decrease, even that individual unilaterally
moves from path p′ to a tight path p ∈ Pk .

Hence, we obtain for each non-tight arc a ∈ A that

f̃ [g]
at,a ≤ θa(T ) := ηmax · |A| · (β + 1)

η0,min
· T− βa−β

βa ∈ o(1). (A.21)

Similarly, f̃ [g]
nat,a ≤ θa(T ) for each non-tight arc a ∈ A. Moreover, inequality (A.21)

implies for each k ∈ K and each non-tight path p ∈ Pk, i.e., maxa∈p βa > β, that

f̃ [g]
at,p ≤ θp(T )

:= min
a∈p:βa>β

θa(T )∈Θ(T−maxa∈p:βa>β
βa−β
βa ) and f̃ [g]

nat,p ≤θp(T ), (A.22)

since the flow value of a path is not larger than the minimum flow value of arcs
contained in that path.

Inequalities (A.20)–(A.22) actually indicate that we can ignore all non-tight arcs
a ∈ A and all non-tight paths p ∈ P in the analysis. In particular, we have

|C( f̃ [g]
at , Γ [g]) − C( f̃ [g]

nat , Γ
[g])| ≤ |

∑
a∈A:βa≤β

f̃ [g]
at,a · τ

[g]
a ( f̃ [g]

at,a)

−
∑

b∈A:βb≤β

f̃ [g]
nat,b · τ

[g]
b ( f̃ [g]

nat,b)|

+ 2 · ηmax · (β + 1) · |A| ·
∑

a∈A:βa>β

θa(T ).

(A.23)

This provides a very good basis for further upper bounding the cost difference in this
general case.
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For each O/D pair k ∈ Pk, we denote by P ′
k = {p ∈ Pk : maxa∈p βa ≤ β} the

subset of all tight paths p ∈ Pk, and put P ′ := ∪k∈KP ′
k . Moreover, we denote by

A′ = {a ∈ A : βa ≤ β} the subset of all tight arcs a ∈ A.

For each tight arc a ∈ A′, we define an auxiliary cost function

σ1,a(x) = τ
[g]
a

⎛
⎝x +

∑
p∈P\P ′:a∈p

f̃ [g]
at,p

⎞
⎠ , ∀x ≥ 0,

where
∑

p∈P\P ′:a∈p f̃ [g]
at,p = 0 when a is not included in any non-tight path, i.e.,

a /∈ p for each p ∈ P \ P ′. Then the restricted flow f̃ [g]
at |P ′ = ( f̃ [g]

at,p)p∈P ′
k ,k∈K is an

atomic NE flow w.r.t. these tight paths p ∈ P ′ and w.r.t. the arc cost functions σ1,a(·)
of these tight arcs a ∈ A′. This follows since τ

[g]
p ( f̃ [g]

at ) = σ1,p( f̃
[g]
at |P ′) for all p ∈ P ′.

Here, we note that σ1,p( f̃
[g]
at |P ′) = ∑a∈p σ1,a( f̃

[g]
at,a|P ′) = ∑a∈p τ

[g]
a ( f̃ [g]

at,a) for each

p ∈ P ′, and f̃ [g]
at,a|P ′ = ∑

k∈K
∑

p∈P ′
k :a∈p f̃ [g]

at,p for each a ∈ A′, and that the flow

values f̃ [g]
at,p on non-tight paths p ∈ P \ P ′ are constant parameters of the auxiliary

arc cost functions σ1,a(·).
We denote by Γ

[g]
1 the resulting “reduced" scaled game that ignores all non-tight

paths p ∈ P \P ′ together with their “demands" f̃ [g]
at,p, and, moreover, has the auxiliary

functions σ1,a(·) as the cost functions of the tight arcs a ∈ A′. Then the total cost
C( f̃ [g]

at |P ′, Γ
[g]
1 ) of f̃ [g]

at |P ′ satisfies the condition that

∑
a∈A′

f̃ [g]
at,a · τ

[g]
a ( f̃ [g]

at,a) ≥ C( f̃ [g]
at |P ′, Γ

[g]
1 ) =

∑
a∈A′

f̃ [g]
at,a|P ′ · σ1,a( f̃

[g]
at,a|P ′)

≥
∑
a∈A′

f̃ [g]
at,a · τ

[g]
a ( f̃ [g]

at,a) − ηmax · |A|2 · (β + 1) ·
∑

p∈P\P ′
θp(T ), (A.24)

where the quantity θp(T ) defined in inequality (A.22) is an upper bound of the atomic

flow value f̃ [g]
at,p on a non-tight path p ∈ P \ P ′. Here, we used inequalities (A.20),

(A.22), |A′| ≤ |A|, and the fact that

0 ≤ f̃ [g]
at,a − f̃ [g]

at,a|P ′ ≤
∑

p∈P\P ′
f̃ [g]
at,p

for each a ∈ A′.
Let f̃ [g]

1,nat be a non-atomic NE flow of Γ
[g]
1 . Since Γ

[g]
1 ignores all non-tight arcs

a ∈ A \ A′, all its cost functions σ1,a(·) have coefficients bounded from above by a
constant independent of T , and are thus Lipschitz continuous on [0, 1]. While Γ

[g]
1

ignores all demands f̃ [g]
at,p of non-tight paths p ∈ P \ P ′, inequality (A.22) implies

that Γ
[g]
1 has a total demand tending to 1 as T → ∞. Hence, we obtain again by
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arguments similar to those for Theorem 1 that

|C( f̃ [g]
1,nat , Γ

[g]
1 ) − C( f̃ [g]

at |P ′, Γ
[g]
1 )| ∈ O(

√
1

T
). (A.25)

Here, we note that f̃ [g]
at |P ′ is an atomic NE flow of Γ

[g]
1 .

We proceed similarly with the non-atomic NE flow f̃ [g]
nat , and consider its restriction

f̃ [g]
nat |P ′ = ( f̃ [g]

nat,p)p∈P ′
k ,k∈K to tight paths p ∈ P ′. We define the auxiliary cost func-

tions σ2,a(·) for each tight arc a ∈ A′ and the resulting reduced scaled game Γ
[g]
2 by

using non-atomic flow values f̃ [g]
nat,p instead of atomic flow values f̃ [g]

at,p in the above

definitions. Then we obtain also that f̃ [g]
nat |P ′ is a non-atomic NE flow of Γ

[g]
2 , and,

moreover,

∑
a∈A′

f̃ [g]
nat,a · τ

[g]
a ( f̃ [g]

nat,a) ≥ C( f̃ [g]
nat |P ′, Γ

[g]
2 )

=
∑
a∈A′

f̃ [g]
nat,a|P ′ · σ2,a( f̃

[g]
nat,a|P ′)

≥
∑
a∈A′

f̃ [g]
nat,a · τ

[g]
a ( f̃ [g]

nat,a) − ηmax · |A|2 · (β + 1) ·
∑

p∈P\P ′
θp(T ). (A.26)

Inequalities (A.23)–(A.26) yield that

|C
(
f̃ [g]
at , Γ [g])− C

(
f̃ [g]
nat , Γ

[g]) |
≤ |C

(
f̃ [g]
1,nat , Γ

[g]
1

)
− C

(
f̃ [g]
nat |P ′, Γ

[g]
2

)
|

+ O

(√
1

T

)
+ O

⎛
⎝ ∑

a∈A\A′
θa (T )

⎞
⎠+ O

⎛
⎝ ∑

p∈P\P ′
θp (T )

⎞
⎠ .

(A.27)

Note that Γ
[g]
1 and Γ

[g]
2 share the same path set P ′ and the same arc set A′. In

particular, inequality (A.22) yields that the respective total demands of an arbitraryO/D
pair k ∈ K in Γ

[g]
1 and Γ

[g]
2 deviate from each other by at most O(

∑
p∈P\P ′ θp(T )),

and that |σ1,a(x) − σ2,a(x)| ∈ O(
∑

p∈P\P ′ θp(T )) for all x ∈ [0, 1] and all a ∈ A′.
Hence, viewed as non-atomic congestion games, the distance ‖Γ [g]

1 − Γ
[g]
2 ‖ between

Γ
[g]
1 andΓ

[g]
2 w.r.t. themetric defined inWu andMöhring [46] is O(

∑
p∈P\P ′ θp(T )).

Here, to save space, we recommend readers to (author?) [46] for a detailed definition
of that metric.

Let Γ
[g]′
1 be the non-atomic congestion game that has the same components as

Γ
[g]
1 , but with the original scaled cost functions τ

[g]
a for each arc a ∈ A′. Similarly,

let Γ
[g]′
2 be the non-atomic congestion game with all components of Γ

[g]
2 , but again

with the original scaled cost functions τ
[g]
a for each arc a ∈ A′. Then we obtain also
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that ‖Γ [g]
1 − Γ

[g]′
1 ‖ ∈ O(

∑
p∈P\P ′ θp(T )), ‖Γ [g]

2 − Γ
[g]′
2 ‖ ∈ O(

∑
p∈P\P ′ θp(T )),

and ‖Γ [g]′
1 − Γ

[g]′
2 ‖ ∈ O(

∑
p∈P\P ′ θp(T )).

Since Γ
[g]
1 and Γ

[g]′
1 differ only in their cost functions, Lemma 10d of [46] then

yields that the total cost difference between the respective non-atomic NE flows of

Γ
[g]
1 and Γ

[g]′
1 is in O(

√∑
p∈P\P ′ θp(T )). Here, we observe that the cost functions

of both Γ
[g]
1 and Γ

[g]′
1 are Lipschitz bounded by a constant independent of T on [0, 1].

Similarly, the cost difference between the respective non-atomic NE flows of Γ
[g]
2

and Γ
[g]′
2 is also in O(

√∑
p∈P\P ′ θp(T )). Moreover, as Γ

[g]′
1 and Γ

[g]′
2 differ only at

demands, Lemma 11a of [46] implies that the cost difference between their non-atomic

NE flows is again in O(
√∑

p∈P\P ′ θp(T )). In summary, we have that

|C
(
f̃ [g]
1,nat , Γ

[g]
1

)
− C

(
f̃ [g]
nat |P ′, Γ

[g]
2

)
| ∈ O

⎛
⎝
√ ∑

p∈P\P ′
θp (T )

⎞
⎠ ,

which, combined with inequality (A.27), yields that

|C
(
f̃ [g]
at , Γ [g])− C

(
f̃ [g]
nat , Γ

)
| ∈ O

(
T

− 1
2·maxa∈A βa

)
.

Here, we note that both θa(T ) and θp(T ) are O(− 1
maxb∈A βb

) for all non-tight arcs

a ∈ A and all non-tight paths p ∈ P, that f̃ [g]
1,nat is a non-atomic NE flow of Γ

[g]
1 ,

and that f̃ [g]
nat |P ′ is a non-atomic NE flow of Γ

[g]
2 . Then Lemma 10 and Lemma 11 of

Wu andMöhring [46] apply here, since they bound the non-atomic NE cost difference
from above by the square root of the metric with constant multipliers in terms of the
total demands, of the arc cost function values at the maximum feasible arc flows w.r.t.
the total demands, and of the Lipschitz constants of the cost functions, each of which

is bounded from above by a constant independent of T in the four games Γ
[g]
1 , Γ

[g]′
1 ,

Γ
[g]
2 and Γ

[g]′
2 . Again, to save space, we recommend the readers to Wu and Möhring

[46] for details.
This completes the proof of Theorem 3c. ��

Proof of Theorem 3a–b The argument for the proof of Theorem 3c does not carry over
to Theorem 3a–b, since the non-atomic SO flow of the resulting scaled game Γ [g]
could be of o(1), and then the convergence rate of Colini-Baldeschi et al. [10] does
not apply, whenwe still use the same scaling factor g as above, andwhen the condition,
that dk

T ≥ ξk for all k ∈ K and some constants ξk > 0 independent of T , does not
hold. Interested readers may refer to Wu et al. [47] for a detailed explanation.

To proveTheorem3a–b,we nowemploy the technique of asymptotic decomposition
developed byWu et al. [47], and show that Theorem 3a–b hold for an arbitrary infinite
sequence of growing total demand, which then directly implies the convergence in
Theorem 3a–b.
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To that end, we now consider an arbitrary sequence (Sn)n∈N s.t. each component Sn

is a tuple
(U (n), d(n), f̃ (n)

ran, Π̃
(n), f̃ (n)

nat , f ∗(n)
nat
)
satisfying properties (S1)–(S3) below:

– (S1) U (n) = ∪k∈K U (n)
k is an agent set of the game Γ , and d(n) = (d(n)

k,i )i∈U (n)
k , k∈K

is a vector of demands for the agents in U (n). Here, U (n)
k is an agent set of O/D

pair k ∈ K, d(n)
k,i ∈ (0, υ] is the demand of agent i ∈ Uk of O/D pair k ∈ K,

and υ > 0 is a finite constant upper bound of the maximum individual demand
d(n)
max := max

k∈K,i∈U (n)
k

d(n)
k,i , which is independent of the sequence (Sn)n∈N. To

facilitate our discussion, we denote the resulting game Γ equipped with U (n) and
d(n) by Γn := (τ,U (n), d(n)) for each n ∈ N.

– (S2) f̃ (n)
ran = ( f̃ (n)

ran,p)p∈P , f̃ (n)
nat = ( f̃ (n)

nat,p)p∈P and f ∗(n)
nat = ( f ∗(n)

nat,p)p∈P are
an arbitrary mixed NE flow, an arbitrary non-atomic NE flow, and an arbi-
trary non-atomic SO flow of the game Γn, respectively. Moreover, Π̃(n) =
(Π̃

(n)
i,p )

i∈U (n)
k ,p∈Pk ,k∈K is the mixed profile of f̃ (n)

ran .

– (S3) limn→∞ T (U (n), d(n)) = ∞, where T (U (n), d(n)) = ∑k∈K d(n)
k is the total

demand of Γn, and d(n)
k = ∑

i∈U (n)
k

d(n)
k,i is the demand of O/D pair k ∈ K. To

simplify notation, we write Tn := T (U (n), d(n)) in this proof.

Due to the arbitrary choice of (Sn)n∈N, Theorem 3a–b hold if and only if

lim
n→∞

C
(
EΠ̃(n)

(
f̃ (n)
ran
)
, Γn

)

C( f ∗(n)
nat , Γn)

= 1 and lim
n→∞

EΠ̃(n)

[
C( f̃ (n)

ran, Γn)
]

C( f ∗(n)
at , Γn)

= 1. (A.28)

Here, f ∗(n)
at is an arbitrary atomic SO flow of Γn . Note that Wu et al. [47] have proved

that limn→∞ ρnat (Γn) = limn→∞ C( f̃ (n)
nat ,Γn)

C( f ∗(n)
nat ,Γn)

= 1 as n → ∞ (i.e., Tn → ∞). Hence,

we can obtain (A.28) with Lemma 1, if (A.29) below holds.

lim
n→∞

C
(
EΠ̃(n) ( f̃

(n)
ran), Γn

)

C( f̃ (n)
nat , Γn)

= lim
n→∞

EΠ̃(n)

[
C( f̃ (n)

ran, Γn)
]

C( f̃ (n)
nat , Γn)

=1 (A.29)

Equation (A.29) means that the expected flow EΠ̃(n) ( f̃
(n)
ran) is asymptotically as

efficient as f̃ (n)
nat , and thus almost as efficient as f ∗(n)

nat whenn is large enough.Moreover,
the mixed NE flow f̃ (n)

ran is also asymptotically as efficient as f ∗(n)
nat w.r.t. its expected

total cost. Hence, all the flows, f̃ (n)
at , f ∗(n)

at ,EΠ̃(n) ( f̃
(n)
ran), f̃ (n)

ran, f ∗(n)
ran , f̃ (n)

nat , and f ∗(n)
nat ,

are almost equally efficient, when Tn gets large and (A.29) holds.
To prove (A.29), we only need to consider NE flows. This avoids the difficulties

of discussing the SO flows f̃ ∗(n)
nat and f ∗(n)

at . To facilitate our discussion, we assume,
w.l.o.g., that
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– (S4) limn→∞ d(n)
k ∈ [0,∞] and limn→∞

d(n)
k

d(n)

k′
∈ [0,∞] exist for all k, k′ ∈ K.

Note that (A.29) holds for an arbitrary sequence (Sn)n∈N satisfying (S1)–(S3) if and
only if (A.29) holds for an arbitrary sequence (Sn)n∈N satisfying (S1)–(S4). This
follows since every infinite subsequence (Sn j ) j∈N of a sequence (Sn)n∈N satisfying
(S1)–(S3) has an infinite subsequence (Sn jl

)l∈N fulfilling (S1)–(S4). We will use sim-
ilar subsequence arguments implicitly and repeatedly in this proof.

We now show (A.29) for an arbitrary sequence (Sn)n∈N satisfying (S1)–(S4) with
the technique of asymptotic decomposition of Wu et al. [47].

Step I: The asymptotic decomposition of Γn :
We put Kreg := {k ∈ K : limn→∞ d(n)

k = ∞} and K \Kreg =: Kirreg. We obtain
by (S3)–(S4) that Kreg �= ∅. We call k in Kreg regular, and k′ in Kirreg irregular. So

d(n)
k is bounded for k ∈ Kirreg, and unbounded for k ∈ Kreg.

We collect these k ∈ Kreg with an equal demand growth rate into one class, which,
by property (S4), then results in an ordered partitionK1 ≺ · · · ≺ Km ofKreg satisfying
conditions (AD1)–(AD2).

– (AD1) limn→∞
d(n)
k

d(n)

k′
∈ (0,∞), i.e., d(n)

k ∈ Θ(d(n)

k′ ), for all k, k′ ∈ Ku for each

u ∈ M := {1, . . . ,m},
– (AD2) limn→∞

d(n)
k

d(n)

k′
= 0, i.e., d(n)

k ∈ o(d(n)

k′ ), for all k ∈ Ku, k′ ∈ Kl for all

u, l ∈ M with l < u.

Here, m ≥ 1 is an integer, and Kl ≺ Ku means that these k′ ∈ Kl have demands d(n)

k′
converging to ∞ much faster than the demands d(n)

k of those k ∈ Ku .

W.r.t. this partition,Γn is decomposed into “subgames”Γn|K1 , . . . , Γn|Km , Γn|Kirreg .

Here, we call Γn|K′ a subgame of Γn if Γn|K′ is a restriction of Γn to the subset K′ of
O/D pairs, i.e., Γn|K′ is the game obtained by removing all O/D pairs k ∈ K \K′, and
all agents i ∈ ∪k∈K\K′U (n)

k together with their demands d(n)
k,i from Γn . We thus ignore

completely the influence of all O/D pairs k ∈ K \ K′ when we consider the subgame
Γn|K′ .

Clearly, each regular subgame Γn|Ku has the agent set U (n)

|Ku
:= ∪k∈KuU (n)

k , the

demand vector d(n)

|Ku
:= (d(n)

k,i )i∈U (n)
k ,k∈Ku

and the total demand Tn|Ku :=∑k∈Ku
d(n)
k

that tends to ∞ as n → ∞. The irregular subgame Γn|Kirreg has the agent set

U (n)

|Kirreg
:= ∪k∈KirregU (n)

k , the demand vector d(n)

|Kirreg
:= (d(n)

k,i )i∈U (n)
k ,k∈Kirreg

and the

total demand Tn|Kirreg :=∑k∈Kirreg
d(n)
k that tends to a bounded constant as n → ∞.

Moreover, we obtain by condition (AD2) that

lim
n→∞

Tn|Ku

Tn|Kl

= lim
n→∞

Tn|K\∪l
l′=1

Kl′

Tn|Kl

= 0 ∀u, l ∈ M with l < u. (A.30)

Here, we observe that Tn = Tn|Kirreg +∑m
l=1 Tn|Kl and Tn|K\∪l

l′=1
Kl′ = Tn|Kirreg +∑m

l ′=l+1 Tn|Kl′ .
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Note that each flow f (n) of Γn induces a joint total cost

CK′( f (n), Γn) :=
∑
k∈K′

∑
p∈Pk

f (n)
p · τp( f

(n))

and an independent total cost

C( f (n)

|K′ , Γn|K′) =
∑
k∈K′

∑
p∈Pk

f (n)
p · τp( f

(n)

|K′ ) =
∑
a∈A

f (n)

a|K′ · τa( f
(n)

a|K′)

for an arbitrary subset K′ of K, where f (n)

|K′ = ( f (n)
p )p∈∪k∈K′Pk is the restriction of

f (n) into the subgame Γn|K′, f (n)

a|K′ =∑k∈K′
∑

p∈Pk :a∈p f (n)
p is the arc flow induced

independently by the “flow” f (n)

|K′ of Γn|K′, and τp( f
(n)

|K′ ) = ∑
a∈p τa( f

(n)

a|K′) is the

independent path cost under the flow f (n)

|K′ . Here, we use that f
(n)

|K′ is indeed a flow of

Γn|K′, and so the independent total cost of f (n) is exactly the total cost of the flow

f (n)

|K′ in Γn|K′ .

W.r.t. the above asymptotic decomposition, we obtain for an arbitrary flow f (n) of
Γn that

C
(
f (n), Γn

)
= CKirreg

(
f (n), Γn

)
+

m∑
u=1

CKu

(
f (n), Γn

)

≥ C
(
f (n)

|Kirreg
, Γn|Kirreg

)
+

m∑
u=1

C
(
f (n)

|Ku
, Γn|Ku

)
,

f (n)
a = f (n)

a|Kirreg
+

m∑
u=1

f (n)

a|Ku
∀a ∈ A.

The above inequality follows since the joint path cost τp( f (n)) considers all subgames

and the independent path cost τp( f
(n)

|K′ ) considers only flow induced by agents from

k ∈ K′, and so τp( f (n)) ≥ τp( f
(n)

|K′ ) for each subset K′ of K.

Step II: An equivalent transformation in the limit
Wu et al. [47] have shown for this decomposition of non-atomic NE flows that

lim
n→∞

C( f̃ (n)
nat , Γn)

C( f̃ (n,−)
nat , Γn|Kirreg )+

∑m
l=1C( f̃ (n,l)

nat , Γn|Kl )

= lim
n→∞

CKirreg ( f̃
(n)
nat , Γn)+∑m

l=1CKl ( f̃
(n)
nat , Γn)

C( f̃ (n,−)
nat , Γn|Kirreg )+

∑m
l=1C( f̃ (n,l)

nat , Γn|Kl )

= lim
n→∞

∑m
l=1 CKl ( f̃

(n)
nat , Γn)∑m

l=1 C( f̃ (n,l)
nat , Γn|Kl )

= 1, (A.31)
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where f̃ (n,l)
nat and f̃ (n,−)

nat are non-atomic NE flows of Γn|Kl and Γn|Kirreg , respectively,

and where CKl ( f̃
(n)
nat , Γn) = ∑

k∈Kl

∑
p∈Pk

f̃ (n)
nat,p · τp( f̃

(n)
nat ) is the joint total cost

of Γn|Kl in the non-atomic NE flow f̃ (n)
nat of Γn . Note that the restriction f̃ (n)

nat |Kl
=

( f̃ (n)
nat,p)p∈Pk ,k∈Kl of f̃ (n)

nat is a non-atomic flow of Γn|Kl , but need not be a non-atomic

NE flow of Γn|Kl , and so has a total cost that may differ from f̃ (n,l)
nat .

The irregular subgame vanishes in the limit of (A.31), since it has a bounded total
demand and thus a negligible influence on the limit, see [47] for details.

For each n ∈ N, let f̃ (n,l)
nat , l ∈ M = {1, . . . ,m}, be arbitrary non-atomic NE flows

of subgames Γn|Kl , and let f̃ (n,−)
nat be an arbitrary non-atomic NE flow of Γn|Kirreg .

Then (A.29) follows from (A.31) if and only if

lim
n→∞

C
(
EΠ̃(n)

(
f̃ (n)
ran
)
, Γn

)

C( f̃ (n,−)
nat , Γn|Kirreg ) +∑m

l=1 C( f̃ (n,l)
nat , Γn|Kl )

= 1, (A.32)

lim
n→∞

EΠ̃(n)

[
C( f̃ (n)

ran, Γn)
]

C( f̃ (n,−)
nat , Γn|Kirreg ) +∑m

l=1 C( f̃ (n,l)
nat , Γn|Kl )

= 1. (A.33)

Step III: Further subsequence arguments
We will prove (A.32)–(A.33) by scaling each of the above regular subgames Γn|Ku

independently. We define a scaling factor g(u)
n := T λu

n|Ku
for each u ∈ M, where

λu := maxk∈Ku minp∈Pk maxa∈p βa ≥ 0. To facilitate the discussion, we also call a
path p ∈ ∪k∈KuPk for u ∈ M tight if maxa∈p βa ≤ λu, and non-tight if maxa∈p βa >

λu . Clearly, every k ∈ Ku has at least one tight path. Moreover, each tight path
p ∈ ∪k∈KuPk contains only arcs a ∈ A with βa ≤ λu, while a non-tight path
p′ ∈ ∪k∈KuPk contains at least one arc a ∈ A with βa > λu, for each u ∈ M. These
simple facts will be very helpful in the further discussion.

To simplify the proof, we assume further that the sequence (Sn)n∈N satisfies prop-
erties (S5)–(S8) below.

(S5) limn→∞ g(u)
n

g(l)
n

∈ [0,∞] exists for u, l ∈ M. We call g(u)
n and g(l)

n mutually

comparable.

(S6) limn→∞ f̃ (n,u)
nat

Tn|Ku
= limn→∞

(
f̃ (n,u)
nat,p

)
p∈Pk ,k∈Ku

Tn|Ku
=: f̃ (∞,u)

nat = ( f̃ (∞,u)
nat,p )p∈Pk ,k∈Ku

for u ∈ M.

(S7) For u ∈ M, limn→∞
E

Π̃(n) ( f̃
(n)
ran)|Ku

Tn|Ku
= limn→∞

(
E

Π̃(n) ( f̃
(n)
ran,p)

)
p∈Pk ,k∈Ku

Tn|Ku
=:

f̃ (∞,u)
exp = ( f̃ (∞,u)

exp,p )p∈Pk ,k∈Ku . Here, EΠ̃(n) ( f̃
(n)
ran)|Ku = EΠ̃(n) ( f̃

(n)

ran|Ku
) is the

restriction of the expectedflowEΠ̃(n) ( f̃
(n)
ran) = (EΠ̃(n) ( f̃

(n)
ran,p))p∈P of themixed

NE flow f̃ (n)
ran of Γn to the subgame Γn|Ku ,which is a non-atomic flow of Γn|Ku .

(S8) limn→∞
d(n)
k

Tn|Ku
=: d(∞,u)

k ∈ (0, 1] for each k ∈ Ku and each u ∈ M. This actu-
ally follows directly from property (S4) and decomposition condition (AD1).
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Note that (A.32)–(A.33) hold for an arbitrary sequence (Sn)n∈N fulfilling (S1)–
(S4) if and only if they hold for an arbitrary sequence (Sn)n∈N satisfying (S1)–(S8).
This follows again since every infinite subsequence (Sn j ) j∈N of an sequence (Sn)n∈N
fulfilling (S1)–(S4) contains an infinite subsequence (Sn jl

)l∈N fulfilling (S1)–(S8).

Step IV: The inductive assumptions
We will prove (A.32)–(A.33) by showing that the statements IA1–IA7 below hold

for each u ∈ M, using an induction on u over the set {0, . . . ,m} = {0}⋃M. Here,
we put K0 := ∅, g(0)

n := 0 and identify Γn|K0 as the empty subgame and employ the
convention that IA1–IA7 hold for u = 0.

IA1 max
p∈Pk : EΠ̃(n) ( f̃

(n)
ran,p)>0

τp(EΠ̃(n) ( f̃
(n)
ran)) ∈ O

(
maxul=0 g(l)

n
)
for k ∈ ∪u

l=0Kl ,

i.e., the most costly path used by agents of the subgame Γn|∪u
l=0Kl has a cost of

at most O
(
maxul=0 g(l)

n
)
in the expected flow EΠ̃(n) ( f̃

(n)
ran).

IA2 The joint total cost of Γn|∪u
l=0Kl in EΠ̃(n) ( f̃

(n)
ran) is Θ

(
maxul=0 g(l)

n · Tn|Kl

)
, i.e.,

u∑
l=0

CKl (EΠ̃(n) ( f̃ (n)
ran), Γn)

=
u∑

l=0

∑
k∈Kl

∑
p∈Pk

EΠ̃(n) ( f̃ (n)
ran,p) · τp(EΠ̃(n) ( f̃ (n)

ran))

∈ Θ
( u
max
l=0

g(l)
n · Tn|Kl

)
.

IA3 limn→∞
∑u

l=0 CKl (EΠ̃(n) ( f̃
(n)
ran),Γn)∑u

l=0C( f̃ (n,l)
nat ,Γn|Kl )

=1.

IA4 max
p∈Pk : EΠ̃(n) ( f̃

(n)
ran,p)>0

EΠ̃(n) (τp( f̃
(n)
ran)) ∈ O

(
maxul=0 g(l)

n
)
for k ∈ ∪u

l=0Kl .

IA5 The expected joint total cost of Γn|∪u
l=0Kl in f̃ (n)

ran is alsoΘ
(
maxul=0 g(l)

n ·Tn|Kl

)
,

i.e.,

EΠ̃(n)

[
u∑

l=0

CKl

(
f̃ (n), Γn

)]
=

u∑
l=0

∑
k∈Kl

∑
p∈Pk

EΠ̃(n) ( f̃ (n)
ran,p · τp( f̃

(n)
ran))

∈Θ

(
u

max
l=0 g(l)

n · Tn|Kl

)
.

IA6 limn→∞
E

Π̃(n) [∑u
l=0 CKl ( f̃

(n),Γn)]∑u
l=0 C( f̃ (n,l)

nat ,Γn|Kl )
=1.

IA7 For each k ∈ Kl and each l = 0, . . . , u,

max
p∈Pk : EΠ̃(n) ( f̃

(n)
ran,p)>0

EΠ̃(n)[ f̃ (n)
ran,p · τp( f̃

(n)
ran)] ∈ O

(
Tn|Kl · l

max
l ′=0

g(l ′)
n

)
.
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Among these inductive assumptions, IA3 and IA6 are the most crucial. We obtain
trivially that

lim
n→∞

∑m
l=0
∑

k∈Kl

∑
p∈Pk

EΠ̃(n)

(
f̃ (n)
ran,p

)·τp
(
EΠ̃(n) ( f̃

(n)
ran)
)

∑m
l=0C( f̃ (n,l)

nat , Γn|Kl )
=1, (A.34)

lim
n→∞

∑m
l=0
∑

k∈Kl

∑
p∈Pk

EΠ̃(n)

(
f̃ (n)
ran,p · τp( f̃

(n)
ran)
)

∑m
l=0 C( f̃ (n,l)

nat , Γn|Kl )
=1, (A.35)

when IA3 and IA6 hold for all u ∈ M = {1, . . . ,m}. Then (A.32)–(A.33) follow
immediately from (A.34)–(A.35), since the subgame Γn|Kirreg has a bounded total
demand and thus can be neglected in the limits by an argument similar to that in the
proof of Fact A2 below.

Moreover, IA4 implies IA7. This follows since the random event “ f̃ (n)
ran,p ≤ Tn|Kl ”

occurs almost surely for each p ∈ ∪k∈KlPk and each l ∈ M. In fact, IA4 also implies
IA1, which we will claim later in Fact A1.

Now, we consider an arbitrary u ∈ {0, . . . ,m−1} such that IA1–IA7 hold for each
non-negative integer l ≤ u. We will prove IA1–IA7 for u + 1, which then implies
(A.34)–(A.35) by induction, and so completes the proof of Theorem 3a–b.

Step V: Validating IA1–IA7 for u + 1
For each k ∈ Ku+1 and each p ∈ Pk, EΠ̃(n) ( f̃

(n)
ran,p) = 0 implies that Π̃

(n)
i,p = 0

for every i ∈ U (n)
k because of (2.2). So, for each p ∈ Pk, EΠ̃(n) ( f̃

(n)
ran,p) = 0 is

equivalent to the fact that the random event “ f̃ (n)
ran,p = 0” occurs almost surely, i.e.,

PΠ̃(n) ( f̃
(n)
ran,p = 0) = 1. Similarly, for each a ∈ A, EΠ̃(n) ( f̃

(n)

ran,a|∪u
l=0Kl

) = 0 is

equivalent to the fact that the random event “ f̃ (n)

ran,a|∪u
l=0Kl

= 0” occurs almost surely.

Therefore, we can directly remove f̃ (n)

ran,a|∪u
l=0Kl

from the respective expectations of

the random variables τa( f̃
(n)
ran,a) and f̃ (n)

ran,a ·τa( f̃ (n)
ran,a)whenEΠ̃(n) ( f̃

(n)

ran,a|∪u
l=0Kl

) = 0.

With the above observations and the inductive assumptions IA1 and IA4 of step u,

we obtain (A.36)–(A.38) for every arc a ∈ A and every path p ∈ ∪k∈Ku+1Pk .

τa
[
EΠ̃(n) ( f̃ (n)

ran,a)
]

= τa
[
EΠ̃(n) ( f̃

(n)

ran,a|∪u
l=0Kl

) + EΠ̃(n) ( f̃
(n)

ran,a|K\∪u
l=0Kl

)
]

=
⎧
⎨
⎩
O
(
maxul=0 g(l)

n
)

if EΠ̃(n)[ f̃ (n)

ran,a|∪u
l=0Kl

] > 0,

τa
[
EΠ̃(n) ( f̃

(n)

ran,a|K\∪u
l=0Kl

)
]

if EΠ̃(n)[ f̃ (n)

ran,a|∪u
l=0Kl

] = 0,
(A.36)

EΠ̃(n)

[
τa( f̃

(n)
ran,a)

]

= EΠ̃(n)

[
τa( f̃

(n)

ran,a|∪u
l=0Kl

+ f̃ (n)

ran,a|K\⋃u
l=0 Kl

)
]

=
⎧
⎨
⎩
O(maxul=0 g(l)

n ) if EΠ̃(n)

[
f̃ (n)

ran,a|∪u
l=0Kl

]
> 0,

EΠ̃(n)

[
τa( f̃

(n)

ran,a|K\∪u
l=1Kl

)
]

if EΠ̃(n)

[
f̃ (n)

ran,a|∪u
l=0Kl

] = 0,
(A.37)
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EΠ̃(n)

[
f̃ (n)
ran,p · τa( f̃

(n)
ran,a)

]

= EΠ̃(n)

[
f̃ (n)
ran,p · τa( f̃

(n)

ran,a|∪u
l=0Kl

+ f̃ (n)

ran,a|K\∪u
l=0Kl

)
]

=
⎧
⎨
⎩
O
(
Tn|Ku+1 · maxul=0 g(l)

n
)

if EΠ̃(n)[ f̃ (n)

ran,a|∪u
l=0Kl

]>0,

EΠ̃(n)

[
f̃ (n)
ran,p · τa( f̃

(n)

ran,a|K\∪u
l=0Kl

)
]

if EΠ̃(n)[ f̃ (n)

ran,a|∪u
l=0Kl

]=0.
(A.38)

(A.36) and (A.37) follow since IA1 and IA4 hold in steps l ≤ u, and since the
expected arc flow EΠ̃(n) ( f̃

(n)

ran,a|∪u
l=0Kl

) > 0 implies that arc a belongs to some path

p ∈ ∪u
l=0 ∪k∈Kl Pk with EΠ̃(n) ( f̃

(n)
ran,p) > 0. (A.38) follows immediately from (A.37)

and the fact that f̃ (n)
ran,p ≤ Tn|Ku+1 for every path p ∈ ∪k∈Ku+1Pk . Here, we observe

that (A.36)–(A.38) hold trivially when u = 0, i.e., when ∪u
l=0Kl = ∅. ��

With (A.36)–(A.37), we now show IA1, IA4 and IA7 for step u + 1.

Fact A1 IA1, IA4 and IA7 hold for step u + 1.

Proof of Fact A1 We only need to show IA4 and IA1, as IA4 implies IA7.

Proof of IA4 We obtain by (A.37) that EΠ̃(n) (τp( f̃
(n)
ran)) ∈ O(maxu+1

l=0 g(l)
n ) for every

tight path p ∈ ∪k∈Ku+1Pk . This follows since a tight path consists of arcs a with

degrees βa ≤ λu+1, g
(u+1)
n = T λu+1

n|Ku+1 , and Tn|Ku+1 ∈ Θ(Tn|Kl\∪u
l=0Kl ), see (A.30).

Then IA4 of step u + 1 follows immediately from the facts that every k ∈ Ku+1 has
at least one tight path, that f̃ (n)

ran is a mixed NE flow, and that d(n)
k,i ≤ υ for all k and i .

Here, we use that the choice of a single agent has a negligible influence on the expected
cost of a path (compared to maxu+1

l=0 g(l)
n ) when n is large enough, since his demand

is bounded from above by the constant υ and Tn|Ku+1 → ∞ as n → ∞. In fact, we

can even think of f̃ (n)
ran as a mixed WE flow (see Remark 1) in this proof.

Proof of IA1
We show for each a ∈ A that

τa[EΠ̃(n) ( f̃ (n)
ran,a)] ≤ EΠ̃(n)[τa( f̃ (n)

ran,a)] + O(1), (A.39)

which, combinedwith IA4 of step u+1, implies IA1 in step u+1, sincemaxu+1
l=0 g(l)

n ∈
Ω(1) for every u = 0, . . . ,m − 1. Note that τa(·) is convex on [Ma,∞) for some
constant Ma > 0, since τa(·) is a non-decreasing polynomial with an integer degree
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βa ≥ 0. Jensen’s inequality from Lemma 8c then yields that

τa

[
EΠ̃(n)

(
f̃ (n)
ran,a

)]
= τa

[
EΠ̃(n)

(
f̃ (n)
ran,a | f̃ (n)

ran,a ≥ Ma

)]
· PΠ̃(n)

[
f̃ (n)
ran,a ≥ Ma

]

+ τa

[
EΠ̃(n)

(
f̃ (n)
ran,a | f̃ (n)

ran,a < Ma

)]
· PΠ̃(n)

[
f̃ (n)
ran,a < Ma

]

≤ EΠ̃(n)

[
τa

(
f̃ (n)
ran,a

)
| f̃ (n)

ran,a ≥ Ma

]
· PΠ̃(n)

[
f̃ (n)
ran,a ≥ Ma

]

+ τa

[
EΠ̃(n)

(
f̃ (n)
ran,a | f̃ (n)

ran,a < Ma

)]
· PΠ̃(n)

[
f̃ (n)
ran,a < Ma

]

≤ EΠ̃(n)

[
τa

(
f̃ (n)
ran,a

)
| f̃ (n)

ran,a ≥ Ma

]
· PΠ̃(n)

[
f̃ (n)
ran,a ≥ Ma

]

+ EΠ̃(n)

[
τa

(
f̃ (n)
ran,a

)
| f̃ (n)

ran,a < Ma

]
· PΠ̃(n)

[
f̃ (n)
ran,a < Ma

]

+ τa (Ma) = EΠ̃(n)

[
τa

(
f̃ (n)
ran,a

)]
+ O (1) .

This proves IA1 for step u + 1, and completes the proof of Fact A11. ��

Note that either g(u+1)
n ∈ O(maxul=0 g(l)

n ) or g(u+1)
n ∈ ω(maxul=0 g(l)

n ), since the
scaling factors are mutually comparable, i.e., the sequence (Sn)n∈N satisfies property
(S5). To validate IA2–IA3 and IA5–IA6, we thus distinguish two subcases.

Subcases I: g(u+1)
n ∈ O(maxul=0 g(l)

n )

FactA2 shows IA2–IA3, and IA5–IA6 for stepu+1when g(u+1)
n ∈ O(maxul=0 g(l)

n ).

Then Fact A1–Fact A2 together imply IA1–IA7 for step u + 1 when g(u+1)
n ∈

O(maxul=0 g(l)
n ). Here, we observe that g(u+1)

n ∈ O(maxul=0 g(l)
n ) happens only when

u > 0, since g(0)
n = 0 and g(u+1)

n ∈ Ω(1) for each u ∈ {0, . . . ,m − 1}.

Fact A2 If g(u+1)
n ∈ O(maxul=0 g(l)

n ), then IA2–IA3, and IA5–IA6 hold at step u + 1.

Proof of Fact A2 IA1 of step u + 1 yields

EΠ̃(n)[ f̃ (n)
ran,p] · τp

[
EΠ̃(n) ( f̃ (n)

ran)
] ∈ O

(
Tn|Ku+1 · u+1

max
l=0

g(l)
n

)

= O
(
Tn|Ku+1 · u

max
l=0

g(l)
n

)

1 There is an alternative proof that does not need the convexity of the polynomial cost functions. The

random variable Xn := f̃ (n)

ran,a|K\∪u
l=0Kl

has a variance of at most υ ·E
Π̃(n) [Xn ], and so the random event

Footnote 1 continued
“Xn ≤ E

Π̃(n) [Xn ]−
√
2 · υ · E

Π̃(n) [Xn ]” occurs with a probability of at most 12 by Chebyshev’s inequality

from Lemma 8b. This then implies τa(E
Π(n) [Xn ]) ∈ O(E

Π̃(n) [τa(Xn)]), and so IA1 in step u + 1 holds
by IA4 of step u + 1 and (A.36). Hence, Theorem 3 carries also over to non-decreasing polynomial cost
functions with arbitrary non-negative real-valued degrees, since only the above proof of IA1 for step u + 1
involves the convexity of the cost functions.
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for every p ∈ ∪k∈Ku+1Pk with EΠ̃(n)[ f̃ (n)
ran,p] > 0 when g(u+1)

n ∈ O(maxul=0 g(l)
n ).

This in turn implies with (A.30) that

CKu+1

[
EΠ̃(n) ( f̃ (n)

ran), Γn
] =

∑
k∈Ku+1

∑
p∈Pk

EΠ̃(n)[ f̃ (n)
ran,p] · τp

[
EΠ̃(n) ( f̃ (n)

ran)
]

∈O
(
Tn|Ku+1 ·

u
max
l=0

g(l)
n

) ⊆o
( u
max
l=0

Tn|Kl ·g(l)
n

)
.

(A.40)

Then IA2 of step u + 1 follows from (A.30), g(u+1)
n ∈ O(maxul=0 g(l)

n ), and IA2 of
step u.

IA3 of step u + 1 then follows from (A.40), IA3 of step u, and (A.41),

C( f̃ (n,u+1)
nat , Γn|Ku+1) ∈Θ(Tn|Ku+1 ·g(u+1)

n ) ⊆o
( u
max
l=0

Tn|Kl ·g(l)
n

)
, (A.41)

see (A.43) of Fact A3 below.
(A.40)–(A.41) show that Γn|Ku+1 is negligible when we compute its respective total

cost in the expected flow of f̃ (n)
ran and f̃ (n,u+1)

nat , and when g(u+1)
n ∈ O(maxul=0 g(l)

n ).

Similarly, we can obtain IA5–IA6 of step u + 1 by showing that Γn|Ku+1 is again

negligible when we compute its joint expected total cost in f̃ (n)
ran and when g(u+1)

n ∈
O(maxul=0 g(l)

n ), where we use IA4 and IA7 of step u + 1.
This completes the proof of Fact A2. ��

Subcase II: g(u+1)
n ∈ ω(maxul=1 g(l)

n )

Wenow show IA2–IA3 and IA5–IA6 for step u+1when g(u+1)
n ∈ ω(maxul=1 g(l)

n ).

This, together with Fact A1 and Fact A2, completes the proof of IA1–IA7 for step
u + 1.

Fact A3 below states a helpful result from Wu et al. [47], which shows that the

limit f̃ (∞,u+1)
nat = limn→∞ f̃ (n,u+1)

nat
Tn|Ku+1

in (S6) is a non-atomic NE flow of a limit game

Γ
(∞)

|Ku+1
, and the scaled non-atomic NE cost

C( f̃ (n,u+1)
nat ,Γn|Ku+1 )

Tn|Ku+1 ·g(u+1)
n

of subgame Γn|Ku+1

converges to the total cost of the non-atomic NE flow f̃ (∞,u+1)
nat of Γ

(∞)

|Ku+1
. Here,

Γ
(∞)

|Ku+1
is a (non-atomic) congestion game with (O/D pair) demand vector d(∞,u+1) =

(d(∞,u+1)
k )k∈Ku+1 = limn→∞

d(n)
|Ku+1

Tn|Ku+1
limn→∞

(d(n,u+1)
k )k∈Ku+1
Tn|Ku+1

and cost function

τ (∞,u+1)
a (x)= lim

y→x+ lim
n→∞

τa
(
Tn|Ku+1 ·y

)

g(u+1)
n

=

⎧
⎪⎨
⎪⎩

∞ if βa >λu+1,
ηa · xβa if βa =λu+1,
0 if βa <λu+1,

(A.42)

for every x ∈ [0, 1] and every arc a ∈ A.
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Fact A3 (See [47]) For each u = {0, . . . ,m − 1} = {0} ∪ (M \ {m}),

lim
n→∞

C( f̃ (n,u+1)
nat , Γn|Ku+1)

Tn|Ku+1 · g(u+1)
n

= lim
n→∞

∑
k∈Ku+1

∑
p∈Pk

f̃ (n,u+1)
nat,p

Tn|Ku+1

· τp( f̃
(n,u+1)
nat )

g(u+1)
n

=
∑
a∈A

f (∞,u+1)
nat,a · τ (∞,u+1)

a ( f (∞,u+1)
nat,a ) ∈ (0,∞) (A.43)

and f (∞,u+1)
nat is a non-atomic NE flow of Γ (∞)

|Ku+1
s.t. f (∞,u+1)

nat .p = 0 for each non-tight
p ∈ ∪k∈Ku+1Pk . Here, we employ the convention that 0 · ∞ = 0.

Properties similar to Fact A3 actually carry over to the expected flowEΠ̃(n) ( f̃
(n)

ran|Ku+1
)

when g(u+1)
n ∈ ω(maxul=0 g(l)

n ). Here, we recall that limn→∞
E

Π̃(n) ( f̃
(n)
ran|Ku+1

)

Tn|Ku+1
=

f̃ (∞,u+1)
exp , see (S7).
Consider an arbitrary arc a ∈ A with βa ≤ λu+1. Then (A.36) yields

lim
n→∞

τa
(
E

Π̃(n) ( f̃
(n)
ran,a)

)

g(u+1)
n

= lim
n→∞

τa
(
E

Π̃(n) ( f̃
(n)
ran,a)

)

g(u+1)
n

· 1(0,∞)

(
E

Π̃(n) [ f̃ (n)

ran,a|∪u
l=0Kl

]
)

+ lim
n→∞

τa

(
E

Π̃(n)

(
f̃ (n)
ran,a|Ku+1

+ f̃ (n)

ran,a|K\∪u+1
l=0 Kl

))

g(u+1)
n

· 1{0}
(
E

Π̃(n) [ f̃ (n)

ran,a|∪u
l=0Kl

]
)

= lim
n→∞

τa

⎛
⎝Tn|Ku+1 · E

Π̃(n)

⎛
⎝ f̃ (n)

ran,a|Ku+1
Tn|Ku+1

+
f̃ (n)

ran,a|K\∪u+1
l=0 Kl

Tn|Ku+1

⎞
⎠
⎞
⎠

T
λu+1
n|Ku+1

= τ
(∞,u+1)
a

( ∑

k∈Ku+1

∑

p∈Pk :a∈p

f̃ (∞,u+1)
exp,p

)
= τ

(∞,u+1)
a ( f̃ (∞,u+1)

exp,a ). (A.44)

Here, we use (A.30) to remove the influence of subgame Γn|K\∪u+1
l=0 Kl

, and use (A.42)

to obtain the limit. The subgame Γn|∪u
l=0Kl vanishes in the limit since g(u+1)

n ∈
ω(maxul=0 g(l)

n ) and (A.36).
Hence, we obtain for each tight path p ∈ ∪k∈Ku+1Pk that

lim
n→∞

τp(EΠ̃(n) ( f̃
(n)
ran))

g(u+1)
n

= lim
n→∞

τp(EΠ̃(n) ( f̃
(n)

ran|Ku+1
))

g(u+1)
n

=τ (∞,u+1)
p ( f̃ (∞,u+1)

exp )∈[0,∞),

(A.45)
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since a tight path p ∈ ∪k∈Ku+1Pk contains only arcs a ∈ A with βa ≤ λu+1.

Lemma 9 shows another helpful result when we justify IA2–IA3 and IA5–(Sto–
IA6) for the case that g(u+1)

n ∈ ω(maxul=0 g
(l)
n ). We move the long proof of Lemma 9

to Appendix A.7.

Lemma 9 Consider an arbitrary a ∈ A, an arbitrary u ∈ {1, . . . ,m}, an arbitrary
polynomial function h(·) with degree β ≥ 0 and a constant gn := T λ

n|Ku
with an

arbitrary constant exponent λ > 0. Assume that h(x) is non-decreasing on [0,∞).

Then

lim
n→∞

EΠ̃(n) (h( f̃ (n)

ran,a|K\∪u−1
l=0 Kl

))

gn
= lim

n→∞

h(EΠ̃(n) ( f̃
(n)

ran,a|K\∪u−1
l=0 Kl

))

gn
∈ [0,∞]

if either of the two limits exist.

With Lemma 9, Fact A4 confirms IA2–IA3 and IA5–IA6 for the case that g(u+1)
n ∈

ω(maxul=0 g(l)
n ).

Fact A4 IA2–IA3, IA5–IA6 hold at step u + 1 when g(u+1)
n ∈ ω(maxul=0 g(l)

n ).

Proof of Fact A4 We obtain by IA1 of step u + 1 that EΠ̃(n)

(
f̃ (n)
ran,p

) ∈ o(Tn|Ku+1)

for an arbitrary non-tight path p ∈ ∪k∈Ku+1Pk . Otherwise, there is a non-tight path
p ∈ ∪k∈Ku+1Pk with

τp(EΠ̃(n) ( f̃ (n)
ran)) =

∑
a∈p

τa(EΠ̃(n) ( f̃ (n)
ran,a)) ≥

∑
a∈p

τa(EΠ̃(n) ( f̃ (n)
ran,p)) ∈ ω(g(u+1)

n )

and EΠ̃(n)

(
f̃ (n)
ran,p

) ∈ Ω(Tn|Ku+1). This contradicts IA1 of step u + 1, i.e., τp′(
EΠ̃(n) ( f̃

(n)
ran)
) ∈ O(g(u+1)

n ) for every p′ ∈ ∪k∈Ku+1Pk with EΠ̃(n) ( f̃
(n)

ran,p′) > 0

when g(u+1)
n ∈ ω(maxul=0 g(l)

n ). Here, we recall again that every non-tight path
p ∈ ∪k∈Ku+1Pk contains at least one arc a ∈ A whose cost function has a degree
βa > λu+1.

Consequently, we obtain for each non-tight path p ∈ ∪k∈Ku+1Pk that

f̃ (∞,u+1)
exp,p = lim

n→∞
EΠ̃(n) ( f̃

(n)
ran,p)

Tn|Ku+1

= 0,

lim
n→∞

EΠ̃(n) ( f̃
(n)
ran,p)

Tn|Ku+1

· τp
(
EΠ̃(n)

(
f̃ (n)
ran
))

g(u+1)
n

= lim
n→∞

EΠ̃(n) ( f̃
(n)
ran,p) · 1(0,∞)(EΠ̃(n) ( f̃

(n)
ran,p))

Tn|Ku+1

· τp
(
EΠ̃(n)

(
f̃ (n)
ran
))

g(u+1)
n

= 0.

(A.46)

Here, we used again IA1 of step u + 1.

123



984 Z. Wu et al.

(A.45) and (A.46) together imply that

lim
n→∞

CKu+1

[
EΠ̃(n) ( f̃

(n)
ran), Γn

]

Tn|Ku+1 · g(u+1)
n

= lim
n→∞

∑
k∈Ku+1

∑
p∈Pk

EΠ̃(n) ( f̃
(n)
ran,p) · τp(EΠ̃(n) ( f̃

(n)
ran))

Tn|Ku+1 · g(u+1)
n

= lim
n→∞

∑
k∈Ku+1

∑
p∈Pk :p is tight EΠ̃(n) ( f̃

(n)
ran,p) · τp(EΠ̃(n) ( f̃

(n)

ran|Ku+1
))

Tn|Ku+1 · g(u+1)
n

=
∑
a∈A

f (∞,u+1)
exp,a · τ (∞,u+1)

a ( f (∞,u+1)
exp,a ), (A.47)

where we again use the convention that 0 · ∞ = 0. So IA2 of step u + 1 holds.
When λu+1 > 0, then we obtain by Lemma 9 that f̃ (∞,u+1)

exp is a non-atomic NE

flow of Γ
(∞)

|Ku+1
. This follows since g(u+1)

n ∈ ω(maxul=0 g(l)
n ) and

τ (∞,u+1)
p ( f̃ (∞,u+1)

exp ) = lim
n→∞

τp(EΠ̃(n) ( f̃ran))

g(u+1)
n

= lim
n→∞

EΠ̃(n) (τp( f̃
(n)
ran))

g(u+1)
n

≤ lim
n→∞

EΠ̃(n) (τp′( f̃ (n)
ran))

g(u+1)
n

= lim
n→∞

τp′(EΠ̃(n) ( f̃ran))

g(u+1)
n

= τ
(∞,u+1)
p′ ( f̃ (∞,u+1)

exp )

(A.48)

for an arbitrary k ∈ Ku+1 and two arbitrary tight paths p, p′ ∈ Pk with f̃ (∞,u+1)
exp,p > 0.

We used Lemma 9 to exchange the expectation and the function τp(·) in (A.48),
used (A.45) to obtain the limits on both sides, and used (A.36)–(A.37) to remove the
influence of subgame Γ|∪u

l=0Kl in the limits when g(u+1)
n ∈ ω(maxul=0 g(l)

n ) and the

paths p and p′ are tight. Moreover, the inequality in (A.48) follows since f̃ (n)
ran is a

mixed NE flow, which has a similar behavior with a mixed WE flow when we scale
the path cost with g(u+1) and the maximum individual demand is bounded from above
by υ.

When λu+1 = 0, then every tight path has constant cost. So (A.48) holds trivially
and f̃ (∞,u+1)

exp is also a non-atomic NE flow of Γ
(∞)

|Ku+1
. Here, we recall (A.46), i.e.,

f̃ (∞,u+1)
exp,p > 0 only if p ∈ ∪k∈Ku+1Pk is tight.
The above arguments together with Fact A3 and IA3 of step u imply IA3 for step

u + 1.
Below we show IA5–IA6 for step u + 1 when g(u+1)

n ∈ ω(maxul=0 g(l)
n ).
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Lemma 9 implies for each θn ∈ o(Tn|Ku+1) and each a ∈ A with βa ≤ λu+1 that

lim
n→∞

EΠ̃(n)

[
( f̃ (n)

ran,a|K\∪u
l=0Kl

± θn) · τa( f̃
(n)

ran,a|K\∪u
l=0Kl

)
]

Tn|Ku+1 · g(u+1)
n

= lim
n→∞

EΠ̃(n)

[
f̃ (n)

ran,a|K\∪u
l=0Kl

· τa( f̃
(n)

ran,a|K\∪u
l=0Kl

)
]

Tn|Ku+1 · g(u+1)
n

= lim
n→∞

EΠ̃(n)

[
f̃ (n)

ran,a|K\∪u
l=0Kl

] · τa
[
EΠ̃(n) ( f̃

(n)

ran,a|K\∪u
l=0Kl

)
]

Tn|Ku+1 · g(u+1)
n

= lim
n→∞

EΠ̃(n)

[
f̃ (n)

ran,a|Ku+1

] · τa
[
EΠ̃(n) ( f̃

(n)

ran,a|Ku+1
)
]

Tn|Ku+1 · g(u+1)
n

= f̃ (∞,u+1)
exp,a · τ (∞,u+1)

a ( f̃ (∞,u+1)
exp,a ).

(A.49)

Here, EΠ̃(n)[θn · τa( f̃
(n)

ran,a|K\∪u
l=1Kl

)] ∈ o(Tn|Ku+1 · g(u+1)
n ), as τa( f̃

(n)

ran,a|K\∪u
l=1Kl

)

∈ O
(
g(u+1)
n

)
holds almost surely when βa ≤ λu+1.

Lemma 9, (A.37)–(A.38), g(u+1)
n ∈ ω(maxul=0 g

(l)
n ) and (A.46) together imply for

each non-tight path p ∈ ∪k∈Ku+1Pk that

lim
n→∞

E
Π̃(n)

[
f̃ (n)
ran,p ·τp( f̃ (n)

ran)
]

Tn|Ku+1 ·g(u+1)
n

= lim
n→∞

1(0,∞)[EΠ̃(n) ( f̃
(n)
ran,p)]·EΠ̃(n)

[
f̃ (n)
ran,p ·τp( f̃ (n)

ran)
]

Tn|Ku+1 ·g(u+1)
n

= lim
n→∞

∑
a∈p:βa>λu+1

1(0,∞)[EΠ̃(n) ( f̃
(n)
ran,p)] · E

Π̃(n)

[
f̃ (n)
ran,p · τa( f̃

(n)
ran,a)

]

Tn|Ku+1 · g(u+1)
n

= lim
n→∞

∑
a∈p:βa>λu+11(0,∞)[EΠ̃(n)( f̃

(n)
ran,p)]·EΠ̃(n)

[
f̃ (n)
ran,p ·τa( f̃ (n)

ran,a|K\∪u
l=0Kl

)
]

Tn|Ku+1 ·g(u+1)
n

≤ lim
n→∞

∑
a∈p:βa>λu+11(0,∞)[EΠ̃(n)( f̃

(n)
ran,p)]·EΠ̃(n)

[
f̃ (n)

ran,a|K\∪u
l=0Kl

·τa( f̃ (n)

ran,a|K\∪u
l=0Kl

)
]

Tn|Ku+1 ·g(u+1)
n

= lim
n→∞

∑
a∈p:βa>λu+11(0,∞)[EΠ̃(n)( f̃

(n)
ran,p)]·EΠ̃(n)

[
f̃ (n)
ran,a|K\∪u

l=0Kl

]·τa
[
E

Π̃(n)( f̃
(n)

ran,a|K\∪u
l=0Kl

)
]

Tn|Ku+1 ·g(u+1)
n

≤ lim
n→∞

∑
a∈p:βa>λu+11(0,∞)[EΠ̃(n)( f̃

(n)
ran,p)]·EΠ̃(n)

[
f̃ (n)

ran,a|K\∪u
l=0Kl

]·τp
[
E

Π̃(n) ( f̃
(n)
ran)

]

Tn|Ku+1 ·g(u+1)
n

= lim
n→∞

∑
a∈p:βa>λu+1

1(0,∞)[EΠ̃(n) ( f̃
(n)
ran,p)] · E

Π̃(n)

[
f̃ (n)
ran,a|Ku+1

]

Tn|Ku+1

· O(1)
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= lim
n→∞

∑
a∈p:βa>λu+1

∑
p′∈∪k∈Ku+1Pk :a∈p′1(0,∞)[EΠ̃(n)( f̃

(n)
ran,p)]·EΠ̃(n)

[
f̃ (n)
ran,p′

]

Tn|Ku+1

· O(1)

= 0. (A.50)

Here, we used that Tn|K\∪u+1
l=1 Kl

∈ o
(
Tn|Ku+1

)
, that EΠ̃(n) ( f̃

(n)
ran,p) = 0 implies

PΠ̃(n) ( f̃
(n)
ran,p · τp( f̃

(n)
ran,a) = 0) = 1 for every a ∈ A, that EΠ̃(n) ( f̃

(n)
ran,p) > 0

implies τp(EΠ̃(n) ( f̃
(n)
ran)) ∈ O(g(u+1)

n ), that p′ is non-tight if p′ contains an arc a
with βa > λu+1, and that

lim
n→∞

∑
a∈p:βa≤λu+1

1(0,∞)(EΠ̃(n) ( f̃
(n)
ran,p)) · EΠ̃(n)

(
f̃ (n)
ran,p · τa( f̃

(n)
ran,a)

)

Tn|Ku+1 · g(u+1)
n

= lim
n→∞

∑
a∈p:βa≤λu+1

1(0,∞)(EΠ̃(n) ( f̃
(n)
ran,p)) · EΠ̃(n)

(
f̃ (n)
ran,p · τa( f̃

(n)

ran,a|K\∪u
l=0Kl

)
)

Tn|Ku+1 · g(u+1)
n

≤ lim
n→∞

∑
a∈p:βa≤λu+11(0,∞)(EΠ̃(n)( f̃

(n)
ran,p))·EΠ̃(n)

(
f̃ (n)
ran,p

)·τa(Tn|K\∪u
l=0Kl )

Tn|Ku+1 · g(u+1)
n

= lim
n→∞

∑
a∈p:βa≤λu+1

1(0,∞)(EΠ̃(n) ( f̃
(n)
ran,p)) · EΠ̃(n)

(
f̃ (n)
ran,p

)

Tn|Ku+1

· O(1) = 0

when p ∈ ∪k∈Ku+1Pk is non-tight.
(A.50) means that non-tight paths are also negligible in the limit when we scale the

joint (expected) total cost of the subgame Γn|Ku+1 in the mixed NE flow f̃ (n)
ran with the

factor Tn|Ku+1 · g(u+1)
n .

(A.49)–(A.50), (A.38) and g(u+1)
n ∈ ω(maxul=0 g(l)

n ) together imply that

lim
n→∞

∑
k∈Ku+1

∑
p∈Pk

EΠ̃(n) ( f̃
(n)
ran,p · τp( f̃

(n)
ran))

Tn|Ku+1 · g(u+1)
n

= lim
n→∞

∑
k∈Ku+1

∑
p∈Pk :p is tight EΠ̃(n) ( f̃

(n)
ran,p · τp( f̃

(n)

ran|K\∪u
l=0Kl

))

Tn|Ku+1 · g(u+1)
n

= lim
n→∞

∑
a∈A:βa≤λu+1

EΠ̃(n) ( f̃
(n)
ran,a| tight p · τa( f̃

(n)

ran,a|K\∪u
l=0Kl

))

Tn|Ku+1 · g(u+1)
n

= lim
n→∞

∑
a∈A:βa≤λu+1

EΠ̃(n) ( f̃
(n)

ran,a|K\∪u
l=0Kl

· τa( f̃
(n)

ran,a|K\∪u
l=0Kl

))

Tn|Ku+1 · g(u+1)
n

(A.51)

=
∑

a∈A:βa≤λu+1

f̃ (∞,u+1)
exp,a · τ (∞,u+1)

a ( f̃ (∞,u+1)
exp,a )
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=
∑
a∈A

f̃ (∞,u+1)
exp,a · τ (∞,u+1)

a ( f̃ (∞,u+1)
exp,a ),

where we put f̃ (n)
ran,a|tight p :=∑p′∈∪k∈Ku+1Pk :a∈p′,p′ is tight f̃

(n)

ran,p′ for each a ∈ A with

βa ≤ λu+1. We also used that

f̃ (n)

ran,a|K\∪u
l=1Kl

− f̃ (n)
ran,a| tight p ≤

∑
k∈Ku+1

∑
p′∈Pk : p′ is non-tight

f̃ (n)

ran,p′ + Tn|K\∪u+1
l=1 Kl

∈ o(Tn|Ku+1),

and that

lim
n→∞

EΠ̃(n) ( f̃
(n)

ran,p′ · τa( f̃
(n)

ran,a|K\∪u
l=0Kl

))

Tn|Ku+1 · g(u+1)
n

≤ lim
n→∞

EΠ̃(n) ( f̃
(n)

ran,p′)

Tn|Ku+1

· O(1) = 0

when βa ≤ λu+1 and p′ ∈ ∪k∈Ku+1Pk is non-tight. Here, we observe that the random

event “τa( f̃
(n)

ran,a|K\∪u
l=0Kl

) ∈ O(g(u+1)
n )” occurs almost surely when βa ≤ λu+1.

(A.51) together with Fact A3 proves IA5–IA6 for step u + 1. Note that we have
already shown that f̃ (∞,u+1)

exp is a non-atomic NE flow of Γ
(∞)

|Ku+1
. This completes the

proof of Fact A4. ��
Therefore, IA1–IA7 hold for all u ∈ M. This completes the whole proof by induc-

tion. ��

A.7 Proof of Lemma 9

Consider an arbitrary arc a ∈ A, and an arbitrary u ∈ M = {1, . . . ,m}. Let gn =
T λ
n|Ku

be a factor with an arbitrary exponent λ > 0, and let h : [0,∞) → [0,∞)

be an arbitrary non-decreasing polynomial function with degree β ≥ 0. To simplify
notation, we assume thatKu = K\∪u−1

l=0 Kl . The proof still holds whenKu is replaced
by K \ ∪u−1

l=0 Kl , since (A.30) holds and limn→∞ gn
T λ

n|K\∪u−1
l=0 Kl

= limn→∞ gn
T λ
n|Ku

= 1.

We assume, w.o.l.g., that the limit limn→∞
h(E

Π̃(n) ( f̃
(n)
ran,a|Ku

))

gn
∈ [0,∞] exists.

To prove Lemma 9, we need tight probability lower and upper bounds for the
random event | f̃ (n)

ran,a|Ku
− EΠ̃(n) ( f̃

(n)

ran,a|Ku
)| ∈ O(EΠ̃(n) ( f̃

(n)

ran,a|Ku
)), for which we

will need Markov’s inequality from Lemma 8a.
Note that f̃ (n)

ran,a|Ku
= ∑

k∈Ku

∑
i∈U (n)

k
d(n)
k,i · 1

pk,i (Π̃
(n)
i )

(a) is a weighted sum

of mutually independent Bernoulli random variables 1
pk,i (Π̃

(n)
i )

(a), i ∈ U (n)

|Ku
=

∪k∈KuU (n)
k . Recall that pk,i (Π̃

(n)
i ) is the random path sampled by agent i using the
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probability distribution Π̃
(n)
i = (Π̃

(n)
i,p )p∈Pk for each k ∈ Ku and i ∈ U (n)

k , and that
1B(b) is the indicator function of the membership relation “b ∈ B” for an arbitrary
set B and an arbitrary element b.

Fact A5a–d below show useful lower and upper probability bounds for a weighted
sum of arbitrary Bernoulli random variables, and thus apply to the weighted sum
f̃ (n)

ran,a|Ku
.

Fact A5 Consider n mutually independent Bernoulli random variables X1, . . . , Xn

with success probabilities q1, . . . , qn ∈ [0, 1], respectively. Let v1, . . . , vn be non-
negative weights with sum Vn :=∑n

i=1 vi , and let Yn =∑n
i=1 vi · Xi be the weighted

sum of these n random variables. If vi ≤ υ for a constant υ > 0, then the following
probability bounds hold.

a) P
(
Yn ≥ (1 + δ) · E(Yn)

) ≤ e− (δ+1)·E(Yn )
v

·
(
ln(δ+1)− δ

δ+1

)
for all δ > 0.

b) P
(
Yn ≤ (1 − δ) · E(Yn)

)≤ e− Vn−(1−δ)·E(Yn )
v

·
(
ln Vn−(1−δ)·E(Yn )

Vn−E(Yn )
− δ·E(Yn )

Vn−(1−δ)·E(Yn )

)
for all δ ∈

(0, 1).
c) If limn→∞ E(Yn) = 0 and limn→∞ Vn > 1, then there is an integer N ∈ N such

that P
(
Yn ≥ 1 + δ

) ≤ e− δ+1
v

·
(
ln(δ+1)− δ

δ+1

)
for all δ > 0 and all n ≥ N .

d) If limn→∞ Vn
E(Yn)

= 1 and limn→∞ Vn = ∞, then there is an integer N ∈ N s.t.

P
(
Yn ≤(1−δ) · (E(Yn)−c)

)≤e− Vn−(1−δ)·(E(Yn )−c)
v

·
(
ln Vn−(1−δ)·(E(Yn )−c)

Vn−E(Yn )+c − δ·E(Yn )−δ·c
Vn−(1−δ)·(E(Yn )−c)

)
for

all δ ∈ (0, 1), all c ∈ (0, E(Yn)), and all n ≥ N .

Proof of Fact A5a Our proof is similar to that for the usual Chernoff bound in, e.g., [27,
33]. UsingMarkov’s inequality and the fact that X1, . . . , Xn are mutually independent
Bernoulli random variables with success probabilities q1, . . . , qn , we obtain for an
arbitrary t > 0 and an arbitrary δ > 0 that

P
(
Yn ≥ (1 + δ) · E(Yn)

)

= P
(
et ·Yn ≥ et ·(1+δ)·E(Yn)

) ≤
∏n

i=1 E(et ·Xi ·vi )
et ·(1+δ)·E(Yn)

=
∏n

i=1

(
qi · et ·vi + (1 − qi )

)

et ·(1+δ)·E(Yn)
=
∏n

i=1

(
qi · vi · t · et ·vi −1

t ·vi + 1
)

et ·(1+δ)·E(Yn)
.

(A.52)

The function ex−1
x is non-decreasing on (0,∞) and 1+x ≤ ex holds for all x ∈ [0,∞).

So we obtain by (A.52) that

P
(
Yn ≥(1+δ) · E(Yn)

) ≤
∏n

i=1

(
qi · vi · t · et ·υ−1

t ·υ +1
)

et ·(1+δ)·E(Yn)

≤ e
∑n

i=1 qi ·vi · e
t ·υ−1

υ

et ·(1+δ)·E(Yn)
=eE(Yn)·

(
et ·υ−1

υ
−t ·(1+δ)

) (A.53)
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for all t > 0. (A.53) implies that P
(
Yn ≥ (1+δ) ·E(Yn)

) ≤ e− (δ+1)·E(Yn )
v

·
(
ln(δ+1)− δ

δ+1

)

when we put t = ln(δ+1)
v

and observe that ln(δ + 1) − δ
δ+1 > 0 for all δ > 0.

Proof of Fact A5b Let Zn := ∑n
i=1 vi · (1 − Xi ) = Vn − Yn . Then Zn + Yn = Vn

and E(Zn) + E(Yn) = Vn . Fact A5a) implies for every δ ∈ (0, 1) that

P
(
Zn ≥ E(Zn) + δ · E(Yn) = (1 + δ · E(Yn)

E(Zn)

) · E(Zn)
)

≤ e−E(Zn )+δ·E(Yn )
v

·
(
ln E(Zn )+δ·E(Yn )

E(Zn )
− δ·E(Yn )

E(Zn )+δ·E(Yn )

)
.

Since the random event Zn ≥ E(Zn) + δ · E(Yn) is equivalent to the random event
Yn ≤ (1 − δ) · E(Yn), we obtain that

P(Yn ≤ (1 − δ) · E(Yn)) ≤ e−E(Zn )+δ·E(Yn )
v

·
(
ln E(Zn )+δ·E(Yn )

E(Zn )
− δ·E(Yn )

E(Zn )+δ·E(Yn )

)

= e− Vn−(1−δ)·E(Yn )
v

·
(
ln Vn−(1−δ)·E(Yn )

Vn−E(Yn )
− δ·E(Yn )

Vn−(1−δ)·E(Yn )

) (A.54)

for all δ ∈ (0, 1). (A.54) proves Fact A5b.

Proof of Fact A5c We say that n mutually independent Bernoulli random vari-
ables X ′

1, . . . , X
′
n with success probabilities q ′

1, . . . , q
′
n are stochastically larger

than X1, . . . , Xn if q ′
i ≥ qi for each i = 1, . . . , n. Clearly, there are n mutually

independent Bernoulli random variables X ′
1, . . . , X

′
n that are stochastically larger

than X1, . . . , Xn and satisfy E(Y ′
n) = E(

∑n
i=1 vi · X ′

i ) = ∑n
i=1 vi · q ′

i = 1 for
large enough n. This follows since E(Yn) = ∑n

i=1 vi · qi → 0 as n → ∞,

limn→∞ Vn = limn→∞
∑

i=1 vi > 1, and the continuous multi-variate function
α(x1, . . . , xn) := ∑n

i=1 vi · (qi + xi ) has [E(Yn), Vn] as its range on the compact
domain

∏n
i=1[0, 1 − qi ] for all n ∈ N.

Fact A5c then follows from Fact A5a, if P(Yn ≥ c) ≤ P(Y ′
n = ∑n

i=1 vi · X ′
i ≥ c)

for an arbitrary constant c ≥ E(Yn), (since we can then obtain Fact A5c by applying
Fact A5a to Y ′

n with c = 1 + δ for large enough n).
Consider now an arbitrary constant c ≥ E(Yn). We prove below that P(Yn ≥ c) ≤

P(Y ′
n ≥ c) only for the particular case that q ′

1 ≥ q1 and q ′
i = qi for all i = 2, . . . , n.

One can obtain a complete proof for the general case with a simple induction over
{2, . . . , n}.

Note that

P(Y ′
n ≥ c) = P

⎛
⎝

n∑
i=2

vi · X ′
i ≥ c − v1

⎞
⎠ · P(X ′

1 = 1) + P

⎛
⎝

n∑
i=2

vi · X ′
i ≥ c

⎞
⎠ · P(X ′

1 = 0)

= P

⎛
⎝

n∑
i=2

vi · X ′
i ≥ c − v1

⎞
⎠ · (q1 + q ′

1 − q1) + P

⎛
⎝

n∑
i=2

vi · X ′
i ≥ c

⎞
⎠

·(1 − q1 + q1 − q ′
1)
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= P(Yn ≥ c) + (q ′
1 − q1) ·

⎛
⎝P
⎛
⎝

n∑
i=2

vi · Xi ≥ c − v1

⎞
⎠− P

⎛
⎝

n∑
i=2

vi · Xi ≥ c

⎞
⎠
⎞
⎠

= P(Yn ≥ c) + (q ′
1 − q1) · P

⎛
⎝c >

n∑
i=2

vi · Xi ≥ c − v1

⎞
⎠ ≥ P(Yn ≥ c).

This follows since the Bernoulli random variables Xi and X ′
i can be identified for each

i = 2, . . . , n, as they have the same success probability qi . ��

Proof of Fact A5d It follows immediately from Fact A5b and the fact that there are n
mutually independent Bernoulli random variables X ′

1, . . . , X
′
n such that X1, . . . , Xn

are stochastically larger than X ′
1, . . . , X

′
n and E(Y ′

n) = E(Yn) − c for a constant c ∈
(0, E(Yn)). Note that such Bernoulli random variables exist since limn→∞ Vn

E(Yn)
= 1

and limn→∞ Vn = ∞.

This completes the proof of Fact A5. ��

The two probability bounds in Fact A5a–b are similar to Chernoff’s bounds and
Hoeffding’s bounds, see, e.g., [20, 27, 33]. However, a direct application of these
known bounds to f̃ (n)

ran,a|Ku
involves either the number |U (n)

|Ku
| of agents in subgame

Γn|Ku , or theminimum individual demandmin
k∈Ku ,i∈U (n)

k
d(n)
k,i . Note that thisminimum

individual demand may vanish quickly as n → ∞ and so the number |U (n)

|Ku
| of agents

need not be in Θ(Tn|Ku ). Therefore, we include a proof tailored to our needs.

Note also that Fact A5a does not applywhenEΠ̃(n) ( f̃
(n)

ran,a|Ku
) ∈ o(1), and Fact A5b

does not apply when limn→∞
E

Π̃(n) ( f̃
(n)
ran,a|Ku

)

Tn|Ku
= f̃ (∞,u)

exp,a = 1. We will instead use
Fact A5c–d, respectively, in the proof of Lemma 9 in these two cases.

With all these preparations, we are now ready to prove Lemma 9.
The two limits in Lemma 9 are equal to 0 when λ > β, since both

h(EΠ̃(n) ( f̃
(n)

ran,a|Ku
)) and EΠ̃(n) (h( f̃ (n)

ran,a|Ku
)) are in o(gn) when λ > β.

We assume, w.l.o.g., that β ≥ λ > 0. Moreover, we assume that limn→∞EΠ̃(n)

( f̃ (n)

ran,a|Ku
) ∈ [0,∞] exists. Otherwise, we take an arbitrary infinite subsequence

(n j ) j∈N satisfying this condition. To simplify notation, we write Yn := f̃ (n)

ran,a|Ku
,

En := EΠ̃(n) ( f̃
(n)

ran,a|Ku
), PΠ̃(n) (·) = P(·), and EΠ̃(n) (·) = E(·).

We distinguish four cases.

Case I: En ∈ Θ(1), i.e., limn→∞ En ∈ (0,∞). Let ξ := λ
2·β ∈ (0, 1). We obtain by

Fact A5a with δ := T ξ

n|Ku
that P[Yn ≥ (1 + δ) · En] ≤ e

− (1+δ)·En
υ

·
(
ln(δ+1)− δ

δ+1

)
=

e−ω(T ξ
n|Ku

/υ)
.

123



A convergence analysis of the price… 991

This in turn implies thatE(h(Yn)) ≤ e−ω
(
T ξ
n|Ku

/υ
)
·h(Tn|Ku )+h

(
(1+T ξ

n|Ku
)·En

) ∈
o(gn). So limn→∞ h(En)

gn
=0= limn→∞ E(h(Yn))

gn
.

Case II: En ∈ o(1), i.e., limn→∞ En = 0. We obtain by Fact A5c that P
[
Yn ≥

1 + T ξ

n|Ku

] ≤ e−ω
(
T ξ
n|Ku

/υ
)
. Then, limn→∞ h(En)

gn
= 0= limn→∞ E(h(Yn))

gn
.

Case III: f̃ (∞,u)
exp,a = limn→∞ En

Tn|Ku
= 1. We obtain by Fact A5d that

P
[
Yn ≤ (1 − δ

) · (En − c
)] ≤ e

− Tn|Ku−(1−δ)·(En−c)
v

·
(
ln

Tn|Ku−(1−δ)·(En )−c)
Tn|Ku−En+c − δ·En−δ·c

Tn|Ku−(1−δ)·(En−c)
)

= e−Ω
(
δ·Tn|Ku

)
,

where δ ∈ (0, 1) is an arbitrary constant and c := √Tn|Ku . Therefore,

E(h(Yn))

h(En)
≥(1−e−Ω(δ·Tn|Ku )) · h((1−δ) · (En−√Tn|Ku ))

h(En)
.

This implies that limn→∞
E(h(Yn))
h(En)

≥ (1− δ)β by letting n → ∞ on both sides of the

above inequality. So limn→∞
E(h(Yn))
h(En)

≥ 1 due to the arbitrary choice of δ ∈ (0, 1).

However, on the other hand, limn→∞ E(h(Yn))
h(En)

= limn→∞ E(h(Yn))
h(Tn|Ku )

· limn→∞
h(Tn|Ku )

h(En)
≤1.

Hence, we have limn→∞ E(h(Yn))
h(En)

= 1 when f̃ (∞,u)
exp,a = 1.

Case IV: f̃ (∞,u)
exp,a < 1 and En ∈ ω(1), i.e., limn→∞ En = ∞ and Tn|Ku − En ∈

Θ(Tn|Ku ).Clearly, Fact A5a–b apply in this case.We further distinguish two subcases.

(Subcase IV-I: h(En) ∈ o(gn)) Then En ∈ o(T λ/β

n|Ku
). We obtain further by Fact A5a

that E(h(Yn)) ∈ o(gn). This follows since P(Yn > δ · T λ/β

n|Ku
) ≤ e−Ω(δ·T λ/β

n|Ku
) for all

δ > 0 when En ∈ o(T λ/β

n|Ku
), and so limn→∞ E(h(Yn))

gn
≤ δβ · O(1) for all δ > 0.

(Subcase IV-II: h(En) ∈ Ω(gn)) Then En ∈ Ω(T λ/β

n|Ku
). Fact A5a yields that P

[
Yn ≥

En + E2/3
n
] = e

− En+E
2/3
n

υ
·
(
ln(1+E−1/3

n )− E
−1/3
n

1+E
−1/3
n

)
≤ e−Ω(E1/3

n ). Hence,

lim
n→∞

E(h(Yn))

h(En)
≤ lim

n→∞ e−Ω(E1/3
n ) · h(Tn|Ku )

h(En)
+ lim

n→∞
h(En+E2/3

n )

h(En)
=1.

Moreover, limn→∞
E(h(Yn))
h(En)

≥ 1 follows from Fact A5b, since P[Yn ≤ (1− δ) · En] ≤
e−Ω(Tn|Ku ) for each δ ∈ (0, 1), when Tn|Ku − En ∈ Θ(Tn|Ku ).

All the above together prove Lemma 9. ��

123



992 Z. Wu et al.

References

1. Beckmann,M.,McGuire, C.,Winsten, C.: Studies in the economics of transportation. Yale Univ. Press,
New Haven, CT (1956)

2. Bingham,N.,Goldie, C., Teugels, J.: Regular variation.CambridgeUniversity Press, Cambridge (1987)
3. Brouwer, L.E.J.: Uber eineindeutige. stetige transformationen von flächen in sich. Math. Ann. 67,

176–180 (1910)
4. Budny, K.: A generalization of chebyshev’s inequality for hilbert-space-valued random elements.

Statist. Probab. Lett. 88, 62–65 (2014)
5. Bureau of Public Roads: Traffic assignment manual. USA, U.S, Department of Commerce, Urban

Planning Division, Washington, D.C. (1964)
6. Chau, C., Sim, K.: The price of anarchy for non-atomic congestion games with symmetric cost maps

and elastic demands. Operations Research Letter 31, 327–334 (2003)
7. Christodoulou, G., Koutsoupias, E.: The price of anarchy in finite congestion games. In: Proceedings

of the 37th Annual ACM Symposium on Theory of Computing–STOC’05, ACM, Baltimore, MD, 1–7
(2005)

8. Colini-Baldeschi, R., Cominetti, R., Scarsini, M.: On the price of anarchy of highly congested
nonatomic network games. In: International Symposium on Algorithmic Game Theory, Springer, Lec-
ture Notes in Computer Science 9928, Berlin Heidelberg, 117–128 (2016)

9. Colini-Baldeschi, R., Cominetti, R., Mertikopoulos, P., Scarsini, M.: The asymptotic behavior of the
price of anarchy. In: WINE 2017. Lecture Notes in Computer Science, vol. 10674, pp. 133–145.
Springer, Berlin Heidelberg (2017)

10. Colini-Baldeschi, R., Cominetti, R., Mertikopoulos, P., Scarsini, M.: When is selfish routing bad? the
price of anarchy in light and heavy traffic. Oper. Res. 68(2), 411–434 (2020). https://doi.org/10.1287/
opre.2019.1894

11. Cominetti, R., Scarsini, M., Schröder, M., Stier-Moses, N.: Approximation and convergence of large
atomic congestion games. Tech. rep., arXiv:2001.02797v6 [cs.GT] (2021)

12. Correa, J., Schulz, A., Stier-Moses, N.: Selfish routing in capacitated networks.Math. Oper. Res. 29(4),
961–976 (2004)

13. Correa, J., Schulz, A., Stier-Moses, N.: On the inefficiency of equilibria in congestion games, extended
abstract. In: Proceedings of Integer Programming and Combinatorial Optimization, Berlin, Germany,
June 8-10, Lecture Notes in Computer Science 3509, Berlin Heidelberg, 167–181 (2005)

14. Dafermos, S.: Traffic equilibrium and variational inequalities. Transp. Sci. 14(1), 42–54 (1980)
15. Dafermos, S., Sparrow, F.: The traffic assignment problem for a general network. Journal of Research

of the US National Bureau of Standards 73B, 91–118 (1969)
16. Fotakis, D., Kontogiannis, S., Spirakis, P.: Selfish unsplittable flows. Theoret. Comput. Sci. 348(2),

226–239 (2005)
17. Harks, T., Klimm, M.: On the existence of pure nash equilibria in weighted congestion games. Math.

Oper. Res. 37(3), 419–436 (2012)
18. Harks, T., Klimm, M., Möhring, R.: Characterizing the existence of potential functions in weighted

congestion games. Theory Computer Systems 49(1), 46–70 (2011)
19. Haurie, A., Marcotte, P.: On the relationship between nash-cournot and wardrop equilibria. Networks

15(3), 295–308 (1985)
20. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc.

58(301), 13–30 (1963)
21. Jacquot, P., Wan, C.: Routing game on parallel networks: the convergence of atomic to nonatomic.

Tech. rep., arXiv:1804.03081 [cs.GT] (2018)
22. Jacquot, P., Wan, C.: Nonatomic aggregative games with infinitely many types. Tech. rep.,

arXiv:1906.01986 [cs.GT] (2019)
23. Jahn, O., Möhring, R.H., Schulz, A.S., Stier-Moses, N.E.: System-optimal routing of traffic flows with

user constraints in networks with congestion. Oper. Res. 53(4), 600–616 (2005)
24. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Proceedings of the 16th Annual Sym-

posium on Theoretical Aspects of Computer Science (STACS), Springer, Lecture Notes in Computer
Science 1563, Berlin Heidelberg, 404–413 (1999)

25. McShane, E.: Jensen’s inequality. Bull. Am. Math. Soc. 43(8), 521–528 (1937)
26. Milchtaich, I.: Generic uniqueness of equilibrium in large crowding games. Math. Oper. Res. 25(3),

349–364 (2000)

123

https://doi.org/10.1287/opre.2019.1894
https://doi.org/10.1287/opre.2019.1894
http://arxiv.org/abs/2001.02797v6
http://arxiv.org/abs/1804.03081
http://arxiv.org/abs/1906.01986


A convergence analysis of the price… 993

27. Mitrinovic, D.: Analytic Inequalities. Springer-Verlag, New York/Heidelberg/Berlin (1970)
28. Monderer, D., Shapley, L.: Potential games. Games Econom. Behav. 14(1), 124–143 (1996)
29. Monnot, B., Benita, F., Piliouras, G.: How bad is selfish routing in practice? Tech. rep.,

arXiv:1703.01599v2 [cs.GT] (2017)
30. Nash, J.J.: Equilibrium points in n-person games. Proc. Nat. Acad. Sci, USA 36(1), 48–49 (1950)
31. Neuts, M.,Wolfson, D.: Convexity of the bounds induced bymarkov’s inequality. Stochastic Processes

and Their Applications 1, 145–149 (1973)
32. Nisan, N., Roughgarden, T., Tardos, É., Vaz, V.: Algorithmic game theory. CambridgeUniversity Press,

Cambridge, UK (2007)
33. Nowak, R.: Chernoff’s bound and hoeffding’s inequality. Polyhedron 13(1), 45–51 (1994)
34. O’Hare, S., Connors, R., Watling, D.: Mechanisms that govern how the price of anarchy varies with

travel demand. Transportation Research Part B Methodological 84, 55–80 (2016)
35. Papadimitriou, C.: Algorithms, games, and the internet. In: International Colloquium on Automata,

Languages, and Programming, Springer, Lecture Notes in Computer Science 2076, Berlin Heidelberg,
1–3 (2001)

36. Perakis, G.: The price of anarchy under nonlinear and asymmetric costs. Math. Oper. Res. 32(3),
614–628 (2007)

37. Rosenthal, R.: A class of games possessing pure-strategy nash equilibria. Internat. J. Game Theory
2(1), 65–67 (1973)

38. Roughgarden, T.: Designing networks for selfish users is hard. Proceedings of Annual Symposium on
Foundations of Computer Science 72(72), 472–481 (2001)

39. Roughgarden, T.: The price of anarchy is independent of the network topology. Journal of Computer
& System Sciences 67(2), 341–364 (2003)

40. Roughgarden, T.: Selfish Routing and the Price of Anarchy. The MIT Press, Cambridge, MA (2005)
41. Roughgarden, T.: Intrinsic robustness of the price of anarchy. J. ACM 62(32), 1–42 (2015)
42. Roughgarden, T., Tardos, É.: How bad is selfish routing? J. ACM 49(2), 236–259 (2002)
43. Roughgarden, T., Tardos, É.: Bounding the inefficiency of equilibria in nonatomic congestion games.

Games & Economic Behavior 47(2), 389–403 (2004)
44. Roughgarden, T., Tardos, É.: Routing games. In: Nisan, N., Roughgarden, T., Tardos, É., Vazirani, V.V.

(eds.) Algorithmic game theory, pp. 461–486. Cambridge University Press, Cambridge, MA (2007)
45. Wardrop, J.: Some theoretical aspects of road traffic research. Proc. Inst. Civ. Eng. 1(2), 325–362

(1952)
46. Wu, Z., Möhring, R.: A sensitivity analysis of the price of anarchy in non-atomic congestion games.

Tech. rep., arXiv:2007.13979v3 [cs.GT] (2021)
47. Wu, Z., Möhring, R., Chen, Y., Xu, D.: Selfishness need not be bad. Oper. Res. 69(2), 410–435 (2021).

https://doi.org/10.1287/opre.2020.2036
48. Youn, H., Gastner, M.T., Jeong, H.: Erratum: Price of anarchy in transportation networks: efficiency

and optimality control. Phys. Rev. Lett. 101, 128701 (2008)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/1703.01599v2
http://arxiv.org/abs/2007.13979v3
https://doi.org/10.1287/opre.2020.2036

	A convergence analysis of the price of anarchy in atomic congestion games
	Abstract
	1 Introduction
	1.1 Our contribution
	1.2 Related work
	1.2.1 Existence of equilibria
	1.2.2 Worst-case upper bounds on the price of anarchy
	1.2.3 Convergence of the price of anarchy

	1.3 Outline of the paper
	2 Model and preliminaries
	2.1 Atomic and non-atomic congestion games
	2.2 Atomic, non-atomic and mixed profiles
	2.3 Multi-commodity flows and their cost
	2.4 Social optima and equilibria
	2.5 The price of anarchy

	3 Convergence results of the PoAs in atomic congestion games
	3.1 Convergence results for polynomial cost functions of the same degree
	3.1.1 An upper bound for the atomic PoA
	3.1.2 Upper bounds for the mixed PoA and the random PoA

	3.2 Concergence results for polynomial cost functions with arbitrary degrees

	4 Summary
	Acknowledgements
	A Detailed proofs
	A.1 The existence of mixed WE flows
	A.2 Stochastic inequalities
	A.3 Proof of lemma 4
	A.4 Proof of Lemma 5
	A.5 Proof of Lemma 6

	A.6 Proof of Theorem 3
	A.7 Proof of Lemma 9
	References






