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Abstract
The questionwhether the SimplexAlgorithm admits an efficient pivot rule remains one
of the most important open questions in discrete optimization. While many natural,
deterministic pivot rules are known to yield exponential running times, the random-
facet rule was shown to have a subexponential running time. For a long time, Zadeh’s
rule remained the most prominent candidate for the first deterministic pivot rule with
subexponential running time. We present a lower bound construction that shows that
Zadeh’s rule is in fact exponential in the worst case. Our construction is based on a
close relation to the Strategy Improvement Algorithm for Parity Games and the Policy
Iteration Algorithm for Markov Decision Processes, and we also obtain exponential
lower bounds for Zadeh’s rule in these contexts.
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1 Introduction

The quest for discovering the best pivot rule for the Simplex Algorithm [5] remains
one of the most important challenges in discrete optimization. In particular, while
several other weakly polynomial algorithms for solving Linear Programs have been
proposed in the past [3, 9, 27–29], no fully “combinatorial” algorithm with strongly
polynomial running time is known to date – in fact, the question whether such an
algorithm exists is contained in Smale’s list of 18 mathematical problems for the
century, among other famous unsolved problems like the Riemann hypothesis and the
PversusNPproblem [36]. TheSimplexAlgorithm is inherently combinatorial andmay
yield a strongly polynomial algorithm if a suitable pivot rule exists. The question what
theoretical worst-case running time can be achieved with a pivot rule for the Simplex
Algorithm is closely related to the question what the largest possible (combinatorial)
diameter of a polytope is, and, in particular, to the weak Hirsch conjecture which states
that the diameter is polynomially bounded [5, 35, 41].

For a variety of natural pivot rules, exponential worst-case examples were found
soon after the Simplex Algorithmwas proposed [1, 20, 30]. These examples are highly
imbalanced in the sense that they cause some improving directions to be selected by
the pivot rule only rarely, while others are selected often. Randomized pivot rules were
proposed as a way to average out the behavior of the Simplex Algorithm and to thus
avoid imbalanced behavior. The hope that this may lead to a better worst-case perfor-
mance was met when subexponential upper bounds were eventually established for
the random-facet pivot rule [22, 25, 32]. Other promising candidates for efficient pivot
rules were deterministic “pseudo-random” rules that balance the behavior of the algo-
rithm explicitly by considering all past decisions in each step, instead of obliviously
deciding for improvements independently. The two most prominent examples of such
pivot rules are Cunningham’s rule [4] which fixes an order of all possible improvement
directions at the start and, in each step, picks the next improving direction in this order
in round robin fashion, and Zadeh’s rule [43] which picks an improving direction cho-
sen least often so far in each step. By design, bad examples are much more difficult to
construct for these more balanced pivoting rules, and it took more than 30 years until
the first lower bounds were established. Eventually, a subexponential lower bound
was shown for the random-facet rule [17, 18, 21] and the random-edge rule [17, 33].
Most recently, a subexponential lower bound was shown for Zadeh’s rule [7, 15], and
an exponential lower bound for Cunningham’s rule [2]. An exponential lower bound
for Zadeh’s rule is known on Acyclic Unique Sink Orientations [39], but it is unclear
whether the corresponding construction can be realized as a Linear Program. This
means that Zadeh’s rule remained the only promising candidate for a deterministic
pivot rule to match the subexponential running time of the random-facet rule.

Local search algorithms similar to the Simplex Algorithm are important in other
domains, like Vöge and Jurdziński’s Strategy Improvement Algorithm for Parity
Games [42] and Howard’s Policy Iteration Algorithm for Markov Decision Pro-
cesses [23]. Much like the Simplex Algorithm, these algorithms rely on a pivot rule
that determines which local improvement to perform in each step. And much like for
the Simplex Algorithm, many natural deterministic pivot rules for these algorithms
have been shown to be exponential [2, 10, 12, 13], while a subexponential upper bound
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has been shown for the random-facet rule [16, 18, 25, 26, 32]. Again, Zadeh’s rule
remained as a promising candidate for a deterministic subexponential pivot rule.
Our results and techniques. In this paper, we give the first exponential lower bound
for Zadeh’s pivot rule for the Strategy Improvement Algorithm for Parity Games, for
the Policy Iteration Algorithm for Markov Decision Processes, and for the Simplex
Algorithm. This closes a long-standing open problemby eliminatingZadeh’s pivot rule
as a candidate for a deterministic, subexponential pivot rule in each of these three areas
(up to tie-breaking). We note that while the lower bound for the Simplex Algorithm is
arguably our most important result, the lower bounds for Parity Games and Markov
Decision Processes are important in their own right and complement previous results
in these areas [10, 12, 13, 16].

Our lower bound construction is based on the technique used in [2, 15] (among
others). In particular, we construct a Parity Game that forces the Strategy Improvement
Algorithm to emulate a binary counter by enumerating strategies corresponding to
the natural numbers 0 to 2n−1. The construction is then converted into a Markov
Decision Process that behaves similarly (but not identically) regarding the Policy
Iteration Algorithm. Finally, using a well-known transformation, theMarkovDecision
Process can be turned into a Linear Program for which the Simplex Algorithmmimics
the behavior of the Policy Iteration Algorithm. We remark that we use an artificial,
but systematic and polynomial time computable, tie-breaking rule for the pivot step
whenever Zadeh’s rule does not yield a unique improvement direction. Importantly,
while the tie-breaking rule is carefully crafted to simplify the analysis, conceptually,
our construction is not based on exploiting the tie-breaking rule. Note that it cannot be
avoided to fix a tie-breaking rule when analyzing Zadeh’s pivot rule, in the sense that,
for everyMarkovDecision Process of size n, a tie-breaking rule tailored to this instance
exists, such that the Policy Iteration Algorithm takes at most n steps [14, Cor. 4.79].

Roughly speaking, much like the subexponential construction in [15], our construc-
tion consists of multiple levels, one for each bit of the counter. The subexponential
construction of [15] requires each level to connect to the level of the least significant
set bit of the currently represented number, which yields a quadratic number m of
edges in the construction, which in turn leads to a lower bound of 2Ω(n) = 2Ω(

√
m),

i.e., a subexponential bound in the size Θ(m) of the construction. In contrast, our
construction only needs each level to connect to one of the first two levels, depending
on whether the currently represented number is even or odd. Very roughly, this is
the key idea of our result, since it allows us to reduce the size of the construction to
Θ(n), which leads to an exponential lower bound. However, to make this change pos-
sible, many other technical details have to be addressed, and, in particular, we are no
longer able to carry the construction for Parity Games over as-is to Markov Decision
Processes.

A challenge when constructing a lower bound for Zadeh’s rule is to keep track
not only of the exact sets of improving directions in each step, but also of the exact
number of times every improving direction was selected in the past. In contrast, the
exponential lower bound construction for Cunningham’s rule [2] “only” needs to keep
track of the next improving direction in the fixed cyclic order. As a consequence,
the full proof of our result is very technical, because it requires us to consider all
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possible improvements in every step, and there are many transitional steps between
configurations representing natural numbers. In this paper,we give an exact description
of our construction and an outline of our proof. A complete and detailed proof can be
found in the full version [6]. Importantly, our construction has been implemented and
tested empirically for consistency with our formal treatment, see Appendix A.1 The
resulting animations of the execution for n = 3 resp. n = 4, which take 160 resp. 466
steps, are available online [24].

2 Parity games and strategy improvement

A Parity Game (PG) is a two player game that is played on a directed graph where
every vertex has at least one outgoing edge. Formally, it is defined as a tuple G =
(V0, V1, E,Ω), where V0∩V1 = ∅, (V0∪V1, E) is a directed graph andΩ : V0∪V1 →
N is the priority function. The set Vp is the set of vertices of player p ∈ {0, 1} and
the set Ep:={(v,w) ∈ E : v ∈ Vp} is the set of edges of player p ∈ {0, 1}. We let
V :=V0 ∪ V1. A play in G is an infinite walk in the graph. The winner of a play is
determined by the highest priority that occurs infinitely often along the walk. If this
priority is even, player 0 wins, otherwise, player 1 wins.

Formally, a play in G can be described by a pair of strategies. A strategy for player
p is a function that chooses one outgoing edge for each vertex of player p. To be
precise, a (deterministic positional) strategy for player p is a function σ : Vp → V
that selects for each vertex v ∈ Vp a target vertex σ(v) such that (v, σ (v)) ∈ Ep for all
v ∈ Vp. Throughout this paperwe only consider deterministic positional strategies and
henceforth simply refer to them as strategies. Two strategies σ, τ for players 0,1 and
a starting vertex v then define a unique play starting at v with the corresponding walk
being determined by the strategies of the players. A play can thus fully be described by
a tuple (σ, τ, v) and is denoted by πσ,τ,v . A player 0 strategy σ is winning for player
0 at vertex v, if player 0 is the winner of every game πσ,τ,v , regardless of τ . Winning
strategies for player 1 are defined analogously. A fundamental result in the theory of
Parity Games is that, for every starting vertex, there always is a winning strategy for
exactly one of the two players. The computational problem of solving a parity game
consists in finding the corresponding partition of V .

Theorem 1 (e.g. [11, 31]) In every Parity Game, V can be partitioned into winning
sets (W0,W1), where player p has a positional winning strategy for each starting
vertex v ∈ Wp.

2.1 Vertex valuations, the strategy improvement algorithm, and sink games

We now discuss the Strategy Improvement Algorithm of Vöge and Jurdziński [42] and
its theoretical background. We discuss the concept of vertex valuations and define a

1 We used two separate implementations to double-check our construction. Firstly, we used the PGSolver
library [19] as a black box with our construction as input. Secondly, a new policy iteration tool for sink
games was implemented from scratch [37], again using our concrete construction only as an input. Both
implementations confirm the intended behavior, including quantitative details, for instances up to size n = 5.

123



An exponential lower bound for Zadeh’s pivot rule 869

special class of games that our construction belongs to, called sink games, and define
vertex valuations for this class of games. We refer to [2, 14] for a more in-depth and
general discussion of these topics.

Fix a pairσ, τ of strategies for players 0,1, respectively. The idea of vertex valuations
is to assign a valuation to every v ∈ V that encodes how “profitable” vertex v is
for player 0. By defining a suitable pre-order on these valuations, this enables us to
compare the valuations of vertices and “improve” the strategy σ by changing the target
σ(v) of a vertex v to a more “profitable” vertex w �= σ(v) with (v,w) ∈ E . Since
there are only finitely many strategies and vertices, the strategy of player 0 can only be
improved a finite number of times, eventually resulting in a so-called optimal strategy
for player 0. It is known (e.g., [14, 42]) that an optimal strategy can then be used to
determine the winning sets W0,W1 of the Parity Game and thus to solve the game.

Formally, vertex valuations are given as a totally ordered set (U ,	). For every pair
of strategies σ, τ , we are given a function Ξσ,τ : V → U assigning vertex valuations
to vertices. Since U is totally ordered, this induces a preorder of the vertices for fixed
strategies σ, τ . To eliminate the dependency on the player 1 strategy, we define the
vertex valuation of v with respect to σ byΞσ (v):=min≺ Ξσ,τ (v)where the minimum
is taken over all player 1 strategies τ . Formally, ifΞσ,τ (τ (v)) 	 Ξσ (v) for all (v, u) ∈
E1, then the player 1 strategy τ is called counterstrategy for σ . It is well-known that
counterstrategies exist and can be computed efficiently [42]. For a strategy σ , an
arbitrary but fixed counterstrategy is denoted by τσ .

We can extend this ordering to a partial ordering of strategies by defining σ � σ ′
if and only if Ξσ (v) 	 Ξσ ′(v) for all v ∈ V . We write σ � σ ′ if σ � σ ′ and σ �= σ ′.
Given a strategy σ , a strategy σ ′ with σ �σ ′ can be obtained by applying an improving
switch. Intuitively, an improving switch is an edge such that including e in σ improves
the strategy with respect to�. Formally, let e = (v, u) ∈ E0 and σ(v) �= u. We define
the strategy σe via σe(v′):=σ(v) if v′ �= v and σe(v):=u. The edge e is improving for
σ if σ � σe and we denote the set of improving switches for σ by Iσ .

The Strategy Improvement Algorithm now operates as follows. Given an initial
strategy ι, apply improving switches until a strategy σ ∗ with Iσ ∗ = ∅ is reached. Such
a strategy is called optimal and a strategy is optimal if and only if σ �σ ∗ for all player
0 strategies [42]. The running time of this algorithm highly depends on the order in
which improving switches are applied – a point that we discuss in more detail later.

This terminology allows us to introduce a special class of Parity Games, called sink
games. This class allows for an easy definition of the vertex valuations as discussed
after the definition.

Definition 1 A Parity Game G = (V0, V1, E,Ω) together with an initial player 0
strategy ι is a Sink Game if the following two statements hold.

1. There is a vertex t ∈ V1 with (t, t) ∈ E and Ω(t) = 1 reachable from all vertices.
In addition, Ω(v) > Ω(t) for all v ∈ V \{t}. This unique vertex t is called the sink
of the sink game.

2. For each player 0 strategy σ with ι � σ and each vertex v, every play πσ,τσ ,v ends
in t .

Let G = (V0, V1, E,Ω) and ι define a Sink Game. To simplify the presentation,
assume that Ω is injective. Since G is a Sink Game, every play πσ,τσ ,v in G can be

123



870 Y. Disser et al.

represented as the walk πσ,τσ ,v = v, v2, . . . , vk, (t)∞. In particular, a play can be
identified with its path component v, v2, . . . , vk . Now, defining Ξσ (v) as the path
component of πσ,τσ ,v is a well-studied choice of vertex valuations. To give a total
ordering of the vertex valuations, it thus suffices to give a ordering of all subsets of V .

Let M, N ⊆ V , M �= N . Intuitively, M is better than N for player 0 if it contains
a vertex with large even priority not contained in N , or if it there is a vertex with
large odd priority contained in N but not in M . Formally, v ∈ MΔN is called most
significant difference of M and N if Ω(v) > Ω(w) for all w ∈ MΔN , w �= v. The
most significant difference of M and N is denoted byΔ(M, N ) and allows us to define
an ordering ≺ on the subsets of V . For M, N ⊂ V , M �= N we define

N ≺ M ⇐⇒ [Δ(M, N ) ∈ M ∧Δ(M, N ) is even] ∨ [Δ(M, N ) ∈ N ∧Δ(M, N ) is odd].

Note that ≺ is a total ordering as we assume Ω to be injective. We mention here
that injectivity is not necessary – the most significant difference of any two vertex
valuations being unique suffices.

The following theorem summarizes the most important aspects related to Parity
Games, vertex valuations and improving switches. Note that the construction of vertex
valuations given here is a simplified version of the general concept of vertex valuations
used for Parity Games. It is, however, in accordance with the general construction and
we refer to [14] for a more detailed discussion.

Theorem 2 [42] Let G = (V0, V1, E,Ω) be a Sink Game and σ be a player 0 strategy.

1. The vertex valuations of a player 0 strategy are polynomial-time computable.
2. There is an optimal player 0 strategy σ ∗ with respect to the ordering �.
3. If Iσ = ∅, then σ is optimal.
4. We have Iσ = {(v,w) ∈ E0 : Ξσ (σ(v)) � Ξσ (w)} and σ � σe for all e ∈ Iσ .
5. Given an optimal player 0 strategy, the winning sets W0 and W1 of player 0 and

player 1 can be computed in polynomial time.

3 Lower bound construction

In this section, we describe a PG Sn = (V0, V1, E,Ω) such that the Strategy Improve-
ment Algorithm performs at least 2n iterations when using Zadeh’s pivot rule and a
specific tie-breaking rule. Before giving a formal definition, we give a high-level intu-
ition of themain idea of the construction. A simplified visualization of the construction
is given in Fig. 1.

The key idea is that Sn simulates an n-digit binary counter. We thus introduce
notation related to binary counting. It will be convenient to consider counter configu-
rations with more than n bits, where unused bits are zero. In particular, we always
interpret bit n + 1 as 0. Formally, we denote the set of n-bit configurations by
Bn :={b ∈ {0, 1}∞ : bi = 0 ∀i > n}. We start with index one, hence a counter
configuration b ∈ Bn is a tuple (bn, . . . , b1). Here, b1 is the least and bn is themost sig-
nificant bit. The integer value of b ∈ Bn is

∑n
i=1 bi2i−1. We identify the integer value

of b with its counter configuration and use the natural ordering of N to order counter
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Fig. 1 Visualization of the general structure of the binary counter for n = 4. Level 1 encodes the least
significant bit and level 4 encodes the most significant bit. The left picture shows the cycle centers and their
distribution in the levels. The two figures on the right give examples for settings of the cycles representing
the numbers 11 and 3, respectively

configurations. For b ∈ Bn, b �= 0, we define ν(b):=min{i ∈ {1, . . . , n} : bi = 1} to
be the least significant set bit of b.

The PG Sn consists of n (nearly) identical levels and each level encodes one bit
of the counter. Certain strategies and corresponding counterstrategies in Sn are then
interpreted as binary numbers. If the Strategy Improvement Algorithm enumerates at
least one player 0 strategy per b ∈ Bn before finding the optimal strategy, it enumerates
at least 2n strategies. Since the game has size linear in n, this then establishes the
exponential lower bound.

The main challenge is to obey Zadeh’s pivot rule as it forces the algorithm to only
use improving switches used least often during the execution. Intuitively, a counter
obeying this rule needs to switch bits in a “balanced” way. However, counting from
0 to 2n − 1 in binary does not switch individual bits equally often. For example, the
least significant bit is switched every time and the most significant bit is switched only
once. The key idea to overcome this obstacle is to have a substructure in each level
that contains two gadgets. These gadgets are called cycle centers. In every iteration
of the algorithm, only one of the cycle centers is interpreted as encoding the bit of
the current level. This enables us to perform operations within the other cycle center
without losing the interpretation of the bit being equal to 0 or 1. This is achieved by
an alternating encoding of the bit by the two cycle centers.

We now provide more details. Consider some level i , some b ∈ Bn and denote
the cycle centers of level i by Fi,0 and Fi,1. One of them now encodes bi . Which of
them represents bi depends on bi+1, since we always consider Fi,bi+1 to encode bi .
This cycle center is called the active cycle center of level i , while Fi,1−bi+1 is called
inactive. A cycle center can additionally be closed or open. These terms are used to
formalize when a bit is interpreted as 0 or 1. To be precise, bi is interpreted as 1 if and
only if Fi,bi+1 is closed. In this way, cycle centers encode binary numbers. Since bit
i + 1 switches every second time bit i switches, counting from 0 to 2n − 1 in binary
then results in an alternating and balanced usage of both cycle centers of any level as
required by Zadeh’s pivot rule.
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Table 1 Edges and vertex
priorities of Sn

Vertex Successors Priority

bi gi , bi+1 3

ei, j ,k b2, g1 3

gi Fi,0, Fi,1 2i + 9

hi,0 bi+2 2i + 10

si, j hi, j , b1 10− 2 · j
di, j ,k Fi, j , ei, j,k 3

Fi, j di, j ,0, di, j,1, si, j 6− 2 · j
hi,1 gi+1 2i + 10

We now describe the construction of a parity game that implements this idea in
detail. Fix some n ∈ N. The vertex sets V0, V1 of the underlying graph are composed
as follows:

V0 := {bi , gi : i ∈ {1, . . . , n}} ∪ {di, j,k , ei, j,k , si, j : i ∈ {1, . . . , n − j}, j, k ∈ {0, 1}}
V1 := {Fi, j : i ∈ {1, . . . , n − j}, j ∈ {0, 1}} ∪ {hi, j : i ∈ {1, . . . , n − j}, j ∈ {0, 1}} ∪ {t}

The priorities of the vertices and their sets of outgoing edges are given by Table 1.
Note that every vertex v ∈ V0 has at most two outgoing edges. For convenience of
notation, we henceforth identify the node names bi and gi for i > n with t . The graph
can be separated into n levels, where the levels i < n − 1 are structurally identical
and the levels n− 1 and n differ slightly from the other levels. The i-th level is shown
in Fig. 2, the complete graph of S3 is shown in Fig. 3.

The general idea of the construction is the following. Certain pairs of player 0
strategies σ and counterstrategies τσ are interpreted as representing a number b ∈ Bn .
Such a pair of strategies induces a path starting at b1 and ending at t , traversing the

Fig. 2 Level i of Sn for i ∈ {1, . . . , n − 2}. Circular vertices are player 0 vertices, rectangular vertices are
player 1 vertices. Labels below vertex names denote their priorities. Dashed vertices do not (necessarily)
belong to level i
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Fig. 3 The graph S3 together with a canonical strategy representing the number 3 in the graph S3. The
dashed copies of the vertices g1, b1 and b2 all refer to the corresponding vertices of levels 1 and 2. Red
edges belong to the strategy of player 0, blue edges belong to the counterstrategy of player 1. The dashed
edges indicate the spinal path

levels i ∈ {1, . . . , n}with bi = 1 while ignoring levels with bi = 0. This path is called
the spinal pathwith respect to b ∈ Bn . Ignoring and including levels in the spinal path
is controlled by the entry vertex bi of each level i ∈ {1, . . . , n}. To be precise, when
b is represented, the entry vertex of level i is intended to point towards the selector
vertex gi of level i if and only if bi = 1. Otherwise, i.e., when bi = 0, level i is ignored
and the entry vertex bi points towards the entry vertex of the next level.

Consider a level i ∈ {1, . . . , n − 2}. Attached to the selector vertex gi are the
cycle centers Fi,0 and Fi,1 of level i . As described at the beginning of this section,
these player 1 vertices are the main structures used for interpreting whether the bit i
is equal to one. They alternate in encoding bit i . As discussed before, this is achieved
by interpreting the active cycle center Fi,bi+1 as encoding bi while the inactive cycle
center Fi,1−bi+1 does not interfere with the encoding. This enables us to manipulate
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Fig. 4 A closed, a halfopen and an open cycle center. Edges of the strategy of player 0 are marked in red.
Choices of player 1 are not depicted. Dots represent that the cycle vertices point to some unspecified vertex

the inactive part of a level without losing the encoded value of bi . To this end, the
selector vertex gi is used to ensure that the active cycle center is contained in the spinal
path.

As discussed previously, a cycle center Fi, j can have different configurations. To be
precise, it can be closed, halfopen, or open. The configuration of Fi, j is defined via the
cycle vertices di, j,0 and di, j,1 of the cycle center and the two cycle edges (di, j,0, Fi, j )
and (di, j,1, Fi, j ). More precisely, Fi, j is closed with respect to a player 0 strategy σ if
both cycle vertices point towards the cycle center, i.e., when σ(di, j,0) = σ(di, j,1) =
Fi, j . If this is the case for exactly one of the two edges, the cycle center Fi, j is called
halfopen. A cycle that is neither closed nor halfopen is called open. An example of
the different configurations is given in Fig. 4.

In addition, the cycle center is connected to itsupper selection vertex si, j . It connects
the cycle center Fi, j with the first level via (si, j , b1) and with either level i + 1 or
i + 2 via (si, j , hi, j ) via the respective edge (hi,0, bi+2) or (hi,1, gi+1) (depending on
j). This vertex is thus central in allowing Fi, j to get access to either the beginning of
the spinal path or the next level of the spinal path.

We next discuss the cycle vertices. If their cycle centers are not closed, these vertices
still need to be able to access the spinal path. The valuation of vertices along this path
is usually very high and it is almost always very profitable for player 0 vertices to get
access to this path. Since the cycle vertices cannot obtain access via the cycle center
(as this would, by definition, close the cycle center) they need to “escape” the level
in another way. This is handled by the escape vertices ei, j,0 and ei, j,1. The escape
vertices are used to connect the levels with higher indices to the first two levels and
thus enable each vertex to access the spinal path. To be precise, they are connected
with the entry vertex of level 2 and the selector vertex of level 1. In principle, the
escape vertices will point towards g1 when the least significant set bit of the currently
represented number has the index 1 and towards b2 otherwise.

We now formalize the idea of a strategy encoding a binary number by defining the
notion of a canonical strategy. Note that the definition also includes some aspects
that are purely technical, i.e., solely required for some proofs, and do not have an
immediate intuitive interpretation.

Definition 2 Let b ∈ Bn . A player 0 strategy σ for the Parity Game Sn is called a
canonical strategy for b if it has the following properties.

1. All escape vertices point to g1 if b1 = 1 and to b2 if b1 = 0.
2. The following hold for all levels i ∈ {1, . . . , n} with bi = 1:
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(a) Level i needs to be accessible, i.e., σ(bi ) = gi .
(b) The cycle center Fi,bi+1 needs to be closed while Fi,1−bi+1 must not be closed.
(c) The selector vertex of level i needs to select the active cycle center, i.e.,σ(gi ) =

Fi,bi+1 .

3. The following hold for all levels i ∈ {1, . . . , n} with bi = 0:

(a) Level i must not be accessible and needs to be “avoided”, i.e., σ(bi ) = bi+1.
(b) The cycle center Fi,bi+1 must not be closed.
(c) If the cycle center Fi,1−bi+1 is closed, then σ(gi ) = Fi,1−bi+1 .
(d) If neither of the cycle centers Fi,0, Fi,1 is closed, then σ(gi ) = Fi,0.

4. Let bi+1 = 0. Then, level i + 1 is not accessible from level i , i.e., σ(si,0) = hi,0
and σ(si,1) = b1.

5. Let bi+1 = 1. Then, level i + 1 is accessible from level i , i.e., σ(si,0) = b1 and
σ(si,1) = hi,1.

6. If b < 2n − 1, then both cycle centers of level ν(b+ 1) are open.

We use σb to denote a canonical strategy for b ∈ Bn . A canonical strategy repre-
senting (0, 1, 1) in S3 is shown in Fig. 3.

As mentioned before, the main structure that is used to determine whether a bit is
interpreted as being set are the cycle centers. In fact, any configuration of the cycle
centers can be interpreted as an encoded number in the following way.

Definition 3 Let σ be a player 0 strategy for Sn . Then, the induced bit state βσ =
(βσ

n , . . . , βσ
1 ) is defined inductively as follows. We define βσ

n = 1 if and only if
σ(dn,0,0) = σ(dn,0,1) = Fn,0 and βσ

i = 1 if and only if σ(di,βσ
i+1,0) = σ(di,βσ

i+1,1) =
Fi,βσ

i+1 for i < n

This definition is in accordance with our interpretation of encoding a number as
βσb = b if σb is a canonical strategy for b.

4 Lower bound for policy iteration onMDPs

In this section we discuss the Markov Decision Process (MDP) that is constructed
analogously to the PG Sn . We discuss how this MDP allows the construction of a
Linear Program (LP) such that the results obtained for the MDP carry over to the LP
formulation. Themain idea is to replace player 1 by the “random player” and to choose
the probabilities in such a way that applying improving switches in the MDP behaves
nearly the same way as in the PG. Note that we continue to use the same language for
valuations, strategies and so on in MDP context, although other notions (like policy
instead of strategy) are more common.

We give a brief introduction to the theory of MDPs (see also [2]). Similarly to a
PG, an MDP is formally defined by its underlying graph (V0, VR, E, r , p). Here, V0
is the set of vertices controlled by player 0 and VR is the set of randomization vertices.
We let V :=V0 ∪ VR . For p ∈ {0, R}, we define Ep:={(v,w) : v ∈ Vp}. The set E0
then corresponds to possible choices that player 0 can make, and each such choice
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is assigned a reward by the reward function r : E0 → R. The set ER corresponds
to probabilistic transitions and transition probabilities are specified by the function
p : ER → [0, 1] with ∑

u : (v,u)∈ER
p(v, u) = 1.

As for Sn , a (player 0) strategy is a function σ : V0 → V that selects for each
vertex v ∈ V0 a target corresponding to an edge, i.e., such that (v, σ (v)) ∈ E0. There
are several computational tasks that can be investigated for MDPs. They are typically
described via an objective. We consider the expected total reward objective for MDPs
which can be formulated using vertex valuations in the following sense.Given anMDP,
we define the vertex valuations ΞM

σ (∗) with respect to a strategy σ as the solution (if
it exists) of the following set of equations:

ΞM
σ (u):=

⎧
⎨

⎩

r(u, σ (u))+ΞM
σ (σ (u)), u ∈ V0,

∑

v : (u,v)∈ER

p(u, v) ·ΞM
σ (v), u ∈ VR .

We also impose the condition that the values sum up to 0 on each irreducible recurrent
class of the Markov chain defined by σ , yielding uniqueness [2]. We intentionally use
very similar notation as for vertex valuations in the context of Parity Games since this
allows for a unified treatment.

We now discuss the Policy Iteration Algorithm and refer to [23] for further details.
Similarly to the Strategy Improvement Algorithm for PGs, this algorithm starts with
some initial policy ι = σ0. In each step i , it generates a strategy σi by changing
the target vertex σi−1(v) of some vertex v ∈ V0 to some vertex w with ΞM

σ (w) >

ΞM
σ (σi−1(v)). For an arbitrary strategy σ , such an edge (v,w) ∈ E0 with w �= σ(v)

butΞM
σ (w) > ΞM

σ (σ (v)) is called improving switch and the set of improving switches
is denoted by Iσ . The term optimal strategy is defined as in PG context. In particular,
a strategy σ is optimal if and only if Iσ = ∅. Moreover, applying an improving switch
cannot decrease the valuation of any vertex. That is, if e = (v,w) ∈ Iσ and σe denotes
the strategy obtained after applying e to σ , then ΞM

σe (v
′) ≥ ΞM

σ (v′) for all v′ ∈ V and
ΞM

σe (v) > ΞM
σ (v). Since there are only finitely many strategies, the algorithm thus

generates a finite sequence σ0, σ1, . . . , σN with IσN = ∅.
We now discuss how the counter introduced in Sect. 3 is altered to obtain an MDP

Mn . A sketch of level i of Mn can be found in Fig. 5. First, all player 1 vertices are
replaced by randomization vertices. This is a common technique used for obtaining
MDPs that behave similarly to given PGs and was used before (e.g., [2, 10]). While
the ideas used in the transformations are similar, there is no standard reduction from
PGs to MDPs preserving all properties.

In our construction, all cycle centers Fi, j and all vertices hi, j are now randomization
vertices. As vertices of the type hi, j have only one outgoing edge, the probability of
this edge is set to 1. For defining the probabilities of the cycle edges, we introduce a
small parameter ε > 0 and defer its exact definition to later. The idea is to use ε to
make the probabilities of edges (Fi, j , si, j ) very small by setting p(Fi, j , si, j ) = ε and
p(Fi, j , di, j,k) = 1−ε

2 for k ∈ {0, 1}. Then, the valuation of si, j can only contribute
significantly to the valuation of Fi, j if the cycle center is closed. If the cycle center is
not closed, then the contribution of this vertex can often be neglected. However, there
are situations in which even this very low contribution has a significant impact on the
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An exponential lower bound for Zadeh’s pivot rule 877

Fig. 5 Level i of theMDP. Circular vertices are vertices of the player, rectangular vertices are randomization
vertices. Numbers below vertex names, if present, encode priorities Ω . If a vertex has priority Ω(v), then
a reward of 〈v〉:=(−N )Ω(v) is associated with every edge leaving this vertex

valuation of the cycle center. For example, if Fi,0 and Fi,1 are both open for σ , then
ΞM

σ (Fi,0) > ΞM
σ (Fi,1) if and only if ΞM

σ (si,0) > ΞM
σ (si,1). This sometimes results

in a different behavior of the MDP when compared to the PG. We discuss this later in
more detail.

Second, all player 0 vertices remain player 0 vertices. Each player 0 vertex is
assigned the same priority as in Sn . This priority is now used to define the rewards of
the edges leaving a vertex.More precisely, if we denote the priority of v ∈ V0 byΩ(v),
then we define the reward of any edge leaving v as 〈v〉:=(−N )Ω(v), where N ≥ 7n
is a large and fixed parameter. Note that the reward of an edge thus only depends on
its starting vertex. The reward function that is defined in that way then has the effect
that vertices with an even priority are profitable while vertices with an odd priority
are not profitable. In addition, the profitability of a vertex is better (resp. worse) the
higher its priority is. By choosing a sufficiently large parameter N , it is also ensured
that rewards are sufficiently separated. For example, the profitability of some vertex
v with even priority cannot be dominated by traversing many vertices with lower but
odd priorities. In principle, this ensures that the MDP behaves very similarly to the
PG.

Having introduced the parameter N , we now fix the parameter ε such that ε <

(N 2n+11)−1. Note that both parameters can be encoded by a polynomial number of
bits with respect to the parameter n. By defining the reward of the edge (t, t) as 0, this
completely describes the MDP.

We now provide more details on the aspects where the PG and the MDP differ.
One of the main differences between the PG and the MDP is the set of canonical
strategies. Consider a strategy σ representing some b ∈ Bn , some level i and the two
cycle centers Fi,0, Fi,1. In PG context, both vertices have an even priority and the
priority of Fi,0 is larger than the priority of Fi,1. Thus, if both cycle centers escape
the level, the valuation of Fi,0 is better than the valuation of Fi,1. Consequently, if
σ(gi ) �= Fi,0, then (gi , Fi,0) is improving for σ . In some sense, this can be interpreted
as the PG “preferring” Fi,0 over Fi,1. A similar, but not the same, phenomenon occurs
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in MDP context. If both cycle centers Fi,0 and Fi,1 are in the same “state”, then the
valuation of the two upper selection vertices si,0, si,1 determines which cycle center
has the better valuation. It turns out that the valuation of si,bi+1 is typically better
than the valuation of si,1−bi+1 . It is in particular not true that the valuation of si,0 is
typically better than the valuation of si,1. Hence, the MDP “prefers” vertices Fi,bi+1
over vertices Fi,1−bi+1 . We thus adjust the definition of a canonical strategy in MDP
context in the following way.

Definition 4 Let b ∈ Bn . A player 0 strategy σ for the MDP Mn is called a canonical
strategy for b if it has the properties defined in Definition 2 where Property 3.(d)
is replaced by the following: If neither of the cycle centers Fi,0, Fi,1 is closed, then
σ(gi ) = Fi,bi+1 .

5 Lower bound for the simplex algorithm and linear programs

Following the arguments of [2, 15], we now discuss how the MDP can be transformed
into an LP such that the results obtained for the Policy Iteration Algorithm may be
transferred to the Simplex Algorithm. This transformation makes use of the unichain
condition. This condition (see [34]) states that the Markov Chain obtained from each
strategy σ has a single irreducible recurrent class. Unfortunately, theMDP constructed
previously does not fulfill the unichain condition. As we prove in Lemma 1, it however
fulfills a weak version of the unichain condition. This weak version states that the
optimal policy has a single irreducible recurrent class and does not demand this to
be true for every strategy. This implies that the same LP which can be obtained by
transforming an MDP fulfilling the unichain condition can be used. We refer to [14,
40] for more details.

We thus return to the discussion forMDPs fulfilling the unichain condition. Optimal
policies forMDPs fulfilling this condition can be found by solving the followingLinear
Program:

max
∑

(u,v)∈E0

r(u, v) · x(u, v)

s.t.
∑

(u,v)∈E
x(u, v)−

∑

(v,w)∈E0
(w,u)∈ER

p(w, u) · x(v,w) = 1 ∀u ∈ V0

x(u, v) ≥ 0 ∀(u, v) ∈ E0

(P)

The variable x(u, v) for (u, v) ∈ E0 represents the probability (or frequency) of
using the edge (u, v). The constraints of (P) ensure that the probability of entering
a vertex u is equal to the probability of exiting u. It is not difficult to see that the
basic feasible solutions of (P) correspond directly to strategies of the MDP, see, e.g.,
[2]. For each strategy σ we can define a feasible setting of the variables x(u, v) with
(u, v) ∈ E0 such that x(u, v) > 0 only if σ(u) = v. Conversely, for every basic
feasible solution of (P), we can define a corresponding policy σ . It is well-known that
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the policy corresponding to an optimal basic feasible solution of (P) is an optimal
policy for the MDP (see, e.g., [2, 34]).

Our MDP only fulfills the weak unichain condition. If it is provided an initial
strategy that has the same single irreducible recurrent class as the optimal policy, then
the same Linear Program introduced above can be used [14]. This follows since all
considered basic feasible solutions will have the same irreducible recurrent class by
monotonicity. We refer to [40] for more details.

6 Lower bound proof

6.1 The approach and basic definitions

In this section we outline the proof for the exponential lower bound on the running
time of the Strategy Improvement resp. Policy Iteration Algorithm using Zadeh’s pivot
rule and a strategy-based tie-breaking rule. We discuss the following key components
separately before combining them into our main result.2 In the following, we use the
notation Gn to simultaneously refer to Sn and Mn . If a statement or definition only
holds for either Sn or Mn , we explicitly state this.

1. We first define an initial strategy ι such that the pair (Gn, ι) defines a sink game
in PG context resp. has the weak unichain condition in MDP context. We also
formalize the idea of counting how often an edge has been applied as improving
switch.

2. We then state and discuss the tie-breaking rule. Together with the initial strategy,
this completely describes the application of the improving switches performed by
the Strategy Improvement resp. Policy Iteration Algorithm. Further statements,
proofs and explanations that are provided in Appendix C thus only serve to prove
that the algorithms and the tie-breaking rule indeed behave as intended.

3. We then focus on a single transition from a canonical strategy σb to the next canon-
ical strategy σb+1. During such a transition, many improving switches need to be
applied and thus many intermediate strategies need to be considered. These strate-
gies are divided into five phases, depending on the configuration of Gn induced
by the encountered strategies.

4. To prove that the tie-breaking rule indeed proceeds along the described phases,
we need to specify how often player 0 edges are applied as improving switches,
which is formalized by an occurrence record.We explicitly describe the occurrence
records for canonical strategies.

5. Finally, we combine the previous aspects to prove that applying the respective
algorithms with Zadeh’s pivot rule and our tie-breaking rule yields an exponential
number of iterations.

We begin by providing the initial strategy ι for Gn . In principle, the initial strategy
is a canonical strategy for 0 in the sense of Definition 2 resp. 4.

2 Formal proofs can be found in Appendix C and the full version [6].
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Definition 5 The initial player 0 strategy ι : V0 �→ V is defined as follows:

v bi (i < n) bn gi di, j ,k ei, j,k si,0 si,1(i < n)

ι(v) bi+1 t Fi,0 ei, j ,k b2 hi,0 b1

We further introduce the notion of a reachable strategy. A strategy σ ′ is reachable
from some strategy σ if it can be produced by the Strategy Improvement Algorithm
starting from σ and applying a finite number of improving switches. Note that the
notion of reachability does not depend on the pivot rule or the tie-breaking rule and that
every strategy calculated by the Strategy Improvement resp. Policy IterationAlgorithm
is reachable by definition.

Definition 6 Let σ be a player 0 strategy for Gn . The set of all strategies that can be
obtained from σ by applying an arbitrary sequence of improving switches is denoted
by Λσ . A strategy σ ′ is reachable from σ if σ ′ ∈ Λσ .

Note that reachability is a transitive property and that we include σ ∈ Λσ for
convenience. The i-th level of the initial strategy is shown in Fig. 6. The initial strategy
is chosen such that Gn and ι define a sink game in Sn resp. have the weak unichain
condition in Mn .

Lemma 1 For all n ∈ N, the game Gn and the initial player 0 strategy ι define a
Sink Game with sink t in PG context, resp. have the weak unichain condition in MDP
context.

As Zadeh’s pivot rule is a memorizing pivot rule, the algorithms need to maintain
information about how often edges have been applied as improving switches. During
the execution of the algorithms, we thus maintain an occurrence record φσ : E0 �→ R

that specifies how often an improving switch was applied since the beginning of the

Fig. 6 The initial strategy ι (red edges) in level i for i ∈ {1, . . . , n − 2}
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algorithms. Formally, we define φι(e) := 0 for every edge e ∈ E0, i.e., the occurrence
record with respect to the initial strategy is equal to 0. Then, whenever the algorithms
apply an edge e, the occurrence record of e is increased by 1.

6.2 The tie-breaking rule

We now discuss the tie-breaking rule. It specifies which edge to apply if there are
multiple improving switches that minimize the occurrence record for the current strat-
egy. Note that, in contrast to many classical pivot rules, fixing a specific tie-breaking
rule cannot easily be avoided for Zadeh’s pivot rule, since it is unavoidable that occur-
rence records occasionally coincide between multiple improving switches. Intuitively,
asking for a lower bound construction to work for all tie-breaking rules might be com-
parably difficult to asking for a construction that works for all pivot rules in the first
place.

We rely on a structurally simple tie-breaking rule that is in principle implemented
as an ordering of the set E0 and depends on the current strategy σ as well as the
occurrence records. In fact, it turns out to be sufficient to specify a pre-order of E0
that can be extended to a total order arbitrarily. Whenever the algorithms have to break
ties, they then choose the first edge according to this ordering. For convenience, there
is one small exception from this behavior. During the transition from the canonical
strategy representing 1 towards the canonical strategy representing 2, one improving
switch e (which we do not specify yet) has to be applied earlier than during other
transitions. The reason is that the occurrence records of several edges, including e, are
still zero at this point in time, which leads to unwanted behavior. In later iterations, e
is the unique improving switch minimizing the occurrence record whenever it has to
be applied, so no special treatment is necessary.

Let σ be a player 0 strategy for Gn . Henceforth, we use the symbol ∗ as a wildcard.
More precisely, when using the symbol ∗, this means any suitable index or vertex
(depending on the context) can be inserted for ∗ such that the corresponding edge
exists. For example, the set {(e∗,∗,∗, ∗)}would then denote the set of all edges starting
in escape vertices. Using this notation, we define the following sets of edges.

– G:={(gi , Fi,∗)} is the set of all edges leaving selector vertices.
– E

0:={(ei, j,k, ∗) : σ(di, j,k) �= Fi, j } is the set of edges leaving escape ver-
tices whose cycle vertices do not point towards their cycle center. Similarly,
E
1:={(ei, j,k, ∗) : σ(di, j,k) = Fi, j } is the set of edges leaving escape vertices

whose cycle vertices point towards their cycle center.
– D

1:={(d∗,∗,∗, F∗,∗)} is the set of cycle edges and D
0:={(d∗,∗,∗, e∗,∗,∗)} is the set

of the other edges leaving cycle vertices.
– B

0:=⋃n−1
i=1 {(bi , bi+1)} ∪ {(bn, t)} is the set of all edges between entry vertices.

The set B
1:={(b∗, g∗)} of all edges leaving entry vertices and entering selection

vertices is defined analogously andB:=B
0∪B

1 is the set of all edges leaving entry
vertices.

– S:={(s∗,∗, ∗)} is the set of all edges leaving upper selection vertices.

We next define two pre-orders based on these sets. However, we need to define finer
pre-orders for the sets E

0, E
1, S and D

1 first.
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Informally, the pre-order on E
0 forces the algorithms to favor switches of higher

levels and to favor (ei,0,k, ∗) over (ei,1,k, ∗) in Sn and (ei,βσ
i+1,k, ∗) over (ei,1−βσ

i+1,k, ∗)
in Mn . For a formal description let (ei, j,x , ∗), (ek,l,y, ∗) ∈ E

0. In Sn , we define
(ei, j,x , ∗) ≺σ (ek,l,y, ∗) if either i > k, or i = k and j < l. In Mn , we define
(ei, j,x , ∗) ≺σ (ek,l,y, ∗) if either i > k, or i = k and j = βσ

i+1.
Similarly, the pre-order on S also forces the algorithm to favor switches of higher

levels. Thus, for (si, j , ∗), (sk,l , ∗) ∈ S, we define (si, j , ∗) ≺σ (sk,l , ∗) if i > k.
We now describe the pre-order for E

1. Let (ei, j,x , ∗), (ek,l,y, ∗) ∈ E
1.

1. The first criterion encodes that switches contained in higher levels are applied first.
Thus, if i > k, then (ei, j,x , ∗) ≺σ (ek,l,y, ∗).

2. If i = k, then we consider the states of the cycle centers Fi, j and Fk,l = Fi,1− j .
If exactly one cycle center of level i is closed, then the improving switches within
this cycle center are applied first.

3. Consider the case where i = k but no cycle center of level i is closed. Let t→:=b2
if ν(b+1) > 1 and t→:=g1 if ν(b+1) = 1. If there is exactly one halfopen cycle
center escaping to t→ in level i , then switches within this cycle center have to be
applied first.

4. Assume that none of the prior criteria applied. This includes the case where both
cycle centers are in the same state, and i = k holds in this case. Then, the order of
application depends on whether we consider Sn or Mn . In Sn , improving switches
within Fi,0 are applied first. In Mn , improving switches within Fi,βσ

i+1 are applied
first.

We next give a pre-order for D1. Let (di, j,x , Fi, j ), (dk,l,y, Fk,l) ∈ D
1.

1. The first criterion states that improving switches that are part of open cycles are
applied first. We thus define (di, j,x , Fi, j ) ≺σ (dk,l,y, Fk,l) if σ(dk,l,1−y) = Fk,l
but σ(di, j,1−x ) �= Fi, j .

2. The second criterion states the following. Among all halfopen cycle centers,
improving switches contained in cycle centers such that the bit of the level the
cycle center is part of is equal to zero are applied first. If the first criterion does
not apply, we thus define (di, j,x , Fi, j ) ≺σ (dk,l,y, Fk,l) if βσ

k > βσ
i .

3. The third criterion states that among all partially closed cycle centers, improving
switches inside cycle centers contained in lower levels are applied first. If none of
the first two criteria apply, we thus define (di, j,x , Fi, j ) ≺σ (dk,l,y, Fk,l) if k > i .

4. The fourth criterion states that improving switches within the active cycle center
are applied first within one level. If none of the previous criteria apply, we thus
define (di, j,x , Fi, j ) ≺σ (dk,l,y, Fk,l) if βσ

k+1 �= l and βσ
i+1 = j .

5. The last criterion states that edges with last index equal to zero are preferred
within one cycle center. That is, if none of the previous criteria apply, we define
(di, j,x , Fi, j ) ≺σ (dk,l,y, Fk,l) if x < y. If this criterion does not apply either, the
edges are incomparable.

We now define the pre-order ≺σ and the tie-breaking rule, implemented by an
ordering of E0.
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Definition 7 Let σ be a player 0 strategy for Gn and φσ : E0 → N0 be an occurrence
record. We define the pre-order ≺σ on E0 by defining the set-based pre-order

G ≺σ D
0 ≺σ E

1 ≺σ B ≺σ S ≺σ E
0 ≺σ D

1

where the sets E
0, E

1, S and D
1 are additionally pre-ordered as described before. We

extend the pre-order to an arbitrary but fixed total ordering and denote the correspond-
ing order also by≺σ . We define the following tie-breaking rule: Let Imin

σ denote the set
of improving switches with respect to σ that minimize the occurrence record. Apply the
first improving switch contained in Imin

σ with respect to the ordering ≺σ with the fol-
lowing exception: If φσ (b1, b2) = φσ (s1,1, h1,1) = 0 and (b1, b2), (s1,1, h1,1) ∈ Iσ ,
apply (s1,1, h1,1) immediately.

We usually just use the notation ≺ to denote the ordering if it is clear from the
context which strategy is considered and whether ≺ is defined via the default or
special pre-order.

Lemma 2 Given a strategy σ ∈ Λι and an occurrence record φσ : E0 → N0, the
tie-breaking rule can be evaluated in polynomial time.

6.3 The phases of a transition and the application of improving switches

As explained earlier, the goal is to prove that Zadeh’s pivot rule with our tie-breaking
rule enumerates at least one strategy per number b ∈ Bn . This is proven in an inductive
fashion. That is, we prove that given a canonical strategy σb for b ∈ Bn , the algorithms
eventually calculate a canonical strategy σb+1 for b + 1. This process is called a
transition and each transition is partitioned into up to five phases. In each phase, a
different “task” is performed in order to obtain the strategy σb+1. These tasks are,
for example, the opening and closing of cycle centers, updating the escape vertices or
adjusting some of the selection vertices.

Depending on whether we consider Sn or Mn and ν(b + 1), there can be 3,4 or
5 different phases. Phases 1,3 and 5 always take place while Phase 2 only occurs if
ν(b + 1) > 1, as it updates the target vertices of some selection vertices si, j with
i < ν(b + 1). The same holds for Phase 4, although this phase only exists if we
consider Sn . In Mn , we apply the corresponding switches already in Phase 3 and there
is no separate Phase 4.

We now give a detailed description of the phases. For the sake of the presentation
we only describe the main function of each phase and omit switches that are applied
for technical reasons. Furthermore, we abbreviate ν:=ν(b + 1) whenever b is clear
from the context. See Fig. 7 for a full example of the phases in a transition between
two canonical strategies.

1. During Phase 1, cycle centers are closed such that the induced bit state of the
final strategy is b+ 1. Furthermore, several cycle edges are switched such that the
occurrence records of these switches are as balanced as possible. In the end of the
phase, the cycle center Fν,(b+1)ν+1 is closed and either Phase 2 or Phase 3 begins.
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Fig. 7 Visualization of the phases encountered when transitioning from σ11 to σ12 in S4. Each subfigure
shows the state of the counter at the beginning of a phase. Red and green edges correspond to the strategy
of player 0, blue edges to the strategy of player 1. Green edges show improving switches that were applied
in the preceding phase. The edges of vertices with an outdegree of 1 are not marked as these are chosen in
every strategy. All occurrences of vertices with the same label refer to the same unique vertex

2. During Phase 2, the upper selection vertices si, j for i ∈ {1, . . . , ν − 1} and j =
(b + 1)i+1 change their targets to hi, j . This is necessary as the induced bit state
of the strategy is now equal to b + 1. Also, the entry vertices of these levels are
switched towards the entry vertex of the next level. Since bi = bi+1 for all i �= 1
if ν(b+ 1) = 1, these operations only need to be performed if ν(b+ 1) > 1.
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3. Phase 3 is partly responsible for applying improving switches involving escape
vertices. Since ν(b) �= ν(b + 1), all escape vertices need to change their target
vertices. In Phase 3, some (but not all) escape vertices perform the corresponding
switch. Also, for some of these escape vertices ei, j,k , the switch (di, j,k, ei, j,k)
is applied. This later enables the application of the switch (di, j,k, Fi, j ) which is
necessary to balance the occurrence records of the cycle edges. At the end of this
phase, depending on ν, either (b1, g1) or (b1, b2) is applied. In Mn , the switches
described for Phase 4 are also applied during Phase 3.

4. During Phase 4, the upper selection vertices si, j for i ∈ {1, . . . , ν − 1} and j �=
(b + 1)i+1 change their targets to b1. Updating the upper selection vertices is
necessary since they need to give their cycle centers access to the spinal path.
Similar to Phase 2, these switches are only performed if ν(b+ 1) > 1.

5. During Phase 5, the remaining escape vertices switch their targets and some of the
cycle vertices switch to their cycle centers. This phase ends once all improving
switches at the escape vertices are performed, yielding a canonical strategy for
b+ 1.

We next give the formal definition of the different phases. For this, we need to
introduce a strategy-based parameter μσ ∈ {1, . . . , n + 1}. This parameter μσ is
called the next relevant bit of the strategy σ . Before defining this parameter formally,
we briefly explain its importance and how it can be interpreted.

As described in Sect. 3, both cycle centers of level i alternate in encoding bit i .
Therefore, the selection vertex gi needs to select the correct cycle center and the entry
vertex bi should point towards gi if and only if bit i is equal to one (see Definition 2).
In particular, the selection vertex gi−1 of level i−1 needs to be in accordance with the
entry vertex bi of level i if bit i − 1 is equal to one. That is, it should not happen that
σ(bi ) = gi and σ(bi+1) = gi+1 but σ(gi ) = Fi,0. However, we cannot guarantee that
this does not happen for some intermediate strategies. Therefore, we need to perform
some operations within the levels i and i − 1 and define μσ as the lowest level higher
than any level that is set “incorrectly” in that sense. If there are no such levels, the
parameter denotes the index of the lowest level with σ(bi ) = bi+1. The parameter
can thus be interpreted as an indicator encoding where “work needs to be done next".
As its formal definition is rather complex, we introduce an additional notation σ̄

that somehow "encodes" σ using integer numbers. As this notation is however a pure
formal tool, we do not fully introduce it here. The definition is provided inAppendix B.
Formally, the next relevant bit is now defined as follows.

Definition 8 Let σ ∈ Λι. The set Iσ :={i ∈ {1, . . . , n} : σ̄ (bi ) ∧ σ̄ (gi ) �= σ̄ (bi+1)} is
the set of incorrect levels. The next relevant bit μσ of the strategy σ is defined by

μσ :=
{
min({n} ∪ {i ′ > max{i ∈ Iσ } : σ̄ (bi ′) ∧ σ̄ (gi ′) = σ̄ (bi ′+1)}) if Iσ �= ∅,
min({i ∈ {1, . . . , n + 1} : σ(bi ) = bi+1}) if Iσ = ∅.

Note that we interpret expressions of the form x ∧ y = z as x ∧ (y = z). Using
the next relevant bit μσ , we now give a formal definition of the phases. Formally,
a strategy belongs to one of the five phases if it has a certain set of properties.
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These properties can be partitioned into several categories and are described in Table 5
in Appendix B. Each of these properties depends on either the level or the cycle center.
Properties Bac1, Bac2 andBac3 involve the entry vertices b, Properties Usv1 andUsv2
involve the Upper Selection Vertices and Properties Esc1, Esc2, Esc3, Esc4 and Esc5
the Escape vertices. In addition, Properties Rel1 and Rel2 involve the next relevant bit
μσ , Properties Cc1, Cc2 the Cycle Centers and Property Sv1 the Selection Vertices.

For most of the phases, there are additional special conditions that need to be ful-
filled. The corresponding conditions simplify the distinction between different phases
and allow for an easier argumentation or description of statements. However, we do
not discuss these here as they are solely needed for technical reasons and we refer to
Appendix B for details. We also provide the table used for the exact definition of the
phases there.

Definition 9 (Phase-k-strategy) Let b ∈ Bn, σ ∈ Λι and k ∈ {1, . . . , 5}. The strategy
σ is a Phase-k-strategy for b if it has the properties of the k-th column of Table 4 for
the respective indices as well as the special conditions of the respective phase (if there
are any).

6.4 The occurrence records

We next describe the actual occurrence records that occur when applying the Strategy
Improvement resp. Policy Iteration Algorithm. To do so, we need to introduce notation
related to binary counting.

The number of applications of specific edges in level i as improving switches
depends on the last time the corresponding cycle centers were closed or how often
they were closed. We thus define fl(b, i,) as the number of numbers smaller than b
with least significant set bit having index i . To quantify how often a specific cycle
center was closed, we introduce the maximal flip number and the maximal unflip
number. Let b ∈ Bn, i ∈ {1, . . . , n} and j ∈ {0, 1}. Then, we define the maximal
flip number mfn(b, i, {(i + 1, j)}) as the largest b̃ ≤ b with ν(b̃) = i and b̃i+1 = j .
Similarly, we define the maximal unflip number mufn(b, i, {(i + 1, j)}) as the largest
b̃ ≤ b with b̃1 = · · · = b̃i = 0 and b̃i+1 = j . If there are no such numbers,
then mfn(b, i, {(i +1, j)}) := 0,mufn(b, i, {(i +1, j)}) := 0. If we do not impose the
condition that bit i+1 needs to be equal to j then we omit the term in the notation., i.e.,
mfn(b, i) = max({0} ∪ {b′ ≤ b : ν(b′) = i}) and mufn(b, i) is defined analogously.

These notations enable us to properly describe the occurrence records. We however
do not describe the occurrence record for every strategy σ produced by the considered
algorithms. Instead, we only give a description of the occurrence records for canon-
ical strategies. When discussing the application of the improving switches, we later
prove the following: Assuming that the occurrence records are described correctly for
σb, they are also described correctly for σb+1 when improving switches are applied
according to Zadeh’s pivot rule and our tie-breaking rule.

Theorem 3 Let σb be a canonical strategy for b ∈ Bn and assume that improving
switches are applied as described in Sect. 6.3. Then Table 2 describes the occurrence
records with respect to σb.
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Table 2 Occurrence records for the canonical strategy σb

Depending on the edge, we either give the exact occurrence record, give an upper bound, or we give
the occurrence record up to a certain tolerance. A parameter tb fulfilling the assumptions for the case
bi = 0 ∨ bi+1 �= j is called feasible for b

We now give some intuition for the occurrence records of parts of Table 2. As
the occurrence records of most of the edges are much more complicated to explain,
we omit an intuitive description of their occurrence records here. Let σb ∈ Λι be a
canonical strategy for b ∈ Bn .

Consider some edge (bi , gi ). This edge is applied as an improving switch whenever
bit i switches from 0 to 1. That is, it is applied if and only if we transition towards some
b′ ∈ Bn with ν(b′) = i and b′ ≤ b. Therefore, φσb(bi , gi ) = fl(b, i). Now consider
(bi , bi+1). This edge is only applied as an improving switch when bit i switches from 1
to 0. This can however only happen if bit i switched from0 to 1 earlier. That is, applying
(bi , bi+1) can only happen when (bi , gi ) was applied before. Also, we can only apply
the switch (bi , gi ) again after bit i has been switched back to 0 again, i.e., after
(bi , bi+1)was applied. Consequently,φσb(bi , bi+1) = φσb(bi , gi )−bi = fl(b, i)−bi .

Next, consider some edge (si, j , hi, j ) and fix j = 1 for now. This edge is applied as
an improving switch if and only if bit i + 1 switches from 0 to 1. Hence, as discussed
before, φσb(si, j , hi, j ) = fl(b, i + 1). Now let j = 0. The switch (si,0, hi,0) is applied
whenever bit i + 1 switches from 1 to 0. This requires the bit to have switched from 0
to 1 before. Therefore, φσb(si,0, hi,0) = φσb(si,1, hi,1)− bi+1 = fl(b, i + 1)− bi+1.
Further note that the switch (si, j , b1) is applied in the same transitions in which the
switch (si,1− j , hi,1− j ) is applied. Hence, φσb(si, j , hi, j ) = fl(b, i+1)− (1− j) ·bi+1
and φσb(si, j , b1) = fl(b, i + 1)− j · bi+1.

Finally consider some edge (ei, j,k, g1). This edge is applied as an improving switch
whenever the first bit switches from 0 to 1. Since 0 is even, this happens once for every

odd number smaller than or equal to b, i.e.,
⌈
b
2

⌉
times. Since the switch (ei, j,k, b2) is
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applied during each transition in which the switch (ei, j,k, g1) is not applied, we have

φ(ei, j,k, g1) = b−
⌈
b
2

⌉
=

⌊
b
2

⌋
as b ∈ N.

6.5 Proving the lower bound

Wenow sketch our proof that applying the Strategy Improvement resp. Policy Iteration
Algorithm with Zadeh’s pivot rule and our tie-breaking rule introduced in Definition 7
takes an exponential number of iterations. This is shown in an inductive fashion as
follows. Assume that we are given a canonical strategy σb for some b ∈ Bn that
fulfills a certain set of conditions. Then, applying improving switches according to
Zadeh’s pivot rule and our tie-breaking rule produces a canonical strategy σb+1 for
b + 1 that fulfills the same conditions. If we can then show that the initial strategy ι

is a canonical strategy for 0 having the desired properties, our bound on the number
of iterations follows. Most of these properties are however rather complicated and
are only needed for technical reasons. We thus do not discuss them here and refer to
Appendix B for a detailed overview. These conditions are called canonical conditions
and are the following:

1. The occurrence records φσb are described correctly by Table 2.
2. σb has Properties (Or1)∗,∗,∗ to (Or4)∗,∗,∗ related to the occurrence records.
3. Any improving switch was applied at most once per previous transition.

As a basis for the following proofs and statements, we give a characterization of the
set of improving switches for canonical strategies.We furthermore prove that canonical
strategies are Phase-1-strategies for the corresponding number. We use the notation
σ → σ ′ to denote the sequence of strategies calculated by the algorithmswhen starting
with σ until they eventually reach σ ′. Throughout this section let ν := ν(b+ 1).

Lemma 3 Let σb ∈ Λι be a canonical strategy for b ∈ Bn. Then σb is a Phase-1-
strategy for b and Iσb = {(di, j,k, Fi, j ) : σb(di, j,k) �= Fi, j }.

As claimed, ι is in fact a canonical strategy and fulfills the canonical conditions.

Lemma 4 The initial strategy ι is a canonical strategy for 0 fulfilling the canonical
conditions.

Wenowdiscuss how themain statement is proven.Consider somecanonical strategy
σb for some b ∈ Bn . We prove that applying improving switches to σb using Zadeh’s
pivot rule and our tie-breaking rule produces a specific Phase-k-strategy for b for every
k ∈ {1, . . . , 5}. These strategies are typically the first strategy of the corresponding
phase andhave several nice properties that help in proving the statement. Theproperties
of these strategies and the set of improving switches of these strategies are summarized
in Tables 6 and 7 in Appendix B. We finally prove that applying improving switches
to the Phase-5-strategy that is calculated by the Strategy Improvement resp. Policy
Iteration Algorithm then yields a canonical strategy σb+1 for b + 1 fulfilling the
canonical conditions. Since ι is a canonical strategy for 0 fulfilling the canonical
conditions, we can then apply the statement iteratively to prove the main theorem of
this paper.
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Before formally stating this idea as a theorem, we discuss the individual phases.
Consider Phase 1. In this phase, (mainly) cycle edges (di, j,k, Fi, j ) are applied. The
last switch of this phase closes the cycle center Fν,(b+1)ν+1 . We will show that after
the application of this switch, the induced bit state of the strategy is b + 1. As a
consequence, the resulting strategy is not a Phase-1-strategy. It then depends on the
parity of b whether this strategy belongs to Phase 2 or Phase 3. If ν > 1, then the next
strategy is a Phase 2 strategy. If ν = 1, then the next strategy is a Phase-3-strategy.

Nowconsider the beginning of Phase 2. The properties of the corresponding strategy
we refer to here are given by Tables 6 and 7. Since the induced bit state of the strategy
changed from b to b + 1, the entry vertices of all levels i ≤ ν need to be adjusted.
Accordingly, the upper selection vertices of all levels i < ν need to be adjusted.
This is reflected by the set of improving switches, containing the edges (bν, gν) and
(sν−1,1, hν−1,1). Moreover, edges (d∗,∗,∗, F∗,∗) that were improving for σb and have
not been applied yet remain improving and these edges have relatively high occurrence
records. Also, Table 2 describes the occurrence records of the edges that were just
applied when interpreted for b + 1. Note that we explicitly exclude the switches
(gi , Fi, j ) here. The reason is that it is hard to show that the bound on the occurrence
records of these edges is valid by only considering a single transition. We will thus
show that these switches cannot be applied too often during ι → σb for any b ∈ Bn

after discussing the single phases is detail.
As discussed previously, the targets of the upper selection vertices are not set cor-

rectly for b + 1 if ν > 1. This is partly handled during Phase 2. More precisely, the
improving switches (si,(b+1)i+1 , hi,(b+1)i+1) are applied during Phase 2 for all i < ν.
Furthermore, the target vertices of all entry vertices b2 to bν are updated during Phase
2. After applying all of these switches, we then have a Phase-3-strategy. Since none of
these switches needs to be applied if ν = 1, we reach such a Phase-3-strategy directly
after Phase 1 in that case.

The Phase 3 strategy obtained at this point shares several properties with the Phase
2 strategy described earlier. For example, if (d∗,∗,∗, F∗,∗) was improving for σb, it
is still improving at the beginning of Phase 3 and has a “high” occurrence record.
Furthermore, all edges (e∗,∗,∗, b2) resp. (e∗,∗,∗, g1) are improving now. The explana-
tion for this is that the spinal path already contains the correct levels with respect to
b+ 1 (with the exception of the corresponding edge starting at b1) and has thus a very
good valuation. Note that this requires that the vertices si,(b+1)i+1 were updated for
i < ν. The vertices b2 resp. g1 are thus very profitable, implying that all edges leading
directly towards these vertices become improving.

It turns out that switches (e∗,∗,∗, ∗) then minimize the occurrence record and are
applied next. Due to the tie-breaking rule, the algorithms then only apply switches
(ei, j,k, ∗) with σ(di, j,k) = Fi, j . If (b+ 1)i �= 1 or (b+ 1)i+1 �= j , applying a switch
(ei, j,k, ∗) can then make the edge (di, j,k, ei, j,k) improving. However, the occurrence
record of these edges is bounded from above by the occurrence record of the just
applied switch (ei, j,k, ∗). Consequently, such a switch is then applied next.

At this point, there is a major difference between Sn and Mn . In Sn , the application
of such a switch has no influence on the valuation of the corresponding cycle center
Fi, j . The reason is that the player 1 controlled cycle center can simply choose the
other cycle vertex (or, in case that the cycle center was closed, si, j ). This is not true
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in Mn as the valuation of Fi, j is then directly affected if the valuation of the cycle
vertices changes. Thus, the valuation of cycle centers increases in Mn . This might
unlock improving switches involving upper selection in lower levels which will then
be applied directly as they have low occurrence records. The set of switches that will
be applied in that fashion exactly corresponds to the set of switches applied during
Phase 4 in Sn and can also only occur if ν > 1.

To summarize Phase 3, all switches (ei, j,k, ∗) with σ(di, j,k) = Fi, j are applied. If
such an application makes an edge (di, j,k, ei, j,k) improving, then this switch is also
applied. After all of these switches are applied, the tie-breaking rule then chooses to
apply (b1, b2) resp. (b1, g1), concluding Phase 3. The application of this final switch
makes many edges (d∗,∗,∗, F∗,∗) improving. The exact set of switches that is applied
is rather complicated and depends on b + 1 and whether or not b + 1 is a power
of two. The application of the switch (b1, b2) resp. (b1, g1)) then results in either a
Phase-4-strategy or a Phase-5-strategy for b.

If ν > 1, then the algorithms produce a Phase-4-strategy in Sn . During Phase 4,
it then applies the improving switches (si,∗, b1) for i ≤ ν − 1. The final switch that
will be applied is the switch (s1,∗, b1), resulting in a Phase-5-strategy. In particular,
the algorithms always produce a Phase-5-strategy at some point.

We now discuss Phase 5. To satisfy the definition of a canonical strategy, the
switches (ei, j,k, ∗) not applied during Phase 3 need to be applied. However, some
switches of the form (di, j,k, Fi, j ) will be applied first as they have very low occur-
rence records. Once these switches have been applied, switches of the form (ei, j,k, ∗)
minimize the occurrence record and will be applied.

The next statement describes that we in fact encounter these different phases. Note
that we use the term of the “next feasible row” as certain phases may not be present
in certain cases. Thus, the term “the next row” may not always be accurate.

Lemma 5 Let σb ∈ Λι be a canonical strategy for b fulfilling the canonical conditions.
Let σ ∈ Λσb be a strategy obtained by applying a sequence of improving switches to
σb. Let σ have the properties of row k of Table 6 and let Iσ be described by row k
of Table 7 for some k ∈ {1, . . . , 5}. Then, applying improving switches according to
Zadeh’s pivot rule and our tie-breaking rule produces a strategy σ ′ that is described
by the next feasible rows of Tables 6 and 7.

The following statement is implied by Lemma 5. It states that applying improving
switches to a canonical strategy fulfilling the canonical conditions yields the next
canonical strategy which then also fulfills the canonical conditions. It also allows us
to prove our main theorem.

Lemma 6 Let σb be a canonical strategy for b ∈ Bn fulfilling the canonical conditions.
After applying a finite number of improving switches according to Zadeh’s pivot rule
and our tie-breaking rule, the Strategy Improvement resp. Policy Iteration Algorithm
calculates a strategy σb+1 with the following properties.

1. Iσb+1 = {(di, j,k, Fi, j ) : σb+1(di, j,k) �= Fi, j }.
2. The occurrence records of all edges are described by Table 2 when interpreted for

b+ 1.
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3. σb+1 is a canonical strategy for b+ 1 and has Properties (Or1)∗,∗,∗ to (Or4)∗,∗,∗.
4. When transitioning from σb to σb+1, every improving switch was applied at most

once.

Theorem 4 Applying the Strategy Improvement Algorithm with Zadeh’s pivot rule and
the strategy-based tie-breaking rule described in Definition 7 on the game Gn of size
O(n) needs at least 2n iterations when using ι as the initial player 0 strategy.

7 Conclusion

In this paper, we have shown that Zadeh’s pivot rule has an exponential worst-case
running time in PG, MDP, and Simplex context. Together with previous results, we
now have a complete picture regarding the worst-case performance of all traditional
pivot rules (up to tie-breaking). This means that new pivot rules will have to be intro-
duced and analyzed in order to make further progress towards the question whether an
efficient pivot rule that is independent of tie-breaking exists. In particular, addressing
the following questions might be the next step:

1. Can the known lower bound constructions for history-based pivot rules be gener-
alized to eliminate a larger class of pivot rules? In particular, can our construction
be generalized to arbitrary tie-breaking in Zadeh’s rule?

2. Can we devise new natural pivot rules that systematically rule out the general ideas
behind the recent lower bound constructions for history-based pivot rules?

Another approach to eliminating pivot rules is the analysis of their inherent com-
plexity. For example, it was shown recently that predicting the behavior of the Simplex
Algorithm with Dantzig’s original pivot rule is computationally intractable [8, 11]. It
would be interesting to investigate whether these results carry over to Zadeh’s pivot
rule, and, in particular, whether a unified approach emerges that encompasses a broader
class of pivot rules with a single construction.
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A Implementations and verification of the results

We briefly discuss two independent implementations that were used to verify the
technical details of our construction quantitatively. Both implementations are publicly
available [19, 37].

The first implementation is based on the PGSolver software developed in OCaml
by Oliver Friedmann [19]. This implementation was developed alongside the theory
and was used to verify our construction for parity games. It was also used to create
the animations of the counter for n = 3 and n = 4 levels [24]. The PGSolver provides
a general framework for solving parity games which was previously used to verify
several lower bound constructions, e.g., [2, 12, 13, 15–17]. The only algorithmic
part of the implementation that was modified for our construction is the definition
of our specific tie-breaking rule. Otherwise, we only implemented some automated
checks, and provided an input file that specifies our parity game as a graph with
vertex priorities and a partition of the vertices into player 0 and player 1 vertices,
together with the initial strategy. We applied the general solver as a black box to run
the Strategy Improvement Algorithm with Zadeh’s pivot rule and our tie-breaking for
this input to check (by hand) every single step of the algorithm for n ∈ {3, 4} levels
against our theoretical predictions. In particular, we verified every single application
of an improving switch and every occurrence record throughout the execution. We
performed similar manual checks of many steps for n = 5 and some selection of
steps for n ∈ {6, . . . , 9}, focusing on potentially critical special cases and canonical
strategies. As the construction already needs 466 iterations for n = 4 levels [24] and
1228 iterations for n = 5, it was not feasible to verify larger examples step-by-step.

In addition, we implemented automated checks of occurrence records, as well as
other technical details. Specifically, we checked “well-behavedness” of strategies (for
a definition see full version [6]).As the number of iterations becomes very large already
for relatively small values of n, we performed such automated checks for examples
with up to n = 10 levels. For n = 10, the strategy improvement algorithm already
requires more than 80.000 iterations and it was not feasible to perform additional
verifications using this implementation.

The second implementation was developed by Felix Solms in Java as a part of his
Master’s thesis [37]. This implementation executes the Strategy Improvement Algo-
rithmwith Zadeh’s pivot rule and our specific tie-breaking for a given sink game.More
precisely, it computes the counter-strategy for player 1 for every strategy of player 0,
uses this to compute the set of improving switches, and computes the improving switch
that Zadeh’s pivot rule would select. Based on this, the implementation allows to nav-
igate step-by-step through the execution of the algorithm and provides a visualization
of the set of improving switches in each step. Importantly, both the algorithms and
the input files (and format) were developed from scratch and altogether independently
from the first implementation. Specifics of our construction (beyond tie-breaking) are
limited to an input file and thus cleanly separated from the implementation of the
Strategy Improvement Algorithm. The implementation was used to manually confirm
our predicted behavior for n ∈ {3, 4, 5}.
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Table 3 Strategy notation and
expressions. For convenience,
σ̄ (bn+1) := 0

Symbol Encoded boolean expression

σ̄ (bi ) σ (bi ) = gi
σ̄ (si, j ) σ (si, j ) = hi, j

σ̄ (gi ) σ (gi ) = Fi,1
σ̄ (di, j ,k ) σ (di, j,k ) = Fi, j

σ̄ (ei, j ,k ) σ (ei, j,k ) = b2

σ̄ (si ) σ̄ (si,σ̄ (gi ))

σ̄ (di, j ) σ̄ (di, j,0) ∧ σ̄ (di, j,1)

σ̄ (di ) σ̄ (di,σ̄ (gi ))

σ̄ (egi, j )
∨

k=0,1
[¬σ̄ (di, j,k ) ∧ ¬σ̄ (ei, j,k )

]

σ̄ (ebi, j )
∨

k=0,1
[¬σ̄ (di, j,k ) ∧ σ̄ (ei, j,k )

]

σ̄ (egi ) σ̄ (egi,σ̄ (gi ))

σ̄ (ebi ) σ̄ (ebi,σ̄ (gi ))

B Abbreviations and tables

In this appendix we explain all abbreviations used in the proofs and properties of
strategies introduced in the main part. For all of these explanations let σ ∈ Λι be
some strategy. Table 3 contains an overview of several boolean expressions. These
expressions are either true (i.e., equal to 1) or false (i.e., equal to 0). They are used to
have a compact representation of the state of the counter and to compare and link the
configurations of different vertices.

We now define the properties used for defining the term ’Phase-k-strategy’. As
discussed in the main part, each property is a boolean expression that might depend on
one or two parameters. Further note that the properties also might depend on whether
we consider PG or MDP context.

σ(si,βσ
i+1) = hi,βσ

i+1 ∧ σ(si,1−βσ
i+1) = b1 (Usv1)

σ(si, j ) = hi, j (Usv2)

σ(si,βσ
i+1) �= hi,βσ

i+1 ∧ σ(si,1−βσ
i+1) �= b1 (Usv3)

�i : σ(bi−1) = gi−1 ∧ σ̄ (bi ) �= σ̄ (gi−1) (Rel1)

μσ = ν(βσ ) (Rel2)

i < μσ ⇒ ¬σ̄ (di,0) ∨ ¬σ̄ (di,1) (Cc1)

σ̄ (dν) ∧ σ̄ (gν) = (b+ 1)ν+1 (Cc2)
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σ̄ (di, j ) ⇒ j �= βσ
i+1 (Cc3)

MDP-context: σ̄ (gi ) = 1− βσ
i+1 ⇒ σ̄ (di,1−βσ

i+1) (Sv1)

PG-context: σ̄ (gi ) = 1⇒ σ̄ (di,1)

βσ
1 = 0 ⇒ σ(e∗,∗,∗) = b2 (Esc1)

βσ
1 = 1⇒ σ(e∗,∗,∗) = g1

σ(e∗,∗,∗) = g1 (Esc2)

σ̄ (egi, j ) ∧ ¬σ̄ (ebi, j ) (Esc3)

σ̄ (ebi, j ) ∧ ¬σ̄ (egi, j ) (Esc4)

σ̄ (egi, j ) ∧ σ̄ (ebi, j ) (Esc5)

σ̄ (bi ) = σ̄ (dσ
i,βi+1) (Bac1)

σ̄ (bi ) ⇒ σ̄ (gi ) = βσ
i+1 (Bac2)

σ̄ (bi ) ⇒ ¬σ̄ (di,1−βσ
i+1) (Bac3)

Before giving the definition of the phases, we introduce additional properties. These
properties are not used for the definition of the phases and are related to the occur-
rence records of cycle edges. These properties in particular yield insights regarding
the parameter tb used in Table 2. The occurrence records of cycle edges are rather
complicated, hence these additional properties that help us in proving that Table 2
describes their occurrence records correctly. They are furthermore part of the canoni-
cal conditions, a set of properties every canonical strategy has. If the considered binary
number b is clear from the context, we let m:= �(b+ 1)/2� as this number turns out
to provide a bound on the maximum occurrence record of the improving switches for
σb.

σ(di, j,k) = Fi, j ∧ (bi = 0 ∨ bi+1 �= j) �⇒ φσ (di, j,k, Fi, j ) < m (Or1)

βσ
i = 0 ∨ βσ

i+1 �= j �⇒ [φσ (di, j,k, Fi, j ) = �b(i, j, k)+ 1⇔ σ(di, j,k) = Fi, j ]
(Or2)

φσ (di, j,k, Fi, j ) = �b(i, j, k)− 1 ∧ φσ (di, j,k, Fi, j ) �=
⌊
b+ 1− k

2

⌋

(Or3)
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Table 4 Definition of the phases. The entries show forwhich set of indices the strategy has the corresponding
property resp. whether the strategy has the property at all

The last row contains assumptions and further properties used for the definition of the phases. We define
[n] = {1, . . . , n} and ν:=ν(b+ 1)

⇐⇒ b is odd, �l ∈ N : b+ 1 = 2l , i = ν(b+ 1), j �= bi+1, k = 0.

σ (di, j,k) �= Fi, j �⇒ φσ (di, j,k, Fi, j ) ∈ {m− 1,m} (Or4)

Table 4 is used to define the five phases, see Definition 9. It contains one column
listing all properties and one column per phase. A strategy is called a Phase-k-strategy
if it has the properties listed in the corresponding column (resp. if it has the property
for the respective indices if the property depends on one or two indices). A ’-’ signifies
that it is not specified whether the strategy has the corresponding property. It thus may
or may not have it.

Table 5 contains sets of pairs of indices (i, j) that are used for defining the phases
or within several later proofs and statements.

The next table gives an overview over the strategies at the beginning of each phase.
More precisely, it contains properties that the strategies at the beginning of the different
phases have. It also gives an overview over the different combinations of phases,
contexts and parameters ν that can and cannot occur. We also introduce the following
notation. For strategies σ, σ ′ with σ ∈ Λσ ′ , the sequence of improving switches that
the Strategy Improvement Algorithm applies when starting with σ until it reaches σ ′
is denoted by Aσ ′

σ .
The next table gives an overview over the set of improving switches at the beginning

of the different phases. It thus in particular describes the same strategies whose prop-
erties are summarized in 6. It also shows which phases can actually occur depending
on whether we consider PG or MDP context and depending on the least significant set
bit of the next number.
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Table 5 Sets used for the
definition of the phases

We use the abbreviationsm = max{i : βσ
i = 1} and u = min{i : βσ

i =
0} as well as ν = ν(b+ 1)

C Proofs for themain statements

This appendix contains a selection of proofs and proof sketches for the statements
of the main part of the paper. Throughout this appendix, n ∈ N is a fixed natural
number, b ∈ Bn and ν:=ν(b + 1). Also, if not stated otherwise, we assume i ∈
{1, . . . , n}, j, k ∈ {0, 1} to be arbitrary but fixed indices. To further simplify notation,
we define

∑
(b, i):=∑

�<i b�2�−1. Also, we add an upper index S respectively M
when discussing vertex valuations in order to distinguish whether the argument holds
for the case Gn = Sn respectively Gn = Mn . If an argument is applicable in both
cases, this is marked by an upper index “ ∗ “.

We prove that the Strategy Improvement resp. Policy Iteration Algorithm behave
as intended as follows. We begin by stating lemmas that are needed for several proofs.
Then, there is one part for every single phase. In each part, we provide lemmas and,
eventually, tables formalizing the application of single improving switch during the
corresponding phases. We then use these lemmas and tables to prove that applying
improving switches to a canonical strategy σb for b yields a Phase-k-strategy for the
respective k ∈ {1, . . . , 5} as described by Tables 6 and 7. We finally prove that we
obtain a canonical strategy σb+1 for b+ 1 that fulfills the canonical conditions.

The statements provided here are proven in the full version [6] and marked with
(�). To simplify notation, we also refine the notation for describing the states of cycle
centers.

Definition 10 Let σ be a strategy and t→ ∈ {g1, b2}. Then, a cycle center Fi, j is
t→-open if σ(di, j,∗) = ei, j,∗ and σ(ei, j,∗) = t→. It is t→-halfopen if σ(di, j,k) =
ei, j,k, σ (ei, j,k) = t→ and σ(di, j,1−k) = Fi, j for some k ∈ {0, 1}. Finally, it is mixed
if σ̄ (ebi, j ) ∧ σ̄ (egi, j ). The corresponding term is called state of Fi, j .

The proofs require several additional lemmas. They usually either describe specific
strategies and the application of specific improving switches or terms used for the
description of the occurrence records. We do not prove these lemmas here as their
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Table 6 Properties that specific Phase-k-strategies have

To simplify notation, we define t→:=g1 if ν = 1 and t→:=b2 if ν > 1. A ’-’ signifies that the corresponding
combination of phase, context and ν does not occur during the execution of the algorithm.Wedo not interpret
the header as the first row of this table

Table 7 Improving switches at the beginning of different phases when starting with a canonical strategy
σb for b

We use ν:=ν(b + 1) and m:=max{i : σ(bi ) = gi } to simplify the notation. We fur-
ther define Eσ :={(di, j ,k , Fi, j ), (ei, j ,k , b2) : σ(ei, j ,k ) = g1} if ν > 1 and, analogously,
Eσ :={(di, j,k , Fi, j ), (ei, j ,k , g1) : σ(ei, j ,k ) = b2} if ν = 1. Note that we do not interpret 1 as a power of
two
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proofs are rather technical and involved and state them prior to the statements using
them.3

Vertex valuations and technical details

Proving our main results requires a lot of technical work. For every intermediate step,
it is necessary to investigate the strategies, improving switches and occurrence records.
As we are fully aware of the length and technical complexity of our proof, we have
decided to omit the investigation of the vertex valuations which can be found in [6,
Appendix A]. Furthermore, we decided to omit straight-forward but tedious technical
details in the proofs presented here. We refer to the full version [6] for all omitted
details.

Basic statements and statements independent of different phases

We begin by showing that the pair (Gn, ι) defines a Sink Game if Gn = Sn resp. that
it has the weak unichain condition if Gn = Mn .
Lemma 1 For all n ∈ N, the game Gn and the initial player 0 strategy ι define a
Sink Game with sink t in PG context, resp. have the weak unichain condition in MDP
context.

Proof IfGn = Sn , it suffices to prove that the game is completely won by player 1 and
that πι,τ ι,v ends in t for all v ∈ V (see e.g. [14]). Similarly, if Gn = Mn , it suffices to
prove that the single irreducible recurrent class of the initial and the optimal policy is
t . It is easy to verify the conditions related to the initial policy and to verify that the
following strategy is optimal and that it has the desired properties: � 

v di, j,k ei, j ,k gi , i < n gn si,0, i < n sn,0 si,1 bi

σ�(v) Fi, j g1 Fi,1 Fn,0 b1 hn,0 hi,1 gi

We next show that the tie-breaking rule is computationally tractable.

Lemma 2 Given a strategy σ ∈ Λι and an occurrence record φσ : E0 → N0, the
tie-breaking rule can be evaluated in polynomial time.

Proof Let σ ∈ Λι. Identifying the subsets of E0 can be done by iterating over E0 and
checking σ(v) for all v ∈ E0. Therefore, the pre-order of the sets can be calculated
in polynomial time. Since expanding the chosen pre-order to a total order is possible
in polynomial time [38], we can compute the tie-breaking rule in polynomial time.
Whenever the tie-breaking rule needs to be considered, the algorithm needs to iterate
over the chosen ordering. Since this can also be done in time polynomial in the input,
the tie-breaking rule can be applied in polynomial time. Also, handling the exception
described in Definition 7 can be done in polynomial time. � 
3 The (complete) proof can be found in the full version [6].

123



An exponential lower bound for Zadeh’s pivot rule 899

The first main lemma states that canonical strategies are Phase-1-strategies and also
give a characterization of their set of improving switches.

Lemma 3 Let σb ∈ Λι be a canonical strategy for b ∈ Bn . Then σb is a Phase-1-
strategy for b and Iσb = {(di, j,k, Fi, j ) : σb(di, j,k) �= Fi, j }.
Proof By the definition of a canonical strategy, σb has all of the properties defining
a Phase-1-strategy. It thus suffices to show Iσb = Dσ . We thus have to prove that
σ(di, j,k) �= Fi, j impliesΞ∗

σ (Fi, j ) > Ξ∗
σ (ei, j,k) and that there are no other improving

switches. This can be checked by simple, but tedious calculations (see full version [6,
p.54 ff.] for details). � 

We next prove that the initial strategy ι fulfills the canonical conditions that we
impose on canonical strategies at the beginning of Sect. 6.5.

Lemma 4 The initial strategy ι is a canonical strategy for 0 fulfilling the canonical
conditions.

Proof As no improving switch was applied yet and it is obvious that ι is a canonical
strategy for 0, it suffices to prove that ι has Properties (Or1)∗,∗,∗ to (Or4)∗,∗,∗. Let i ∈
{1, . . . , n}, j, k ∈ {0, 1}. First, ι has Property Or1i, j,k as ι(di, j,k) = ei, j,k . In addition,
0 = φι(di, j,k, Fi, j ) < 1 ≤ �b(i, j, k) + 1, so ι has Property Or2i, j,k . Moreover,

φι(di, j,k, Fi, j ) = 0 = ⌊ 1−k
2

⌋ =
⌊
b+1−k

2

⌋
, hence the premise of Property Or3i, j,k

is always incorrect. Thus, ι has Property Or3i, j,k . Since it is immediate that ι has
Property Or4i, j,k , the statement follows. � 

Before discussing the application of the improving switches during the individual
phases, we provide several technical lemmas that are used to determine the exact
occurrence records of the cycle vertices. We remind here that m = �(b+ 1)/2�.
Lemma 5 Let σb be a canonical strategy for b such that its occurrence records are
described by Table 2. Assume that σb has Properties (Or1)∗,∗,∗ to (Or4)∗,∗,∗. Then,
the following hold.

1. Let i ∈ {1, . . . , n}, j ∈ {0, 1} such that bi = 0 or bi+1 �= j . Then
φσb(di, j,k, Fi, j ) ≤ m.

2. Let j := bν+1. It holds that φσb(dν, j,0, Fν, j ) = m. In addition, φσb(dν, j,1, Fν, j ) =
m if ν = 1 and φσ (dν, j,1, Fν, j ) = m− 1 if ν > 1.

3. If i = 1, then σb(di,1−bi+1,∗) �= Fi,1−bi+1 and φσb(di,1−bi+1,0, Fi,1−bi+1) = m.

In the following, we use 1x=y as an abbreviation for the function that is equal to
one if x = y and equal to zero otherwise.

Lemma 6 Let b ∈ Bn and i ∈ {1, . . . , n}, j ∈ {0, 1} such that bi = 0 or bi+1 �= j .
Then,

1 j=0mfn(b, i + 1)− 1 j=1mufn(b, i + 1)

= 1 j=0mfn(b+ 1, i + 1)− 1 j=1mufn(b+ 1, i + 1).

Moreover, if i �= ν, then �b(i, j, k)+ 1 = �b+1(i, j, k).
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Lemma 7 If 1 j=0mfn(b, i + 1) + 1 j=1mufn(b, i + 1) = 0, then �b(i, j, k) ≥ b.
Otherwise, the following hold:

Setting of bits bi = 1 ∧ bi+1 = 1− j bi = 0 ∧ bi+1 = j bi = 0 ∧ bi+1 = 1− j

�b(i, j, k) =
⌈
b+∑

(b,i)+1−k
2

⌉
=

⌈
b+2i−1+∑

(b,i)+1−k
2

⌉

=
⌈
b−2i−1+∑

(b,i)+1−k
2

⌉

Reaching a phase-2-strategy

We begin by providing lemmas and proofs describing the application of improving
switches during Phase 1 for ν > 1 as these are the circumstances under which there
is a Phase 2. In this phase, cycle edges (d∗,∗,∗, F∗,∗) and edges (g∗.F∗,∗) are applied.

We first provide an overview describing the application of individual improving
switches during Phase 1.3 We interpret each row of this table stating that if a strategy σ

fulfills the given conditions, applying the given switch e results in a strategy σe that has
the claimed properties. For convenience, conditions specifying the improving switch,
resp. the level or cycle center corresponding to the switch, are contained in the second
column. Note that we also include one improving switch that technically belongs to
Phase 2. This is included as Table 8 then contains all statements necessary to prove
that applying improving switches to σb yields the Phase-2-strategy that is described in
Tables 6 and 7. Henceforth, we letDσ := {(di, j,k, Fi, j ) : σ(di, j,k) �= Fi, j } to simplify
notation.

The following lemma now describes the application of cycle edges in Phase 1 in
more detail. It in principle summarizes the first three rows of Table 8.

Table 8 Improving switches applied during Phase 1

For convenience, we always assume σ ∈ Λι and that σ is a Phase-1-strategy for b if not stated otherwise.
We thus also always have σe ∈ Λι
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Lemma 8 Let σ ∈ Λσb be a Phase-1-strategy for b with Iσ = Dσ . Let
e:= (di, j,k, Fi, j ) ∈ Iσ , Iσb with φσ (e) = φσb(e) = m − 1. Assume that σb
fulfills the canonical conditions. Then σe ∈ Λι is a Phase-1-strategy for b. Fur-
thermore, if σ(di, j,1−k) = Fi, j , j = 1 − bi+1σ(gi ) = Fi,1− j and bi = 0, then
Iσe = (Iσ \{e}) ∪ {(gi , Fi, j )}. Otherwise, Iσe = Iσ \{e}. In addition, the occurrence
record of e with respect to σe is described by Table 2 when interpreted for b+ 1.

We begin by considering the case ν > 1. We prove that the Strategy Improvement
resp. Policy Iteration Algorithm produces a Phase-2-strategy σ (2) as described by the
corresponding rows of Tables 6 and 7. We furthermore prove that Table 2 (interpreted
for b+1) characterizes the occurrence record of every improving switch that is applied
is when transitioning from σb to σ (2). As analogous statements will be shown for every
phase, this later enables us to simplify the proof of Theorem 3 significantly.

Lemma 7 Let σb be a canonical strategy for b ∈ Bn with ν > 1 fulfilling the canon-
ical conditions. After applying a finite number of improving switches, the Strategy
Improvement resp. Policy Iteration Algorithm produces a Phase-2-strategy σ (2) ∈ Λι

as described by the corresponding rows of Tables 7 and 6.

Proof Let j := bν+1 and observe that bν+1 = (b+1)ν+1. Since σb is a canonical strat-
egy, we have σb(dν, j,∗) �= Fν, j . Moreover, Iσb = Dσb and σb is a Phase-1-strategy for
b by Lemma 3, implying (dν, j,∗, Fν, j ) ∈ Iσb . By Lemma 5, (dν, j,0, Fν, j ) maximizes
the occurrence record among all improving switches and φσb(dν, j,1, Fν, j ) = m− 1.
By Property Or4∗,∗,∗, Iσb can be partitioned into Iσb = I<m

σb
∪ Imσb where e ∈ I<m

σb
if

φσb(e) = m−1 and e ∈ Imσb ifφ
σb(e) = m. If I<m

σb
�= ∅, then a switch contained in this

set is applied first due to Zadeh’s pivot rule. By applying Lemma 8 iteratively, we can
apply improving switches e ∈ I<m

σb
until we either reach a strategy σ with I<m

σ = ∅
or until an edge (gi , Fi, j ) becomes improving. By Lemma 8, Table 2 (interpreted for
b + 1) describes the occurrence record of all switches applied in the process. Using
Table 2 and by investigating under which condition an edge (gi , Fi, j ) can become
improving, it is easy to verify that such a switch is applied directly after becoming
improving and that Lemma 8 can be applied afterwards.3 Note that we do not prove
yet that Table 2 describes its occurrence record, this is done at the end of the appendix
as it requires insights about the other phases.

We observe that (gi , Fi, j ) can only be applied if Fi, j was closed by apply-
ing (di, j,k, Fi, j ). This implies that either (di, j,0, Fi, j ), (di, j,1, Fi, j ) ∈ I<m

σb
or

σ(di, j,1−k) = σb(di, j,1−k) = Fi, j . The first case can only happen for i = ν

and j = 1 − bν+1. Thus, if a switch (gi , Fi, j ) is applied, then either i = ν or
σb(di, j,1−k) = Fi, j and (di, j,k, Fi, j ) ∈ I<m

σb
.

Thus let σ be a Phase-1-strategy σ with I<m
σ = ∅ and assume that G ∩ Iσ = ∅.

Further note that Aσ
σb
⊆ D

1 ∪G and that (gi , Fi, j ) ∈ Aσ
σb

implies bi = 0∧ bi+1 �= j
and that the previous arguments hold independent of ν. In particular, we implicitly
proved the following corollary.

Corollary 1 Letσb be a canonical strategy andσb(di, j,k) �= Fi, j . Ifφσb(di, j,k, Fi, j ) <

m, then (di, j,k, Fi, j ) is applied during Phase 1.

We now discuss the application of switches contained in Imσb , so consider a Phase-
1-strategy σ with Iσ = {e = (di, j,k, Fi, j ) : φσ (e) = m} = Dσ . It is easy to verify
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that there are no open cycle centers with respect to σ by proving σ(d∗,∗,1) = F∗,∗.3
We prove that e:=(dν,bν+1,0, Fν,bν+1) is applied next. By Lemma 5, φσb(e) = m. In
addition, σb(dν,bν+1,0) �= Fν,bν+1 as σb is a canonical strategy for b. As only edges
with an occurrence record less than m were applied so far, this implies e ∈ Iσ . Since
all improving switches have the same occurrence records, it is sufficient to show that
no other improving switch is ranked lower by the tie-breaking rule. As proven before,
there are no open cycle centers. Hence, the ordering of the edges is based on the bit of
the levels, the index of the levels and whether the cycle center is active. To be precise,
the first switch according to the tie-breaking rule is the improving switch contained in
the active cycle center of the lowest level with a bit equal to 0. This edge is precisely
e = (dν,bν+1,0, Fν,bν+1). It is easy to verify that the occurrence record of e is described
by Table 2 when interpreted for b+ 1 after the application.3

By row 5 of Table 8, σe is a Phase-2-strategy for b. If σ(gν) �= Fν,bν+1 , then
(gν, Fν,bν+1) minimizes the occurrence record among all improving switches. Due to
the tie-breaking rule, this switch is then applied next, and this application is formalized
in row 6 of Table 8.

Letσ (2) denote the strategy obtained after applying (gν, Fν,bν+1) ifσ(gν) �= Fν,bν+1
resp. after applying (dν,bν+1,0, Fν,bν+1) if σ(gν) = Fν,bν+1 . Then, Iσ (2) = Dσ (2) ∪
{(bν, gν)} ∪ {(sν−1,1, hν−1,1)} by row 5 resp. 6 of Table 8. Furthermore, σ (2) has
Property Usv3i for all i < ν since σb has Property Usv1i for all i < ν and bi =
1− (b+ 1)i for i ≤ ν. In addition, σ (2)(di, j,k) �= Fi, j implies φσ(2)

(di, j,k, Fi, j ) = m
by Corollary 1. Moreover, since we did not apply any improving switch (d∗,∗,∗, e∗,∗,∗)
and bi = 1 − βσ

i+1 for all i < ν, we have σ(gi ) = 1 − βσ
i+1 as well as σ̄ (di,1−βσ

i+1)
for all i < ν. � 

We furthermore implicitly proved the following two corollaries. We later show that
the condition ν > 1 can be dropped in the first corollary.

Corollary 2 Let σb be a canonical strategy for b and let ν > 1. Then, during Phase 1,
the switch (gi , Fi, j ) is applied if and only if Fi, j is closed during Phase 1, σb(gi ) �=
Fi, j and i �= ν. A cycle center can only be closed during Phase 1 if either i = ν

or if σb(di, j,k) = Fi, j , φσb(di, j,1−k, Fi, j ) < m for some k ∈ {0, 1}, j �= bi+1 and
σb(bi ) = bi+1.

Corollary 3 Let σ (2) be the Phase-2-strategy calculated by the Strategy Improvement
resp. Policy Iteration Algorithm when starting with a canonical strategy σb fulfilling
the canonical conditions as per Lemma 7. Then, Table 2 specifies the occurrence
record of every improving switch applied so far when interpreted for b+ 1, excluding
switches (g∗, F∗,∗), and each switch was applied once.

Reaching a phase-3-strategy

Depending on ν, Phase 3 is either reached after applying the improving switches of
Phsae 2 or directly after Phase 1. During Phase 2, the entry vertices bi and some of
the selection vertices si,∗ of levels i ≤ ν are updated. We again provide an overview
describing the application of individual improving switches during Phase 2.3 We also
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include one row that technically does not belong to Phase 2, handling a special case
that might occur at the beginning of Phase 3.

We furthermore need the following lemma that is used to determine the values of
several expressions related to binary counting.

Lemma 9 It holds that fl(b, i) = �b+2i−1
2i

� and fl(b + 1, i) = fl(b, i) + 1i=ν . In

addition, for indices i1, i2 ∈ {1, . . . , n} with i1 < i2 and b ≥ 2i1−1 imply fl(b, i1) >

fl(b, i2). Furthermore, if k := b+1
2ν−1 and x ∈ {1, . . . , ν−1}, then fl(b, ν−x) = k ·2x−1.

The following lemma now states that we reach a Phase-3-strategy for b under all
circumstances. If ν = 1, then this follows by analyzing Phase 1 in a similar fashion as
donewhen proving Lemma 7. It in fact turns out that nearly the identical arguments can
be applied. If ν > 1, thenwe use that lemma to argue that we obtain a Phase-2-strategy.
We then investigate Phase 2 in detail and prove that we also obtain a Phase-3-strategy.

Lemma 8 Let σb ∈ Λι be a canonical strategy for b ∈ Bn fulfilling the canonical
conditions. After applying a finite number of improving switches, the Strategy Improve-
ment resp. Policy Iteration Algorithm produces a proper Phase-3-strategy σ (3) ∈ Λι

as described by the corresponding rows of Tables 6 and 7.

Proof Consider the case ν = 1 first. As shown in the proof of Lemma 7, we can
partition Iσb into I<m

σb
and Imσb . Since Lemma 8 also applies for ν = 1, the same

arguments imply that the algorithm calculates a Phase-1-strategy σ ∈ Λι with Iσ =
{e = (di, j,k, Fi, j ) : φσ (e) = m} = Dσ . We can again deduce Aσ

σb
⊆ D

1 ∪G and that
(gi , Fi, j ) ∈ Aσ

σb
implies bi = 0∧bi+1 �= j or i = ν. We can further assume that there

are no indices i, j with (gi , Fi, j ) ∈ Iσ . Also, by Lemma 8, the occurrence records of
edges (di, j,k, Fi, j ) ∈ Aσ

σb
is described by Table 2 when interpreted for b+ 1.

Since all improving switches have the same occurrence records, their order of appli-
cation depends on the tie-breaking rule. Due to the first criterion, improving switches
contained in open cycle centers are applied first. Hence, a sequence of strategies is
produced until a strategy is reached such that there are no more open cycle centers.
Note that all produced strategies are Phase-1-strategies for b, reachable from ι by
row 1 of Table 8. Also, by the tie-breaking rule, (di, j,0, Fi, j ) is applied as improving
switch in an open cycle center. By the same arguments used when proving Lemma 7,
the second switch of Fν,bν+1 is applied next and, possibly, (gν, Fν,bν+1) is applied
afterwards. Let σ denote the obtained strategy. We prove that the occurrence records
of edges (di, j,k, Fi, j ) applied so far is specified by Table 2 when interpreted for b+1.

As argued previously, each such switch is contained in a cycle center open for σb.
Consider such a cycle center. If the occurrence record of one of its cycle edges is
m − 1, then the application of the corresponding switch is described by Lemma 8
and we do not need to consider it here. Also, due to the tie-breaking rule, we do not
apply an improving switch contained in halfopen cycle centers (with the exception of
Fν,bν+1 ) as we only consider switches contained in Imax

σb
. We may thus assume that

Fi, j is open with respect to σb and that both cycle edges have an occurrence record of
m. We only consider the case i �= ν or i = ν ∧ j �= bi+1 here.3 By the tie-breaking
rule, e = (di, j,0, Fi, j ) is then applied. Let σ denote the strategy in which e is applied.

123



904 Y. Disser et al.

Since b is even, φσe(e) = m + 1 =
⌊
b+2
2

⌋
. It thus suffices to show that there is

a parameter tb+1 feasible for b + 1 such that
⌊
b
2

⌋
+ 1 ≤ �b+1(i, j, k) + tb+1. By

the choice of i and j , Lemma 6 implies �b(i, j, k) + 1 = �b+1(i, j, k). Therefore,
φσ (e) + 1 ≤ �b(i, j, k) + tb + 1 ≤ �b+1(i, j, k) + tb for some tb feasible for b.
Since b is even, Property Or4i, j,0 implies φσb(e) �= �b(i, j, k) − 1. In addition, by
Property Or2i, j,0, tb �= 1 as this would imply σb(di, j,0) = Fi, j , contradicting our
assumption. Consequently, tb = 0 and we can thus choose tb+1 = 0 as parameter.

Let σ (3) denote the strategy obtained after closing Fν,bν+1 resp. after applying
(gν, Fν,bν+1) if it becomes improving. Note that the last row of Table 9 applies to
(gν, Fν,bν+1). Then, by row 5 of Table 8 resp. the last row of Table 9 and our previous
arguments, σ (3) has all properties listed in the respective rows of Tables 6 and 7.
Furthermore, as we used the same arguments, Corollary 2 is also valid for ν = 1 and
we can drop the assumption ν > 1.

Consider the case ν > 1, implying b ≥ 1. By Lemma 7, applying improv-
ing switches to σb yields a Phase-2-strategy σ for b with σ ∈ Λι and Iσ =
Dσ ∪ {(bν, gν), (sν−1,1, hν−1,1)}. By Table 2, it holds that φσ (bν, gν) = fl(b, ν) =
φσ (sν−1,1, hν−1,1). By Lemma 9, fl(b, ν) = �b+2ν−1

2ν �. Since ν > 1 and b ≥ 1, this
implies fl(b, ν) ≤ �b+24 � = �b+14 � ≤ �b+12 �. By Lemma 7, any (di, j,k, Fi, j ) ∈ Iσ
has an occurrence record of m. Thus, by the tie-breaking rule, (bν, gν) is applied
next. Let σ ′:=σ [(bν, gν)]. It is easy to verify that σ has the properties of row 1 of
Table 9. Consequently, σ ′ is a Phase-2-strategy for b with σ ′ ∈ Λι. By Lemma 9,
φσ ′(bν, gν) = fl(b, ν)+ 1 = fl(b+ 1, ν), so Table 2 describes the occurrence record
of (bν, gν) with respect to b + 1. The set of improving switches for σ ′ now depends
on ν, see row 1 of Table 9.

1. Let ν = 2. Then Iσ ′ = Dσ ′ ∪ {(b1, b2), (s1,1, h1,1)} ∪ {(e∗,∗,∗, b2)}. By Table 2,

we have φσ ′(e∗,∗,∗, b2) =
⌊
b
2

⌋
, φσ ′(b1, b2) = fl(b, 1)− 1 and φσ ′(s1,1, h1,1) =

fl(b, 2). Since b is odd, Lemma 9 implies fl(b, 1) − 1 =
⌊
b
2

⌋
. Consequently,

φσ ′(b1, b2) = φσ ′(ei, j,k, b2). There are two cases. If b = 1, then fl(b, 2) =

Table 9 Improving switches applied during Phase 2

For convenience, we always assume σ ∈ Λι, that σ is a Phase-2-strategy for b and that ν > 1 if not stated
otherwise. We thus also always have σe ∈ Λι
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⌊
b+2
4

⌋
= 0 =

⌊
b
2

⌋
and φσ ′(s1,1, h1,1) = φσ ′(b1, b2). But then, (s1,1, h1,1) is

applied next as this is the situation in which the exception is applied. If b > 1, then
ν = 2 implies b ≥ 5. But this implies φσ ′(s1,1, h1,1) < φσ ′(b1, b2), so (s1,1, h1,1)
is applied next. Consequently, e:=(s1,1, h1,1) is applied next in any case. Using
Lemma 7 and our previous arguments, it is easy to verify that the requirements
of row 2 of Table 9 are fulfilled.3 Hence, σ :=σ ′[e] is a proper Phase-3-strategy
for b with σ ∈ Λι and Iσ = Iσ ′ \{e} = Dσ ∪ {(b1, b2)} ∪ {(e∗,∗,∗, b2)}. Since
φσ ′[e](e) = fl(b, 2)+ 1 = �b+24 � + 1 = � (b+1)+2

4 � = fl(b+ 1, 2) since b is odd,
Table 2 describes the occurrence record of (s1,1, h1,1) with respect to b+ 1. Since
we did not apply any improving switch (g∗, F∗,∗) or (d∗,∗,∗, e∗,∗,∗), the conditions
on cycle centers in levels below ν hold for σ (3) as they held for σ (2). Therefore, σ
is a strategy as described by the respective rows of Table 6 and 7.

2. Let ν > 2, implying b �= 1. Then, Iσ ′ = Dσ ′ ∪ {(bν−1, bν), (sν−1,1, hν−1,1),
(sν−2,0, hν−2,0)} by the first row of Table 9. By Table 2, we then have
φσ ′(bν−1, bν) = fl(b, ν − 1) − 1 and φσ ′(sν−1,1, hν−1,1) = fl(b, ν). In addi-
tion, φσ ′(sν−2,0, hν−2,0) = fl(b, ν − 1) − 1. Hence, both edges (bν−1, bν) and
(sν−2,0, hν−2,0) minimize the occurrence record. By the tie-breaking rule, the
switch e:=(bν−1, bν) is now applied. It is now easy to verify that the application
of e can be described by row 3 of Table 9.3 Hence, by our previous arguments and
row 3 of Table 9, σ :=σ ′[e] is a Phase-2-strategy for b that has Property Cc2 as
well as Property Bac1i and (Bac2)i for all i ≥ ν − 1 and Property Bac3i for all
i > ν − 1, i �= ν. In addition, σ̄ (di ) for all i < ν and σ has Property Usv3i for
all i < ν − 1 Furthermore, Lemma 9 implies φσ (e) = fl(b, ν − 1) − 1 + 1 =
fl(b, ν − 1) = fl(b+ 1, ν − 1)− (b+ 1)ν−1, so Table 2 describes the occurrence
record of ewith respect to b+1. By row 3 of Table 9, ν−1 > 2 implies Iσ = Dσ ∪
{(sν−1,1, hν−1,1), (sν−2,0, hν−2,0), (bν−2, bν−1), (sν−3,0, hν−3,0)}. Similarly, ν−
1 = 2 implies Iσ = Dσ ∪ {(ei, j,k, b2)} ∪ {(b1, b2), (s2,1, h2,1), (s1,0, h1,0)}.
We prove that e:=(sν−1,1, hν−1,1) ∈ Iσ is applied next. By the definition of ν,
b = k · 2ν−1 − 1 for some k ∈ N. By Table 2, Lemma 9 and using ν > 2, we
obtain the following:

φσ (sν−1,1, hν−1,1) = fl(b, ν) =
⌊k · 2ν−1 − 1+ 2ν−1

2ν

⌋
=

⌊k

2

⌋

φσ (sν−2,0, hν−2,0) = fl(b, ν − 1)− 1 = k · 20 − 1 = k − 1

φσ (sν−3,0, hν−3,0) = φσ (bν−2, bν−1)
= fl(b, ν − 2)− 1 = k · 22−1 − 1 = 2k − 1

φσ (ei, j,k, b2) =
⌊b

2

⌋
=

⌊k · 2ν−1 − 1

2

⌋
=

⌊
k · 2ν−2 − 1

2

⌋
= 2ν−2k − 1.

If k > 2, then (sν−1,1, hν−1,1) is the uniquely minimized the occurrence records.
If k ≤ 2, then the occurrence records of (sν−1,1, hν−,1) and (sν−2,0, hν−2,0) are
identical and lower than the occurrence record of any other improving switch.
Since the tie-breaking rule applies improving switches at selection vertices con-
tained in higher levels first, (sν−1,1, hν−1,1) is also applied first then. Consequently,
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e:=(sν−1,1, hν−1,1) is applied next in any case.
We prove that σ fulfills the conditions of row 2 of Table 9. By our previous
arguments, it suffices to prove that σ has Property Usv3ν−1. As βσ

ν = 1, this
however follows since (sν−1,1, hν−1,1) ∈ Iσ and since σ has Property Usv2i,0
by the definition of a Phase-2-strategy. By our previous arguments and row
2 of Table 9, σe then has Properties (Usv2)ν−1,1, (Cc2), (Bac1)ν and Prop-
erty Usv3i,1−βσe

i+1 for all i < ν − 1. Furthermore, Iσe = Iσ \{e}. More precisely,
Iσ [e] = Dσe ∪ {(sν−2,0, hν−2,0), (bν−2, bν−1), (sν−3,0, hν−3,0)} if ν − 1 > 2 and
ν > 2 implies Iσe = Dσe ∪ {(e∗,∗,∗, b2)} ∪ {(b1, b2), (s1,0, h1,0)}. Also note that
ν > 2 implies φσe(sν−1,1, hν−1,1) = fl(b, ν) + 1 = fl(b + 1, ν) by Lemma 9, so
Table 2 specifies its occurrence record with respect to b+ 1.
Consider the case ν − 1 > 2. We argue that applying improving switches accord-
ing to Zadeh’s pivot rule and our tie-breaking rule then results in a sequence of
strategies such that we finally obtain a strategy σ ′ with Iσ ′ = Dσ ′ ∪{(e∗,∗,∗, b2)}∪
{(b1, b2), (s1,0, h1,0)}. For any x ∈ {2, . . . , ν − 2}, Lemma 9 implies

φσe(sν−x,0, hν−x,0)<φσe(bν−x , bν−(x+1))
=φσe(sν−(x−1),0, hν−(x−1),0)<φσe(ei, j,k, b2). (1)

Thus, (sν−2,0, hν−2,0) is applied next. It is easy to verify that σemeets the require-
ments of row 2 of Table 9, so it can be used to describe the application of
(sν−2,0, hν−2,0).
Let σ ′ denote the strategy obtained. Then Iσ ′ = Dσ ∪ {(bν−2, bν−1), (sν−3,0,
hν−3,0)}. Also, the occurrence record of the edge (sν−2,0, hν−2,0) is described by
Table 2 with respect to b + 1. By Eq. (1) and the tie-breaking rule, (bν−2, bν−1)
is applied next. Similar to the previous cases, it is easy to check that row 3 of
Table 9 applies to this switch. We thus obtain a strategy σ such ν− 2 �= 2 implies
Iσ = Dσ∪{(sν−3,0, hν−3,0), (bν−3, bν−2), (sν−4,0, hν−4,0)} and ν−2 = 2 implies
Iσ = Dσ ∪ {(e∗,∗,∗,, b2)} ∪ {(b1, b2), (s1,0, h1,0)}. In either case, the occurrence
record of (bν−2, bν−1) is described by Table 2 with respect to b+ 1.
In the first case, we can now apply the same arguments again iteratively as
Eq. (1) remains valid for σ ′ and x ∈ {2, . . . , ν − 3}. After applying a finite
number of improving switches we thus obtain a Phase-2-strategy σ ∈ Λι with
Iσ = Dσ ∪ {(e∗,∗,∗, b2)} ∪ {(b1, b2), (s1,0, h1,0)}. Furthermore, σ has Prop-
erty Bac1i , Property Bac2i and Property Usv2i,βσ

i+1 for all i > 1 as well as
Property Bac3i for all i > 1, i �= μσ and Property Cc2. In addition, it holds
that σ̄ (gi ) = 1 − βσ

i+1 and σ̄ (di,1−βσ
i+1) for all i < ν and the occurrence records

of all edges applied so far (with the exception of switches (g∗, F∗,∗)) is described
by Table 2 with respect to b+ 1. Note that this also holds if ν − 1 = 2.
Consequently, σ meets the requirements of row 2 of Table 9. As ν > 2, we have
βσ
2 = 0. By Table 2, it holds that φσ (s1,0, h1,0) = fl(b, 2) − 1 < fl(b, 1) − 1 =

φσ (b1, b2) as well as fl(b, 2)− 1 =
⌊
b+2
4

⌋
− 1 <

⌊
b
2

⌋
= φσ (ei, j,k, b2). Hence,

the switch e = (s1,0, h1,0) is applied next and by row 2 of Table 9, σ (3):=σe is a

proper Phase-3-strategy for b with Iσ (3) = Dσ (3) ∪ {(ei, j,k, b2)} ∪ {(b1, b2)}.
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We thus always obtain a strategy as described by the corresponding rows of Tables 6
and 7. � 

We henceforth use σ (3) to refer to the Phase-3-strategy described by Lemma 8.
Note that we implicitly proved the following corollaries where the second follows by
Corollary 3. Further note that we can drop the condition ν > 1 in Corollary 2.

Corollary 4 No cycle center is open with respect to σ (3).

Corollary 5 Let σ (3) be the Phase-3-strategy calculated by the Strategy Improvement
resp. Policy Iteration Algorithm when starting with a canonical strategy σb fulfilling
the canonical conditions as per Lemma 8. Then, Table 2 specifies the occurrence
record of every improving switch applied so far when interpreted for b+ 1, excluding
switches (g∗, F∗,∗), and each such switch was applied once.

Reaching either phase 4 or phase 5

We now discuss the application of improving switches during Phase 3, which highly
depends on whether we have Gn = Sn or Gn = Mn and on the least significant
set bit of b + 1. In principle, the escape vertices are reset with respect to the new
least significant bit and the targets of several cycle vertices are updated accordingly.
As usual, we provide an overview describing the application of individual improving
switches during Phase 3.3 To simplify and unify the arguments, we define t→:= b2 if
ν > 1 and t→:= g1 if ν = 1. Similarly, let t←:= g1 if ν > 1 and t←:= b2 if ν = 1.
We furthermore define Eσ := {(di, j,k, Fi, j ), (ei, j,k, t→) : σ(ei, j,k) = t←}.

In addition, we make use of the following lemma.

Lemma 10 Let Gn = Mn. Let σ be a proper Phase-3-strategy for b with σ ∈ Λι. Let
j :=1−βσ

i+1. Assume e:=(di, j,k, ei, j,k) ∈ Iσ and σ(ei, j,k) = t→ for some k ∈ {0, 1}.
Assume that there are no other indices x, y, z with (dx,y,z, ex,y,z) ∈ Iσ , that Fi, j is
closed and that σ fulfills the following assumptions:

1. If βσ
i = 0, then σ(gi ) = Fi, j and Fi,1− j is t←-halfopen.

2. i < μσ implies [σ(si, j ) = hi, j and σ(si ′, j ′) = hi ′, j ′ ∧ σ̄ (di ′) for all i ′ < i, j ′ ∈
{0, 1}] and that the cycle center Fi ′,1−σ̄ (gi ′ ) is t←-halfopen for all i ′ < i . In
addition, i < μσ − 1 implies σ̄ (ebi+1).

3. i ′ > i implies σ(si,1−βσ
i ′+1) = b1.

4. i ′ > i and βσ
i ′ = 0 imply that either [σ̄ (gi ′) = βσ

i ′+1 and Fi,0, Fi,1 are mixed] or
[σ̄ (gi ′) = 1− βσ

i ′+1, Fi ′,1−βσ
i ′+1 is t

→-open and Fi ′,βσ
i ′+1 is mixed] and

5. i ′ > i and βσ
i ′ = 1 imply that Fi ′,1−βσ

i ′+1 is either mixed or t→-open.

Then σe is a proper Phase-3-strategy for b with σe ∈ Λι and Iσe = [Iσ ∪
{(si, j , b1)}]\{e} if i < μσ and Iσe = Iσ \{e} otherwise.

The next lemma descries the application of switches of the type (di, j,k, ei, j,k) for
several cases.

Lemma 11 Let σ ∈ Λσ(3) be a proper Phase-3-strategy for b obtained through the
application of a sequence Aσ

σ (3) ⊆ E
1 ∪ D

0 of improving switches. Assume that the
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Table 10 Improving switches applied during Phase 3

For convenience, we always assume σ ∈ Λι and that σ is a proper Phase-3-strategy for b if not stated
otherwise, implying that always σe ∈ Λι. The definition of the sets Xk , Si can be found in Tables 7, 6

conditions of row 1 of Table 10 are fulfilled for each intermediate strategy σ ′. Let
e = (di, j,k, ei, j,k) ∈ Iσ be the switch applied next and assume σ(ei, j,k) = t→, βσ

i =
0 ∨ βσ

i+1 �= j and Iσ ∩D
0 = {e}. Further assume that either i ≥ ν or that Gn = Sn.

Then σe is a proper Phase-3-strategy for b with Iσe = (Iσ \{e}).
The next lemma now summarizes the application of improving switches during

Phase 3. Depending on whether we consider PG or Mn and depending on ν, we then
either obtain a Phase-4-strategy or a Phase-5-strategy for b.

Lemma 9 Let σb ∈ Λι be a canonical strategy for b ∈ Bn fulfilling the canonical con-
ditions. After applying a finite number of improving switches, the Strategy Improvement
resp. Policy Iteration Algorithm produces a strategy σ with the following properties:
If ν > 1, then σ is a Phase-k-strategy for b, where k = 4 if Gn = Sn and k = 5 if
Gn = Mn. If ν = 1, then σ is a Phase-5-strategy for b. In any case, σ ∈ Λι and σ is
described by the corresponding rows of Tables 6 and 7.

Proof By Lemma 8, applying improving switches according to Zadeh’s pivot rule and
our tie-breaking rule yields a proper Phase-3-strategy σ (3) ∈ Λι described by the
corresponding row of Table 6 and 7. We begin by describing Phase 3 informally.

For every cycle vertex, either σ (3)(di, j,k) = Fi, j or σ (3)(di, j,k) = ei, j,k and
(di, j,k, Fi, j ) ∈ Iσ (3) . It will turn out that only switches corresponding to cycle vertices
of the first type are applied during Phase 3. For each such cycle vertex di, j,k , the switch
(ei, j,k, t→) will be applied. If (b + 1)i = 0 or (b + 1)i+1 �= j , then (di, j,k, ei, j,k)
becomes improving and is applied next. This then goes on until all such improving
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switches have been applied. During this procedure, it might happen that an edge
(si ′,∗, b1) with i ′ < ν becomes improving after applying some switch (di, j,k, ei, j,k)
if we consider Gn = Mn and if we have ν > 1. In this case, the corresponding
switch is applied immediately. Finally, (b1, b2) resp. (b1, g1) is applied, resulting in a
Phase-4-strategy in Sn if ν > 1 and in a Phase-5-strategy otherwise.

We now formalize this behavior. Using Lemma 8 and Table 2, it is easy to verify that
switches (e∗,∗,∗, t→)minimize the occurrence record among all improving switches.3.
By the tie-breaking rule, a switch (ei, j,k, t→) with σ (3)(di, j,k) = Fi, j is thus applied

next. Since σ (3)(si ′,∗) = hi ′,∗ for all i ′ < μσ(3)
by Lemma 8, the statement of row 1

of Table 10 can be applied.
In addition, it is easy to verify that the characterization given in this row implies

that we have Iσe = (Iσ \{e})∪{(di, j,k, ei, j,k)} if βσ
i = 0∨βσ

i+1 �= j and Iσe = Iσ \{e}
else.3 Consequently, by the tie-breaking rule and row1ofTable 10, improving switches
(e∗,∗,∗, t→) ∈ E

1 are applied until a switch with βσ
i = 0 ∨ βσ

i+1 �= j is applied.
Note that the occurrence record of each applied switch is described by Table 2 when

interpreted for b+1 since
⌊
b
2

⌋
+1 = m if b is odd and

⌈
b
2

⌉
+1 =

⌈
b+1
2

⌉
if b is even.

By row 1 of Table 10, (di, j,k, ei, j,k) then becomes improving. As (di, j,k, ei, j,k) /∈ Aσ
σb

and since switches of the type (e∗,∗,∗, t→) minimize the occurrence record, Table 2
and the tie-breaking rule imply that (di, j,k, ei, j,k) is applied next. In particular, an
edge (di, j,k, ei, j,k) is applied immediately if it becomes improving and this requires
that (ei, j,k, t→) was applied earlier. Thus, their occurrence record is described by
Table 2 when interpreted for b+ 1. Therefore, the application of improving switches
(e∗,∗,∗, t→) is described by row 1 of Table 10 and whenever an edge (d∗,∗,∗, e∗,∗,∗)
becomes improving, its application is described by Lemma 11.

Let Gn = Sn . Then, row 1 of Table 10 and Lemma 11 can be applied until a strat-
egy σ is reached such that all improving switches (ei, j,k, t→)with σ (3)(di, j,k) = Fi, j
were applied. As (di, j,k, ei, j,k) was applied if and only if βσ

i = 0 ∨ βσ
i+1 = j , this

implies that σ(di, j,k) = Fi, j is equivalent to βσ
i = 1 ∧ βσ

i+1 = j). Consequently,
every cycle center is closed or escapes towards t→. In addition, an edge (di, j,k, Fi, j )
is an improving switch exactly if the switch (ei, j,k, t→) was not applied. Conse-
quently, Iσ = {(di, j,k, Fi, j ), (ei, j,k, t→) : σ(ei, j,k) = t←} ∪ {(b1, t→)}. Now, as
φσ (b1, t→) = φσ (e∗,∗,∗, t→) and E

1 = ∅, the switch e:=(b1, t→) is applied next
due to the tie-breaking rule. We prove that we can apply row 2 resp. 4 of Table 10,
implying the statement follows for Gn = Sn with arbitrary ν and for Gn = Mn with
ν = 1.

We thus prove the following. If ν > 1, then σ̄ (ebi, j )∧¬σ̄ (egi, j ) for all (i, j) ∈ S1
and, in addition, σ̄ (ebi, j ) ∧ σ̄ (egi, j ) for all (i, j) ∈ S2. If ν = 1, then σ̄ (egi, j ) ∧
¬σ̄ (ebi, j ) for all (i, j) ∈ S4 and σ̄ (ebi, j ) ∧ σ̄ (egi, j ) for all (i, j) ∈ S3. We begin by
observing that the definition of the sets S1 to S4 implies that βσ

i = 0 ∨ βσ
i+1 �= j for

all of the relevant indices. Also, (ei, j,k, t→) ∈ Aσ
σ (3) if and only if σ (3)(di, j,k) = Fi, j .

Thus, (ei, j,k, t→) /∈ Aσ
σ (3) if and only if σ (3)(di, j,k) = ei, j,k . Since ei, j,k has an

outdegree of 2, this implies (σ (ei, j,k) = t← ⇔ σ (3)(di, j,k) = ei, j,k). In particular,
due to βσ

i = 0 ∨ βσ
i+1 �= j , the switch (di, j,k, ei, j,k) was then also applied. Hence, if
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there is a k ∈ {0, 1} with σ (3)(di, j,k) = ei, j,k , then σ̄ (egi, j ) if ν > 1 resp. σ̄ (ebi, j ) if
ν = 1.

Since every cycle center is closed or escapes to t→ with respect to σ , either
σ̄ (ebi, j )∧σ̄ (egi, j ) or σ̄ (ebi, j )∧¬σ̄ (egi, j ) or σ̄ (di, j ) for all cycle centers Fi, j if ν > 1.
Similarly, for ν = 1, either σ̄ (ebi, j )∧ σ̄ (egi, j ) or σ̄ (egi, j )∧¬σ̄ (ebi, j ) or σ̄ (di, j ) for
all cycle centers Fi, j . Consequently, the cycle centers Fi, j with σ̄ (ebi, j ) ∧ σ̄ (egi, j )
are exactly the cycle centers that contain a vertex di, j,k with σb(di, j,k) �= Fi, j and
such that (di, j,k, Fi, j ) was not applied during Phase 1. By Lemma 8, all improving
switches (di, j,k, Fi, j ) not applied in Phase 1 had φσb(di, j,k, Fi, j ) = m. By Corol-
lary 4, it thus suffices to prove that there is a k ∈ {0, 1} with φσb(di, j,k, Fi, j ) = m
to prove σ̄ (ebi, j ) ∧ σ̄ (egi, j ). Analogously, to prove σ̄ (ebi, j ) ∧ ¬σ̄ (egi, j ) resp.
σ̄ (egi, j ) ∧ ¬σ̄ (ebi, j ), it suffices to show that Fi, j was closed at the end of Phase 1.

We now prove the corresponding statements for the case ν > 1 and omit the case
ν = 1.3 Let m = max{i : σ(bi ) = gi } and u = min{i : σ(bi ) = bi+1}.
1. We prove that φσb(di, j,0, Fi, j ) = m for all (i, j) ∈ S2.

– Let i ≤ ν − 1 and j = βσ
i+1. Then, bi+1 �= (b + 1)i+1 = βσ

i+1 as i ≤
ν − 1, so j �= bi+1. Thus, there is a feasible tb for b with φσb(di, j,k, Fi, j ) =
min

(⌊
b+1−k

2

⌋
, �b(i, j, k)+ tb

)
. However, since i ≤ ν− 1, bi = 1 and thus

tb = 0 is the only feasible parameter. It thus suffices to show �b(i, j, 0) ≥ m.
Since bi = 1 ∧ j �= bi+1, this follows from Lemma 7.

– Let i ∈ {ν + 1, . . . ,m}, βσ
i = 1 and j = 1 − βσ

i+1. Since i > ν implies
βσ
i = bi and βσ

i+1 = bi+1, �b(i, j, 0) ≥ m follows as in the previous case.
– Let i ∈ {ν, . . . ,m − 1} ∧ βσ

i = 0 and j = βσ
i+1. Since i + 1 > ν implies that

we have βσ
i+1 = bi+1, bν−1 = 1 and ν ≥ 2, we obtain �b(i, j, 0) > m + 1

by an easy calculation. Thus, �b(i, j, k)+ tb > m for every tb feasible for b,
implying φσb(di, j,0, Fi, j ) = m.

– Let i > m and j ∈ {0, 1}. Then, mfn(b, i + 1) = mufn(b, i + 1) = 0 since
b′i = 0 for all b′ ≤ b. Hence, by Lemma 7, �b(i, j, k) ≥ b. Consequently,
φσb(di, j,0, Fi, j ) = m.

– Assume b + 1 = 2l for some l ∈ N. Then ν = l + 1 and bν = 0. This
implies mfn(b, ν, {(ν, 1)}) = mfn(b, ν + 1) = mufn(b, ν + 1) = 0, hence
φσb(di, j,0, Fi, j ) = m.

2. We prove that either σb(di, j ) or φσb(di, j,k, Fi, j ) < m for both k ∈ {0, 1} for all
(i, j) ∈ S1.

– Let i ≤ ν − 1 and j = 1 − βσ
i+1. Then bi = 1 and j = 1 − βσ

i+1 = bi+1.
Hence Fi, j was closed with respect to σb.

– Let i ∈ {ν, . . . ,m−1}, βσ
i = 0 and j = 1−βσ

i+1. Then bi = βσ
i = 0, βσ

i+1 =
bi+1 and βσ

i = 0 implies i �= ν. In particular, ν ≤ i − 1 and bν = 0. Using

Lemma 7, this implies �b(i, j, k) ≤
⌊
b+1−k

2

⌋
− 1. This implies �b(i, j, k)+

1 ≤ �b+1−k2 �, hence φσb(di, j,k, Fi, j ) ≤ �b(i, j, 1) + 1. If this inequality is
strict, the statement follows. If the inequality is tight, then σb(di, j,k) = Fi, j
by Property Or2i, j,k and Property Or1i, j,k thus implies φσb(di, j,k, Fi, j ) < m.
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– Assume that there is no l ∈ N with b+1 = 2l and let i = ν and j = 1−bν+1.
Since b is odd, Property Or3i, j,0 implies φσb(di, j,0, Fi, j ) < m. For k = 1, b

being odd implies φσb(di, j,1, Fi, j ) ≤
⌊
b+1−1

2

⌋
=

⌊
b
2

⌋
< m.

By row 2 of Table 10, the statement follows for Gn = Sn if ν > 1. In addition, by
row 4 of Table 10, the statement follows for ν = 1.

It remains to consider the case ν > 1 ifGn = Mn , implying t→ = b2 and t← = g1.
Using the same argumentation as before, row 1 of Table 10 and Lemma 11 imply that
improving switches within levels i ≥ ν are applied until we obtain a proper Phase-3-
strategy σ for b with

Iσ = {(di, j,k, Fi, j ) : i < ν ∧ σ(di, j,k) �= Fi, j }
∪ {(di, j,k, Fi, j ), (ei, j,k, b2) : i ≥ ν ∧ σ(ei, j,k) = g1} ∪ {(b1, b2)}.

As no cycle center in any level i ′ < ν was opened yet, the switch e = (ei, j,k, b2)
with i = ν−1, j = 1−βσ

i+1 and k ∈ {0, 1} is applied next. Sinceσ(di, j,k) = Fi, j , row
1 of Table 10 implies Iσe = (Iσ \{e}) ∪ {(di, j,k, ei, j,k)}. Due to the tie-breaking rule,
(di, j,k, ei, j,k) is applied next. We prove that σ meets the requirements of Lemma 10.

There are no other indices i ′, j ′, k′ with (di ′, j ′,k′ , ei ′, j ′,k′) ∈ Iσe. Also, as no such
switch was applied yet in any level below level i , Fi, j is closed for σe as it was closed
for σ (3) by Lemma 8. As i < ν and bi = 1 ∧ bi+1 �= βσe

i+1, Definition 4 implies
σb(gi ) = Fi, j . By the same arguments used when discussing the case Gn = Sn , it can
be proven that Fi,1− j was not closed during Phase 1 as (i, 1− j) ∈ S2. Consequently,
σe(gi ) = Fi, j follows fromCorollary 2. By the tie-breaking rule, no improving switch
involving Fi,1− j was applied yet. Therefore, σe(ei,1− j,∗) = σ (3)(ei,1− j,∗) = g1 as
well as σe(di,1− j,∗) = σ (3)(di,1− j,∗). By Corollary 4, Fi,1− j cannot be open for σ (3),
so it is not open for σe. Therefore, as βσe

i = 0 and 1 − j = βσe
i+1, it is g1-halfopen.

Thus, the first requirement of Lemma 10 is met.
By Lemma 8 and since (si ′,∗, hi ′,∗) /∈ Aσe

σ (3) for any i
′ < ν, σe(si ′,∗) = σ (3)(si ′,∗) =

hi ′,∗ for all i ′ < ν. Furthermore, i ′ < ν implies bi ′ = 1 and no improving switch
(d∗,∗,∗, e∗,∗,∗) below level ν was applied yet. Consequently, σ̄e(di ′) for all i ′ < ν.
Now consider some cycle center Fi ′, j ′ where i ′ < i and j ′ = 1 − σ̄e(gi ′). We prove
that Fi ′, j ′ is g1-halfopen. The cycle center Fi ′,βσe

i ′+1 is not closed while Fi ′,1−βσe
i ′+1 is

closed due to 1−βσe
i ′ = bi ′ . Thus, by Corollary 2 and the same arguments used before,

σ̄e(gi ′) = σb(gi ′) = 1−βσe
i ′+1 and, in particular, j

′ = βσe
i ′+1. However, by Corollary 4

and the tie-breaking rule, this implies that Fi ′, j ′ is g1-halfopen as before. Thus, the
second requirement of Lemma 10 is met.

The third requirement is met as i ′ > i = ν − 1 and since σe has Property Usv1i ′ .
Consider the fourth requirement. Let i ′ > i and βσ

i ′ = 0. Then, due to the tie-
breaking rule, all improving switches (ei ′, j ′,k′ , b2) with σ (3)(di ′, j ′,k′) = Fi ′, j ′ have
already been applied. Since βσ

i ′ = 0, Fi ′,βσ
i ′+1 cannot have been closed for σ (3). If both

cycle centers of level i ′ were g1-halfopen for σ (3), then they are mixed for σ , and
σ(gi ′) = σ (3)(gi ′) = σb(gi ′) = Fi ′,βσ

i ′+1 . If Fi
′,1−βσ

i ′+1 is closed for σ (3), then Fi ′,βσ
i ′+1

can only be g1-halfopen for σ (3). Consequently, by Corollary 2 resp. Definition 4,
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912 Y. Disser et al.

σ̄ (gi ′) = 1−βσ
i ′+1. Furthermore, Fi ′,1−βσ

i ′+1 is then b2-open and Fi
′,βσ

i ′+1 is b2-halfopen
(for σ ). Thus, the fourth requirement is met.

By the same argument, if i ′ > i and βσ
i ′+1 = 1, then Fi ′,1−βσ

i ′+1 is b2-open if it was

closed for σ (3) and mixed if it was g1-halfopen. Thus, the fifth and final requirement
is met.

Therefore, the application of (di, j,k, ei, j,k), yields a proper Phase-3-strategy σ ∈
Λι for b with Iσ = (Iσe\{(di, j,k, ei, j,k)}) ∪ {(si, j , b1)}. We prove φσ (si, j , b1) <

φσ (ei, j,k, b2) =
⌊
b
2

⌋
, implying that (si, j , b1) is applied next. It is easy to verify

that (si, j , b1) /∈ Aσ
σb
. Consequently, by Table 2 and as i = ν − 1 and j = 1 −

βσ
i+1 = 0, φσ (si, j , b1) = fl(b, i + 1) − j · bi+1 = fl(b, ν) ≤

⌊
b+2
4

⌋
< m if

b ≥ 3 since ν ≥ 2. If b1 = 1, then(si, j , b1) is also the next switch applied as
the tie-breaking rule then ranks (si, j , b1) higher than any switch (e∗,∗,∗, b2). Since
(ei, j,k, b2), (di, j,k, ei, j,k) ∈ Aσ

σb
and since Fi, j was closed (ei, j,k, b2) was applied,

we have σ̄ (ebi, j ) ∧ ¬σ̄ (egi, j ). Therefore, the last row of Table 10 describes the
application of e = (si, j , b1). Consequently, σe is a proper Phase-3-strategy with
Iσe = Iσ \{e} and φσe(si, j , b1) = fl(b, ν)+1 = fl(b+1, ν) by Lemma 9. Thus, Table 2
describes the occurrence record of (si, j , b1) when interpreted for b+ 1. Since Fi, j is
b2-halfopen for σewhereas Fi,1− j is g1-halfopen, (ei, j,1−k, b2) is applied next. By the
first row of Table 10, this application unlocks (di, j,1−k, ei, j,1−k). Using our previous
arguments and observations, it is easy to verify that (di, j,1−k, ei, j,1−k) is applied next
and that its application is described by the second-to-last row of Table 10. The tie-
breaking rule then chooses to apply (ei,1− j,k, b2) ∈ E

1 next. By row 1 of Table 10,
(di,1− j,k, ei,1− j,k) then becomes improving and is applied next. Its application is
described by row 5 of Table 10. After applying this switch, we then obtain a strategy
σ with

Iσ = {(di, j,k, Fi, j ) : i < ν − 1 ∧ σ(di, j,k) �= Fi, j }
∪ {(di, j,k, Fi, j ), (ei, j,k, b2): i ≥ ν − 1 ∧ σ(ei, j,k) = g1} ∪ {(b1, b2)}.

It is easy to verify that the same arguments can be applied iteratively as applying
a switch (si ′, j ′ , b1) with i ′ < ν always requires to open the corresponding cycle
center Fi ′, j ′ first. Thus, after finitely many iterations, we obtain a strategy σ with
Iσ = {(di, j,k, Fi, j ), (ei, j,k, b2) : σ(ei, j,k) = g1} ∪ {(b1, b2)}. By the same arguments
used for the case Gn = Sn , the conditions of the third row of Table 10 are met, so we
obtain a strategy as described by the corresponding rows of Tables 6 and 7. � 

We henceforth use σ (3) to refer to the Phase-3-strategy described by Lemma 8. As
before, we implicitly proved the following corollary which follows from Corollary 5.

Corollary 6 Let σ (4) be the Phase-4-strategy calculated by the Strategy Improvement
resp. Policy Iteration Algorithm when starting with a canonical strategy σb fulfilling
the canonical conditions as per Lemma 9. Then, Table 2 specifies the occurrence
record of every improving switch applied so far when interpreted for b+ 1, excluding
switches (g∗, F∗,∗), and each such switch was applied once.
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Reaching phase 5 if there is a phase 4

As shown by Lemma 9, we do not always obtain a Phase-5-strategy immediately
after Phase 3 as we have to apply improving switches involving selection vertices si,∗
in levels i < ν if Gn = Sn . We thus prove that we also reach a Phase 5 strategy
after applying these switches. Consequently, we always reach a Phase 5 strategy. The
application of all of these switches is captured by the following lemma.

Lemma 12 Let Gn = Sn. Let σ ∈ Λι be a Phase-4-strategy for b ∈ Bn with ν > 1.
Assume e:= (si,1−βσ

i+1 , b1) ∈ Iσ for some i < ν. Further assume that σ has Prop-
erty Usv1i ′ for all i ′ > i and that σ(di ′, j ′,k′) = Fi ′, j ′ ⇔ βσ

i ′ = 1 ∧ βσ
i ′+1 = j ′.

Moreover, assume that i ′ < ν implies σ̄ (gi ′) = 1 − βσ
i ′+1 and that i ′ < i

implies σ(si ′,∗) = hi ′,∗. If (si ′,1−βσ
i ′+1 , b1) ∈ Iσ for some i ′ < i , then σe is a

Phase-4-strategy for b. Otherwise, it is a Phase-5-strategy for b. In either case,
Iσe = (Iσ \{e}) ∪ {(di, j,0, Fi, j ), (di, j,1, Fi, j )}.

Wenowstate the lemmadescribing the application of the improving switches during
Phase 4.

Lemma 10 Let σb ∈ Λι be a canonical strategy for b ∈ Bn fulfilling the canon-
ical conditions. After applying a finite number of improving switches, the Strategy
Improvement resp. Policy Iteration Algorithm produces a Phase-5-strategy σ (5) ∈ Λι

as described by the corresponding rows of Tables 6 and 7.

Proof By Lemma 9, it suffices to consider the case Gn = Sn and ν > 1. By Lemma 9,
the Strategy ImprovementAlgorithmcalculates a Phase-4-strategyσ for bwithσ ∈ Λι

and

Iσ = {(di, j,k, Fi, j ), (ei, j,k, b2) : σ(ei, j,k) = g1}
∪ {(sν−1,0, b1)} ∪ {(si,1, b1) : i ≤ ν − 2} ∪ X0 ∪ X1.

We show that (sν−1,0, b1) is applied next. Assume that b + 1 is a power of two,
implying b = 2ν−1 − 1. It is easy to verify that (sν−1,0, b1) and (sν−2,1, b1) both
minimize the occurrence record if b > 1.3 If b = 1, then the switches (ei, j,k, b2)
with σ(ei, j,k) = g1 also minimize the occurrence record. Due to the tie-breaking rule,
(sν−1,0, b1) is however applied next in any case.

If b + 1 is not a power of two, then b ≥ 2ν + 2ν−1 − 1 and b ≥ 6, implying⌊
b+2
4

⌋
< m as well as

⌊
b+2
4

⌋
<

⌊
b
2

⌋
. It is again easy to verify that this implies

that (sν−1,0, b1) minimizes the occurrence record.3 Thus, the switch e = (sν−1,0, b1)
is applied next in any case. We now prove that Lemma 12 describes the application
of e. Since σ is a Phase-4-strategy and since i ′ > i = ν − 1 implies i ′ ≥ ν, σ has
Property Usv1i ′ for all i ′ > i . By Lemma 9, it follows that σ also meets the other
requirements of Lemma 12.

Consider the case ν = 2 first. Then, applying e = (s1,0, b1) yields a Phase-5-
strategy and φσe(e) = fl(b, ν) + 1 = fl(b + 1, ν) by Lemma 9. Hence, Table 2
describes the occurrence record of e with respect to b+ 1. In addition, we then have

Iσe = (Iσ \{e}) ∪ {(d1,0,0, F1,0), (d1,0,1, F1,0)})
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914 Y. Disser et al.

= {(di, j,k, Fi, j ), (ei, j,k, b2) : σe(ei, j,k) = g1}
∪ {(di,1−βσe

i+1,k, Fi,1−βσe
i+1) : i ≤ ν − 1} ∪ X0 ∪ X1.

Sinceσe is a Phase-5-strategy, it has PropertyRel1, implyingμσe = u = min{i : βσe
i =

0}. Thus, σe has all properties listed in the corresponding rows of Tables 6 and 7.
Before discussing the case ν > 2, we discuss edges (di, j,k, Fi, j ) that become

improving when a switch (si, j , b1) with i < ν and j = 1 − βσ
i+1 is applied, see

Lemma 12. Since i < ν implies 1−βσ
i+1 = bi+1, their cycle centers Fi, j were closed

forσb. Therefore, their occurrence recordmight be very low.However, their occurrence
records are not “too low” in the sense that they interfere with the improving switches
applied during Phase 4. More precisely, it can be shown that i < ν and j = bi+1
imply φσb(di, j,k, Fi, j ) >

⌊
b+2
4

⌋
− 1.3

We now consider case ν > 2. We obtain φσe(e) = fl(b + 1, ν) as before. Further-
more,

Iσe = {(di, j,k, Fi, j ), (ei, j,k, b2) : σe(ei, j,k) = g1}
∪ {(si,1, b1) : i ≤ ν − 2} ∪ {(dν−1,0,0, Fν−1,0), (dν−1,0,1, Fν−1,0)}

by Lemma 12. We show that the switches (sν−2,1, b1), . . . , (s1,1, b1) are applied next
and in this order. To simplify notation, we denote the current strategy by σ . By Table 2,
it holds that φσ (si,1, b1) = fl(b, i + 1)− 1 for all i ≤ ν − 2. Hence φσ (sν−2,1, b1) <

· · · < φσ (s1,1, b1) by Lemma 9. It thus suffices to show that the occurrence record of
φσ (s1,1, b1) is smaller than the occurrence record of any switch improving for σ and
any improving switch that might be unlocked by applying some switch (si,1, b1) for
i ≤ ν − 2.

The second statement follows since φσb(s1,1, b1) = fl(b, 2)− 1 =
⌊
b+2
4

⌋
− 1 and

since the occurrence record of any edge that becomes improving is bounded by
⌊
b+2
4

⌋

as discussed earlier. It thus suffices to show the first statement. Let e:=(di, j,k, Fi, j ) ∈
Iσ such that σ(ei, j,k) = g1. By Lemma 8 and Lemma 9, this implies φσ (e) = m =
fl(b, 1). Then, ν > 2 implies fl(b, 1) > fl(b, ν−1), hence φσ (e) < φσ (s1,1, b1). Next
let e:=(ei, j,k, b2) ∈ Iσ such that σ(ei, j,k) = g1. Then, since b is odd, Table 2 implies

φσ (e) =
⌊
b
2

⌋
= m − 1 = fl(b, 1) − 1, hence φσ (e) > φσ (s1,1, b1). If b + 1 is not

a power of two, we need to show this estimation for some more improving switches.
But this can be shown by the easy calculations similar to the calculations necessary
when discussing the application of (sν−1,0, b1).

Consequently, the switches (sν−1, b1), . . . , (s1,1, b1) are applied next by the Strat-
egy Improvement Algorithm and in this order. It is easy to verify that the requirements
of Lemma12 are alwaysmet, so this lemmadescribes the application of these switches.
It is also easy to check that the occurrence record of these edges is described by Table 2
after applying them. Let σ denote the strategy obtained after applying (s1,1, b1). Then
σ is a Phase-5-strategy for b with σ ∈ Λι and μσ = min{i : βσ

i = 0}. This further
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implies

Iσ ={(di, j,k, Fi, j ), (ei, j,k, b2) : σ(ei, j,k) = g1}
∪ {(di,1−(b+1)i+1,∗, Fi,1−(b+1)i+1) : i ≤ ν − 1} ∪ X0 ∪ X1

Further note that σ(ei, j,k) = g1 still implies φσb(di, j,k, Fi, j ) = φσ (di, j,k, Fi, j ) = m
since the corresponding switches are improving since the end of Phase 1. Also, every
improving switch was applied at most once and we proved that the occurrence record
of any improving switch that was applied is described correctly by Table 2 when
interpreted for b+1. Since no improving switch involving cycle vertices were applied,
we also still have σω(di, j,k) = Fi, j if and only of (b+ 1)i = 1 and (b+ 1)i+1 = j .
Hence, all conditions listed in the corresponding rows of Tables 6 and 7 are fulfilled,
proving the statement. � 

We henceforth use σ (3) to refer to the Phase-3-strategy described by Lemma 8. As
before, we implicitly proved the following corollary which follows from Corollaries 5
and 6.

Corollary 7 Let σ (5) be the Phase-5-strategy calculated by the Strategy Improvement
resp. Policy Iteration Algorithm when starting with a canonical strategy σb fulfilling
the canonical conditions as per Lemma 10. Then, Table 2 specifies the occurrence
record of every improving switch applied so far when interpreted for b+ 1, excluding
switches (g∗, F∗,∗), and each such switch was applied once.

Reaching a canonical strategy for b+ 1

We now prove Lemma 5. It states that applying improving switches according to
Zadeh’s pivot rule and our tie-breaking rule produces the strategies described by
Tables 7 and 6. In particular, it states that we obtain a canonical strategy for b + 1
fulfilling the canonical conditions. We split the proof as follows. First, we observe that
it only remains to prove Lemma 5 for k = 5. We then prove that we obtain a canon-
ical strategy for b + 1 and show that this strategy fulfills the canonical conditions
afterwards. These two statements thus imply Lemma 5 for k = 5.

We first provide an overview describing the application of improving switches
during Phase 5.3

Table 11 Improving switches applied during Phase 5

For convenience, we always assume σ ∈ Λι and that σ is a Phase-5-strategy for b. Note that we thus also
always have σe ∈ Λι
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916 Y. Disser et al.

The following lemma describes the application if switches (ei, j,k , t→) during Phase
5. As it is rather involved, we state it separately and do not include it into Table 11.

Lemma 13 Let σ ∈ Λι be a Phase-5-strategy for b ∈ Bn. Let e:=(ei, j,k, t→) ∈ Iσ
and let Fi, j be mixed. Assume that ν > 1⇒ ¬σ̄ (egi,1− j ) and ν = 1⇒ ¬σ̄ (ebi,1− j )

if Gn = Sn and j = 1. Similarly, assume that ν > 1 ⇒ ¬σ̄ (egi,1− j ) and ν =
1 ⇒ ¬σ̄ (ebi,1− j ) if Gn = Mn j = 1 − βσ

i+1. Moreover, assume that ν = 2 implies
σ(g1) = F1,0 if Gn = Sn. Then the following hold.

1. If there are (i ′, j ′, k′) �= (i, j, k) with (ei ′, j ′,k′ , t→) ∈ Iσ or if there is an i ′ such
that σ does not have Property Sv1i ′ , then σe is a Phase-5-strategy for b.

2. If there are no (i ′, j ′, k′) �= (i, j, k) with (ei ′, j ′,k′ , t→) ∈ Iσ and if σ has Prop-
erty Sv1∗, then σe is a Phase-1-strategy for b+ 1.

3. If Gn = Sn,

(gi , Fi, j ) ∈ Iσe ⇐⇒ βσe
i = 0 ∧ σ̄e(gi ) = 1 ∧ j = 0 ∧

{
σ̄ (ebi,1− j ), ν > 1

σ̄ (egi,1− j ), ν = 1
.

If Gn = Mn

(gi , Fi, j ) ∈ Iσe ⇐⇒ βσe
i = 0 ∧ σ̄e(gi ) = 1− βσ

i+1 ∧ j

= βσ
i+1 ∧

{
σ̄ (ebi,1− j ), ν > 1

σ̄ (egi,1− j ), ν = 1
.

If the corresponding conditions are fulfilled, then Iσe = (Iσ \{e})∪{(di, j,1−k, Fi, j ),
(gi , Fi, j ))}. Otherwise, Iσe = (Iσ \{e}) ∪ {(di, j,1−k, Fi, j )}.
We also use the following statement for comparing valuations of cycle centers.

Lemma 14 Let Gn = Mn. Let σ ∈ Λι be a Phase-k-strategy, k ∈ {1, . . . , 5}, for
some b ∈ Bn having Property Usv1i and Property Bac1i+1 for some i ∈ {1, . . . , n}.
If Fi,0 and Fi,1 are in the same state and if either i ≥ ν or σ has Property Rel1, then
ΞM

σ (Fi,βσ
i+1) > ΞM

σ (Fi,1−βσ
i+1).

We now prove that we obtain a canonical strategy σb+1 for b+ 1.

Lemma 11 Let σb ∈ Λι be a canonical strategy for b fulfilling the canonical con-
ditions. Then, applying improving switches according to Zadeh’s pivot rule and
our tie-breaking rule produces a canonical strategy σb+1 ∈ Λι for b + 1 with
Iσb+1 = {(di, j,k, Fi, j ) : σb+1(di, j,k) �= Fi, j }.
Proof By Lemma 10, applying improving switches according to Zadeh’s pivot rule
and our tie-breaking rule yields a Phase-5-strategy σ (5) for b with σ (5) ∈ Λι and
μσ(5) = u = min{i : βσ(5)

i = 0}. Let m:=max{i : βσ
i = 1} and σ :=σ (5).

Consider the case ν = 1. We first investigate the occurrence record of the improving
switches.
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An exponential lower bound for Zadeh’s pivot rule 917

1. Let e = (di, j,k, Fi, j ) resp. e = (ei, j,k, g1) with σ(ei, j,k) = b2. Then φσ (e) =
�b+12 � by Lemma 10 resp. φσ(5)

(e) = φσb(e) = "b2 # = �b+12 �.
2. Let e = (di, j,k, Fi, j ) with βσ

i = 0, i ∈ {u + 1, . . . ,m − 1} and j = 1 − βσ
i+1.

Then, bi = 0 and j = 1 − bi+1 since i ≥ u + 1 > 1 and ν = 1. In addition,
b1 = 0 and, due to i > u, there is at least one l ∈ {2, . . . , i − 1} with (b+ 1)l =
bl = 0. Consequently, Lemma 7 yields �b(i, j, k) = "b−2i−1+

∑
(b,i)+1−k
2 # ≤

"b−3−k2 # =
⌊
b−k
2

⌋
− 1. Since there is a tb feasible for b, it holds that φσb(e) =

min(
⌊
b+1−k

2

⌋
, �b(i, j, k)+ tb). We thus distinguish the following cases.

(a) Assumeφσb(e) = �b(i, j, k)+1.Then, byPropertyOr2i, j,k ,σb(di, j,k) = Fi, j
and e was not applied yet. Consequently, Property Or1i, j,k implies φσ (e) =
φσb(e) < m.

(b) Assume φσb(e) = �b(i, j, k). Then, φσb(e) ≤ φσ (e) ≤
⌊
b−k
2

⌋
− 1 < m as

well as σb(di, j,k) �= Fi, j by Property Or2i, j,k . This implies φσb(e) = m− 1
by Property Or4i, j,k . Hence, by Corollary 1, e was applied during Phase 1.
Consequently, φσ (e) = φσb(e)+ 1 = m.

(c) The case φσb(e) = �b(i, j, k)− 1 cannot occur since tb = −1 is not feasible
as b is even.

(d) Assume φσb(e) =
⌊
b+1−k

2

⌋
and �b+1−k2 � �= �b(i, j, k) and �b+1−k2 � �=

�b(i, j, k) + 1. This implies
⌊
b+1−k

2

⌋
< �b(i, j, k) since φσb(e) =

min(
⌊
b+1−k

2

⌋
, �b(i, j, k)+ tb). But this is a contradiction since �b(i, j, k) ≤

⌊
b−k
2

⌋
− 1.

Thus, the occurrence records of all improving switches are bounded by �b+12 � and
some switches have an occurrence record of exactly �b+12 �. Consequently, improving
switches (di, j,k, Fi, j ) with i ∈ {u + 1, . . . ,m − 1}, βσ

i = 0 and j = 1 − βσ
i+1

are applied first. Further note that an edge e = (di, j,k, Fi, j ) can only fulfill these
assumptions if σb(di, j,k) = Fi, j , implying that e was not applied during Phase 1.
It furthermore implies φσ (e) = φσb(e) = �b(i, j, k) + 1. Consider such an edge e
and assume φσ (e) < m. We show that row 1 of Table 11 applies to e. We thus prove
σ(bi ) = bi+1, j = 1 − βσ

i+1, σ̄ (gi ) = 1 − βσ
i+1 and i �= 1. The first two statements

follow directly since σ is a Phase-5-strategy and βσ
i = 0 as well as by the choice of j .

Also, i �= 1 follows from i ≥ u + 1 > 1. It thus suffices to show σ̄ (gi ) = 1− βσ
i+1.

This can be shown by using Corollaries 2 and 1.3 Hence, let e = (di, j,k, Fi, j ) ∈ Iσ
be an improving switch minimizing the occurrence record. Then, σ [e] is a Phase-5-
strategy for b with σe ∈ Λι and Iσe = Iσ \{e} by row 1 of Table 11. By Lemma 6 and
the choice of i and j , �b(i, j, k)+ 1 = �b+1(i, j, k). In particular,

φσ ′(e) = �b(i, j, k)+ 1+ 1 = �b+1(i, j, k)+ 1 ≤ m ≤
⌊

(b+ 1)+ 1− k

2

⌋

.
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Thus, by choosing the parameter tb+1 = 1, which is feasible since i �= 1, the occur-
rence record of e is described by Table 2 when interpreted for b+ 1.

Now, the same arguments can be used for all improving switches e′ ∈ D
1 ∩ Iσ ′

having an occurrence record smaller than m. All of these switches are thus applied
and their occurrence records are specified by Table 2 when interpreted for b+1. After
the application of these switches, we obtain a Phase-5-strategy σ for b with σ ∈ Λι

and

Iσ = {(di, j,k, Fi, j ), (ei, j,k, g1): σ(ei, j,k) = b2}

∪
m−1⋃

i=u+1
βσ
i =0

{
e= (di,1−βσ

i+1,∗, Fi,1−βσ
i+1): φσ (e) = m

}
. (2)

In particular, all improving switches have an occurrence record of m. Thus, the tie-
breaking rule now applies a switch of the type (e∗,∗,∗, g1). Let e = (ei, j,k, g1) denote
the switch applied next. We prove that Lemma 13 applies to this switch. First, we
show that Fi, j is mixed. Since e = (ei, j,k, g1) ∈ Iσ implies (di, j,k, Fi, j ) ∈ Iσ , we
have σ̄ (ebi, j ). In particular, Fi, j is not closed, so βσ

i = 0 ∨ βσ
i+1 �= j . Consequently,

(i, j) ∈ S3 or (i, j) ∈ S4. By Lemma 10, σ̄ (ebi, j ), and as no improving switch
(e∗,∗,∗, b2) was applied during σ (5) → σ , we need to have (i, j) ∈ S3, implying the
statement. We now prove that j = 1 implies ¬σ̄ (ebi,1− j ) if Gn = Sn . Since j = 1,
we need to prove ¬σ̄ (ebi,0). If Fi,0 is closed, then the statement follows. If Fi,0 is
not closed, then βσ

i = 0 ∨ βσ
i+1 �= j as Fi,1 cannot be closed by the choice of e.

Consequently, (i, 0) ∈ S3 or (i, 0) ∈ S4. In the second case,¬σ̄ 5(ebi,0) by Lemma 10
and the statement follows as no improving switch (e∗,∗,∗, b2) was applied during
σ (5) → σ . Consider the case (i, 0) ∈ S3. Then, by Lemma 10, Fi,0 and Fi,1 are mixed
with respect to σ (5). Thus, as we consider the case Gn = Sn , the tie-breaking rule
must have applied the improving switches (ei,0,∗, g1) prior to (ei,1,k, g1), implying
the statement. Note that “ j = 1 − βσ

i+1 �⇒ ¬σ̄ (ebi,1− j ) if Gn = Mn” follows
by the same arguments and since the tie-breaking rule applies improving switches
(ei,βσ

i+1,∗, g1) first.
These arguments can be applied for any improving switch (e∗,∗,∗, g1). Thus,

Lemma 13 applies to the switch e. Observe that φσe(e) is specified by Table 2
when interpreted for b + 1 as ν = 1 implies "b2 # + 1 = "b+12 #. If the condi-
tions listed in the fourth case of Lemma 13 are fulfilled, then Iσe = (Iσe\{e}) ∪
{(di, j,1−k, Fi, j ), (gi , Fi, j )}. If these conditions are not fulfilled, then Iσe = (Iσe\{e})∪
{(di, j,1−k, Fi, j )}. In particular, ẽ:=(di, j,1−k, Fi, j ) becomes improving in either case.
We prove that ẽ has an occurrence record of m or m+ 1.

By the characterization of Iσ , we have (di, j,k, Fi, j ) ∈ Iσ , implying σ(di, j,k),
σe(di, j,k) �= Fi, j . Since σ is a Phase-5-strategy for b, this implies βσ

i = 0∨βσ
i+1 �= j .

Assume that ẽ was applied previously in this transition. It is not possible that ẽ was
applied during Phase 5 since this would imply σe(di, j,1−k) = Fi, j , contradicting that
Fi, j is mixed. Consequently, ẽ was applied during Phase 1. Thus, σb(di, j,1−k) �= Fi, j
and φσb(ẽ) ∈ {m − 1,m} by Property Or4i, j,1−k . This implies φσe(ẽ) ∈ {m,m +
1} as claimed. Now assume that ẽ was not applied previously, implying φσe(ẽ)
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= φσb(ẽ). Consider the case σb(di, j,1−k) �= Fi, j . Then, by Property Or4i, j,1−k ,
φσb(ẽ) ∈ {m − 1,m}. But this implies φσb(ẽ) = m by Corollary 1 as claimed. Thus
assume σb(di, j,1−k) = Fi, j . Then, by Property Or1i, j,1−k and Property Or2i, j,1−k ,
we have φσb(ẽ) = �b(i, j, 1 − k) + 1 < m. Using Lemma 7 and by distinguishing
between the cases βσe

i = 1∧βσe
i+1 �= j , βσe

i = 0∧βσe
i+1 = j and βσe

i = 0∧βσe
i+1 �= j ,

it is easy to verify that this always yields a contradiction.3 We thus have just proven
the following.

Corollary 8 If the edge (di, j,1−k, Fi, j ) becomes improving during Phase 5 due to the
application of (ei, j,k, g1), then the corresponding strategy has Property Or4i, j,1−k .

Now, assume that (gi , Fi, j ) becomes improving when applying (ei, j,k, g1). Using
the conditions stated in Lemma 13, Corollary 2 and Lemma 10, it is easy to verify that
(gi , Fi, j ) /∈ Aσe

σb
.3

Sinceφσe(gi , Fi, j ) = φσb(gi , Fi, j ), we haveφσe(gi , Fi, j ) ≤ φσb(di, j,k, Fi, j ) = m
by Table 2. As argued previously, φσe(di, j,1−k, Fi, j ) ≥ m. Therefore, the occurrence
record of any improving switch except (gi , Fi, j ) is at least m. Thus, (gi , Fi, j ) either
uniquely minimizes the occurrence record or has the same occurrence record as all
other improving switches. Consequently, by the tie-breaking rule, (gi , Fi, j ) is applied
next in either case.

We prove that row 2 of Table 11 applies to this switch. Since ν = 1, μσe = u > 1
and βσe

i = 0, it suffices to prove σ̄e(egi, j )∧¬σ̄e(ebi, j ). But this follows as we applied
(ei, j,k, g1) earlier and since Fi, j was mixed when this switch was applied. Observe
that the following corollary holds due to the conditions which specify when a switch
(gi , Fi, j ) is unlocked, independent on ν.

Corollary 9 If an improving switch (gi , Fi, j ) is applied during Phase 5, then the cre-
ated strategy has Property Sv1i .

Let σ denote the strategy obtained after applying (ei, j,k, g1) and (eventually)
(gi , Fi, j ). For now, assume that there are indices i ′, j ′, k′ with (ei ′, j ′,k′ , g1) ∈ Iσ .
Then, by Lemma 13 resp. row 2 of Table 11, σ is a Phase-5-Strategy for b. By
our previous discussion, all improving switches have an occurrence record of at least
m. Among all improving switches with an occurrence record of exactly m, the tie-
breaking rule then decides which switch to apply. There are two types of improving
switches. Each switch is either of the form (di, j,k, Fi, j ) or of the form (ei, j,k, g1)with
σ(di, j,k) = ei, j,k . Since every edges (ei, j,k, g1) minimizes the occurrence record
among all improving switches, one of these edges is chosen. But then, the same argu-
ments used previously can be used again. More precisely, Lemma 13 applies to this
switch,making the edge (di, j,1−k , Fi, j ) and eventually also (gi , Fi, j ) improving.Also,
Corollaries 8 and 9 apply to these switches and another switch of the form (e∗,∗,∗, g1)
is applied afterwards. Thus, inductively, all remaining switches of the form (ei, j,k, g1)
are applied.

Each of these applications creates the improving switch (di, j,1−k, Fi, j ) and might
make (gi , Fi, j ) improving. In the latter case, the corresponding switch is then applied
immediately. Let σ denote the strategy that is reached before the last improving switch
of the form (e∗,∗,∗, g1) is applied. We argue that this switch is e := (e1,1−βσ

2 ,k, g1) for
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some k ∈ {0, 1} and that σ has Property Sv1i for all i ∈ {1, . . . , n}. As the tie-
breaking rule applies improving switches in higher levels first, it suffices to prove that
there there is a k ∈ {0, 1} such that e ∈ Iσ (5) . This however follows from Lemma 10
as ν = 1 implies (1, βσ

2 ) ∈ S3. It remains to prove that σ has Property Sv1i for all
i ∈ {1, . . . , n}. If βσ

i = 1, then this follows from the definition of a Phase-5-strategy.
If βσ

i = 0 and (gi , Fi, j ) ∈ Aσ
σ (5) , then this follows from Corollary 9. Thus, let βσ

i = 0
and (gi , Fi, j ) /∈ Aσ

σ (5) , implying i �= 1 since ν = 1. We now prove the following
statemen. If σ̄ (gi ) = 1 (if Gn = Sn) resp. σ̄ (gi ) = 1 − βσ

i+1 (if Gn = Mn) and
¬σ̄ (di,1) (if Gn = Sn), resp. ¬σ̄ (di,1−βσ

i+1) (if Gn = Mn), then (gi , Fi,0) ∈ Iσ resp.
(gi , Fi,βσ

i+1) ∈ Iσ . Note that this proves the statement as Iσ ∩G = ∅.
Thus, let j := 0 (if Gn = Sn) resp. j :=βσ

i+1 (if Gn = Mn) and assume¬σ̄ (di,1− j ).
It suffices to prove Ξ∗

σ (Fi, j ) $ Ξ∗
σ (Fi,1− j ). As σ(ei ′, j ′,k′) = g1 for all (i ′, j ′, k′) �=

(1, βσ
2 , k), i �= 1 and μσ = u �= 1, the cycle centers are either closed or escape only

to g1. Note that a closed cycle center has Ξ∗
σ (Fi, j ) = Ξ∗

σ (si, j ) due to Lemma 1. Let
Gn = Sn . If both cycle centers escape towards g1, then the statement follows since

ΞS
σ (Fi,0) = {Fi,0, di,0,∗, ei,0,∗, b1} ∪ΞS

σ (g1) � {Fi,1, di,1,∗, ei,1,∗, b1} ∪ΞS
σ (g1)

= ΞS
σ (Fi,1)

due to the priorities of Fi,0 and Fi,1. As βσ
i = 0, only Fi,1−βσ

i+1 can be closed.
Assume that we have j = 0 = 1− βσ

i+1. Then, by Property Usv1i and since σ(b1) =
g1, the statement follows since ΞS

σ (Fi,0) = {si,0, b1} ∪ ΞS
σ (g1) and ΞS

σ (Fi,1) =
{Fi,1, di,1,k, ei,1,k, b1} ∪ Ξ̂S

σ (g1) for some k ∈ {0, 1}. Now assume j = 0 = βσ
i+1.

Then, Fi,1− j = Fi,1 is closed, contradicting the assumption of the statement. Let
Gn = Mn . If both cycle centers are g1-open or g1-halfopen, then the statement follows
by Lemma 14 since i > ν. If one of the cycle centers is g1-open and one cycle
center is g1-halfopen, then the statement follows by an easy calculation.3 Since only
Fi,1−βσ

i+1 = Fi,1− j can be closed in level i , the statement then follows by the same
argument used for the case Gn = Sn .

Thus, Lemma 13 applies to (e1,βσ
2 ,k, g1). Let σb+1:=σe. Then, by Lemma 13,

σb+1 is a Phase-1-strategy for b+ 1 with σb+1 ∈ Λι. Note that, since every edge was
applied at most once during σb → σ (5) by Lemma 10 and since no edge applied during
σ (5) → σb+1 was applied earlier, every edge was applied at most once as improving
switch during σb → σb+1. Also note that we implicitly proved the following corollary.

Corollary 10 Let ν = 1 and let σb+1 denote the strategy obtained after the application
of the final improving switch (e∗,∗,∗, g1). Then (di, j,k, Fi, j ) ∈ A

σb+1
σ (5) if and only if

σb(di, j,k) = Fi, j , φσb(di, j,k, Fi, j ) < m, i ∈ {u + 1, . . . ,m − 1}, βσb+1
i = 0 and

j = 1− β
σb+1
i+1 . In addition, σb+1 has Property Or2i, j,k

We prove that σb+1 is a canonical strategy for b + 1 with Iσb+1 = Dσb+1 . To
simplify notation, let σ :=σb+1. We first proveIσ = {(di, j,k, Fi, j ) : σ(di, j,k) �= Fi, j }.
Consider the strategy σ (5). Using the characterization of the strategy that was obtained
after having applied all switches (di, j,k, Fi, j ) with an occurrence record smaller than
m (see Eq. (2)), we obtain
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Iσ ={(di, j,∗, Fi, j ): σ (5)(ei, j,∗)=b2}

∪
m−1⋃

i=u+1
βσ
i =0

{
e= (di,1−βσ

i+1,∗, Fi,1−βσ
i+1) : φσ(5)

(e)=m
}

.

In particular, Iσ ⊆ {(di, j,k, Fi, j ) : σ(di, j,k) �= Fi, j } and every improving switch
has an occurrence record of at least m. To prove {(di, j,k, Fi, j ) : σ(di, j,k) �= Fi, j } ⊆
Iσ , let e:=(di, j,k, Fi, j ) with σ(di, j,k) �= Fi, j . It thus suffices to show Ξ∗

σ (Fi, j ) $
Ξ∗

σ (ei, j,k). Property Esc1 and ν = 1 imply σ̄ (egi, j )∧¬σ̄ (ebi, j ). Furthermore, μσ =
min{i ′ : σ(bi ′) = bi ′+1} �= 1 as σ has Property Rel1. It is easy to verify that this
impliesΞS

σ (Fi, j ) = {Fi, j }∪ΞS
σ (ei, j,k), hence ΞS

σ (Fi, j )�ΞS
σ (ei, j,k). For Gn = Mn ,

it suffices to prove ΞM
σ (si, j ) > ΞM

σ (g1) as this implies ΞM
σ (Fi, j ) > ΞM

σ (g1). Since
σ(di, j,k) �= Fi, j , either βσ

i = 0 or βσ
i+1 �= j . In the second case, Property Usv1i

implies that we have σ(si, j ) = b1 and the statement follows since ΞM
σ (si, j , b1) =

〈si, j 〉 + ΞM
σ (g1) due to σ(b1) = g1. Thus assume βσ

i = 0 ∧ βσ
i+1 = j . Then, the

statement follows sinceΞM
σ (si, j ) = 〈si, j , hi, j 〉+ΞM

σ (bi+1) by Property Bac1i+1 and
since 〈si, j , hi, j 〉 >

∑
�<i 〈g�, s�,σ̄ (g�), h�,σ̄ (g�)〉.

We now prove that σ is a canonical strategy for b+1. Since σ is a Phase-1-strategy
for b+ 1, we have b+ 1 = βσ . Consider the conditions listed in Definition 2 resp. 4.
Condition 1 is fulfilled since σ(e∗,∗,∗) = g1 and ν = 1. Condition 2(a) is fulfilled since
βσ
i = (b+1)i = 1 implies σ(bi ) = gi by Property Bac1i . Consider condition 2(b). If

(b+1)i = 1, then Fi,(b+1)i+1 is closed by Property Bac1i . It is easy to verify that (b+
1)i = 1 implies that Fi,1−(b+1)i+1 cannot be closed, hence Condition 2(b) is fulfilled.3
Condition 2(c) is fulfilled by βσ = b + 1 and Property Bac2∗. Conditions 3(a) and
3(b) are fulfilled since σ has Property Bac1∗. Consider condition 3(c). We prove that
(b+1)i = 0 and σ̄ (di, j ) imply σ(gi ) = Fi, j where j = 1− (b+1)i+1. By Lemma 1,
Fi, j being closed implies Ξ̂∗

σ (Fi, j ) = Ξ̂∗
σ (si, j ). Thus,Ξ∗

σ (Fi, j ) = [[si, j ]]⊕Ξ∗
σ (g1) by

the choice of j and since ν = 1. It can be shown thatμσ �= 1, σ̄ (egi,1− j ),¬σ̄ (ebi,1− j )

and 1− j = βσ
i+1 implies Ξ∗

σ (Fi,1− j ) = {Fi,1− j , di,1− j,k, ei,1− j,k, b1} ∪Ξ∗
σ (g1) for

some k ∈ {0, 1}.3 But this implies σ(gi ) = Fi, j since (gi , Fi,1− j ) ∈ Iσ otherwise,
contradicting Iσ = {(di, j,k, Fi, j ) : σ(di, j,k) = Fi, j }.

Consider condition 3(d) and let j :=0 if Gn = Sn and j :=βσ
i+1 if Gn = Mn .

It suffices to prove Ξ∗
σ (Fi, j ) $ Ξ∗

σ (Fi,1− j ) if none of the cycle centers is closed.
For Gn = Mn , this follows from Lemma 14 or an easy calculation if Gn = Mn

since i ≥ 1 = ν. For Gn = Sn , this follows from Ω(Fi,0) > Ω(Fi,1) and since both
priorities are even. Conditions 4 and 5 follow as σ has PropertyUsv1∗. For condition 6,
let i :=ν(b + 2), j :=(b + 1)i+1 and k ∈ {0, 1}. Since ν(b + 1) = 1, we have i ≥ 2
and bi = (b+ 1)i = 0 as well as bi+1 = (b+ 1)i+1 = j . We prove σ(di, j,k) �= Fi, j .
For the sake of contradiction, let σ(di, j,k) = Fi, j . Then, by the choice of i and j and
Lemma 10, (di, j,k, Fi, j ) ∈ Aσ

σ (5) . Thus, by Corollary 10 and Property Or2i, j,k , it holds

that φσ(5)
(di, j,k, Fi, j ) < m and φσb(di, j,k, Fi, j ) = �b(i, j, k)+ 1. But, by Lemma 7,

we have �b(i, j, k) = "b+2i−1+
∑

(b,i)+1−k
2 # ≥ "b+3−k2 # = �b+2−k2 �, which is a

contradiction. Hence, σ(di, j,k) �= Fi, j .
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Now consider the case ν > 1. Then, b is odd and m =
⌊
b
2

⌋
+ 1. By Lemma 10,

applying improving switches according to Zadeh’s pivot rule and our tie-breaking rule
yields a Phase-5-strategy σ for b with σ ∈ Λι and μσ = u. In addition

Iσ ={(di, j,k, Fi, j ), (ei, j,k, b2) : σ(ei, j,k) = g1}

∪
ν−1⋃

i=1
{(di,1−βσ

i+1,∗, Fi,1−βσ
i+1)} ∪ X0 ∪ X1,

where, Xk is defined as in Table 7. We now investigate the occurrence records of
the improving switches. Note that Ξ∗

σ (g1) ≺ Ξ∗
σ (b2) since σ(ei, j,k) = g1 implies

(ei, j,k, b2) ∈ Iσ .

1. Let e = (di, j,k, Fi, j )with σ(ei, j,k) = g1. Then, by Lemma 10,φσ (e) = φσb(e) =
m.

2. Let e = (ei, j,k, b2) with σ(ei, j,k) = g1. Then, by Table 2, φσ (e) = φσb(e) =⌊
b
2

⌋
= m− 1.

3. Let e = (dν, j,k, Fν, j ) with j :=1 − βσ
ν+1 for some k ∈ {0, 1}. This edge is only

improving if b + 1 is not a power of two. Note that this implies 1 j=0mfn(b, ν +
1)+ 1 j=1mufn(b, ν + 1) �= 0. Since bν = 0 ∧ bν+1 �= j , Lemma 7 thus implies

�b(ν, j, k) =
{
m, k = 0

m− 1, k = 1
.

Since b + 1 is not a power of two, the parameter tb = −1 is not feasible by
Property Or3i, j,k . Hence φσb(dν, j,k, Fν, j ) = m− k. This implies (dν, j,1, Fν, j ) ∈
Aσ

σb
by Corollary 1. Consequently, φσ (dν, j,k, Fν, j ) = m for both k ∈ {0, 1}.

4. Let e = (di, j,k, Fi, j ) with i ∈ {ν + 1, . . . ,m − 1}, βσ
i = 0, j :=1 − βσ

i+1 and
k ∈ {0, 1}. This edge is only improving if b+1 is not a power of two. Since i > ν,
βσ
i = 0 implies bi = 0 ∧ bi+1 �= j . Also, i < m implies 1 j=0mfn(b, i + 1) +

1 j=1mufn(b, i + 1) �= 0 since j = 1 − βσ
i+1 and b ≥ 1 by the choice of i . It

is easy to verify that bν = 0 then implies �b(i, j, k) ≤ m − 1.3 There are two
cases. If σb(di, j,k) = Fi, j , then φσb(di, j,k, Fi, j ) = �b(i, j, k) + 1 ≤ m − 1 by
Property Or1i, j,k . If σb(di, j,k) �= Fi, j , then φσb(di, j,k, Fi, j ) = �b(i, j, k) ≤ m−
1. In the first case, e was not applied during Phase 1 and φσb(e) = φσ (e) ≤ m−1.
In the second case, φσb(e) = m − 1 by Property Or4i, j,k . Then, e was applied
during Phase 1, implying φσ (di, j,k, Fi, j ) = m.

5. Let e = (di, j,k, Fi, j ) with i ≤ ν(b+ 1)− 1 and j :=1− βσ
i+1. Then, bit i and bit

i + 1 switched during σb → σ (5). In particular, Fi, j was closed with respect to
σb and consequently (di, j,k, Fi, j ) /∈ Aσ

σb
. Hence, by Table 2, φσ (e) = φσb(e) =

⌊
b−2i−1+3−k

2

⌋
. We now distinguish several cases.

– For i = 1, φσ (e) =
⌊
b+2−k

2

⌋
= m independent of k.
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– For i = 2, φσ (e) =
⌊
b+1−k

2

⌋
, so φσ (e) = m if k = 0 and φσ (e) = m− 1 if

k = 1.
– For i = 3, φσ (e) =

⌊
b−1−k

2

⌋
, so φσ (e) = m− 1 if k = 0 and φσ (e) = m− 2

if k = 1.
– For i > 3, it is easy to see that the occurrence record is always strictly smaller
than m− 1.

We partition Iσ into three subsets. A switch e ∈ Iσ is called type 1 switch if
φσ (e) = m, type 2 switch if φσ (e) = m− 1 and type 3 switch if φσ (e) < m− 1. By
Zadeh’s pivot rule, type 3 switches are applied first. Thus, let e ∈ Iσ be a type 3 switch
and note that this implies e = (di, j,k, Fi, j ) where either i < ν − 1, j = 1− βσ

i+1 or
i ∈ {ν+1, . . . ,m−1}, βσ

i = 0, j :=1−βσ
i+1 aswell as σb(di, j,k) = Fi, j . In particular,

by Property Or2i, j,k , these switches fulfill φσb(e) = �b(i, j, k) + 1 We prove that
applying e can be described by row 1 of Table 11. Since it is easy to verify i �= 1 and
σ(bi ) = bi+1 using the previous explanations and that any improving switch of type
3 has σ(bi ) = bi+1, we only show σ̄ (gi ) = 1−βσ

i+1. By Lemma 10, this holds for all
i ≤ ν− 1. It thus suffices to prove this for i ∈ {ν+ 1, . . . ,m− 1} ∧βσ

i = 0. This can
be shown by proving that σ̄ (gi ) = βσ

i+1 implies (gi , Fi,1−βσ
i+1) ∈ Iσ , contradicting

the given characterization of Iσ .3

Thus, all requirements for applying row 1 of Table 11 are met. We next show
that Table 2 specifies the occurrence record of e = (di, j,k, Fi, j ) its application when
interpreted for b + 1. First let i ∈ {ν + 1, . . . ,m − 1}, βσ

i = 0 and j = 1 − βσ
i+1.

Since e is a type 3 switch, this implies φσb(e) = �b(i, j, k)+ 1 as we pointed out in
the previous paragraph. Since e is applied, the statement follows since �b+1(i, j, k) =
�b(i, j, k)+ 1 by Lemma 9. Now let i ≤ ν− 1. Then, Fi, j was closed with respect to
σb and j = bi+1 = 1−βσ

i+1. It is easy to verify that this implies that we have φσb(e) =
"b−

∑
(b,i)+1−k
2 #. Since (b+ 1)i = 0 ∧ (b+ 1)i+1 �= j and the switch e is applied, it

suffices to prove �b+1(i, j, k) = "b−
∑

(b,i)+1−k
2 # as we can then choose tb+1 = 1 as

feasible. This however follows by an easy calculation.3 Note that we do not discuss yet
that choosing this parameter is in accordance with Properties (Or1)∗,∗,∗ to (Or4)∗,∗,∗.
Note that e being a type 3 switch thus implies φσe(e) ≤ m−1 =

⌊
b+1+1

2

⌋
−1. Hence,

σe has Property Or1i, j,k .

Corollary 11 Let ν > 1. Every switch e = (di, j,k, Fi, j ) with φσb(e) < m − 1 (i.e.,
every switch of type 3) is applied during Phase 5, and the obtained strategy has
Property Or1i, j,k .

Now, the first row of Table 11 and the corresponding arguments can be applied
for every improving switch of type 3. Thus, we obtain a Phase-5-strategy σ ∈ Λι

such that any improving switch is of type 1 or 2. The next improving switch that is
applied has an occurrence record of m − 1, i.e., it is of type 2. Since any switch is
either of the form (di, j,k, Fi, j ) or (ei, j,k, b2) and since the latter switches are of type 2,
some switch e = (ei, j,k, b2) is applied next due to the tie-breaking rule. We prove
that Lemma 13 describes the application of this switch. We begin by proving that
Fi, j is mixed. Since only improving switches of type 3 were applied, σ(ei, j,k) = g1
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implies σ(di, j,k) = ei, j,k . Consequently, σ̄ (egi, j ). In particular, Fi, j is not closed, so
βσ
i = 0∨βσ

i+1 = j . Thus, either (i, j) ∈ S1 or (i, j) ∈ S2. ByLemma10, σ̄ (egi, j ) and
as no switch (e∗,∗,∗, g1) was applied during σ (5) → σ , we need to have (i, j) ∈ S2,
implying that Fi, j is mixed. We go on an prove that j = 1 resp. j = 1 − βσ

i+1
(depending onwhetherGn = Sn orGn = Mn) implies¬σ̄ (egi,1− j ). Consider the case
Gn = Sn and thus j = 1 first.We prove¬σ̄ (egi,0). If Fi,0 is closed, then the statement
follows. If it is not closed, then βσ

i = 0 ∨ βσ
i+1 �= 0. Consequently, either (i, 0) ∈ S1

or (i, 0) ∈ S2. In the first case, ¬σ̄ (egi,0) follows from Lemma 10 as no improving
switch (e∗,∗,∗, b2) was applied during σ (5) → σ , so assume (i, 0) ∈ S2. Then, by
Lemma 10, both cycle centers Fi,0, Fi,1 were mixed for σ (5). Thus, as we consider
Gn = Sn , the tie-breaking rule must have applied the improving switches (ei,0,∗, b2)
prior to (ei, j,k, b2), implying ¬σ̄ (egi,0). If Gn = Mn , ¬σ̄ (egi,1− j ) follows by the
same arguments as the tie-breaking rule applied the improving switches (ei,βσ

i+1,∗, b2)
first. Finally, as no improving switch (g∗, F∗,∗) was applied during σ (5) → σ , ν = 2
implies σ(g1) = F1,0 if Gn = Sn by Lemma 10.

Thus, all requirements of Lemma 13 are met. In addition, Table 2 describes the
occurrence record of e when interpreted for b + 1 since φσe(e) = φσb(e) + 1 =⌊
b
2

⌋
+1 = m. Now, by Lemma 13, (di, j,1−k, Fi, j ) ∈ Iσe and (gi , Fi, j )might become

improving for σe. The strategy σe is now either a Phase-5-strategy for b or a Phase-
1-strategy for b + 1.By similar arguments used for proving Corollary 8, it is easy to
verify the following corollary.3

Corollary 12 If (di, j,1−k, Fi, j ) becomes improving during Phase 5 after the appli-
cation of (ei, j,k, b2), then the corresponding strategy has Property Or4i, j,1−k and
mink′∈{0,1} φσb(di, j,k′ , Fi, j ) ≤ m− 1.

We now use Corollary 12 to prove that (gi , Fi, j ) is applied next if it becomes
improving. Note that σe is a Phase-5-strategy for b if such a switch is unlocked since
it does not have Property Sv1i then. Let σ denote the current strategy and note that
we consider a strategy that was obtained by applying an improving switch (ei, j,∗, b2)
according to Lemma 13.

Due to the tie-breaking rule andCorollary 12, it suffices to showφσ (gi , Fi, j ) ≤ m−
1. SinceTable 2 andCorollary 12 yieldφσb(gi , Fi, j ) ≤ mink′∈{0,1} φσb(di, j,k′ , Fi, j ) ≤
m − 1, it suffices to prove (gi , Fi, j ) /∈ Aσ

σb
. By Lemma 13, e ∈ Iσ if and only if

βσ
i = 0, σ̄ (ebi,1− j ) and [ j = 0 ∧ σ̄ (gi ) = 1] if Gn = Sn resp. [ j = βσ

i+1 ∧ σ̄ (gi ) =
1 − βσ

i+1] if Gn = Mn . Let, for the sake of contradiction, (gi , Fi, j ) ∈ Aσ
σb
. The

conditions on j and σ̄ (gi ) imply (gi , Fi, j ) /∈ Aσ
σ (5) . Since βσ

i = 0 implies i �= ν,
also (gi , Fi, j ) �= (gν, Fν,∗). Thus, by Lemma 10, bi = 0 ∧ bi+1 �= j . Consequently,
0 = bi = βσ

i+1 = (b + 1)i+1 and j = 1 − bi+1. Since all bits below level ν have
bi = 1 ∧ (b + 1)i = 0, this implies i > ν. Therefore, bi+1 = (b + 1)i+1 = 1 − j
and in particular j = 1 − βσ

i+1 This is a contradiction if Gn = Mn as j = βσ
i+1,

hence consider the case Gn = Sn . Then, j = 1 − βσ
i+1 = 0, implying βσ

i+1 = 1.
Thus, i ∈ {ν + 1, . . . ,m − 1}, βσ

i = 0 and j = 1 − βσ
i+1, implying (i, j) ∈ S1.

Therefore, σ̄ 5(ebi, j ) ∧ ¬σ̄ 5(egi, j ), contradicting (ei, j,k, b2), (di, j,k, ei, j,k) ∈ Iσ (5) .

Thus, (gi , Fi, j ) /∈ Aσ (5)

σb
, implying φσ (gi , Fi, j ) ≤ m− 1.
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Due to the tie-breaking rule, (gi , Fi, j ) is thus applied next. We prove that the row 2
of Table 10 applies to our situation.

First, βσ
i = 0 follows from the conditions of Lemma 13. Second, σ̄ (ebi, j ) ∧

¬σ̄ (egi, j ) follows as the cycle center Fi, j was mixed earlier and since we just applied
(ei, j,k, b2). To prove that we have σ̄ (di ′, j ′) ∨ [σ̄ (ebi ′, j ′) ∧ ¬σ̄ (egi ′, j ′)] holds for all
i ′ ≥ i and j ∈ {0, 1}, fix some i ′ ≥ i and j ′ ∈ {0, 1}. If βσ

i ′ = 1 ∧ βσ
i ′+1 = j ′, the

statement follows from Property Bac1i ′ . We may hence assume βσ
i ′ = 0 ∨ j ′ �= βσ ′

i+1
and that Fi ′, j ′ is not closed. Then, by Lemma 10, either σ̄ (ebi ′, j ′) ∧ σ̄ (egi ′, j ′) or
σ̄ (ebi ′, j ′)∧¬σ̄ (egi ′, j ′). Assume, for the sake of contradiction, that the first case was
true and note that this implies i ′ �= i . Then, for some k ∈ {0, 1}, σ(ei ′, j ′,k) = g1
and σ(di ′, j ′,k) = ei ′, j ′,k . This in particular implies (ei ′, j ′,k, b2) ∈ Iσ . This is however
a contradiction to the fact that we apply improving switches according to the tie-
breaking rule since i ′ > i implies that the switch (ei ′, j ′,k, b2) is applied before the
switch (ei, j ′,k, b2).

Hence, all requirements of the second row of Table 10 are met and the statement
can be applied. Further note that the strategy obtained after applying the switch has
Property Sv1i due to the conditions described in Lemma 13. In particular, Corollary 9
also holds for ν > 1.

After the application of (ei, j,k, b2) (or (gi , Fi, j ) if it becomes improving), the
tie-breaking rule determines which switch is applied next. Since (di, j,1−k, Fi, j ) has
an occurrence record of at least m − 1, another switch of the type (e∗,∗,∗, b2) is
applied. But then, the same arguments used above can be used again. That is, we can
apply some switch (ei ′, j ′,k′ , b2), making (di ′, j ′,1−k′ , Fi ′, j ′) improving, and eventually
making (gi ′ , Fi ′, j ′) improving as well. The switch (gi ′, Fi ′, j ′) is applied immediately
(if it becomes improving) whereas the other switch is not applied. Then, inductively,
all remaining switches of the form (e∗,∗,∗, b2) are applied.

Let σ denote the strategy that is reached after applying the final improving switch
(ei, j,k, b2). We can then show that Property Sv1i holds for all i ≥ 2. Furthermore, if
(g1, F1, j ) does not become improving, it is easy to prove that Property Sv11 holds at
well.3 The same is true after the application of this switch if it becomes improving.
In any case, we obtain a strategy that has Property Sv1i for all i ∈ {1, . . . , n}. As the
proof is similar to the case ν = 1, we omit it here.3

Thus, by Lemma 13 resp. the row 2 of Table 11, σ is a Phase-1-strategy for b+ 1
with σ ∈ Λι.

We now prove that σ is a canonical strategy for b + 1 with Iσ = {(di, j,k, Fi, j ) :
σ(di, j,k) �= Fi, j }. We begin by proving Iσ = {(di, j,k, Fi, j ) : σ(di, j,k) �= Fi, j }. Let
σ (5) denote the Phase-5-strategy of Lemma 10 with σ ∈ Λσ(5) . It is easy to verify that
Iσ can be partitioned as

Iσ = {(di, j,∗, Fi, j ) : σ (5)(ei, j,∗) = g1} ∪ {(dν,1−βσ
ν+1,∗, Fν,1−βσ

ν+1)}
∪

{
e = (di,1−βσ

i+1,∗, Fi,1−βσ
i+1 ) : i ∈ {ν + 1, . . . ,m − 1}, βσ

i = 0, φσ5(e) = m− 1
}

∪
{
e = (di,1−βσ

i+1,∗, Fi,1−βσ
i+1 ) : i < ν, φσ(5)

(e) ≥ m− 1
}

,
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if b+1 is not a power of two.A similar partition can be derived if b+1 is a power of two.
In particular, Iσ ⊆ {(di, j,k, Fi, j ) : σ(di, j,k) �= Fi, j }. We prove that e = (di, j,k, Fi, j )
implies e ∈ Iσ if σ(di, j,k) �= Fi, j .

If σ (5)(ei, j,k′) = g1 for some k′ ∈ {0, 1}, then e ∈ Iσ as one of the cycle
edges of Fi, j is improving for σ (5) while the other becomes improving after applying
(ei, j,k′ , b2). Thus let σ (5)(ei, j,∗) = b2, implying ¬σ̄ 5(egi, j ). Then, by Lemma 10,

σ̄ 5(di, j ) or σ̄ 5(ebi, j ) ∧ ¬σ̄ 5(egi, j ). In the first case, βσ(5)

i = 1 ∧ βσ(5)

i+1 = j by
Lemma 10. But this implies σ̄ (di, j ) since σ is a Phase-5-strategy for b and thus
has Property Bac1i . This however contradicts σ(di, j,k) �= Fi, j . Hence, assume that
σ̄ 5(ebi, j )∧¬σ̄ 5(egi, j ). Then, by Lemma 10, (i, j) ∈ S1. We distinguish three cases.

1. Let (i, j) ∈ {(i, 1−βσ
i+1) : i ≤ ν−1}. Ifφσ(5)

(e) < m−1, then ewas an improving
switch of type 3 for σ (5) and thus applied during Phase 5. But this contradicts
σ(di, j,k) �= Fi, j since no switch (d∗,∗,∗, e∗,∗,∗) is applied during Phase 5. This
implies that we need to have (i, j) ∈ {(i, 1− βσ

i+1) : i ≤ ν − 1, φσ5(e) ≥ m− 1},
hence e ∈ Iσ .

2. Let (i, j) ∈ {(i, 1−βσ
i+1) : i ∈ {ν+1, . . . ,m−1}, βσ

i = 0}which can only occur
if b+ 1 is not a power of 2. As proved when discussing Iσ (5) , we then either have
σb(di, j,k) = Fi, j , implying φσb(di, j,k, Fi, j ) ≤ m − 1 or σb(di, j,k) �= Fi, j and
φσb(di, j,k, Fi, j ) = m − 1. Consider the first case. If the inequality is strict, the
switch was applied previously during Phase 5, yielding a contradiction. Otherwise,
(di, j,k, Fi, j ) ∈ Iσ . In the second case, the switchwas applied duringPhase 1, hence
it was a switch of type 1 during Phase 5, also implying (di, j,k, Fi, j ) ∈ Iσ .

3. Finally, let i = ν ∧ j = 1 − βσ
ν+1 which only needs to be considered if b + 1 is

not a power of 2. In this case we however have e ∈ Iσ (5) , implying e ∈ Iσ .

Thus, e ∈ Iσ in all case, proving the statement.
We now prove that σ is a canonical strategy for b+1. Note that we heavily use that

σ is a Phase-5-strategy for b. We thus refer to 4 for an overview over all properties
that σ has. First, we have βσ = b+ 1. Thus, condition 1 follows since σ(e∗,∗,∗) = b2
and ν > 1. This also implies that conditions 2(a), 2(c), 3(a) and 3(b) are fulfilled as
σ has Property Bac1∗ and Property Bac2∗. Consider condition 2(b). Since (b+ 1)i =
1 implies that Fi,(b+1)i+1 is closed, we prove that Fi,1−(b+1)i+1 is not closed. Let
j :=1− (b+ 1)i+1. Then, by Lemma 10, σ (5)(di, j,∗) = ei, j,∗ and it suffices to prove
(di, j,0, Fi, j ) /∈ Aσ

σ (5) . As such a switch is applied during σ (5) → σ if and only if it is
of type 3 by Corollary 11, we prove φσ5(di, j,0, Fi, j ) ≥ m−1. This follows directly if
1 j=0mfn(b, i + 1)+ 1 j=1mufn(b, i + 1) = 0 since this implies �b(i, j, k) ≥ b. Thus

suppose that this term is not 0. Then, �b(i, j, k) =
⌈
b+∑

(b,i)+1−k
2

⌉
≥

⌈
b+2−k

2

⌉
=

⌊
b+1−k

2

⌋
+1 since b1 = 1 and by the choice of i and j . But this implies �b(i, j, 0) ≥

m+ 1, hence φσ(5)
(di, j,0, Fi, j ) ≥ m.

Consider condition 3(c) and let j :=1 − (b + 1)i+1. It is easy to prove that σ has
condition 3(c) by proving that (b+ 1)i = 0 and Fi, j being closed imply Ξ∗

σ (Fi, j ) $
Ξ∗

σ (Fi,1− j ). The reason is that this implies that we need to have σ(gi ) = Fi, j due to
Iσ = {(di, j,k, Fi, j ) : σ(di, j,k) �= Fi, j }. Next, consider condition 3 (d) and consider a
level i with (b + 1)i = 0. Let j :=0 resp. j :=βσ

i+1 depending on whether Gn = Sn
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resp. Gn = Mn . We prove that Ξ∗
σ (Fi, j ) $ Ξ∗

σ (Fi,1− j ) if none of the two cycle
centers is closed. In Mn , this either follows from Lemma 14 since σ has Property Rel1
or by an easy calculation. In Sn , this follows since Ω(Fi,0) > Ω(Fi,1) and as these
priorities are even.

Property Usv1 implies that σ fulfills conditions 4 and 5 for all indices. Finally,
consider condition 6 and let i = ν(b + 2), j = βσ

ν(b+2)+1. By the same argument

used for condition 3(c), it suffices to prove φσ (di, j,k, Fi, j ) ≥ m − 1 for both k ∈
{0, 1}. This however follows from ν(b+ 2) = 1. Hence, σ is a canonical strategy for
b+ 1. � 

Note that we implicitly proved the following corollary.

Corollary 13 Let σb+1 be the canonical strategy for b+ 1 calculated by the Strategy
Improvement resp. Policy Iteration Algorithm when starting with a canonical strategy
σb fulfilling the canonical conditions as per Lemma 7. Then, Table 2 specifies the
occurrence record of every improving switch applied until reaching σb+1, excluding
switches (g∗, F∗,∗), when interpreted for b + 1, and each such switch was applied
once.

It remains to prove that the canonical strategy σb+1 fulfills the canonical conditions.
By Corollary 13, it suffices to prove that it has Properties (Or1)∗,∗,∗ to (Or4)∗,∗,∗ and
that Table 2 specifies the occurrence records of all edges that were not applied.

The following statement is required when discussing Properties (Or1)∗,∗,∗ to
(Or4)∗,∗,∗. It states that the occurrence record of the cycle edges of Fν(b+2),1−(b+2)
are large if b is even and will be used repeatedly.

Lemma 15 Let b ∈ Bn be even, i :=ν(b+2) and j :=1−(b+2)i+1. If b+2 is a power of
2, then φσb(di, j,∗, Fi, j ) = m. Otherwise, φσb(di, j,0, Fi, j ) = m∧ φσb(di, j,1, Fi, j ) =
m− 1. In any case, σb(di, j,k) �= Fi, j for both k ∈ {0, 1}.

We now prove that the canonical strategy σb+1 for b+ 1 has Properties (Or1)∗,∗,∗
to (Or4)∗,∗,∗.
Lemma 12 Let σb+1 denote the canonical strategy calculated by the Strategy Improve-
ment resp. Policy Iteration Algorithm as described by Lemma 11. Then σb+1 has
Properties (Or1)∗,∗,∗ to (Or4)∗,∗,∗.

Proof To simplify notation, let σ := σb+1. We first prove that σ has Properties
(Or1)∗,∗,∗ to (Or4)∗,∗,∗ and discuss Property Or3∗,∗,∗ at the end. We only prove the
statement for the case ν > 1. The case ν = 1 follows by using similar arguments.3.

Consider Property Or4i, j,k . We prove that any improving switch has an occurrence

record of either m or m − 1 as m =
⌊
b+1+1

2

⌋
due to ν > 1. Any e ∈ Iσ was either

improving for σ (5) or became improving during Phase 5, i.e., when transitioning
from σ (5) to σ . As in the proof of Lemma 11, all improving switches not applied
during Phase 5 had an occurrence record of at least m − 1. More precisely, this was
shown implicitlywhen giving the characterization of the improving switches. Also, the
occurrence records of these edges are at mostm, proving the statement for these edges.
For improving switches that were unlocked during Phase 5, the statement follows by
Corollary 12. Hence, σ has Property Or4i, j,k for all indices.
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928 Y. Disser et al.

We prove that σ has Property Or2i, j,k and Property Or1i, j,k . Consider some indices
i, j with βσ

i = 0 ∨ βσ
i+1 �= j . We prove that σ(di, j,k) = Fi, j is equivalent to

φσ (di, j,k, Fi, j ) = �b+1(i, j, k)+ 1.
Let σ(di, j,k) = Fi, j . Then, since σ (5)(di, j,k) �= Fi, j by the choice of i and j , the

switch was applied during σ5 → σ . Consequently, it was not applied before Phase
5 as switches are applied at most once by Corollary 13. Thus, φσb(di, j,k, Fi, j ) =
φσ(5)

(di, j,k, Fi, j ) < m− 1. But this implies σb(di, j,k) = Fi, j since the switch would
have been applied in Phase 1 otherwise. Consequently, by Lemma 9

φσ (di, j,k, Fi, j ) = φσb(di, j,k, Fi, j )+ 1 = �b(i, j, k)+ 1+ 1

= �b+1(i, j, k)+ 1 ≤ m− 1.

Hence Property Or1i, j,k also holds. Now, let φσ (di, j,k, Fi, j ) = �b+1(i, j, k) + 1.
We prove that this implies σ(di, j,k) = Fi, j . We first observe that φσ (di, j,k, Fi, j ) =
�b+1(i, j, k) + 1 ≤

⌊
b+1+1−k

2

⌋
implies �b+1(i, j, k) ≤

⌊
b−k
2

⌋
. By Lemma 7, we

thus need to have βσ
i+1 = 1 − j . Consider the case bi = 0 ∧ bi+1 �= j . Then,

tφσb(di, j,k, Fi, j ) = min(
⌊
b+1−k

2

⌋
, �b(i, j, k) + tb) for some tb feasible for b.

Assume φσb(di, j,k, Fi, j ) �= �b(i, j, k) + tb for all feasible parameters and note that

this implies φσb(di, j,k, Fi, j ) =
⌊
b+1−k

2

⌋
. Then φσ (di, j,k, Fi, j ) < �b(i, j, k) + 1,

implying

�b+1(i, j, k) = �b(i, j, k)+ 1 >

⌊
b+ 1− k

2

⌋

+ 1

=
⌊
b+ 3− k

2

⌋

≥
⌊
b+ 1+ 1− k

2

⌋

which is a contradiction. Consequently, φσb(di, j,k, Fi, j ) = �b(i, j, k) + tb for
some feasible tb. Assume φσ (di, j,k, Fi, j ) = �b(i, j, k). Then φσ (di, j,k, Fi, j ) =
�b+1(i, j, k)+ 1 = �b(i, j, k)+ 2 = φσb(di, j,k, Fi, j )+ 2, implying that the switch
would have been applied twice during σb → σ . This is a contradiction. The same
contradiction follows if we assume φσb(di, j,k, Fi, j ) = �b(i, j, k) − 1. Hence, it
holds that φσb(di, j,k, Fi, j ) = �b(i, j, k) + 1, implying σb(di, j,k) = Fi, j . Since
�b(i, j, k) = �b+1(i, j, k) − 1, this also implies that the switch was indeed applied
during the transition. However, σb(di, j,k) = Fi, j implies that the switch was not
applied during Phase 1 of that transition. But then it must have been applied in Phase
5, implying σ(di, j,k) = Fi, j .

We now show that the same holds if bi = 1 and bi+1 = j , implying i < ν.
It is then easy to calculate that this yields φσb(di, j,k, Fi, j ) = �b+1(i, j, k).3 Since
φσ (di, j,k, Fi, j ) = �b+1(i, j, k) + 1, this implies that the switch was applied during
Phase 5 of σb → σ . Consequently, σ(di, j,k) = Fi, j .

It remains to prove that σ has Property Or3∗,∗,∗. As a reminder, Property Or3i, j,k

states that φσ (di, j,k, Fi, j ) = �b+1(i, j, k) − 1 ∧ φσ (di, j,k, Fi, j ) �=
⌊
b+1+1−k

2

⌋
if

and only if b + 1 is odd, b + 2 is not a power of 2, i = ν(b + 2), j �= (b + 2)i+1
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and k = 0. We first prove the “if” part. Since b + 1 is odd, b is even. As b + 2 is
not a power of by assumption, φσb(di, j,0, Fi, j ) = m and φσb(di, j,1, Fi, j ) = m− 1
as well σb(di, j,k) �= Fi, j for both k ∈ {0, 1} by Claim 15. Now consider Phase 1
of σb → σ . Then, (di, j,1, Fi, j ) is applied in this phase by Corollary 1. Thus, by the
tie breaking rule, (di, j,0, Fi, j ) is not applied during Phase 1. Since no switch with an
occurrence record ofm is applied during Phase 5, the switch is also not applied during

Phase 5. Consequently, φσ (di, j,0, Fi, j ) = φσb(di, j,0, Fi, j ) = m =
⌊
b+1+1

2

⌋
− 1

since b+ 1 is odd. It thus remains to show �b+1(i, j, 0) =
⌊
b+1+1

2

⌋
. Since b+ 1 is

odd, ν(b+2) �= ν and bi = 0. Hence, by Lemma 9, �b+1(i, j, 0) = �b(i, j, 0)+1 =⌊
b
2

⌋
+ 1 =

⌊
b+1+1

2

⌋
. Thus, the “if” part is fulfilled. Now, the “only if” part can be

shown by proving that each of the conditions is necessary by proving the following
five statements:3

1. If j :=(b+ 2)i+1, then either φσ (e) �= �b+1(i, j, k)− 1 or φσ (e) =
⌊
b+1+1−k

2

⌋
.

2. If i �= ν(b + 2) and j �= (b + 2)i+1, then either φσ (e) �= �b+1(i, j, k) − 1 or

φσ (e) =
⌊
b+1+1−k

2

⌋
.

3. If b+1 ∈ Bn is even, i = ν(b+2) and j �= (b+2)i+1, then φσ (e) =
⌊
b+1+1−k

2

⌋
.

4. If b + 1 ∈ Bn is odd, i :=ν(b + 2), j :=1 − (b + 2)i+1, k ∈ {0, 1} and b + 2 is a

power of two, then φσ (di, j,k, Fi, j ) =
⌊
b+1+1−k

2

⌋
.

5. If b ∈ Bn is even, i = ν(b+ 2), j �= (b+ 2)i+1, k = 1 and b+ 2 is not a power

of two, then φσ (e) =
⌊
b+1+1−k

2

⌋
.

� 
We now prove that Table 2 specifies the occurrence records with respect to the

canonical strategy σb+1 for b+ 1 when it is interpreted for b+ 1. Note that this then
in particular implies Theorem 3.

Lemma 13 Let σb+1 be the canonical strategy for b + 1 calculated by the Strategy
Improvement resp. Policy Iteration Algorithm when starting with a canonical strategy
σb fulfilling the canonical conditions as per Lemma 7. Then, Table 2 specifies the
occurrence record of all edges.

Proof There are two types of edges. Each edge was either applied as improving switch
when transitioning from σb to σb+1 or was not applied as an improving switch. We
already proved that Table 2 specifies the occurrence records of all improving switch
that were applied, with the exception of switches (g∗, F∗,∗). It thus suffices to consider
these switches as well as switches that were not applied when transitioning from σb
to σb+1.

As usual, we do not always explicitly state that σ has certain properties due to being
a Phase-5-strategy and refer to Table 4 for an overview. We begin by identifying the
edges that were not applied as improving switches and prove that their occurrence
record is described by Table 2. We only prove the statement for ν > 1 here.3 We first
prove the statement for all edges that are not of the type (di, j,k, Fi, j ).
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1. Consider edges of the type (bi , ∗). Since ν > 1, (bi , bi+1) for i ∈ {1, . . . , ν−1} and
(bν, gν) were applied. Let e = (bi , bi+1) and i ≥ ν. Then φσ (e) = fl(b, i)−bi =
fl(b+ 1, i) − (b+ 1)i since either fl(b, i) = fl(b+ 1, i) and bi = (b+ 1)i+1 (if
i > ν) or fl(b + 1, i) = fl(b, i) + 1 and bi = 0, (b + 1)i = 1 (if i = ν). Let
e = (bi , gi ) for i �= ν. Then, by Lemma 9, φσ (e) = fl(b, i) = fl(b+ 1, i).

2. Consider some edge (gi , Fi, j ) that was not applied during σb → σ . Then, the
upper bound remains valid as it can only increase.

3. Consider some vertex si, j . Since ν > 1, the edges (sν−1,1, hν−1,1), (sν−1,0, b1)
as well as the edges (si,0, hi,0), (si,1, b1) for i ∈ {1, . . . , ν − 2} were switched.
It thus suffices to consider indices i ≥ ν. This implies φσ (si, j , b1) = fl(b, i +
1) − j · bi+1 = fl(b + 1, i + 1) − j · (b + 1)i+1 by the choice of i . Similarly,
φσ (si, j , hi, j ) = fl(b, i + 1)− (1− j)bi+1 = fl(b+ 1, i + 1)− (1− j)(b+ 1)i+1.

4. For e = (ei, j,k, g1), Table 2 implies φσ (ei, j,k, g1) =
⌈
b
2

⌉
=

⌈
b+1
2

⌉
since ν > 1.

5. Consider some e = (di, j,k, ei, j,k). We need to prove φσ (e) ≤ φσ (ei, j,k, g1) =⌈
b
2

⌉
=

⌈
b+1
2

⌉
since b is odd. But this follows since φσ (e) ≤ φσb(e) + 1 ≤

⌊
b
2

⌋
+ 1 =

⌊
b+2
2

⌋
=

⌈
b+1
2

⌉
.

Consider some e = (di, j,k, Fi, j ) that was not switched. We distinguish the following
cases.

1. Let (bi = 1 ∧ bi+1 = j) and ((b + 1)i = 1 ∧ (b + 1)i+1 = j). Then, since any
intermediate strategy had Property Bac1i , Fi, j was always closed during σb →
σ . Thus i �= ν, implying mfn(b, i, {(i + 1, j)}) = mfn(b + 1, i, {(i + 1, j)}).
Therefore, φσ (e) is described by Table 2.

2. Let (bi = 1 ∧ bi+1 = j) and (b + 1)i = 0, implying i < ν. Then bit i + 1 also
switched, so (b + 1)i = 0 ∧ (b + 1)i+1 �= j . Consequently, e was not switched
during Phase 1 since Fi, j was closed with respect to any intermediate strategy
due to Property Bac1i . It is however possible that such a switch is applied during
Phase 5. Since i ≤ ν − 1, this switch is applied if and only if φσb(e) < m − 1.

We may thus assume φσb(e) ≥ m − 1 =
⌊
b−1
2

⌋
and only need to consider e if

⌊
mfn(b,i,{(i+1, j)})+2−k

2

⌋
≥

⌊
b−1
2

⌋
. This inequality holds if and only if one of the

following three cases applies:

– mfn(b, i, {(i + 1, j)})+ 2− k ≥ b− 1
– mfn(b, i, {(i+1, j)})+2−k is even andmfn(b, i, {(i+1, j)})+2−k = b−2.
– mfn(b, i, {(i + 1, j)})+ 2− k is odd and mfn(b, i, {(i + 1, j)})+ 2− k = b.

These assumptions can only hold if i ∈ {1, 2} ∨ (i = 3 ∧ k = 0). It thus
suffices to consider three more cases. For i = 1, we obtain �b+1(i, j, k) =⌈
b+1−1+1−k

2

⌉
=

⌈
b+1−k

2

⌉
= φσ (e). Similarly, for i = 2, we obtain

�b+1(i, j, k) =
⌈
b+1−2+1−k

2

⌉
=

⌈
b−k
2

⌉
=

⌊
b+1−k

2

⌋
= φσ (e). Finally, for

i = 3 and k = 0, we obtain �b+1(i, j, k) =
⌈
b+1−4+1−k

2

⌉
=

⌈
b−2−k

2

⌉
= φσ (e).

Hence, for all three cases, choosing the parameter tb+1 = 0 yields the desired
characterization of φσ (e).
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3. Let (bi = 0 ∧ bi+1 �= j) and ((b+ 1)i = 0 ∧ (b + 1)i+1 �= j), implying i > ν.
First assume 1 j=0mfn(b, i + 1)+ 1 j=1mufn(b, i + 1) = 0. Then �b(i, j, k) ≥ b

by Lemma 7, implying φσb(e) =
⌊
b+1−k

2

⌋
. Since b is odd,

⌊
b+1−1

2

⌋
< m. Hence,

(di, j,1, Fi, j ) was applied during Phase 1 of σb → σ and e = (di, j,0, Fi, j ) /∈ Aσ
σb
.

Thus, since �b+1(i, j, k) ≥ b+ 1 by the choice of i , choosing tb+1 = 0 yields the
desired characterization.
Now assume 1 j=0mfn(b, i + 1) + 1 j=1mufn(b, i + 1) �= 0, implying i < m =
max{i : βσ

i = 1}. Using i > ν ≥ 2, it is easy to verify that this yields �b(i, j, k) ≤⌊
b+1−k

2

⌋
− 1.3 If σb(di, j,k) �= Fi, j , this implies φσb(di, j,k, Fi, j ) ≤ �b(i, j, k) ≤

⌊
b+1−k

2

⌋
−1. Then, by Corollary 1 the switchwas applied during Phase 1.Wemay

hence assume σb(di, j,k) = Fi, j , implying that we haveφσb(e) = �b(i, j, k)+1 ≤⌊
b+1−k

2

⌋
as well as φσb(e) ≤ m−1 by Property Or1i, j,k . As we assume e /∈ Aσ

σb
,

it suffices to consider the case φσ (e) = φσb(e) = m− 1 since e is applied during
Phase 5 otherwise (see Corollary 12). Since �b+1(i, j, k) = �b(i, j, k) + 1 by
Lemma 9, choosing tb+1 = 0 yields the desired characterization.

4. Let (bi = 0 ∧ bi+1 �= j) and ((b + 1)i = 1 ∧ (b + 1)i+1 �= j), i.e., i = ν.
The statement follows by the same argument used earlier if 1 j=0mfn(b, i + 1)+
1 j=1mufn(b, i + 1) = 0. Hence let 1 j=0mfn(b, i + 1)+ 1 j=1mufn(b, i + 1) �= 0,

implying �b(ν, j, k) =
⌊
b+1−k

2

⌋
. Since σb is a canonical strategy for b, we have

σb(di, j,k) �= Fi, j . Assume φσb(e) = �b(i, j, k). Then φσ (e) =
⌊
b+1−k

2

⌋
and the

same arguments used in the third case can be used to show the statement. Assume
φσ (e) = �b(i, j, k) − 1. Then φσb(e) = m − 1 since we need to have k = 0 by
Property Or3i, j,k . But this implies that e was switched during Phase 1 and that we
do not need to consider it here.

5. Finally, let (bi = 0 ∧ bi+1 = j). We only need to consider the case (b + 1)i =
0∧ (b+ 1)i+1 = j , implying i > ν. If 1 j=0mfn(b, i + 1)+ 1 j=1mufn(b, i + 1),
the statement follows by the same arguments made earlier. Otherwise, we can also

use the previous same arguments since �b(i, j, k) >
⌊
b+1−k

2

⌋
implies φσ (e) =

⌊
b+1−k

2

⌋
.

It remains to investigate edges (g∗, F∗,∗). We prove that Table 2 specifies their
occurrence records by inductively proving the following statement: Let σb ∈ Λι be
a canonical strategy for b ∈ Bn calculated by the Strategy Improvement Algorithm.
Then φσb(gi , Fi, j ) ≤ mink∈{0,1} φσb(di, j,k, Fi, j ).

For simplicity, we interpret the improving switch (gν, Fν,bν+1) that might techni-
cally be applied at the beginning of Phase 2 or 3 as an improving switch that is applied
during Phase 1. We prove the statement via induction on b. We briefly discuss how
the statement can be proven for i �= 1 and do not discuss the formal detail or the case
i = 1.3 As we consider several earlier strategies during the inductive step, we show
that the statement holds for all b ≤ 2i .

Thus, let b ≤ 2i=:b̃ and consider some edge e:=(gi , Fi, j ). Then b̃i+1 = 1 and
b′i+1 = 0 for all b′ ≤ b̃. We prove that e was applied at most once when transitioning
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from ι to σb̃ and that this application can only happen during σb̃−1 → σb̃. The
statement then follows since it is easy to verify that the occurrence records of the
cycle edges of Fi, j are both at least one.

Since ι(gi ) = 0, e cannot have been applied during Phase 1 of any transition
encountered during the sequence ι → σb̃ as the choice of b̃ implies that there is no

b′ ≤ b̃ with b′i = 1 ∧ b′i+1 = 1. It is also easy to show that this implies that it cannot
happen that the cycle center Fi, j was closed during Phase 1 if j = 1 − b′i+1. The
switch (gi , Fi, j ) can thus only have been applied during some Phase 5. However,
since ι(gi ) = 0 and due to the choice of b̃, this can only happen when transitioning
from σb̃−1 to σb̃.

Thus, the statement holds for σb with b ≤ 2i . Now, assume that it holds for all
b′ < b where b > 2i . We prove that the statement also holds for σb. Fix some edge
e:=(gi , Fi, j ) and consider the strategy σb−1. We begin by arguing that several cases
do not need to be considered.

First of all, every improving switch is applied at most once per transition. The
statement thus follows by the induction hypothesis if mink∈{0,1} φσb(di, j,k, Fi, j ) >

mink∈{0,1} φσb−1(di, j,k, Fi, j ). We thus assume

min
k∈{0,1}φ

σb(di, j,k, Fi, j ) = min
k∈{0,1}φ

σb−1(di, j,k, Fi, j ). (3)

Similarly, if e is not applied during σb−1 → σb, then the statement also follows by
the induction hypothesis. We thus assume e ∈ A

σb
σb−1 .

These observations give first structural insights on b − 1 and b. First, if bi =
1 ∧ (b − 1)i = 1, then it is not possible to apply e during σb−1 → σb. Second, if
bi = 1 ∧ (b − 1)i = 0, then i = ν(b). By Definition 2 resp. 4, both cycle centers
of level ν(b) are open for σb−1. Hence, Corollary 2 implies that Fi, j is closed during
σb−1 → σb by applying both switches (di, j,0, Fi, j ) and (di, j,1, Fi, j ). But then, Eq. (3)
is not fulfilled and the statement follows. This implies that it suffices to consider the
case bi = 0.

It can then be show that these assumptions imply that the occurrence record of the
edges (di, j,∗, Fi, j ) is “large”.3 To be precise, that Eq. (3), e ∈ A

σb
σb−1 and bi = 0 imply

min
k∈{0,1}φ

σb−1(di, j,k, Fi, j ) ≥
⌊
b

2

⌋

− 1. (4)

It then suffices to prove φσb−1(gi , Fi, j ) <
⌊
b
2

⌋
− 1 to complete the proof.

We begin by proving that we cannot have (b − 1)i = 1. Let, for the sake of
contradiction, (b − 1)i = 1. Then, as bi = 0, we have i < ν(b) and consequently
(b − 1)i+1 �= bi+1. It further implies that b is even. Then, since e ∈ A

σb
σb−1 by

assumption, it was applied during Phase 5 of σb−1 → σb. This implies j = 0 in Sn
resp. j = bi+1 = 1 − (b − 1)i+1 in Mn . Consider Mn first. Then, since (b − 1)i =
1 ∧ j = 1 − (b − 1)i+1 imply �b−1(i, j, k) ≥

⌊
b−k
2

⌋
+ 1 by Lemma 7, we obtain

φσb−1(di, j,k, Fi, j ) =
⌊
b−k
2

⌋
.
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In addition, since φσb−1(di, j,k, Fi, j ) �= �b−1(i, j, k)+1 for both k ∈ {0, 1}, Fi, j is
then open with respect to σb−1 by Property Or2i, j,∗. This implies that (di, j,1, Fi,1) is
applied during Phase 1 of σb−1 → σb. But then mink∈{0,1} φσb−1(di, j,k, Fi, j ) <

mink∈{0,1} φσb(di, j,k, Fi, j ), contradicting our assumption. Now consider the case
Gn = Sn . If j = 0 = 1 − (b − 1)i+1, then the statement follows by the same
arguments. This is the case if and only if i < ν(b) − 1, so let i = ν(b) − 1. By
Definition 2, this implies σb−1(gi ) = Fi,0. Since Fi,0 is then closed during Phase 1
of the transition σb−1 → σb and since (gi , Fi,1) cannot be applied during Phase 5 if
Gn = Sn , this is a contradiction.

It thus suffices to consider the case (b− 1)i = 0. To simplify notation, we denote
the binary number obtained by subtracting 1 from a binary number (b′n, . . . , b′1) by[b′n, . . . , b′1] − 1. Then, b and b− 1 can be represented as

b = (bn, . . . , bi+1, 0, bi−1, . . . , b1),
b− 1 = (bn, . . . , bi+1, 0, [bi−1, . . . , b1] − 1)

where bit i is marked in bold. The idea of the proof is now the following. We define
two smaller numbers that are relevant for the application of (gi , Fi, j ). We use these
numbers and the induction hypothesis to prove that even if (gi , Fi, j ) was applied
during (nearly) all of these transitions, the bound that we claim still holds.

We thus define b̄ = ([bn, . . . , bi+1] − 1, 1, 1 . . . , 1) and b̃ = ([bn, . . . , bi+1] −
1, 1, 0, . . . , 0) where bit i is again marked in bold. Note that these numbers are well-
defined since b ≥ 2i .

Consider b̃. Let N(b̃, b− 1) denote the number of applications of (gi , Fi, j ) when
transitioning from σb̃ to σb−1. Then, since b′i = 1 for all b′ ∈ {b̃, . . . , b̄}, we have

N(b̃, b− 1) = N(b̄, b− 1). We thus can describe the occurrence record of (gi , Fi, j )
as

φσb−1(gi , Fi, j ) = N(0, b− 1) = N(0, b̃)+N(b̃, b− 1)

= φσb̃(gi , Fi, j )+N(b̄, b− 1).

Our goal is to bound the two terms on the right-hand side. Due to the induction

hypothesis, the first term can be bounded by � b̃2 �. Since every improving switch is
applied at most once per transition by Corollary 13, we have N(b̄, b − 1) ≤ (b −
1) − b̄. However, this upper bound is not strong enough. It can however be proven
that (gi , Fi, j ) was not applied during all transition from b̄ to b − 1. More precisely,
N(b̄, b−1) ≤ (b−1)− b̄−1. Combining these results and using b̄ = b−∑

(b, i)−1
and b̃ = b−∑

(b, i)− 2i−1 yields the statement.3

We can now combine the previous arguments to prove Lemma 5. Note that this
implies Lemma 6.

Lemma 5 Let σb ∈ Λι be a canonical strategy for b fulfilling the canonical conditions.
Let σ ∈ Λσb be a strategy obtained by applying a sequence of improving switches to
σb. Let σ have the properties of row k of Table 6 and let Iσ be described by row k
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934 Y. Disser et al.

of Table 7 for some k ∈ {1, . . . , 5}. Then, applying improving switches according to
Zadeh’s pivot rule and our tie-breaking rule produces a strategy σ ′ that is described
by the next feasible rows of Tables 6 and 7.

Proof By Lemmas 7, 8, 9 and 10, it suffices to consider the case k = 5. By Lemma 11,
applying improving switches to a canonical strategy σb for b produces a canonical
strategy σb+1 for b+ 1. It suffices to prove that σb+1 fulfills the canonical conditions.

By Corollary 13, Table 2 correctly specifies the occurrence record of all edges when
interpreted for b+ 1. By Lemma 12, σb+1 has Properties (Or1)∗,∗,∗ to (Or4)∗,∗,∗. By
Corollary 13, each improving switch was applied at most once when transitioning
from σb → σb+1. Consequently, σb+1 fulfills the canonical conditions. � 

This now enables us to prove our final theorem.

Theorem 4 Applying the Strategy Improvement Algorithm with Zadeh’s pivot rule and
the strategy-based tie-breaking rule described in Definition 7 on the game Gn of size
O(n) needs at least 2n iterations when using ι as the initial player 0 strategy.

Proof This follows by Lemma 4 and by applying Lemma 6 iteratively. � 
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