
Mathematical Programming (2023) 199:461–524
https://doi.org/10.1007/s10107-022-01836-1

FULL LENGTH PAPER

Series A

Scalable subspace methods for derivative-free nonlinear
least-squares optimization

Coralia Cartis1 · Lindon Roberts2

Received: 23 February 2021 / Accepted: 10 May 2022 / Published online: 9 June 2022
© The Author(s) 2022

Abstract
We introduce a general framework for large-scale model-based derivative-free opti-
mization based on iterative minimization within random subspaces. We present a
probabilistic worst-case complexity analysis for our method, where in particular we
prove high-probability bounds on the number of iterations before a given optimality
is achieved. This framework is specialized to nonlinear least-squares problems, with a
model-based framework based on the Gauss–Newton method. This method achieves
scalability by constructing local linear interpolation models to approximate the Jaco-
bian, and computes new steps at each iteration in a subspace with user-determined
dimension. We then describe a practical implementation of this framework, which we
call DFBGN.We outline efficient techniques for selecting the interpolation points and
search subspace, yielding an implementation that has a low per-iteration linear algebra
cost (linear in the problem dimension) while also achieving fast objective decrease
as measured by evaluations. Extensive numerical results demonstrate that DFBGN
has improved scalability, yielding strong performance on large-scale nonlinear least-
squares problems.

Keywords Derivative-free optimization · Large-scale optimization · Nonlinear
least-squares · Worst case complexity

This work was supported by the EPSRC Centre for Doctoral Training in Industrially Focused
Mathematical Modelling (EP/L015803/1) in collaboration with the Numerical Algorithms Group Ltd. We
note that the work in Sects. 4 and 5 originally appeared in the second author’s thesis [69, Chapter 7].

B Lindon Roberts
lindon.roberts@anu.edu.au

Coralia Cartis
cartis@maths.ox.ac.uk

1 Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road,
Oxford OX2 6GG, UK

2 Mathematical Sciences Institute, Building 145, Science Road, Australian National University,
Canberra, ACT 2601, Australia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-022-01836-1&domain=pdf
http://orcid.org/0000-0001-6438-9703

462 C. Cartis, L. Roberts

Mathematics Subject Classification 65K05 · 90C30 · 90C56

1 Introduction

An important class of nonlinear optimization methods is so-called derivative-free
optimization (DFO). In DFO, we consider problems where derivatives of the objec-
tive (and/or constraints) are not available to be evaluated, and we only have access
to function values. This topic has received growing attention in recent years, and is
primarily used for objectives which are black-box (so analytic derivatives or algo-
rithmic differentiation are not available), and expensive to evaluate or noisy (so finite
differencing is impractical or inaccurate). There aremany types of DFOmethods, such
as model-based, direct and pattern search, implicit filtering and others (see [55] for a
recent survey), and these techniques have been used in a variety of applications [1].

Here, we consider model-based DFO methods for unconstrained optimization,
which are based on iteratively constructing and minimizing interpolation models for
the objective. We also specialize these methods for nonlinear least-squares problems,
by constructing interpolation models for each residual term rather than for the full
objective [19, 79, 85].

This paper aims to provide amethod that attempts to answer a keyquestion regarding
model-based DFO: how to improve the scalability of this class. Existing model-based
DFO techniques are primarily designed for small- to medium-scale problems, as the
linear algebra cost of each iteration—largely due to the cost of constructing interpola-
tion models—means that their runtime increases rapidly for large problems. There are
several settings where scalable DFO algorithms may be useful, such as data assimila-
tion [3, 10],machine learning [39, 71], generating adversarial examples for deep neural
networks [2, 75], image analysis [34], and as a possible proxy for global optimization
methods [21].

To address this, we introduce RSDFO, a scalable algorithmic framework for
model-based DFO. At each iteration of RSDFO we select a random low-dimensional
subspace, build and minimize a model to compute a step in this space, then change
the subspace at the next iteration. We provide a probabilistic worst-case complexity
analysis of RSDFO. To our knowledge, this is the first subspace model-based DFO
methodwith global complexity and convergence guarantees.We then describe how this
general framework can be specialized to the case of nonlinear least-squares minimiza-
tion through a model construction technique inspired by the Gauss–Newton method,
yielding a new algorithm RSDFO-GNwith associated worst-case complexity bounds.
We then present an efficient implementation of RSDFO-GN, which we call DFBGN.
DFBGN is available on Github1 and includes several algorithmic features that yield
strong performance on large-scale problems and a low per-iteration linear algebra cost
that is typically linear in the problem dimension.

1 https://github.com/numericalalgorithmsgroup/dfbgn.

123

https://github.com/numericalalgorithmsgroup/dfbgn

Scalable subspace methods for derivative-free nonlinear… 463

1.1 Existing literature

The contributions in this paper are connected to several areas of research. We briefly
review these topics below.

Block coordinate descent There is a large body of work on (derivative-based) block
coordinate descent (BCD) methods, typically motivated by machine learning appli-
cations. BCD extends coordinate search methods [81] by updating a subset of the
variables at each iteration, typically using a coordinate-wise variant of a first-order
method. For nonconvex problems, the first convergence result for a randomized coor-
dinate descent method based on proximal gradient descent was given in [62]. Here, the
sampling of coordinates was uniform and required step sizes based on Lipschitz con-
stants associated with the objective. This was extended in [57] to general randomized
block selection with a nonomonotone linesearch-type method (to allow for unknown
Lipschitz constants), and to a (possibly deterministic) ‘essentially cyclic’ block selec-
tion and extrapolation (but requiring Lipschitz constants) in [83]. Several extensions
of this approach have been developed, including the use of stochastic gradients [82],
parallel block updating [36] and inexact step calculations [36, 84].

BCD methods have been extended to nonlinear least-squares problems, leading
to so-called Subspace Gauss–Newton methods. These are derivative-based methods
where a Gauss–Newton step is computed for a subset of variables. This approach
was initially proposed in [74] for parameter estimation in climate models—where
derivative estimates were computed using implicit filtering [53]—and analyzed in
quadratic regularization and trust-region settings for general unconstrained objectives
in [16, 17, 72].

Sketching Sketching is an alternative dimensionality reduction technique for least-
squares problems, reducing the number of residuals rather than the number of variables.
Sketching ideas havebeen applied to linear [50, 58, 80] andnonlinear [35] least-squares
problems, as well as model-based DFO for nonlinear least-squares [14], as well as
subsampling algorithms for finite sum-of-functions minimization such as Newton’s
method [7, 70].

There are also alternative approaches to sketching which lead to subspace-type
methods, where local gradients and Hessians are estimated only within a subspace
(possibly used in conjunction with random subsampling). Sketching in this context
has been applied to, for example, Newton’s method [7, 44, 63], BFGS [43], and SAGA
[45], as well as to trust-region and quadratic regularization methods [16, 17, 72].

Random embeddings for global optimization Some global optimization methods
have been proposed which randomly project a high-dimensional problem into a low-
dimensional subspace and solve this smaller problem using existing (global or local)
methods. Though applicable to general global optimization problems (as a more
sophisticated variant of random search), this technique has been explored particu-
larly for defeating the curse of dimensionality when optimising functions which have
low effective dimensionality [18, 68, 78]. For the latter class, often only one random
subspace projection is needed, though the addition of constraints leads to multiple

123

464 C. Cartis, L. Roberts

embeddings being required [18]. Our approach here differs from these works in both
theoretical and numerical aspects, as it is focused on a specific random subspace
technique for local optimization.

Probabilisticmodel-basedDFO Formodel-basedDFO, several algorithms have been
developed and analyzed where the local model at each iteration is only sufficiently
accuratewith a certain probability [5, 12, 23]. Similar analysis also exists for derivative-
based algorithms [22, 47]. Our approach is based on deterministic model-based DFO
within subspaces, and we instead require a very weak probabilistic condition on the
(randomly chosen) subspaces (Assumption 4).

Randomized direct search DFO In randomized direct search methods, iterates are
perturbed in a random subset of directions (rather than a positive spanning set) when
searching for local improvement. In this framework, effectively only a random sub-
space is searched in each iteration. Worst-case complexity bounds for this technique
are given under predetermined step length regimes in [11, 40], and with adaptive step
sizes in [46, 48], where [48] extends [46] to linearly constrained problems.

Large-scale DFO There have been several alternative approaches considered for
improving the scalability of DFO. These often consider problems with specific struc-
ture which enable efficient model construction, such as partial separability [26, 64],
sparse Hessians [4], and minimization over the convex hull of finitely many points
[31]. On the other hand, there is a growing body of literature on ‘gradient sampling’
techniques for machine learning problems. These methods typically consider stochas-
tic first-order methods but with a gradient approximation based on finite differencing
in random directions [60], i.e. approximations of the form ∇ f (x) ≈ f (x+hu)− f (x)

h u
for a random Gaussian vector u.2 This framework has lead to variants of methods
such as stochastic gradient descent [38], SVRG [56] and Adam [24], for example.
We note that linear interpolation to orthogonal directions—more similar to traditional
model-based DFO—has been shown to outperform gradient sampling as a gradient
estimation technique [8, 9].

Subspace DFO methods A model-based DFO method with similarities to our sub-
space approach is themoving ridge functionmethod from [49].Here, existing objective
evaluations are used to determine an ‘active subspace’ which captures the largest
variability in the objective and build an interpolation model within this subspace.
We also note the VXQR method from [61], which performs line searches along a
direction chosen from a subspace determined by previous iterates. Both of these
methods do not include convergence theory. By comparison, aside from our focus
on nonlinear least-squares problems, both our general theoretical framework and our
implemented method select their working subspaces randomly, and we provide (prob-
abilistic) convergence guarantees. Lastly, the unpublished works [77, 86] propose a
similar construction to ours, but based on full minimization of the objective within

2 This is different from gradient sampling methods for nonsmooth optimization.

123

Scalable subspace methods for derivative-free nonlinear… 465

each subspace, and allowing potentially multiple simultaneous parallel subspace min-
imizations.

1.2 Contributions

We introduce RSDFO (Random Subspace Derivative-Free Optimization), a generic
model-based DFO framework that relies on constructing a model in a subspace at each
iteration. Our novel approach enables model-based DFO methods to be applied in a
large-scale regime by giving the user explicit control over the subspace dimension, and
hence control over the per-iteration linear algebra cost of the method. This framework
is then specialized to the case of nonlinear least-squares problems, yielding a new
algorithm RSDFO-GN (Random Subspace DFO with Gauss–Newton). The subspace
model construction framework of RSDFO-GN is based on DFOGauss–Newtonmeth-
ods [15, 19], and retains the same theoretical guarantees as RSDFO. We then describe
a practical implementation of RSDFO-GN, which we call DFBGN (Derivative-Free
Block Gauss–Newton).3 Compared to existing methods, DFBGN reduces the linear
algebra cost of model construction and the initial objective evaluation cost by allowing
fewer interpolation points at every iteration. In order for DFBGN to have both scala-
bility and a similar evaluation efficiency to existing methods (i.e. objective reduction
achieved for a given number of objective evaluations), several modifications to the
theoretical framework, regarding the selection of interpolation points and the search
subspace, are necessary.

Theoretical results We consider a generic theoretical framework RSDFO, where the
subspace dimension is a user-chosen algorithm hyperparameter, and no specific model
construction approach is specified. Our framework is not specific to a least-squares
problem structure, and holds for any objective with Lipschitz continuous gradient,
and allows for a general class of random subspace constructions (not relying on a
specific class of embeddings or projections). The theoretical results here extend the
approach and techniques in [16, 17, 72] to model-based DFO methods. In particular,
we use the notion of a well-aligned subspace (Definition 2) from [16, 17, 72], one in
which sufficient decrease is achievable, and assume that our search subspace is well-
aligned with some probability (Assumption 4). This is achieved provided we select
a sufficiently large subspace dimension (depending on the desired failure probability
and subspace alignment quality).

We derive a high probability worst-case complexity bound for RSDFO. Specifi-
cally, our main bounds are of the form P

[
min j≤k ‖∇ f (x j)‖ ≤ Ck−1/2

] ≥ 1 − e−ck

and P
[
Kε ≤ Cε−2

] ≤ 1− e−cε−2
, where Kε is the first iteration to achieve first-order

optimality ε (see Theorem1 andCorollary 1). This result then implies a variety of alter-
native convergence results, such as expectation bounds and almost-sure convergence.
Based on [16, 17, 54, 72], we give several constructions for determining our random
subspace, and show that we can achieve convergence with a subspace dimension that
is independent of the ambient dimension.

3 Technically, DFBGN is not a block method as its subspaces are not coordinate-aligned, but has already
been released with this name.

123

466 C. Cartis, L. Roberts

Our analysis matches the standard deterministic O(ε−2) complexity bounds for
model-based DFO methods built on linear interpolating models(e.g. [37]). However,
when measuring the complexity in objective evaluations, our method yields a lower
explicit dependency on the (ambient) problem dimension. Compared to the analysis of
derivative-based methods (e.g. BCD [83] and probabilistically accurate models [22])
we need to incorporate the possibility that the interpolation model is not accurate
(not fully linear, see Definition 1). However, unlike [5, 12, 23] we do not assume that
full linearity is a stochastic property; instead, our stochasticity comes from the sub-
space selection and we explicitly handle non-fully linear models similar to [19, 29].
This gives us a framework which is similar to standard model-based DFO and with
weak probabilistic conditions. Compared to the analysis of derivative-based random
subspace methods in [16, 17, 72], our analysis is complicated substantially by the
possibility of inaccurate models and the intricacies of model-based DFO algorithms.
Although our approach could have considered situations where models are always
guaranteed to be fully linear, we have developed our analysis to cope with this greater
generality and to closely align with the traditional analysis of model-based DFOmeth-
ods [19, 29]. The possibility of inaccurate models is similarly considered in [5, 12,
22, 23], but as an event that happens with some probability.

We then consider RSDFO-GN,which explicitly describes how interpolationmodels
can be constructed for nonlinear least-squares problems, thus providing a concrete
implementation of RSDFO in this context. Here we consider quadratic local models
formed by linear interpolation for each residual function, which have strong practical
performance [19]. We prove that RSDFO-GN retains the same O(ε−2) complexity
bound as RSDFO, again matching existing deterministic bounds [19]. However as in
the general case,RSDFO-GNhas an oracle complexity boundwith a lower dependency
on problem dimension compared to existing results.

In both cases, our subspace approach improves on existing oracle complexity analy-
sis in termsof its dependencyonproblemdimension.However ourmethod also benefits
from a significantly reduced linear algebra cost per iteration, and so also improves on
existing complexity bounds when measuring the algorithm’s overall computational
cost. For high-dimensional problems, both of these considerations (cost of objective
evaluations and of linear algebra) are potentially relevant to overall algorithm perfor-
mance.

Implementation Although it has beneficial evaluation and linear algebra complex-
ity results, because of the random subspace framework, RSDFO-GN is not able to
recycle objective evaluation information across multiple iterations. This is a key ele-
ment of the practical success of model-based DFO methods tailored to the setting
where objective evaluations are expensive. To address this, we introduce a practical,
implementable variant of RSDFO-GN called DFBGN, which is based on the solver
DFO-LS [15]. DFBGN achieves its practicality by using existing interpolation points
to determine the relevant search subspace, coupled with a geometry-aware approach
for selecting interpolation points for removal (inspired by the approach from [67]),
and an adaptive randomized approach for selecting new interpolation points/subspace
directions. We study the per-iteration linear algebra cost of DFBGN, and show that it
is linear in the problem dimension, a substantial improvement over existing methods,

123

Scalable subspace methods for derivative-free nonlinear… 467

which are cubic in the problem dimension, and equal to RSDFO-GN (although with
significantly better practical performance than RSDFO-GN in terms of objective eval-
uations). This improvement comes from being able to perform almost all computations
in the subspace, including model construction, step calculation and geometry-aware
point removal. Our per-iteration linear algebra costs are also linear in the number
of residuals, the same as existing methods, but with a substantially smaller constant
(quadratic in the subspace dimension, which is user-determined, rather than quadratic
in the problem dimension).

Numerical results We compare DFBGNwith DFO-LS (which itself is shown to have
state-of-the-art performance in [15]) on collections of bothmedium-scale (approx. 100
dimensions) and large-scale test problems (approx. 1000 dimensions). We show that
DFBGN with a full-sized subspace has similar performance to DFO-LS in terms of
objective evaluations, but shows improved performance on runtime.4 This indicates
that DFBGN’s practical approach for recycling objective evaluations across iterations
yields state-of-the-art performance while inheriting the low linear algebra cost of
RSDFO-GN. As the dimension of the subspace reduces (i.e. the size of the interpo-
lation set reduces), we demonstrate a tradeoff between reduced linear algebra costs
and increased evaluation counts required to achieve a given objective reduction. The
flexibility of DFBGN allows this tradeoff to be explicitly managed. When tested on
large-scale problems, DFO-LS frequently reaches a reasonable runtime limit without
making substantial progress, whereas DFBGN with small subspace size can perform
many more iterations and hence make better progress than DFO-LS. In the case of
expensive objectives with small evaluation budgets, we show that DFBGN can make
progress with few objective evaluations in a similar way to DFO-LS (which has a
mechanism to make progress from as few as 2 objective evaluations independent of
problem dimension), but with substantially lower linear algebra costs.

Structure of paper In Sect. 2 we describe RSDFO and provide our probabilistic
worst-case complexity analysis. We specialize RSDFO to RSDFO-GN in Sect. 3.
Then we describe the practical implementation DFBGN and its features in Sect. 4.
Our numerical results are given in Sect. 5.

Implementation A Python implementation of DFBGN is available on Github.5

Notation We use ‖ · ‖ to refer to the Euclidean norm of vectors and the operator
2-norm of matrices, and B(x,Δ) for x ∈ R

n and Δ > 0 to be the closed ball
{ y ∈ R

n : ‖ y − x‖ ≤ Δ}.
4 The main difference between DFBGNwith a full-sized subspace (i.e. the subspace dimension is the same
as the problem dimension) and DFO-LS is the way that interpolation points are added/removed between
iterations, with DFBGN using the approach described in Sect. 4.4, but there are also small differences
between the two algorithms in trust-region management, for example.
5 https://github.com/numericalalgorithmsgroup/dfbgn.

123

https://github.com/numericalalgorithmsgroup/dfbgn

468 C. Cartis, L. Roberts

2 Random subspacemodel-based DFO

In this section we outline our general model-based DFO algorithmic framework based
on minimization in random subspaces. We consider the nonconvex problem

min
x∈Rn

f (x), (1)

where we assume that f : Rn → R is continuously differentiable, but that access to its
gradient is not possible (e.g. for the reasons described in Sect. 1). In a standard model-
based DFO framework (e.g. [30, 55]), at each iteration k we construct a quadratic
model mk : Rn → R which approximates f near our iterate xk :

f (xk + s) ≈ mk(s) := f (xk) + gTk s + 1

2
sT Hk s, (2)

for some gk ∈ R
n and Hk ∈ R

n×n symmetric. Based on this model, we build a
globally convergent algorithm using a trust-region framework [27]. This algorithmic
framework is suitable providing that—when necessary—we can guarantee mk is a
sufficiently accurate model for f near xk . Details about how to construct sufficiently
accurate models based on interpolation are given in [28, 30].

Our core idea here is to construct interpolation models which only approximate
the objective in a subspace, rather than in the full space R

n . This allows us to use
interpolation sets with fewer points, since we do not have to capture the objective’s
behaviour outside our subspace, which improves the scalability of the method.

In this section, we outline our general algorithmic framework and provide a worst-
case complexity analysis showing convergence to first-order stationary points with
high probability. We then describe how this framework may be specialized to the case
of nonlinear least-squares minimization.

2.1 RSDFO algorithm

In our general framework,whichwecallRSDFO(RandomSubspaceDFO),wemodify
the above approach by randomly choosing a p-dimensional subspace (where p ≤ n is
user-chosen) and constructing an interpolation model defined only in that subspace.6

Specifically, in each iteration k we randomly choose a p-dimensional affine space
Yk ⊂ R

n given by the range of Qk ∈ R
n×p, i.e.

Yk = {xk + Qk ŝ : ŝ ∈ R
p}. (3)

We then construct a model which interpolates f at points in Yk and ultimately
construct a local quadratic model for f only on Yk . That is, given Qk , we assume that

6 Formally, we define our model in an affine space, but we call it a subspace throughout as this fits with an
intuitive view of what RSDFO aims to achieve.

123

Scalable subspace methods for derivative-free nonlinear… 469

we have m̂k : Rp → R given by

f (xk + Qk ŝ) ≈ m̂k(ŝ) := f (xk) + ĝTk ŝ + 1

2
ŝT Ĥk ŝ, (4)

where ĝk ∈ R
p and Ĥk ∈ R

p×p are the low-dimensional model gradient and
Hessian respectively, adopting the convention of using hats on variables to denote
low-dimensional quantities. In Sect. 3 we specialize this to a model construction pro-
cess for nonlinear least-squares problems.

For our trust-region algorithm, we (approximately) minimize m̂k inside the trust
region to get a tentative step

ŝk ≈ argminŝ∈Rp m̂k(ŝ), s.t. ‖ŝ‖ ≤ Δk, (5)

for the current trust-region radius Δk > 0, yielding a tentative step sk = Qk ŝk ∈ R
n .

We thus also get the computational advantage coming from solving a p-dimensional
trust-region subproblem.

In our setting we are only interested in the approximation properties of m̂k in the
space Yk , and so we introduce the following notion of a “sufficiently accurate” model:

Definition 1 Given Q ∈ R
n×p, a model m̂ : Rp → R is Q-fully linear in B(x,Δ) ⊂

R
n if

| f (x + Q ŝ) − m̂(ŝ)| ≤ κefΔ
2, (6a)

‖QT∇ f (x + Q ŝ) − ∇m̂(ŝ)‖ ≤ κegΔ, (6b)

for all s ∈ R
p with ‖ŝ‖ ≤ Δ. The constants κef and κeg must be independent of Q, m̂,

x and Δ.

The gradient condition (6b) comes from noting that if f̂ (ŝ) := f (x + Q ŝ) then
∇ f̂ (ŝ) = QT∇ f (x+Q ŝ). We note that if we have full-dimensional subspaces p = n
and take Q = I , then we recover the standard notion of fully linear models [29,
Definition 3.1]. In our analysis, we will generally assume that Definition 1 is satisfied
by finding ĝk using linear interpolation and taking Ĥk to be zero, but underdetermined
quadratic interpolation techniques could instead be used [28, 30].

Complete RSDFO algorithm The complete RSDFO algorithm is stated in Algo-
rithm 1. The overall structure is common to model-based DFO methods [29, 30]. In
particular, we assume that we have procedures to verify whether or not a model is
Qk-fully linear in B(xk,Δk) and (if not) to generate a Qk-fully linear model. When
we specialize RSDFO to nonlinear least-squares problems in Sect. 3, we will describe
how we can obtain such procedures.

The broad structure of RSDFO is as follows:

1. First generate a subspace Qk and, by linear interpolation on a new set of points in
the subspace, generate an interpolating model m̂k .

123

470 C. Cartis, L. Roberts

Algorithm 1 RSDFO (Random Subspace Derivative-Free Optimization) for solving
(1).
Input: Starting point x0 ∈ R

n , initial trust region radius Δ0 > 0, and subspace dimension p ∈ {1, . . . , n}.

Parameters: maximum trust-region radius Δmax ≥ Δ0, trust-region radius scalings 0 < γdec < 1 <

γinc ≤ γ inc, criticality constants εC , μ > 0 and trust-region scaling 0 < γC < 1, safety step threshold
βF > 0 and trust-region scaling 0 < γF < 1, and acceptance thresholds 0 < η1 ≤ η2 < 1.

1: Set flag CHECK_MODEL=FALSE.
2: for k = 0, 1, 2, . . . do
3: if CHECK_MODEL=TRUE then
4: Set Qk = Qk−1.
5: Construct a reduced model m̂k : Rp → R (4) which is Qk -fully linear in B(xk , Δk).
6: else
7: Define a subspace by randomly sampling Qk ∈ R

n×p .
8: Construct a reduced model m̂k : Rp → R (4) which need not be Qk -fully linear.
9: end if
10: if ‖ ĝk‖ < εC and (‖ ĝk‖ < μ−1Δk or m̂k is not Qk-fully linear in B(xk ,Δk)) then
11: (Criticality step) Set xk+1 = xk , Δk+1 = γCΔk and CHECK_MODEL=TRUE.
12: else ← ‖ ĝk‖ ≥ εC or (‖ ĝk‖ ≥ μ−1Δk and m̂k is Qk-fully linear in B(xk , Δk))
13: Approximately solve the subspace trust-region subproblem in R

p (5) and calculate the step
sk = Qk ŝk ∈ R

n .
14: if ‖ŝk‖ < βFΔk then
15: (Safety step) Set xk+1 = xk and Δk+1 = γFΔk .
16: If m̂k is Qk -fully linear in B(xk ,Δk), then set CHECK_MODEL=FALSE, otherwise

CHECK_MODEL=TRUE.
17: else
18: Evaluate f (xk + sk) and calculate ratio

ρk := f (xk) − f (xk + sk)
m̂k (0) − m̂k (ŝk)

. (7)

19: Accept/reject step and update trust region radius: set

xk+1 =
{
xk + sk , ρk ≥ η1,

xk , ρk < η1,
and Δk+1 =

⎧
⎪⎨

⎪⎩

min(max(γincΔk , γ inc‖ŝk‖), Δmax), ρk ≥ η2,

max(γdecΔk , ‖ŝk‖), η1 ≤ ρk < η2,

min(γdecΔk , ‖ŝk‖), ρk < η1.

(8)

20: If ρk ≥ η2 or m̂k is Qk -fully linear in B(xk ,Δk), then set CHECK_MODEL=FALSE, otherwise
set CHECK_MODEL=TRUE.

21: end if
22: end if
23: end for

2. If we suspect we are close to first-order stationarity, perform one iteration of a
criticality step [29, 30] to ensure we have an accurate model and appropriately
sized trust-region radius.

3. Compute a step by solving the trust-region subproblem (5).
4. Evaluate the quality of the step and use this to determine the new iterate xk+1 and

trust-region radius Δk+1. Our updating mechanism follows [19, 67]. In particular,
we consider a very short step to be unsuccessful and invoke a safety step [65]
without evaluating f (xk + sk).

123

Scalable subspace methods for derivative-free nonlinear… 471

An important feature of RSDFO is that in some iterations, we reuse the previ-
ous subspace, Yk = Yk−1, corresponding to the flag CHECK_MODEL=TRUE. In this
case, we had an inaccurate model in iteration k − 1 and require that our new model
m̂k is accurate (Qk-fully linear). This mechanism essentially ensures that Δk is not
decreased too quickly as a result of inaccurate models, and is mostly decreased to
achieve sufficient objective reduction.

We now give our convergence and worst-case complexity analysis of Algorithm 1.
For brevity, we defer proofs based on standard model-based DFO techniques to
Appendix A.

2.2 Assumptions and preliminary results

We begin our analysis with some basic assumptions and preliminary results.

Assumption 1 (Smoothness) The objective function f : Rn → R is bounded below
by flow and continuously differentiable, and ∇ f is L∇ f -Lipschitz continuous in the
level set {x ∈ R

n : f (x) ≤ f (x0)}, for some constant L∇ f > 0.

We also need two standard assumptions for trust-region methods: uniformly
bounded above model Hessians and sufficiently accurate solutions to the trust-region
subproblem (5).

Assumption 2 (Bounded model Hessians) We assume that ‖Ĥk‖ ≤ κH for all k, for
some κH ≥ 1.

Assumption 3 (Cauchy decrease) Ourmethod for solving the trust-region subproblem
(5) gives a step ŝk satisfying the sufficient decrease condition

m̂k(0) − m̂k(ŝk) ≥ c1‖ ĝk‖min

(
Δk,

‖ ĝk‖
max(‖Ĥk‖, 1)

)
, (9)

for some c1 ∈ [1/2, 1] independent of k.
A useful consequence, needed for the analysis of our trust-region radius updating

scheme, is the following.

Lemma 1 (Lemma 3.6, [19]) Suppose Assumption 3 holds. Then

‖ŝk‖ ≥ c2 min

(
Δk,

‖ ĝk‖
max(‖Ĥk‖, 1)

)
, (10)

where c2 := 2c1/(1 + √
1 + 2c1).

Lemma 2 Suppose Assumptions 2 and 3 hold, and we run RSDFO with βF ≤ c2
(where c2 is introduced in Lemma 1). If m̂k is Qk-fully linear in B(xk,Δk) and

Δk ≤ c0‖ ĝk‖, where c0 := min

(
μ,

1

κH
,
c1(1 − η2)

2κef

)
, (11)

then the criticality and safety steps are not called, and ρk ≥ η2.

123

472 C. Cartis, L. Roberts

Proof See Appendix A.1. �
Remark 1 The requirementβF ≤ c2 in Lemma2 is not restrictive. Since have c1 ≥ 1/2
in Assumption 3, it suffices to choose βF ≤ √

2 − 1, for example.

Our key new assumption is on the quality of our subspace selection, as introduced
in [16, 17, 72]:

Definition 2 The matrix Qk is well-aligned if

‖QT
k ∇ f (xk)‖ ≥ αQ‖∇ f (xk)‖, (12)

for some αQ > 0 independent of k.

Assumption 4 (Subspace quality) Our subspace selection (determined by Qk) satisfies
the following two properties:

(a) At each iteration k of RSDFO in which CHECK_MODEL = FALSE, our subspace
selection Qk is well-aligned for some fixed αQ > 0 with probability at least 1−δS ,
for some δS ∈ (0, 1), independently of {Q0, . . . , Qk−1}.

(b) ‖Qk‖ ≤ Qmax for all k and some Qmax > 0.

Of these two properties, (a) is needed for our complexity analysis, while (b) is
only needed in order to construct Qk-fully linear models (in Sect. 3). Note that if
Assumption 4 holds then (12) and ‖Qk‖ ≤ Qmax together imply that we must have
αQ ≤ Qmax. The constructions we will consider will be based on αQ ∈ (0, 1). We
will discuss how to achieve Assumption 4 in more detail in Sect. 2.6.

Lemma 3 In all iterations k of RSDFO where the criticality step is not called, we
have ‖ ĝk‖ ≥ min(εC , μ−1Δk). If the criticality step is not called in iteration k, Qk is
well-aligned and ‖∇ f (xk)‖ ≥ ε, then

‖ ĝk‖ ≥ εg(ε) := min

(
εC ,

αQε

κegμ + 1

)
> 0. (13)

Proof See Appendix A.2. �

2.3 Counting iterations

We now provide a series of results counting the number of iterations of RSDFO of
different types, following the style of analysis from [17, 22, 72]. First we introduce
some notation to enumerate our iterations. Suppose we run RSDFO until the end of
iteration K . We then define the following subsets of {0, . . . , K }:
– C is the set of iterations in {0, . . . , K } where the criticality step is called.
– F is the set of iterations in {0, . . . , K }, where the safety step is called (i.e. ‖ŝk‖ <

βFΔk).
– VS is the set of very successful iterations in {0, . . . , K }, where ρk ≥ η2.

123

Scalable subspace methods for derivative-free nonlinear… 473

– S is the set of successful iterations in {0, . . . , K }, where ρk ≥ η1. Note that
VS ⊂ S.

– U is the set of unsuccessful iterations in {0, . . . , K }, where ρk < η1.
– A is the set of well-aligned iterations in {0, . . . , K }, where (12) holds.
– AC is the set of poorly aligned iterations in {0, . . . , K }, where (12) does not hold.
– D(Δ) is the set of iterations in {0, . . . , K } where Δk ≥ Δ for some Δ > 0.
– DC (Δ) is the set of iterations in {0, . . . , K } where Δk < Δ.
– L is the set of iterations in {0, . . . , K } where m̂k is Qk-fully linear in B(xk,Δk).
– LC is the set of iterations in {0, . . . , K } where m̂k is not Qk-fully linear in

B(xk,Δk).

In particular, we have the partitions, for any Δ > 0,

{0, . . . , K } = C ∪ F ∪ S ∪ U = A ∪ AC = D(Δ) ∪ DC (Δ) = L ∪ LC . (14)

First, we bound the number of successful iterations with large Δk using standard
arguments from trust-region methods. Throughout, we use #(·) to refer to the cardi-
nality of a set of iterations.

Lemma 4 Suppose Assumptions 1, 2 and 3 hold. If ‖∇ f (xk)‖ ≥ ε for all k =
0, . . . , K, then

#(A ∩ D(Δ) ∩ S) ≤ φ(Δ, ε) := f (x0) − flow
η1c1εg(ε)min(εg(ε)/κH ,Δ)

, (15)

for all Δ > 0.

Proof See Appendix A.3. �
Lemma 5 Suppose Assumptions 1, 2 and 3 hold, and βF ≤ c2. If ‖∇ f (xk)‖ ≥ ε for
all k = 0, . . . , K, then

#(A ∩ DC (Δ) ∩ L\VS) = 0, (16)

for all Δ > 0 satisfying

Δ ≤ Δ∗(ε) := min

(

μεg(ε),
εg(ε)

κH
,

(
κeg + 2κef

c1(1 − η2)

)−1

αQε,
αQε

κeg + μ−1

)

.

(17)

Proof See Appendix A.4. �
Lemma 6 Suppose Assumptions 1, 2 and 3 hold. Then we have

#(D(max(γC , γF , γdec)
−1Δ)\S) ≤ C1#(D(γ −1

incΔ) ∩ S) + C2, (18)

123

474 C. Cartis, L. Roberts

for all Δ ≤ Δ0, where

C1 := log(γ inc)

log(1/max(γC , γF , γdec))
and C2 := log(Δ0/Δ)

log(1/max(γC , γF , γdec))
.

(19)

Proof See Appendix A.5. �
Lemma 7 Suppose Assumptions 1, 2 and 3 hold. Then

#(DC (γ −1
inc Δ) ∩ VS) ≤ C3 · #(DC (min(γC , γF , γdec, βF)−1Δ)\VS), (20)

for all Δ ≤ min(Δ0, γ
−1
inc Δmax), where

C3 := log(1/min(γC , γF , γdec, βF))

log(γinc)
. (21)

Proof See Appendix A.6. �
Lemma 8 Suppose Assumptions 1, 2 and 3 hold. Then

#(A ∩ DC (Δ) ∩ LC\VS) ≤ #(A ∩ DC (Δ) ∩ L) + 1, (22)

for all Δ > 0.

Proof See Appendix A.7. �
We are now in a position to bound the total number of well-aligned iterations.

Lemma 9 Suppose Assumptions 1, 2 and 3 hold, and both βF ≤ c2 and γinc >

min(γC , γF , γdec, βF)−2 hold. Then if ‖∇ f (xk)‖ ≥ ε for all k = 0, . . . , K, we have

#(A) ≤ ψ(ε) + C4

1 + C4
(K + 1), (23)

where

ψ(ε) := 1

1 + C4

[
(C1 + 2)φ(Δmin(ε), ε)

+ 4φ(γ −1
inc min(γC , γF , γdec, βF)Δmin(ε), ε)

1 − 2C3
(24)

+C2 + 2

1 − 2C3
+ 1

]
, (25)

Δmin(ε) := min
(
γ −1
incΔ0,min(γC , γF , γdec)γ

−1
incΔ

∗(ε)
)

, (26)

C4 := max

(
C1,

4C3

1 − 2C3

)
> 0. (27)

123

Scalable subspace methods for derivative-free nonlinear… 475

In these expressions, the values C1 and C2 are defined in Lemma 6, C3 is defined in
Lemma 7, φ(·, ε) is defined in Lemma 4, and εg(ε) andΔ∗(ε) are defined in Lemmas 3
and 5 respectively.

Proof For ease of notation, wewill writeΔmin in place ofΔmin(ε).We begin by noting
that γinc > min(γC , γF , γdec, βF)−2 implies that C3 ∈ (0, 1/2), which we will use
later.

Next, we have

#(A ∩ D(Δmin)) = #(A ∩ D(Δmin) ∩ S) + #(A ∩ D(Δmin)\S), (28)

≤ φ(Δmin, ε) + #(A ∩ D(max(γC , γF , γdec)
−1γ incΔmin)\S)

+ #(A ∩ D(Δmin) ∩ DC (max(γC , γF , γdec)
−1γ incΔmin)\S),

(29)

≤ φ(Δmin, ε) + C1#(D(Δmin) ∩ S) + C2

+ #(A ∩ DC (max(γC , γF , γdec)
−1γ incΔmin)\S), (30)

= φ(Δmin, ε) + C1#(D(Δmin) ∩ S) + C2

+ #(A ∩ DC (max(γC , γF , γdec)
−1γ incΔmin) ∩ L\S)

+ #(A ∩ DC (max(γC , γF , γdec)
−1γ incΔmin) ∩ LC\S), (31)

≤ φ(Δmin, ε) + C1#(D(Δmin) ∩ S) + C2

+ 2#(A ∩ DC (max(γC , γF , γdec)
−1γ incΔmin) ∩ L\S)

+ #(A ∩ DC (max(γC , γF , γdec)
−1γ incΔmin) ∩ L ∩ S) + 1,

(32)

where the first inequality follows from Lemma 4, the second inequality follows from
Lemma 6 and Δmin ≤ γ −1

incΔ0, and the last line follows from Lemma 8 and VS ⊂ S.
Now we use Lemma 5 with Δmin ≤ max(γC , γF , γdec)γ

−1
incΔ

∗(ε) to get

#(A ∩ D(Δmin)) ≤ φ(Δmin, ε) + C1#(D(Δmin) ∩ S) + C2

+ #(A ∩ DC (max(γC , γF , γdec)
−1γ incΔmin) ∩ L ∩ S) + 1,

(33)

= φ(Δmin, ε) + C1#(A ∩ D(Δmin) ∩ S)

+ C1#(AC ∩ D(Δmin) ∩ S) + C2

+ #(A ∩ DC (Δmin) ∩ L ∩ S)

+ #(A ∩ D(Δmin) ∩ DC (max(γC , γF , γdec)
−1γ incΔmin)

∩ L ∩ S) + 1, (34)

≤ φ(Δmin, ε) + C1#(A ∩ D(Δmin) ∩ S)

+ C1#(AC ∩ D(Δmin) ∩ S) + C2

+ #(A ∩ DC (Δmin)) + #(A ∩ D(Δmin) ∩ S) + 1, (35)

≤ (C1 + 2)φ(Δmin, ε) + C1#(AC ∩ D(Δmin) ∩ S) + C2

123

476 C. Cartis, L. Roberts

+ #(A ∩ DC (Δmin)) + 1, (36)

where the last line follows from Lemma 4.
Separately, we use Lemma 8, and apply Lemma 5 with Δmin ≤ Δ∗(ε) to get

#(A ∩ DC (Δmin)) = #(A ∩ DC (Δmin) ∩ VS) + #(A ∩ DC (Δmin) ∩ L\VS)

+ #(A ∩ DC (Δmin) ∩ LC\VS), (37)

≤ #(A ∩ DC (Δmin) ∩ VS) + #(A ∩ DC (Δmin) ∩ L\VS)

+ #(A ∩ DC (Δmin) ∩ L) + 1, (38)

= #(A ∩ DC (Δmin) ∩ VS) + 2#(A ∩ DC (Δmin) ∩ L\VS)

+ #(A ∩ DC (Δmin) ∩ L ∩ VS) + 1, (39)

= #(A ∩ DC (Δmin) ∩ VS) + #(A ∩ DC (Δmin) ∩ L ∩ VS) + 1,
(40)

≤ 2#(A ∩ DC (Δmin) ∩ VS) + 1. (41)

We then get

#(A ∩ DC (Δmin)) ≤ 2#(A ∩ DC (γ −1
inc min(γC , γF , γdec, βF)Δmin) ∩ VS)

+ 2#(A ∩ D(γ −1
inc min(γC , γF , γdec, βF)Δmin)

∩ DC (Δmin) ∩ VS) + 1, (42)

≤ 2#(DC (γ −1
inc min(γC , γF , γdec, βF)Δmin) ∩ VS)

+ 2#(A ∩ D(γ −1
inc min(γC , γF , γdec, βF)Δmin) ∩ VS) + 1,

(43)

≤ 2C3#(DC (Δmin)\VS)

+ 2φ(γ −1
inc min(γC , γF , γdec, βF)Δmin, ε) + 1, (44)

= 2C3#(A ∩ DC (Δmin)\VS) + 2C3#(AC ∩ DC (Δmin)\VS)

+ 2φ(γ −1
inc min(γC , γF , γdec, βF)Δmin, ε) + 1, (45)

≤ 2C3#(A ∩ DC (Δmin)) + 2C3#(AC ∩ DC (Δmin)\VS)

+ 2φ(γ −1
inc min(γC , γF , γdec, βF)Δmin, ε) + 1, (46)

where the third inequality follows from Lemmas 4 and 7 with

Δmin ≤ γ −1
incΔ0 ≤ γ −1

inc Δ0 ≤ min(Δ0, γ
−1
inc Δmax)

≤ min(γC , γF , γdec, βF)−1 min(Δ0, γ
−1
inc Δmax). (47)

Since C3 ∈ (0, 1/2), we can rearrange (46) to conclude that

123

Scalable subspace methods for derivative-free nonlinear… 477

#(A ∩ DC (Δmin))

≤ 1

1 − 2C3

[
2C3#(AC ∩ DC (Δmin)\VS)

+ 2φ(γ −1
inc min(γC , γF , γdec, βF)Δmin, ε) + 1

]
. (48)

Now, we combine (36) and (48) to get

#(A) = #(A ∩ D(Δmin)) + #(A ∩ DC (Δmin)), (49)

≤ (C1 + 2)φ(Δmin, ε) + C1#(AC ∩ D(Δmin) ∩ S)

+ C2 + 2#(A ∩ DC (Δmin)) + 1, (50)

≤ (C1 + 2)φ(Δmin, ε) + 4φ(γ −1
inc min(γC , γF , γdec, βF)Δmin, ε)

1 − 2C3

+ C1#(AC ∩ D(Δmin) ∩ S)

+ C2 + 2

1 − 2C3
+ 1 + 4C3

1 − 2C3
#(AC ∩ DC (Δmin)\VS), (51)

≤ (C1 + 2)φ(Δmin, ε) + 4φ(γ −1
inc min(γC , γF , γdec, βF)Δmin, ε)

1 − 2C3

+ C2 + 2

1 − 2C3
+ 1

+ max

(
C1,

4C3

1 − 2C3

)[
#(AC ∩ D(Δmin) ∩ S)+#(AC ∩ DC (Δmin)\VS)

]
.

(52)

Since AC ∩ D(Δmin) ∩ S and AC ∩ DC (Δmin)\VS are disjoint subsets of AC , we
have

#(AC ∩ D(Δmin) ∩ S) + #(AC ∩ DC (Δmin)\VS) ≤ #(AC)

= (K + 1) − #(A). (53)

Substituting this into (52) and rearranging, we get the desired result. That C4 > 0
follows from C1 > 0 and C3 ∈ (0, 1/2). �

2.4 Overall complexity bound

The key remaining step is to compare #(A) with K . Since each event “Qk is well
aligned” is effectively an independent Bernoulli trial with success probability at least
1− δS , we derive the below result based on a concentration bound for Bernoulli trials
[25, Lemma 2.1].

Lemma 10 Suppose Assumptions 1, 2, 3 and 4 hold. Then we have

P [#(A) + 1 ≤ (1 − δS)(1 − δ)(K + 1)] ≤ e−δ2(1−δS)K/4, (54)

123

478 C. Cartis, L. Roberts

for all δ ∈ (0, 1).

Proof The CHECK_MODEL=FALSE case of this proof has a general framework based
on [46, Lemma 4.5]—also followed in [17, 72]—with a probabilistic argument from
[25, Lemma 2.1].

First, we consider only the subsequence of iterations K1 := {k0, . . . , kJ } ⊂
{0, . . . , K } when Qk is resampled (i.e. where CHECK_MODEL=FALSE, so Qk �=
Qk−1). For convenience, we define A1 := A ∩ K1 and AC

1 := AC ∩ K1.
Let Tk j be the indicator function for the event “Qk j iswell-aligned”, and so #(A1) =

∑J
j=0 Tk j . Since Tk j ∈ {0, 1}, and denoting pk j := P

[
Tk j = 1| xk j

]
, for any t > 0

we have

E

[
e−t(Tk j −pk j)| xk j

]
= pk j e

−t(1−pk j) + (1 − pk j)e
tpk j

= etpk j +log(1−pk j +pk j e
−t) ≤ et

2 pk j /2, (55)

where the inequality from the identity px + log(1 − p + pe−x) ≤ px2/2, for all
p ∈ [0, 1] and x ≥ 0, shown in [25, Lemma 2.1].

Using the tower property of conditional expectations and the fact that, since k j ∈
K1, Tk j only depends on xk j and not any previous iteration, we then get

E

[
e−t(#(A1)−∑J

j=0 pk j)
]

= E

[
e−t

∑J
j=0(Tk j −pk j)

]
, (56)

= E

[
E

[
e−t

∑J
j=0(Tk j −pk j)| Q0, . . . , QkJ−1, x0, . . . , xkJ

]]
, (57)

= E

[
e−t

∑J−1
j=0 (Tk j −pk j)E

[
e−t(TkJ −pkJ)| Q0, . . . , QkJ−1, x0, . . . , xkJ

]]
, (58)

= E

[
e−t

∑J−1
j=0 (Tk j −pk j)E

[
e−t(TkJ −pkJ)| xkJ

]]
, (59)

≤ et
2 pkJ /2

E

[
e−t

∑J−1
j=0 (Tk j −pk j)

]
, (60)

≤ et
2(
∑J

j=0 pk j)/2, (61)

where the second-last line follows from (55) and the last line follows by induction.
This means that

P

⎡

⎣#(A1) ≤
J∑

j=0

pk j − λ

⎤

⎦ = P

[
e
−t

(
#(A1)−∑J

j=0 pk j

)

> etλ
]

, (62)

≤ e−tλ
E

[
e
−t

(
#(A1)−∑J

j=0 pk j

)]
, (63)

123

Scalable subspace methods for derivative-free nonlinear… 479

≤ e
t2
(∑J

j=0 pk j

)
/2−tλ

, (64)

where the inequalities follow from Markov’s inequality and (61) respectively. Taking
t = λ/

∑J
j=0 pk j , we get

P

⎡

⎣#(A1) ≤
J∑

j=0

pk j − λ

⎤

⎦ ≤ e
−λ2/

(
2
∑J

j=0 pk j

)

. (65)

Finally, we take λ = δ
∑J

j=0 pk j for some δ ∈ (0, 1) and note that pk j ≥ (1 − δS)

(from Assumption 4), to conclude

P [#(A1) ≤ (1 − δ)(1 − δS)(J + 1)] ≤ P

⎡

⎣#(A1) ≤ (1 − δ)

J∑

j=0

pk j

⎤

⎦

≤ e
−δ2

(∑J
j=0 pk j

)
/2

, (66)

or equivalently, using the partition K1 = A1 ∪ AC
1 ,

P

[
#(A1) ≤ (1 − δ)(1 − δS)[#(A1) + #(AC

1)]
]

≤ e−δ2(1−δS)[#(A1)+#(AC
1)]/2.

(67)

Now we must consider the iterations for which CHECK_MODEL=TRUE (so Qk =
Qk−1), which we denote KC

1 . The algorithm ensures that if k ∈ KC
1 , then k + 1 ∈

K1 (unless we are in the last iteration we consider, k = K). Futher, the algorithm
guarantees that if k ∈ KC

1 , then k > 0 and k ∈ A if and only if k − 1 ∈ A. These are
the key implications of RSDFO that we will now use.

Firstly, we have #(KC
1) ≤ #(K1) + 1, and so

K + 1 = #(K1) + #(KC
1) ≤ 2[#(A1) + #(AC

1)] + 1, (68)

which means (67) becomes

P

[
#(A1) ≤ (1 − δ)(1 − δS)[#(A1) + #(AC

1)]
]

≤ e−δ2(1−δS)K/4. (69)

Setting α := δ + δS + δδS , we have (1 − δ)(1 − δS) = 1 − α, and so

P

[
#(A1) ≤ 1 − α

α
#(AC

1)

]
= P

[
#(A1) ≤ (1 − α)[#(A1) + #(AC

1)]
]

≤ e−δ2(1−δS)K/4. (70)

123

480 C. Cartis, L. Roberts

Secondly, we have #(KC
1 ∩ AC) ≤ #(AC

1) + 1, and so #(AC) ≤ 2#(AC
1) + 1. This

and A1 ⊂ A give

P

[
#(A) ≤ 1 − α

2α
[#(AC) − 1]

]
≤ e−δ2(1−δS)K/4. (71)

We then note that K + 1 = #(A) + #(AC), and so

P

[
#(A) ≤ 1 − α

2α
[K + 1 − #(A) − 1]

]
≤ e−δ2(1−δS)K/4, (72)

P

[
#(A) + 1 − α

1 + α
≤ 1 − α

1 + α
(K + 1)

]
≤ e−δ2(1−δS)K/4, (73)

P [#(A) + 1 ≤ (1 − α)(K + 1)] ≤ e−δ2(1−δS)K/4, (74)

since α > 0. �
Theorem 1 Suppose Assumptions 1, 2, 3 and 4 hold, and we have βF ≤ c2, δS <

1/(1+C4) for C4 defined in Lemma 9, and γinc > min(γC , γF , γdec, βF)−2. Then for
any ε > 0 and

k ≥ 2(ψ(ε) + 1)

1 − δS − C4/(1 + C4)
, (75)

we have

P

[
min
j≤k

‖∇ f (x j)‖ ≤ ε

]
≥ 1 − exp

(
−k

(1 − δS − C4/(1 + C4))
2

16(1 − δS)

)
. (76)

Alternatively, if Kε := min{k : ‖∇ f (xk)‖ ≤ ε} for any ε > 0, then

P

[
Kε ≤

⌈
2(ψ(ε) + 1)

1 − δS − C4/(1 + C4)

⌉]

≥ 1 − exp

(
− (ψ(ε) + 1)[1 − δS − C4/(1 + C4)]

8(1 − δS)

)
, (77)

where ψ(ε) is defined in Lemma 9.

Proof First, fix some arbitrary k ≥ 0. Let εk := min j≤k ‖∇ f (x j)‖ and Ak be the
number of well-aligned iterations in {0, . . . , k}. If εk > 0, from Lemma 9, we have

Ak ≤ ψ(εk) + C4

1 + C4
(k + 1). (78)

For any δ > 0 such that

δ < 1 − C4

(1 + C4)(1 − δS)
, (79)

123

Scalable subspace methods for derivative-free nonlinear… 481

we have (1 − δS)(1 − δ) > C4/(1 + C4), and so we can compute

P

[
ψ(εk) ≤

[
(1 − δS)(1 − δ) − C4

1 + C4

]
(k + 1) − 1

]

≤ P [Ak ≤ (1 − δS)(1 − δ)(k + 1)] , (80)

≤ e−δ2(1−δS)k/4, (81)

using Lemma 10. Defining

δ := 1

2

[
1 − C4

(1 + C4)(1 − δS)

]
, (82)

we have

(1 − δS)(1 − δ) = 1

2

[
1 − δS + C4

1 + C4

]
>

C4

1 + C4
, (83)

since 1 − δS > C4/(1 + C4) from our assumption on δS . Hence we get

P

[
ψ(εk) ≤ 1

2

(
1 − δS − C4

1 + C4

)
(k + 1) − 1

]
≤ e−k[1−δS−C4/(1+C4)]2/[16(1−δS)],

(84)

and we note that this result is still holds if εk = 0, as limε→0 ψ(ε) = ∞.
Now we fix ε > 0 and choose k satisfying (75). We use the fact that ψ(·) is

non-increasing to get

P [εk ≥ ε] ≤ P [ψ(εk) ≤ ψ(ε)] , (85)

≤ P

[
ψ(εk) ≤ 1

2
(1 − δS − C4/(1 + C4))k − 1

]
, (86)

≤ P

[
ψ(εk) ≤ 1

2
(1 − δS − C4/(1 + C4))(k + 1) − 1

]
, (87)

and (76) follows. Lastly, we fix

k =
⌈

2(ψ(ε) + 1)

1 − δS − C4/(1 + C4)

⌉
, (88)

and we use (76) and the definition of Kε to get

P [Kε ≥ k] = P [εk ≥ ε] , (89)

≤ e−k[1−δS−C4/(1+C4)]2/[16(1−δS)], (90)

≤ exp

(
− (ψ(ε) + 1)[1 − δS − C4/(1 + C4)]

8(1 − δS)

)
, (91)

123

482 C. Cartis, L. Roberts

and we get (77). �
Corollary 1 Suppose the assumptions of Theorem 1 hold. Then for k ≥ k0 for some
k0, we have

P

[

min
j≤k

‖∇ f (x j)‖ ≤ Cκ
1/2
H κd

αQ
√
k

]

≥ 1 − e−ck, (92)

for some constants c,C > 0, and where κd := max(κef , κeg). Alternatively, for
ε ∈ (0, ε0) for some ε0, we have

P

[
Kε ≤ C̃κHκ2

dα−2
Q ε−2

]
≥ 1 − e−c̃κH κ2dα−2

Q ε−2
, (93)

for constants c̃, C̃ > 0.

Proof For ε sufficiently small, εg(ε) andΔmin(ε) are equal to amultiple ofαQε/κd and
αQε/(κHκd) respectively, and so ψ(ε) = α1κHκ2

dα−2
Q ε−2 + α2 = Θ(κHκ2

dα−2
Q ε−2),

for some constants α1, α2 > 0.
Therefore for k sufficiently large, the choice

ε =
√

2α1κHκ2
dα−2

Q

(1 − δS − C4/(1 + C4))k − 2 − 2α2
= Θ(κ

1/2
H κdα

−1
Q k−1/2), (94)

is sufficiently small that ψ(ε) = α1κHκ2
dα−2

Q ε−2 + α2, and gives (75) with equality.
The first result then follows from (76).

The second result follows immediately from ψ(ε) = Θ(κHκ2
dα−2

Q ε−2) and (77).
�

Remark 2 All the above analysis holds with minimal modifications if we replace the
trust-region mechanisms in RSDFO with more standard trust-region updating mech-
anisms. This includes, for example, having no safety step (i.e. βF = 0), and replacing
(8) with

xk+1 =
{
xk + sk, ρk ≥ η,

xk, ρk < η,
and Δk+1 =

{
min(γincΔk,Δmax), ρk ≥ η,

γdecΔk, ρk < η,

(95)

for some η ∈ (0, 1). The corresponding requirement on the trust-region updating
parameters to prove a version of Theorem 1 is simply γinc > γ −2

dec (provided we also
set γC = γdec).

2.5 Remarks on complexity bound

Our final complexity bounds for RSDFO inCorollary 1 are comparable to probabilistic
direct search [46, Corollary 4.9]. They also match—in their dependencies on ε, κH

123

Scalable subspace methods for derivative-free nonlinear… 483

and κd—the standard bounds for (full space) model-based DFO methods for general
objective [37, 76] and nonlinear least-squares [21] problems.

Following [46], we may also derive complexity bounds on the expected first-order
optimality measure (ofO(k−1/2)) and the expected worst-case complexity (ofO(ε−2)

iterations) for RSDFO.

Theorem 2 Suppose the assumptions of Theorem 1 hold. Then for k ≥ k0, the iterates
of RSDFO satisfy

E

[
min
j≤k

‖∇ f (x j)‖
]

≤ Cκ
1/2
H κdα

−1
Q k−1/2 + ‖∇ f (x0)‖e−ck, (96)

for c,C > 0 and κd from (92), and for ε ∈ (0, ε0) we have

E [Kε] ≤ C̃1κHκ2
dα−2

Q ε−2 + 1

c̃1
, (97)

for constants c̃1, C̃1 > 0. Here, k0 and ε0 are the same as in Corollary 1.

Proof First, for k ≥ k0 define the random variable Hk as

Hk :=
{
Cκ

1/2
H κdα

−1
Q k−1/2, if min j≤k ‖∇ f (x j)‖ ≤ Cκ

1/2
H κdα

−1
Q k−1/2,

‖∇ f (x0)‖ otherwise.
(98)

Then since min j≤k ‖∇ f (x j)‖ ≤ Hk , we get

E

[
min
j≤k

‖∇ f (x j)‖
]

≤ E [Hk]

≤ Cκ
1/2
H κdα

−1
Q k−1/2

+‖∇ f (x0)‖ P

[
min
j≤k

‖∇ f (x j)‖ > Cκ
1/2
H κdα

−1
Q k−1/2

]
,

(99)

and we get the first result by applying Corollary 1.
Next, if ε ∈ (0, ε0) then

k ≥ k0(ε) := 2(ψ(ε) + 1)

1 − δS − C4/(1 + C4)
= Θ(κHκ2

dα−2
Q ε−2), (100)

and so from Theorem 1 we have

P [Kε ≤ k] = P

[
min
j≤k

‖∇ f (x j)‖ ≤ ε

]
≥ 1 − e−c̃1k, (101)

123

484 C. Cartis, L. Roberts

where c̃1 := (1 − δS − C4/(1 + C4))
2/[16(1 − δS)]. We use the identity E [X] =∫∞

0 P [X > t] dt for non-negative random variables X (e.g. [73, eqn. (1.9)]) to get

E [Kε] ≤ k0(ε) +
∫ ∞

k0(ε)
P [Kε > t] dt ≤ k0(ε)

+
∞∑

k=k0(ε)

e−c̃1k = k0(ε) + e−c̃1k0(ε)

1 − e−c̃1
, (102)

where C̃1 comes from k0(ε) = Θ(κHκ2
dα−2

Q ε−2), which concludes our proof. �
Furthermore, we also get almost-sure convergence of lim inf type, similar to [29,

Theorem 5.8] or [30, Theorem 10.12] in the deterministic case.

Theorem 3 Suppose the assumptions of Theorem 1 hold. Then the iterates of RSDFO
satisfy infk≥0 ‖∇ f (xk)‖ = 0 almost surely.

Proof From Theorem 1, for any ε > 0 we have

lim
k→∞P

[
min
j≤k

‖∇ f (x j)‖ > ε

]
= 0. (103)

However, P
[
infk≥0 ‖∇ f (xk)‖ > ε

] ≤ P
[
min j≤k ‖∇ f (x j)‖ > ε

]
for all k, and so

P

[
inf
k≥0

‖∇ f (xk)‖ > ε

]
= 0. (104)

The result follows from the union bound applied to any sequence ε → 0, e.g. εk =
k−1. �

In particular, if ‖∇ f (xk)‖ > 0 for all k, then Theorem 3 implies lim infk→∞
|∇ f (xk)‖ = 0 almost surely.

2.6 Selecting a subspace dimension

We now specify how to generate our subspaces Qk to be probabilistically well-aligned
and uniformly bounded (Assumption 4). These requirements are quite weak, and so
there are several possible approaches for constructing Qk . Of course the simplest case
is to use no embedding, taking Qk = In×n , which gives us p = n and Qmax = 1
in Assumption 4, however our overall complexity can be reduced with alternative
approaches.

One approach to achieve this is by using Johnson-Lindenstrauss transforms (JLTs)
[80]. The application of these techniques to random subspace optimization algorithms
follows [16, 17, 72].

123

Scalable subspace methods for derivative-free nonlinear… 485

Definition 3 A random matrix S ∈ R
p×n is an (β, δ)-JLT if, for any point v ∈ R

n , we
have

P

[
(1 − β)‖v‖2 ≤ ‖Sv‖2 ≤ (1 + β)‖v‖2

]
≥ 1 − δ. (105)

There have been many different approaches for constructing (β, δ)-JLT matrices
proposed. Two common examples are:

– If S is a random Gaussian matrix with independent entries Si, j ∼ N (0, 1/p)
and p = Ω(β−2| log δ|), then S is an (β, δ)-JLT (see [13, Theorem 2.13], for
example).

– We say that S is an s-hashing matrix if it has exactly s nonzero entries per column
(indices sampled independently), which take values ±1/

√
s selected indepen-

dently with probability 1/2. If S is an s-hashing matrix with s = Θ(β−1| log δ|)
and p = Ω(β−2| log δ|), then S is an (β, δ)-JLT [52].

By taking v = ∇ f (xk) in iteration k, and noting (1− β)2 ≤ 1− β for all β ∈ (0, 1),
we have that Assumption 4(a) holds if we take Qk = ST , where S is any (1−αQ, δS)-
JLT. That is, Assumption 4(a) is satisfied using either of the constructions above and
p = Ω((1 − αQ)−2| log δS|). We note that we need αQ < 1 to use this construction.

Alternatively, following [54], we may take Qk = √
n/p Z :,1:p, where Z :,1:p com-

prises the first p columns of Z ∈ R
n×n sampled from the Haar distribution (i.e. a

uniform distribution over n×n orthogonal matrices). In this construction, the columns
of Qk are orthogonal. From [54, Lemma 1], we have that Qk satisfies Assumption 4(a)
for any p and αQ with failure probability

δS = Iα2
Q p/n(p/2, (n − p)/2), (106)

where Iq(α, β) is the regularized incomplete beta function. Although this does not
give us a simple criterion for choosing p in terms of αQ and δS , [54, Figure 1] gives
numerical evidence that p can be chosen independently of n.7 We note that [77]
considered a similar construction based on the Grassmann manifold.

Value of Qmax If S is chosen to be Gaussian, then [6, Corollary 3.11] gives the
upper bound Qmax = O(

√
n/p) with high probability. Following a union bound

argument, by generating Gaussian S and rejecting those with large norm, we can
achieve Assumption 4 for this construction while maintaining p = O(1). If S is a
hashing matrix, then we have ‖Qk‖ ≤ ‖Qk‖F = √

n, and so Qmax = √
n suffices

to achieve Assumption 4. Lastly, if Qk is a subsampled Haar matrix, we simply get
Qmax = √

n/p.
Thus, we have presented three different random ensembles from which Qk may

be generated, each allowing us to use subspace dimension p = O(1), but requiring
Qmax = O(

√
n). We note that the RSDFO framework and complexity analysis allow

for different ensembles and/or bounds on p or Qmax, including any with improved
dependencies on n, if possible.

7 For example, with αQ = √
0.8 ≈ 0.89 and δS = 0.2, we may choose subspace dimension p = 40 for

all ambient dimensions n ≤ 108.

123

486 C. Cartis, L. Roberts

Remark 3 We conclude this section by noting that our analysis raises the question
of whether scaling Q by a (small) constant factor would improve the performance
and complexity of the algorithm (by decreasing both αQ and Qmax). This, and more
broadly how to optimally design an embedding, is a diffcult and important question
that we dedicate to future work.

2.7 Complexity for general linear interpolation

In the case of linear interpolation models for a general objective problem (for
which RSDFO may be applied), reasoning similar to Lemma 11 and using the stan-
dard fully linear error bounds from [28] or [30, Theorems 2.11, 2.12, 3.14] gives
κef , κeg = O(Q2

max pΛ). Since we may take κH = 1 for linear models and noting that
these methods still require at most p + 1 evaluations per iteration, this yields a high
probability complexity of O(Q4

max p
2ε−2) iterations or O(Q4

max p
3ε−2) evaluations.

This means that RSDFO with a full-space model (i.e. p = n and Qk = I) requires
O(n2ε−2) iterations andO(n3ε−2) evaluations. However, with careful subspace gen-
eration using the methods in Sect. 2.6, with p = O(1) and Qmax = O(

√
n), we

again getO(n2ε−2) iterations but a strict improvement to onlyO(n2ε−2) evaluations.
Our linear algebra cost also reduces from O(n3) to O(n) flops per iteration, with a
corresponding reduction in the overall linear algebra cost over the whole algorithm
from O(n5ε−2) to O(n3ε−2) flops. A detailed summary of the linear algebra cost of
RSDFO is given for the nonlinear least-squares case in Sect. 3.3; similar results apply
here.

Instead of linear models, we may instead use (possibly underdetermined) quadratic
interpolation to construct fully linear models. Details of these procedures may be
found in [28, 30].

3 Random subspace nonlinear least-squares method

We now describe how RSDFO (Algorithm 1) can be specialized to the unconstrained
nonlinear least-squares problem

min
x∈Rn

f (x) := 1

2
‖r(x)‖2 = 1

2

m∑

i=1

ri (x)2, (107)

where r : Rn → R
m is given by r(x) := [r1(x), . . . , rm(x)]T . We assume that r

is differentiable, but that access to the Jacobian J : Rn → R
m×n is not possible. In

addition, we typically assume thatm ≥ n (regression), but everything here also applies
to the case m < n (inverse problems). We now introduce the algorithm RSDFO-GN
(Random Subspace DFO with Gauss–Newton), which is a random subspace version
of a model-based DFO variant of the Gauss–Newton method [19].

Following the construction from [19], we assume that we have selected the p-
dimensional search space Yk defined by Qk ∈ R

n×p (as in RSDFO above). Then, we
suppose that we have evaluated r at p+1 points Yk := {xk, y1, . . . , yp} ⊂ Yk (which

123

Scalable subspace methods for derivative-free nonlinear… 487

typically are all close to xk and not recycled from previous iterations). Since yt ∈ Yk

for each t = 1, . . . , p, from (3) we have yt = xk + Qk ŝt for some ŝt ∈ R
p.

Given this interpolation set, we first wish to construct a local subspace linear model
for r:

r(xk + Qk ŝ) ≈ m̂k(ŝ) = r(xk) + Ĵk ŝ. (108)

To do this, we choose the approximate subspace Jacobian Ĵk ∈ R
m×p by requiring

that m̂k interpolate r at our interpolation points Yk . That is, we impose

m̂k(ŝt) = r(yt), ∀t = 1, . . . , p, (109)

which yields the p × p linear system (with m right-hand sides)

Ŵk Ĵ
T
k :=

⎡

⎢
⎣

ŝT1
...

ŝTp

⎤

⎥
⎦ Ĵ Tk =

⎡

⎢
⎣

(r(y1) − r(xk))T

...

(r(yp) − r(xk))T

⎤

⎥
⎦ . (110)

Our linear subspace model m̂k (108) naturally yields a local subspace quadratic model
for f , as in the classical Gauss–Newton method, namely (c.f. (4)),

f (xk + Qk ŝ) ≈ m̂k(ŝ) := 1

2
‖m̂k(ŝ)‖2 = f (xk) + ĝTk ŝ + 1

2
ŝT Ĥk ŝ, (111)

where ĝk := Ĵ Tk r(xk) and Ĥk := Ĵ Tk Ĵk .

3.1 ConstructingQk-fully linear models

We now describe how we can achieve Qk-fully linear models of the form (111) in
RSDFO-GN.

As in [19], wewill need to define the Lagrange polynomials andΛ-poisedness of an
interpolation set. Given our interpolation set Yk lies inside Yk , we consider the (low-
dimensional) Lagrange polynomials associated with Yk . These are the linear functions
�̂0, . . . , �̂p : Rp → R, defined by the interpolation conditions

�̂t (ŝt ′) = δt,t ′ , ∀t, t ′ = 0, . . . , p, (112)

with the convention ŝ0 = 0 corresponding to the interpolation point xk . The Lagrange
polynomials exist and are unique whenever Ŵk (110) is invertible, which we typically
ensure through judicious updating of Yk at each iteration.

Definition 4 For any Λ > 0, the set Yk is Λ-poised in the p-dimensional ball
B(xk,Δk) ∩ Yk if

max
t=0,...,p

max
‖ŝ‖≤Δk

|�̂t (ŝ)| ≤ Λ. (113)

123

488 C. Cartis, L. Roberts

Note that since �̂0(0) = 1, for the set Yk to be Λ-poised we require Λ ≥ 1.
In general, a larger Λ indicates that Yk has “worse” geometry, which leads to a less
accurate approximation for f . This notion ofΛ-poisedness (in a subspace) is sufficient
to construct Qk-fully linear models (111) for f .

Lemma 11 Suppose Assumption 4(b) holds, J (x) is Lipschitz continuous, and r and
J are uniformly bounded above in ∪k≥0B(xk,Δmax). If Yk ⊂ B(xk,Δk)∩Yk and Yk
is Λ-poised in B(xk,Δk) ∩ Yk , then m̂k (111) is a Qk-fully linear model for f , with
κef , κeg = O(Q4

max p
2Λ2).

Proof Consider the low-dimensional functions r̂ : R
p → R

m and f̂ : R
p → R

given by r̂k(ŝ) := r(xk + Qk ŝ) and f̂ (ŝ) := 1
2‖r̂(ŝ)‖2 respectively. We note that

r̂ is continuously differentiable with Jacobian Ĵ (ŝ) = J (xk + Qk ŝ)Qk . Then since
‖Qk‖ ≤ Qmax from Assumption 4(b), it is straightforward to show that both r̂ and Ĵ
are uniformly bounded above and Ĵ is Lipschitz continuous (with a Lipschitz constant
Q2

max times larger than for J (x)).
We can then consider m̂k (108) and m̂k (111) to be interpolation models for r̂)

and f̂ in the low-dimensional ball B(0,Δk) ⊂ R
p. From [19, Lemma 3.3], we

conclude that m̂k is a fully linear model for f̂ with constants κef , κeg = O(p2Λ2).
The Qk-fully linear property follows immediately from this, noting that ∇ f̂k(ŝ) =
QT

k ∇ f (xk + Qk ŝ). The dependency on Qmax follows as κef , κeg = O(L2
Ĵ
), where

L Ĵ is the Lipschitz constant of Ĵ [19, Lemma 3.2]. �
Given this result, the procedures in [28] or [30, Chapter 6] allow us to check

and/or guarantee the Λ-poisedness of an interpolation set, and we have met all the
requirements needed to fully specify RSDFO-GN.

Lastly, we note that underdetermined linear interpolation, where (110) is under-
determined and solved in a minimal norm sense, has been recently shown to yield a
property similar to Qk-full linearity [51, Theorem 3.6].

Complete RSDFO-GN algorithm A complete statement of RSDFO-GN is given in
Algorithm 2. This exactly follows RSDFO (Algorithm 1), but where we ask that the
interpolation set satisfies the conditions: Yk ⊂ B(xk,Δk) ∩ Yk and Yk is Λ-poised in
B(xk,Δk) ∩ Yk . From Lemma 11, this is sufficient to guarantee Qk-full linearity of
m̂k .

3.2 Complexity analysis for RSDFO-GN

We are now in a position to specialize our complexity analysis for RSDFO to RSDFO-
GN. For this, we need to impose a smoothness assumption on r .

Assumption 5 The level set L := {x ∈ R
n : f (x) ≤ f (x0)} is bounded, r is

continuously differentiable, and the Jacobian J is Lipschitz continuous on L.
This smoothness requirement allows us to immediately apply the complexity anal-

ysis for RSDFO, yielding the following result.

123

Scalable subspace methods for derivative-free nonlinear… 489

Algorithm 2 RSDFO-GN (Random Subspace Derivative-Free Optimization with
Gauss–Newton) for solving (107).
Input: Starting point x0 ∈ R

n , initial trust region radius Δ0 > 0, and subspace dimension p ∈ {1, . . . , n}.

Parameters: maximum trust-region radius Δmax ≥ Δ0, trust-region radius scalings 0 < γdec < 1 <

γinc ≤ γ inc, criticality constants εC , μ > 0 and trust-region scaling 0 < γC < 1, safety step threshold
βF > 0 and trust-region scaling 0 < γF < 1, acceptance thresholds 0 < η1 ≤ η2 < 1, and poisedness
constant Λ > 1.

1: Set flag CHECK_MODEL=FALSE.
2: for k = 0, 1, 2, . . . do
3: if CHECK_MODEL=TRUE then
4: Set Qk = Qk−1.
5: Construct an interpolation set Yk ⊂ B(xk , Δk) ∩Yk which is Yk is Λ-poised in B(xk , Δk) ∩Yk .
6: Build the reduced model m̂k : Rp → R (111) by solving (110).
7: else
8: Define a subspace by randomly sampling Qk ∈ R

n×p .
9: Construct a reduced model m̂k : Rp → R (111) by solving (110), where the interpolation points

Yk ⊂ Yk need not be contained in B(xk , Δk) or be Λ-poised in B(xk , Δk) ∩ Yk .
10: end if
11: Follow lines 10 to 22 of RSDFO (Algorithm 1), but replace every instance of checking Qk -full

linearity of m̂k in B(xk ,Δk)with checking thatYk ⊂ B(xk ,Δk)∩Yk andYk isΛ-poised in B(xk , Δk)∩
Yk .

12: end for

Corollary 2 Suppose Assumptions 5, 2, 3 and 4 hold, and we have βF ≤ c2, δS <

1/(1+C4) for C4 defined in Lemma 9, and γinc > min(γC , γF , γdec, βF)−2. Then for
the iterates generated by RSDFO-GN and k sufficiently large,

P

[

min
j≤k

‖∇ f (x j)‖ ≤ Cκ
1/2
H Q4

max p
2

√
k

]

≥ 1 − e−ck, (114)

for some constants c,C > 0. Alternatively, for ε ∈ (0, ε0) for some ε0, we have

P

[
Kε ≤ C̃κH Q8

max p
4ε−2

]
≥ 1 − e−c̃κH Q8

max p
4ε−2

, (115)

for constants c̃, C̃ > 0.

Proof Assumption 5 implies that both r and J are uniformly bounded above on L,
which is sufficient for Lemma 11 to hold. Hence, whenever we check/ensure that Yk ⊂
B(xk,Δk) ∩Yk and Yk is Λ-poised in B(xk,Δk) ∩Yk we are checking/guaranteeing
that m̂k is Qk-fully linear in B(xk,Δk). In addition, from [19, Lemma 3.2] and taking
flow = 0, we have that Assumption 1 is satisfied. Therefore the result follows directly
from Corollary 1 and κd = O(Q4

max p
2) from Lemma 11. �

We also note that it is reasonable to assume κH = O(κd) [19, Lemma 3.3], and so
the overall iteration complexity of RSDFO-GN is O(Q12

max p
6ε−2) with high proba-

bility. Furthermore, each iteration of RSDFO or RSDFO-GN requires at most p + 1
objective evaluations (p to form the model m̂k , regardless of whether we need Qk-full

123

490 C. Cartis, L. Roberts

linearity or not, and one for xk + sk). Hence the evaluation complexity of RSDFO-GN
is O(Q12

max p
7ε−2) with high probability.

If we use a full-space model (so p = n and Qk = I), then with Qmax = 1 we
get a high probability complexity of O(n6ε−2) iterations and O(n7ε−2) evaluations.
However, if we apply one of the subspace generation techniques from Sect. 2.6, with
p = O(1) and Qmax = O(

√
n), then we get the same complexity of O(n6ε−2) iter-

ations, but an improved evaluation complexity of O(n6ε−2). Thus RSDFO-GN with
careful subspace generation can give a strict improvement in the evaluation complexity
compared to standard full-space methods.

In the next section we show that RSDFO-GN also improves on full-space methods
in the linear algebra cost at each iteration, reducing from O(mn2 + n3) flops per
iteration to O(m + n) flops per iteration. Hence in the standard least-squares setting
where m ≥ n, the linear algebra cost of achieving a ε first-order optimality reduces
from O(mn8ε−2) to O(mn6ε−2) flops.

3.3 Linear algebra cost of RSDFO-GN

In RSDFO-GN, the interpolation linear system (110) is solved in two steps, namely:
factorize the interpolation matrix Ŵk , then back-solve for each right-hand side. Thus,
the cost of the linear algebra is:

1. Model construction costsO(p3) to compute the factorization of Ŵk , andO(mp2)
for the back-substitution solves with m right-hand sides; and

2. Lagrange polynomial construction costs O(p3) in total, due to one backsolve for
each of the p + 1 polynomials (using the pre-existing factorization of Ŵk).

By updating the factorization or Ŵ−1
k directly (e.g. via the Sherman-Morrison for-

mula), we can replace the O(p3) factorization cost with a O(p2) updating cost (c.f.
[66]). However, the dominant O(mp2) model construction cost remains, and in prac-
tice we have observed that the factorization needs to be recomputed from scratch to
avoid the accumulation of rounding errors. We also have a cost, typically ofO(np) or
O(np2) to construct Qk using our randomized procedures from Sect. 2.6, and O(np)
from projecting the computed step ŝk to the full space. Hence in our case where
p = O(1), the linear algebra cost per iteration is O(m + n).

In the case of a full-space method where p = n such as in [19], these costs becomes
O(n3) for the factorization (or O(n2) if Sherman-Morrison is used) plus O(mn2)
for the back-solves. When n grows large, this linear algebra cost rapidly dominates
the total runtime of these algorithms and limits the efficiency of full-space methods.
This issue is discussed in more detail, with numerical results, in [69, Chapter 7.2].
This per-iteration cost is substantially higher than RSDFO-GN with random subspace
generation.

In light of this discussion, we now turn our attention to building an implementation
of RSDFO-GN that has both strong performance (in terms of objective evaluations)
and low linear algebra cost.

123

Scalable subspace methods for derivative-free nonlinear… 491

4 DFBGN: an efficient implementation of RSDFO-GN

An important tenet of DFO is that objective evaluations are often expensive, and so
algorithms should be efficient in reusing information, hence limiting the total objective
evaluations required to achieve a given decrease. However because we require our
model to sit within our active space Yk , we do not have a natural process by which to
reuse evaluations between iterations, when the space changes.We dedicate this section
to outlining an implementation of RSDFO-GN, which we call DFBGN (Derivative-
Free Block Gauss–Newton). DFBGN is designed to be efficient in its objective queries
while still only building low-dimensional models, and hence is also efficient in terms
of linear algebra. Specifically, we design DFBGN to achieve two aims:

– Low computational cost we want our implementation to have a per-iteration linear
algebra cost which is linear in the ambient dimension;

– Efficient use of objective evaluations our implementation should follow the prin-
ciples of other DFO methods and make progress with few objective evaluations.
In particular, we hope that, when run with ‘full-space models’ (i.e. p = n), our
implementation should have (close to) state-of-the-art performance.

We will assess the second point in Sect. 5 by comparison with DFO-LS [15] an
open-source model-based DFO Gauss–Newton solver which explores the full space
(i.e. p = n).

Remark 4 As discussed in [15], DFO-LS has a mechanism to build a model with fewer
than n + 1 interpolation points. However, in that context we modify the model so that
it varies over the whole space Rn , which enables the interpolation set to grow to the
usual n + 1 points and yield a full-dimensional model. There, the goal is to make
progress with very few evaluations, but here our goal is scalability, so we keep our
model low-dimensional throughout and instead change the subspace at each iteration.

4.1 Efficiency of DFBGN versus RSDFO-GN

To motivate the utility of DFBGN, we begin by showing a comparison of DFBGN
against a direct implementation of RSDFO-GN. We implement RSDFO-GN by con-
structing Qk-fully linear interpolation models at each iteration by setting ŝt in (110)
to be the t-th coordinate vector inRp, and generate Qk using the different approaches
described in Sect. 2.6. To ensure consistency between the two algorithms, we use iden-
tical trust-region management procedures, algorithm parameters and starting points
for our comparison.

We test DFBGN and RSDFO-GN on several CUTEst problems [42] with dimen-
sion n ≈ 100, drawn from the (CR) collection described in Sect. 5.1, with subspace
dimensions p ∈ {n/10, n/4, n/2, n}. For brevity, we show results for arwhdne and
p = n/2, but the results are similar for all problems and values of p.8 All solvers
were run for a maximum of 10(n + 1) evaluations or until Δk ≤ 10−8, and because

8 We tested (CR) collection problems arglale, argtrig, arwhdne, broydn3d, chandheq, freurone,
integreq, and vardimne.

123

492 C. Cartis, L. Roberts

0 2 4 6 8 10
Evaluations (in units of n + 1)

10−5

10−4

10−3

10−2

10−1

100
N

or
m

al
iz

ed
O

bj
ec

ti
ve

V
al

ue

DFBGN p = n/2
RSDFO-GN Gaussian p = n/2
RSDFO-GN Hashing p = n/2
RSDFO-GN Orthogonal p = n/2

(a) Normalized objective value vs. evalua-
tions

0 50 100 150 200 250
Iterations

10−5

10−4

10−3

10−2

10−1

100

N
or

m
al

iz
ed

O
bj

ec
ti

ve
V

al
ue

DFBGN p = n/2
RSDFO-GN Gaussian p = n/2
RSDFO-GN Hashing p = n/2
RSDFO-GN Orthogonal p = n/2

(b) Normalized objective value vs. iterations

Fig. 1 Normalized objective value (versus evaluations and iterations) for 10 runs of RSDFO-GN DFBGN
on CUTEst problem arwhdne with p = n/2. We also show different methods for generating Qk for
RSDFO-GN. These results use a budget of 10(n + 1) evaluations

both RSDFO-GN and DFBGN are random we perform 10 independent runs of each
solver/problem combination.

In Fig. 1 we plot the objective decrease attained by each solver versus the number of
objective evaluations9 and iterations. We see that DFBGN significantly outperforms
all variants of RSDFO-GN (i.e. all approaches for generating Qk) for all choices of
subspace dimension p tested when measured in terms of evaluations. The primary
benefit of DFBGN in this context is that it reuses objective evaluations between itera-
tions, rather than having to fully resample an interpolation set whenever the subspace
Qk is redrawn. This is most clearly seen by the relative performance of RSDFO-GN
being better when measured on iterations than on evaluations (noting that DFBGN
can perform many more iterations within a given evaluation budget).

4.2 Subspace interpolationmodels

Similar to Sect. 3, we assume that, at iteration k, our interpolation set has p+1 points
{xk, y1, . . . , yp} ⊂ R

n with 1 ≤ p ≤ n. However, we assume that these points are
already given, and use them to determine the space Yk (as defined by Qk). That is,
given

Wk :=
⎡

⎢
⎣

(y1 − xk)T
...

(yp − xk)T

⎤

⎥
⎦ ∈ R

p×n, (116)

we compute the QR factorization

WT
k = Qk Rk, (117)

9 Throughout we measure evaluation budgets in (simplex) gradients; that is, evaluations in units of n + 1.

123

Scalable subspace methods for derivative-free nonlinear… 493

where Qk ∈ R
n×p has orthonormal columns and Rk ∈ R

p×p is upper triangular—and
invertible provided WT

k is full rank, which we guarantee by judicious replacement of
interpolation points. This gives us the Qk that defines Yk via (3)—in this case Qk has
orthonormal columns—and in this way all our interpolation points are in Yk .

Since each yt ∈ Yk , from (117) we have yt = xk + Qk ŝt , where ŝt is the t-th
column of Rk . Hence we have Ŵk = RT

k in (110) and so m̂k (108) is given by solving

RT
k Ĵ Tk =

⎡

⎢
⎣

(r(y1) − r(xk))T
...

(r(yp) − r(xk))T

⎤

⎥
⎦ , (118)

via forward substitution, since RT
k is lower triangular. This ultimately gives us our

local model m̂k via (111).
We reiterate that compared to RSDFO-GN, we have used the interpolation set Yk

to determine both Qk and m̂k , rather than first sampling Qk , then finding interpolation
points Yk ⊂ Yk with which to construct m̂k . This difference is crucial in allowing
the reuse of interpolation points between iterations, and hence lowering the objective
evaluation requirements of model construction.

Remark 5 Asdiscussed in [69, Chapter 7.3],we can equivalently recover this construc-
tion by asking for a full-space model mk : Rn → R

m given by mk(s) = r(xk) + Jk s
such that the interpolation conditions mk(yt − xk) = r(yt) are satisfied and Jk has
minimal Frobenius norm.

4.3 Complete DFBGN algorithm

A complete statement of DFBGN is given in Algorithm 3. Compared to RSDFO-GN,
we include specific steps to manage the interpolation set, which in turn dictates the
choice of subspaceYk . Specifically, one issue with our approach is that our new iterate
xk+sk is inYk , so if wewere to simply add xk+sk into the interpolation set,Yk would
not change across iterations, and we will never explore the whole space. On the other
hand, unlike RSDFO and RSDFO-GN we do not want to completely resample Qk as
this would require too many objective evaluations. Instead, in DFBGN we delete a
subset of points from the interpolation set and add new directions orthogonal to the
existing directions, which ensures that Qk+1 �= Qk in every iteration.10

We also note that DFBGN does not include some important algorithmic features
present in RSDFO-GN, DFO-LS or other model-based DFO methods, and hence is
quite simple to state. These features are not necessary for a variety of reasons, which
we now outline.

10 By contrast, the optional growing mechanism in DFO-LS (Remark 4) is designed such that xk + sk is
not in Yk , and so the search space is automatically expanded at every iteration. However, this requires an
expensive SVD of Jk ∈ R

m×n at every iteration, and so is not suitable for our large-scale setting.

123

494 C. Cartis, L. Roberts

Algorithm 3 DFBGN: Derivative-Free Block Gauss–Newton for solving (107).
Input: Starting point x0 ∈ R

n , initial trust region radius Δ0 > 0, subspace dimension p ∈ {1, . . . , n}, and
number of points to drop at each iteration pdrop ∈ {1, . . . , p}.
Parameters: maximum and minimum trust-region radii Δmax ≥ Δ0 > Δend > 0, trust-region radius
scalings 0 < γdec < 1 < γinc ≤ γ inc, and acceptance thresholds 0 < η1 ≤ η2 < 1.

1: Select randomorthonormal directions d1, . . . , d p ∈ R
n usingAlgorithm5, andbuild initial interpolation

set Y0 := {x0, x0 + Δ0d1, . . . , x0 + Δ0d p}.
2: for k = 0, 1, 2, . . . do
3: Given xk and Yk , solve (118) to build subspace models m̂k : Rp → R

m (108) and m̂k : Rp → R

(111).
4: Approximately solve the subspace trust-region subproblem in R

p (5) and calculate the step sk =
Qk ŝk ∈ R

n .
5: Evaluate r(xk + sk) and calculate ratio ρk (7).
6: Accept/reject step and update trust region radius: set xk+1 and Δk+1 as per (8).
7: if Δk+1 ≤ Δend, terminate.
8: if p < n then
9: Set Y init

k+1 = Yk ∪ {xk + sk }.
10: Remove min(max(pdrop, 2), p) points from Y init

k+1 (without removing xk+1) using Algorithm 4.
11: else
12: Set Y init

k+1 = Yk ∪ {xk + sk }\{ y} for some y ∈ Yk\{xk+1}.
13: Remove min(max(pdrop, 1), p) points from Y init

k+1 (without removing xk+1) using Algorithm 4.
14: end if
15: Let q := p + 1 − |Y init

k+1|, and generate random orthonormal vectors {d1, . . . , dq } that are also

orthogonal to { y − xk+1 : y ∈ Y init
k+1\{xk+1}}, using Algorithm 5.

16: Set Yk+1 = Y init
k+1 ∪ {xk+1 + Δk+1d1, . . . , xk+1 + Δk+1dq }.

17: end for

No criticality and safety steps Compared to RSDFO-GN, the implementation of
DFBGN does not include criticality (which is also the case in DFO-LS) or safety
steps. These steps ultimately function to ensure we do not have ĝk � Δk . In DFBGN,
we ensureΔk does not get too large compared to ‖sk‖ through (8), while ‖sk‖ is linked
to ‖ ĝk‖ through Lemma 1. If ‖sk‖ is much smaller than Δk and our step produces a
poor objective decrease, thenwewill setΔk+1 ← ‖sk‖ for the next iteration. Although
Lemma 1 allows ‖sk‖ to be large even if ‖gk‖ is small, in practice we do not observe
Δk � ‖gk‖without DFBGN settingΔk+1 ← ‖sk‖ after a small number of iterations.

No model-improving steps An important feature of model-based DFO meth-
ods are model-improving procedures, which change the interpolation set to ensure
Λ-poisedness (Definition 4), or equivalently ensure that the local model for f is
fully linear. In RSDFO-GN for instance, model-improvement is performed when
CHECK_MODEL=TRUE, whereas in [29, Algorithm 4.1] or [30, Algorithm 10.1]
there are dedicated model-improvement phases.

Instead, DFBGN ensures accurate interpolation models via a geometry-aware
(i.e. Λ-poisedness aware) process for deleting interpolation points at each iteration,
where they are replaced by new points in directions (from xk+1) which are orthogo-
nal to Qk and selected at random. The process for deleting interpolation points—and
choosing a suitable number of points to remove, pdrop—at each iteration are consid-

123

Scalable subspace methods for derivative-free nonlinear… 495

ered in Sects. 4.4 and 4.5 respectively. The process for generating new interpolation
points, Algorithm 5, is outlined in Sect. 4.4.

A downside of our approach is that the new orthogonal directions are not chosen
by minimizing a model for the objective (i.e. not attempting to reduce the objective),
as we have no information about how the objective varies outside Yk . This is the
fundamental trade-off between a subspace approach and standard methods (such as
DFO-LS); we can reduce the linear algebra cost, but must spend objective evaluations
to change the search space between iterations.

Linear algebra cost of DFBGN As in Sect. 3.3, our approach in DFBGN yields
substantial reductions in the required linear algebra costs compared to DFO-LS:

– Model construction costsO(np2) for the factorization (117) andO(mp2) for back-
substitution solves (118), rather thanO(n3) andO(mn2) respectively for DFO-LS;
and

– Lagrange polynomial construction costs O(p3) rather than O(n3).11

As well as these reductions, we also get a smaller trust-region subproblem (5)—inRp

rather thanRn—and smaller memory requirements for storing the model Jacobian: we
only store Ĵk and Qk , requiring O((m + n)p) memory rather than O(mn) for storing
the full m × n Jacobian. However, in (5), we do have the extra cost of projecting
ŝk ∈ R

p into the full spaceRn , which requires a multiplication by Qk , costingO(np).
In addition to the reduced linear algebra costs, the smaller interpolation set means we
have a lower evaluation cost to construct the initial model of p+ 1 evaluations (rather
than n + 1).

No particular choice of p is needed for this method, and anything from p = 1
(i.e. coordinate search) to p = n (i.e. full space search) is allowed. However, unsur-
prisingly, we shall see that larger values of p give better performance in terms of
evaluations, except for the very low-budget phase, where smaller values of p benefit
from a lower initialization cost. Hence, we expect that our approach with small p
is useful when the O(mn2 + n3) per-iteration linear algebra cost of DFO-LS is too
great, and reducing the linear algebra cost is worth (possibly) needing more objective
evaluations to achieve a given accuracy. As a result, p should in general be set as large
as possible, given the linear algebra costs the user is willing to bear.

In Table 1, we compare the linear algebra costs of DFO-LS and DFBGN. The
overall per-iteration cost of DFO-LS is O(mn2 + n3) and the cost of DFBGN is
O(mp2 + np2 + p3), depending on the choice of p ∈ {1, . . . , n}. The key benefit is
that our dependency on the underlying problem dimension n decreases from cubic in
DFO-LS to linear in DFBGN (provided p � n). We also note that both methods have
linear cost in the number of residuals m, but with a factor that is significantly smaller
in DFBGN than in DFO-LS—O(p2) compared to O(n2).

Remark 6 In every iteration we must compute the QR factorization (117). However,
we note, similar to [19, Section 4.2], that adding, removing and changing interpolation
points all induce simple changes to Ŵ T

k (adding or removing columns, and low-rank
updates). This means that (117) can be computed with costO(np) per iteration using

11 Here, we use the existing factorization (117) and solve with p + 1 right-hand sides, as in Sect. 3.3.

123

496 C. Cartis, L. Roberts

Table 1 Comparison of per-iteration linear algebra costs of DFO-LS and DFBGN (Algorithm 3) with
subspace dimension p ∈ {1, . . . , n}
Algorithm phase DFO-LS DFBGN Comment

Form m̂k (108) O(n3 + mn2) O(np2 + mp2) Factorization plus linear solves

Form m̂k (111) O(mn2) O(mp2) Form Ĵ Tk Ĵk

Trust-region subproblem O(n2)–O(n3) O(p2)–O(p3) Depending on # CG iterations*

Calculate sk = Qk ŝk – O(np)

Form new step xk + sk O(n) O(n)

Choose point to replace O(n3) – Compute Lagrange polynomials

Model improvement O(n3) – Recompute Lagrange polynomials

Choose points to remove – O(p3 + np) See Algorithm 4

Generate new directions – O(np2) See Algorithm 5

Total O(mn2 + n3) O(mp2 + np2 + p3)

*Note that the trust-region subproblem is solved using a truncated CGmethod [27, Chapter 7.5.1] originally
from [67] in both DFO-LS and DFBGN

the updating methods in [41, Section 12.5]. In our implementation, however, we do
not do this, as we find that these updates introduce errors12 that accumulate at every
iteration and reduce the accuracy of the resulting interpolation models. To maintain
the numerical performance of our method, we need to recompute (117) from scratch
regularly (e.g. every 10 iterations), and so would not see theO(np) per-iteration cost,
on average.

Remark 7 The default parameter choices for DFBGN are the same as DFO-LS,
namely: Δmax = 1010, Δend = 10−8, γdec = 0.5, γinc = 2, γ inc = 4, η1 = 0.1,
and η2 = 0.7. DFBGN also uses the same default choice Δ0 = 0.1max(‖x0‖∞, 1).
The default choice of pdrop is discussed in Sect. 4.5.

Adaptive choice of p One approach that we have considered is to allow p to vary
between iterations ofDFBGN, rather than being constant throughout. Instead of adding
pdrop new points at the end of each iteration (line 15), we implement a variable p by
adding at least one new point to the interpolation set, continuing until some criterion
is met. This criterion is designed to allow p small when such a p allows us to make
reasonable progress, but to grow p up to p ≈ n when necessary.

We have tested several possible criteria—comparing some combination of model
gradient and Hessian, trust-region radius, trust-region step length, and predicted
decrease from the trust-region step—and found the most effective to be comparing
the model gradient and Hessian with the trust-region radius. Specifically, we continue
adding new directions until (c.f. Lemma 3 and [19, Lemma 3.22])

‖gk‖
max(‖Hk‖, 1) ≥ αΔk, (119)

12 Leading to Ŵ T
k �= Qk Rk , not relating to Qk orthogonal or Rk upper-triangular.

123

Scalable subspace methods for derivative-free nonlinear… 497

Algorithm 4Mechanism for removing points from the interpolation set in DFBGN.
Input: Interpolation set {xk+1, y1, . . . , yp} with current iterate xk+1, trust-region radius Δk+1 > 0 and

number of points to remove pdrop ∈ {1, . . . , p}.
1: Compute the (linear) Lagrange polynomials for {xk+1, y1, . . . , yp} in the same way as (118).
2: For t = 1, . . . , p (i.e. all interpolation points except xk+1), compute

θt := max
x∈B(xk+1,Δk+1)

|�t (x)| · max

(
‖ yt − xk+1‖4

Δ4
k+1

, 1

)

. (120)

3: Remove the pdrop interpolation points with the largest values of θt .

for some α > 0 (we use α = 0.2(n− p)/n for an interpolation set with p+ 1 points).
However, our numerical testing has shown that DFBGN with p fixed outperforms
this approach for all budget and accuracy levels, on both medium- and large-scale
problems, and so we do not consider it further here. We delegate further study of this
approach to future work, to see if alternative adaptive choices for p can be beneficial.

4.4 Interpolation set management

We now provide more details about how we manage the interpolation set in DFBGN.
Specifically, we discuss how points are chosen for removal from Yk , and how new
interpolations points are calculated.

4.4.1 Geometry management

In the description of DFBGN, there are no explicit mechanisms to ensure that the
interpolation set is well-poised. DFBGN ensures that the interpolation set has good
geometry through two mechanisms:

– Weuse ageometry-awaremechanism for removingpoints, basedon [19, 67],which
requires the computation of Lagrange polynomials. This mechanism is given in
Algorithm 4, and is called in lines 10 and 13 of DFBGN, as well as to select a
point to replace in line 12; and

– Adding new directions that are orthogonal to existing directions, and of length
Δk , means adding these new points never causes the interpolation set to have poor
poisedness.

Together, these two mechanisms mean that any points causing poor poisedness are
quickly removed, and replaced by high-quality interpolation points (orthogonal to
existing directions, and within distance Δk of the current iterate). We note that the
simpler approach of removing points based on distance to the current iterate alone
does not perform as well as this method (see Appendix B.1 for details).

The linear algebra cost ofAlgorithm4 isO(p3) to compute pLagrange polynomials
with cost O(p2) each (since we already have a factorization of Ŵ T

k). Then for each t
we must evaluate θt (120), with cost O(p) to maximize �t (x) (since �t is linear and

123

498 C. Cartis, L. Roberts

Algorithm 5Mechanism for generating new directions in DFBGN.
Input: Orthonormal basis for current subspace Q ∈ R

n×p1 (optional), number of new directions q ≤
n − p1.

1: Generate A ∈ R
n×q with i.i.d. standard normal entries.

2: If Q is specified, calculate Ã = A − QQT A, otherwise set Ã = A.
3: Perform the QR factorization Q̃ R̃ = Ã and return d1, . . . , dq as the columns of Q̃.

varies only in directions Yk), and O(n) to calculate ‖ yt − xk+1‖. This gives a total
cost of O(p3 + np).13

4.4.2 Generation of new directions

We now detail how new directions d1, . . . , dq are created in line 15 of DFBGN
(Algorithm 3). The same approach is suitable for generating the initial directions
d1, . . . , d p in line 1 of DFBGN, using Ã = A below (i.e. no Q required).

Suppose our current subspace is defined by the orthonormal columns of Q ∈ R
n×p1 ,

and we wish to generate q new orthonormal vectors that are also orthogonal to the
columns of Q (with p1 + q ≤ n). When called in line 15 of DFBGN, we will have
p1 = p − pdrop and q = pdrop. We use the approach in Algorithm 5. From the QR
factorization, the columns of Q̃ are orthonormal, and if Ã is full rank (which occurs
with probability 1; see Lemma 12 below) then we also have col(Q̃) = col(Ã). So, to
confirm the columns of Q̃ are orthogonal to Q, we only need to check that the columns
of Ã are orthogonal to Q. Let ãi be the i-th column of Ã and q j be the j-th column
of Q. Then, if ai is the i-th column of A, we have

ãTi q j = aTi (I − QQT)q j = aTi (q j − Qe j) = 0, (121)

as required.
The cost of Algorithm 5 isO(nq) to generate A,O(np1q) to form Ã andO(nq2) for

the QR factorization. Since p1, q ≤ p (since p1 is the number of directions remaining
in the interpolation set and q is the number of new directions to be added), the whole
process has cost at most O(np2). This bound is tight, up to constant factors, as we
could take p1 = q = p/2, for instance.

Lemma 12 The matrix Ã has full column rank with probability 1.

Proof Let ai and ãi be the i-th columns of A and Ã respectively. From [33, Proposition
7.1], A has full column rank with probability 1, and each ai /∈ col(Q)with probability
1. Now suppose we have constants c1, . . . , cq so that

∑q
i=1 ci ãi = 0. Then since

ãi = ai − QQT ai , we have

q∑

i=1

ci ai =
q∑

i=1

ci QQT ai . (122)

13 We could instead compute ‖ yt − xk+1‖ by taking the norm of the t-th column of Rk , provided we have
the factorization (117), for cost O(p) for each t . This does not affect the overall conclusion of Table 1.

123

Scalable subspace methods for derivative-free nonlinear… 499

The right-hand side is in col(Q), so since ai /∈ col(Q), we must have
∑q

i=1 ci ai = 0.
Thus c1 = · · · = cq = 0 since A has full column rank, and so Ã has full column
rank. �

4.5 Selecting an appropriate value of pdrop

An important component of DFBGN that we have not yet specified is howmany points
to remove from the interpolation set at each iteration, pdrop ∈ {1, . . . , p}.

On one hand, a large pdrop enables us to change the subspace by a large amount
between iterations, ensuring we explore the whole ofRn quickly, rather than searching
in unproductive subspaces for many iterations. However, a small pdrop means we
require few objective evaluations per iteration, and so are more likely to use our
evaluation budget efficiently.

In DFBGN we use a compromise choice as the default mechanism: pdrop = 1 on
successful iterations and pdrop = p/10 on unsuccessful iterations. Our careful and
extensive testing show that this is a successful choice in practice, because it ensures
that the trust-region radiusΔk does not decrease too quickly compared to the first-order
optimality measure ‖ ĝk‖. We detail our choices and approach in Appendix B.2.

5 Numerical results

In this section we compare the performance of DFBGN (Algorithm 3) to that of DFO-
LS. We note that that DFO-LS has been shown to have state-of-the-art performance
compared to other solvers in [15]. As described in Sect. 4.3, the implementation of
DFBGN is based on the decision to reduce the linear algebra cost of the algorithm at
the expense of more objective evaluations per iteration. However, we still maintain
the goal of DFBGN achieving (close to) state-of-the-art performance when it is run as
a ‘full space’ method (i.e. p = n). Here, we will investigate this tradeoff in practice.

5.1 Testing framework

In our testing, we will compare a Python implementation of DFBGN (Algorithm 3)
against DFO-LS version 1.0.2 (also implemented in Python). The implementation
of DFBGN is available on Github.14 We will consider both the standard version of
DFO-LS, and one where we use a reduced initialization cost of n/100 evaluations
(c.f. Remark 4). This will allow us to compare both the overall performance ofDFBGN
and its performancewith small budgets (sinceDFBGNalso has a reduced initialization
cost of p + 1 evaluations). We compare these against DFBGN with the choices p ∈
{n/100, n/10, n/2, n} and the adaptive choice of pdrop ∈ {1, p/10} (Sect. 4.5). All
default settings are used for both solvers, and since both are randomized (DFO-LS
uses random initial directions only, and DFBGN is randomized through Algorithm 5),
we run 10 instances of each problem under all solver configurations.

14 See https://github.com/numericalalgorithmsgroup/dfbgn. Results here use version 0.1.

123

https://github.com/numericalalgorithmsgroup/dfbgn

500 C. Cartis, L. Roberts

Test problems We will consider two collections of nonlinear least-squares test
problems, both taken from the CUTEst collection [42]. The first, denoted (CR), is
a collection of 60 medium-scale problems (with 25 ≤ n ≤ 110 and n ≤ m ≤ 400).
Full details of the (CR) collection may be found in [19, Table 3]. The second, denoted
(CR-large), is a collection of 28 large-scale problems (with 1000 ≤ n ≤ 5000 and
n ≤ m ≤ 9998). This collection is a subset of problems from (CR), with their dimen-
sion increased substantially. Full details of the (CR-large) collection are given in
Appendix C. Note that the 12 h runtime limit was only relevant for (CR-large) in all
cases.

Measuring solver performance For every problem, we allow all solvers a budget of
at most 100(n+1) objective evaluations (i.e. evaluations of the full vector r(x)). This
dimension-dependent choice may be understood as equivalent to 100 evaluations of
r(x) and the Jacobian J (x) via finite differencing. However, given the importance of
linear algebra cost to our comparisons, we allow each solver a maximum runtime of
12 h for each instance of each problem.15 For each solver S, each problem instance
P , and accuracy level τ ∈ (0, 1), we calculate

N (S, P, τ) := # evaluations of r(x) required to find a point x with

f (x) ≤ f (x∗) + τ(f (x0) − f (x∗)), (123)

where f (x∗) is an estimate of the minimum of f as listed in [19, Table 3] for (CR)
and Appendix C for (CR-large). If this objective decrease is not achieved by a solver
before its budget or runtime limit is hit, we set N (S, P, τ) = ∞. We then compare
solver performances on a problem collection P by plotting either data profiles [59]

dS,τ (α) := 1

|P| |{P ∈ P : N (S, P, τ) ≤ α(nP + 1)}| , (124)

where nP is the dimension of problem instance P and α ∈ [0, 100] is an evaluation
budget (in “gradients”, or multiples of n + 1), or performance profiles [32]

πS,τ (α) := 1

|P| |{P ∈ P : N (S, P, τ) ≤ αNmin(P, τ)}| , (125)

where Nmin(P, τ) is the minimum value of N (S, P, τ) for any solver S, and α ≥ 1 is
a performance ratio. In some instances, we will plot profiles based on runtime rather
than objective evaluations. For this, we simply replace “number of evaluations of r(x)”
with “runtime” in (123).

When we plot the objective reduction achieved by a given solver, we normalize the
objective value to be in [0, 1] by plotting

f (x) − f (x∗)
f (x0) − f (x∗)

, (126)

15 Since all problems are implemented in Fortran via CUTEst, the cost of objective evaluations for this
testing is minimal.

123

Scalable subspace methods for derivative-free nonlinear… 501

which corresponds to the best τ achieved in (123) after a given number of evaluations
(again measured in “gradients”) or runtime.

5.2 Results based on evaluations

We begin our comparisons by considering the performance of DFO-LS and DFBGN
when measured in terms of evaluations.

Medium-scale problems (CR) First, in Fig. 2, we show the results for different accu-
racy levels for the (CR) problem collection (with n ≈ 100). For the lowest accuracy
level τ = 0.5, DFO-LS with reduced initialization cost is the best-performing solver,
followed by DFBGN with p = n/2. These correspond to methods with lower initial-
ization costs than DFO-LS and DFBGN with p = n, so this is likely a large driver
behind their performance. DFBGN with full space size p = n performs similarly to
DFO-LS, and DFBGN with p = n/10 and p = n/100 perform worst (as they are
optimizing in a very small subspace at each iteration).

1 2 4 8 16 32
Evals / min evals of any solver

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

po
rt

io
n

pr
ob

le
m

s
so

lv
ed

DFO-LS
DFO-LS (init n/100)
DFBGN (p = n)
DFBGN (p = n/2)
DFBGN (p = n/10)
DFBGN (p = n/100)

(a) τ = 0.5

1 2 4 8 16 32
Evals / min evals of any solver

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

po
rt

io
n

pr
ob

le
m

s
so

lv
ed

DFO-LS
DFO-LS (init n/100)
DFBGN (p = n)
DFBGN (p = n/2)
DFBGN (p = n/10)
DFBGN (p = n/100)

(b) τ = 10−1

1 2 4 8 16 32
Evals / min evals of any solver

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

po
rt

io
n

pr
ob

le
m

s
so

lv
ed

DFO-LS
DFO-LS (init n/100)
DFBGN (p = n)
DFBGN (p = n/2)
DFBGN (p = n/10)
DFBGN (p = n/100)

(c) τ = 10−3

1 2 4 8 16 32
Evals / min evals of any solver

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

po
rt

io
n

pr
ob

le
m

s
so

lv
ed

DFO-LS
DFO-LS (init n/100)
DFBGN (p = n)
DFBGN (p = n/2)
DFBGN (p = n/10)
DFBGN (p = n/100)

(d) τ = 10−5

Fig. 2 Performance profiles (in evaluations) comparing DFO-LS (with and without reduced initialization
cost) with DFBGN (various p choices) for different accuracy levels. Results are an average of 10 runs for
each problem, with a budget of 100(n + 1) evaluations and a 12 h runtime limit per instance. The problem
collection is (CR)

123

502 C. Cartis, L. Roberts

1 2 4 8 16 32
Evals / min evals of any solver

0.0

0.2

0.4

0.6

0.8

1.0
P

ro
po

rt
io

n
pr

ob
le

m
s

so
lv

ed

DFO-LS
DFO-LS (init n/100)
DFBGN (p = n)
DFBGN (p = n/2)
DFBGN (p = n/10)
DFBGN (p = n/100)

(a) τ = 0.5

1 2 4 8 16 32
Evals / min evals of any solver

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

po
rt

io
n

pr
ob

le
m

s
so

lv
ed

DFO-LS
DFO-LS (init n/100)
DFBGN (p = n)
DFBGN (p = n/2)
DFBGN (p = n/10)
DFBGN (p = n/100)

(b) τ = 10−1

1 2 4 8 16 32
Evals / min evals of any solver

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

po
rt

io
n

pr
ob

le
m

s
so

lv
ed

DFO-LS
DFO-LS (init n/100)
DFBGN (p = n)
DFBGN (p = n/2)
DFBGN (p = n/10)
DFBGN (p = n/100)

(c) τ = 10−3

1 2 4 8 16 32
Evals / min evals of any solver

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

po
rt

io
n

pr
ob

le
m

s
so

lv
ed

DFO-LS
DFO-LS (init n/100)
DFBGN (p = n)
DFBGN (p = n/2)
DFBGN (p = n/10)
DFBGN (p = n/100)

(d) τ = 10−5

Fig. 3 Performance profiles (in evaluations) comparing DFO-LS (with and without reduced initialization
cost) with DFBGN (various p choices) for different accuracy levels. Results are an average of 10 runs for
each problem, with a budget of 100(n + 1) evaluations and a 12 h runtime limit per instance. The problem
collection is (CR-large)

However, as we look at higher accuracy levels, we see that DFO-LS (with and
without reduced initialization cost) performs best, and the DFBGN methods perform
worse. The performance gap is more noticeable for small values of p. As expected,
this means that DFBGN requires more evaluations to achieve these levels of accuracy,
and benefits from being allowed to use a larger p. Notably, DFBGN with p = n
has only a slight performance loss compared to DFO-LS, even though it uses p/10
evaluations on unsuccessful iterations (rather than 1–2 for DFO-LS); this indicates
that our choice of pdrop provides a suitable compromise between solver robustness
and evaluation efficiency.

Large-scale problems (CR-large) Next, in Fig. 3, we show the same plots but for the
(CR-large) problem collection, with n ≈ 1000. Compared to Fig. 2, the situation is
quite different.

At the lowest accuracy level, τ = 0.5, DFBGN with small subspaces (p = n/10
and p = n/100) gives the best-performing solvers, followed by the full-space solvers
(DFO-LS and DFBGN with p = n). For higher accuracy levels, the performance of
DFBGN with small p deteriorates compared with the full-space methods. DFBGN

123

Scalable subspace methods for derivative-free nonlinear… 503

with p = n/2 is the worst-performing DFBGN variant at low accuracy levels, and
performs similar to DFBGN with small p at high accuracy levels. DFO-LS with
reduced initialization cost is the worst-performing solver for this dataset.

Unlike the medium-scale results above, we no longer have a clear trend in the
performance of DFBGN as we vary p. Instead, we have a combination of two factors
coming into play, which have opposite impacts on the performance of DFBGN as we
vary p. On one hand, we have the number of evaluations required for DFBGN (with a
given p) to reach the desired accuracy level. On the other hand, we have the number
of iterations that DFBGN can perform before reaching the 12 h runtime limit.

DFBGN with small p requires more evaluations to reach a given level of accuracy
(as seen with the medium-scale results), but can perform many evaluations before
timing out due to its low per-iteration linear algebra cost. This is reflected in it solv-
ing many problems to low accuracy, but few problems to high accuracy. By contrast,
DFBGN with p = n is allowed to perform fewer iterations before timing out (and
hence see fewer evaluations), but requires many fewer evaluations to solve problems,
particularly for high accuracy. This manifests in its good performance for low and high
accuracy levels. The middle ground, DFBGN with p = n/2, has its performance neg-
atively impacted by both issues: it requires many fewer evaluations to solve problems
than p = n (especially for high accuracy), but also has a relatively high per-iteration
linear algebra cost and times out compared to small p.

Both variants of DFO-LS show worse performance here than for the medium-scale
problems. This is because, as suggested by the analysis in Table 1, they are both
affected by the runtime limit. DFO-LS with reduced initialization cost is particularly
affected, because of the high cost of the SVD (of the full m × n Jacobian) at each
iteration for these problems. We note that this cost is only noticeable for these large-
scale problems, and this variant of DFO-LS is still useful for small- and medium-scale
problems, as discussed in [15].

We can verify the impact of the timeout on DFO-LS and DFBGN by considering
the proportion of problem instances for (CR-large) for which the solver terminated
because of the timeout. These results are presented in Table 2. DFO-LS reaches the
12 h maximum much more frequently than DFBGN: over 90% rather than 35% for
DFBGN with p = n/100 or 66% for DFBGN with p = n (see Remark 8 below). For
DFBGN with different values of p, we see the same behaviour as in Fig. 3. That is,
DFBGN with small p times out the least frequently, as its low per-iteration runtime
means it performs enough iterations to terminate naturally. For DFBGN with p = n,

Table 2 Proportion of problem
instances from (CR-large) for
which each solver terminated on
the maximum 12 h runtime

Solver % timeout

DFO-LS 92.5

DFO-LS (init n/100) 97.9

DFBGN (p = n/100) 34.6

DFBGN (p = n/10) 73.9

DFBGN (p = n/2) 81.8

DFBGN (p = n) 66.4

123

504 C. Cartis, L. Roberts

we time out more frequently (due to the high per-iteration runtime), but not as often
as with p = n/2, as the its superior performance in terms of evaluations for high
accuracy levels means it fully solves more problems, even with comparatively fewer
iterations. We note that Table 2 does not measure what accuracy level was achieved
before the timeout, which is better captured in the performance profiles Fig. 3.

Remark 8 DFBGN with p = n has a similar per-iteration linear algebra cost to DFO-
LS. Hence it can perform a similar number of iterations before reaching the runtime
limit. However, DFBGN performs more objective evaluations per iteration, because
of the choice of pdrop. Since DFBGN with p = n has a similar performance to
DFO-LS when measured by evaluations (as seen in Fig. 2), this means that it has a
superior performance when measured by runtime. Additionally, if multiple objective
evaluations can be run in parallel, then DFBGN would also be able to benefit from
this, unlike DFO-LS.

Remark 9 For completeness, the technical report associated with this work
[20, Appendix A] compares DFBGNwith DFO-LS on the low-dimensional collection
of test problems from Moré and Wild [59]. We do not include this discussion here as
these problems are low-dimensional, which is not the main use case for DFBGN.

5.3 Results based on runtime

We have seen above that DFBGN performs well compared to DFO-LS on the (CR-
large) problem collection, as the 12 h timeout causes DFO-LS to terminate after
relatively few objective evaluations. In Fig. 4, we show the same comparison for
(CR-large) as in Fig. 3, but showing data profiles of problems solved versus runtime
(rather than evaluations). Here, all DFBGN variants perform similar to or better than
DFO-LS for low accuracy levels, since DFBGN has a lower per-iteration runtime than
DFO-LS, and this is the regime where DFBGN performs best (on evaluations). For
high accuracy levels, DFBGN with p = n is the best-performing solver, as it uses
large enough subspaces to solve many problems to high accuracy. By contrast, both
DFBGN with small p and DFO-LS perform similarly at high accuracy levels—the
impact of the timeout on DFO-LS roughly matches the reduced robustness of DFBGN
with small p at these accuracy levels. Again, as we observed above, DFO-LS with
reduced initialization cost is the worst-performing solver, due to the high cost of the
SVD at each iteration.

To further see the impact of this issue, we now consider how the solvers perform for
a variable-dimension test problem, as we increase the underlying dimension. We run
each solver, with the same settings as above, on the CUTEst problem arwhdne for
different choices of problem dimension n.16 In Fig. 5 we plot the objective reduction
for each solver against objective evaluations and runtime for DFO-LS and DFBGN,
showing n = 100, n = 1000 and n = 2000.

We see that, when measured on evaluations, both DFO-LS variants achieve the
fastest objective reduction, and that DFBGN with small p achieves the slowest objec-
tive reduction. This is in line with our results from Sect. 5.2. However, when we

16 This problem appears in the collections (CR) and (CR-large), with n = 100 and n = 1000 respectively.

123

Scalable subspace methods for derivative-free nonlinear… 505

0 5000 10000 15000 20000 25000 30000 35000 40000
Runtime (s)

0.0

0.2

0.4

0.6

0.8

1.0
P

ro
po

rt
io

n
pr

ob
le

m
s

so
lv

ed

DFO-LS
DFO-LS (init n/100)
DFBGN (p = n)
DFBGN (p = n/2)
DFBGN (p = n/10)
DFBGN (p = n/100)

(a) τ = 0.5

0 5000 10000 15000 20000 25000 30000 35000 40000
Runtime (s)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

po
rt

io
n

pr
ob

le
m

s
so

lv
ed

DFO-LS
DFO-LS (init n/100)
DFBGN (p = n)
DFBGN (p = n/2)
DFBGN (p = n/10)
DFBGN (p = n/100)

(b) τ = 10−1

0 5000 10000 15000 20000 25000 30000 35000 40000
Runtime (s)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

po
rt

io
n

pr
ob

le
m

s
so

lv
ed

DFO-LS
DFO-LS (init n/100)
DFBGN (p = n)
DFBGN (p = n/2)
DFBGN (p = n/10)
DFBGN (p = n/100)

(c) τ = 10−3

0 5000 10000 15000 20000 25000 30000 35000 40000
Runtime (s)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

po
rt

io
n

pr
ob

le
m

s
so

lv
ed

DFO-LS
DFO-LS (init n/100)
DFBGN (p = n)
DFBGN (p = n/2)
DFBGN (p = n/10)
DFBGN (p = n/100)

(d) τ = 10−5

Fig. 4 Data profiles comparing the runtime of DFO-LS (with and without reduced initialization cost) with
DFBGN (various p choices) for different accuracy levels. Results are an average of 10 runs for each problem,
with a budget of 100(n + 1) evaluations and a 12 h runtime limit per instance. The problem collection is
(CR-large)

instead consider objective decrease against runtime, we see that DFBGN with small
p gives the fastest decrease—the larger number of iterations needed by these variants
(as seen by the larger number of evaluations) is offset by the substantially reduced
per-iteration linear algebra cost. When viewed against runtime, both DFO-LS variants
can only achieve a small objective decrease in the allowed 12 h, even though they
are showing fast decrease against number of evaluations, and would achieve higher
accuracy than DFBGN if the linear algebra cost were negligible.

5.4 Results for small budgets

Another benefit of DFBGN is that it has a small initialization cost of p+1 evaluations.
When n is large, it is more likely for a user to be limited by a budget of fewer than n
evaluations. Here, we examine how DFBGN compares for small budgets to DFO-LS
with reduced initialization cost.

We recall fromRemark 4 thatDFO-LSwith reduced initialization cost progressively
increases the dimension of the subspace of its interpolation model, until it reaches the

123

506 C. Cartis, L. Roberts

0 10 20 30 40 50 60
Evaluations (in units of n + 1)

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100
N

or
m

al
iz

ed
O

bj
ec

ti
ve

V
al

ue

DFO-LS
DFO-LS (init n/100)
DFBGN (p = n)
DFBGN (p = n/2)
DFBGN (p = n/10)
DFBGN (p = n/100)

(a) n = 100, objective vs. evaluations

0 500 1000 1500 2000 2500 3000
Runtime (s)

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

N
or

m
al

iz
ed

O
bj

ec
ti

ve
V

al
ue

DFO-LS
DFO-LS (init n/100)
DFBGN (p = n)
DFBGN (p = n/2)
DFBGN (p = n/10)
DFBGN (p = n/100)

(b) n = 100, objective vs. runtime

0 10 20 30 40 50
Evaluations (in units of n + 1)

10−12

10−10

10−8

10−6

10−4

10−2

100

N
or

m
al

iz
ed

O
bj

ec
ti

ve
V

al
ue

DFO-LS
DFO-LS (init n/100)
DFBGN (p = n)
DFBGN (p = n/2)
DFBGN (p = n/10)
DFBGN (p = n/100)

(c) n = 1000, objective vs. evaluations

0 5000 10000 15000 20000 25000 30000 35000 40000
Runtime (s)

10−12

10−10

10−8

10−6

10−4

10−2

100

N
or

m
al

iz
ed

O
bj

ec
ti

ve
V

al
ue

DFO-LS
DFO-LS (init n/100)
DFBGN (p = n)
DFBGN (p = n/2)
DFBGN (p = n/10)
DFBGN (p = n/100)

(d) n = 1000, objective vs. runtime

0 5 10 15 20 25 30 35 40
Evaluations (in units of n + 1)

10−8

10−6

10−4

10−2

100

N
or

m
al

iz
ed

O
bj

ec
ti

ve
V

al
ue

DFO-LS
DFO-LS (init n/100)
DFBGN (p = n)
DFBGN (p = n/2)
DFBGN (p = n/10)
DFBGN (p = n/100)

(e) n = 2000, objective vs. evaluations

0 5000 10000 15000 20000 25000 30000 35000 40000
Runtime (s)

10−8

10−6

10−4

10−2

100

N
or

m
al

iz
ed

O
bj

ec
ti

ve
V

al
ue

DFO-LS
DFO-LS (init n/100)
DFBGN (p = n)
DFBGN (p = n/2)
DFBGN (p = n/10)
DFBGN (p = n/100)

(f) n = 2000, objective vs. runtime

Fig. 5 Normalized objective value (versus evaluations and runtime) for 10 runs of DFO-LS and DFBGN
on CUTEst problem arwhdne. These results use a budget of 100(n + 1) evaluations and a 12 h runtime
limit per instance

whole space Rn (after approximately n + 1 evaluations), while in DFBGN we restrict
the dimension at all iterations.

In Fig. 6 we consider three variable-dimensional CUTEst problems from (CR) and
(CR-large), all using n = 1000 and n = 2000.We show the objective decrease against
number of evaluations for 10 runs of each solver, restricted to a maximum of n + 1
evaluations. We see that the smaller p used in DFBGN, the faster DFBGN is able
to make progress (due to the lower number of initial evaluations). However, this is

123

Scalable subspace methods for derivative-free nonlinear… 507

0.0 0.2 0.4 0.6 0.8 1.0
Evaluations (in units of n + 1)

100

2 × 10−1

3 × 10−1

4 × 10−1

6 × 10−1

N
or

m
al

iz
ed

O
bj

ec
ti

ve
V

al
ue

DFO-LS
DFO-LS (init n/100)
DFBGN (p = n)
DFBGN (p = n/2)
DFBGN (p = n/10)
DFBGN (p = n/100)

(a) arwhdne, n = 1000

0.0 0.2 0.4 0.6 0.8 1.0
Evaluations (in units of n + 1)

100

2 × 10−1

3 × 10−1

4 × 10−1

6 × 10−1

N
or

m
al

iz
ed

O
bj

ec
ti

ve
V

al
ue

DFO-LS
DFO-LS (init n/100)
DFBGN (p = n)
DFBGN (p = n/2)
DFBGN (p = n/10)
DFBGN (p = n/100)

(b) arwhdne, n = 2000

0.0 0.2 0.4 0.6 0.8 1.0
Evaluations (in units of n + 1)

100

5 × 10−1

6 × 10−1

7 × 10−1

8 × 10−1

9 × 10−1

N
or

m
al

iz
ed

O
bj

ec
ti

ve
V

al
ue

DFO-LS
DFO-LS (init n/100)
DFBGN (p = n)
DFBGN (p = n/2)
DFBGN (p = n/10)
DFBGN (p = n/100)

(c) chandheq, n = 1000

0.0 0.2 0.4 0.6 0.8 1.0
Evaluations (in units of n + 1)

100

5 × 10−1

6 × 10−1

7 × 10−1

8 × 10−1

9 × 10−1

N
or

m
al

iz
ed

O
bj

ec
ti

ve
V

al
ue

DFO-LS
DFO-LS (init n/100)
DFBGN (p = n)
DFBGN (p = n/2)
DFBGN (p = n/10)
DFBGN (p = n/100)

(d) chandheq, n = 2000

0.0 0.2 0.4 0.6 0.8 1.0
Evaluations (in units of n + 1)

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

N
or

m
al

iz
ed

O
bj

ec
ti

ve
V

al
ue

DFO-LS
DFO-LS (init n/100)
DFBGN (p = n)
DFBGN (p = n/2)
DFBGN (p = n/10)
DFBGN (p = n/100)

(e) vardimne, n = 1000

0.0 0.2 0.4 0.6 0.8 1.0
Evaluations (in units of n + 1)

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

N
or

m
al

iz
ed

O
bj

ec
ti

ve
V

al
ue

DFO-LS
DFO-LS (init n/100)
DFBGN (p = n)
DFBGN (p = n/2)
DFBGN (p = n/10)
DFBGN (p = n/100)

(f) vardimne, n = 2000

Fig. 6 Normalized objective value (versus evaluations) for 10 runs of DFO-LS and DFBGN on different
CUTEst problems (all with n = 1000 and n = 2000). These results use a budget of n + 1 evaluations and
a 12 h runtime limit per instance

offset by the faster objective decrease achieved by larger p values (after the higher
initialization cost)—if the user can afford a larger p, both in terms of linear algebra
and initial evaluations, then this is usually a better option. An exception to this is the
problem vardimne, where its simple structure means DFBGNwith small p solves the
problem to very high accuracy with very few evaluations, substantially outperforming
both DFBGN with larger p, and DFO-LS with reduced initialization cost.

In Fig. 6 we also show the decrease for DFO-LS with full initialization cost and
DFBGN with p = n, but they use the full budget on initialization, and so make no

123

508 C. Cartis, L. Roberts

0.0 0.2 0.4 0.6 0.8 1.0
Evaluations (in units of n + 1)

0.0

0.2

0.4

0.6

0.8

1.0
P

ro
po

rt
io

n
pr

ob
le

m
s

so
lv

ed

DFO-LS
DFO-LS (init n/100)
DFBGN (p = n)
DFBGN (p = n/2)
DFBGN (p = n/10)
DFBGN (p = n/100)

(a) τ = 0.5, budget n + 1 evaluations

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Evaluations (in units of n + 1)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

po
rt

io
n

pr
ob

le
m

s
so

lv
ed

DFO-LS
DFO-LS (init n/100)
DFBGN (p = n)
DFBGN (p = n/2)
DFBGN (p = n/10)
DFBGN (p = n/100)

(b) τ = 0.1, budget 2(n + 1) evaluations

Fig. 7 Data profiles (in evaluations) comparing DFO-LS (with and without reduced initialization cost) with
DFBGN (various p choices) for different accuracy levels and budgets. Results are an average of 10 runs
for each problem, with a budget of n + 1 or 2(n + 1) evaluations and a 12 h runtime limit per instance. The
problem collection is (CR-large)

progress. However, in addition, we show DFO-LS with a reduced initialization cost of
n/100 evaluations. This variant performs well, in most cases matching the decrease of
DFBGN with p = n/100 initially, but achieving a faster objective reduction against
number of evaluations—this matches with our previous observations. However, the
extra cost of the linear algebra means that DFO-LS with reduced initialization does
not end up using the full budget, instead hitting the 12 h timeout. This is most clear
when comparing the results for n = 1000 with n = 2000, where DFO-LS with
reduced initialization cost begins by achieving a similar decrease in both cases, but
hits the timeout more quickly with n = 2000, and so terminates after fewer objective
evaluations (with a corresponding smaller objective decrease).

We analyze this more systematically in Fig. 7, where we show data profiles (mea-
sured on number of evaluations) of DFBGN and DFO-LS on the (CR-large) problem
collection, for low accuracy and small budgets. These results verify our conclusions:
DFBGN with small p can make progress on many problems with a very short budget
(fewer than n + 1 evaluations), and outperform DFO-LS with reduced initialization
cost due to its slow runtime. However, once we reach a budget of more than n+1 eval-
uations, then DFO-LS and DFBGN with p = n become the best-performing solvers
(when measuring on evaluations only). They are also able to achieve a higher level of
accuracy compared to DFBGN with small p.

Lastly, in Fig. 8 we show the same results as Fig. 7, but showing profiles measured
on runtime. We note that we are only measuring the linear algebra costs, as the cost of
objective evaluation for our problems is negligible. Here, the benefits of DFBGNwith
small p are not seen. This is because the problems that can be solved by DFBGNwith
small p using very few evaluations are likely easier, and so can likely be solved by
DFBGN with large p in few iterations. Thus, the runtime requirements for DFBGN
with large p to solve the problem are not large—even though they have a higher per-
iteration cost, the number of iterations is small. In this setting, therefore, the benefit of
DFBGN with small p is not lower linear algebra costs, but fewer evaluations—which
is likely to be the more relevant issue in this small-budget regime.

123

Scalable subspace methods for derivative-free nonlinear… 509

0 5000 10000 15000 20000 25000 30000 35000 40000
Runtime (s)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

po
rt

io
n

pr
ob

le
m

s
so

lv
ed

DFO-LS
DFO-LS (init n/100)
DFBGN (p = n)
DFBGN (p = n/2)
DFBGN (p = n/10)
DFBGN (p = n/100)

(a) τ = 0.5, n + 1 evaluations (vs. runtime)

0 5000 10000 15000 20000 25000 30000 35000 40000
Runtime (s)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

po
rt

io
n

pr
ob

le
m

s
so

lv
ed

DFO-LS
DFO-LS (init n/100)
DFBGN (p = n)
DFBGN (p = n/2)
DFBGN (p = n/10)
DFBGN (p = n/100)

(b) τ = 0.1, 2(n + 1) evaluations (vs. run-
time)

Fig. 8 Data profiles (in runtime) comparing DFO-LS (with and without reduced initialization cost) with
DFBGN (various p choices) for different accuracy levels and budgets. Results are an average of 10 runs
for each problem, with a budget of n + 1 or 2(n + 1) evaluations and a 12 h runtime limit per instance. The
problem collection is (CR-large)

6 Conclusions and future work

The development of scalable derivative-free optimization algorithms is an active area
of research with many applications. In model-based DFO, the high per-iteration linear
algebra cost associated (primarily) with interpolation model creation and point man-
agement is a barrier to its utility for large-scale problems. To address this, we introduce
three model-based DFO algorithms for large-scale problems.

First, RSDFO is a general framework for model-based DFO based on model con-
struction and minimization in random subspaces, and is suitable for general smooth
nonconvex objectives. This is specialized to nonlinear least-squares problems in
RSDFO-GN, a version of RSDFO based on Gauss–Newton interpolation models built
in subspaces. Lastly, we introduce DFBGN, a practical implementation of RSDFO-
GN. In all cases, the scalability of these methods arises from the construction and
minimization of models in p-dimensional subspaces of the ambient space R

n . The
subspace dimension can be specified by the user to reflect the computational resources
available for linear algebra calculations.

We prove high-probability worst-case complexity bounds for RSDFO, and show
that RSDFO-GN inherits the same bounds with an oracle and flop complexity having
an improved dependency on the ambient dimension compared to full space methods.
In terms of selecting the subspace dimension, we show that by using matrices based
on Johnson-Lindenstrauss transformations, we can choose p to be independent of the
ambient dimension n. Our analysis extends to DFO the techniques in [16, 17, 72],
and yields similar results to probabilistic direct search [46] and standard model-based
DFO [19, 37]. Our results also imply almost-sure global convergence to first-order
stationary points.

Our practical implementation ofRSDFO-GN,DFBGN, has very low computational
requirements: asymptotically, linear in the ambient dimension rather than cubic for
standard model-based DFO. After extensive algorithm development described here,

123

510 C. Cartis, L. Roberts

our implementation is simple and combines several techniques for modifying the
interpolation set which allows it to still make progress with few objective evaluations
(an important consideration for DFO techniques). A Python version of DFBGN is
available on Github.17

For medium-scale problems, DFBGN operating in the full ambient space (p = n)
has similar performance toDFO-LS [15]whenmeasured by objective evaluations, val-
idating the techniques introduced in the practical implementation. However, DFBGN
(with any choice of subspace dimension) has substantially faster runtime, whichmeans
it is much more effective than DFO-LS at solving large-scale problems from CUTEst,
even when working in a very low-dimensional subspace. Further, in the case of expen-
sive objective evaluations, working a subspace means that DFBGN can make progress
with very few evaluations, many fewer than the n + 1 needed for standard methods to
build their initial model. Overall, the implementation of DFBGN is suitable for large-
scale problems both when objective evaluations are cheap (and linear algebra costs
dominate) or when evaluations are expensive (and the initialization cost of standard
methods is impractical).

Future work will focus on extending the ideas from the implementation DFBGN
to the case of general objectives with quadratic models. This will bring the available
software in line with the theoretical guarantees for RSDFO. We note that model-
basedDFO for nonlinear least-squares problems has been adapted to include sketching
methods, which use randomization to reduce the number of residuals considered at
each iteration [14]. We also delegate to future work the development of techniques
for nonlinear least-squares problems which combine sketching (i.e. dimensionality
reduction in the observation space) with our subspace approach (i.e. dimensionality
reduction in variable space), and further study of methods for adaptively selecting a
subspace dimension (c.f. Sect. 4.3).

Acknowledgements The authors would like to acknowledge Zhen Shao for useful discussions on the
complexity analysis for RSDFO, two anonymous referees for their valuable feedback, and the use of the
University of Oxford Advanced Research Computing (ARC) facility in carrying out this work. (http://dx.
doi.org/10.5281/zenodo.22558).

Funding Open Access funding enabled and organized by CAUL and its Member Institutions

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Proofs of technical results

Here we include proofs omitted from the main text.

17 https://github.com/numericalalgorithmsgroup/dfbgn.

123

http://dx.doi.org/10.5281/zenodo.22558
http://dx.doi.org/10.5281/zenodo.22558
http://creativecommons.org/licenses/by/4.0/
https://github.com/numericalalgorithmsgroup/dfbgn

Scalable subspace methods for derivative-free nonlinear… 511

A.1 Proof of Lemma 2

Since m̂k is Qk-fully linear and Δk ≤ μ‖ ĝk‖, the criticality step is not called. From
Lemma 1 and Δk ≤ ‖ ĝk‖/κH , we have ‖ŝk‖ ≥ c2Δk ≥ βFΔk and so the safety step
is not called.

From Assumptions 2 and 3, we have

m̂k(0) − m̂k(ŝk) ≥ c1‖ ĝk‖min

(
Δk,

‖ ĝk‖
κH

)
= c1‖ ĝk‖Δk, (127)

since Δk ≤ ‖ ĝk‖/κH by assumption. Next, since m̂k is Qk-fully linear, from (6a) we
have

| f (xk) − m̂k(0)| = | f (xk + Qk0) − m̂k(0)| ≤ κefΔ
2
k, (128)

| f (xk + sk) − m̂k(ŝk)| = | f (xk + Qk ŝk) − m̂k(ŝk)| ≤ κefΔ
2
k . (129)

Hence we have

|ρk − 1| ≤ | f (xk) − m̂k(0)|
|m̂k(0) − m̂k(ŝk)| + | f (xk + sk) − m̂k(ŝk)|

|m̂k(0) − m̂k(ŝk)| ≤ 2κefΔ2
k

c1‖ ĝk‖Δk
≤ 1 − η2,

(130)

since Δk ≤ c0‖ ĝk‖ ≤ c1(1 − η2)‖ ĝk‖/(2κef). Thus ρk ≥ η2, which is the claim of
the lemma. �

A.2 Proof of Lemma 3

The first part follows immediately from the entry condition of the criticality step. To
prove (13), suppose the criticality step is not called in iteration k and ‖ ĝk‖ < εC . Then
we have Δk ≤ μ‖ ĝk‖ and m̂k is Qk-fully linear, and so from (6b) we have

‖QT
k ∇ f (xk)‖ ≤ ‖QT

k ∇ f (xk) − ĝk‖ + ‖ ĝk‖ ≤ κegΔk + ‖ ĝk‖ ≤ (κegμ + 1)‖ ĝk‖.
(131)

Since Qk is well-aligned, we conclude from (12) and (131) that

αQ‖∇ f (xk)‖ ≤ ‖QT
k ∇ f (xk)‖ ≤ (κegμ + 1)‖ ĝk‖, (132)

and we are done, since ‖∇ f (xk)‖ ≥ ε. �

123

512 C. Cartis, L. Roberts

A.3 Proof of Lemma 4

Since ‖∇ f (xk)‖ ≥ ε, from Lemma 3 we have ‖ ĝk‖ ≥ εg(ε) for all k ∈ A∩S (noting
that k ∈ S implies k ∈ CC). Then since ρk ≥ η1, from Assumptions 2 and 3 we get

f (xk) − f (xk+1) ≥ η1[m̂k(0) − m̂k(ŝk)], (133)

≥ η1c1‖ ĝk‖min

(
Δk,

‖ ĝk‖
κH

)
, (134)

≥ η1c1εg(ε)min

(
Δ,

εg(ε)

κH

)
, (135)

where the last line follows from ‖ ĝk‖ ≥ εg(ε) and Δk ≥ Δ (from k ∈ D(Δ)). Since
our step acceptance guarantees our algorithm is monotone (i.e. f (xk+1) ≤ f (xk) for
all k), we get

f (x0) − flow ≥
∑

k∈A∩D(Δ)∩S
[f (xk) − f (xk+1)]

≥
[
η1c1εg(ε)min

(
Δ,

εg(ε)

κH

)]
· #(A ∩ D(Δ) ∩ S), (136)

from which the result follows. �

A.4 Proof of Lemma 5

Tofind a contradiction, first suppose k ∈ A∩DC (Δ)∩L∩CC\VS . Then since k ∈ A∩
CC and ‖∇ f (xk)‖ ≥ ε by assumption, we have ‖ ĝk‖ ≥ εg(ε) from Lemma 3. Since
k ∈ DC (Δ), we haveΔk < Δ ≤ Δ∗(ε) ≤ min(μ, 1/κH)εg(ε) ≤ min(μ, 1/κH)‖ ĝk‖
by definition of Δ∗(ε). Also, since k ∈ A ∩ L ∩ DC (Δ), we have

αQε ≤ ‖QT
k ∇ f (xk) − ĝk‖ + ‖ ĝk‖ ≤ κegΔ

∗(ε) + ‖ ĝk‖. (137)

If Δ∗(ε) > c1(1 − η2)‖ ĝk‖/(2κef) were to hold, then this would give αQε ≤(
κeg + 2κef

c1(1−η2)

)
Δ∗(ε), contradicting the definition of Δ∗(ε). Hence we must have

Δ∗(ε) ≤ c1(1− η2)‖ ĝk‖/(2κef). All together, since k ∈ DC (Δ), we have Δk < Δ ≤
Δ∗(ε) ≤ c0‖ ĝk‖ by definition of Δ∗(ε). From this and k ∈ L, the assumptions of
Lemma 2 are met, so k /∈ F and ρk ≥ η2; that is, k ∈ VS, a contradiction. Hence we
have #(A ∩ DC (Δ) ∩ L ∩ CC\VS) = 0.

Next, we suppose k ∈ A ∩ DC (Δ) ∩ L ∩ C and again look for a contradiction. In
this case, we have Δk < Δ ≤ Δ∗(ε) ≤ αQε/(κeg + μ−1), and so from k ∈ A ∩ L
and ‖∇ f (xk)‖ ≥ ε we have

‖ ĝk‖ ≥ ‖QT
k ∇ f (xk)‖ − ‖QT

k ∇ f (xk) − ĝk‖ ≥ αQε − κegΔk > μ−1Δk . (138)

123

Scalable subspace methods for derivative-free nonlinear… 513

This means we have ‖ ĝk‖ > μ−1Δk and k ∈ L, so the criticality step is not entered;
i.e. k ∈ CC , a contradiction. Hence we have #(A ∩ DC (Δ) ∩ L ∩ C) = 0 and we are
done. �

A.5 Proof of Lemma 6

If k ∈ S, we always have Δk+1 ≤ γ incΔk . On the other hand, if k ∈ U , we have

Δk+1 = min(γdecΔk, ‖ŝk‖) ≤ γdecΔk, (139)

Hence,

Δk+1 ≤ max(γC , γF , γdec)Δk, for all k ∈ C ∪ F ∪ U . (140)

We now consider the value of log(Δk) for k = 0, . . . , K , so at each iteration we have
an additive change:

– Since Δ ≤ Δ0, the threshold value log(Δ) is log(Δ0/Δ) below the starting value
log(Δ0).

– If k ∈ S, then log(Δk) increases by at most log(γ inc). In particular, Δk+1 ≥ Δ is
only possible if Δk ≥ γ −1

incΔ.
– If k /∈ S = C∪F∪U , then log(Δk) decreases by at least | log(max(γC , γF , γdec))|

= log(1/max(γC , γF , γdec)).

Now, any decrease in Δk coming from k ∈ D(max(γC , γF , γdec)
−1Δ)\S yields

Δk+1 ≥ Δ. Hence the total decrease in log(Δk) must be fully matched by the initial
gap log(Δ0/Δ) plus the maximum possible amount that log(Δk) can be increased
above log(Δ). That is, we must have

log(1/max(γC , γF , γdec)) · #(D(max(γC , γF , γdec)
−1Δ)\S)

≤ log(Δ0/Δ) + log(γ inc) · #(D(γ −1
incΔ) ∩ S), (141)

which gives us (18). �

A.6 Proof of Lemma 7

We follow a similar reasoning to the proof of Lemma 6. For every iteration k ∈
VS ∩DC (Δ), we increase Δk by a factor of at least γinc, since Δk < Δ ≤ γ −1

inc Δmax.
Equivalently, we increase log(Δk) by at least log(γinc). In particular, if Δk < γ −1

inc Δ,
then Δk+1 < Δ.

Alternatively, if k ∈ S\VS, we set
Δk+1 = max(γdecΔk, ‖ŝk‖) ≥ γdecΔk . (142)

If k ∈ U we set

Δk+1 = min(γdecΔk, ‖ŝk‖) ≥ min(γdec, βF)Δk, (143)

123

514 C. Cartis, L. Roberts

since ‖ŝk‖ ≥ βFΔk from k /∈ F . Hence, for every iteration k /∈ VS , we decrease Δk

by a factor of at most min(γC , γF , γdec, βF), or equivalently we decrease log(Δk) by
at most the amount | log(min(γC , γF , γdec, βF))| = log(1/min(γC , γF , γdec, βF)).
Then, to have Δk+1 < Δ we require Δk < min(γC , γF , γdec, βF)−1Δ.

Therefore, since Δ0 ≥ Δ, the total increase in log(Δk) from k ∈ VS ∩
DC (γ −1

inc Δ) must be fully matched by the total decrease in log(Δk) from k ∈
DC (min(γC , γF , γdec, βF)−1Δ)\VS. That is,

log(γinc)#(VS ∩ DC (γ −1
inc Δ))

≤ log(1/min(γC , γF , γdec, βF))#(DC (min(γC , γF , γdec, βF)−1Δ)\VS), (144)

and we are done. �

A.7 Proof of Lemma 8

After every iteration k where m̂k is not Qk-fully linear and either the criticality step
is called or ρk < η2, we always set Δk+1 ≤ Δk and CHECK_MODEL=TRUE. This
means that Qk+1 = Qk , so Qk+1 is well-aligned if and only if Qk is well-aligned.
Hence if k ∈ A ∩ DC (Δ) ∩ LC\VS then either k = K or k + 1 ∈ A ∩ DC (Δ) ∩ L,
and we are done. �

B Supplementary analysis of DFBGN implementation

In this section we include supplementary analysis and motivation of the DFBGN
method, omitted from the main text for brevity.

B.1 Alternative point removal mechanism

Instead of Algorithm 4, we could have used a simpler mechanism for removing points,
such as removing the points furthest from the current iterate (with total cost18 O(np)).
However, this leads to a substantial performance penalty. In Fig. 9, we compare these
two approaches for selecting points to be removed, namely Algorithm 4 and distance
to xk+1, on the (CR) test set with p = n/10 and p = n (using the default value of
pdrop, as detailed in Sect. 4.5). For more details on the numerical testing framework,
see Sect. 5.1 below.We see that the geometry-aware criterion (120) gives substantially
better performance than the cheaper criterion.

B.2 Choice of pdrop: further numerical studies

We note in the main text that there is a trade-off between wanting pdrop to be large (to
bring in new information) and to be small (to avoid unnecessary objective evaluations).

18 As above, if we have (117), we could calculate all distances to xk+1 using columns of Rk , with total
cost O(p2).

123

Scalable subspace methods for derivative-free nonlinear… 515

1 2 4 8 16 32
Evals / min evals of any solver

0.0

0.2

0.4

0.6

0.8

1.0
P

ro
po

rt
io

n
pr

ob
le

m
s

so
lv

ed

Geometry-aware
Alternative (distance to xk)

(a) DFBGN with p = n/10

1 2 4 8 16 32
Evals / min evals of any solver

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

po
rt

io
n

pr
ob

le
m

s
so

lv
ed

Geometry-aware
Alternative (distance to xk)

(b) DFBGN with p = n

Fig. 9 Performance profiles (in evaluations) for DFBGN when p = n/10 and p = n, comparing removing
points with the geometry-aware Algorithm 4 and without Lagrange polynomials (by distance to the current
iterate). We use accuracy level τ = 10−5, and results are an average of 10 runs, each with a budget of
100(n + 1) evaluations. The problem collection is (CR). See Sect. 5.1 for details on the testing framework

1 2 4 8 16 32
Evals / min evals of any solver

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

po
rt

io
n

pr
ob

le
m

s
so

lv
ed

pdrop mixed
pdrop = 1

pdrop = p/10

(a) DFBGN with p = n/2

1 2 4 8 16 32
Evals / min evals of any solver

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

po
rt

io
n

pr
ob

le
m

s
so

lv
ed

pdrop mixed
pdrop = 1

pdrop = p/10

(b) DFBGN with p = n

Fig. 10 Performance profiles (in evaluations) comparing different choices of pdrop, for DFBGN with

p = n/2 and p = n, with accuracy level τ = 10−5. The choice ‘pdrop mixed’ uses pdrop = 1 for
successful iterations and pdrop = p/10 for unsuccessful iterations. Results an average of 10 runs, each
with a budget of 100(n + 1) evaluations. The problem collection is (CR). See Sect. 5.1 for details on the
testing framework

We consider two choices of pdrop, aimed at each of these possible benefits: pdrop =
p/10 to change subspaces quickly, and pdrop = 1 (the minimum possible value) to
use few objective evaluations.

Another approach that we consider is a compromise between these two choices.
We note that having pdrop = 1 is useful to make progress with few evaluations, so we
use this value while we are making progress—we consider this to occur when we have
a successful iteration (i.e. ρk ≥ η1). When we are not progressing (i.e. unsuccessful
steps with ρk < η1), we use the larger value pdrop = p/10.

We compare these three approaches on the (CR) problem collection with a budget
of 100(n + 1) evaluations in Fig. 10. Since these different choices of pdrop are similar
when p is small, we show results for subspace dimensions p = n/2 and p = n. We

123

516 C. Cartis, L. Roberts

0 25 50 75 100 125 150 175
Iteration

10−7

10−5

10−3

10−1

101

Δ
k

an
d

‖ĝ
k
‖

Δk

‖ĝk‖
f(xk) normalized

10−2

10−1

100

N
or

m
al

iz
ed

O
bj

ec
ti

ve
V

al
ue

(a) drcavty1, pdrop = 1

0 5 10 15 20 25 30 35
Iteration

10−7

10−5

10−3

10−1

101

103

Δ
k

an
d

‖ĝ
k
‖

Δk

‖ĝk‖
f(xk) normalized

100

3 × 10−1

4 × 10−1

6 × 10−1

N
or

m
al

iz
ed

O
bj

ec
ti

ve
V

al
ue

(b) luksan13, pdrop = 1

Fig. 11 Comparison of Δk , ‖ ĝk‖ (left y-axis) and normalized objective value (right y-axis) for DFBGN
with p = n and pdrop = 1. The two problems are taken from the (CR) collection. See Sect. 5.1 for details
on the testing framework

first see that, even with p = n/2, the three approaches all perform similarly. However,
for p = n the compromise choice pdrop ∈ {1, p/10} performs better than the two
constant-p approaches. In addition, pdrop = 1 outperforms pdrop = p/10 for small
performance ratios, but is less robust and solves fewer problems overall.

Given these results, in DFBGNwe use the compromise choice as the default mecha-
nism: pdrop = 1 on successful iterations and pdrop = p/10 on unsuccessful iterations.

Relationship to model-improvement phases The CHECK_MODEL flag in RSDFO-
GN is important for ensuring we do not reduce Δk too quickly without first ensuring
the quality of the interpolation model.19 For a similar purpose, DFO-LS incorporates a
second trust-region radius which also is involved with ensuring Δk does not decrease
too quickly [15]. In DFBGN, as described in Sect. 4.4.1, we maintain the geometry
of the interpolation set by replacing poorly-located points with orthogonal directions
around the current iterate; in practice this ensures the quality of the interpolation set.
However, the choice of pdrop has a large impact on causing Δk to shrink too quickly.

In many cases, DFBGN may reach a point where its model is not accurate and we
start to have unsuccessful iterations. To fix this (and continue making progress), we
need to introduce several new interpolation points to produce a high-quality model.
If pdrop is small, this may take many unsuccessful iterations, causing Δk to decrease
quickly.

The result of having pdrop small is seen in Fig. 11. Here, we show Δk , ‖ ĝk‖ and
f (xk) for DFBGN with p = n and pdrop = 1 for two problems from the (CR)
collection. Both problems show that Δk can quickly shrink to be much smaller than
‖ ĝk‖ before reaching optimality. In the case of drcavty1, we see multiple instances
where, after several unsuccessful iterations, we recover a high-quality model and
continue making progress (causing Δk to increase again); this manifests itself as
large oscillations in Δk with comparatively little change in ‖ ĝk‖. Ultimately, as we
terminate onΔk ≤ Δend = 10−8,DFBGNquitswithout solving the problem (reaching
accuracy τ ≈ 6×10−3). Amore extreme version of this behaviour is seen for problem

19 This is related to ensuring Δk does not get too small compared to ‖ ĝk‖ via Lemma 2.

123

Scalable subspace methods for derivative-free nonlinear… 517

0 50 100 150 200
Iteration

10−6

10−5

10−4

10−3

10−2

10−1

100

101

Δ
k

an
d

‖ĝ
k
‖

Δk

‖ĝk‖
f(xk) normalized

10−11

10−9

10−7

10−5

10−3

10−1

N
or

m
al

iz
ed

O
bj

ec
ti

ve
V

al
ue

(a) drcavty1, pdrop mixed

0 200 400 600 800 1000 1200 1400 1600
Iteration

10−7

10−5

10−3

10−1

101

103

Δ
k

an
d

‖ĝ
k
‖

Δk

‖ĝk‖
f(xk) normalized

10−13

10−11

10−9

10−7

10−5

10−3

10−1

N
or

m
al

iz
ed

O
bj

ec
ti

ve
V

al
ue

(b) luksan13, pdrop mixed

Fig. 12 Comparison of Δk , ‖ ĝk‖ (left y-axis) and normalized objective value (right y-axis) for DFBGN
with p = n and the default pdrop ∈ {1, p/10}. The two problems are taken from the (CR) collection. See
Sect. 5.1 for details on the testing framework

luksan13, where we terminate on small Δk in the first sequence of unsuccessful
iterations—DFBGN does not allow enough time to recover a high-quality model and
terminates after achieving accuracy τ ≈ 0.3.

This effect is mitigated by our default choice of pdrop ∈ {1, p/10}. By using a
larger pdrop on unsuccessful iterations, when our model is performing poorly, our
interpolation set is changed quickly. This results in DFBGN recovering a high-quality
model after a smaller decrease in Δk . To demonstrate this, in Fig. 12 we show the
results of DFBGN with this pdrop for the same problems as Fig. 11 above. In both
cases, we still see oscillations in Δk , but their magnitude is substantially reduced—it
takes fewer iterations to get successful steps, andΔk stays well aboveΔend. This leads
to both problems being solved to high accuracy.

In Fig. 12, we also see that, as we approach the solution, ‖ ĝk‖ and Δk decrease at
the same rate, as we would hope. For drcavty1 after iteration 150, we also see the
phenomenon described above, where Δk can become much larger than ‖ ĝk‖ due to
many successful iterations, before an unsuccessful iteration with ‖sk‖ small means
that Δk returns to the level of ‖ ĝk‖ regularly.
Alternative Mechanism for Recovering High-Quality Models An alternative
approach for avoiding unnecessary decreases in Δk while the interpolation model
quality is improved is to simply decrease Δk more slowly on unsuccessful iterations.
This corresponds to setting γdec to be closer to 1,which is the default choice ofDFO-LS
for noisy problems (see [15, Section 3.1]), and alignswith our theoretical requirements
on the trust-region parameters (Theorem 1).

In Fig. 13, we compare the DFBGN default choices, of pdrop ∈ {1, p/10} and
γdec = 0.5, with pdrop = 1 and γdec ∈ {0.5, 0.98} on the (CR) problem collection. For
small values of p (where the different choices of pdrop are essentially identical), the
choice of γdec has almost no impact on the performance of DFBGN. For larger values
of p, using γdec = 0.98 with pdrop = 1 performs comparably well to the DFBGN
default (γdec = 0.5 with pdrop ∈ {1, p/10}). However, we opt for keeping γdec = 0.5,
to allow us to use the larger value for noisy problems (just as inDFO-LS), and to reduce
the risk of overfitting our trust-region parameters to a particular problem collection.

123

518 C. Cartis, L. Roberts

1 2 4 8 16 32
Evals / min evals of any solver

0.0

0.2

0.4

0.6

0.8

1.0
P

ro
po

rt
io

n
pr

ob
le

m
s

so
lv

ed

pdrop mixed, γdec = 0.5
pdrop = 1, γdec = 0.5
pdrop = 1, γdec = 0.98

(a) DFBGN with p = n/100

1 2 4 8 16 32
Evals / min evals of any solver

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

po
rt

io
n

pr
ob

le
m

s
so

lv
ed

pdrop mixed, γdec = 0.5
pdrop = 1, γdec = 0.5
pdrop = 1, γdec = 0.98

(b) DFBGN with p = n/10

1 2 4 8 16 32
Evals / min evals of any solver

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

po
rt

io
n

pr
ob

le
m

s
so

lv
ed

pdrop mixed, γdec = 0.5
pdrop = 1, γdec = 0.5
pdrop = 1, γdec = 0.98

(c) DFBGN with p = n/2

1 2 4 8 16 32
Evals / min evals of any solver

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

po
rt

io
n

pr
ob

le
m

s
so

lv
ed

pdrop mixed, γdec = 0.5
pdrop = 1, γdec = 0.5
pdrop = 1, γdec = 0.98

(d) DFBGN with p = n

Fig. 13 Performance profiles (in evaluations) comparing different choices of pdrop and γdec for DFBGN,

at accuracy level τ = 10−5. The choice ‘pdrop mixed’ uses pdrop = 1 for successful iterations and
pdrop = p/10 for unsuccessful iterations. Results an average of 10 runs, each with a budget of 100(n + 1)
evaluations. The problem collection is (CR). See Sect. 5.1 for details on the testing framework

C Large-scale test problems (CR-large)

See Table 3.

123

Scalable subspace methods for derivative-free nonlinear… 519

Ta
bl
e
3

D
et
ai
ls
of

la
rg
e-
sc
al
e
te
st
pr
ob
le
m
s
fr
om

th
e
C
U
T
E
st
te
st
se
t
(s
ho
w
in
g
2
f(
x 0

)
an
d
2
f(
x∗

)
as

th
e
im

pl
em

en
ta
tio

ns
of

D
FO

-L
S
an
d
D
FB

G
N

do
no

t
ha
ve

th
e
1/
2

co
ns
ta
nt

fa
ct
or

in
(1
07

))

#
Pr
ob

le
m

n
m

2
f(
x 0

)
2
f(
x∗

)
Pa
ra
m
et
er
s

1
A
R
G
L
A
L
E

20
00

40
00

10
,0
00

20
00

(N
,
M

)
=

(2
00

0,
40

00
)

2
A
R
G
L
B
L
E

20
00

40
00

8.
54

50
72

×
10

22
99

9.
62

50
(N

,
M

)
=

(2
00

0,
40

00
)

3
A
R
G
T
R
IG

10
00

10
00

33
3.
00

06
0

N
=

10
00

4
A
R
T
IF

50
00

50
00

18
27

.3
55

0
N

=
50

00

5
A
R
W
H
D
N
E

50
00

99
98

24
,9
95

13
96

.7
93

N
=

50
00

6
B
D
V
A
L
U
E
S

10
00

10
00

1.
99

67
74

×
10

4
0

N
D
P

=
10

02

7
B
R
A
T
U
2D

49
00

49
00

3.
08

51
95

×
10

−3
0

P
=

72

8
B
R
A
T
U
2D

T
49

00
49

00
8.
93

75
21

×
10

−3
7.
07

80
14

×
10

−1
1

P
=

72

9
B
R
A
T
U
3D

33
75

33
75

2.
38

69
77

0
P

=
17

10
B
R
O
W
N
A
L
E

10
00

10
00

2.
50

24
98

×
10

8
0

N
=

10
00

11
B
R
O
Y
D
N
3D

10
00

10
00

10
11

0
N

=
10

00

12
B
R
O
Y
D
N
B
D

50
00

50
00

12
4,
90

4
0

N
=

50
00

13
C
B
R
A
T
U
2D

28
88

28
88

1.
56

04
46

×
10

−2
0

P
=

40

14
C
H
A
N
D
H
E
Q

10
00

10
00

69
.4
16

82
0

N
=

10
00

15
E
IG

E
N
B

25
50

25
50

99
0

N
=

50

123

520 C. Cartis, L. Roberts

Ta
bl
e
3

co
nt
in
ue
d

#
Pr
ob

le
m

n
m

2
f(
x 0

)
2
f(
x∗

)
Pa
ra
m
et
er
s

16
FR

E
U
R
O
N
E

50
00

99
98

5.
04

85
56

5
×

10
6

6.
08

15
92

×
10

5
N

=
50

00

17
IN

T
E
G
R
E
Q

10
00

10
00

5.
67

83
49

0
N

=
10

00

18
M
O
R
E
B
V
N
E

10
00

10
00

3.
96

15
09

×
10

−6
0

N
=

10
00

19
M
SQ

R
TA

49
00

49
00

7.
97

55
92

×
10

4
0

P
=

70

20
M
SQ

R
T
B

10
24

10
24

79
26

.4
44

0
P

=
32

21
O
SC

IG
R
N
E

10
00

10
00

6.
12

07
20

×
10

8
0

N
=

10
00

22
PE

N
LT

1N
E

10
00

10
01

1.
11

44
48

×
10

17
9.
68

62
72

×
10

−8
N

=
10

00

23
PO

W
E
L
L
SE

10
00

10
00

41
8,
75

0
0

N
=

10
00

24
SE

M
IC

N
2U

10
00

10
00

1.
96

06
20

×
10

4
0

(N
,
L
N

)
=

(1
00

0,
90

0)

25
SP

M
SQ

R
T

10
00

16
64

79
7.
00

33
0

M
=

33
4

26
V
A
R
D
IM

N
E

10
00

10
02

1.
24

19
94

×
10

22
0

N
=

10
00

27
Y
A
T
P1

SQ
26

00
26

00
5.
18

41
11

×
10

7
0

N
=

50

28
Y
A
T
P2

SQ
26

00
26

00
2.
24

61
92

×
10

7
0

N
=

50

T
he

se
to

f
pr
ob

le
m
s
ar
e
ta
ke
n
fr
om

th
os
e
in

[1
9,

Ta
bl
e
3]
;t
he

re
le
va
nt

pa
ra
m
et
er
s
yi
el
di
ng

th
e
gi
ve
n

(n
,
m

)
ar
e
pr
ov
id
ed
.T

he
va
lu
e
of

n
sh
ow

n
ex
cl
ud
es

fix
ed

va
ri
ab
le
s

123

Scalable subspace methods for derivative-free nonlinear… 521

References

1. Alarie, S., Audet, C., Gheribi, A.E., Kokkolaras, M., Le Digabel, S.: Two decades of blackbox opti-
mization applications. EURO J. Comput. Optim. 9, 100011 (2021)

2. Alzantot, M., Sharma, Y., Chakraborty, S., Zhang, H., Hsieh, C.J., Srivastava, M.B.: GenAttack: practi-
cal black-box attacks with gradient-free optimization. In: Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 1111–1119. ACM, Prague, Czech Republic (2019)

3. Arter, W., Osojnik, A., Cartis, C., Madho, G., Jones, C., Tobias, S.: Data assimilation approach to
analysing systems of ordinary differential equations. In: 2018 IEEE International Symposium on
Circuits and Systems (ISCAS), pp. 1–5 (2018)

4. Bandeira, A.S., Scheinberg, K., Vicente, L.N.: Computation of sparse low degree interpolating poly-
nomials and their application to derivative-free optimization. Math. Program. 134(1), 223–257 (2012)

5. Bandeira, A.S., Scheinberg, K., Vicente, L.N.: Convergence of trust-region methods based on proba-
bilistic models. SIAM J. Optim. 24(3), 1238–1264 (2014)

6. Bandeira, A.S., van Handel, R.: Sharp nonasymptotic bounds on the norm of random matrices with
independent entries. Ann. Probab. 44(4), 2479–2506 (2016)

7. Berahas, A.S., Bollapragada, R., Nocedal, J.: An investigation of Newton–Sketch and subsampled
Newton methods. Optim. Methods Softw. 35, 661–680 (2020)

8. Berahas, A.S., Cao, L., Choromanski, K., Scheinberg, K.: Linear interpolation gives better gradients
than Gaussian smoothing in derivative-free optimization (2019). arXiv:1905.13043

9. Berahas, A.S., Cao, L., Choromanski, K., Scheinberg, K.: A theoretical and empirical comparison of
gradient approximations in derivative-free optimization. Found. Comput. Math. 22, 507–560 (2022)

10. Bergou, E., Gratton, S., Vicente, L.N.: Levenberg–Marquardt methods based on probabilistic gra-
dient models and inexact subproblem solution, with application to data assimilation. SIAM/ASA J.
Uncertain. Quantif. 4(1), 924–951 (2016)

11. Bergou, E.H., Gorbunov, E., Richtárik, P.: Stochastic three points method for unconstrained smooth
minimization. SIAM J. Optim. 30, 2726–2749 (2020)

12. Blanchet, J., Cartis, C., Menickelly, M., Scheinberg, K.: Convergence rate analysis of a stochastic trust
region method for nonconvex optimization. INFORMS J. Optim. 1(2), 92–119 (2019)

13. Boucheron, S., Lugosi, G., Massart, P.: Concentration Inequalities: A Nonasymptotic Theory of Inde-
pendence. Clarendon Press, Oxford (2012)

14. Cartis, C., Ferguson, T., Roberts, L.: Scalable derivative-free optimization for nonlinear least-squares
problems. In: Workshop on “Beyond First-Order Methods in ML Systems” at the 37th International
Conference on Machine Learning (2020)

15. Cartis, C., Fiala, J., Marteau, B., Roberts, L.: Improving the flexibility and robustness of model-based
derivative-free optimization solvers. ACM Trans. Math. Softw. 45(3), 32:1-32:41 (2019)

16. Cartis, C., Fowkes, J., Shao, Z.: A randomised subspace Gauss–Newton method for nonlinear least-
squares. In: Workshop on “Beyond First-Order Methods in ML Systems” at the 37th International
Conference on Machine Learning. Vienna, Austria (2020)

17. Cartis, C., Fowkes, J., Shao, Z.: Randomised subspace methods for non-convex optimization, with
applications to nonlinear least-squares. Technical report, University of Oxford (2022)

18. Cartis, C., Massart, E., Otemissov, A.: Constrained global optimization of functions with low effective
dimensionality using multiple random embeddings (2020). arXiv:2009.10446

19. Cartis, C., Roberts, L.: A derivative-free Gauss–Newton method. Math. Program. Comput. 11(4),
631–674 (2019)

20. Cartis, C., Roberts, L.: Scalable subspacemethods for derivative-free nonlinear least-squares optimiza-
tion (2021). arXiv:2102.12016

21. Cartis, C., Roberts, L., Sheridan-Methven, O.: Escaping local minima with local derivative-free meth-
ods: a numerical investigation. Optimization (2021)

22. Cartis, C., Scheinberg, K.: Global convergence rate analysis of unconstrained optimization methods
based on probabilistic models. Math. Program. 169(2), 337–375 (2018)

23. Chen, R., Menickelly, M., Scheinberg, K.: Stochastic optimization using a trust-region method and
random models. Math. Program. 169(2), 447–487 (2018)

24. Chen, X., Liu, S., Xu, K., Li, X., Lin, X., Hong, M., Cox, D.: ZO-AdaMM: zeroth-order adaptive
momentum method for black-box optimization. In: Proceedings of the 33rd International Conference
on Neural Information Processing Systems. Curran Associates Inc. (2019)

123

http://arxiv.org/abs/1905.13043
http://arxiv.org/abs/2009.10446
http://arxiv.org/abs/2102.12016

522 C. Cartis, L. Roberts

25. Chung, F., Lu, L.: Connected components in random graphs with given expected degree sequences.
Ann. Comb. 6(2), 125–145 (2002)

26. Colson, B., Toint, P.L.: Optimizing partially separable functions without derivatives. Optim. Methods
Softw. 20(4–5), 493–508 (2005)

27. Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust-Region Methods, MPS-SIAM Series on Optimization,
vol. 1. MPS/SIAM, Philadelphia (2000)

28. Conn, A.R., Scheinberg, K., Vicente, L.N.: Geometry of interpolation sets in derivative free optimiza-
tion. Math. Program. 111(1–2), 141–172 (2007)

29. Conn, A.R., Scheinberg, K., Vicente, L.N.: Global convergence of general derivative-free trust-region
algorithms to first- and second-order critical points. SIAM J. Optim. 20(1), 387–415 (2009)

30. Conn, A.R., Scheinberg, K., Vicente, L.N.: Introduction to Derivative-Free Optimization, MPS-SIAM
Series on Optimization, vol. 8. MPS/SIAM, Philadelphia (2009)

31. Cristofari, A., Rinaldi, F.: A derivative-free method for structured optimization problems. SIAM J.
Optim. 31(2), 1079–1107 (2021)

32. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Pro-
gram. 91(2), 201–213 (2002)

33. Eaton, M.L.: Multivariate Statistics: A Vector Space Approach, Lecture Notes-Monograph Series, vol.
53. Institute of Mathematical Statistics, Beachwood (2007)

34. Ehrhardt, M.J., Roberts, L.: Inexact derivative-free optimization for bilevel learning. J. Math. Imaging
Vis. 63(5), 580–600 (2020)

35. Ergen, T., Candès, E., Pilanci, M.: Random projections for learning non-convex models. In: 33rd
Conference on Neural Information Processing Systems (2019)

36. Facchinei, F., Scutari, G., Sagratella, S.: Parallel selective algorithms for nonconvex big data optimiza-
tion. IEEE Trans. Signal Process. 63(7), 1874–1889 (2015)

37. Garmanjani, R., Júdice, D., Vicente, L.N.: Trust-region methods without using derivatives: worst case
complexity and the nonsmooth case. SIAM J. Optim. 26(4), 1987–2011 (2016)

38. Ghadimi, S., Lan, G.: Stochastic first- and zeroth-order methods for nonconvex stochastic program-
ming. SIAM J. Optim. 23(4), 2341–2368 (2013)

39. Ghanbari, H., Scheinberg, K.: Black-box optimization in machine learning with trust region based
derivative free algorithm (2017). arXiv:1703.06925

40. Golovin, D., Karro, J., Kochanski, G., Lee, C., Song, X., Zhang, Q.: Gradientless descent: high-
dimensional zeroth-order optimization (2019). arXiv:1911.06317

41. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins University Press,
Baltimore (1996)

42. Gould, N.I.M., Orban, D., Toint, P.L.: CUTEst: a constrained and unconstrained testing environment
with safe threads for mathematical optimization. Comput. Optim. Appl. 60(3), 545–557 (2015)

43. Gower,R.,Goldfarb,D., Richtárik, P.: Stochastic blockBFGS: squeezingmore curvature out of data. In:
Balcan, M.F., Weinberger, K.Q. (eds.) Proceedings of The 33rd International Conference on Machine
Learning, Proceedings of Machine Learning Research, vol. 48, pp. 1869–1878. PMLR, New York
(2016)

44. Gower, R.M., Kovalev, D., Lieder, F., Richtárik, P.: RSN: randomized subspace Newton. In: 33rd
Conference on Neural Information Processing Systems (2019)

45. Gower, R.M., Richtárik, P., Bach, F.: Stochastic quasi-gradient methods: variance reduction via Jaco-
bian sketching. Math. Program. 188, 135–192 (2020)

46. Gratton, S., Royer, C.W., Vicente, L.N., Zhang, Z.: Direct search based on probabilistic descent. SIAM
J. Optim. 25(3), 1515–1541 (2015)

47. Gratton, S., Royer, C.W., Vicente, L.N., Zhang, Z.: Complexity and global rates of trust-regionmethods
based on probabilistic models. IMA J. Numer. Anal. 38(3), 1579–1597 (2017)

48. Gratton, S., Royer, C.W., Vicente, L.N., Zhang, Z.: Direct search based on probabilistic feasible descent
for bound and linearly constrained problems. Comput. Optim. Appl. 72(3), 525–559 (2019)

49. Gross, J.C., Parks, G.T.: Optimization by moving ridge functions: derivative-free optimization for
computationally intensive functions. Eng. Optim. 54, 553–575 (2021)

50. Halko, N., Martinsson, P.G., Tropp, J.A.: Finding structure with randomness: probabilistic algorithms
for constructing approximate matrix decompositions. SIAM Rev. 53(2), 217–288 (2011)

51. Hare, W., Jarry-Bolduc, G., Planiden, C.: Error bounds for overdetermined and underdetermined gen-
eralized centred simplex gradients. IMA J. Numer. Anal. 42(1), 744–770 (2022)

52. Kane, D.M., Nelson, J.: Sparser Johnson–Lindenstrauss transforms. J. ACM 61(1), 4:1-4:23 (2014)

123

http://arxiv.org/abs/1703.06925
http://arxiv.org/abs/1911.06317

Scalable subspace methods for derivative-free nonlinear… 523

53. Kelley, C.T.: Detection and remediation of stagnation in the Nelder–Mead algorithm using a sufficient
decrease condition. SIAM J. Optim. 10(1), 43–55 (1999)

54. Kozak, D., Becker, S., Doostan, A., Tenorio, L.: A stochastic subspace approach to gradient-free
optimization in high dimensions. Comput. Optim. Appl. 79(2), 339–368 (2021)

55. Larson, J.W., Menickelly, M., Wild, S.M.: Derivative-free optimization methods. Acta Numer. 28,
287–404 (2019)

56. Liu, S., Kailkhura, B., Chen, P.Y., Ting, P., Chang, S., Amini, L.: Zeroth-order stochastic variance
reduction for nonconvex optimization (2018). arXiv:1805.10367

57. Lu, Z., Xiao, L.: A randomized nonmonotone block proximal gradient method for a class of structured
nonlinear programming. SIAM J. Numer. Anal. 55(6), 2930–2955 (2017)

58. Mahoney, M.W.: Randomized algorithms for matrices and data. Found. Trends Mach. Learn. 3(2),
123–224 (2011)

59. Moré, J.J., Wild, S.M.: Benchmarking derivative-free optimization algorithms. SIAM J. Optim. 20(1),
172–191 (2009)

60. Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Found. Comput.
Math. 17(2), 527–566 (2017)

61. Neumaier, A., Fendl, H., Schilly, H., Leitner, T.: VXQR: derivative-free unconstrained optimization
based on QR factorizations. Soft Comput. 15(11), 2287–2298 (2011)

62. Patrascu, A., Necoara, I.: Efficient random coordinate descent algorithms for large-scale structured
nonconvex optimization. J. Glob. Optim. 61(1), 19–46 (2015)

63. Pilanci, M., Wainwright, M.J.: Newton sketch: a linear-time optimization algorithm with linear-
quadratic convergence. SIAM J. Optim. 27(1), 205–245 (2017)

64. Porcelli, M., Toint, P.L.: Global and local information in structured derivative free optimization with
BFO (2020). arXiv:2001.04801

65. Powell, M.J.D.: On trust region methods for unconstrained minimization without derivatives. Math.
Program. 97(3), 605–623 (2003)

66. Powell, M.J.D.: Least Frobenius norm updating of quadratic models that satisfy interpolation condi-
tions. Math. Program. 100(1), 183–215 (2004)

67. Powell, M.J.D.: The BOBYQA algorithm for bound constrained optimization without derivatives.
Technical Report DAMTP 2009/NA06, University of Cambridge (2009)

68. Qian, H., Hu, Y.Q., Yu, Y.: Derivative-free optimization of high-dimensional non-convex functions by
sequential random embeddings. In: Kambhampati, S. (ed.) Proceedings of the 25th International Joint
Conference on Artificial Intelligence, pp. 1946–1952. AAAI Press, New York (2016)

69. Roberts, L.: Derivative-free algorithms for nonlinear optimisation problems. Ph.D. thesis, University
of Oxford (2019)

70. Roosta-Khorasani, F., Mahoney, M.W.: Sub-sampled Newton methods. Math. Program. 174(1–2),
293–326 (2019)

71. Salimans, T., Ho, J., Chen, X., Sidor, S., Sutskever, I.: Evolution strategies as a scalable alternative to
reinforcement learning (2017). arXiv:1703.03864

72. Shao, Z.: On random embeddings and their applications to optimization. Ph.D. thesis, University of
Oxford (2022)

73. Tao, T.: Topics in Random Matrix Theory, Graduate Studies in Mathematics, vol. 132. American
Mathematical Society, Providence (2012)

74. Tett, S.F.B., Yamazaki, K., Mineter, M.J., Cartis, C., Eizenberg, N.: Calibrating climate models using
inverse methods: case studies with HadAM3, HadAM3P and HadCM3. Geosci. Model Dev. 10, 3567–
3589 (2017)

75. Ughi, G., Abrol, V., Tanner, J.: Amodel-based derivative-free approach to black-box adversarial exam-
ples: Bobyqa. In: Workshop on “Beyond First-Order Methods in ML” at the 32nd Conference on
Advances in Neural Information Processing Systems (2019)

76. Vicente, L.N.: Worst case complexity of direct search. EURO J. Comput. Optim. 1(1–2), 143–153
(2013)

77. Vicente, L.N.: Direct search based on probabilistic descent. Seminar slides provided by private com-
munication (2014)

78. Wang, Z., Hutter, F., Zoghi, M., Matheson, D., de Freitas, N.: Bayesian optimization in a billion
dimensions via random embeddings. J. Artif. Intell. Res. 55(1), 361–387 (2016)

79. Wild, S.M.: POUNDERS in TAO: solving derivative-free nonlinear least-squares problems with
POUNDERS. In: Terlaky, T., Anjos, M.F., Ahmed, S. (eds.) Advances and Trends in Optimization

123

http://arxiv.org/abs/1805.10367
http://arxiv.org/abs/2001.04801
http://arxiv.org/abs/1703.03864

524 C. Cartis, L. Roberts

with Engineering Applications, MOS-SIAM Book Series on Optimization, vol. 24, pp. 529–539.
MOS/SIAM, Philadelphia (2017)

80. Woodruff, D.P.: Sketching as a tool for numerical linear algebra. Found. Trends Theoret. Comput. Sci.
10(1–2), 1–157 (2014)

81. Wright, S.J.: Coordinate descent algorithms. Math. Program. 151(1), 3–34 (2015)
82. Xu, Y., Yin, W.: Block stochastic gradient iteration for convex and nonconvex optimization. SIAM J.

Optim. 25(3), 1686–1716 (2015)
83. Xu,Y., Yin,W.:A globally convergent algorithm for nonconvex optimization based on block coordinate

update. J. Sci. Comput. 72(2), 700–734 (2017)
84. Yang, Y., Pesavento, M., Luo, Z.Q., Ottersten, B.: Inexact block coordinate descent algorithms for

nonsmooth nonconvex optimization. IEEE Trans. Signal Process. 68, 947–961 (2020)
85. Zhang, H., Conn, A.R., Scheinberg, K.: A derivative-free algorithm for least-squares minimization.

SIAM J. Optim. 20(6), 3555–3576 (2010)
86. Zhang, Z.: A subspace decomposition framework for nonlinear optimization: global convergence and

global rate (2013). https://www.zhangzk.net/docs/talks/20130912-icnonla-subdcp.pdf. Accessed 26
Oct 2021

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://www.zhangzk.net/docs/talks/20130912-icnonla-subdcp.pdf

	Scalable subspace methods for derivative-free nonlinear least-squares optimization
	Abstract
	1 Introduction
	1.1 Existing literature
	1.2 Contributions
	2 Random subspace model-based DFO
	2.1 RSDFO algorithm
	2.2 Assumptions and preliminary results
	2.3 Counting iterations
	2.4 Overall complexity bound
	2.5 Remarks on complexity bound
	2.6 Selecting a subspace dimension
	2.7 Complexity for general linear interpolation
	3 Random subspace nonlinear least-squares method
	3.1 Constructing Qk-fully linear models
	3.2 Complexity analysis for RSDFO-GN
	3.3 Linear algebra cost of RSDFO-GN

	4 DFBGN: an efficient implementation of RSDFO-GN
	4.1 Efficiency of DFBGN versus RSDFO-GN
	4.2 Subspace interpolation models
	4.3 Complete DFBGN algorithm
	4.4 Interpolation set management
	4.4.1 Geometry management
	4.4.2 Generation of new directions

	4.5 Selecting an appropriate value of pdrop

	5 Numerical results
	5.1 Testing framework
	5.2 Results based on evaluations
	5.3 Results based on runtime
	5.4 Results for small budgets

	6 Conclusions and future work
	Acknowledgements
	A Proofs of technical results
	A.1 Proof of Lemma 2
	A.2 Proof of Lemma 3
	A.3 Proof of Lemma 4
	A.4 Proof of Lemma 5
	A.5 Proof of Lemma 6
	A.6 Proof of Lemma 7
	A.7 Proof of Lemma 8
	B Supplementary analysis of DFBGN implementation
	B.1 Alternative point removal mechanism
	B.2 Choice of pdrop: further numerical studies
	C Large-scale test problems (CR-large)
	References

