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Abstract
In this paper, we present a new ellipsoid-type algorithm for solving nonsmooth
problems with convex structure. Examples of such problems include nonsmooth con-
vex minimization problems, convex-concave saddle-point problems and variational
inequalities with monotone operator. Our algorithm can be seen as a combination of
the standard Subgradient and Ellipsoid methods. However, in contrast to the latter
one, the proposed method has a reasonable convergence rate even when the dimen-
sionality of the problem is sufficiently large. For generating accuracy certificates in
our algorithm, we propose an efficient technique, which ameliorates the previously
known recipes (Nemirovski in Math Oper Res 35(1):52–78, 2010).
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1 Introduction

The EllipsoidMethod is a classical algorithm inConvexOptimization. It was proposed
in 1976 by Yudin and Nemirovski [23] as the modified method of centered cross-
sections and then independently rediscovered a year later by Shor [21] in the form
of the subgradient method with space dilation. However, the popularity came to the
EllipsoidMethod onlywhenKhachiyan used it in 1979 for proving his famous result on
polynomial solvability of Linear Programming [10]. Shortly after, several polynomial
algorithms, based on the Ellipsoid Method, were developed for some combinatorial
optimization problems [9]. For more details and historical remarks on the Ellipsoid
Method, see [2,3,14].

Despite its long history, the Ellipsoid Method still has some issues which have not
been fully resolved or have been resolved only recently.One of them is the computation
of accuracy certificates which is important for generating approximate solutions to
dual problems or for solving general problems with convex structure (saddle-point
problems, variational inequalities, etc.). For a long time, the procedure for calculating
an accuracy certificate in the EllipsoidMethod required solving an auxiliary piecewise
linear optimization problem (see, e.g., sect. 5 and 6 in [14]). Although this auxiliary
computation did not use any additional calls to the oracle, it was still computationally
expensive and, in some cases, could take even more time than the Ellipsoid Method
itself. Only recently an efficient alternative has been proposed [16].

Another issue with the Ellipsoid Method is related to its poor dependency on the
dimensionality of the problem. Consider, e.g., the minimization problem

min
x∈Q f (x), (1)

where f : Rn → R is a convex function and Q := {x ∈ R
n : ‖x‖ ≤ R} is the

Euclidean ball of radius R > 0. The Ellipsoid Method for solving (1) can be written
as follows (see, e.g., sect. 3.2.8 in [19]):

xk+1 := xk − 1

n + 1

Wkgk
〈gk,Wkgk〉1/2 ,

Wk+1 := n2

n2 − 1

(
Wk − 2

n + 1

WkgkgTk Wk

〈gk,Wkgk〉
)

, k ≥ 0,

(2)

where x0 := 0, W0 := R2 I (I is the identity matrix) and gk := f ′(xk) is an arbitrary
nonzero subgradient if xk ∈ Q, and gk is an arbitrary separator1 of xk from Q if
xk /∈ Q.

To solve problem (1) with accuracy ε > 0 (in terms of the function value), the
Ellipsoid Method needs

O
(
n2 ln

MR

ε

)
(3)

1 More precisely, gk must be a non-zero vector such that 〈gk , xk − x〉 ≥ 0 for all x ∈ Q. In particular, for
the Euclidean ball, one can take gk := xk .
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Subgradient ellipsoid method... 307

iterations, where M > 0 is the Lipschitz constant of f on Q (see theorem 3.2.11
in [19]). Looking at this estimate, we can see an immediate drawback: it directly
depends on the dimension and becomes useless when n → ∞. In particular, we
cannot guarantee any reasonable rate of convergence for the Ellipsoid Method when
the dimensionality of the problem is sufficiently big.

Note that the aforementioned drawback is an artifact of the method itself, not its
analysis. Indeed, when n →∞, iteration (2) reads

xk+1 := xk, Wk+1 := Wk, k ≥ 0.

Thus, the method stays at the same point and does not make any progress.
On the other hand, the simplest Subgradient Method for solving (1) possesses

the “dimension-independent” O(M2R2/ε2) iteration complexity bound (see, e.g.,
sect. 3.2.3 in [19]). Comparing this estimate with (3), we see that the EllipsoidMethod
is significantly faster than the Subgradient Method only when n is not too big com-
pared to MR/ε and significantly slower otherwise. Clearly, this situation is strange
because the former algorithm does much more work at every iteration by “improving”
the “metric” Wk which is used for measuring the norm of the subgradients.

In this paper, we propose a new ellipsoid-type algorithm for solving nonsmooth
problems with convex structure, which does not have the discussed above drawback.
Our algorithm can be seen as a combination of the Subgradient and Ellipsoid methods
and its convergence rate is basically as good as the best of the corresponding rates of
these two methods (up to some logarithmic factors). In particular, when n →∞, the
convergence rate of our algorithm coincides with that of the Subgradient Method.

Contents

This paper is organized as follows. In Sect. 2.1, we review the general formulation
of a problem with convex structure and the associated with it notions of accuracy
certificate and residual. Our presentation mostly follows [16] with examples taken
from [18]. Then, in Sect. 2.2, we introduce the notions of accuracy semicertificate and
gap and discuss their relation with those of accuracy certificate and residual.

In Sect. 3, we present the general algorithmic scheme of our methods. To mea-
sure the convergence rate of this scheme, we introduce the notion of sliding gap and
establish some preliminary bounds on it.

In Sect. 4, we discuss different choices of parameters in our general scheme. First,
we show that, by setting some of the parameters to zero, we obtain the standard
Subgradient and Ellipsoid methods. Then we consider a couple of other less trivial
choices which lead to two new algorithms. The principal of these new algorithms is
the latter one, which we call the Subgradient Ellipsoid Method. We demonstrate that
the convergence rate of this algorithm is basically as good as the best of those of the
Subgradient and Ellipsoid methods.

In Sect. 5, we show that, for both our new methods, it is possible to efficiently
generate accuracy semicertificates whose gap is upper bounded by the sliding gap.
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308 A. Rodomanov, Y. Nesterov

We also compare our approach with the recently proposed technique from [16] for
building accuracy certificates for the standard Ellipsoid Method.

In Sect. 6, we discuss how to efficiently implement our general scheme and the
procedure for generating accuracy semicertificates. In particular, we show that the
time andmemory requirements of our scheme are the same as in the standard Ellipsoid
Method.

Finally, in Sect. 7, we discuss some open questions.

Notation and generalities

In this paper, E denotes an arbitrary n-dimensional real vector space. Its dual space,
composed of all linear functionals on E, is denoted by E

∗. The value of s ∈ E
∗,

evaluated at x ∈ E, is denoted by 〈s, x〉. See [19, sect. 4.2.1] for the supporting
discussion of abstract real vector spaces in Optimization.

Let us introduce in the spacesE andE∗ a pair of conjugate Euclidean norms. To this
end, let us fix a self-adjoint positive definite linear operator B : E→ E

∗ and define

‖x‖ := 〈Bx, x〉1/2, x ∈ E, ‖s‖∗ := 〈s, B−1s〉1/2, s ∈ E
∗.

Note that, for any s ∈ E
∗ and x ∈ E, we have the Cauchy-Schwarz inequality

|〈s, x〉| ≤ ‖s‖∗‖x‖,

which becomes an equality if and only if s and Bx are collinear. In addition to ‖x‖ and
‖·‖∗, we often work with other Euclidean norms defined in the same way but using
another reference operator instead of B. In this case, we write ‖·‖G and ‖·‖∗G , where
G : E→ E

∗ is the corresponding self-adjoint positive definite linear operator.
Sometimes, in the formulas, involving products of linear operators, it is convenient

to treat x ∈ E as a linear operator from R to E, defined by xα := αx , and x∗ as a
linear operator from E

∗ to R, defined by x∗s := 〈s, x〉. Likewise, any s ∈ E
∗ can

be treated as a linear operator from R to E
∗, defined by sα := αs, and s∗ as a linear

operator from E to R, defined by s∗x := 〈s, x〉. Then, xx∗ and ss∗ are rank-one self-
adjoint linear operators from E

∗ to E and from E to E∗ respectively, acting as follows:
(xx∗)s = 〈s, x〉x and (ss∗)x = 〈s, x〉s for any x ∈ E and s ∈ E

∗.
For a self-adjoint linear operator G : E → E

∗, by tr G and det G, we denote the
trace and determinant of G with respect to our fixed operator B:

tr G := tr(B−1G), detG := det(B−1G).

Note that, in these definitions, B−1G is a linear operator fromE toE, so tr(B−1G) and
det(B−1G) are the standard well-defined notions of trace and determinant of a linear
operator acting on the same space. For example, they can be defined as the trace and
determinant of the matrix representation of B−1G with respect to an arbitrary chosen
basis in E (the result is independent of the particular choice of basis). Alternatively,
tr G and detG can be equivalently defined as the sum and product, respectively, of the
eigenvalues of G with respect to B.

123



Subgradient ellipsoid method... 309

For a point x ∈ E and a real r > 0, by

B (x, r) := {y ∈ E : ‖x‖ ≤ r},

we denote the closed Euclidean ball with center x and radius r .
Given two solids2 Q, Q0 ⊆ E, we can define the relative volume of Q with respect

to Q0 by vol(Q/Q0) := vol Qe/ vol Qe
0, where e is an arbitrary basis in E, Q

e, Qe
0 ⊆

R
n are the coordinate representations of the sets Q, Q0 in the basis e and vol is the

Lebesgue measure inRn . Note that the relative volume is independent of the particular
choice of the basis e. Indeed, for any other basis f , we have Qe = T e

f Q
f , Qe

0 =
T e
f Q

f
0 , where T

e
f is the n× n change-of-basis matrix, so vol Qe = (det T e

f )(vol Q
f ),

vol Qe
0 = (det T e

f )(vol Q
f
0 ) and hence vol Qe/ vol Qe

0 = vol Q f / vol Q f
0 .

For us, it will be convenient to define the volume of a solid Q ⊆ E as the relative
volume of Q with respect to the unit ball:

vol Q := vol(Q/B (0, 1)).

For an ellipsoid W := {x ∈ E : 〈Gx, x〉 ≤ 1}, where G : E → E
∗ is a self-adjoint

positive definite linear operator, we have volW = (detG)−1/2.

2 Convex problems and accuracy certificates

2.1 Description and examples

In this paper, we consider numerical algorithms for solving problems with convex
structure. The main examples of such problems are convex minimization problems,
convex-concave saddle-point problems, convex Nash equilibrium problems, and vari-
ational inequalities with monotone operators.

The general formulation of a problem with convex structure involves two objects:

– Solid Q ⊆ E (called the feasible set), represented by the Separation Oracle: given
any point x ∈ E, this oracle can check whether x ∈ int Q, and if not, it reports a
vector gQ(x) ∈ E

∗ \ {0} which separates x from Q:

〈gQ(x), x − y〉 ≥ 0, ∀y ∈ Q. (4)

– Vector field g : int Q → E
∗, represented by the First-Order Oracle: given any

point x ∈ int Q, this oracle returns the vector g(x).

In what follows, we only consider the problems satisfying the following condition:

∃x∗ ∈ Q : 〈g(x), x − x∗〉 ≥ 0, ∀x ∈ int Q. (5)

2 Hereinafter, a solid is any convex compact set with nonempty interior.
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310 A. Rodomanov, Y. Nesterov

Remark 1 A careful reader may note that the notation x∗ overlaps with our general
notation for the linear operator generated by a point x (see Sect. 1). However, there
should be no risk of confusion since the precise meaning of x∗ can usually be easily
inferred from the context.

A numerical algorithm for solving a problem with convex structure starts at some
point x0 ∈ E. At each step k ≥ 0, it queries the oracles at the current test point xk
to obtain the new information about the problem, and then somehow uses this new
information to form the next test point xk+1. Depending on whether xk ∈ int Q, the
kth step of the algorithm is called productive or nonproductive.

The total information, obtained by the algorithm from the oracles after k ≥ 1 steps,
comprises its execution protocol which consists of:

– The test points x0, . . . , xk−1 ∈ E.
– The set of productive steps Ik := {0 ≤ i ≤ k − 1 : xi ∈ int Q}.
– The vectors g0, . . . , gk−1 ∈ E

∗ reported by the oracles: gi := g(xi ), if i ∈ Ik , and
gi := gQ(xi ), if i /∈ Ik , 0 ≤ i ≤ k − 1.

An accuracy certificate, associated with the above execution protocol, is a nonneg-
ative vector λ := (λ0, . . . , λk−1) such that Sk(λ) :=∑

i∈Ik λi > 0 (and, in particular,
Ik �= ∅). Given any solid Ω , containing Q, we can define the following residual of λ

on Ω:

εk(λ) := max
x∈Ω

1

Sk(λ)

k−1∑
i=0

λi 〈gi , xi − x〉, (6)

which is easily computable whenever Ω is a simple set (e.g., a Euclidean ball). Note
that

εk(λ) ≥ max
x∈Q

1

Sk(λ)

k−1∑
i=0

λi 〈gi , xi − x〉 ≥ max
x∈Q

1

Sk(λ)

∑
i∈Ik

λi 〈gi , xi − x〉 (7)

and, in particular, εk(λ) ≥ 0 in view of (5).

In what follows, we will be interested in the algorithms, which can produce accu-
racy certificates λ(k) with εk(λ

(k)) → 0 at a certain rate. This is a meaningful goal
because, for all known instances of problems with convex structure, the residual εk(λ)

upper bounds a certain natural inaccuracy measure for the corresponding problem.
Let us briefly review some standard examples (for more examples, see [16,18] and the
references therein).

Example 1 (Convex minimization problem) Consider the problem

f ∗ := min
x∈Q f (x), (8)

where Q ⊆ E is a solid and f : E→ R∪ {+∞} is closed convex and finite on int Q.
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The First-Order Oracle for (8) is g(x) := f ′(x), x ∈ int Q, where f ′(x) is an
arbitrary subgradient of f at x . Clearly, (5) holds for x∗ being any solution of (8).

One can verify that, in this example, the residual εk(λ) upper bounds the functional
residual: for x̂k := 1

Sk (λ)

∑
i∈Ik λi xi or x∗k := argmin{ f (x) : x ∈ Xk}, where Xk :=

{xi : i ∈ Ik}, we have f (x̂k)− f ∗ ≤ εk(λ) and f (x∗k )− f ∗ ≤ εk(λ).

Moreover, εk(λ), in fact, upper bounds the primal-dual gap for a certain dual prob-
lem for (8). Indeed, let f∗ : E∗ → R ∪ {+∞} be the conjugate function of f . Then,
we can represent (8) in the following dual form:

f ∗ = min
x∈Q max

s∈dom f∗
[〈s, x〉 − f∗(s)] = max

s∈dom f∗
[− f∗(s)− ξQ(−s)], (9)

where dom f∗ := {s ∈ E
∗ : f∗(s) < +∞} and ξQ(−s) := maxx∈Q〈−s, x〉. Denote

sk := 1
Sk (λ)

∑
i∈Ik λi gi . Then, using (7) and the convexity of f and f∗, we obtain

εk(λ) ≥ 1

Sk(λ)

∑
i∈Ik

λi 〈gi , xi 〉 + ξQ(−sk)

= 1

Sk(λ)

∑
i∈Ik

λi [ f (xi )+ f∗(gi )] + ξQ(−sk)

≥ f (x̂k)+ f∗(sk)+ ξQ(−sk).

Thus, x̂k and sk are εk(λ)-approximate solutions (in terms of function value) to prob-
lems (8) and (9), respectively. Note that the same is true if we replace x̂k with x∗k .

Example 2 (Convex-concave saddle-point problem) Consider the following prob-
lem: Find (u∗, v∗) ∈ U × V such that

f (u∗, v) ≤ f (u∗, v∗) ≤ f (u, v∗), ∀(u, v) ∈ U × V , (10)

where U , V are solids in some finite-dimensional vector spaces Eu , Ev , respectively,
and f : U × V → R is a continuous function which is convex-concave, i.e., f (·, v) is
convex and f (u, ·) is concave for any u ∈ U and any v ∈ V .

In this example, we set E := Eu×Ev , Q := U ×V and use the First-Order Oracle

g(x) := ( f ′u(x),− f ′v(x)), x := (u, v) ∈ int Q,

where f ′u(x) is an arbitrary subgradient of f (·, v) at u and f ′v(y) is an arbitrary
supergradient of f (u, ·) at v. Then, for any x := (u, v) ∈ int Q and any x ′ :=
(u′, v′) ∈ Q,

〈g(x), x − x ′〉 = 〈 f ′u(x), u − u′〉 − 〈 f ′v(x), v − v′〉 ≥ f (u, v′)− f (u′, v). (11)

In particular, (5) holds for x∗ := (u∗, v∗) in view of (10).
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312 A. Rodomanov, Y. Nesterov

Let φ : U → R and ψ : V → R be the functions

φ(u) := max
v∈V f (u, v), ψ(v) := min

u∈U f (u, v).

In view of (10), we haveψ(v) ≤ f (u∗, v∗) ≤ φ(u) for all (u, v) ∈ U ×V . Therefore,
the difference φ(u) − ψ(v) (called the primal-dual gap) can be used for measuring
the quality of an approximate solution x := (u, v) ∈ Q to problem (10).

Denoting x̂k := 1
Sk (λ)

∑
i∈Ik λi xi =: (ûk, v̂k) and using (7), we obtain

εk(λ) ≥ max
x∈Q

1

Sk(λ)

∑
i∈Ik

λi 〈gi , xi − x〉

≥ max
u∈U ,v∈V

1

Sk(λ)

∑
i∈Ik

λi [ f (ui , v)− f (u, vi )]

≥ max
u∈U ,v∈V [ f (ûk, v)− f (u, v̂k)] = φ(ûk)− ψ(v̂k),

where the second inequality is due to (11) and the last one follows from the convexity-
concavity of f . Thus, the residual εk(λ) upper bounds the primal-dual gap for the
approximate solution x̂k .

Example 3 (Variational inequality with monotone operator) Let Q ⊆ E be a
solid and let V : Q → E

∗ be a continuous operator which is monotone, i.e.,
〈V (x)− V (y), x − y〉 ≥ 0 for all x, y ∈ Q. The goal is to solve the following
(weak) variational inequality:

Find x∗ ∈ Q : 〈V (x), x − x∗〉 ≥ 0, ∀x ∈ Q. (12)

Since V is continuous, this problem is equivalent to its strong variant: find x∗ ∈ Q
such that 〈V (x∗), x − x∗〉 ≥ 0 for all x ∈ Q.

A standard tool for measuring the quality of an approximate solution to (12) is the
dual gap function, introduced in [1]:

f (x) := max
y∈Q 〈V (y), x − y〉, x ∈ Q.

It is easy to see that f is a convex nonnegative function which equals 0 exactly at the
solutions of (12).

In this example, the First-Order Oracle is defined by g(x) := V (x) for any x ∈
int Q. Denote x̂k := 1

Sk (λ)

∑
i∈Ik λi xi . Then, using (7) and the monotonicity of V , we

obtain

εk(λ) ≥ max
x∈Q

1

Sk(λ)

∑
i∈Ik

λi 〈V (xi ), xi − x〉

≥ max
x∈Q

1

Sk(λ)

∑
i∈Ik

λi 〈V (x), xi − x〉 = f (x̂k).
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Thus, εk(λ) upper bounds the dual gap function for the approximate solution x̂k .

2.2 Establishing convergence of residual

For the algorithms, considered in this paper, instead of accuracy certificates and resid-
uals, it turns out to be more convenient to speak about closely related notions of
accuracy semicertificates and gaps, which we now introduce.

As before, let x0, . . . , xk−1 be the test points, generated by the algorithm after k ≥ 1
steps, and let g0, . . . , gk−1 be the corresponding oracle outputs. An accuracy semicer-
tificate, associated with this information, is a nonnegative vector λ := (λ0, . . . , λk−1)
such that Γk(λ) := ∑k−1

i=0 λi‖gi‖∗ > 0. Given any solid Ω , containing Q, the gap of
λ on Ω is defined in the following way:

δk(λ) := max
x∈Ω

1

Γk(λ)

k−1∑
i=0

λi 〈gi , xi − x〉. (13)

Comparing these definitions with those of accuracy certificate and residual, we see
that the only difference between them is that now we use a different “normalizing”
coefficient: Γk(λ) instead of Sk(λ). Also, in the definitions of semicertificate and gap,
we do not make any distinction between productive and nonproductive steps. Note
that δk(λ) ≥ 0.

Let us demonstrate that by making the gap sufficiently small, we can make the
corresponding residual sufficiently small as well. For this, we need the following
standard assumption about our problem with convex structure (see, e.g., [16]).

Assumption 1 The vector field g, reported by the First-Order Oracle, is semibounded:

〈g(x), y − x〉 ≤ V , ∀x ∈ int Q, ∀y ∈ Q.

A classical example of a semibounded field is a bounded one: if there is M ≥ 0, such
that ‖g(x)‖∗ ≤ M for all x ∈ int Q, then g is semibounded with V := MD, where
D is the diameter of Q. However, there exist other examples. For instance, if g is
the subgradient field of a convex function f : E → R ∪ {+∞}, which is finite and
continuous on Q, then g is semibounded with V := maxQ f −minQ f (variation of f
on Q); however, g is not bounded if f is not Lipschitz continuous (e.g., f (x) := −√x
on Q := [0, 1]). Another interesting example is the subgradient field g of a ν-self-
concordant barrier f : E→ R ∪ {+∞} for the set Q; in this case, g is semibounded
with V := ν (see, e.g., [19, Theorem 5.3.7]), while f (x) → +∞ at the boundary of
Q.

Lemma 1 Let λ be a semicertificate such that δk(λ) < r , where r is the largest of the
radii of Euclidean balls contained in Q. Then, λ is a certificate and

εk(λ) ≤ δk(λ)

r − δk(λ)
V .

123



314 A. Rodomanov, Y. Nesterov

Proof Denote δk := δk(λ), Γk := Γk(λ), Sk := Sk(λ). Let x̄ ∈ Q be such that
B (x̄, r) ⊆ Q. For each 0 ≤ i ≤ k − 1, let zi be a maximizer of z �→ 〈gi , z − x̄〉 on
B (x̄, r). Then, for any 0 ≤ i ≤ k − 1, we have 〈gi , x̄ − xi 〉 = 〈gi , zi − xi 〉 − r‖gi‖∗
with zi ∈ Q. Therefore,

k−1∑
i=0

λi 〈gi , x̄ − xi 〉 =
k−1∑
i=0

λi 〈gi , zi − xi 〉 − rΓk ≤ SkV − rΓk, (14)

where the inequality follows from the separation property (4) and Assumption 1.
Let x ∈ Ω be arbitrary. Denoting y := (

δk x̄ + (r − δk)x
)
/r ∈ Ω , we obtain

(r − δk)

k−1∑
i=0

λi 〈gi , xi − x〉 = r
k−1∑
i=0

λi 〈gi , xi − y〉 + δk

k−1∑
i=0

λi 〈gi , x̄ − xi 〉

≤ rδkΓk + δk

k−1∑
i=0

λi 〈gi , x̄ − xi 〉 ≤ δk SkV , (15)

where the inequalities follow from the definition (13) of δk and (14), respectively.
It remains to show that λ is a certificate, i.e., Sk > 0. But this is simple. Indeed, if

Sk = 0, then, taking x := x̄ in (15) and using (14), we get 0 ≥∑k−1
i=0 λi 〈gi , xi − x̄〉 ≥

rΓk , which contradicts our assumption that λ is a semicertificate, i.e., Γk > 0. ��

According to Lemma 1, from the convergence rate of the gap δk(λ
(k)) to zero,

we can easily obtain the corresponding convergence rate of the residual εk(λ
(k)). In

particular, to ensure that εk(λ
(k)) ≤ ε for some ε > 0, it suffices to make δk(λ

(k)) ≤
δ(ε) := εr/(ε+V ). For this reason, in the rest of this paper, we can focus our attention
on studying the convergence rate only for the gap.

3 General algorithmic scheme

Consider the general scheme presented in Algorithm 1. This scheme works with an
arbitrary oracle G : E→ E

∗ satisfying the following condition:

∃x∗ ∈ B (x0, R) : 〈G(x), x − x∗〉 ≥ 0, ∀x ∈ E. (16)

The point x∗ from (16) is typically called a solution of our problem. For the gen-
eral problem with convex structure, represented by the First-Order Oracle g and the
Separation Oracle gQ for the solid Q, the oracle G is usually defined as follows:
G(x) := g(x), if x ∈ int Q, and G(x) := gQ(x), otherwise. To ensure that (16) holds,
the constant R needs to be chosen sufficiently big so that Q ⊆ B (x0, R).
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Algorithm 1: General Scheme of Subgradient Ellipsoid Method

Input: Point x0 ∈ E and scalar R > 0.

Initialization: Define the functions �0(x) := 0, ω0(x) := 1
2‖x‖2.

For k ≥ 0 iterate:
1. Query the oracle to obtain gk := G(xk).
2. Compute Uk := maxx∈Ωk∩L−k 〈gk, xk − x〉, where

Ωk := {x ∈ E : ωk(x) ≤ 1
2 R

2}, L−k := {x ∈ E : �k(x) ≤ 0}.

3. Choose some coefficients ak, bk ≥ 0 and update the functions

�k+1(x) := �k(x)+ ak〈gk, x − xk〉,
ωk+1(x) := ωk(x)+ 1

2bk(Uk − 〈gk, xk − x〉)〈gk, x − xk〉.
(17)

4. Set xk+1 := argmin
x∈E

[�k+1(x)+ ωk+1(x)].

Note that, inAlgorithm1,ωk are strictly convex quadratic functions and �k are affine
functions. Therefore, the sets Ωk are certain ellipsoids and L−k are certain halfspaces
(possibly degenerate).

Let us show that Algorithm 1 is a cutting-plane scheme in which the sets Ωk ∩ L−k
are the localizers of the solution x∗.
Lemma 2 In Algorithm 1, for all k ≥ 0, we have x∗ ∈ Ωk ∩ L−k and Q̂k+1 ⊆
Ωk+1 ∩ L−k+1, where Q̂k+1 := {x ∈ Ωk ∩ L−k : 〈gk, x − xk〉 ≤ 0}.
Proof Let us prove the claim by induction. Clearly, Ω0 = B (x0, R), L−0 = E, hence
Ω0 ∩ L−0 = B (x0, R) � x∗ by (16). Suppose we have already proved that x∗ ∈
Ωk ∩ L−k for some k ≥ 0. Combining this with (16), we obtain x∗ ∈ Q̂k+1, so
it remains to show that Q̂k+1 ⊆ Ωk+1 ∩ L−k+1. Let x ∈ Q̂k+1 (⊆ Ωk ∩ L−k ) be
arbitrary. Note that 0 ≤ 〈gk, xk − x〉 ≤ Uk . Hence, by (17), �k+1(x) ≤ �k(x) ≤ 0 and
ωk+1(x) ≤ ωk(x) ≤ 1

2 R
2, which means that x ∈ Ωk+1 ∩ L−k+1. ��

Next, let us establish an important representation of the ellipsoids Ωk via the func-
tions �k and the test points xk . For this, let us define Gk := ∇2ωk(0) for each k ≥ 0.
Observe that these operators satisfy the following simple relations (cf. (17)):

G0 = B, Gk+1 = Gk + bkgkg
∗
k , k ≥ 0. (18)

Also, let us define the sequence Rk > 0 by the recurrence

R0 = R, R2
k+1 = R2

k + (ak + 1
2bkUk)

2
‖gk‖2Gk

1+ bk‖gk‖2Gk

, k ≥ 0. (19)
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Lemma 3 In Algorithm 1, for all k ≥ 0, we have

Ωk = {x ∈ E : −�k(x)+ 1
2‖x − xk‖2Gk

≤ 1
2 R

2
k }.

In particular, for all k ≥ 0 and all x ∈ Ωk ∩ L−k , we have ‖x − xk‖Gk
≤ Rk.

Proof Let ψk : E → R be the function ψk(x) := �k(x) + ωk(x). Note that ψk is a
quadratic function with Hessian Gk and minimizer xk . Hence, for any x ∈ E, we have

ψk(x) = ψ∗k + 1
2‖x − xk‖2Gk

, (20)

where ψ∗k := minx∈E ψk(x).

Let us compute ψ∗k . Combining (17), (18) and (20), for any x ∈ E, we obtain

ψk+1(x) = ψk(x)+ (ak + 1
2bkUk)〈gk, x − xk〉 + 1

2bk〈gk, x − xk〉2
= ψ∗k + 1

2‖x − xk‖2Gk
+ (ak + 1

2bkUk)〈gk, x − xk〉 + 1
2bk〈gk, x − xk〉2

= ψ∗k + 1
2‖x − xk‖2Gk+1 + (ak + 1

2bkUk)〈gk, x − xk〉, (21)

Therefore,

ψ∗k+1 = ψ∗k − 1
2 (ak + 1

2bkUk)
2‖gk‖2Gk+1

= ψ∗k − 1
2 (ak + 1

2bkUk)
2

‖gk‖2Gk

1+ bk‖gk‖2Gk

,
(22)

where the last identity follows from the fact that G−1k+1gk = G−1k gk/(1 + bk‖gk‖2Gk
)

(since Gk+1G−1k gk = (1 + bk‖gk‖2Gk
)gk in view of (18)). Since (22) is true for any

k ≥ 0 and since ψ∗0 = 0, we thus obtain, in view of (19),

ψ∗k = 1
2 (R

2 − R2
k ). (23)

Let x ∈ Ωk be arbitrary. Using the definition of ψk(x) and (23), we obtain

−�k(x)+ 1
2‖x − xk‖2Gk

= ωk(x)− ψ∗k = ωk(x)+ 1
2 (R

2
k − R2).

Thus, x ∈ Ωk ⇐⇒ ωk(x) ≤ 1
2 R

2 ⇐⇒ −�k(x) + 1
2‖x − xk‖2Gk

≤ 1
2 R

2
k . In

particular, for any x ∈ Ωk ∩ L−k , we have �k(x) ≤ 0 and ‖x − xk‖Gk
≤ Rk . ��

Lemma 3 has several consequences. First, we see that the localizers Ωk ∩ L−k are
contained in the ellipsoids {x : ‖x − xk‖Gk

≤ Rk} whose centers are the test points
xk .

Second, we get a uniform upper bound on the function −�k on the ellipsoid Ωk :
−�k(x) ≤ 1

2 R
2
k for all x ∈ Ωk . This observation leads us to the following definition
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of the sliding gap:

Δk := max
x∈Ωk

1

Γk
[−�k(x)] = max

x∈Ωk

1

Γk

k−1∑
i=0

ai 〈gi , xi − x〉, k ≥ 1, (24)

provided that Γk :=∑k−1
i=0 ai‖gi‖∗ > 0. According to our observation, we have

Δk ≤ R2
k

2Γk
. (25)

At the same time, Δk ≥ 0 in view of Lemma 2 and 16

Comparing the definition (24) of the sliding gap Δk with the definition (13) of
the gap δk(a(k)) for the semicertificate a(k) := (a0, . . . , ak−1), we see that they are
almost identical. The only difference between them is that the solid Ωk , over which
the maximum is taken in the definition of the sliding gap, depends on the iteration
counter k. This seems to be unfortunate because we cannot guarantee that each Ωk

contains the feasible set Q (as required in the definition of gap) even if so does the
initial solid Ω0 = B (x0, R). However, this problem can be dealt with. Namely, in
Sect. 5, we will show that the semicertificate a(k) can be efficiently converted into
another semicertificate λ(k) for which δk(λ

(k)) ≤ Δk when taken over the initial
solid Ω := Ω0. Thus, the sliding gap Δk is a meaningful measure of convergence
rate of Algorithm 1, and it makes sense to call the coefficients a(k) a preliminary
semicertificate.

Let us now demonstrate that, for a suitable choice of the coefficients ak and bk in
Algorithm 1, we can ensure that the sliding gap Δk converges to zero.

Remark 2 From now on, in order to avoid taking into account some trivial degenerate
cases, it will be convenient to make the following minor technical assumption:

In Algorithm 1, gk �= 0 for all k ≥ 0.

Indeed, when the oracle reports gk = 0 for some k ≥ 0, it usually means that the test
point xk , at which the oracle was queried, is, in fact, an exact solution to our problem.
For example, if the standard oracle for a problem with convex structure has reported
gk = 0, we can terminate the method and return the certificate λ := (0, . . . , 0, 1) for
which the residual εk(λ) = 0.

Let us choose the coefficients ak and bk in the following way:

ak := αk R + 1
2θγ Rk

‖gk‖∗Gk

, bk := γ

‖gk‖2Gk

, k ≥ 0, (26)

where αk, θ, γ ≥ 0 are certain coefficients to be chosen later.
According to (25), to estimate the convergence rate of the sliding gap, we need

to estimate the rate of growth of the coefficients Rk and Γk from above and below,
respectively. Let us do this.
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Lemma 4 In Algorithm 1 with parameters (26), for all k ≥ 0, we have

R2
k ≤ [qc(γ )]kCk R

2, (27)

where qc(γ ) := 1+ cγ 2

2(1+γ )
, c := 1

2 (τ+1)(θ+1)2, Ck := 1+ τ+1
τ

∑k−1
i=0 α2

i and τ > 0

can be chosen arbitrarily. Moreover, if αk = 0 for all k ≥ 0, then, R2
k = [qc(γ )]k R2

for all k ≥ 0 with c := 1
2 (θ + 1)2.

Proof By the definition of Uk and Lemma 3, we have

Uk = max
x∈Ωk∩L−k

〈gk, xk − x〉 ≤ max‖x−xk‖Gk
≤Rk
〈gk, xk − x〉 = Rk‖gk‖∗Gk

. (28)

At the same time, Uk ≥ 0 in view of Lemma 2 and (16). Hence,

(ak + 1
2bkUk)

2
‖gk‖2Gk

1+ bk‖gk‖2Gk

≤ (ak + 1
2bk Rk‖gk‖∗Gk

)2
‖gk‖2Gk

1+ bk‖gk‖2Gk

= 1

1+ γ

(
αk R + 1

2 (θ + 1)γ Rk
)2

,

where the identity follows from (26). Combining this with (19), we obtain

R2
k+1 ≤ R2

k +
1

1+ γ

(
αk R + 1

2 (θ + 1)γ Rk
)2

. (29)

Note that, for any ξ1, ξ2 ≥ 0 and any τ > 0, we have

(ξ1 + ξ2)
2 = ξ21 + 2ξ1ξ2 + ξ22 ≤

τ + 1

τ
ξ21 + (τ + 1)ξ22 = (τ + 1)

(1
τ

ξ21 + ξ22

)

(look at the minimum of the right-hand side in τ ). Therefore, for arbitrary τ > 0,

R2
k+1 ≤ R2

k +
τ + 1

1+ γ

(1
τ

α2
k R

2 + 1
4 (θ + 1)2γ 2R2

k

)
= qR2

k + βk R
2,

where we denote q := qc(γ ) ≥ 1 and βk := τ+1
τ(1+γ )

α2
k . Dividing both sides by qk+1,

we get

R2
k+1

qk+1
≤ R2

k

qk
+ βk R2

qk+1
.

Since this is true for any k ≥ 0, we thus obtain, in view of (19), that

R2
k

qk
≤ R2

0

q0
+ R2

k−1∑
i=0

βi

qi+1
=

(
1+

k−1∑
i=0

βi

qi+1

)
R2,
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Multiplying both sides by qk and using that βi
qi+1 ≤ τ+1

τ
α2
i , we come to (27).

When αk = 0 for all k ≥ 0, we have �k = 0 and L−k = E for all k ≥ 0.
Therefore, by Lemma 3, Ωk = {x : ‖x − xk‖Gk

≤ Rk} and hence (28) is, in fact, an

equality. Consequently, (29) becomes R2
k+1 = R2

k + cγ 2

2(1+γ )
R2
k = qc(γ )R2

k , where

c := 1
2 (θ + 1)2. ��

Remark 3 From the proof, one can see that the quantityCk inLemma4canbe improved

up to C ′k := 1+ τ+1
τ(1+γ )

∑k−1
i=0

α2
i

[qc(γ )]i+1 .

Lemma 5 In Algorithm 1 with parameters (26), for all k ≥ 1, we have

Γk ≥ R
( k−1∑

i=0
αi + 1

2θ

√
γ n

[
(1+ γ )k/n − 1

] )
. (30)

Proof By the definition of Γk and (26), we have

Γk =
k−1∑
i=0

ai‖gi‖∗ = R
k−1∑
i=0

αiρi + 1
2θγ

k−1∑
i=0

Riρi ,

where ρi := ‖gi‖∗/‖gi‖∗Gi
. Let us estimate each sum from below separately.

For the first sum, we can use the trivial bound ρi ≥ 1, which is valid for any i ≥ 0

(since Gi � B in view of (18)). This gives us
∑k−1

i=0 αiρi ≥∑k−1
i=0 αi .

Let us estimate the second sum. According to (19), for any i ≥ 0, we have Ri ≥ R.

Hence,
∑k−1

i=0 Riρi ≥ R
∑k−1

i=0 ρi ≥ R
(∑k−1

i=0 ρ2
i

)1/2
and it remains to lower bound∑k−1

i=0 ρ2
i . By 18 and 26, G0 = B and Gi+1 = Gi + γ gi g∗i /‖gi‖2Gi

for all i ≥ 0.
Therefore,

k−1∑
i=0

ρ2
i =

1

γ

k−1∑
i=0

(tr Gi+1 − tr Gi ) = 1

γ
(tr Gk − tr B) = 1

γ
(tr Gk − n)

≥ n

γ

[
(detGk)

1/n − 1
] = n

γ

[
(1+ γ )k/n − 1

]
,

where we have applied the arithmetic-geometric mean inequality. Combining the
obtained estimates, we get (30). ��

4 Main instances of general scheme

Let us now consider several possibilities for choosing the coefficients αk , θ and γ in
(26).
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4.1 Subgradient method

The simplest possibility is to choose

αk > 0, θ := 0, γ := 0.

In this case, bk = 0 for all k ≥ 0, so Gk = B and ωk(x) = ω0(x) = 1
2‖x‖2 for all

x ∈ E and all k ≥ 0 (see (17) and (18)). Consequently, the new test points xk+1 in
Algorithm 1 are generated according to the following rule:

xk+1 = argmin
x∈E

[ k∑
i=0

ai 〈gi , x − xi 〉 + 1
2‖x‖2

]
,

where ai = αi R/‖gi‖∗. Thus, Algorithm 1 is the Subgradient Method: xk+1 = xk −
akgk .

In this example, each ellipsoid Ωk is simply a ball: Ωk = B (x0, R) for all k ≥ 0.
Hence, the sliding gap Δk , defined in (24), does not “slide” and coincides with the
gap of the semicertificate a := (a0, . . . , ak−1) on the solid B (x0, R):

Δk = max
x∈B(x0,R)

1

Γk

k−1∑
i=0

ai 〈gi , xi − x〉.

In view of Lemmas 4 and 5, for all k ≥ 1, we have

R2
k ≤

(
1+

k−1∑
i=0

α2
i

)
R2, Γk ≥ R

k−1∑
i=0

αi

(tend τ → +∞ in Lemma 4). Substituting these estimates into (25), we obtain the
following well-known estimate for the gap in the Subgradient Method:

Δk ≤ 1+∑k−1
i=0 α2

i

2
∑k−1

i=0 αi
R.

The standard strategies for choosing the coefficients αi are as follows (see, e.g.,
sect. 3.2.3 in [19]):

1. We fix in advance the number of iterations k ≥ 1 of the method and use constant
coefficients αi := 1√

k
, 0 ≤ i ≤ k−1. This corresponds to the so-called Short-Step

Subgradient Method, for which we have

Δk ≤ R√
k
.
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2. Alternatively, we can use time-varying coefficients αi := 1√
i+1 , i ≥ 0. This

approach does not require us to fix in advance the number of iterations k. However,
the corresponding convergence rate estimate becomes slightly worse:

Δk ≤ ln k + 2

2
√
k

R.

(Indeed,
∑k−1

i=0 α2
i =

∑k
i=1 1

i ≤ ln k + 1, while
∑k−1

i=0 αi ≥
√
k.)

Remark 4 If we allow projections onto the feasible set, then, for the resulting Sub-
gradient Method with time-varying coefficients αi , one can establish the O(1/

√
k)

convergence rate for the “truncated” gap

Δk0,k := max
x∈B(x0,R)

1

Γk0,k

k∑
i=k0

ai 〈gi , xi − x〉,

where Γk0,k :=
∑k

i=k0 ai‖gi‖∗, k0 := �k/2�. For more details, see sect. 5.2.1 in [2]
or sect. 3.1.1 in [12].

4.2 Standard ellipsoidmethod

Another extreme choice is the following one:

αk := 0, θ := 0, γ > 0. (31)

For this choice, we have ak = 0 for all k ≥ 0. Hence, �k = 0 and L−k = E for all k ≥ 0.
Therefore, the localizers in this method are the following ellipsoids (see Lemma 3):

Ωk ∩ L−k = Ωk = {x ∈ E : ‖x − xk‖Gk
≤ Rk}, k ≥ 0. (32)

Observe that, in this example, Γk ≡ ∑k−1
i=0 ai‖gi‖∗ = 0 for all k ≥ 1, so there is

no preliminary semicertificate and the sliding gap is undefined. However, we can still
ensure the convergence to zero of a certain meaningful measure of optimality, namely,
the average radius of the localizers Ωk :

avradΩk := (volΩk)
1/n, k ≥ 0. (33)

Indeed, let us define the following functions for any real c, p > 0:

qc(γ ) := 1+ cγ 2

2(1+ γ )
, ζp,c(γ ) := [qc(γ )]p

1+ γ
, γ > 0. (34)

According to Lemma 4, for any k ≥ 0, we have

R2
k = [q1/2(γ )]k R2. (35)
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At the same time, in view of (18) and (26), detGk =∏k−1
i=0 (1+bi‖gi‖2Gi

) = (1+γ )k

for all k ≥ 0. Combining this with (32)–(34), we obtain, for any k ≥ 0, that

avradΩk = Rk

(detGk)1/(2n)
= [q1/2(γ )]k/2R

(1+ γ )k/(2n)
= [ζn,1/2(γ )]k/(2n)R. (36)

Let us now choose γ which minimizes avradΩk . For such computations, the fol-
lowing auxiliary result is useful (see Sect. A for the proof).

Lemma 6 For any c ≥ 1/2 and any p ≥ 2, the function ζp,c, defined in (34), attains
its minimum at a unique point

γc(p) := 2√
c2 p2 − (2c − 1)+ cp − 1

∈
[
1

cp

2

cp

]
(37)

with the corresponding value ζp,c
(
γc(p)

) ≤ e−1/(2cp).

Applying Lemma 6 to 36, we see that the optimal value of γ is

γ := γ1/2(n) = 2

n/2+ n/2− 1
= 2

n − 1
, (38)

for which ζn,1/2(γ ) ≤ e−1/n . With this choice of γ , we obtain, for all k ≥ 0, that

avradΩk ≤ e−k/(2n2)R. (39)

One can check that Algorithm 1 with parameters (26), (31) and (38) is, in fact, the
standard Ellipsoid Method (see Remark 6).

4.3 Ellipsoidmethod with preliminary semicertificate

As we have seen, we cannot measure the convergence rate of the standard Ellipsoid
Method using the sliding gap because there is no preliminary semicertificate in this
method. Let us present amodification of the standard EllipsoidMethodwhich does not
have this drawback but still enjoys the same convergence rate as the original method
(up to some absolute constants).

For this, let us choose the coefficients in the following way:

αk := 0, θ := √2− 1 (≈ 0.41), γ > 0. (40)

Then, in view of Lemma 4, for all k ≥ 0, we have

R2
k = [q1(γ )]k R2, (41)
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Also, by Lemma 5, Γk ≥ 1
2θR

√
γ n[(1+ γ )k/n − 1] for all k ≥ 1. Thus, for each

k ≥ 1, we obtain the following estimate for the sliding gap (see (25)):

Δk ≤ [q1(γ )]k R
θ
√

γ n[(1+ γ )k/n − 1] =
1

θκk(γ, n)
[ζ2n,1(γ )]k/(2n)R, (42)

where κk(γ, n) :=
√

γ n(1− 1
(1+γ )k/n

) and ζ2n,1(γ ) is defined in (34).

Note that the main factor in estimate (42) is [ζ2n,1(γ )]k/(2n). Let us choose γ by
minimizing this expression. Applying Lemma 6, we obtain

γ := γ1(2n) ∈
[
1

2n

1

n

]
. (43)

Theorem 1 In Algorithm 1 with parameters (26), (40), (43), for all k ≥ 1,

Δk ≤ 6e−k/(8n2)R.

Proof Suppose k ≥ n2. According to Lemma 6, we have ζ2n,1(γ ) ≤ e−1/(4n). Hence,
by (42), Δk ≤ 1

θκk (γ,n)
e−k/(8n2)R. It remains to estimate from below θκk(γ, n).

Since k ≥ n2, we have (1+γ )k/n ≥ (1+γ )n ≥ 1+γ n. Hence, κk(γ, n) ≥ γ n√
1+γ n

.

Note that the function τ �→ τ√
1+τ

is increasing onR+. Therefore, using (43),we obtain

κk(γ, n) ≥ 1/2√
1+1/2 = 1√

6
. Thus, θκk(γ, n) ≥

√
2−1√
6
≥ 1

6 for our choice of θ .

Now suppose k ≤ n2. Then, 6e−k/(8n2) ≥ 6e−1/8 ≥ 5. Therefore, it suf-
fices to prove that Δk ≤ 5R or, in view of (24), that 〈gi , xi − x〉 ≤ 5R‖gi‖∗,
where x ∈ Ωk ∩ L−k and 0 ≤ i ≤ k − 1 are arbitrary. Note that 〈gi , xi − x〉 ≤
‖gi‖∗Gi

‖xi − x‖Gi
≤ ‖gi‖∗‖xi − x‖Gi

since Gi � B (see (18)). Hence, it remains to
prove that ‖xi − x‖Gi

≤ 5R.
Recall from (18) and (19) that Gi ! Gk and Ri ≤ Rk . Therefore,

‖xi − x‖Gi
≤ ‖xi − x∗‖Gi

+ ‖x∗ − x‖Gi
≤ ‖xi − x∗‖Gi

+ ‖x∗ − x‖Gk

≤ ‖xi − x∗‖Gi
+ ‖xk − x∗‖Gk

+ ‖xk − x‖Gk
≤ Ri + 2Rk ≤ 3Rk,

where the penultimate inequality follows from Lemma 2 and 3. According to (41),
Rk = [q1(γ )]k/2R ≤ [q1(γ )]n2/2R (recall that q1(γ ) ≥ 1). Thus, it remains to show
that 3[q1(γ )]n2/2 ≤ 5. But this is immediate. Indeed, by (34) and (43), we have
[q1(γ )]n2/2 ≤ en

2γ 2/(4(1+γ )) ≤ e1/4, so 3[q1(γ )]n2/2 ≤ 3e1/4 ≤ 5. ��

4.4 Subgradient ellipsoidmethod

The previous algorithm still shares the drawback of the original Ellipsoid Method,
namely, it does not work when n →∞. To eliminate this drawback, let us choose αk

similarly to how this is done in the Subgradient Method.
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Consider the following choice of parameters:

αi := βi

√
θ

θ + 1
, θ := 3

√
2− 1 (≈ 0.26), γ := γ1(2n) ∈

[
1

2n

1

n

]
, (44)

where βi > 0 are certain coefficients (to be specified later) and γ1(2n) is defined in
(37).

Theorem 2 In Algorithm 1 with parameters (26) and (44), where β0 ≥ 1, we have, for
all k ≥ 1,

Δk ≤
⎧⎨
⎩

2∑k−1
i=0 βi

(1+∑k−1
i=0 β2

i )R, if k ≤ n2,

6e−k/(8n2)(1+∑k−1
i=0 β2

i )R, if k ≥ n2.
(45)

Proof Applying Lemma 4 with τ := θ and using (44), we obtain

R2
k ≤ [q1(γ )]kCk R

2, Ck = 1+
k−1∑
i=0

β2
i . (46)

At the same time, by Lemma 5, we have

Γk ≥ R
(√

θ

θ + 1

k−1∑
i=0

βi + 1
2θ

√
γ n[(1+ γ )k/n − 1]

)
. (47)

Note that 1
2θ
√

γ n ≤ 1
2θ ≤

√
θ/(θ + 1) by (44). Since β0 ≥ 1, we thus obtain

Γk ≥ 1
2 Rθ

√
γ n

(
1+

√
(1+ γ )k/n − 1

)
≥ 1

2 Rθ
√

γ n(1+ γ )k/(2n)

≥ 1
2
√
2
Rθ(1+ γ )k/(2n) ≥ 1

12 R(1+ γ )k/(2n),
(48)

where the last two inequalities follow from (44). Therefore, by (25), (46) and (48),

Δk ≤ R2
k

2Γk
≤ 6

[q1(γ )]k
(1+ γ )k/(2n)

Ck R = 6[ζ2n,1(γ )]k/(2n)Ck R,

where ζ2n,1(γ ) is defined in (34). Observe that, for our choice of γ , by Lemma 6, we
have ζ2n,1(γ ) ≤ e−1/(4n). This proves the second estimate3 in (45).

On the other hand, dropping the second term in (47), we can write

Γk ≥ R

√
θ

θ + 1

k−1∑
i=0

βi . (49)

3 In fact, we have proved the second estimate in (45) for all k ≥ 1 (not only for k ≥ n2).

123



Subgradient ellipsoid method... 325

Suppose k ≤ n2. Then, from (34) and (44), it follows that

[q1(γ )]k ≤ [q1(γ )]n2 ≤ eγ 2n2/(2(1+γ )) ≤ √e.

Hence, by (46), Rk ≤ √eCk R2. Combining this with (25) and (49), we obtain

Δk ≤ 1

2

√
e(θ + 1)

θ

1∑k−1
i=0 βi

Ck R.

By numerical evaluation, one can verify that, for our choice of θ , we have 1
2

√
e(θ+1)

θ
≤

2. This proves the first estimate in (45). ��
Exactly as in the Subgradient Method, we can use the following two strategies for

choosing the coefficients βi :

1. We fix in advance the number of iterations k ≥ 1 of the method and use constant
coefficients βi := 1√

k
, 0 ≤ i ≤ k − 1. In this case,

Δk ≤
{
4R/

√
k, if k ≤ n2,

12Re−k/(8n2), if k ≥ n2.
(50)

2. We use time-varying coefficients βi := 1√
i+1 , i ≥ 0. In this case,

Δk ≤
{
2(ln k + 2)R/

√
k, if k ≤ n2,

6(ln k + 2)Re−k/(8n2), if k ≥ n2.

Let us discuss convergence rate estimate (50).Up to absolute constants, this estimate
is exactly the same as in the Subgradient Method when k ≤ n2 and as in the Ellipsoid
Method when k ≥ n2. In particular, when n → ∞, we recover the convergence rate
of the Subgradient Method.

To provide a better interpretation of the obtained results, let us compare the con-
vergence rates of the Subgradient and Ellipsoid methods:

Subgradient Method: 1/
√
k

Ellipsoid Method: e−k/(2n2).

To compare these rates, let us look at their squared ratio:

ρk :=
( 1/

√
k

e−k/(2n2)
)2 = ek/n

2

k
.

Let us find out for which values of k the rate of the Subgradient Method is better than
that of the Ellipsoid Method and vice versa. We assume that n ≥ 2.
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Note that the function τ �→ eτ /τ is strictly decreasing on (0, 1] and strictly increas-
ing on [1,+∞) (indeed, its derivative equals eτ (τ − 1)/τ 2). Hence, ρk is strictly
decreasing in k for 1 ≤ k ≤ n2 and strictly increasing in k for k ≥ n2. Since n ≥ 2,
we have ρ2 = e2/n

2
/2 ≤ e1/2/2 ≤ 1. At the same time, ρk → +∞ when k → ∞.

Therefore, there exists a unique integer K0 ≥ 2 such that ρk ≤ 1 for all k ≤ K0 and
ρk ≥ 1 for all k ≥ K0.

Let us estimate K0. Clearly, for any n2 ≤ k ≤ n2 ln(2n), we have

ρk ≤ en
2 ln(2n)/n2

n2 ln(2n)
= 2

n ln(2n)
≤ 1,

while, for any k ≥ 3n2 ln(2n), we have

ρk ≥ e3n
2 ln(2n)/n2

3n2 ln(2n)
= (2n)3

3n2 ln(2n)
= 8n

3 ln(2n)
≥ 1.

Hence,

n2 ln(2n) ≤ K0 ≤ 3n2 ln(2n).

Thus, up to an absolute constant, n2 ln(2n) is the switching moment, starting from
which the rate of the Ellipsoid Method becomes better than that of the Subgradient
Method.

Returning to our obtained estimate (50),we see that, ignoring absolute constants and
ignoring the “small” region of the values of k between n2 and n2 ln n, our convergence
rate is basically the best of the corresponding convergence rates of the Subgradient
and Ellipsoid methods.

5 Constructing accuracy semicertificate

Let us show how to convert a preliminary accuracy semicertificate, produced by Algo-
rithm 1, into a semicertificate whose gap on the initial solid is upper bounded by
the sliding gap. The key ingredient here is the following auxiliary algorithm which
was first proposed in [16] for building accuracy certificates in the standard Ellipsoid
Method.

5.1 Augmentation algorithm

Let k ≥ 0 be an integer and let Q0, . . . , Qk be solids in E such that

Q̂i := {x ∈ Qi : 〈gi , x − xi 〉 ≤ 0} ⊆ Qi+1, 0 ≤ i ≤ k − 1, (51)
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where xi ∈ E, gi ∈ E
∗. Further, suppose that, for any s ∈ E

∗ and any 0 ≤ i ≤ k − 1,
we can compute a dual multiplier μ ≥ 0 such that

max
x∈Q̂i

〈s, x〉 = max
x∈Qi

[〈s, x〉 + μ〈gi , xi − x〉] (52)

(provided that certain regularity conditions hold). Let us abbreviate any solution μ of
this problem by μ(s, Qi , xi , gi ).

Consider now the following routine.

Algorithm 2: Augmentation Algorithm

Input: sk ∈ E
∗.

Iterate for i = k − 1, . . . , 0:
1. Compute μi := μ(si+1, Qi , xi , gi ).
2. Set si := si+1 − μi gi .

Lemma 7 Let μ0, . . . , μk−1 ≥ 0 be generated by Algorithm 2. Then,

max
x∈Q0

[
〈sk, x〉 +

k−1∑
i=0

μi 〈gi , xi − x〉
]
≤ max

x∈Qk
〈sk, x〉.

Proof Indeed, at every iteration i = k − 1, . . . , 0, we have

max
x∈Qi+1

〈si+1, x〉 ≥ max
x∈Q̂i

〈si+1, x〉 = max
x∈Qi

[〈si+1, x〉 + μi 〈gi , xi − x〉]

= max
x∈Qi

〈si , x〉 + μi 〈gi , xi 〉.

Summing up these inequalities for i = 0, . . . , k − 1, we obtain

max
x∈Qk

〈sk, x〉 ≥ max
x∈Q0

〈s0, x〉 +
k−1∑
i=0

μi 〈gi , xi 〉 = max
x∈Q0

[
〈sk, x〉 +

k−1∑
i=0
〈gi , xi − x〉

]
,

where the identity follows from the fact that s0 = sk −∑k−1
i=0 μi gi . ��

5.2 Methods with preliminary certificate

Let us apply the Augmentation Algorithm for building an accuracy semicertificate for
Algorithm 1. We only consider those instances for which Γk := ∑k−1

i=0 ai‖gi‖∗ > 0
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so that the sliding gap Δk is well-defined:

Δk := max
x∈Ωk

1

Γk
[−�k(x)] = max

x∈Ωk∩L−k

1

Γk
[−�k(x)]

= max
x∈Ωk∩L−k

1

Γk

k−1∑
i=0

ai 〈gi , xi − x〉.

Recall that the vector a := (a0, . . . , ak−1) is called a preliminary semicertificate.
For technical reasons, itwill be convenient to add the following termination criterion

into Algorithm 1:

Terminate Algorithm 1 at Step 2 if Uk ≤ δ‖gk‖∗, (53)

where δ > 0 is a fixed constant. Depending on whether this termination criterion has
been satisfied at iteration k, we call it a terminal or nonterminal iteration, respectively.

Remark 5 In practice, one can set δ to an arbitrarily small value (within machine pre-
cision) if the desired target accuracy is unknown. As can be seen from the subsequent
discussion, themain purpose of the termination criterion (53) is to ensure thatUk never
becomes equal to zero during the iterations of Algorithm 1. This guarantees the exis-
tence of dual multiplier in (52) for any s ∈ E

∗ at every nonterminal iteration. The case
Uk = 0 corresponds to the degenerate situation when Algorithm 1 has “accidentally”
found an exact solution.

Let k ≥ 1 be an iteration of Algorithm 1. According to Lemma 2, the sets Qi :=
Ωi ∩ L−i satisfy (51). Since the method has not been terminated during the course of
the previous iterations, we have4 Ui > 0 for all 0 ≤ i ≤ k − 1. Therefore, for any
0 ≤ i ≤ k − 1, there exists x ∈ Qi such that 〈gi , x − xi 〉 < 0. This guarantees the
existence of dual multiplier in (52).

Let us apply Algorithm 2 to sk := −∑k−1
i=0 ai gi in order to obtain dual multipliers

μ := (μ0, . . . , μk−1). From Lemma 7, it follows that

max
x∈B(x0,R)

k−1∑
i=0

(ai + μi )〈gi , xi − x〉 ≤ max
x∈Qk

k−1∑
i=0

ai 〈gi , xi − x〉 = ΓkΔk,

(note that Q0 = Ω0 ∩ L−0 = B (x0, R)). Thus, defining λ := a + μ, we obtain
Γk(λ) ≡∑k−1

i=0 λi‖gi‖∗ ≥
∑k−1

i=0 ai‖gi‖∗ ≡ Γk > 0 and

δk(λ) ≡ max
x∈B(x0,R)

1

Γk(λ)

k−1∑
i=0

λi 〈gi , xi − x〉 ≤ Γk

Γk(λ)
Δk ≤ Δk,

4 Recall that gi �= 0 for all i ≥ 0 by (2).
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Thus, λ is a semicertificate whose gap on B (x0, R) is bounded by the sliding gap Δk .
If k ≥ 0 is a terminal iteration, then, by the termination criterion and the definition

of Uk (see Algorithm 1), we have maxx∈Ωk∩L−k
1

‖gk‖∗ 〈gk, xk − x〉 ≤ δ. In this case,
we apply Algorithm 2 to sk := −gk to obtain dual multipliers μ0, . . . , μk−1. By the
same reasoning as above but with the vector (0, . . . , 0, 1) instead of (a0, . . . , ak−1),
we can obtain that δk+1(λ) ≤ δ, where λ := (μ0, . . . , μk−1, 1).

5.3 Standard ellipsoidmethod

In the standard Ellipsoid Method, there is no preliminary semicertificate. Therefore,
we cannot apply the above procedure. However, in this method, it is still possible to
generate an accuracy semicertificate, although the corresponding procedure is slightly
more involved. Let us now briefly describe this procedure and discuss how it differs
from the previous approach. For details, we refer the reader to [16].

Let k ≥ 1 be an iteration of the method. There are two main steps. The first step is
to find a direction sk , in which the “width” of the ellipsoid Ωk (see (32)) is minimal:

sk := argmin
‖s‖∗=1

max
x,y∈Ωk

〈s, x − y〉 = argmin
‖s‖∗=1

[
max
x∈Ωk

〈s, x〉 − min
x∈Ωk

〈s, x〉].

It is not difficult to see that sk is given by the unit eigenvector5 of the operator Gk ,
corresponding to the largest eigenvalue. For the corresponding minimal “width” of
the ellipsoid, we have the following bound via the average radius:

max
x,y∈Ωk

〈sk, x − y〉 ≤ ρk, (54)

where ρk := 2 avradΩk . Recall that avradΩk ≤ e−k/(2n2)R in view of (39).

At the second step, we apply Algorithm 2 two times with the sets Qi := Ωi : first,
to the vector sk to obtain dual multipliers μ := (μ0, . . . , μk−1) and then to the vector
−sk to obtain dual multipliers μ′ := (μ′0, . . . , μ′k−1). By Lemma 7 and (54), we have

max
x∈B(x0,R)

[
〈sk, x − xk〉 +

k−1∑
i=0

μi 〈gi , xi − x〉
]
≤ max

x∈Ωk
〈sk, x − xk〉 ≤ ρk,

max
x∈B(x0,R)

[
〈sk, xk − x〉 +

k−1∑
i=0

μ′i 〈gi , xi − x〉
]
≤ max

x∈Ωk
〈sk, xk − x〉 ≤ ρk

(note that Q0 = Ω0 = B (x0, R)). Consequently, for λ := μ+ μ′, we obtain

max
x∈B(x0,R)

k−1∑
i=0

λi 〈gi , xi − x〉 ≤ 2ρk .

5 Here eigenvectors and eigenvalues are defined with respect to the operator B inducing the norm ‖x‖.
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Finally, one can show that

Γk(λ) ≡
k−1∑
i=0

λi‖gi‖∗ ≥
r − ρk

D
,

where D is the diameter of Q and r is the maximal of the radii of Euclidean balls
contained in Q. Thus, whenever ρk < r , λ is a semicertificate with the following gap
on B (x0, R):

δk(λ) ≡ max
x∈B(x0,R)

1

Γk(λ)

k−1∑
i=0

λi 〈gi , xi − x〉 ≤ 2ρk D

r − ρk
.

Compared to the standard Ellipsoid Method, we see that, in the Subgradient Ellip-
soid methods, the presence of the preliminary semicertificate removes the necessity in
finding the minimal-“width” direction and requires only one run of the Augmentation
Algorithm.

6 Implementation details

6.1 Explicit representations

In the implementation of Algorithm 1, instead of the operators Gk , it is better to work
with their inverses Hk := G−1k . Applying the Sherman-Morrison formula to (18), we
obtain the following update rule for Hk :

Hk+1 = Hk − bk Hkgkg∗k Hk

1+ bk〈gk, Hkgk〉 , k ≥ 0. (55)

Let us now obtain an explicit formula for the next test point xk+1. This has already
been partly done in the proof of Lemma 3. Indeed, recall that xk+1 is the minimizer
of the function ψk+1(x). From (21), we see that xk+1 = xk − (ak + 1

2bkUk)Hk+1gk .
Combining it with (55), we obtain

xk+1 = xk − ak + 1
2bkUk

1+ bk〈gk, Hkgk〉Hkgk, k ≥ 0. (56)

Finally, one can obtain the following explicit representations for L−k and Ωk :

L−k = {x ∈ E : 〈ck, x〉 ≤ σk}, Ωk = {x ∈ E : ‖x − zk‖2H−1k
≤ Dk}, (57)

where, for any k ≥ 0,

c0 := 0, σ0 := 0, ck+1 := ck + akgk, σk+1 := σk + ak〈gk, xk〉,
zk := xk − Hkck, Dk := R2

k + 2(σk − 〈ck, xk〉)+ 〈ck, Hkck〉.
(58)
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Indeed, recalling the definition of functions �k , we see that �k(x) = 〈ck, x〉 − σk
for all x ∈ E. Therefore, L−k ≡ {x : �k(x) ≤ 0} = {x : 〈ck, x〉 ≤ σk}. Further,
by Lemma 3, Ωk = {x : 〈ck, x〉 + 1

2‖x − xk‖2Gk
≤ 1

2 R
2
k + σk}. Note that 〈ck, x〉 +

1
2‖x − xk‖2Gk

= 1
2‖x − zk‖2Gk

+ 〈ck, xk〉 − 1
2‖ck‖2Gk

for any x ∈ E. Hence, Ωk =
{x : 1

2‖x − zk‖2Gk
≤ 1

2Dk}.
Remark 6 Now we can justify the claim made in Sect. 4.2 that Algorithm 1 with
parameters (26), (31) and (38) is the standard Ellipsoid Method. Indeed, from (26)
and (32), we see that bk = γ

〈gk ,Hkgk 〉 andUk = Rk〈gk, Hkgk〉1/2. Also, in view of (38),
γ

1+γ
= 2

n+1 . Hence, by (56) and (55),

xk+1 = xk − Rk

n + 1

Hkgk
〈gk, Hkgk〉1/2 ,

Hk+1 = Hk − 2

n + 1

Hkgkg∗k Hk

〈gk, Hkgk〉 , k ≥ 0.
(59)

Further, according to (35) and (38), for any k ≥ 0, we have R2
k = qk R2, where

q = 1 + 1
(n−1)(n+1) = n2

n2−1 . Thus, method (59) indeed coincides6 with the standard

Ellipsoid Method (2) under the change of variables Wk := R2
k Hk .

6.2 Computing support function

To calculateUk in Algorithm 1, we need to compute the following quantity (see (57)):

Uk = max
x
{〈gk, xk − x〉 : ‖x − zk‖2H−1k

≤ Dk, 〈ck, x〉 ≤ σk}.

Let us discuss how to do this.
First, let us introduce the following support function to simplify our notation:

ξ(H , s, a, β) := max
x
{〈s, x〉 : ‖x‖2H−1 ≤ 1, 〈a, x〉 ≤ β},

where H : E∗ → E is a self-adjoint positive definite linear operator, s, a ∈ E
∗ and

β ∈ R. In this notation, assuming that Dk > 0, we have

Uk = 〈gk, xk − zk〉 + ξ(DkHk,−gk, ck, σk − 〈ck, zk〉).

Let us show how to compute ξ(H , s, a, β). Dualizing the linear constraint, we
obtain

ξ(H , s, a, β) = min
τ≥0

[‖s − τa‖∗H−1 + τβ
]
, (60)

6 Note that, in (2), we identify the spacesE,E∗ withRn in such a way that 〈·, ·〉 coincides with the standard
dot-product and ‖x‖ coincides with the standard Euclidean norm. Therefore, B becomes the identity matrix
and g∗k becomes gTk .
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provided that there exists some x ∈ E such that ‖x‖H−1 < 1, 〈a, x〉 ≤ β (Slater
condition). One can show that (60) has the following solution (see Lemma 10):

τ(H , s, a, β) :=
{
0, if 〈a, Hs〉 ≤ β‖s‖∗

H−1 ,

u(H , s, a, β), otherwise,
(61)

where u(H , s, a, β) is the unconstrained minimizer of the objective function in (60).
Let us present an explicit formula for u(H , s, a, β). For future use, it will be con-

venient to write down this formula in a slightly more general form for the following
multidimensional7 variant of problem (60):

min
u∈Rm

[‖s − Au‖∗H−1 + 〈u, b〉], (62)

where s ∈ E
∗, H : E∗ → E is a self-adjoint positive definite linear operator, A : Rm →

E
∗ is a linear operator with trivial kernel and b ∈ R

m , 〈b, (A∗H A)−1b〉 < 1. It is not
difficult to show that problem (62) has the following unique solution (see Lemma 9):

u(H , s, A, b) := (A∗H A)−1(A∗s − rb),

r :=
√
〈s, Hs〉 − 〈s, A(A∗H A)−1A∗s〉

1− 〈b, (A∗H A)−1b〉 . (63)

Note that, in order for the above approach to work, we need to guarantee that the
sets Ωk and L−k satisfy a certain regularity condition, namely, intΩk ∩ L−k �= ∅.
This condition can be easily fulfilled by adding into Algorithm 1 the termination
criterion (53).

Lemma 8 Consider Algorithm 1 with termination criterion (53). Then, at each itera-
tion k ≥ 0, at the beginning of Step 2, we have intΩk ∩ L−k �= ∅. Moreover, if k is a
nonterminal iteration, we also have 〈gk, x − xk〉 ≤ 0 for some x ∈ intΩk ∩ L−k .

Proof Note that intΩ0 ∩ L−0 = int B (x0, R) �= ∅. Now suppose intΩk ∩ L−k �= ∅ for
some nonterminal iteration k ≥ 0. Denote P−k := {x ∈ E : 〈gk, x − xk〉 ≤ 0}. Since
iteration k is nonterminal,Uk > 0 and henceΩk∩L−k ∩int P−k �= ∅. Combining it with
the fact that intΩk ∩ L−k �= ∅, we obtain intΩk ∩ L−k ∩ int P−k �= ∅ and, in particular,
intΩk ∩ L−k ∩ P−k �= ∅. At the same time, slightly modifying the proof of Lemma 2
(using that intΩi = {x ∈ E : ωi (x) < 1

2 R
2} for any i ≥ 0 since ωi is a strictly convex

quadratic function), it is not difficult to show that intΩk∩L−k ∩P−k ⊆ intΩk+1∩L−k+1.
Thus, intΩk+1 ∩ L−k+1 �= ∅, and we can continue by induction. ��

6.3 Computing dual multipliers

Recall from Sect. 5 that the procedure for generating an accuracy semicertificate for
Algorithm 1 requires one to repeatedly carry out the following operation: given s ∈ E

∗

7 Hereinafter, we identify (Rm )∗ with R
m in such a way that 〈·, ·〉 is the standard dot product.
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and some iteration number i ≥ 0, compute a dual multiplier μ ≥ 0 such that

max
x∈Ωi∩L−i

{〈s, x〉 : 〈gi , x − xi 〉 ≤ 0} = max
x∈Ωi∩L−i

[〈s, x〉 + μ〈gi , xi − x〉].

This can be done as follows.
First, using (57), let us rewrite the above primal problem more explicitly:

max
x
{〈s, x〉 : ‖x − zi‖2H−1i

≤ Di , 〈ci , x〉 ≤ σi , 〈gi , x − xi 〉 ≤ 0}.

Our goal is to dualize the second linear constraint andfind the correspondingmultiplier.
However, for the sake of symmetry, it is better to dualize both linear constraints, find
the corresponding multipliers and then keep only the second one.

Let us simplify our notation by introducing the following problem:

max
x
{〈s, x〉 : ‖x‖H−1 ≤ 1, 〈a1, x〉 ≤ b1, 〈a2, x〉 ≤ b2}, (64)

where H : E∗ → E is a self-adjoint positive definite linear operator, s, a1, a2 ∈ E
∗

and b1, b2 ∈ R. Clearly, our original problem can be transformed into this form by
setting H := Di Hi , a1 := ci , a2 := gi , b1 := σi − 〈ci , zi 〉, b2 := 〈gi , xi − zi 〉. Note
that this transformation does not change the dual multipliers.

Dualizing the linear constraints in (64), we obtain the following dual problem:

min
μ∈R2+

[‖s − μ1a1 − μ2a2‖∗H−1 + μ1b1 + μ2b2
]
, (65)

which is solvable provided the following Slater condition holds:

∃x ∈ E : ‖x‖H−1 < 1, 〈a1, x〉 ≤ b1, 〈a2, x〉 ≤ b2. (66)

Note that (66) can be ensured by adding termination criterion (53) into Algorithm 1
(see Lemma 8).

A solution of (65) can be found using Algorithm 3. In this routine, τ(·), ξ(·) and
u(·) are the auxiliary operations, defined in Sect. 6.2, and A := (a1, a2) is the linear
operator Au := u1a1+ u2a2 acting from R

2 to E∗. The correctness of Algorithm 3 is
proved in Theorem 3.

Algorithm 3: Computing Dual Multipliers

1. Compute τ1 := τ(H , s, a1, b1) and τ2 := τ(H , s, a2, b2).
Compute ξ1 := ξ(H , a2, a1, b1) and ξ2 := ξ(H , a1, a2, b2).
2. If ξ1 ≤ b2, return (τ1, 0). Else if ξ2 ≤ b1, return (0, τ2).
3. Else if 〈a2, H(s − τ1a1)〉 ≤ b2‖s − τ1a1‖∗H−1 , return (τ1, 0).
Else if 〈a1, H(s − τ2a2)〉 ≤ b1‖s − τ2a2‖∗H−1 , return (0, τ2).

4. Else return u := u(H , s, A, b), where A := (a1, a2), b := (b1, b2)T .
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6.4 Time andmemory requirements

Let us discuss the time and memory requirements of Algorithm 1, taking into account
the previously mentioned implementation details.

The main objects in Algorithm 1, which need to be stored and updated between
iterations, are the test points xk , matrices Hk , scalars Rk , vectors ck and scalars σk ,
see (19), (55), 56 and (58) for the corresponding updating formulas. To store all these
objects, we need O(n2) memory.

Consider now what happens at each iteration k. First, we computeUk . For this, we
calculate zk and Dk according to (58) and then perform the calculations described in
Sect. 6.2. The most difficult operation there is computing the matrix-vector product,
which takes O(n2) time. After that, we calculate the coefficients ak and bk according
to (26), where αk , θ and γ are certain scalars, easily computable for all main instances
of Algorithm 1 (see Sects. 4.1–4.4). The most expensive step there is computing the
norm ‖gk‖∗Gk

, which can be done in O(n2) operations by evaluating the product Hkgk .

Finally, we update our main objects, which takes O(n2) time.
Thus, each iteration of Algorithm 1 has O(n2) time and memory complexities,

exactly as in the standard Ellipsoid Method.
Now let us analyze the complexity of the auxiliary procedure from Sect. 5 for

converting a preliminary semicertificate into a semicertificate. The main operation in
this procedure is running Algorithm 2, which iterates “backwards”, computing some
dualmultiplierμi at each iteration i = k−1, . . . , 0.Using the approach fromSect. 6.3,
we can computeμi in O(n2) time, provided that the objects xi , gi , Hi , zi , Di , ci , σi are
stored inmemory. Note, however, that, in contrast to the “forward” pass, when iterating
“backwards”, there is no way to efficiently recompute all these objects without storing
inmemory a certain “history” of themain process from iteration 0 up to k. The simplest
choice is to keep in this “history” all the objects mentioned above, which requires
O(kn2) memory. A slightly more efficient idea is to keep the matrix-vector products
Hi gi instead of Hi and then use (55) to recompute Hi from Hi+1 in O(n2) operations.
This allows us to reduce the size of the “history” down to O(kn) while still keeping
the O(kn2) total time complexity of the auxiliary procedure. Note that these estimates
are exactly the same as those for the best currently known technique for generating
accuracy certificates in the standard EllipsoidMethod [16]. In particular, if we generate
a semicertificate only once at the very end, then the time complexity of our procedure
is comparable to that of running the standard EllipsoidMethod without computing any
certificates. Alternatively, as suggested in [16], one can generate semicertificates, say,
every 2, 4, 8, 16, . . . iterations. Then, the total “overhead” of the auxiliary procedure
for generating semicertificateswill be comparable to the time complexity of themethod
itself.

7 Conclusion

In this paper, we have addressed one of the issues of the standard Ellipsoid Method,
namely, its poor convergence for problems of large dimension n. For this, we have
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proposed a new algorithm which can be seen as the combination of the Subgradient
and Ellipsoid methods.

Our developments can be considered as a first step towards constructing universal
methods for nonsmooth problems with convex structure. Such methods could signifi-
cantly improve the practical efficiency of solving various applied problems.

Note that there are still some open questions. First, the convergence estimate of
our method with time-varying coefficients contains an extra factor proportional to
the logarithm of the iteration counter. We have seen that this logarithmic factor has
its roots yet in the Subgradient Method. However, as discussed in Remark 4, for the
Subgradient Method, this issue can be easily resolved by allowing projections onto
the feasible set and working with “truncated” gaps. An even better alternative, which
does not require any of this machinery, is to use Dual Averaging [18] instead of
the Subgradient Method. It is an interesting question whether one can combine the
Dual Averaging with the Ellipsoid Method similarly to how we have combined the
Subgradient and Ellipsoid methods.

Second, the convergence rate estimate, which we have obtained for our method, is
not continuous in the dimension n. Indeed, for small values of the iteration counter k,
this estimate behaves as that of the Subgradient Method and then, at some moment
(around n2), it switches to the estimate of the Ellipsoid Method. As discussed at the
end of Sect. 4.4, there exists some “small” gap between these two estimates around
the switching moment. Nevertheless, the method itself is continuous in n and does
not contain any explicit switching rules. Therefore, there should be some continuous
convergence rate estimate for our method, and it is an open question to find it.

Another interesting question is to understand what happens with the proposed
method on other (less general) classes of convex problems than those, considered
in this paper. For example, it is well-known that, on smooth and/or strongly convex
problems, (sub)gradient methods have much better convergence rates than on the gen-
eral nonsmooth problems. We expect that similar conclusions should also be valid
for the proposed Subgradient Ellipsoid Method. However, to achieve the acceleration,
it may be necessary to introduce some modifications in the algorithm such as using
different step sizes. We leave this direction for future research.

Finally, apart from the Ellipsoid Method, there exist other “dimension-dependent”
methods (e.g., the Center-of-GravityMethod8 [13,20], the Inscribed EllipsoidMethod
[22], the Circumscribed SimplexMethod [6], etc.). Similarly, the Subgradient Method
is not the only “dimension-independent” method and there exist numerous alternatives
which are better suited for certain problem classes (e.g., the Fast GradientMethod [17]
forSmoothConvexOptimizationormethods forStochasticProgramming [7,8,11,15]).
Of course, it is interesting to consider different combinations of the aforementioned
“dimension-dependent” and “dimension-independent” methods. In this regard, it is
also worth mentioning the works [4,5], where the authors propose new variants of
gradient-type methods for smooth strongly convex minimization problems inspired
by the geometric construction of the Ellipsoid Method.

Acknowledgements We would like to thank the anonymous reviewers for their valuable time and efforts
spent on reviewing this manuscript. Their feedback was very useful.

8 Although this method is not practical, it is still interested from an academic point of view.
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A Proof of Lemma 6

Proof Everywhere in the proof, we assume that the parameter c is fixed and drop all
the indices related to it.

Let us show that ζp is a convex function. Indeed, the function ω : R × R++ →
R, defined by ω(x, t) := x2

t , is convex. Hence, the function q, defined in (34), is
also convex. Further, since ω is increasing in its first argument on R+, the function
ωp : R+ × R++ → R, defined by ωp(x, t) := x p

t , is also convex as the composition
of ω with the mapping (x, t) �→ (x p/2, t), whose first component is convex (since
p ≥ 2) and the second one is affine. Note that ωp is increasing in its first argument.
Hence, ζp is indeed a convex function as the composition of ωp with the mapping
γ �→ (

q(γ ), 1+ γ
)
, whose first part is convex and the second one is affine.

Differentiating, for any γ > 0, we obtain

ζ ′p(γ )= p[q(γ )]p−1q ′(γ )(1+ γ )− [q(γ )]p
(1+ γ )2

=[q(γ )]p−1(pq ′(γ )(1+ γ )− q(γ )
)

(1+ γ )2
.

Therefore, the minimizers of ζp are exactly solutions to the following equation:

pq ′(γ )(1+ γ ) = q(γ ). (67)

Note that q ′(γ ) = c[2γ (1+γ )−γ 2]
2(1+γ )2

= cγ (2+γ )

2(1+γ )2
(see (34)). Hence, (67) can be written

as cpγ (2+γ ) = 2(1+γ )+cγ 2 or, equivalently, c(p−1)γ 2+2(cp−1)γ = 2. Clearly,
γ = 0 is not a solution of this equation. Making the change of variables γ = 2

u , u �= 0,
we come the quadratic equation u2 − 2(cp − 1)u = 2c(p − 1) or, equivalently, to
[u − (cp− 1)]2 = 2c(p− 1)+ (cp− 1)2 = c2 p2 − (2c− 1). This equation has two
solutions: u1 := cp− 1+√

c2 p2 − (2c − 1) and u2 := cp− 1−√
c2 p2 − (2c − 1).

Note that u2 ≥ cp−1−√
c2 p2 + 1 ≥ cp−1−(cp+1) = −2. Hence, γ2 := 2

u2
≤ −1

cannot be a minimizer of ζp. Consequently, only u1 is an acceptable solution (note
that u1 > 0 in view of our assumptions on c and p). Thus, (37) is proved.

Let us show that γ (p) belongs to the interval specified in (37). For this, we need
to prove that 1 ≤ cpγ (p) ≤ 2. Note that the function ha(t) := t√

t2−a+t−1 , where

a ≥ 0, is decreasing in t . Indeed, 1
ha(t)

=
√
1− a

t2
− 1

t +1 is an increasing function in

t . Hence, cpγ (p) = 2h2c−1(cp) ≥ 2 limt→∞ h2c−1(t) = 1. On the other hand, using
that p ≥ 2 and denoting α := 2c ≥ 1, we get cpγ (p) = 2hα−1(cp) ≤ 2g(α), where
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g(α) := hα−1(α) = α√
α2−α+1+α−1 . Note that g is decreasing in α. Indeed, denoting

τ := 1
α
∈ (0, 1], we obtain 1

g(α)
= √

1− τ + τ 2 − τ + 1, which is a decreasing
function in τ . Thus, cpγ (p) ≤ 2g(1) = 2.

It remains to prove that ζp(γ (p)) ≤ e−1/(2cp). Let φ : [2,+∞) → R be the
function

φ(p) := − ln ζp
(
γ (p)

) = ln
(
1+ γ (p)

)− p ln q
(
γ (p)

)
. (68)

We need to show that φ(p) ≥ 1/(2cp) for all p ≥ 2 or, equivalently, that the function
χ : (

0, 1
2

]→ R, defined by χ(τ) := φ( 1
τ
), satisfies χ(τ) ≥ τ

2c for all τ ∈
(
0, 1

2

]
. For

this, it suffices to show that χ is convex, limτ→0 χ(τ) = 0 and limτ→0 χ ′(τ ) = 1
2c .

Differentiating, we see that χ ′(τ ) = − 1
τ 2

φ′( 1
τ
) and χ ′′(τ ) = 2

τ 3
φ′( 1

τ
)+ 1

τ 4
φ′′( 1

τ
) for

all τ ∈ (
0, 1

2

]
. Thus, we need to justify that

2φ′(p)+ pφ′′(p) ≥ 0 (69)

for all p ≥ 2 and that

lim
p→∞φ(p) = 0, lim

p→∞[−p2φ′(p)] = 1

2c
. (70)

Let p ≥ 2 be arbitrary. Differentiating and using (67), we obtain

φ′(p) = γ ′(p)
1+ γ (p)

− ln q
(
γ (p)

)− pq ′
(
γ (p)

)
γ ′(p)

q
(
γ (p)

) = − ln q
(
γ (p)

)
,

φ′′(p) = −q ′(γ (p))γ ′(p)
q(γ (p))

= − γ ′(p)
p
(
1+ γ (p)

) . (71)

Therefore,

2φ′(p)+ pφ′′(p) = −2 ln q(γ (p))− γ ′(p)
1+ γ (p)

≥ −cγ 2(p)+ γ ′(p)
1+ γ (p)

,

where the inequality follows from (34) and the fact that ln(1 + τ) ≤ τ for any
τ > −1. Thus, to show (69), we need to prove that −γ ′(p) ≥ cγ 2(p) or,
equivalently, d

dp
1

γ (p) ≥ c. But this is immediate. Indeed, using (37), we obtain

d
dp

1
γ (p) = c

2

(
cp√

c2 p2−(2c−1) + 1

)
≥ c since the function τ �→ τ√

τ 2−1 is decreas-

ing. Thus, (69) is proved.
It remains to show (70). From (37), we see that γ (p) → 0 and pγ (p) → 1

c as
p→∞. Hence, using (34), we obtain

lim
p→∞ p2 ln q

(
γ (p)

) = lim
p→∞

cp2γ 2(p)

2
(
1+ γ (p)

) = c

2
lim
p→∞ p2γ 2(p) = 1

2c
.
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Consequently, in view of (68) and (71), we have

lim
p→∞φ(p) = lim

p→∞
[
ln

(
1+ γ (p)

)− p ln q
(
γ (p)

)] = 0,

lim
p→∞[−p2φ′(p)] = lim

p→∞ p2 ln q
(
γ (p)

) = 1

2c
,

which is exactly (70). ��

B Support function and dual multipliers: proofs

For brevity, everywhere in this section, we write ‖x‖ and ‖·‖∗ instead of ‖·‖H−1 and
‖·‖∗

H−1 , respectively. We also denote B0 := {x ∈ E : ‖x‖ ≤ 1}.

B.1 Auxiliary operations

Lemma 9 Let s ∈ E
∗, let A : Rm → E

∗ be a linear operator with trivial kernel and
let b ∈ R

m, 〈b, (A∗H A)−1b〉 < 1. Then, problem (62) has a unique solution given by
(63).

Proof Note that the sublevel sets of the objective function in (62) are bounded:

‖s−Au‖∗+〈u, b〉 ≥ ‖Au‖∗−‖s‖∗+〈u, b〉 ≥ (1−〈b, (A∗H A)−1b〉1/2)‖Au‖∗−‖s‖∗
for all u ∈ R

m . Hence, problem (62) has a solution.
Let u ∈ R

m be a solution of problem (62). If s = Au, then u = (A∗H A)−1A∗s,
which coincides with the solution given by (63) (note that, in this case, r = 0).

Now suppose s �= Au. Then, from the first-order optimality condition, we obtain
that b = A∗(s− Au)/ρ, where ρ := ‖s − Au‖∗ > 0. Hence, u = (A∗H A)−1(A∗s−
ρb) and

ρ2 = ‖s − Au‖2∗ = ‖s‖2∗ − 2〈A∗s, u〉 + 〈A∗H Au, u〉
= ‖s‖2∗ − 2〈A∗s, (A∗H A)−1(A∗s − ρb)〉 + 〈A∗s − ρb, (A∗H A)−1(A∗s − ρb)〉
= ‖s‖2∗ − 〈s, A(A∗H A)−1A∗s〉 + ρ2〈b, (A∗H A)−1b〉.

Thus, ρ = r and u = u(H , s, A, b) given by (63). ��
Lemma 10 Let s, a ∈ E

∗, β ∈ R be such that 〈a, x〉 ≤ β for some x ∈ int B0.
Then, problem (60) has a solution given by (61). Moreover, this solution is unique if
β < ‖a‖∗.
Proof Let φ : R→ R be the function φ(τ) := ‖s − τa‖∗ + τβ. By our assumptions,
β > −‖a‖∗ if a �= 0 and β ≥ 0 if a = 0. If additionally β < ‖a‖∗, then |β| < ‖a‖∗.

If s = 0, then φ(τ) = τ(‖a‖∗ + β) ≥ φ(0) for all τ ≥ 0, so 0 is a solution of (60).
Clearly, this solution is unique when β < ‖a‖∗ because then |β| < ‖a‖∗.
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From now on, suppose s �= 0. Then, φ is differentiable at 0 with φ′(0) = β −
〈a, s〉/‖s‖∗. If 〈a, s〉 ≤ β‖s‖∗, then φ′(0) ≥ 0, so 0 is a solution of (60). Note that
this solution is unique if 〈a, s〉 < β‖s‖∗ because then φ′(0) > 0, i.e., φ is strictly
increasing on R+.

Suppose 〈a, s〉 > β‖s‖∗. Then, β < ‖a‖∗ and thus |β| < ‖a‖∗. Note that, for any
τ ≥ 0, we have φ(τ) ≥ τ(‖a‖∗+β)−‖s‖∗. Hence, the sublevel sets of φ, intersected
with R+, are bounded, so problem (60) has a solution. Since φ′(0) < 0, any solution
of (60) is strictly positive and so must be a solution of problem (62) for A := a and
b := β. But, by Lemma 9, the latter solution is unique and equals u(H , s, a, β).

We have proved that (61) is indeed a solution of (60). Moreover, when 〈a, s〉 �=
β‖s‖∗, we have shown that this solution is unique. It remains to prove the uniqueness
of solution when 〈a, s〉 = β‖s‖∗, assuming additionally that β < ‖a‖∗. But this is
simple. Indeed, by our assumptions, |β| < ‖a‖∗, so |〈a, s〉| = |β|‖s‖∗ < ‖a‖∗‖s‖∗.
Hence, a and s are linearly independent. But then φ is strictly convex, and thus its
minimizer is unique. ��

B.2 Computation of dual multipliers

In this section, we prove the correctness of Algorithm 3.
For s ∈ E

∗, let X(s) be the subdifferential of ‖·‖∗ at the point s:

X(s) :=
{
{Hs/‖s‖∗}, if s �= 0,

B0, if s = 0.
(72)

Clearly, X(s) ⊆ B0 for any s ∈ E
∗. When s �= 0, we denote the unique element of

X(s) by x(s).
Let us formulate a convenient optimality condition.

Lemma 11 Let A be the linear operator fromR
m to E∗, defined by Au := ∑m

i=1 uiai ,
where a1, . . . , am ∈ E

∗, and let b ∈ R
m, s ∈ E

∗. Then, μ∗ ∈ R
m+ is a min-

imizer of ψ(μ) := ‖s − Aμ‖∗ + 〈μ, b〉 over R
m+ if and only if X(s − Aμ∗) ∩

L1(μ
∗
1) . . . Lm(μ∗m) �= ∅, where, for each 1 ≤ i ≤ m and τ > 0, we denote

Li (τ ) := {x ∈ E : 〈ai , x〉 ≤ bi }, if τ = 0, and Li (τ ) := {x ∈ E : 〈ai , x〉 = bi }, if
τ > 0.

Proof Indeed, the standard optimality condition for a convex function over the non-
negative orthant is as follows: μ∗ ∈ R

m+ is a minimizer of ψ onRm+ if and only if there
exists g∗ ∈ ∂ψ(μ∗) such that g∗i ≥ 0 and g∗i μ∗i = 0 for all 1 ≤ i ≤ m. It remains to
note that ∂ψ(μ∗) = b − A∗X(s − Aμ∗). ��
Theorem 3 Algorithm 3 is well-defined and returns a solution of (65).

Proof i. For each i = 1, 2 and τ ≥ 0, denote L−i := {x ∈ E : 〈ai , x〉 ≤ bi }, Li :=
{x ∈ E : 〈ai , x〉 = bi }, Li (τ ) := L−i , if τ = 0, and Li (τ ) := Li , if τ > 0.

ii. From (66) and Lemma 10, it follows that Step 1 is well-defined and, for each
i = 1, 2, τi is a solution of (60) with parameters (s, ai , bi ). Hence, by Lemma 11,

X(s − τi ai ) ∩ Li (τi ) �= ∅, i = 1, 2. (73)
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iii. Consider Step 2. Note that the condition ξ1 ≤ b2 is equivalent to B0∩ L−1 ⊆ L−2
since ξ1 = maxx∈B0∩L−1 〈a2, x〉. If B0 ∩ L−1 ⊆ L−2 , then, by (73), X(s − τ1a1) ∩
L1(τ1) ∩ L−2 = X(s − τ1a1) ∩ L1(τ1) �= ∅, so, by Lemma 11, (τ1, 0) is indeed a
solution of (65).

Similarly, if ξ2 ≤ b1, then B0 ∩ L−2 ⊆ L−1 and (0, τ2) is a solution of (65).
iv. From now on, we can assume that B0∩L−1 ∩ int L+2 �= ∅, B0∩L−2 ∩ int L+1 �= ∅,

where int L+i := {x ∈ E : 〈ai , x〉 > bi }, i = 1, 2. Combining this with (66), we
obtain9

int B0 ∩ L1 ∩ L−2 �= ∅, int B0 ∩ L2 ∩ L−1 �= ∅. (74)

Suppose 〈a2, H(s − τ1a1)〉 ≤ b2‖s − τ1a1‖∗ at Step 3. 1) If s �= τ1a1, then X(s−
τ1a1) is a singleton, x(s − τ1a1) = H(s − τ1a1)/‖s − τ1a1‖∗, so we obtain x(s −
τ1a1) ∈ L−2 . Combining this with (73), we get x(s − τ1a1) ∈ L1(τ1) ∩ L−2 . 2) If s =
τ1a1, then X(s−τ1a1)∩L1(τ1)∩L−2 = B0∩L1(τ1)∩L−2 �= ∅ in view of the first claim
in (74) (recall that L1 ⊆ L1(τ1)). Thus, in any case, X(s − τa1)∩ L1(τ1)∩ L−2 �= ∅,
and so, by Lemma 11, (τ1, 0) is a solution of (65).

Similarly, one can consider the case when 〈a1, H(s − τ2a2)〉 ≤ b1‖s − τ2a2‖∗ at
Step 3.

Suppose we have reached Step 4. From now on, we can assume that

X(s − τ1a1) ∩ L1(τ1) ∩ int L+2 �= ∅, X(s − τ2a2) ∩ L2(τ2) ∩ int L+1 �= ∅.
(75)

Indeed, since both conditions at Step 3 have not been satisfied, s �= τi ai , i = 1, 2, and
x(s − τ1a1) /∈ L−2 , x(s − τ2a2) /∈ L−1 . Also, by (73), x(s − τi ai ) ∈ Li (τi ), i = 1, 2.

Letμ ∈ R
2+ be any solution of (65). ByLemma11, X(s−Aμ)∩L1(μ1)∩L2(μ2) �=

∅. Note that we cannot have μ2 = 0. Indeed, otherwise, we get X(s − μ1a1) ∩
L1(μ1)∩L−2 �= ∅, soμ1 must be a solution of (60) with parameters (s, a1, b1). But, by
Lemma 10, such a solution is unique (in view of the second claim in (75), 〈a1, x〉 > b1
for some x ∈ B0, so b1 < ‖a1‖∗). Hence,μ1 = τ1, and we obtain a contradiction with
(75). Similarly, we can show that μ1 �= 0. Consequently, μ1, μ2 > 0, which means
that μ is a solution of (62).

Thus, at this point, any solution of (65) must be a solution of (62). In view of
Lemma 9, to finish the proof, it remains to show that the vectors a1, a2 are linearly
independent and 〈b, (A∗H A)−1b〉 < 1. But this is simple. Indeed, from (75), it follows
that

either B0 ∩ L1 ∩ int L+2 �= ∅ or B0 ∩ L2 ∩ int L+1 �= ∅ (76)

since τ1 and τ2 cannot both be equal to 0. Combining (76) and (74), we see that int B0∩
L1 ∩ L2 �= ∅ and, in particular, L1 ∩ L2 �= ∅. Hence, a1, a2 are linearly independent
(otherwise, L1 = L2, which contradicts (76)). Taking any x ∈ int B0 ∩ L1 ∩ L2, we

9 Take an appropriate convex combination of two points from the specified nonempty convex sets.
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obtain ‖x‖ < 1 and A∗x = b, hence 〈b, (A∗H A)−1b〉 = 〈A∗x, (A∗H A)−1A∗x〉 ≤
‖x‖2 < 1, where we have used A(A∗H A)−1A∗ ! H−1. ��
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