
Mathematical Programming (2023) 198:363–397
https://doi.org/10.1007/s10107-022-01825-4

FULL LENGTH PAPER

Series A

Near-linear convergence of the RandomOsborne algorithm
for Matrix Balancing

Jason M. Altschuler1 · Pablo A. Parrilo1

Received: 6 April 2020 / Accepted: 7 January 2022 / Published online: 30 May 2022
© The Author(s) 2022

Abstract
We revisit Matrix Balancing, a pre-conditioning task used ubiquitously for computing
eigenvalues and matrix exponentials. Since 1960, Osborne’s algorithm has been the
practitioners’ algorithm of choice, and is now implemented in most numerical soft-
ware packages. However, the theoretical properties of Osborne’s algorithm are not
well understood. Here, we show that a simple random variant of Osborne’s algo-
rithm converges in near-linear time in the input sparsity. Specifically, it balances
K ∈ R

n×n
≥0 after O(mε−2 log κ) arithmetic operations in expectation and with high

probability, where m is the number of nonzeros in K , ε is the �1 accuracy, and
κ = ∑

i j Ki j/(mini j :Ki j �=0 Ki j) measures the conditioning of K . Previous work had
established near-linear runtimes either only for �2 accuracy (aweaker criterionwhich is
less relevant for applications), or through an entirely different algorithm based on (cur-
rently) impractical Laplacian solvers.We further show that if the graph with adjacency
matrix K is moderately connected—e.g., if K has at least one positive row/column
pair—then Osborne’s algorithm initially converges exponentially fast, yielding an
improved runtime O(mε−1 log κ). We also address numerical precision issues by
showing that these runtime bounds still hold when using O(log(nκ/ε))-bit numbers.
Our results are established through an intuitive potential argument that leverages a
convex optimization perspective of Osborne’s algorithm, and relates the per-iteration
progress to the current imbalance as measured in Hellinger distance. Unlike previous
analyses, we critically exploit log-convexity of the potential. Notably, our analysis
extends to other variants of Osborne’s algorithm: along the way, we also establish

Work partially supported by NSF AF 1565235, NSF Graduate Research Fellowship 1122374, and a
TwoSigma PhD Fellowship.

B Jason M. Altschuler
jasonalt@mit.edu

Pablo A. Parrilo
parrilo@mit.edu

1 Laboratory for Information and Decision Systems, MIT, Cambridge, MA 02139, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-022-01825-4&domain=pdf
http://orcid.org/0000-0001-7367-0097

364 J. M. Altschuler, P. A. Parrilo

significantly improved runtime bounds for cyclic, greedy, and parallelized variants of
Osborne’s algorithm.

Keywords Matrix Balancing · Osborne’s algorithm · Random Osborne · Convex
optimization · Coordinate descent · Near-linear time

Mathematics Subject Classification 65F08 · 65F50 · 90C25

1 Introduction

Let 1 denote the all-ones vector in Rn . A nonnegative square matrix A ∈ R
n×n
≥0 is said

to be balanced if its row sums r(A) := A1 equal its column sums c(A) := AT 1, i.e.

r(A) = c(A). (1)

This paper revisits the classical problem of Matrix Balancing—sometimes also called
diagonal similarity scaling or line-sum-symmetric scaling—which asks: given a non-
negative matrix K ∈ R

n×n
≥0 , find a positive diagonal matrix D (if one exists1) such that

A := DK D−1 is balanced.
Matrix Balancing is a fundamental problem in numerical linear algebra, scientific

computing, and theoretical computer science with many applications and an extensive
literature dating back to 1960. The original papers [31, 34] considered the setup of
balancing a matrix so that for every i , its i-th row and column have the same �p norm
(rather than sum). Despite this problem’s rich history, for nearly 60 years polyno-
mial runtimes were unknown for Osborne’s algorithm, the standard algorithm used
in practice, until the breakthrough papers [40] for p = ∞ and then [32] for p finite.
See Remark 3 for an expanded discussion of this history, the relations between these
Matrix Balancing variants, and a straightforward reduction which extends all near-
linear runtime results established in this paper to �p Matrix Balancing for finite p.

A particularly celebrated application ofMatrixBalancing is pre-conditioningmatri-
ces before linear algebraic computations such as eigenvalue decomposition [31, 34]
and matrix exponentiation [20, 47]. The point is that performing these linear algebra
tasks on a balanced matrix can drastically improve numerical stability and readily
recovers the desired answer on the original matrix [31]. Moreover, in practice, the
runtime of (approximate) Matrix Balancing is essentially negligible compared to the
runtime of these downstream tasks [35, Sect. 11.6.1]. The ubiquity of these applica-
tions has led to the implementation ofMatrixBalancing inmost linear algebra software
packages, including EISPACK [42], LAPACK [5], R [36], andMATLAB [26]. In fact,
Matrix Balancing is performed by default in the command for eigenvalue decompo-
sition in MATLAB [27] and in the command for matrix exponentation for R [18].
Matrix Balancing also has other diverse applications in economics [39], information
retrieval [46], and combinatorial optimization [4].

1 K can be balanced if and only if K is irreducible [16]. This can be efficiently checked in linear time [45].

123

Near-linear convergence of the Random Osborne algorithm 365

In practice, Matrix Balancing is performed approximately rather than exactly, since
this can be done efficiently and typically suffices for applications. Specifically, in
the approximate Matrix Balancing problem, the goal is to compute a scaling A :=
DK D−1 that is ε-balanced in the �1 sense, i.e.,

‖r(A) − c(A)‖1
∑

i j Ai j
≤ ε. (2)

Remark 1 (�1 versus �2 error criterion) Several papers [22, 32] study approximate
Matrix Balancing with �2 error criterion—rather than �1 as done here in (2) and in
e.g., [29]—for what appears to be essentially historical reasons. Here, we focus solely
on the �1 error criterion as it appears to be more useful for applications—e.g., it is
critical for near-linear time approximation of the Min-Mean-Cycle problem [4]—
in large part due to its natural interpretations in both probabilistic problems (as total
variation imbalance) and graph theoretic problems (as netflow imbalance) [4, Remarks
2.1 and 5.8].2 Note also that the approximate balancing criterion (2) is significantly
easier to achieve3 for �2 than �1: in fact, any matrix can be balanced to constant �2
error by only rescaling a vanishing 1/n fraction of the entries [32], whereas this is
impossible for the �1 norm. (Note that this issue of which norm tomeasure error should
not be confused with the �p Matrix Balancing problem, see Remark 3.)

1.1 Previous algorithms

The many applications of Matrix Balancing have motivated an extensive literature
focused on solving it efficiently. However, there is still a large gap between theory
and practice, and several key issues remain. We overview the relevant previous results
below.

1.1.1 Practical state-of-the-art

Ever since its invention in 1960,Osborne’s algorithm has been the algorithm of choice
for practitioners [31, 34]. Osborne’s algorithm is a simple iterative algorithm which
initializes D to the identity (i.e., no balancing), and then in each iteration performs
an Osborne update on some update coordinate k ∈ [n], in which Dkk is updated to√

ck(A)/rk(A)Dkk so that the k-th row sum rk(A) and k-th column sum ck(A) of the

2 The analogous observation has also been made for the intimately related problem of Matrix Scaling. For
example, the �1 norm is pivotal there for applications including Optimal Transport [3] and Bipartite Perfect
Matching [9].
3 As a simple concrete example, let n be even and consider the n × n matrix A which is 0 everywhere
except is the identity on the top right n/2 × n/2 block. Note that r(A)/

∑
i j Ai j = [2n 1n/2, 0n/2]T

and c(A)/
∑

i j Ai j = [0n/2,
2
n 1n/2]T . Thus A is as unbalanced as possible in �1 norm since ‖r(A) −

c(A)‖1/
∑

i j Ai j = 2; however, A is very well balanced in �2 norm since ‖r(A) − c(A)‖2/
∑

i j Ai j =
2/

√
n is vanishingly small.

123

366 J. M. Altschuler, P. A. Parrilo

current balancing A = DK D−1 agree.4 A more precise statement is in Algorithm 1
later.

The classical versionofOsborne’s algorithm, henceforth calledRound-Robin Cyclic
Osborne, chooses the update coordinates by repeatedly cycling through {1, . . . , n}.
This algorithm5 performs remarkably well in practice and is the implementation of
choice in most linear algebra software packages.

Despite this widespread adoption of Osborne’s algorithm, a theoretical understand-
ing of its convergence has proven to be quite challenging: indeed, non-asymptotic
convergence bounds (i.e., runtime bounds) were not known for nearly 60 years until
the breakthrough 2017 paper [32]. The paper [32] shows6 that Round-Robin Cyclic
Osborne computes an ε-balancing after O(mn2ε−2 log κ) arithmetic operations,where
m is the number of nonzeros in K , and κ := (

∑
i j Ki j)/(mini j :Ki j �=0 Ki j). They also

show faster Õ(n2ε−2 log κ) runtimes for two variants of Osborne’s algorithm which
choose update coordinates in different orders than cyclically. Here and henceforth, the
Õ notation suppresses polylogarithmic factors in n and ε−1. The first variant, whichwe
call Greedy Osborne, chooses the coordinate with maximal imbalance as measured by
argmaxk(

√
rk(A)−√

ck(A))2. They show that Greedy Osborne’s runtime dependence
on ε can be improved from ε−2 to ε−1; however, this comes at the high cost of an extra
factor of n. A disadvantage of Greedy Osborne is that it has numerical precision issues
and requires operating on O(n log κ)-bit numbers. The second variant, which we call
Weighted Random Osborne, chooses coordinate k with probability proportional to
rk(A) + ck(A), and can be implemented using O(log(nκ/ε))-bit numbers.

Collectively, these runtime bounds are fundamental results since they establish that
Osborne’s algorithm has polynomial runtime in n and ε−1, and moreover that variants
of it converge in roughly Õ(n2ε−2) time for matrices satisfying log κ = Õ(1)—
henceforth called well-conditioned matrices. However, these theoretical runtime
bounds are still much slower than both Osborne’s rapid empirical convergence and
the state-of-the-art theoretical algorithms described below.

Two remaining open questions that this paper seeks to address are:

1. Near-linear runtime.7 Does (any variant of) Osborne’s algorithm have near-linear
runtime in the input sparsity m? The fastest known runtimes scale as n2, which is
significantly slower for sparse problems.

2. Scalability in accuracy. The fastest runtimes for (any variant of) Osborne’s algo-
rithm scale poorly in the accuracy as ε−2. (Except Greedy Osborne, for which it

4 We assume throughout that the diagonal of K is zero. This ensures that the Osborne update makes the
row and column sums agree. This assumption is without loss of generality because if D ε-balances K with
zeroed-out diagonal, then it also ε-balances K .
5 To be precise, following [34], some implementations have two minor modifications: a pre-processing
step where K is permuted to a triangular block matrix with irreducible diagonal blocks; and a restriction
of the entries of D to exact powers of the radix base. We presently ignore these minor modifications since
the former is easily performed in linear-time [45], and the latter is solely to safeguard against numerical
precision issues in practice.
6 Note that in [32], bounds are written for the �2 error criterion; see Remark 1.
7 Throughout,we say a runtime is near-linear if it is O(m), up to polylogarithmic factors in n and polynomial
factors in the inverse accuracy ε−1.

123

Near-linear convergence of the Random Osborne algorithm 367

is only known that ε−2 can be replaced by ε−1 at the high cost of an extra factor
of n.) Can this be improved?

1.1.2 Theoretical state-of-the-art

A separate line of work leverages sophisticated optimization techniques to solve
a convex optimization problem equivalent to Matrix Balancing. These algorithms
have log ε−1 dependence on the accuracy, but are not practical (at least cur-
rently) due to costly overheads required by their significantly more complicated
iterations. This direction originated in [22], which showed that the Ellipsoid
algorithm produces an approximate balancing in Õ(n4 log((log κ)/ε)) arithmetic
operations on O(log(nκ/ε))-bit numbers. Recently, [12]8 gave an Interior Point algo-
rithm with runtime Õ(m3/2 log(κ/ε)) and a Newton-type algorithm with runtime
Õ(md log2(κ/ε) log κ), where d denotes the diameter of the directed graph G K with
vertices [n] and edges {(i, j) : Ki j > 0} [12, Theorem 4.18, Theorem 6.1, and Lemma
4.24]. Note that under the condition that K is a well-connected matrix—by which we
mean that G K has polylogarithmic diameter d = Õ(1)—then this latter algorithm has
near-linear runtime in the input sparsity m. However, these algorithms heavily rely
upon near-linear time Laplacian solvers, for which practical implementations are not
known.

1.2 Contributions

Random Osborne converges in near-linear timeOurmain result (Theorem9) addresses
the two open questions above by showing that a simple random variant of the ubiqui-
tously used Osborne’s algorithm has runtime that is (i) near-linear in the input sparsity
m, and also (ii) linear in the inverse accuracy ε−1 for well-connected inputs. Property
(i) amends the aforementioned gap between theory and practice that the fastest known
runtime of Osborne’s algorithm scales as n2 [32], while a different, impractical algo-
rithm has theoretical runtime which is (conditionally) near-linear in m [12]. Property
(ii) shows that improving the runtime dependence in ε from ε−2 to ε−1 does not require
paying a costly factor of n (c.f., [32]).

Specifically, we propose a variant of Osborne’s algorithm—henceforth called Ran-
dom Osborne9— which chooses update coordinates uniformly at random, and show
the following.

Theorem 1 (Informal version of Theorem 9)Random Osborne solves the approximate
Matrix Balancing problem on input K ∈ R

n×n
≥0 to accuracy ε > 0 after

O

(
m

ε

(
1

ε
∧ d

)

log κ

)

, (3)

8 Similar runtimes were also developed by [1].
9 Not to be confused with the different randomized variant of Osborne’s algorithm in [32, Sect. 5], which
draws coordinates with non-uniform probabilities. We call that algorithm Weighted Random Osborne to
avoid confusion.

123

368 J. M. Altschuler, P. A. Parrilo

Table 1 Variants of Osborne’s algorithm for balancing a matrix K ∈ R
n×n
≥0 with m nonzeros to ε �1

accuracy. For simplicity, here K is assumed well-conditioned (i.e., log κ = Õ(1)) and well-connected (i.e.,
d = Õ(1)); see the main text for detailed dependence on log κ and d. Note that in [32], bounds are written
for the �2 error criterion; see Remark 1. See the main text for descriptions of each variant, and also Sect. 2.4
for more details on Random-Reshuffle Cyclic, Greedy, and Random Osborne. Our new bounds are in bold.
Theorems 8 and 10 provide runtimes which, while not-linear, improve upon previous complexity bounds
for greedy and cyclic variants of the Osborne algorithm, respectively. Our main result, Theorem 9, provides
the first near-linear runtime for any variant of Osborne’s algorithm

Variant Best runtime bound (arithmetic operations) Polylog bits

Cyclic (Round-Robin) Õ(mn2/ε2) [32] No

Cyclic (Random-Reshuffle) Õ(mn/ε) (Theorem 10) Yes (Theorem 13)

Weighted Random Õ(n2/ε2) [32] Yes [32]

Greedy Õ((n2/ε2) ∧ (n3/ε)) [32] −→ Õ(n2/ε) (Theorem 8) No

Random Õ(m/ε) (Theorem 9) Yes (Theorem 13)

arithmetic operations, both in expectation and with high probability.

Wemake several remarks about Theorem 1. First, we interpret the runtime (3). This
is the minimum of O(mε−2 log κ) and O(mdε−1 log κ). The former is near-linear in
m. The latter is too if G K has polylogarithmic diameter d = Õ(1)—important special
cases include matrices K containing at least one strictly positive row/column pair
(there, d = 1), and matrices with random sparsity patterns (there, d = Õ(1) with
high probability, see, e.g., [8, Theorem 10.10]). Note that the complexity of Matrix
Balancing is intimately related to the connectivity of G K : indeed, K can be balanced
if and only if G K is strongly connected (i.e., if and only if d is finite) [31]. Intuitively,
the runtime dependence on d is a quantitative measure of “how balanceable” the input
K is.

We note that the high probability bound in Theorem 1 has tails that decay expo-
nentially fast. This is optimal with our analysis, see Remark 8.

Next, we comment on the log κ term in the runtime. This term appears in all
other state-of-the-art runtimes [12, 32] and is mild: indeed, log κ ≤ logm +
log(maxi j Ki j/mini j :Ki j >0 Ki j), where the former summand is Õ(1)—hence why
the runtime is near-linear—and the latter is the input size for the entries of K . In
particular, if K has quasi-polynomially bounded entries, then log κ = Õ(1).

Next, we compare to existing runtimes. Theorem 9 (a.k.a., the formal version of
Theorem 1) gives a faster runtime than any existing practical algorithm, see Table 1. If
comparing to the (impractical) algorithm of [12] on a purely theoretical plane, neither
runtime dominates the other, and which is faster depends on the precise parameter
regime: [12] is better for high accuracy solutions,10 while Random Osborne has better
dependence on the conditioning κ of K and the connectivity d of G K .

10 We remark that in practical applications of Matrix Balancing such as pre-conditioning, low accuracy
solutions typically suffice. Indeed, this is a motivation of the commonly used variant of Osborne’s algorithm
which restricts entries of the scaling D to exact powers of the radix base [34].

123

Near-linear convergence of the Random Osborne algorithm 369

Table 2 Parallelized variants of Osborne’s algorithm for balancing a matrix K ∈ R
n×n
≥0 with m nonzeros

to ε �1 accuracy, given a partitioning of the dataset into p blocks (see Sect. 2.5 for details). For simplicity,
here K is assumed well-conditioned (i.e., log κ = Õ(1)) and well-connected (i.e., d = Õ(1)); see the
main text for detailed dependence on log κ and d. All results are ours. The runtime and work bounds are in
Theorem 11, and the bit-complexity bounds are in Theorem 13

Variant Best runtime bound (rounds) Total work Polylog bits

Cyclic Block (Random-Reshuffle) Õ(p2/ε) Õ(mp/ε) Yes

Greedy Block Õ(p/ε) Õ(mp/ε) No

Random Block Õ(p/ε) Õ(m/ε) Yes

Finally, we remark about bit-complexity. In Sect. 8, we show that with only minor
modification, Random Osborne is implementable using numbers with only logarith-
mically few O(log(nκ/ε)) bits; see Theorem 13 for formal statement.
Simple, streamlined analysis for different Osborne variants. We prove Theorem 1
using an intuitive potential argument (overviewed in Sect. 1.3 below). An attractive
feature of this argument is that with onlyminormodification, it adapts to otherOsborne
variants. We elaborate below; see also Tables 1 and 2 for summaries of our improved
rates.

Greedy Osborne. We show an improved runtime for Greedy Osborne where the ε−2

dependence is improved to ε−1 at the cost of d (rather than a full factor of n as
in [32]). Specifically, in Theorem 8, we show convergence after O(n2ε−1(ε−1 ∧
d) log κ) arithmetic operations,which improves upon the previous best O(n2ε−1 log n·
(ε−1 log κ ∧ n log(κ/ε))) from [32]. (The other improved log n factor comes from
simplifying the data structure used for efficient greedy updates, see Remark 6.)

Random-Reshuffle Cyclic Osborne. We analyze Random-Reshuffle Cyclic Osborne,
which is the variant of Osborne’s algorithm that cycles through all n indices using
a fresh random permutation in each cycle. We show that this algorithm converges
after O(mnε−1(ε−1 ∧ d) log κ) arithmetic operations (Theorem 10). Previously, the
only known runtime bound for any variant of Osborne with “cyclic” updates in the
sense that each index is updated exactly once per epoch, was the O(mn2ε−2 log κ)

runtime bound for Round-Robin Cyclic Osborne [32]. Although the version of Cyclic
Osborne we study is different than the one studied in [32], we note that our runtime
bound is a factor of n faster, and additionally a factor of 1/ε faster if the matrix is
well-connected. Moreover, we show that Random-Reshuffle Cyclic Osborne can be
implemented on numbers with O(log(nκ/ε))-bit numbers (Theorem 13), whereas the
analysis of Round-Robin Cyclic Osborne in [32] requires O(n log κ)-bit numbers.

Parallelized Osborne.We also show fast convergence for the analogous greedy, cyclic,
and random variants of a parallelized version of Osborne’s algorithm that is recalled
in Sect. 2.5. These runtimes bounds are summarized in Table 2. Our main result here
is that—modulo at most a single log n factor arising from the conditioning log κ of
the input—Random Block Osborne converges after (i) only a linear number O(

p
ε
(1
ε
∧

d) log κ) of synchronization rounds in the size p of the dataset partition; and (ii) the
same amount of total work as its non-parallelized counterpart RandomOsborne, which

123

370 J. M. Altschuler, P. A. Parrilo

is in particular near-linear in m (see Theorem 1 and the ensuing discussion). Property
(i) shows that, when giving an optimal coloring of G K , RandomOsborne converges in
linear time in the chromatic number χ(G K) of G K (see Sect. 2.5 for further details).
Property (ii) shows that the speedup of parallelization comes at no cost in the total
work.

1.3 Overview of approach

We establish all of our runtime bounds with essentially the same potential argument.
Below, we first sketch this argument for Greedy Osborne, since it is the simplest. Next,
we describe themodifications for RandomOsborne—the argument is identicalmodulo
probabilistic tools which, albeit necessary for a rigorous analysis, are not the heart of
the argument. We then outline the analysis for Random-Reshuffle Cyclic Osborne,
which follows as a straightforward corollary. We then briefly remark upon the very
minor modifications required for the parallelized Osborne variants.

For all variants, the potential we use is D �→ Φ(D) − infD∗ Φ(D∗), where for a
positive diagonal matrix D, we write Φ(D) = log

∑
i j Ai j to denote the logarithm

of the sum of the entries of the current balancing A = DK D−1. Minimizing this
potential function is well-known to be equivalent to Matrix Balancing; details in the
Preliminaries section Sect. 2.3. Note also that Osborne’s algorithm is equivalent to
Exact Coordinate Descent on this function—which, importantly, is convex after a re-
parameterization; see Sect. 2.4. In the interest of accessibility, the below overview
describes our approach at an informal level that does not require further background.
Later, Sect. 2 provides these preliminaries, and Sect. 3 gives the technical details of
the potential argument.

1.3.1 Argument for Greedy Osborne

Here we sketch the O(n2ε−1(ε−1∧d) log κ) runtimewe establish for GreedyOsborne
in Sect. 4. Since each Greedy Osborne iteration takes O(n) arithmetic operations (see
Sect. 2.4), it suffices to bound the number of iterations by O(nε−1(ε−1 ∧ d) log κ).

The first step is relating the per-iteration progress of Osborne’s algorithm to the
imbalance of the current balancing—asmeasured inHellinger distanceH(·, ·). Specif-
ically, we show that an Osborne update decreases the potential function by at least

(per-iteration decrease in potential) � H2 (r(P), c(P))

n
, (4)

where P = A/
∑

i j Ai j is the normalization of the current scaling A = DK D−1.
Note that since P is normalized, its marginals r(P) and c(P) are both probability
distributions.

The second step is lower bounding this Hellinger imbalance H2 (r(P), c(P)) by
something large, so that we can argue that each iteration makes significant progress.
Following is a simple such lower bound that yields an O(n2ε−2 log κ) runtime
bound. Modulo small constant factors: a standard inequality in statistics lower bounds

123

Near-linear convergence of the Random Osborne algorithm 371

Hellinger distance by �1 distance (a.k.a. total variation distance), and the �1 distance
is by definition at least ε if the current iterate is not ε-balanced (see (2)). Therefore

(per-iteration decrease in potential) � ε2

n
(5)

for each iteration before convergence. Since the potential is initially not very large (at
most log κ , see Lemma 3) and by construction always nonnegative, the total number
of iterations before convergence is therefore at most nε−2 log κ .

The key to the improved bound is an extra inequality that shows that the per-iteration
decrease is very large when the potential is large. Specifically, this inequality—which
has a simple proof using convexity of the potential—implies the following improve-
ment of (5)

(per-iteration decrease in potential) � 1

n

[
(current potential)

R
∨ ε

]2
(6)

where R = d log κ . The per-iteration decrease is thus governed by the maximum
of these two quantities. In words, the former ensures a relative improvement in the
potential, and the latter ensures an additive improvement. Which is bigger depends on
the current potential: the former dominates when the potential isΩ(εR), and the latter
for O(εR). It can be shown that both “phases” require O(nε−1d log κ) iterations,
yielding the desired improved rate (details in Sect. 4).

1.3.2 Argument for RandomOsborne

The argument for Random Osborne is nearly identical, except for two minor changes.
The first change is the per-iteration potential decrease. All the same bounds hold
(i.e., (4), (5), and (6)), except that they are now in expectation rather than deterministic.
Nevertheless, this large expected progress is sufficient to obtain the same iteration-
complexity bound. Specifically, an expected bound on the number of iterations is
proved using Doob’s Optional Stopping Theorem, and a h.p. bound using a martingale
Chernoff bound (details in Sect. 5.2).

The second change is the per-iteration runtime: it is faster in expectation.

Observation 2 (Per-iteration runtime of Random Osborne) An iteration of Random
Osborne requires O(m/n) arithmetic operations in expectation.

Proof The number of arithmetic operations required by an Osborne update on coor-
dinate k is proportional to the number of nonzero entries on the k-th row and column
of K . Since Random Osborne draws k uniformly from [n], this number of nonzeros
is 2m/n in expectation. ��

Note that this per-iteration runtime is n2/m times faster than Greedy Osborne’s.
This is why our bound on the total runtime of Random Osborne is roughly O(m),
whereas for Greedy Osborne it is O(n2).

123

372 J. M. Altschuler, P. A. Parrilo

A technical nuance is that arguing a final runtime bound from a per-iteration runtime
and an iteration-complexity bound is a bit more involved for Random Osborne. This
is essentially because the number of iterations is not statistically independent from the
per-iteration runtimes. For GreedyOsborne, the final runtime is bounded simply by the
product of the per-iteration runtime and the number of iterations. We show a similar
bound for Random Osborne in expectation via a slight variant of Wald’s inequality,
and w.h.p. via a Chernoff bound; details in Sect. 5.1.

1.3.3 Argument for Random-Reshuffle Cyclic Osborne

Analyzing Cyclic Osborne (either Round-Robin or Random-Reshuffle) is difficult
because the improvement of anOsborne update is significantly affected by the previous
Osborne updates in the cycle—and this effect is difficult to track. We observe that
our improved analysis for Random Osborne implies, as a straightforward corollary,
a fast runtime for Random-Reshuffle Cyclic Osborne. Specifically, since Osborne
updates monotonically improve the potential, the per-cycle improvement of Random-
Reshuffle Cyclic Osborne is at least the improvement of the first iteration of the cycle,
which equals the improvement of a single iteration of Random Osborne. This implies
that Random-Reshuffle Cyclic Osborne requires at most n times more iterations than
Random Osborne. Details in Sect. 6. We remark that while arguing about a cycle only
through its first iteration is clearly quite pessimistic, improvements seem difficult. A
similar difficulty occurs for the analysis of Cyclic Coordinate Descent in more general
convex optimization setups; see, e.g., [44, 48].

1.3.4 Argument for parallelized Osborne

The argument for the parallelized variants of Osborne are nearly identical to the argu-
ments for their non-parallelized counterparts, described above. Specifically, the main
difference for the random and greedy variants is just that in the bounds (4), (5), and (6),
the 1/n factor is improved to 1 over the partitioning size p. The same argument then
results in a final runtime that is sped up by this factor of n/p. The only difference for
analyzing the Random-Reshuffle Cyclic variant is that here, the analogous coupling
argument only gives a slowdown of p rather than n. Details in Sect. 7.

1.3.5 Key differences from previous approaches

The only other polynomial-time analysis of Osborne’s algorithm also uses a potential
argument [32]. However, our argument differs in several key ways—which enables
much tighter bounds as well as a simpler argument that extends to many variants
of Osborne’s algorithm. Notably, their proof of Lemma 3.1 (which is where they
show that each iteration of Greedy Osborne makes progress; c.f. our Lemma 7) is
specifically tailored to Greedy Osborne11 and seems unextendable to other variants

11 Specifically, to prove their Lemma 3.1, [32] uses in (3.6) the inequality maxi∈[n] ai /bi ≥
(1n

∑n
j=1 a j)/(

1
n

∑n
j=1 b j) for positive a1, . . . , an , b1, . . . , bn . Extending their analysis of Greedy

123

Near-linear convergence of the Random Osborne algorithm 373

such asRandomOsborne. In particular, this precludes obtaining the near-linear runtime
shown in this paper. Another key difference is that they do not use convexity of their
potential (explicitly written on [32, page 157]), whereas we exploit not only convexity
but also log-convexity (note our potential is the logarithm of theirs). Specifically, they
use [32, Lemma 2.2] to improve ε−2 to ε−1 dependence at the cost of an extra factor of
n, whereas here we show a significantly tighter bound (see the proof of Proposition 6)
that saves this factor of n for well-connected graphs by exploiting log-convexity of
their potential.

1.4 Other related work

We briefly remark about several related lines of work. Reference [11] gives heuristics
for speeding up Osborne’s algorithm on sparse matrices in practice, but does not
provide runtimebounds.Reference [33] gives amore complicated versionofOsborne’s
algorithm that obtains a stricter approximate balancing in a polynomial (albeit less
practical) runtime of roughly Õ(n19ε−4 log4 κ). Reference [25] gives an asynchronous
distributed version of Osborne’s algorithm with applications to epidemic suppression.

Remark 2 (Fast Coordinate Descent) Since Osborne’s algorithm is Exact Coordinate
Descent on a certain associated convex optimization problem (details in Sect. 2.4), it is
natural to ask what runtimes the extensive literature on Coordinate Descent implies for
Matrix Balancing. However, applying general-purpose bounds on Coordinate Descent
out-of-the-box gives quite pessimistic runtime bounds for Matrix Balancing12, essen-
tially because they only rely on coordinate-smoothness of the function. In order to
achieve the near-linear time bounds in this paper, we heavily exploit the further global
structure of the specific convex optimization problem at hand.

Remark 3 (�p Matrix Balancing and Max Balancing)] Historically, Matrix Balancing
was first studied in the setting of: given input K ∈ C

n×n and p ∈ [1,∞], compute A =
DK D−1 such that for each i ∈ [n], the i-th row and column of A have (approximately)
equal �p norm. (Note that this choice of �p norm for balancing should not be confused
with the error criterion discussion inRemark 1.) TheMatrixBalancing problem studied
in this paper is a special case of this: it is �1 balancing a nonnegative matrix. However,

Footnote 11 continued
Osborne to Random Osborne would require replacing maxi∈[n] ai /bi by

1
n

∑n
i=1 ai /bi in that inequality;

however, this inequality is false because an average of ratios is in general incomparable to the ratio of
averages. We bypass this obstacle by arguing in such a way that the quantity we need to bound is not a
fraction, since such an analysis readily extends to Random Osborne by linearity of expectation (see (21)
and Lemma 8).
12 E.g., consider applying the state-of-the-art guarantees of [2, 30] for accelerated Coordinate Descent
algorithms (which, note also, do not correspond exactly to Osborne’s algorithm since they do not per-
form exact coordinate minimization). These bounds apply to Random Coordinate Descent with judiciously
chosen non-uniform sampling probabilities, and yield an iteration bound of (

∑n
i=i

√
Li)δ

−1/2‖x∗‖2 for
minimizing Φ (defined in Sect. 2.3) to δ additive accuracy, where Li is the smoothness of Φ on coordinate
i . By [22, Corollary 2] and Cauchy-Schwarz, δ = O(ε2/n) ensures that such a δ-approximate minimizer
ofΦ corresponds to an ε-approximate balancing. Bounding Li ≤ 1 and ‖x∗‖2 ≤ √

nd log κ by Corollary 7
therefore yields a bound of O(n2ε−1d log κ) iterations. Since iterations takes O(m/n) time on average,
this yields a final runtime bound of O(mnε−1d log κ), which is not near-linear.

123

374 J. M. Altschuler, P. A. Parrilo

it is actually no less general, in the sense that for any finite p, �p balancing K ∈ C
n×n is

trivially reducible to �1 balancing the nonnegative matrix with entries |Ki j |p, see, e.g.,
[37]. Thus, following the literature, we focus only on the version of Matrix Balancing
described above.

Aparticularly interesting limiting case of �p MatrixBalancing is the case of p = ∞,
a.k.a. Max-Balancing. In this case, the aforementioned reduction from p finite to
p = 1 no longer applies. There is an extensive literature on this problem dating
back to 1960, including polynomial-time combinatorial algorithms [38, 49] as well
as a natural analog of Osborne’s algorithm [31]. Just like the case of finite p, for
�∞ Matrix Balancing Osborne’s algorithm has long been the choice in practice, yet
its analysis has proven difficult. Indeed, breakthroughs took roughly half a century:
asymptotic convergence was not even known until 1998 [10], and the first runtime
bound was shown only a few years ago [40]. However, despite the syntactic similarity
of �p Matrix Balancing for p finite and p infinite, the two problems are fundamentally
very different: not only are the balancing goals different (which begets remarkably
different properties, e.g., the �∞ Matrix Balancing solution is not unique [10]), but also
the algorithms are quite different (even the analogous versions ofOsborne’s algorithm)
and their analyses do not appear to carry over [32].

Remark 4 (Matrix Scaling and Sinkhorn’s algorithm) The Matrix Scaling problem is:
given K ∈ R

n×n
≥0 and vectorsμ, ν ∈ R

n≥0 satisfying
∑

i μi = ∑
i νi , find positive diag-

onal matrices D1, D2 such that A := D1K D2 satisfies r(A) = μ and c(A) = ν. The
many applications of Matrix Scaling have motivated an extensive literature on it; see,
e.g., the survey [21]. In analog to Osborne’s algorithm for Matrix Balancing, there is a
simple iterative procedure (Sinkhorn’s algorithm) for Matrix Scaling [41]. Sinkhorn’s
algorithm was recently shown to converge in near-linear time [3] (see also [9, 15,
19]). The analysis there also uses a potential argument. Interestingly, the per-iteration
potential improvement for Matrix Scaling is the Kullback-Leibler divergence of the
current imbalance,whereas forMatrixBalancing it is theHellinger divergence. Further
connections related to algorithmic techniques in this paper are deferred toAppendix B.

1.5 Roadmap

Section 2 recalls preliminary background. Sect. 3 establishes the key lemmas in the
potential argument. Sections 4, 5, 6, and 7 use these tools to prove fast convergence
for Greedy, Random, Random-Reshuffle Cyclic, and parallelized Osborne variants,
respectively. For simplicity of exposition, these sections assume exact arithmetic; bit-
complexity issues are addressed in Sect. 8. Section 9 concludes with several open
questions.

2 Preliminaries

2.1 Notation

For the convenience of the reader,we collect here the notation used commonly through-
out the paper. We reserve K ∈ R

n×n
≥0 for the matrix we seek to balance, ε > 0 for the

123

Near-linear convergence of the Random Osborne algorithm 375

balancing accuracy, m for the number of nonzero entries in K , G K for the graph asso-
ciated to K , and d for the diameter of G K . We assume throughout that the diagonal of
K is zero; this is without loss of generality because if D solves the ε-balancing prob-
lem for the matrix K with zeroed-out diagonal, then D solves the ε-balancing problem
for K . The support, maximum entry, minimum nonzero entry, and condition number
of K are respectively denoted by supp(K) = {(i, j) : Ki j > 0}, Kmax = maxi j Ki j ,
Kmin = min(i, j)∈supp(K) Ki j , and κ = (

∑
i j Ki j)/Kmin. The Õ notation suppresses

polylogarithmic factors in n and ε. The all-ones and all-zeros vectors in R
n are

respectively denoted by 1 and 0. Let v ∈ R
n . The �1 norm, �∞ norm, and varia-

tion semi-norm of v are respectively ‖v‖1 = ∑n
i=1 |vi |, ‖v‖∞ = maxi∈[n] |vi |, and

‖v‖var = maxi vi −min j v j . We denote the entrywise exponentiation of v by ev ∈ R
n ,

and the diagonalization of v by D(v) ∈ R
n×n . The set of discrete probability distribu-

tions on n atoms is identified with the simplex Δn = {p ∈ R
n≥0 : ∑n

i=1 pi = 1}. Let
μ, ν ∈ Δn . Their Hellinger distance is H(μ, ν) =

√
1
2

∑n
�=1(

√
μ� − √

ν�)2, and their
total variation distance is TV(μ, ν) = ‖μ − ν‖1/2. We abbreviate “with high prob-
ability” by w.h.p., “high probability” by h.p., and “almost surely” by a.s. We denote
the minimum of a, b ∈ R by a ∧ b, and the maximum by a ∨ b. Logarithms take base
e unless otherwise specified. All other specific notation is introduced in the main text.

2.2 Matrix Balancing

The formal definition of the (approximate) Matrix Balancing problem is in the “log
domain” (i.e., output x ∈ R

n rather thanD(ex)). This is in part to avoid bit-complexity
issues (see Sect. 8).

Definition 3 (Matrix Balancing)] The Matrix Balancing problem BAL(K) for input
K ∈ R

n×n
≥0 is to compute a vector x ∈ R

n such that D(ex)KD(e−x) is balanced.

Definition 4 (Approximate Matrix Balancing) The approximate Matrix Balancing
problem ABAL(K , ε) for inputs K ∈ R

n×n
≥0 and ε > 0 is to compute a vector x ∈ R

n

such that D(ex)KD(e−x) is ε-balanced (see (1)).

K ∈ R
n×n
≥0 is said to be balanceable if BAL(K) has a solution. It is known that

non-balanceable matrices can be approximately balanced to arbitrary precision (i.e.,
ABAL has a solution for every K ∈ R

n×n
≥0 and ε > 0), and moreover that this is

efficiently reducible to approximately balancing balanceable matrices, see, e.g., [11,
12]. Thus, following the literature, we assume throughout that K is balanceable. In
the sequel, we make use of the following classical characterization of balanceable
matrices in terms of their sparsity patterns.

Lemma 1 (Characterization of balanceability) K ∈ R
n×n
≥0 is balanceable if and only

if it is irreducible—i.e., if and only if GK is strongly connected [31].

2.3 Matrix Balancing as convex optimization

Key to to our analysis—as well as much of the other Matrix Balancing literature (e.g.,
[12, 22, 29, 32])—is the classical connection between (approximately) balancing a

123

376 J. M. Altschuler, P. A. Parrilo

matrix K ∈ R
n×n
≥0 and (approximately) solving the convex optimization problem

min
x∈Rn

Φ(x) := log
∑

i j

exi −x j Ki j . (7)

In words, balancing K is equivalent to scaling DK D−1 so that the sum of its entries
is minimized. This equivalence follows from KKT conditions and convexity of Φ(x),
which ensures that local optimality implies global optimality. Intuition comes from
computing the gradient:

∇Φ(x) = A1 − AT 1
∑

i j Ai j
, where A := D(ex)KD(e−x). (8)

Indeed, solutions of BAL(K) are points where this gradient vanishes, and thus are
in correspondence with minimizers of Φ. This also holds approximately: solutions
of ABAL(K , ε) are in correspondence with ε-stationary points for Φ w.r.t. the �1
norm, i.e., x ∈ R

n for which ‖∇Φ(x)‖1 ≤ ε. The following lemma summarizes these
classical connections; for a proof see, e.g., [22].

Lemma 2 (Matrix Balancing as convex optimization) Let K ∈ R
n×n
≥0 and ε > 0. Then:

1. Φ is convex over Rn.
2. x ∈ R

n is a solution to BAL(K) if and only if x minimizes Φ.
3. x ∈ R

n is a solution to ABAL(K , ε) if and only if ‖∇Φ(x)‖1 ≤ ε.
4. If K is balanceable, then Φ has a unique minimizer modulo translations of 1.

2.4 Osborne’s algorithm as coordinate descent

Lemma 2 equates the problems of (approximate) Matrix Balancing and (approximate)
optimization of (7). This correspondence extends to algorithms. In particular, in the
sequel, we repeatedly leverage the following known connection, which appears in,
e.g., [32].

Observation 5 (Osborne’s algorithm as Cordinate Descent) Osborne’s algorithm for
Matrix Balancing is equivalent to Exact Coordinate Descent for optimizing (7).

To explain this connection, let us recall the basics of both algorithms. Exact Coor-
dinate Descent is an iterative algorithm for minimizing a function Φ that maintains
an iterate x ∈ R

n , and in each iteration updates x along a coordinate k ∈ [n] by

x ← argmin
z∈{x+αek :α∈R}

Φ(z), (9)

where ek denotes the k-th standard basis vector in R
n . In words, this update (9)

improves the objective Φ(x) as much as possible by varying only the k-th coordi-
nate of x .

123

Near-linear convergence of the Random Osborne algorithm 377

Osborne’s algorithm, as introduced briefly in Sect. 1, is an iterative algorithm for
Matrix Balancing that repeatedly balances row/column pairs. Algorithm 1 provides
pseudocode for an implementation on the “log domain” that maintains the logarithms
x ∈ R

n of the scalings rather than the scalings D(ex) themselves. The connection in
Observation 5 is thus, statedmore precisely, thatOsborne’s algorithm is a specification
of the Exact Coordinate Descent algorithm to minimizing the function Φ in (7) with
initialization of 0. This is because the Exact Coordinate Descent update to Φ on
coordinate k ∈ [n] updates xk so that ∂Φ

∂xk
(x) = 0, which by the derivative computation

in (8) amounts to updating xk so that the k-th row and column sums of the current
balancing are equal—which is precisely the update rule for Osborne’s algorithm on
coordinate k.

Algorithm 1 Osborne’s algorithm for Matrix Balancing. The variant (e.g., Greedy,
Random, or Random-Reshuffle Cyclic) depends on how the update coordinate is cho-
sen in Line 3.

Input: Matrix K ∈ R
n×n
≥0 and accuracy ε > 0

Output: Vector x ∈ R
n that solves ABAL(K , ε)

1: x ← 0 � Initialization
2: while D(ex)KD(e−x) is not ε-balanced do
3: Choose update coordinate k ∈ [n]
4: xk ← xk + log(ck (D(ex)KD(e−x)))−log(rk (D(ex)KD(e−x)))

2 � Osborne update on coordinate k

5: return x

We note that besides elucidating Observation 5, the log-domain implementation of
Osborne’s Algorithm in Algorithm 1 is also critical for numerical precision, both in
theory and practice.

Remark 5 (Log-domain implementation) In practice, Osborne’s algorithm should be
implemented in the “logarithmic domain”, i.e., store the iterates x rather than the
scalings D(ex), operate on K through log Ki j (see Remark 9), and compute Osborne
updates using the following standard trick for numerically computing log-sum-exp:
log(

∑n
i=1 ezi) = max j z j + log(

∑n
i=1 ezi −max j z j). In Sect. 8, we show that essen-

tially just these modifications enable a provably logarithmic bit-complexity for several
variants of Osborne’s algorithm (Theorem 13).

It remains to discuss the choice of update coordinate in Osborne’s algorithm (Line 3
of Algorithm 1), or equivalently, in Coordinate Descent. We focus on the following
natural options:

– Random-Reshuffle Cyclic Osborne Cycle through the coordinates, using an inde-
pendent random permutation for the order each cycle.

– Greedy Osborne Choose the coordinate k for which the k-th row and column sums
of the current scaling A := D(ex)KD(e−x) disagree most, as measured by

argmax
k∈[n]

∣
∣
∣
√

rk(A) − √
ck(A)

∣
∣
∣ . (10)

123

378 J. M. Altschuler, P. A. Parrilo

(Ties are broken arbitrarily, e.g., lowest number.)
– Random Osborne Sample k uniformly from [n], independently between iterations.

Remark 6 (Efficient implementation of Greedy) In order to efficiently compute (10),
Greedy Osborne maintains an auxiliary data structure: the row and column sums of
the current balancing. This requires only O(n) additional space, O(m) additional
computation in a pre-processing step, and O(n) additional per-iteration computation
for maintenance (increasing the per-iteration runtime by a small constant factor).

2.5 Parallelizing Osborne’s algorithm via graph coloring

For scalability, parallelization of Osborne’s algorithm can be critical. It is well-known
(see, e.g., [7]) that Osborne’s algorithm can be parallelized when one can compute
a (small) coloring of G K , i.e., a partitioning S1, . . . , Sp of the vertices [n] such that
any two vertices in the same partitioning are non-adjacent. This idea stems from the
observation that simultaneous Osborne updates do not interfere with each other when
performed on coordinates corresponding to non-adjacent vertices in G K . Indeed, this
suggests a simple, natural parallelization of Osborne’s algorithm given a coloring:
update in parallel all coordinates of the same color. We call this algorithm Block
Osborne due to the following connection to Exact Block Coordinate Descent, i.e.,
the variant of Exact Coordinate Descent where an iteration exactly minimizes over a
subset (a.k.a., block) of the variables.

Remark 7 (Block Osborne as Block Coordinate Descent) Extending Observation 5,
Block Osborne is equivalent to Exact Block Coordinate Descent for minimizing Φ.
The connection to coloring is equivalently explained through this convex optimization
lens: for each S�, the (exponential13 of) Φ is separable in the variables in S�. This is
why their updates are independent.

Just like the standard (non-parallelized) Osborne algorithm, the Block Osborne
algorithm has several natural options for the choice of update block:

– Random-Reshuffle Cyclic Block Osborne Cycle through the blocks, using an inde-
pendent random permutation for the order each cycle.

– Greedy Block Osborne Choose the block � maximizing

1

|S�|
∑

k∈S�

(√
rk(A) − √

ck(A)
)2

(11)

where A denotes the current balancing. (Ties are broken arbitrarily, e.g., lowest
number.)

– Random Block Osborne Sample � uniformly from [p], independently between
iterations.

Note that if S1, . . . , Sp are singletons—e.g., when K ∈ R
n×n
>0 is strictly positive—

then these variants of Block Osborne degenerate into the corresponding variants of
the standard Osborne algorithm.

13 Note that by monotonocity of exp(·), minimizing exp(Φ(·)) is equivalent to minimizing Φ(·).

123

Near-linear convergence of the Random Osborne algorithm 379

Of course, Block Osborne first requires a coloring of G K . A smaller coloring yields
better parallelization (indeed we establish a linear runtime in the number of colors,
see Sect. 7). However, finding the (approximately) smallest coloring is NP-hard [17,
23, 50]. Nevertheless, in certain cases a relatively good coloring may be obvious or
easily computable. For instance, in certain applications the sparsity pattern of K could
be structured, known a priori, and thus leveraged. An easily computable setting is
matrices with uniformly sparse rows and columns, i.e., matrices whose corresponding
graph G K has bounded max-degree; see Corollary 12.

3 Potential argument

Here we develop the ingredients for our potential-based analysis of Osborne’s algo-
rithm. They are purposely stated independently of the Osborne variant, i.e., how
the Osborne algorithm chooses update coordinates. This enables the argument to be
applied directly to different variants in the sequel. We point the reader to Sect. 1.3 for
a high-level overview of the argument.

First, we recall the following standard bound on the initial potential. This appears in,
e.g., [12, 32]. For completeness, we briefly recall the simple proof. Below, we denote
the optimal value of the convex optimization problem (7) by Φ∗ := minx∈Rn Φ(x).

Lemma 3 (Bound on initial potential) Φ(0) − Φ∗ ≤ log κ .

Proof It suffices to show Φ∗ ≥ log Kmin. Since K is balanceable, G K is strongly
connected (Lemma 1), thus G K contains a cycle. By an averaging argument, this cycle
contains an edge (i, j) such that x∗

i −x∗
j ≥ 0. ThusΦ∗ ≥ log(ex∗

i −x∗
j Ki j) ≥ log Kmin.

��
Next, we exactly compute the decrease in potential from an Osborne update on a

fixed coordinate k ∈ [n]. This is a simple, direct calculation and is similar to [32,
Lemma 2.1].

Lemma 4 (Potential decrease from Osborne update) Consider any x ∈ R
n and

update coordinate k ∈ [n]. Let x ′ denote the output of an Osborne update on x
w.r.t. coordinate k, A := D(ex)KD(e−x) denote the scaling corresponding to x, and
P := A/(

∑
i j Ai j) its normalization. Then

Φ(x) − Φ(x ′) = − log

(

1 −
(√

rk(P) − √
ck(P)

)2
)

. (12)

Proof Let A′ := D(ex ′
)KD(e−x ′

) denote the scaling corresponding to the next iterate
x ′. Then eΦ(x) − eΦ(x ′) = (rk(A)+ ck(A))− (rk(A′)+ ck(A′)) = (rk(A)+ ck(A))−
2
√

rk(A)
√

ck(A) = (
√

rk(A) − √
ck(A))2 = (

√
rk(P) − √

ck(P))2eΦ(x). Dividing
by eΦ(x) and re-arranging proves (12). ��

In the sequel, we lower bound the per-iteration progress in (12) by (
√

rk(P) −√
ck(P))2 using the elementary inequality − log(1 − z) ≥ z. Analyzing this further

123

380 J. M. Altschuler, P. A. Parrilo

requires knowledge of how k is chosen, i.e., the Osborne variant. However, for both
Greedy Osborne and Random Osborne, this progress is at least the average

1

n

n∑

k=1

(
√

rk(P) − √
ck(P))2 = 2

n
H2(r(P), c(P)

)
. (13)

(For Random Osborne, this statement requires an expectation; see Sect. 5.) The rest
of this section establishes the main ingredient in the potential argument: Proposition 6
lower bounds this Hellinger imbalance, and thereby lower bounds the per-iteration
progress. Note that Proposition 6 is stated for “nontrivial balancings”, i.e., x ∈ R

n

satisfying Φ(x) ≤ Φ(0). This automatically holds for any iterate of the Osborne
algorithm—regardless of the variant—since the first iterate is initialized to 0, and
since the potential is monotonically non-increasing by Lemma 4.

Proposition 6 (Lower bound on Hellinger imbalance) Consider any x ∈ R
n. Let

A := D(ex)KD(e−x) denote the corresponding scaling, and let P := A/
∑

i j Ai j

denote its normalization. If Φ(x) ≤ Φ(0) and A is not ε-balanced, then

H2(r(P), c(P)
) ≥ 1

8

(
Φ(x) − Φ∗

d log κ
∨ ε

)2

. (14)

To prove Proposition 6, we collect several helpful lemmas. The first is a standard
inequality in statistics which lower bounds the Hellinger distance between two prob-
ability distributions by their �1 distance (or equivalently, up to a factor of 2, their total
variation distance) [13]. A short, simple proof via Cauchy-Schwarz is provided for
completeness.

Lemma 5 (Hellinger versus �1 inequality) If μ, ν ∈ Δn, then

H(μ, ν) ≥ 1

2
√
2
‖μ − ν‖1. (15)

Proof ByCauchy-Schwarz,‖μ−ν‖21 = (
∑

k |μk−νk |)2 = (
∑

k |√μk−√
νk |·|√μk+√

νk |)2 ≤ (
∑

k(
√

μk − √
νk)

2) · (∑k(
√

μk + √
νk)

2) = 2H2(μ, ν) · (∑k(μk + νk +
2
√

μkνk)). By the AM-GM inequality and the assumption μ, ν ∈ Δn , the latter sum
is at most

∑
k(μk + νk + 2

√
μkνk) ≤ 2

∑
k(μk + νk) = 4. ��

Next, we recall the following standard bound on the variation norm of nontrivial
balancings. This bound is often stated only for optimal balancings (e.g., [12, Lemma
4.24])—however, the proof extends essentially without modifications; details are pro-
vided briefly for completeness.

Lemma 6 (Variation norm of nontrivial balancings) If x ∈ R
n satisfies Φ(x) ≤ Φ(0),

then ‖x‖var ≤ d log κ .

Proof Consider any u, v ∈ [n]. By definition of d, there exists a path in G K from u to
v of length at most d. For each edge (i, j) on the path, we have exi −x j Ki j ≤ Φ(x) ≤

123

Near-linear convergence of the Random Osborne algorithm 381

Φ(0), and thus xi − x j ≤ log κ . Summing this inequality along the edges of the path
and telescoping yields xu − xv ≤ d log κ . Since this holds for any u, v, we conclude
‖x‖var = maxu xu − minv xv ≤ d log κ . ��

From Lemma 6, we deduce the following bound.

Corollary 7 (�∞ distance of nontrivial balancings to minimizers) If x ∈ R
n satisfies

Φ(x) ≤ Φ(0), then there exists a minimizer x∗ of Φ such that ‖x − x∗‖∞ ≤ d log κ .

Proof By definition, Φ is invariant under translations of 1. Choose any minimizer
x∗ and translate it by a multiple of 1 so that maxi (x − x∗)i = −min j (x − x∗) j .
Then ‖x − x∗‖∞ = (maxi (xi − x∗

i) − min j (x j − x∗
j))/2 ≤ ((maxi xi − min j x j) +

(maxi x∗
i −min j x∗

j))/2 = (‖x‖var +‖x∗‖var)/2. By Lemma 6, this is at most d log κ .
��

We are now ready to prove Proposition 6.

Proof (Proposition 6) Since P is normalized, its marginals r(P) and c(P) are both
probability distributions in Δn . Thus by Lemma 5,

H2(r(P), c(P)
) ≥ 1

8
‖r(P) − c(P)‖21. (16)

The claim now follows by lower bounding ‖r(P)−c(P)‖1 in two different ways. The
first is ‖r(P) − c(P)‖1 ≥ ε, which holds since A is not ε-balanced by assumption.
The second is

‖r(P) − c(P)‖1 ≥ Φ(x) − Φ(x∗)
d log κ

, (17)

which we show presently. By convexity ofΦ (Lemma 2) and then Hölder’s inequality,

Φ(x) − Φ(x∗) ≤ 〈∇Φ(x), x − x∗〉 ≤ ‖∇Φ(x)‖1‖x − x∗‖∞ (18)

for any minimizer x∗ of Φ. Now by Corollary 7, there exists a minimizer x∗ such
that ‖x − x∗‖∞ ≤ d log κ; and by (8), the gradient is ∇Φ(x) = r(P) − c(P). Re-
arranging (18) therefore establishes (17). ��

4 Greedy Osborne converges quickly

Herewe showan improved runtimebound forGreedyOsborne that, forwell-connected
sparsity patterns, scales (near) linearly in both the total number of entries n2 and the
inverse accuracy ε−1. See Sect. 1.2 for further discussion of the result, and Sect. 1.3.1
for a proof sketch.

Theorem 8 (Convergence of GreedyOsborne)Given a balanceable matrix K ∈ R
n×n
≥0

and accuracy ε > 0, Greedy Osborne solves ABAL(K , ε) in O(n2
ε

(1
ε

∧ d) log κ)

arithmetic operations.

123

382 J. M. Altschuler, P. A. Parrilo

The key lemma is that each iteration of Greedy Osborne improves the potential
significantly.

Lemma 7 (Potential decrease of Greedy Osborne) Consider any x ∈ R
n for which the

corresponding scaling A := D(ex)KD(e−x) is not ε-balanced. If x ′ is the next iterate
obtained from a Greedy Osborne update, then

Φ(x) − Φ(x ′) ≥ 1

4n

(
Φ(x) − Φ∗

d log κ
∨ ε

)2

.

Proof Using in order Lemma 4, the inequality − log(1 − z) ≥ z which holds for any
z ∈ R, the definition of Greedy Osborne, and then Proposition 6,

Φ(x) − Φ(x ′) = − log(1 −
(√

rk(P) − √
ck(P))2

)
(19)

≥
(√

rk(P) − √
ck(P)

)2
(20)

≥ 1

n

n∑

�=1

(√
r�(P) − √

c�(P)
)2

(21)

≥ 1

4n

(
Φ(x) − Φ∗

d log κ
∨ ε

)2

. (22)

��
Proof (Theorem 8) Let x (0) = 0, x (1), x (2), . . . denote the iterates, and let τ be the
first iteration for which D(ex)KD(e−x) is ε-balanced. Since the number of arithmetic
operations per iteration is amortized to O(n) by Remark 6, it suffices to show that the
number of iterations τ is at most O(nε−1(ε−1 ∧d) log κ). Now by Lemma 7, for each
t ∈ {0, 1, . . . , τ − 1} we have

Φ(x (t)) − Φ(x (t+1)) ≥ 1

4n

(
Φ(x (t)) − Φ∗

d log κ
∨ ε

)2

. (23)

Case 1 ε−1 ≤ d. By the second bound in (23), the potential decreases by at least ε2/4n
in each iteration. Since the potential is initially at most log κ by Lemma 3 and is always
nonnegative by definition, the total number of iterations is at most

τ ≤ log κ

ε2/4n
= 4n log κ

ε2
. (24)

Case 2 ε−1 > d. For shorthand, denote α := εd log κ . Let τ1 be the first iteration for
which the potential Φ(x (t)) − Φ∗ ≤ α, and let τ2 := τ − τ1 denote the number of
remaining iterations. By an identical argument as in case 1,

τ2 ≤ α

ε2/4n
= 4nd log κ

ε
. (25)

123

Near-linear convergence of the Random Osborne algorithm 383

To bound τ1, partition this phase further as follows. Let φ0 := log κ and φi := φi−1/2
for i = 1, 2, . . . until φN ≤ α. Let τ1,i be the number of iterations starting from when
the potential is first no greater than φi−1 and ending when it no greater than φi . In the
i-th subphase, the potential drops by at least (φi

d log κ
)2/4n per iteration by (23). Thus

τ1,i ≤ φi−1 − φi

(
φi

d log κ
)2/4n

= 4nd2 log2 κ

φi
. (26)

Since
∑N

i=1
1
φi

= 1
φN

∑N−1
j=0 2− j ≤ 2

φN
≤ 4

α
, thus

τ1 =
N∑

i=1

τ1,i ≤ 16nd2 log κ2

α
= 16nd log κ

ε
. (27)

By (25) and (27), the total number of iterations is atmost τ = τ1+τ2 ≤ 20ndε−1 log κ .
��

5 RandomOsborne converges quickly

Here we show that Random Osborne has runtime that is (i) near-linear in the input
sparsity m; and (ii) also linear in the inverse accuracy ε−1 for well-connected sparsity
patterns. See Sect. 1.2 for further discussion of the result, and Sect. 1.3.2 for a proof
sketch.

Theorem 9 (Convergence of Random Osborne) Given a balanceable matrix K ∈
R

n×n
≥0 and accuracy ε > 0, Random Osborne solves ABAL(K , ε) in T arithmetic

operations, where

– (Expectation guarantee.) E[T] = O(m
ε
(1
ε

∧ d) log κ).
– (H.p. guarantee.) There exists a universal constant c > 0 such that for all δ > 0,

P
(
T ≤ c

(m
ε
(1
ε

∧ d) log κ log 1)) ≥ 1 − δ.

As described in the proof overview in Sect. 1.3.1, the core argument is nearly
identical to the analysis of Greedy Osborne in Sect. 4. Below, we detail the additional
probabilistic nuances and describe how to overcome them. Remaining details for the
proof of Theorem 9 are deferred to Appendix A.2.

5.1 Bounding the number of iterations

Analogous to the proof of Greedy Osborne (c.f. Lemma 7), the key lemma is that each
iteration significantly decreases the potential. The statement and proof are nearly iden-
tical. The only difference in the statement of the lemma is that for Random Osborne,
this improvement is in expectation.

123

384 J. M. Altschuler, P. A. Parrilo

Lemma 8 (Potential decrease of Random Osborne) Consider any x ∈ R
n for which

the corresponding scaling A := D(ex)KD(e−x) is not ε-balanced. If x ′ is the next
iterate obtained from a Random Osborne update, then

E
[
Φ(x) − Φ(x ′)

] ≥ 1

4n

(
Φ(x) − Φ∗

d log κ
∨ ε

)2

,

where the expectation is over the algorithm’s uniform random choice of update coor-
dinate from [n].
Proof The proof is identical to the proof for GreedyOsborne (c.f. Lemma 7), with only
two minor differences. The first is that (19) and (20) are in expectation. The second is
that (21) holds with equality by definition of the Random Osborne algorithm. ��

Lemma 3 shows that the potential is initially bounded, and Lemma 8 shows that
each iteration significantly decreases the potential in expectation. In the analysis of
GreedyOsborne, this potential drop is deterministic, and sowe immediately concluded
that the number of iterations is at most the initial potential divided by the per-iteration
decrease (see (24) in Sect. 4). Lemma 9 below shows that essentially the same bound
holds in our stochastic setting. Indeed, the expectation bound is exactly this quantity
(plus one), and the h.p. bound is the same up to a small constant.

Lemma 9 (Per-iteration expected improvement implies few iterations) Let A > a and
h > 0. Let {Yt }t∈N0 be a stochastic process adapted to a filtration {Ft }t∈N0 such that
Y0 ≤ A a.s., each difference Yt−1 − Yt is bounded within [0, 2(A − a)] a.s., and

E
[
Yt − Yt+1 |Ft , Yt ≥ a

] ≥ h (28)

for all t ∈ N0. Then the stopping time τ := min{t ∈ N0 : Yt ≤ a} satisfies

– (Expectation bound.) E[τ] ≤ A−a
h + 1.

– (H.p. bound.) For all δ ∈ (0, 1/e), it holds that P(τ ≤ 6(A−a)
h log 1) ≥ 1 − δ.

The expectation bound in Lemma 9 is proved using Doob’s Optional Stopping The-
orem, and the h.p. bound using Chernoff bounds; details are deferred to Appendix A.1.

Remark 8 (Sub-exponential concentration) Lemma 9 shows that the upper tail of τ

decays at a sub-exponential rate. This concentration cannot be improved to a sub-
Gaussian rate: indeed, consider Xt i.i.d. Bernoulli with parameter h ∈ (0, 1), Yt =
1 − ∑t

i=1 Xi , A = 1, and a = 0. Then P(τ ≤ N) = 1 − P(X1 = · · · = X N = 0) =
1 − (1 − h)N which is ≈ 1 − δ when N ≈ 1

h log 1
δ
.

5.2 Bounding the final runtime

The key reason that Random Osborne is faster than Greedy Osborne (other than bit
complexity) is that its per-iteration runtime is faster for sparse matrices: it is O(m/n)

by Observation 2 rather than O(n). In the deterministic setting, the final runtime is

123

Near-linear convergence of the Random Osborne algorithm 385

at most the product of the per-iteration runtime and the number of iterations (c.f.
Sect. 4). However, obtaining a final runtime bound from a per-iteration runtime and an
iteration-complexity bound requires additional tools in the stochastic setting. A similar
h.p. bound follows from a standard Chernoff bound. But proving an expectation bound
is more nuanced. The natural approach is Wald’s equation, which states the the sum of
a random number τ of i.i.d. random variables Z1, . . . , Zτ equals EτEZ1, so long as
τ is independent from Z1, . . . , Zτ [14, Theorem 4.1.5]. However, in our setting the
per-iteration runtimes and the number of iterations are not independent. Nevertheless,
this dependence is weak enough for the identity to still hold. Formally, we require
the following minor technical modifications of the per-iteration runtime bound in
Observation 2 and Wald’s equation.

Lemma 10 (Per-iteration runtime of Random Osborne, irrespective of history) Let
Ft−1 denote the sigma-algebra generated by the first t−1 iterates of Random Osborne.
Conditional on Ft−1, the t-th iteration requires O(m/n) arithmetic operations in
expectation.

Lemma 11 (Minor modification of Wald’s equation) Let Z1, Z2, . . . be i.i.d. nonneg-
ative integrable r.v.’s. Let τ be an integrable N-valued r.v. satisfying E[Zt |τ ≥ t] =
E[Z1] for each t ∈ N. Then E[∑τ

t=1 Zt] = EτEZ1.

The proof of Lemma 10 is nearly identical to the proof of Observation 2, and is thus
omitted. The proof of Lemma 11 is a minor modification of the proof of the standard
Wald’s equation in [14]; details in Appendix A.1.

6 Random-Reshuffle Cyclic Osborne converges quickly

Here we show a runtime bound for Random-Reshuffle Cyclic Osborne. See Sect. 1.2
for further discussion, and Sect. 1.3.3 for a proof sketch.

Theorem 10 (Convergence of Random-Reshuffle Cyclic Osborne) Given a balance-
able matrix K ∈ R

n×n
≥0 and accuracy ε > 0, Random-Reshuffle Cyclic Osborne solves

ABAL(K , ε) in T arithmetic operations, where

– (Expectation guarantee.) E[T] = O(mn
ε

(1
ε

∧ d) log κ).
– (H.p. guarantee.) There exists a universal constant c > 0 such that for all δ > 0,

P
(
T ≤ c

(mn
ε

(1
ε

∧ d) log κ log 1)) ≥ 1 − δ.

A straightforward coupling argument with Random Osborne shows the following
per-cycle potential decrease bound for Random-Reshuffle Cyclic Osborne.

Lemma 12 (Potential decrease of Random-Reshuffle Cyclic Osborne) Consider any
x ∈ R

n for which the corresponding scaling A := D(ex)KD(e−x) is not ε-balanced.
Let x ′ be the iterate obtained from x after a cycle of Random-Reshuffle Cyclic Osborne.
Then

123

386 J. M. Altschuler, P. A. Parrilo

E
[
Φ(x) − Φ(x ′)

] ≥ 1

4n

(
Φ(x) − Φ∗

d log κ
∨ ε

)2

,

where the expectation is over the algorithm’s random choice of update coordinates.

Proof Bymonotonicity ofΦ w.r.t. Osborne updates (Lemma 4), the expected decrease
inΦ from all n updates in a cycle is at least that from the first update in the cycle. This
first update index is uniformly distributed from [n], thus is equivalent to an iteration
of Random Osborne. We conclude by applying the per-iteration decrease bound for
Random Osborne in Lemma 8. ��

The runtime bound for Random-Reshuffle Cyclic Osborne (Theorem 10) given the
expected per-cycle potential decrease (Lemma 12) then follows by an identical argu-
ment as the runtime bound for Random Osborne (Theorem 9) given that algorithm’s
expected per-iteration potential decrease (Lemma 8). The straightforward details are
omitted for brevity.

7 Parallelized variants of Osborne converge quickly

Here we show fast runtime bounds for parallelized variants of Osborne’s algorithm
when given a coloring of G K (see Sect. 2.5). See Sect. 1.2 for a discussion of these
results, and Sect. 1.3.4 for a proof sketch.

Theorem 11 (Convergence ofBlockOsborne variants)Consider balancing a balance-
able matrix K ∈ R

n×n
≥0 to accuracy ε > 0 given a coloring of G K of size p.

– Greedy Block Osborne solves ABAL(K , ε) in O(
p
ε
(1
ε

∧ d) log κ) rounds and
O(

mp
ε

(1
ε

∧ d) log κ) total work.
– Random Block Osborne solves ABAL(K , ε) in O(

p
ε
(1
ε

∧ d) log κ) rounds and
O(m

ε
(1
ε

∧ d) log κ) total work, in expectation and w.h.p.

– Random-Reshuffle Cyclic Block Osborne solves ABAL(K , ε) in O(
p2

ε
(1
ε

∧
d) log κ) rounds and O(

mp
ε

(1
ε

∧ d) log κ) total work, in expectation and w.h.p.

Note that the h.p. bounds in Theorem 11 have exponentially decaying tails, just as
for the non-parallelized variants (c.f., Theorems 9 and 10; see also Remark 8).

The proof of Theorem 11 is nearly identical to the analysis of the analogous
non-parallelized variants in Sects. 4, 5, and 6 above. For brevity, we only describe
the differences. First, we show the rounds bounds. For Greedy and Random Block
Osborne, the only difference is that the per-iteration potential decrease is now n/p
times larger than in Lemmas 7 and 8, respectively. Below we show this modification
for Greedy Block Osborne; an identical argument applies for Random Block Osborne
after taking an expectation (the inequality (29) then becomes an equality).

Lemma 13 (Potential decrease of Greedy Block Osborne) Consider any x ∈ R
n for

which the corresponding scaling A := D(ex)KD(e−x) is not ε-balanced. If x ′ is the

123

Near-linear convergence of the Random Osborne algorithm 387

next iterate obtained from a Greedy Block Osborne update, then

Φ(x) − Φ(x ′) ≥ 1

4p

(
Φ(x) − Φ∗

d log κ
∨ ε

)2

.

Proof Let S� be the chosen block. Using in order Lemma 4, the inequality − log(1 −
z) ≥ z, the definition of Greedy Block Osborne, re-arranging, and then Proposition 6,

Φ(x) − Φ(x ′) = −
∑

k∈S�

log(1 −
(√

rk(P) − √
ck(P))2

)

≥
∑

k∈S�

(√
rk(P) − √

ck(P)
)2

≥ 1

p

p∑

�=1

∑

k∈S�

(√
r�(P) − √

c�(P)
)2

= 1

p

n∑

k=1

(√
rk(P) − √

ck(P)
)2

≥ 1

4p

(
Φ(x) − Φ∗

d log κ
∨ ε

)2

. (29)

��
With this n/p times larger per-iteration potential decrease, the number of rounds

required by Greedy and Random Block Osborne is then n/p times smaller than the
number of Osborne updates required by their non-parallelized counterparts, establish-
ing the desired rounds bounds inTheorem11.The rounds bound forRandom-Reshuffle
Cyclic Block Osborne is then p times that of Random Block Osborne by an identical
coupling argument as for their non-parallelized counterparts (see Sect. 6).

Next,wedescribe the total-workbounds inTheorem11. ForRandom-ShuffleCyclic
Block Osborne, every p rounds is a full cycle and therefore requires Θ(m) work. For
Greedy andRandomBlockOsborne, each round takeswork proportional to the number
of nonzero entries in the updated block. For Random Block Osborne, this is Θ(m/p)

on average by an identical argument to Observation 2. For Greedy Block Osborne,
this could be up to O(m) in the worst case. (Although this is of course significantly
improvable if the blocks have balanced sizes.)

Finally, we note that combining Theorem 11 with the extensive literature on par-
allelized algorithms for coloring bounded-degree graphs yields a fast parallelized
algorithm for balancing Δ-uniformly sparse matrices, i.e., matrices K for which G K

has max degree14 Δ.

Corollary 12 (Parallelized Osborne for uniformly sparse matrices) There is a paral-
lelized algorithm that, given any Δ-uniformly sparse matrix K ∈ R

n×n
≥0 , computes an

14 This is the degree in the undirected graph where (i, j) is an edge if either (i, j) or (j, i) is an edge in
G K .

123

388 J. M. Altschuler, P. A. Parrilo

ε-approximate balancing in O(Δ
ε
(1
ε

∧ d) log κ) rounds and O(m
ε
(1
ε

∧ d) log κ) total
work, both in expectation and w.h.p.

Proof The algorithm of [6] computes a Δ + 1 coloring in O(Δ) + 1
2 log

∗ n rounds,
where log∗ is the iterated logarithm. Run Random Block Osborne with this coloring,
and apply Theorem 11. ��

We remark that a coloring of size Δ + 1 can be alternatively computed by a simple
greedy algorithm in O(m) linear time. Although sequential, this simpler algorithm
may be more practical.

8 Numerical precision

So far we have assumed exact arithmetic for simplicity of exposition; here we address
numerical precision issues. Note that Osborne iterates can have variation norm up to
O(n log κ); see [22, §3] and Lemma 6. For such iterates, operations on the current
balancingD(ex)KD(e−x)—namely, computing row and column sums for an Osborne
update—naïvely require arithmetic operations on O(n log κ)-bit numbers. Here, we
show that there is an implementation that uses numbers with only logarithmically few
bits and still achieves the same runtime bounds.15

Below, we assume for simplicity that each input entry Ki j is represented using
O(log Kmax

Kmin
+ log n

ε
) bits. (Or O(log log Kmax

Kmin
+ log n

ε
) bits if input on the logarithmic

scale log Ki j , for (i, j) ∈ supp(K), seeRemark9.)This assumption ismade essentially
without loss of generality since after a possible rescaling and truncation of entries to
±εKmin/n—which does not change the problem of approximately balancing K to
O(ε) accuracy by Lemma 14—all inputs are represented using this many bits.

Theorem 13 (Osborne variants with low bit-complexity) There is an implementation
of Random Osborne (respectively, Random-Reshuffle Cyclic Osborne, Random Block
Osborne, and Random-Reshuffle Cyclic Block Osborne) that uses arithmetic opera-
tions over O(log n

ε
+ log Kmax

Kmin
)-bit numbers and achieves the same runtime bounds

as in Theorem 9 (respectively, Theorem 10, 11, and again 11).
Moreover, if the matrix K is given as input through the logarithms of its entries

{log Ki j }(i, j)∈supp(K), this bit-complexity is improvable to O(log n
ε

+ log log Kmax
Kmin

).

This result may be of independent interest since the aforementioned bit-complexity
issues of Osborne’s algorithm are well-known to cause numerical precision issues in
practice and have been difficult to analyze theoretically. We note that [32, §5] shows
similar bit complexity O(log(nκ/ε)) for an Osborne variant they propose; however,
that variant has runtime scaling in n2 rather than m (see footnote 6). Moreover, our
analysis is relatively simple and extends to the related Sinkhorn algorithm for Matrix
Scaling (see Appendix B).

Before proving Theorem 13, we make several remarks.

15 Note that Theorem 13 outputs only the balancing vector x ∈ R
n , not the approximately balanced matrix

A = D(ex)KD(e−x). If applications require A, this can be computed to polynomially small entrywise addi-
tive error using only logarithmically many bits; this is sufficient, e.g., for the application of approximating
Min-Mean-Cycle [4, §5.3].

123

Near-linear convergence of the Random Osborne algorithm 389

Remark 9 (Log-domain input) Theorem 13 gives an improved bit-complexity if K is
input through the logarithms of its entries. This is useful in an application such as
Min-Mean-Cycle where the input is a weighted adjacency matrix W , and the matrix
K to balance is the entrywise exponential of (a constant times) W [4, §5].

Remark 10 (Greedy Osborne requires large bit-complexity) All known implementa-
tions of Greedy Osborne require bit-complexity at least Ω̃(n) [32]. The obstacle is
the computation (10) of the next update coordinate, which requires computing the
difference of two log-sum-exp’s. It can be shown that computing this difference to a
constant multiplicative error suffices. However, this still requires at least computing
the sign of the difference, which importantly, precludes dropping small summands
in each log-sum-exp—a key trick used for computing an individual log-sum-exp to
additive error with low bit-complexity (Lemma 17).

We now turn to the proof of Theorem 13. For brevity, we establish this only for
RandomOsborne; the proofs for the other variants are nearly identical. Our implemen-
tation of Random Osborne makes three minor modifications to the exact-arithmetic
implementation in Algorithm 1. We emphasize that these modifications are in line
with standard implementations of Osborne’s algorithm in practice, see Remark 5.

1. In a pre-processing step, compute {log Ki j }(i, j)∈supp(K) to additive accuracy γ =
Θ(ε/n).

2. Truncate each Osborne iterate x (t) entrywise to additive accuracy τ = Θ(ε2/n).
3. Compute Osborne updates to additive accuracy τ by using log-sum-exp compu-

tation tricks (Lemma 17) and using Ki j only through the truncated values log Ki j

computed in step 1.

Step 1 is performed only when K is not already input on the logarithmic scale, and is
responsible for the O(log(Kmax/Kmin)) bit-complexity. To argue about these modi-
fications, we collect several helpful observations, the proofs of which are simple and
deferred to Appendix A.3 for brevity.

Lemma 14 (Approximately balancing an approximate matrix suffices) Let K , K̃ ∈
R

n×n
≥0 such that supp(K) = supp(K̃) and the ratio Ki j/K̃i j of nonzero entries is

bounded in [1 − γ, 1 + γ] for some γ ∈ (0, 1/3). If x is an ε-balancing of K , then x
is an (ε + 6nγ)-balancing of K̃ .

Lemma 15 (Stability of log-sum-exp) The function z �→ log(
∑n

i=1 ezi) is 1-Lipschitz
with respect to the �∞ norm on R

n.

Lemma 16 (Stability of potential function) Let K ∈ R
n×n
≥0 . Then Φ(x) :=

log(
∑

i j exi −x j Ki j) is 2-Lipschitz with respect to the �∞ norm on R
n.

Lemma 17 (Computing log-sum-exp with low bit-complexity) Let z1, . . . , zn ∈ R

and τ > 0 be given as input, each represented using b bits. Then log(
∑n

i=1 ezi) can
computed to ±τ in O(n) operations on O(b + log(n

τ
))-bit numbers.

123

390 J. M. Altschuler, P. A. Parrilo

Proof (Theorem 13) Error and runtime analysis.

1. Let K̃ be the matrix whose i j-th entry is the exponential of the truncated log Ki j

for (i, j) ∈ supp(K), and 0 otherwise. The effect of step (1) is to balance K̃
rather than K . But by Lemma 14, this suffices since an O(ε) balancing of K̃ is
an O(ε + nγ) = O(ε) balancing of K .

2,3. The combined effect is that: given the previous Osborne iterate x (t−1), the next
iterate x (t) differs from the value it would have in the exact-arithmetic imple-
mentation by O(τ) in �∞ norm. By Lemma 16, this changes Φ(x (t)) by at most
O(τ). By appropriately choosing the constant in the definition of τ = Θ(ε2/n),
this decreases each iteration’s expected progress (Lemma 8) by at most a factor
of 1/2. The proof of Theorem 9 then proceeds otherwise unchanged, resulting
in a final runtime at most 2 times larger.

Bit-complexity analysis.

1. Consider (i, j) ∈ supp(K). Since log Ki j ∈ [log Kmin, log Kmax] and are stored
to additive accuracy γ = Θ(ε/n), the bit-complexity for storing log Ki j is

O

(

log
log Kmax − log Kmin

γ

)

= O

(

log
n

ε
+ log log

Kmax

Kmin

)

.

2. Since the coordinates of each Osborne iterate are truncated to additive accuracy
τ = Θ(ε2/n) and have modulus at most d log κ by Lemma 6, they require bit-
complexity

O

(

log
(d log κ) − (−d log κ)

τ

)

= O

(

log
n

ε
+ log log

Kmax

Kmin

)

.

3. By Lemma 17, the Osborne update requires bit-complexity O(log n
τ
) = O(log n

ε
).

��

9 Conclusion

We conclude with several open questions:

1. Can one establish matching runtime lower bounds for the variants of Osborne’s
algorithm? The only existing lower bound is [32, Theorem 6.1], and there is a
large gap between this and the current upper bounds.

2. Does any variant of Cyclic Osborne run in near-linear time? The best known run-
time bound for Round-Robin Cyclic Osborne scales as roughly mn2 [32], and the
runtime bound we show for Random-Reshuffle Cyclic Osborne scales as roughly
mn (Theorem 10).

3. Is there a provable gap between the (worst-case) performance of RandomOsborne,
Random-Reshuffle Cyclic Osborne, and Round-Robin Cyclic Osborne? The exis-
tence of such gaps in the more general context of Coordinate Descent for convex
optimization is an active area of research with recent breakthroughs [24, 43, 44].

123

Near-linear convergence of the Random Osborne algorithm 391

4. Empirically, Osborne’s algorithm often significantly outperforms its worst-case
bounds. Is it possible to prove faster average-case runtimes for “typical” matrices
arising in practice? (This is the analog to the third open question in [40, §6] for
Max-Balancing.)

Acknowledgements We are grateful to Enric Boix-Adserà, Jonathan Niles-Weed, and Leonard Schulman
for helpful conversations, and to the anonymous reviewers for their very careful reading and insightful
comments.

Funding Open Access funding provided by the MIT Libraries

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Deferred proofs

A.1 Probabilistic helper lemmas

Several times we make use of the following standard (martingale) version of multi-
plicative Chernoff bounds, see, e.g., [28, §4].

Lemma 18 (Multiplicative Chernoff Bounds) Let X1, . . . Xn be supported in [0, 1],
be adapted to some filtration F0 = {∅,Ω},F1, . . . ,Fn, and satisfy E[Xi |Fi−1] = p
for each i ∈ [n]. Denote X := ∑n

i=1 Xi and μ := EX. Then

– (Lower tail.) For any Δ ∈ (0, 1), P (X ≤ (1 − Δ)μ) ≤ e−Δ2μ/2.
– (Upper tail.) For any Δ ≥ 1, P (X ≥ (1 + Δ)μ) ≤ e−Δμ/3.

Proof (Lemma 9) Expectation bound. Define Zt := Yt + ht . Then Z τ
t := Zt∧τ is

a stopped supermartingale with respect to Ft . Thus by Doob’s Optional Stopping
Theorem [14] (which may be invoked by a.s. boundedness),

A ≥ EZ0 ≥ EZτ−1 = EYτ−1 + h(Eτ − 1) ≥ a + h(Eτ − 1)

Re-arranging yields E[τ] ≤ A−a
h + 1, as desired.

123

http://creativecommons.org/licenses/by/4.0/

392 J. M. Altschuler, P. A. Parrilo

High probability bound. For shorthand, denote B := 2(A − a) and N :=
�3B/h log 1�. By definition of τ , telescoping, and then the bound on Y0,

P (τ > N) = P (YN > a) = P

(
N∑

t=1

(Yt−1 − Yt) < Y0 − a

)

≤ P

(
N∑

t=1

(Yt−1 − Yt) < A − a

)

(30)

To bound (30), define the process Xt := (Yt−1 − Yt)/B. Each Xt is a.s. bounded
within [0, 1] by the bounded-difference assumption on Yt . Thus by an application
of the lower-tail Chernoff bound in Lemma 18 (combined with a simple stochastic
domination argument since E[Xt |Ft−1] ≥ h/B rather than exactly equal), and then
the choice of N , we conclude that

P

(
N∑

t=1

(Yt−1 − Yt) < A − a

)

= P

(
N∑

t=1

Xt <
A − a

B

)

≤ exp

(

−
(

1 − A − a

Nh

)2 Nh

2B

)

≤ δ. (31)

��
Proof (Lemma 11) Observe that

E

[
τ∑

t=1

Zt

]

=
∞∑

T =1

E

[
τ∑

t=1

Zt1τ=T

]

=
∞∑

T =1

T∑

t=1

E [Zt1τ=T]

=
∞∑

t=1

∞∑

T =t

E [Zt1τ=T] =
∞∑

t=1

E
[
Zt1τ≥t

]
,

where the third equality above is because the assumption Zi ≥ 0 allows us to invoke
Fubini’s Theorem. Now since E

[
Zt1τ≥t

] = E [Zt |τ ≥ t]P(τ ≥ t) = E[Zt]P(τ ≥
t) by assumption, we conclude that E[∑τ

t=1 Zt] = E[Z1](∑∞
t=1 P(τ ≥ t)) =

E[Z1]E[τ]. ��

A.2 Proof of Theorem 9

Let x (0) = 0, x (1), x (2), . . . denote the iterates, and {Ft := σ(x1, . . . , xt)}t

denote the corresponding filtration. Define the stopping time τ := min{t ∈ N0 :
D(ex)KD(e−x) is ε-balanced}. By Lemma 8,

E

[
Φ(x (t)) − Φ(x (t+1)) |Ft , t ≤ τ

]
≥ 1

4n

(
Φ(x (t)) − Φ∗

d log κ
∨ ε

)2

. (32)

123

Near-linear convergence of the Random Osborne algorithm 393

Case 1 ε−1 ≤ d. Here, we establish the O(mε−2 log κ) runtime bound both in expec-
tation and w.h.p. To this end, let Tt denote the runtime of iteration t , where (solely
for analysis purposes) we consider also t > τ if the algorithm had continued after
convergence. Define Yt to be Φ(x (t)) if t ≤ τ , and otherwise Φ(x (t)) − (t − τ)ε2/4n
if t > τ . By (32), we have

E
[
Yt − Yt+1 |Ft , Yt ≥ 0

] ≥ ε2

4n
. (33)

For both expected and h.p. bounds below, we apply Lemma 9 to the process Yt with
A = log κ (by Lemma 3), a = 0, and h = ε2/4n (by (33)).

Expectation bound. The expectation bound in Lemma 9 implies E[τ] ≤ 4nε−2

log κ + 1. Since each iteration has expected runtime E[Tt |Ft−1] = O(m/n) by
Lemma 10, Lemma 11 ensures that the total expected runtime isET = E[∑τ

t=1 Tt] =
EτET1 = O(mε−2 log κ).

H.p. bound. For shortand, denote U := 24nε−2 log κ log 2 . The h.p. bound in
Lemma 3 implies that P(τ > U) ≤ δ/2. By Lemma 10, there is some constant
c > 0 such that E[Tt] = cm/n. Since the Tt are independent, a Chernoff bound
(Lemma 18) implies that P(

∑U
t=1 Tt ≤ 2cUm/n) ≤ δ/2. Therefore, a union bound

implies that with probability at least 1 − δ, the total runtime T = ∑τ
t=1 Tτ is at most

2cUm/n = 48cmε−2 log κ log 2
δ
.

Case 2 ε−1 ≥ d. Here, we establish the O(mdε−1 log κ) runtime bound in expectation
and w.h.p. Define α, τ1, τ2, τ1,i , and φi as in the analysis of Greedy Osborne (see Sect.
4).

Expectation bound. To bound Eτ2, define Yt and apply Lemma 9 as in case 1 above
(except now with A = εd log κ) to establish that

Eτ2 ≤ εd log κ

ε2/4n
+ 1 = 4nd log κ

ε
+ 1. (34)

Next,we boundEτ1. Consider subphase τ1,i for i ∈ [N]. By an application of Lemma9
on the process Φ(x (t−τ1,i−1)) where A = φi−1, a = φi , and h = φ2

i /(4nd2 log2 κ)

from (32),Eτ1,i ≤ 4nd2 log2 κ
φi

+1. ThusEτ1 = ∑N
i=1 Eτ1,i ≤ 4nd2 log2 κ(

∑N
i=1

1
φi

)+
N . Since

∑N
i=1

1
φi

≤ 4
εd log κ

,

Eτ1 ≤ 16nd log κ

ε
+ log2

⌈
1

εd

⌉

. (35)

Combining (34) and (35) establishes that Eτ = Eτ1 + Eτ2 ≤ 21ndε−1 log κ . By
the O(m/n) per-iteration expected runtime bound in Lemma 10 and the variant of
Wald’s equation in Lemma 11, the total expected runtime is therefore at most ET ≤
O(m/n) · Eτ = O(mdε−1 log κ).

H.p. bound. By Lemma 9, P(τ2 > 24ndε−1 log κ log 4
δ
) ≤ δ/4. To bound the

first phase, define pi := δ/2N−i+3 for each i ∈ [N]. By Lemma 9, P(τ1,i >

(24nd2 log2 κ log 1/pi)/φi) ≤ pi .Note that
∑N

i=1
log 1/pi

φi
= 1

φN

∑N−1
j=0 2− j (log 8/δ+

123

394 J. M. Altschuler, P. A. Parrilo

j log 2) ≤ 1
φN

∑∞
j=0 2

− j (log 8/δ + j log 2) = 2 log 8/δ+2 log 2
φN

≤ 6 log 8/δ
εd log κ

. Thus by a

union bound, with probability at most
∑N

i=1 pi ≤ δ/4, the first phase has length
at most τ1 = ∑N

i=1 τ1,i ≤ 144ndε−1 log κ log 8
δ
. We conclude by a further union

bound that, with probability at least 1 − δ/2, the total number of iterations is at most
τ = τ1 + τ2 ≤ 168ndε−1 log κ log 8

δ
. The proof is complete by an identical Chernoff

bound argument as in case 1 above.

A.3 Proofs for Sect. 8

Proof (Lemma 14) Let A := D(ex)KD(e−x) denote the corresponding scaling of K ,
and P := A/

∑
i j Ai j denote its normalization. Similarly for Ã and P̃ . Note that each

nonzero entry P̃i j approximates Pi j to a multiplicative factor within [(1 − γ)/(1 +
γ), (1+γ)/(1−γ)] ⊂ [1−3γ, 1+3γ], where the last step used the assumption that
γ < 1/3.Thus each rowmarginal rk(P̃) approximates rk(P) to the samemultiplicative
factor, and similarly for the column marginals. Since P and P̃ are normalized, this
implies the additive approximations |rk(P) − rk(P̃)| ≤ 3γ , and similarly for the
columns. Thus by the triangle inequality, ‖r(P)− c(P)‖1 ≤ ‖r(P̃)− c(P̃)‖1 + 6nγ .

��
Proof (Lemma 15) Let x, y ∈ R

n . Since mini (ai/bi) ≤ (
∑n

i=1 ai)/(
∑n

i=1 bi) ≤
maxi (ai/bi) for any a, b ∈ R

n
>0,

log
n∑

i=1

exi − log
n∑

i=1

eyi = log

∑n
i=1 exi

∑n
i=1 eyi

≤ logmax
i

exi −yi

= max
i

xi − yi ≤ ‖x − y‖∞,

and similarly log
∑n

i=1 exi − log
∑n

i=1 eyi ≥ logmini exi −yi = mini xi − yi ≥ −‖x −
y‖∞. We conclude that | log∑n

i=1 exi − log
∑n

i=1 eyi | ≤ ‖x − y‖∞. ��
Proof (Lemma 16) Let x, y ∈ R

n . Clearly |(xi − x j)−(yi − y j)| ≤ 2‖x − y‖∞ for any
i, j ∈ [n]. Thus by Lemma 15, |Φ(x)−Φ(y)| = | log(∑(i, j)∈supp(K) exi −x j +log Ki j)−
log(

∑
(i, j)∈supp(K) eyi −y j +log Ki j)| ≤ 2‖x − y‖∞. ��

Proof (Lemma 17) Since log
∑n

i=1 ezi = max j z j + log
∑n

i=1 ezi −(max j z j), we may
assumewithout loss of generality after translation that each zi ≤ 0 and at least one zi =
0. Since we need only approximate log

∑n
i=1 ezi to ±τ accuracy, we can truncate each

zi to additive accuracy ±O(τ) by Lemma 15, and also drop all zi below− log n
O(τ)

. To

summarize, in order to compute log
∑n

i=1 ezi to±τ , it suffices to compute log
∑k

i=1 ez̃i

to ±O(τ) where k ≤ n, each z̃i ∈ [− log n
O(τ)

, 0], and each z̃i is represented by a

number with at most O(log(log(n/τ)
τ

)) = O(log 1
τ

+ log log n) bits. Now to compute

log
∑k

i=1 ez̃i to ±O(τ), we can tolerate computing each ez̃i to multiplicative accuracy
(1±O(τ)). Thus since ez̃i ≥ O(τ/n), we can tolerate computing each ez̃i to additive
accuracy ±O(τ 2/n). Since ez̃i ∈ [0, 1], it therefore suffices to compute ez̃i using
O(log 1

τ 2/n
) = O(log n

τ
) bits of precision. ��

123

Near-linear convergence of the Random Osborne algorithm 395

B Connections to Matrix Scaling and Sinkhorn’s algorithm

Here, we continue the discussion in Remark 4 by briefly mentioning two further con-
nections between Osborne’s algorithm forMatrix Balancing and Sinkhorn’s algorithm
for Matrix Scaling.
Parallelizability In contrast to Osborne’s algorithm for Matrix Balancing, Sinkhorn’s
algorithm for Matrix Scaling is so-called “embarassingly parallelizable”. We briefly
explain this in terms of the connection between parallelizability and graph coloring
(see Sect. 2.5). For the Matrix Scaling problem on K ∈ R

m×n
≥0 , the associated graph

has vertex set L ∪ R where |L| = m and |R| = n, and edge set {(i, j) : i ∈ [m], j ∈
[n], Ki j �= 0}. This graph is bipartite and thus trivially 2-colorable, which is why
Sinkhorn’s algorithm can safely update all coordinates in L or R in parallel.
Bit-complexity In Theorem 13, we showed that many variants of Osborne’s algorithm
can be implemented over numbers with logarithmically few bits, and still achieve
the same runtime bounds. By a nearly identical argument, it can be shown that the
analogous result applies to Sinkhorn’s algorithm. This saves a similar factor of up
to roughly O(n) in the bit-complexity for poorly connected inputs. Moreover, this
modification is also helpful for well-connected inputs, in particular for the application
of Optimal Transport, where the matrix K to scale is dense yet has exponentially large
entries which require bit-complexity O(L(log n)/ε) in the notation of [3, Remark 1].
This modification reduces the bit-complexity to only logarithmic size O(log(Ln/ε)).

References

1. Allen-Zhu, Z., Li, Y., Oliveira, R., Wigderson, A.: Much faster algorithms for matrix scaling. In:
Symposium on the Foundations of Computer Science (FOCS). IEEE (2017)

2. Allen-Zhu, Z., Qu, Z., Richtárik, P., Yuan, Y.: Even faster accelerated coordinate descent using non-
uniform sampling. In: International Conference on Machine Learning (ICML), pp. 1110–1119 (2016)

3. Altschuler, J., Weed, J., Rigollet, P.: Near-linear time approximation algorithms for optimal transport
via Sinkhorn iteration. In: Conference on Neural Information Processing Systems (NeurIPS) (2017)

4. Altschuler, J.M., Parrilo, P.A.: Approximating Min-Mean-Cycle for low-diameter graphs in near-
optimal time and memory. SIAM J. Optim. (2022, to appear)

5. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., DuCroz, J., Greenbaum,A.,
Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide, 3rd edn. Society for Industrial
and Applied Mathematics, Philadelphia, PA (1999)

6. Barenboim, L., Elkin,M., Kuhn, F.: Distributed (Δ+1)-coloring in linear (inΔ) time. SIAM J. Comput.
43(1), 72–95 (2014)

7. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical Methods, vol. 23.
Prentice Hall Englewood Cliffs, NJ (1989)

8. Bollobás, B.: Random Graphs, vol. 73. Cambridge University Press, Cambridge (2001)
9. Chakrabarty, D., Khanna, S.: Better and simpler error analysis of the Sinkhorn-Knopp algorithm for

matrix scaling. In: Symposium on Simplicity in Algorithms (SOSA) (2018)
10. Chen, T.Y.: Balancing sparse matrices for computing eigenvalues. Master’s thesis, UCBerkeley (1998)
11. Chen, T.Y., Demmel, J.W.: Balancing sparsematrices for computing eigenvalues. Linear Algebra Appl.

309(1–3), 261–287 (2000)
12. Cohen, M.B., Madry, A., Tsipras, D., Vladu, A.: Matrix scaling and balancing via box constrained

Newton’s method and interior point methods. In: Symposium on the Foundations of Computer Science
(FOCS), pp. 902–913. IEEE (2017)

13. Deza, M.M., Deza, E.: Encyclopedia of Distances, pp. 1–583. Springer, New York (2009)
14. Durrett, R.: Probability: Theory and Examples. Cambridge University Press, Cambridge (2010)

123

396 J. M. Altschuler, P. A. Parrilo

15. Dvurechensky, P., Gasnikov, A., Kroshnin, A.: Computational optimal transport: complexity by accel-
erated gradient descent is better than by Sinkhorn’s algorithm. In: International Conference onMachine
Learning (ICML) (2018)

16. Eaves, B.C., Hoffman, A.J., Rothblum, U.G., Schneider, H.: Line-sum-symmetric scalings of square
nonnegative matrices. In: Mathematical Programming Essays in Honor of George B. Dantzig Part II,
pp. 124–141. Springer (1985)

17. Garey, M.R., Johnson, D.S.: The complexity of near-optimal graph coloring. J. ACM 23(1), 43–49
(1976)

18. Goulet, V., Dutang, C., Maechler, M., Firth, D., Shapira, M., Stadelmann, M., et al.: expm: Matrix
exponential. R package version 0.99-0 (2013)

19. Gurvits, L., Yianilos, P.N.: The deflation-inflation method for certain semidefinite programming and
maximum determinant completion problems. Technical report, NECI (1998)

20. Higham, N.J.: The scaling and squaring method for the matrix exponential revisited. SIAM J. Matrix
Anal. Appl. 26(4), 1179–1193 (2005)

21. Idel, M.: A review of matrix scaling and Sinkhorn’s normal form for matrices and positive maps. arXiv
preprint arXiv:1609.06349 (2016)

22. Kalantari, B., Khachiyan, L., Shokoufandeh, A.: On the complexity of matrix balancing. SIAM J.
Matrix Anal. Appl. 18(2), 450–463 (1997)

23. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations,
pp. 85–103. Springer (1972)

24. Lee, C.P., Wright, S.J.: Random permutations fix a worst case for cyclic coordinate descent. IMA J.
Numer. Anal. 39(3), 1246–1275 (2019)

25. Mai, V.S., Battou, A.: Asynchronous distributed matrix balancing and application to suppressing epi-
demic. In: 2019 American Control Conference (ACC), pp. 2177–2182. IEEE (2019)

26. MathWorks: balance: diagonal scaling to improve eigenvalue accuracy. https://www.mathworks.com/
help/matlab/ref/balance.html

27. MathWorks: eig: eigenvalues and eigenvectors. https://www.mathworks.com/help/matlab/ref/eig.html
28. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomization and probabilistic techniques

in algorithms and data analysis. Cambridge University Press, Cambridge (2017)
29. Nemirovski, A., Rothblum, U.: On complexity of matrix scaling. Linear Algebra Appl. 302, 435–460

(1999)
30. Nesterov, Y., Stich, S.U.: Efficiency of the accelerated coordinate descent method on structured opti-

mization problems. SIAM J. Optim. 27(1), 110–123 (2017)
31. Osborne, E.: On pre-conditioning of matrices. J. ACM 7(4), 338–345 (1960)
32. Ostrovsky, R., Rabani, Y., Yousefi, A.: Matrix balancing in l p norms: bounding the convergence rate

of Osborne’s iteration. In: Symposium on Discrete Algorithms (SODA), pp. 154–169. SIAM (2017)
33. Ostrovsky, R., Rabani, Y., Yousefi, A.: Strictly balancing matrices in polynomial time using Osborne’s

iteration. In: International Colloquium on Automata, Languages and Programming (ICALP) (2018)
34. Parlett, B.N., Reinsch, C.: Balancing a matrix for calculation of eigenvalues and eigenvectors.

Numerische Mathematik 13(4), 293–304 (1969)
35. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes 3rd edition: the art

of scientific computing. Cambridge University Press, Cambridge (2007)
36. RDocumentation: Balance a square matrix via LAPACK’s dgebal. https://www.rdocumentation.org/

packages/expm/versions/0.99-1.1/topics/balance
37. Rothblum, U.G., Schneider, H., Schneider, M.H.: Scaling matrices to prescribed row and column

maxima. SIAM J. Matrix Anal. Appl. 15(1), 1–14 (1994)
38. Schneider, H., Schneider, M.H.: Max-balancing weighted directed graphs and matrix scaling. Math.

Oper. Res. 16(1), 208–222 (1991)
39. Schneider, M.H., Zenios, S.A.: A comparative study of algorithms for matrix balancing. Oper. Res.

38(3), 439–455 (1990)
40. Schulman, L.J., Sinclair, A.: Analysis of a classical matrix preconditioning algorithm. J. ACM 64(2),

9 (2017)
41. Sinkhorn, R.: Diagonal equivalence to matrices with prescribed row and column sums. Am. Math.

Mon. 74(4), 402–405 (1967)
42. Smith, B.T., Boyle, J.M., Garbow, B., Ikebe, Y., Klema, V., Moler, C.: Matrix Eigensystem Routines -

EISPACK Guide, vol. 6. Springer, New York (2013)

123

http://arxiv.org/abs/1609.06349
https://www.mathworks.com/help/matlab/ref/balance.html
https://www.mathworks.com/help/matlab/ref/balance.html
https://www.mathworks.com/help/matlab/ref/eig.html
https://www.rdocumentation.org/packages/expm/versions/0.99-1.1/topics/balance
https://www.rdocumentation.org/packages/expm/versions/0.99-1.1/topics/balance

Near-linear convergence of the Random Osborne algorithm 397

43. Sun, R., Luo, Z.Q., Ye, Y.: On the efficiency of randompermutation for ADMMand coordinate descent.
Math. Oper. Res. 45(1), 233–271 (2020)

44. Sun, R., Ye, Y.: Worst-case complexity of cyclic coordinate descent: O(n2) gap with randomized
version. Math. Prog. 185(1), 487–520 (2021)

45. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972)
46. Tomlin, J.A.: A new paradigm for ranking pages on the world wide web. In: Proceedings of the 12th

international conference on World Wide Web, pp. 350–355 (2003)
47. Ward, R.C.: Numerical computation of the matrix exponential with accuracy estimate. SIAM J. Numer.

Anal. 14(4), 600–610 (1977)
48. Wright, S.J.: Coordinate descent algorithms. Math. Progr. 151(1), 3–34 (2015)
49. Young, N.E., Tarjan, R.E., Orlin, J.B.: Faster parametric shortest path and minimum-balance algo-

rithms. Networks 21(2), 205–221 (1991)
50. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic

number. In: Symposium on the Theory of Computing (STOC), pp. 681–690. ACM (2006)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Near-linear convergence of the Random Osborne algorithm for Matrix Balancing
	Abstract
	1 Introduction
	1.1 Previous algorithms
	1.1.1 Practical state-of-the-art
	1.1.2 Theoretical state-of-the-art

	1.2 Contributions
	1.3 Overview of approach
	1.3.1 Argument for Greedy Osborne
	1.3.2 Argument for Random Osborne
	1.3.3 Argument for Random-Reshuffle Cyclic Osborne
	1.3.4 Argument for parallelized Osborne
	1.3.5 Key differences from previous approaches

	1.4 Other related work
	1.5 Roadmap
	2 Preliminaries
	2.1 Notation
	2.2 Matrix Balancing
	2.3 Matrix Balancing as convex optimization
	2.4 Osborne's algorithm as coordinate descent
	2.5 Parallelizing Osborne's algorithm via graph coloring

	3 Potential argument
	4 Greedy Osborne converges quickly

	5 Random Osborne converges quickly
	5.1 Bounding the number of iterations
	5.2 Bounding the final runtime

	6 Random-Reshuffle Cyclic Osborne converges quickly
	7 Parallelized variants of Osborne converge quickly
	8 Numerical precision
	9 Conclusion
	Acknowledgements
	A Deferred proofs
	A.1 Probabilistic helper lemmas
	A.2 Proof of Theorem 9
	A.3 Proofs for Sect. 8
	B Connections to Matrix Scaling and Sinkhorn's algorithm
	References

