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Abstract
Wepropose themaximin support method, a novel extension of the D’Hondt apportion-
ment method to approval-based multiwinner elections. The maximin support method
is a sequential procedure that aims tomaximize the voter support of the least supported
elected candidate. It can be computed efficiently and satisfies (adjusted versions of)
the main properties of the original D’Hondt method: house monotonicity, population
monotonicity, and proportional representation. We also establish a close relationship
between the maximin support method and alternative D’Hondt extensions due to
Phragmén.
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1 Introduction

In amultiwinner election, the goal is to select a fixed number of candidates (a so-called
committee) based on the preferences of a set of agents [13]. Multiwinner voting rules
have awide variety of applications including political elections [6], medical diagnostic
decision-making [16], and the selection of “validators” who participate in a blockchain
consensus protocol [11].

Recent years have witnessed an increasing interest in settings where the agents
express their preferences via approval ballots: For each candidate, an agent has the
choice between approving or disapproving the candidate. A particular focus of the
approval-based multiwinner voting literature (see [23] for a recent survey) has been
on the proportional representation of agents’ preferences in the committee [3, 7, 9,
27–29, 37].

A simpler setting in which proportional representation has been extensively studied
is that of apportionment [5]. Here, both candidates and agents have attributes and the
goal is to select a committee such that the distribution over attributes in the committee
resembles as closely as possible the distribution over attributes among the agents. In
classical applications of apportionment, attributes refer to either geographical location
or political party affiliation; proportionality then suggests, for instance, that the number
of seats assigned to a state of a union in a representative body should be proportional
to the population size of the state, or that the number of seats assigned to a political
party in a parliament should be proportional to the number of votes the party received
in an election. An important apportionment method is named after Victor D’Hondt.1

The apportionment problemhas an illustrious history and has given rise to an elegant
mathematical theory [5, 32], but it is not without limitations. For example, requiring
voters in a parliamentary election to choose among political parties is often described
as restrictive, as it prevents them from expressing more fine-grained preferences [33].
Furthermore, apportionment methods are not applicable in scenarios where attributes
(such as party affiliation) are not available. These limitations have led a number of
scholars to explore more general settings [e.g., 17, 20]. One important generalization
is the setting of approval-based multiwinner elections mentioned above. The appor-
tionment setting corresponds to the special case in which the set of candidates can be
partitioned into parties and the approval set of every voter contains precisely the candi-
dates belonging to a single party. Since apportionment problems can be formulated as
multiwinner voting problems, every approval-based multiwinner voting rule induces
an apportionment method [8]. Indeed, some of the most studied approval-based mul-
tiwinner voting rules, those of Phragmén [30] and Thiele [42], have been devised as
extensions of the D’Hondt method of apportionment [18].

In this paper, we introduce a novel approval-based multiwinner voting rule. Like
Phragmén and Thiele, we take the D’Hondt apportionment method as our point of
departure. In contrast to earlier proposals, we focus on a compelling “maximin” char-
acterization of the method in terms of voter support: The D’Hondt method always
selects committees maximizing the voter support for the least supported candidate

1 In the US, the method is named after Thomas Jefferson, the third president of the United States. In fact,
Jefferson introduced the method already in 1792, whereas D’Hondt described it in 1878.
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in the committee. We generalize the notion of maximin support to approval-based
multiwinner elections. When applying this concept iteratively (adding candidates to
the committee one at a time), we obtain the maximin support method (MMS). We
establish that MMS is an efficiently computable extension of the D’Hondt method
that satisfies committee monotonicity, (weak) support monotonicity, and proportional
justified representation (PJR).

We also establish a close relationship between the maximin support method and
Phragmén’s voting rules. In particular, we show that the (computationally intractable)
non-sequential variant of Phragmén’s rule always produces committees that optimize
the maximin support objective globally. From this perspective, both MMS and Phrag-
mén’s sequential rule can be considered (axiomatically desirable and polynomial-time
computable) approximation algorithms for the maximin support problem. Interest-
ingly, recent independent2 work by Cevallos and Stewart [11] has shown that MMS
strictly outperforms Phragmén’s sequential rule regarding this perspective.

2 Preliminaries

LetC be a finite set of candidates and N = {1, . . . , n} be a set of n voters. Furthermore,
k ∈ N denotes the number of winners to be selected. We assume 1 ≤ k ≤ |C | and
n ≥ 1.

For each i ∈ N , we let Ai ⊆ C denote the approval ballot of voter i . That is,
Ai is the subset of candidates that voter i approves of. An approval profile is a list
A = (A1, . . . , An) of approval ballots, one for each voter i ∈ N . Given an approval
profile A and a candidate c, we let Nc = {i ∈ N : c ∈ Ai } denote the set of approvers
of c and we call |Nc| the approval score of c. To avoid trivialities, we assume Nc �= ∅
for all c ∈ C .

An (approval-based multiwinner) election E can be represented by a tuple E =
(N ,C, A, k). An (approval-based multiwinner voting) rule R is a function that maps
an election E = (N ,C, A, k) to a subset R(E) ⊆ C of candidates of size |R(E)| = k,
referred to as the committee. We often refer to committee members aswinners. During
the execution of a voting rule, ties between candidates can occur. We assume that
ties are broken using a fixed priority ordering over the candidates. An example of a
priority ordering is the alphabetic order over the candidates’ names, which we use in
our examples.

An important subdomain of approval-based multiwinner elections is defined by
party-list elections, where the set of candidates is partitioned into parties and voters can
vote for exactly one party. Formally, a party-list election satisfiesC = P1∪̇P2∪̇. . .∪̇Pp

and every approval ballot Ai coincides with one party list Pj . The ballot profile for a
party-list election can be summarized by a vote vector V = (v1, v2, . . . , vp), where
v j is the number of votes for party Pj (i.e., v j = |{i ∈ N : Ai = Pj }|).

An apportionment method takes as input a vote vector V = (v1, . . . , vp) and
a natural number k and outputs a seat distribution x = (x1, . . . , xp) ∈ N

p
0 with∑p

j=1 x j = k. The interpretation is that party Pj is allocated x j seats. Apportionment

2 The work of Cevallos and Stewart [11] is based on a preprint of this paper [38].
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methods have been extensively studied in the literature [5, 32]. Since the party-list
setting is a special case of the general approval-based multiwinner setting, every
approval-based multiwinner rule induces an apportionment method [8]. An approval-
based multiwinner rule is called an extension of an apportionment method if it induces
it. In this paper, we will introduce a novel extension of the apportionment method due
to D’Hondt.

The D’Hondt method (aka Jefferson method) is a particular example from a family
of apportionment methods known as divisor methods [5, p. 99]. Given a vote vector
V = (v1, v2, . . . , vp) and k ∈ N, the method finds a divisor d ∈ R>0 such that
∑p

j=1	 v j
d 
 = k and assigns x j :=	 v j

d 
 seats to party Pj . Equivalently, the D’Hondt
method selects seat distributions x satisfying

∑
j x j = k and the following min-max

inequality [5, p. 100]:

min
i :xi>0

vi

xi
≥ max

j

v j

x j + 1
.

Furthermore, the method can also be described as an iterative procedure that assigns
seats sequentially: At each iteration, a seat is assigned to the party maximizing

v j
x j+1 ,

where x j is the number of seats assigned to party Pj in previous iterations [5, p. 100].
To illustrate the D’Hondt method, consider the vote vector (510, 320, 180) and

assume that five seats need to be assigned among the three parties P1, P2, and P3. In
this example, the D’Hondt method selects x = (3, 1, 1), i.e., it assigns three seats
to party P1 and one seat each to parties P2 and P3. To verify this, observe that
mini :xi>0

vi
xi

= 170 ≥ 160 = max j
v j

x j+1 and that any divisor d ∈ (160, 170] sat-
isfies (	 v1

d 
, 	 v2
d 
, 	 v3

d 
) = (3, 1, 1). Using the iterative description, the five seats are
allocated to parties in the order (P1, P2, P1, P3, P1).

For a vote vector V and a seat distribution x with x j > 0, the value
v j
x j

corresponds to
the number of voters that are represented by each seat assigned to party Pj . Intuitively,
the lower this value, the better off a party Pj is, because the party needs fewer votes per
assigned seat. The D’Hondt method always selects a seat assignment x maximizing
min j :x j>0

v j
x j
. In the words of Balinski and Young, the D’Hondt method “makes the

most advantaged [party] as little advantaged as possible” [5, p. 104]. In the next
section, we will interpret

v j
x j

as the “support” of each seat assigned to party Pj . Using
this terminology, theD’Hondtmethodmaximizes theminimum support among all seat
distributions. In the example from the previous paragraph, each of the three elected
candidates from party P1 is supported by 510/3 = 170 voters, the elected candidate
from party P2 is supported by 320 voters, and the elected candidate from party P3 is
supported by 180 voters. Therefore, min j :x j>0 v j/x j = min{170, 320, 180} = 170,
and all other seat distributions lead to smaller values.

An important proportionality axiom for apportionment methods is lower quota,
which requires that each party Pj is allocated at least 	k v j

n 
 seats. It is well known
that the D’Hondt method is the only divisor method satisfying lower quota [5, p. 117].
Moreover, the D’Hondt method satisfies two prominent monotonicity properties:
house monotonicity, which states that no party loses a seat when the house size k
is increased, and population monotonicity, which states that if the ratio vi

v j
increases,
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then it should not be the case that xi decreases and x j increases [5, p. 117]. Further
properties and axiomatic characterizations of the D’Hondt method are discussed in
Sect. 5.6.

3 A formal model of voter support

In this section, we formalize the notion of voter support,3 on which our extension of
the D’Hondt method will be based. In party-list elections, where voters support all
candidates of their chosen party, the D’Hondt method maximizes the support of the
least supported selected candidate (see Sect. 2). We now generalize the notion of voter
support to arbitrary approval profiles, by distributing votes in the form of approval
ballots among the candidates.

There are many different ways of distributing the support (i.e., the vote) of a voter
i ∈ N among the candidates in the set Ai ⊆ C of approved candidates, leading to
different support values for candidates. For an approval profile A = (A1, . . . , An) and
a nonempty subset D ⊆ C of candidates, we define the family FA,D of (fractional)
vote assignments for (A, D) as the set of all functions that distribute voter support only
among the candidates in D. Formally, FA,D consists of all functions f : (N × D) →
[0, 1] satisfying f (i, c) = 0 for all i ∈ N and c ∈ D\Ai , and

∑

c∈Ai∩D

f (i, c) = 1 for all i ∈ N with Ai ∩ D �= ∅.

For each voter i ∈ N , f (i, c) is the fraction of voter i’s vote that is assigned to
candidate c. Note that the definition requires that f (i, c) = 0 whenever c /∈ Ai . Thus,
the support of a voter is distributed only among those candidates that are approved by
the voter. Given a vote assignment f ∈ FA,D and a candidate c ∈ D, we let supp f (c)
denote the total support received by c under f , i.e.,

supp f (c) =
∑

i∈N
f (i, c).

Example 3.1 Consider the following approval profile A over the candidate set C =
{c1, c2, c3, c4, c5, c6, c7}:

10,000 × {c1, c2} 6000 × {c1, c3} 4000 × {c2}
5500 × {c3} 9500 × {c4} 3000 × {c5}
5000 × {c5, c6, c7}

Consider the candidate subset D = {c1, c3, c5} and let f be the (unique) vote
assignment in FA,D with f (i, c1) = 0.4 for each voter i with Ai = {c1, c3} (thus
f (i, c3) = 0.6 for those voters). The function f assigns 2400 out of the 6000 {c1, c3}-
votes to c1 and the remaining 3600 {c1, c3}-votes to c3, resulting in the following
support values:

3 In this paper we use the term “support” to refer to the backing or endorsement of a candidate by a voter.
This should not be confused with the usage of the term in measure theory or probability theory.
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112 L. Sánchez-Fernández et al.

supp f (c1) = 10,000 + 2400 = 12, 400,

supp f (c3) = 3600 + 5500 = 9100,

supp f (c5) = 5000 + 3000 = 8000.

We will be interested in those vote assignments in FA,D that maximize the support
for the least supported candidate in D. To this end, let maximin(A, D) denote the
maximal support for the least supported candidate in D, where the maximum is taken
over all vote assignments in FA,D . Formally,

maximin(A, D) = max
f ∈FA,D

min
c∈D supp f (c).

Furthermore, we let Fopt
A,D denote the nonempty4 set of optimal vote assignments for

(A, D), i.e.,

Fopt
A,D = { f ∈ FA,D : supp f (c) ≥ maximin(A, D) for all c ∈ D}.

The vote assignment specified in Example 3.1 is optimal, as |Nc5 | = 8000 and the
approval score of a candidate in D is a natural upper bound for maximin(A, D).

In the remainder of this paper, we will be interested in finding committees W
with a large maximin support value maximin(A,W ) for a given approval profile A.
An interesting rationale for maximizing the minimum support was given by Cevallos
and Stewart [11]: The maximin support value of a committee puts a limit on the
overrepresentation of voter groups. To illustrate this, consider a committeeW together
with an optimal vote assignment f for (A,W ). Let D ⊆ W be a subset of winning
candidates, and consider the set ND:= ⋃

c∈D Nc of voters who approve at least one
candidate in D. It follows from the definition of a vote assignment that the total support
for candidates in D is upper-bounded by |ND|, i.e., ∑c∈D supp f (c) ≤ |ND|. On the
other hand,

∑
c∈D supp f (c) ≥ |D| · maximin(A,W ). Combining these inequalities

yields |D| ≤ |ND|/maximin(A,W ). In other words, the voter group ND cannot have
a number of representatives in the committee that is higher than the size of the voter
group divided by the maximin support value.

4 TheMaximin Support method

We now propose an extension of the D’Hondt method to approval-based multiwinner
elections. It is based on the same principle as the D’Hondt method, in that the voter
support for the least supported elected candidate should be as large as possible. We
therefore refer to this novel method asmaximin support method (MMS). The maximin

4 Since FA,D is an infinite set, we need to make sure that the function minc∈D supp f (c) attains a
maximum over this set. We will see in the proof of Theorem 4.2 that the corresponding optimization

problem can be formulated as a feasible and bounded linear program. It follows that Fopt
A,D �= ∅ and that

max f ∈FA,D
minc∈D supp f (c) indeed exists.
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support method chooses candidates sequentially5 until the desired number of candi-
dates has been selected. In every iteration, a candidate with the greatest support is
chosen, under the condition that only vote assignments maximizing the support for
the least supported candidate are considered.

Given an approval-based multiwinner election E = (N ,C, A, k), the set W =
MMS(E) is determined by starting withW = ∅ and iteratively adding candidates until
|W | = k. In each iteration, we add to W an unelected candidate receiving the greatest
support, under the condition that only optimal vote assignments are considered.6 More
precisely, for each candidate c ∈ C\W , we compute an optimal vote assignment fc
for the set W ∪ {c} and determine the total support sc = supp fc (c) that c receives
under fc. The candidate maximizing this value is then added to W . (In the case that
two or more candidates have the same sc value, the priority ordering over candidates
is used to break the tie.) See Algorithm 1 for a formal description.

Algorithm 1: Maximin Support Method (MMS)
Data: approval-based multiwinner election (N ,C, A, k)
Result: subset W ⊆ C of candidates with |W | = k

1 W = ∅
2 for j = 1 to k do
3 foreach c ∈ C \ W do
4 compute fc ∈ Fopt

A,W∪{c}
5 sc = supp fc (c)

6 w ∈ arg max
c∈C\W sc

7 W = W ∪ {w}
8 return W

Since the set Fopt
A,W∪{c} of optimal vote assignments may contain more than one

function, the value of supp fc (c) could potentially depend on the choice of fc. The
following result implies that this is not the case.

Theorem 4.1 Let E = (N ,C, A, k) be an approval-based multiwinner election. The
following holds for each j ∈ {0, . . . , k − 1}.

Let W j denote the set of the first j candidates chosen by the maximin support
method when applied to E. Then, for each candidate c ∈ C\W j and for each optimal
vote assignment fc ∈ Fopt

A,W j∪{c},

supp fc (c) = maximin(A,W j ∪ {c}).

Theorem 4.1 states that in every iteration the candidate c added to W is among the
least supported candidates under every optimal vote assignment. The support of this

5 One can also define a non-sequential (optimization) variant of the maximin support method; we discuss
this variant in Sect. 6.2.
6 Restricting attention to optimal vote assignments ensures that support for previously elected candidates
is not ignored when searching for new vote assignments.
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114 L. Sánchez-Fernández et al.

candidate thus equals maximin(A,W ∪ {c}), which (by definition) is independent of
the particular vote assignment fc that was chosen in line 4 of the algorithm. The proof
of Theorem 4.1 employs linear programming duality theory and can be found in the
appendix.

This result gives rise to an interesting alternative formulation of themaximin support
method. In this equivalent formulation, there is no need to choose an optimal vote
assignment for (A,W ∪ {c}); rather, sc is directly defined as maximin(A,W ∪ {c}).
A natural interpretation of this definition is that the value sc measures the effect that
the addition of a potential candidate would have on the maximal support for the least
supported candidate.

The next theorem establishes that the maximin support method can be computed
efficiently.

Theorem 4.2 The maximin support method can be computed in polynomial time.

Proof Since the innermost for-loop is executed at most |C | times for every j ∈
{1, . . . , k} and k ≤ |C |, lines 4 and 5 are executed at most k|C | < |C |2 times. It
is therefore sufficient to show that, for any subset D ⊆ C of candidates, an optimal
vote assignment f ∈ Fopt

A,D can be computed in polynomial time. For a given approval
profile A and a subset D ⊆ C of candidates, consider the following linear program,
containing a variable f (i, c) for each i ∈ N and c ∈ Ai ∩ D, and an additional
variable s.

maximize s

subject to
∑

i∈N :c∈Ai∩D

f (i, c) ≥ s, for all c ∈ D

∑

c∈Ai∩D

f (i, c) = 1, for all i ∈ N with Ai ∩ D �= ∅

f (i, c) ≥ 0, for all i ∈ N and c ∈ D

The first set of constraints requires that the support for the least supported candidate
in D is at least s, while the remaining constraints ensure that the variables f (i, c)
encode a valid vote assignment.7 Therefore, optimal solutions of this linear program
correspond to optimal vote assignments. Since linear programming problems can be
solved in polynomial time [19], this concludes the proof. �

We conclude this section by illustrating the maximin support method with an exam-
ple.

Example 4.1 Consider the election E = (N ,C, A, k), where A is the approval profile
from Example 3.1 and k = 3.

In the first iteration, the value sc = maximin(A, {c}) equals the approval score
of candidate c, i.e., sc = |Nc| for all c. Therefore, the approval winner c1 (with

7 Note that constraints of the form f (i, c) ≤ 1 are not necessary because each variable f (i, c) is non-
negative and appears in a constraint of the form

∑
c∈Ai∩D f (i, c) = 1.
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sc1 = 16,000) is chosen. The corresponding vote assignment f satisfies f (i, c1) = 1
for all i ∈ Nc1 .

In the second iteration, we have W = {c1} and we need to compute the value sx =
maximin(A, {c1, x}) for all x ∈ C\{c1}. For example, for candidate c2 we get sc2 =
maximin(A, {c1, c2}) = 10,000; the corresponding vote assignment assigns 4000
out of the 10,000 {c1, c2}-votes to c1 and the remaining 6000 to c2. A better value is
achieved by candidate c3. The vote assignment realizing sc3 = maximin(A, {c1, c3}) =
10,750 assigns all 10,000 {c1, c2}-votes to c1, all 5500 {c3}-votes to c3, and divides the
6000 {c1, c3}-votes between c1 and c3 such that both candidates have a total support
of 10,750 each. Computing the other values, we get sc4 = 9500, sc5 = 8000, and
sc6 = sc7 = 5000. Therefore, c3 is selected.

In the third iteration, we have W = {c1, c3} and we need to compute the value
sx = maximin(A, {c1, c3, x}) for all x ∈ C\{c1, c3}. It can be checked that sc2 = 8500,
sc4 = 9500, sc5 = 8000, and sc6 = sc7 = 5000. Thus, candidate c4 is chosen. There
are several optimal vote assignments realizingmaximin(A, {c1, c3, c4}) = 9500; each
of them assigns all 9500 {c4}-votes to c4 and distributes the 6000 votes that approve
of c1 and c3 in such a way that c1 and c3 have a total support of at least 9500 each.

In summary, we have MMS(E) = {c1, c3, c4}.

5 Axiomatic properties of MMS

In this section, we show that the maximin support method is indeed an extension of
the D’Hondt method and that it satisfies (adjusted versions of) several important prop-
erties that the latter satisfies. In particular, we show that the maximin support method
satisfies committee monotonicity (aka house monotonicity), weak support monotonic-
ity (a variant of population monotonicity), and proportional justified representation.
We also discuss properties that are not satisfied byMMS (Sect. 5.5) and the possibility
to generalize axiomatic characterizations of the D’Hondt method (Sect. 5.6).

5.1 D’Hondt extension

We first show that the maximin support method coincides with the D’Hondt method
in the party-list domain.

Theorem 5.1 The maximin support method is an extension of the D’Hondt method.

Proof Consider a party-list election E = (N ,C, A, k) with C = P1 ∪ . . . ∪ Pp and
vote vector V = (v1, . . . , vp), where v j = |{i ∈ N : Ai = Pj }|. We show that the
maximin support method chooses a committeeW = MMS(E) that corresponds to the
seat distribution x = (x1, . . . , xp) selected by the D’Hondt method, in the sense that
|W ∩ Pj | = x j for every j ∈ {1, . . . , p}.

We consider the iterative formulation of the D’Hondt method and prove the state-
ment by induction on the committee size k. For k = 1, the statement holds because
the maximin support method as well as D’Hondt give the only available seat to (a
candidate from) a party Pj maximizing v j .
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116 L. Sánchez-Fernández et al.

Now let k > 1 and assume that the maximin support method and D’Hondt agree
on the first k − 1 rounds. Let W denote the set of k − 1 candidates selected by
MMS in the first k − 1 rounds and let y = (y1, . . . , yp) denote the seat assignment
constructed by the D’Hondt method in the first k − 1 rounds. By our assumption, we
have |W ∩ Pj | = y j for all j . Recall that the D’Hondt method assigns the last seat to
the party Pj∗ maximizing

v j
y j+1 . We need to show that the maximin support method

selects a candidate from that party.
In the party-list domain, the maximin support value maximin(A, D) of any subset

D ⊆ C is given byminr :|D∩Pr |>0
vr|D∩Pr | , because distributing voter support uniformly

among the candidates of a party is clearly optimal. Therefore, whenwe add a candidate
c from a party Pj toW , thereby obtaining a seat distribution x satisfying x j = y j + 1
and x� = y� for all � �= j , the new maximin value is maximin(A,W ∪ {c}) =
minr :xr>0

vr
xr
. Applying the min-max inequality for D’Hondt seat distributions (see

Sect. 2) to y, we get
v j
x j

= v j
y j+1 ≤ v�

y�
= v�

x�
for all � �= j . Thus, the minimum of vr

xr
is

attained at r = j andmaximin(A,W ∪{c}) = v j
x j

= v j
y j+1 . Since the maximin support

method selects a candidate maximizing maximin(A,W ∪ {c}), it selects a candidate
from the party Pj∗ maximizing

v j
y j+1 , as desired. �

5.2 Committeemonotonicity

Committee monotonicity requires that all selected candidates are still selected when
the committee size k is increased. Since the maximin support method selects winners
iteratively, committee monotonicity is trivially satisfied.

Observation 5.2 The maximin support method satisfies committee monotonicity.

5.3 Support monotonicity

In its most basic version, support monotonicity requires that additional support for
a selected candidate does not lead to that candidate dropping out of the winning
committee. A natural extension of this idea has been proposed by Sánchez-Fernández
and Fisteus [35] and considerswhat happenswhen the support of several of thewinners
is increased. One version of the axiom, referred to as weak support monotonicity,
requires that, when the support of a subset of the winners is increased, at least one of
those candidates must remain in the winning set.

Definition 5.1 An approval-based multiwinner voting rule R satisfies weak support
monotonicity if the following statements hold for all approval-based multiwinner
elections E = (N ,C, A, k) and for all nonempty subsets G ⊆ R(E) of winning
candidates:

1. (weak support monotonicity without population increase) Let i ∈ N be a voter
with Ai ∩ G = ∅ and consider the election E ′ = (N ,C, A′, k), where A′

j = A j

for all j ∈ N\{i} and A′
i = Ai ∪ G. Then, R(E ′) ∩ G �= ∅.
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2. (weak support monotonicity with population increase) Let n + 1 be a new voter
and consider the election E ′′ = (N ∪ {n + 1},C, A′′, k), where A′′

j = A j for all
j ∈ N and A′′

n+1 = G. Then, R(E ′′) ∩ G �= ∅.
We note that this definition reduces to the basic version of support monotonicity when
|G| = 1, and thus, despite its name, weak support monotonicity is slightly stronger
than the basic version.

Theorem 5.3 The maximin support method satisfies weak support monotonicity.

Proof First of all, we observe that for any nonempty set X ⊆ C that is disjoint from
G, the maximin support value of X is the same for E , E ′, and E ′′. This is because the
changes made in E ′ and E ′′ do not affect how the votes can be distributed among the
candidates in X .

Let r be theMMS iteration in which the first candidate fromG is elected in election
E and let c∗ ∈ G be this candidate. For 0 ≤ j ≤ k, let W j , W j

A′ , and W j
A′′ be the

first j candidates chosen by MMS for elections E , E ′, and E ′′. (For j = 0, we have
W 0 = W 0

A′ = W 0
A′′ = ∅.)

If at least one candidate from G is selected within the first r − 1 iterations of the
execution of MMS for election E ′ (respectively, for election E ′′), the statement of the
theorem holds. Therefore, we assume that in the first r−1 iterations no candidate from
G is selected for election E ′ (respectively, for election E ′′). In this case, in each iteration
the candidate added to the committee will be the same for E and E ′ (respectively, E
and E ′′) because the computation of maximin is done over sets of candidates disjoint
from G. Consequently, Wr−1 = Wr−1

A′ (respectively, Wr−1 = Wr−1
A′′ ).

We are going to prove that the candidate chosen in iteration r for election E ′
(respectively, for election E ′′) belongs toG. First,we observe that sinceWr−1∩G = ∅,
for each candidate c ∈ C\(Wr−1∪G) the maximin support value ofWr−1∪{c} is the
same for elections E , E ′, and E ′′. It is therefore sufficient to prove that the maximum
support value of Wr−1 ∪ {c∗} = Wr for election E ′ (respectively, for election E ′′)
is greater than or equal to the maximin support value of Wr for election E . Further,
it is enough to find a vote assignment g ∈ FA′,Wr (respectively, a vote assignment
h ∈ FA′′,Wr ) such that for each candidate c inWr the support of c under g (respectively,
the support of c under h) is greater than or equal to the maximin support value of Wr

for election E .
Consider any optimal vote assignment f ∈ Fopt

A,Wr . For election E ′ we can define g
as follows. If Ai ∩ Wr �= ∅, then let g( j, c) = f ( j, c) for each voter j ∈ N and each
candidate c ∈ Wr . If voter i does not approve any of the candidates in Wr in election
E (that is, if Ai ∩ Wr = ∅), then for each candidate c ∈ Wr we have f (i, c) = 0. In
that case, we define g( j, c) = f ( j, c) for each voter j ∈ N\{i} and each candidate
c ∈ Wr , g(i, c∗) = 1, and g(i, c) = 0 for each candidate c ∈ Wr−1.

For election E ′′, let h( j, c) = f ( j, c) for each voter j ∈ N and each candidate
c ∈ Wr , h(n + 1, c∗) = 1, and h(n + 1, c) = 0 for each candidate c ∈ Wr−1.

Clearly, each candidate in Wr receives a support under g and h that is greater than
or equal to the support that the same candidate receives under f . Moreover, since
f ∈ Fopt

A,Wr , all candidates inWr receive a support under f that is greater than or equal
to the maximin support value of Wr for election E .
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In summary, we have:

– The maximin support value of Wr−1 ∪ {c∗} = Wr for elections E ′ and E ′′ is
greater than or equal to that for election E .

– For each candidate c ∈ C\(W (r−1)∪G) themaximuin support value ofWr−1∪{c}
is the same for elections E , E ′, and E ′′.

– A similar argument to that used for c∗ shows that for each candidate c ∈ G the
maximin support value of Wr−1 ∪ {c} for elections E ′ and E ′′ is greater than or
equal to that for election E .

It follows that, for elections E ′ and E ′′, the maximin support value ofWr is greater
than or equal to the maximin support value of Wr−1 ∪ {c} for each candidate c ∈
C\(Wr−1 ∪ G). Equality can hold for elections E ′ and E ′′ only if it also holds for
election E . In such case, we assume that a priority order of the candidates is used to
break ties, and therefore, no candidate in C\(Wr−1 ∪ G) can be selected at iteration
r for elections E ′ and E ′′. �

5.4 Proportional representation

Axioms capturing the proportional representation of voter preferences in approval-
basedmultiwinner elections have been studied extensively in recent years [3, 7, 27–29].
In this paper, we focus on an axiom known as proportional justified representation
(PJR) [37]. PJR is a generalization of the lower quota axiom to the general approval-
basedmultiwinner setting: If a voting rule satisfies PJR, then its induced apportionment
method satisfies lower quota [8].

In order to define PJR, we need some terminology. Consider an election
(N ,C, A, k). Given a positive integer � ∈ {1, . . . , k}, we say that a subset N∗ ⊆ N of
voters is �− cohesive if |N∗| ≥ � n

k and | ⋂i∈N∗ Ai | ≥ �. The first condition requires
that the group is large enough to “claim” � representatives (in a perfectly proportional
committee, every candidate represents n

k voters) and the second condition requires
that there are at least � candidates unanimously approved by the group. Intuitively,
an �-cohesive group deserves to have � of “their” candidates in the committee. A
subset D ⊆ C of candidates of size k provides proportional justified representation
(PJR) if for all � ∈ {1, . . . , k} and all �-cohesive subsets N∗ ⊆ N , it holds that
|D ∩ (

⋃
i∈N∗ Ai )| ≥ �.

Definition 5.2 An approval-based multiwinner voting rule R satisfies proportional
justified representation (PJR) if R(E) provides PJR for every election E .

We now show that MMS satisfies this property.

Theorem 5.4 The maximin support method satisfies proportional justified representa-
tion.

Proof For the sake of contradiction, suppose that there exists an election E =
(N ,C, A, k) and an �-cohesive group N∗ ⊆ N such that for the set W = MMS(E)

of winners output by the maximin support method we have |W ∩ (
⋃

i∈N∗ Ai )| < �.
Thus, there are x > k−� candidates inW that are not approved of by any voter in N∗,

123



The maximin support method: an extension of the D’Hondt... 119

and therefore, the support of some of these x candidates (and the maximum support
of the least supported candidate in W ) has to be strictly less than n

k , because

|N | − |N∗|
x

≤ n − � n
k

x
= n

k − �

kx
< n

k − �

k(k − �)
= n

k
.

By Theorem 4.1, at each iteration the candidate that is added to the set of winners is
one of the least supported when we maximize the support of the least supported can-
didate in the current set of winners. Therefore, at some iteration during the execution
ofMMS for election E , the support of the candidate that we add to the set of winners
is strictly less than n

k (this happens for sure in the very last iteration).
Let j be the first iteration of MMS for election E such that the maximum support

of the least supported candidate in W is less than n
k and let c be the candidate elected

in this iteration. Let c∗ be a candidate that is approved by all the voters in N∗ and
that does not belong to W (such a candidate exists because |⋂i∈N∗ Ai | ≥ � but
|W ∩ (

⋃
i∈N∗ Ai )| < �). Since all the voters in N∗ approve c∗ and there are at most

�− 1 candidates inW that are approved by some voters in N∗, if we add candidate c∗
to the set of winners instead of candidate c at iteration j , the support of c∗ when we
maximize the support of the least supported candidate would be at least |N∗|

�
(observe

that if the support of c∗ were less than |N∗|
�

, then there must exist some candidates
in W that are approved by some voters in N∗ that receive a support from the voters
in N∗ greater than |N∗|

�
; we could then iteratively pick each of such candidates and

give the surplus coming from voters in N∗ to c∗). Observe now that |N∗|
�

≥ � n
k
�

= n
k ,

and therefore candidate c∗ would be elected ahead of candidate c at iteration j , a
contradiction. �

Remark 5.1 The maximin support method also satisfies the recently introduced notion
of priceability [27], which implies PJR. Since priceability characterizes D’Hondt
seat distributions in the party-list domain [27], this constitutes an alternative proof of
Theorem 5.1.

In the same spirit as lower quota, PJR ensures that each cohesive group of voters is
represented in the committee by at least the number of candidates that is proportional
to the group size. In light of the discussion at the end of Sect. 3, it can be argued that
MMS strikes an attractive compromise between two competing representation goals.

5.5 Properties not satisfied byMMS

In this section, we discuss axiomatic properties from the literature that are violated by
the maximin support method. We start with two proportionality properties: extended
justified representation and perfect representation.

Extended Justified Representation (EJR) [3]. A subset D ⊆ C of candidates of
size k provides extended justified representation (EJR) if for all � ∈ {1, . . . , k} and
all �-cohesive subsets N∗ ⊆ N , there exists a voter i ∈ N∗ with |Ai ∩ D| ≥ �.
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An approval-based multiwinner voting rule R satisfies EJR if R(E) provides EJR for
every election E = (N ,C, A, k).

EJR is a strictly stronger requirement than PJR. The following example shows that
MMS does not satisfy EJR.

Example 5.1 Consider the election E = (N ,C, A, k) with k = 4 and C =
{a1, a2, a3, c1, c2, c3, c4}. There are 16 voters casting the following ballots:

5 × {a1, c1, c2, c3, c4} 4 × {a2, c1, c2, c3, c4} 3 × {a3, c1, c2, c3, c4}
2 × {a1} 1 × {a2} 1 × {a3}

The maximin support method selects MMS(E) = {c1, a1, a2, a3} (selected in this
order). The 12 voters whose approval set contains {c1, c2, c3, c4} form a 3-cohesive
group, but none of these voters approves at least 3 candidates in the committee. There-
fore,MMS(E) fails to provide EJR for this election.

Perfect representation (PR) [37]. Consider an election E = (N ,C, A, k) such that
k divides n = |N |. A candidate subset W of size k provides perfect representation
for E if it is possible to partition N into k pairwise disjoint subsets of size n

k and
assign a distinct candidate from W to each of these subsets so that all the voters in a
subset approve their assigned candidate. A rule satisfies perfect representation (PR)
if it outputs a committee that provides PR whenever such a committee exists.

An example of a committee that provides PR is the output of the maximin support
method in Example 5.1.8 We can assign a1 to the 2 voters who approve only candidate
a1 and to 2 of the 5 voterswho approve {a1, c1, c2, c3, c4}, a2 to the voter who approves
only candidate a2 and to 3 of the 4 voters who approve {a2, c1, c2, c3, c4}, a3 to all
the voters who approve a3, and c1 to the four remaining voters. Sánchez-Fernández et
al. [37] proved that no polynomial-time computable rule can satisfy PR, from which
it directly follows that MMS fails PR. It is also not difficult to find examples in which
MMS fails PR.

Example 5.2 Consider the election E = (N ,C, A, k) with k = 2 and C = {a, b, c}.
There are 8 voters casting the following ballots:

3 × {a, b} 2 × {a, c} 1 × {b} 2 × {c}

Themaximin support method selectsMMS(E) = {a, c}. It is evident that this commit-
tee does not providePR since the voterwho approves only candidateb is unrepresented.
However, the committee {b, c} provides PR for this election.

Strong support monotonicity. With respect to support monotonicity, Sánchez-
Fernández and Fisteus [35] also consider a stronger axiom called strong support
monotonicity (with and without population increase) that requires that, if the sup-
port of a subset G of the winners is increased, all candidates in G must remain in
the committee. The following example shows that MMS does not satisfy this stronger
requirement.

8 This example also shows that PR and EJR are incompatible requirements.
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Example 5.3 Consider the election E = (N ,C, A, k) with k = 6 and C =
{a, b, c1, . . . , c5}. There are 18 voters casting the following ballots:

13 × {c1, . . . , c5} 2 × {a, b} 2 × {a} 1 × {b}

For this election, we have MMS(E) = {a, c1, . . . , c5} (candidate a is elected in
the fourth iteration). If a new voter enters the election and approves of precisely
{a, c1, . . . , c5}, then the committee selected by MMS is {a, b, c1, c2, c3, c4} (candi-
date a is now elected in the third iteration, while candidate b is elected in the last one).
This proves that MMS violates strong support monotonicity with population increase.

To prove that MMS violates strong support monotonicity without population
increase, we modify E by adding a new candidate d and a new voter approving of {d}.
Let E ′ denote this modified election. It is easy to check thatMMS(E ′) = MMS(E) =
{a, c1, . . . , c5}. If the new voter changes her approval set to {a, c1, . . . , c5, d}, then
the set of MMS winners is again given by {a, b, c1, c2, c3, c4}.
Remark 5.2 Whether strong support monotonicity without population increase and
PJR are compatible axioms is an open issue.

Strategyproofness. The maximin support method is not strategyproof. This follows
from a known incompatibility between strategyproofness and proportional represen-
tation in approval-based multiwinner elections due to Peters [26] and Kluiving et
al. [22]. In particular, every approval-based multiwinner rule that satisfies a modest
degree of proportional representation is vulnerable to manipulations in which voters
misrepresent their approval set by omitting some of their approved candidates. As a
consequence, none of the rules considered in Sect. 6 is strategyproof.

5.6 MMS and axiomatic characterizations of the D’Hondtmethod

Despite the positive axiomatic results in Sects. 5.1–5.4, an axiomatic characterization
of the maximin support method remains elusive.9 In the following, we review three
axiomatic characterizations of the D’Hondt method given by Balinski and Young [5]
andwe discuss the potential of generalizing the respective properties to approval-based
multiwinner elections.

First characterization The first characterization exclusively uses axioms that have
already been introduced in Sect. 2.

Theorem 5.5 (Balinski and Young [5, p. 130], Proposition 6.4) The D’Hondt method
is the unique apportionment method satisfying population monotonicity and lower
quota.

We have already seen that the maximin support method satisfies adjusted versions
of lower quota and population monotonicity for approval-based multiwinner elections

9 The same holds for other sequential rules such as those proposed by Phragmén (see Sect. 6.3) and Thiele
(see Sect. 6.4). With respect to the axioms discussed in Sects. 5.1–5.5, Phragmén’s sequential rule performs
identically to the maximin support method.
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(Sects. 5.3 and 5.4). However, there are other well-known approval-based multiwinner
rules that satisfy both axioms (see Sect. 6).

Second Characterization. The second axiomatic characterization of the D’Hondt
method requires another axiom called uniformity [5, p. 141–142]. Informally speak-
ing, uniformity requires “that an apportionment that is acceptable to all [parties] must
be acceptable if restricted to any subset of [parties] considered alone” [5, p. 141].

Theorem 5.6 (Balinski and Young [5, p. 149], Proposition 8.2) The D’Hondt method
is the unique apportionment method satisfying uniformity and lower quota.

It can be shown that themaximin supportmethod satisfies an appropriate generaliza-
tion of uniformity to approval-basedmultiwinner elections. The fact thatMMSsatisfies
(generalized) uniformity and PJR is an alternative proof thatMMS is a D’Hondt exten-
sion. However, this combination of axioms does not characterize MMS because other
rules satisfying both axioms can be defined.

Third Characterization. The final axiomatic characterization of the D’Hondt method
given by Balinski and Young [5] is concerned with coalition incentives. An appor-
tionment method encourages coalitions if, whenever two parties merge (i.e., form a
coalition), then the coalition gets at least as many seats as the sum of the seats of the
two individual parties [5, p. 150].

Theorem 5.7 (Balinski and Young [5, p. 150], Proposition 9.1) The D’Hondt method
is the unique apportionmentmethod that satisfies populationmonotonicity and encour-
ages coalitions.

Whether similar coalition incentives hold for the maximin support method depends
on how exactly this property is generalized to approval-based multiwinner elections.
For example, it can be shown that MMS encourages the coalition of two groups of
voters provided that (1) the members of each group have identical approval sets and
(2) the approval set of each group is disjoint from the approval set of the other group
and from the approval set of each voter outside the two groups. If those conditions do
not hold, groups of voters may suffer from joining forces, as the following example
shows.

Example 5.4 Consider the election E = (N ,C, A, k) with k = 3 and C =
{a, b, c, d, e, f }. There are 47 voters casting the following ballots:

6 × {a, c} 6 × {a, b, c} 4 × {c}
8 × {a, e} 8 × {b, f } 15 × {d}

The maximin support method selectsMMS(E) = {a, d, b} (in this order). Now, if the
8 voters who approve {a, e} and the 8 voters who approve {b, f } decide to join forces
and all approve {a, b, e, f }, then the maximin support method selects {a, c, d} (in this
order).

Remark 5.3 In the context of approval-based single-winner elections, approval voting
(AV) is the rule that selects the candidate with highest approval score. By definition,
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MMS coincides with AVwhen k = 1. Therefore, MMS can be seen as an extension of
AV to the multiwinner setting. Axiomatic characterizations of AV have been proposed
by Fishburn [14, 15] and Alós-Ferrer [1]. All these characterizations make use of the
well-known consistency axiom [41, 43]. Consistency has been generalized to approval-
basedmultiwinner elections by Lackner and Skowron [24], who used it to characterize
the class of approval-based committee scoring rules. The maximin support method is
not a member of this class and violates consistency.

6 Comparison to other D’Hondt extensions

The maximin support method is by no means the only way to extend the D’Hondt
method to approval-based multiwinner elections. As mentioned in the introduction,
the rules proposed by the Scandinavian mathematicians L. Edvard Phragmén [30]
and Thorvald N. Thiele [42] also generalize the D’Hondt method. In this section, we
compare the maximin support method to those rules. We start with Phragmén’s rules
(Sects. 6.1–6.3) and consider Thiele’s rules in Sect. 6.4. For an extensive treatment of
Phragmén’s and Thiele’s rules and their properties, we refer to the survey by Janson
[18].

6.1 Load distributions

Phragmén’s rules can be described as load distribution methods [7]. Every selected
candidate induces one unit of load, and this load needs to be distributed among the
approvers of that candidate. For example, if there are 6 voters approving candidate c
and we decide to select c for the committee, then one possible way of distributing the
load would be to give a load of 1

6 to each of those voters. However, it is not required
that the load is distributed evenly among the approvers: different approvers of c could
be assigned different (non-negative) loads, as long as the loads associated with each
selected candidate sum up to 1. The goal is to choose a committee such that the load
distribution is as balanced as possible. Different interpretations of balancedness lead
to different optimization goals; the most relevant variant minimizes the maximal load
of a voter.

In particular, max-Phragmén is the rule that returns committees corresponding
to load distributions minimizing the maximal voter load. And seq-Phragmén is a
sequential (greedy) version of max-Phragmén; it selects candidates iteratively, in each
round adding a candidate to the committee such that the new maximal voter load is as
small as possible.

Definition 6.1 Given an approval profile A and a subset D ⊆ C of candidates, a load
distribution for D given A is a two-dimensional array � = (�i,c)i∈N ,c∈D satisfying

0 ≤ �i,c ≤ 1 for all i ∈ N and c ∈ D,

�i,c = 0 for all i ∈ N and c ∈ D\Ai , and
∑

i∈N
�i,c = 1 for all c ∈ D.
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We letLA,D denote the set of all load distributions for (A, D). For a load distribution
� ∈ LA,D , the total load of voter i under �, denoted �i , is given by �i = ∑

c∈D �i,c.
Note that

∑
i∈N �i = |D| for all � ∈ LA,D . Finally, a load distribution is called

optimal for (A, D) if the maximal total voter load maxi∈N �i is as small as possible.
Lopt

A,D denotes the set of all optimal load distributions for (A, D).
We are now going to establish a close connection between load distributions and

vote assignments.

Lemma 6.1 Let A be an approval profile and D ⊆ C a subset of candidates. Then,
the following statements hold.

1. For every vote assignment f ∈ FA,D, there is a load distribution � f ∈ LA,D such
that

max
i∈N �

f
i ≤ 1

minc∈D supp f (c)
.

2. For every load distribution � ∈ LA,D, there is a vote assignment f � ∈ FA,D such
that

min
c∈D supp f � (c) ≥ 1

maxi∈N �i
.

Proof For a given vote assignment f ∈ FA,D , define the load distribution � f ∈ LA,D

by setting �
f
i,c = f (i,c)

supp f (c)
for each i ∈ N and c ∈ D.10 It follows that the total load of

a voter is upper bounded by 1
supp f (c∗) , where c

∗ is a candidate with minimal support

(recall that
∑

c f (i, c) = 1 for each voter i such that Ai ∩ D �= ∅).
For a given load distribution � ∈ LA,D , define the vote assignment f � ∈ FA,D by

setting f �(i, c) = �i,c
�i

for each voter i ∈ N such that �i > 0. That is, the support for
a candidate is proportional to the load received from that candidate, scaled such that
the total support by the voter is 1. It follows that the minimal support of a candidate is
lower bounded by 1

�i∗ , where i
∗ is a voter with maximal load. To see this, let i∗ denote

a voter with maximal load. For c ∈ D, we get

supp f � (c) =
∑

i∈N
f �(i, c) ≥

∑

i∈N :�i>0

�i,c

�i
≥ 1

�i∗

∑

i∈N
�i,c = 1

�i∗
.

�
Lemma 6.1 has particularly interesting implications for load distributions and vote
assignments that are optimal.

6.2 Phragmén’s optimal rule

The construction used in the proof of Lemma 6.1 establishes a one-to-one correspon-
dence between elements of Lopt

A,D and elements of Fopt
A,D . Therefore, the objective of

10 If supp f (c) = 0 for some candidate c, the first part of the lemma trivially holds.
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minimizing the maximal voter load is equivalent to the objective of maximizing the
minimal support. As a consequence, max-Phragmén (the method that globally min-
imizes the maximal voter load) is identical to the rule that globally maximizes the
minimal support.

Theorem 6.1 Let E = (N ,C, A, k) be an approval-basedmultiwinner election. Then,
max-Phragmén(E) = argmaxW⊆C,|W |=kmaximin(A,W ).

Since it is NP-hard to compute winners under max-Phragmén [7], the same is true
for finding a set of candidates maximizing the minimum support. Brill et al. [7] proved
that max-Phragmén satisfies PJR (when combined with an appropriate tie-breaking
rule) and PR but not EJR. With respect to monotonicity axioms, Mora and Oliver [25]
proved that max-Phragmén fails committee monotononicity and Sánchez-Fernández
and Fisteus [35] have extended previous results by Phragmén [31], showing that max-
Phragmén satisfies weak support monotonicity but fails strong support monotonicity.

6.3 Phragmén’s sequential rule

The rule seq-Phragmén can be viewed as a greedy algorithm for max-Phragmén.
Candidates are added to the committee iteratively. When a candidate is added, the
load corresponding to the candidate is distributed among the voters approving it. For
j = 0, . . . , k, let x ( j)

i be the load of voter i after j iterations of seq-Phragmén. The

initial load x (0)
i of each voter i is set to 0.

In iteration j + 1, the potential maximum load s( j+1)
c associated to a candidate c

that has not yet been added to the committee is computed as

s( j+1)
c = 1 + ∑

i∈Nc
x ( j)
i

|Nc| .

The underlying idea of this expression is to distribute the unit of load corresponding to
candidate c in such away that the resultingmaximum voter load is as small as possible.
When doing so, the load that voters accumulated in earlier iterations are taken into
account as well. Then, in each iteration the candidate w with the lowest potential
maximal load is added to the committee and the loads of the voters are updated as
follows: for each voter i with w ∈ Ai , we have x ( j+1)

i = s( j+1)
w ; the load of other

voters does not change.
There is a close relationship between the maximin support method and Phragmén’s

sequential rule. Both MMS and seq-Phragmén construct the committee by iteratively
adding candidates: MMS chooses candidates such that the minimal support of the new
set is maximized; seq-Phragmén chooses candidates such that the maximal voter load
incurred by the new set is minimized. However, there is a subtle difference between
the two methods concerning the redistribution of support/load. Under MMS, support
assigned to candidates in earlier rounds can be freely redistributed when looking for
maximin vote assignments for the new set of candidates. This is not the case for the
loads under seq-Phragmén, however: once a voter is assigned some load from some
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candidate, this load is “frozen” andwill always staywith the voter.11 As a consequence,
the twomethodsmight give different results, as Example 5.1 illustrates: The committee
according to the maximin support method is given by MMS(E) = {c1, a1, a2, a3}
(selected in this order), while seq-Phragmén selects (in this order) {c1, c2, c3, a1}.

It is straightforward to check that seq-Phragmén can be computed in polyno-
mial time [7]. With respect to the axiomatic properties considered in this paper,
seq-Phragmén is indistinguishable from the maximin support method: seq-Phragmén
satisfies committee monotonicity by definition; it satisfies PJR but fails EJR and PR
[7]; and it satisfies weak support monotonicity [18, 25, 31] but fails strong support
monotonicity [34].

An interesting distinction between seq-Phragmén and the maximin support method
concerns their ability to approximate the optimal solution of the maximin support
problem. Building on a preliminary version of this article [39], Cevallos and Stewart
[11] have recently shown that MMS provides a 2-approximation for this problem,
whereas seq-Phragmén does not offer a constant-factor approximation.12 To state
these results formally, we let OPT(A, k) denote the optimal maximin support value
maxW⊆C,|W |=k maximin(A,W ) for election (N ,C, A, k), and Hk the k-th harmonic
number Hk = ∑k

i=1 1/i .

Proposition 6.1 (Cevallos and Stewart [11])

1. For each approval-based multiwinner election E = (N ,C, A, k),

maximin(A,MMS(E)) ≥ 1

2
OPT(A, k).

2. For each committee size k ∈ N and each ε > 0, there is an approval-based
multiwinner election E (k) = (N ,C, A(k), k) such that

OPT(A(k), k) ≥ (Hk − ε) · maximin(A(k),Wk),

where Wk is the committee selected by seq-Phragmén in election E (k).

Proposition 6.1 implies that seq-Phragmén can behave arbitrarily worse than max-
Phragmén (and also than the maximin support method) in terms of maximizing the
minimum support.

We note that the maximin support value of a committee can be seen as a mea-
sure of its representativeness: the optimal value of |N |/k can only be achieved when
all voters are represented in the committee (in the sense that each voter approves at
least one winning candidate) and, furthermore, the support can be evenly distributed

11 Since redistributions are explicitly allowed in the rule Generalized Phragmén’s sequential rule (GPseq)
proposed by Aziz et al. [4] for the participatory budgeting setting, this rule is actually a generalization of
MMS, rather than of Phragmén’s sequential rule. In particular, GPseq is identical to MMS when the costs
of all projects are equal to 1.
12 Due to Lemma 6.1, the same bounds hold for the problem of minimizing the maximal voter load. The
first part of Proposition 6.1 is stated as Theorem 11 in the paper by Cevallos and Stewart [11]. The second
part of Proposition 6.1 follows from the proof of Lemma 8 of the same paper and was explicitly stated in
an earlier version of the paper [10, Lemma 10].
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among the committeemembers. Committees with smaller maximin support values can
thus be interpreted as providing a lesser degree of representation. From this perspec-
tive, Proposition 6.1 shows an important advantage of the maximin support method
compared to seq-Phragmén. Note, however, that this advantage comes at the price of
increased computational complexity (see also [11]): as we have seen in Sect. 4, in each
iteration of MMS, we need to solve one linear program for every remaining candidate.

6.4 Thiele’s rules

The D’Hondt extensions due to Thiele [42] are based on a score optimization problem:
For a given approval-based multiwinner election E = (N ,C, A, k), the goal is to find
a size-k committee W maximizing s(W ) = ∑

i∈N s(i,W ), where s(i,W ) is defined

by s(i,W ) = ∑|Ai∩W |
j=1

1
j . Like Phragmén’s rules, Thiele’s rules come in two variants.

Thiele’s non-sequential rule is known asProportional Approval Voting (PAV) [3, 21]
and chooses committees W maximizing s(W ). PAV satisfies EJR [3] (and thus PJR)
but not PR [37] and is NP-hard to compute [2, 40]. It was already known by Thiele [42]
that PAV fails committeemonotonicity. PAV satisfies strong supportmonotonicitywith
population increase (in fact, PAV is the only rule that is known to satisfy this axiom
together with PJR) and weak support monotonicity without population increase.

Thiele’s sequential rule, often referred to as sequential PAV, is a greedy heuris-
tic for the score optimization problem defined above. The rule starts with W = ∅
and iteratively adds candidates c maximizing the score s(W ∪ {c}). Sequential PAV
is polynomial-time computable and trivially satisfies committee monotonicity; weak
support monotonicity (with and without population increase) holds as well [34, 35].
Sequential PAV fails PR, PJR, and even a weaker property known as justified repre-
sentation [3, 37].

Thiele’s rules show a poor behaviour in terms of worst-case maximin support:
Cevallos and Stewart [11] observed that both PAV and sequential PAV can select
committees with a maximin support value that is an O(

√
k) factor away from the

optimal value. We complement their observation by showing that the factor can even
be linear in k.

Proposition 6.2 For each committee size k ∈ N, there is an approval-based mul-
tiwinner election E (k) = (N ,C, A(k), k) such that OPT(A(k), k) ≥ (k − 1) ·
maximin(A(k),Wk), where Wk is the committee selected by PAV and sequential PAV
in election E (k).

Proof For a natural number k ≥ 3, consider the election E (k) = (N ,C, A(k), k) with
C = {c1, . . . , ck+1}. There are k(k − 1) + 1 voters casting the following ballots:
For each i ∈ {1, . . . , k − 1}, there are k − 1 voters who approve {ci }; there are
k − 1 voters who approve {c1, . . . , ck}; and there is one voter who approves {ck+1}.
For this election, the optimal maximin support value OPT(A(k), k) is equal to k − 1
and can be achieved with the committee W = {c1, . . . , ck}. However, both PAV and
sequential PAV select Wk = {c1, . . . , ck−1, ck+1}, and the maximin support value for
this committee is maximin(A(k),Wk) = 1, because candidate ck+1 is only approved
by a single voter. �
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7 Conclusion

We have proposed the maximin support method (MMS) as a novel extension of
the D’Hondt method to approval-based multiwinner elections. Like the method of
D’Hondt, MMS aims to maximize the support of the least supported winning candi-
date. We have shown that MMS can be computed efficiently and satisfies an attractive
combination of axiomatic properties. In particular, we have argued that MMS strikes a
balance between sufficiently representing the interests of cohesive voter groups, while
at the same time trying not to overrepresent groups. We have also established a close
relationship between MMS and Phragmén’s rules. This novel connection allows us to
formulate Phragmén’s rules as support maximization (rather than load minimization)
problems, and to view MMS as a tractable approximation of Phragmén’s (intractable)
optimal rule.

There are several intriguingquestions for futurework, including the following: Is the
approximation factor ofMMSfor the optimalmaximin support problem tight?Do there
exist polynomial-time computable (and axiomatically desirable) voting rules providing
a better approximation factor? Do there exist committee-monotonic rules satisfying
stronger proportionality guarantees such as extended justified representation? Finally,
another direction for future work is to find axiomatic characterizations of MMS and
other sequential rules.
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Appendix

A Proof of Theorem 4.1

We employ linear programming duality theory (see, e.g., Chvátal [12, Chapter 5]).
Let A be an approval profile and D ⊆ C a nonempty subset of candidates. We

have seen in Sect. 4 that maximin(A, D) can be computed with the following linear
program.

maximize s

subject to
∑

i∈N :c∈Ai∩D

f (i, c) ≥ s, for all c ∈ D (A.1)

∑

c∈Ai∩D

f (i, c) = 1, for all i ∈ N with Ai ∩ D �= ∅ (A.2)

f (i, c) ≥ 0, for all i ∈ N and c ∈ D

We now consider the dual of this linear program. For every inequality constraint of
the form (A.1), there is an associated non-negative dual variable yc (c ∈ D), and for
every equality constraint of the form (A.2), there is an unrestricted dual variable zi
(i ∈ N and Ai ∩ D �= ∅). The dual looks as follows.

minimize
∑

i∈N :Ai∩D �=∅
zi

subject to
∑

c∈D
yc = 1

zi ≥ yc, for all i ∈ N and c ∈ Ai ∩ D

yc ≥ 0, for all c ∈ D

Let (s∗, f ∗) be an optimal solution for the primal linear program and (y∗, z∗) an
optimal solution for the dual linear program. Then,

s∗ =
∑

i∈N :Ai∩D �=∅
z∗i = maximin(A, D).

Moreover, from complementary slackness we get that the implication

supp f ∗(c) =
∑

i∈Nc

f ∗(i, c) > s∗ ⇒ y∗
c = 0 (A.3)

holds for all candidates c ∈ D. That is, if the support of a candidate c under an optimal
vote assignment f ∗ exceeds maximin(A, D), then the dual variable yc (associated
with the primal constraint

∑
i f (i, c) ≥ s) equals zero in the optimal solution (y∗, z∗)

for the dual.
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We first prove a lemma that relates maximin support values of different sets. In
particular, it states that candidates receiving more than the minimal support (under
an optimal vote assignment) can be removed without affecting the maximin value of
the set.

Lemma A.1 Let A be an approval profile, D ⊆ C a nonempty subset of candidates,
and f ∈ Fopt

A,D an optimal vote assignment for (A, D). If there exists a candidate ĉ ∈ D
such that supp f (ĉ) > maximin(A, D), then maximin(A, D) = maximin(A, D\{ĉ}).
Proof It is easy to verify that maximin(A, D) ≤ maximin(A, D\{ĉ}). We will now
show that maximin(A, D) ≥ maximin(A, D\{ĉ}) also holds.

Consider the primal and dual linear programs corresponding to the computation of
maximin(A, D) together with optimal solutions (s∗, f ∗) and (y∗, z∗), where f ∗ = f
and s∗ = maximin(A, D). Since supp f (ĉ) > maximin(A, D) holds by assumption,
(A.3) implies that y∗

ĉ = 0. Furthermore, if there exist voters i ∈ N with Ai ∩D = {ĉ},
then z∗i = 0 for all such voters (because variable zi only appears in the single constraint
zi ≥ yĉ).

Now consider the dual linear program corresponding to the computation of
maximin(A, D\{ĉ}). This linear program has a variable yc for each c ∈ D\{ĉ} and a
variable zi for each i ∈ N with Ai ∩(D\{ĉ}) �= ∅. We are going to construct a feasible
solution (ŷ, ẑ) for this linear program by restricting (y∗, z∗) to the smaller domain.

For each c ∈ D\{ĉ}, let ŷc = y∗
c . Moreover, for each i ∈ N with Ai ∩(D\{ĉ}) �= ∅,

let ẑi = z∗i . The solution (ŷ, ẑ) is feasible for the linear program in question because
y∗
ĉ = 0 and thus

∑

c∈D\{ĉ}
ŷc =

∑

c∈D
y∗
c = 1.

And the objective function value of the solution (ŷ, ẑ) is equal to that of the solution
(y∗, z∗) in the original dual because

∑

i∈N :
Ai∩(D\{ĉ}) �=∅

ẑi =
∑

i∈N :
Ai∩(D\{ĉ}) �=∅

z∗i =
∑

i∈N :
Ai∩(D\{ĉ}) �=∅

z∗i

+
∑

i∈N :
Ai∩D={ĉ}

z∗i =
∑

i∈N :
Ai∩D �=∅

z∗i = s∗.

It follows that the objective function value of the dual linear program for D\{ĉ}
is less than or equal to the objective function value s∗ of the dual linear program for
D.13 In other words, maximin(A, D\{ĉ}) ≤ s∗ = maximin(A, D). �

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1 The proof is by induction on j . For j = 0, the statement clearly
holds becauseW 0∪{c} = {c} and there is a unique optimal vote assignment fc ∈ Fopt

A,{c}
that furthermore satisfies supp fc (c) = maximin(A, {c}).
13 Recall that the duals are minimization problems.
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For the inductive step, let us assume that the statement holds for j = m. We show
that it also holds for j = m + 1.

Suppose for contradiction that this is not the case. Then, there exists a candidate
c ∈ C\Wm+1 and an optimal vote assignment fc ∈ Fopt

A,Wm+1∪{c} such that

supp fc(c) > maximin(A,Wm+1 ∪ {c}). (A.4)

By Lemma A.1, this implies that

maximin(A,Wm+1 ∪ {c}) = maximin(A,Wm+1). (A.5)

Let cm+1 be the (m + 1)th candidate chosen by MMS for election (N ,C, A, k).
Thus, Wm+1 = Wm ∪ {cm+1}. Let g be a vote assignment on Wm ∪ {c} such that

suppg(c
′) ≥ supp fc(c

′) for all c′inWm ∪ {c}. (A.6)

Such a function can easily be constructed by considering fc and redistributing support
that is assigned to candidate cm+1.

We now distinguish two cases: either the function g maximizes the support for the
least supported candidate in Wm ∪ {c}, or it does not.
Case 1 g is an optimal vote assignment for (A,Wm ∪ {c}). In this case,

maximin(A,Wm ∪ {c}) = min
c′∈Wm∪{c}

suppg(c
′),

and thus, by the induction hypothesis,

maximin(A,Wm ∪ {c}) = suppg(c). (A.7)

By combining (A.4), (A.5), (A.6), and (A.7), we have

maximin(A,Wm ∪ {c}) = suppg(c) ≥ supp fc (c)

> maximin(A,Wm+1 ∪ {c})
= maximin(A,Wm ∪ {cm+1}).

However, this is a contradiction because it implies that candidate c should
have been selected instead of cm+1 in iteration m + 1.

Case 2 g is not an optimal vote assignment for (A,Wm ∪ {c}). In this case,

maximin(A,Wm ∪ {c}) > min
c′∈(Wm∪{c})

suppg(c
′). (A.8)
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Furthermore, since fc ∈ Fopt
A,Wm+1∪{c}, we have

min
c′∈(Wm+1∪{c})

supp fc (c
′) = maximin(A,Wm+1 ∪ {c}). (A.9)

By combining (A.5), (A.6), (A.8) and (A.9), we have

maximin(A,Wm ∪ {c}) > min
c′∈(Wm∪{c})

suppg(c
′)

≥ min
c′∈(Wm+1∪{c})

supp fc (c
′)

= maximin(A,Wm+1 ∪ {c})
= maximin(A,Wm ∪ {cm+1}).

Again, this is a contradiction because it implies that candidate c should have
been selected instead of cm+1 in iteration m + 1. �
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