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Abstract
We study amodel for adversarial classification based on distributionally robust chance
constraints. We show that under Wasserstein ambiguity, the model aims to minimize
the conditional value-at-risk of the distance to misclassification, and we explore links
to adversarial classification models proposed earlier and to maximum-margin classi-
fiers. We also provide a reformulation of the distributionally robust model for linear
classification, and show it is equivalent to minimizing a regularized ramp loss objec-
tive. Numerical experiments show that, despite the nonconvexity of this formulation,
standard descent methods appear to converge to the global minimizer for this prob-
lem. Inspired by this observation, we show that, for a certain class of distributions, the
only stationary point of the regularized ramp loss minimization problem is the global
minimizer.

Keywords Adversarial cassification · Distributional robustness · Wasserstein
ambiguity · Margin · Ramp loss · Nonconvex

Mathematics Subject Classification 68T09 · 90C17 · 90C26 · 90C30

This work was supported by NSF Awards 1628384, 1634597, 1740707, and 2023239; Subcontract 8F-
30039 from Argonne National Laboratory; and Award N660011824020 from the DARPA Lagrange
Program. The research was conducted in part while the first author was a postdoctoral research associate
at the University of Wisconsin–Madison.

B Nam Ho-Nguyen
nam.ho-nguyen@sydney.edu.au

Stephen J. Wright
swright@cs.wisc.edu

1 Discipline of Business Analytics, The University of Sydney, Sydney, NSW 2006, Australia

2 Computer Sciences Department, University of Wisconsin, Madison, WI 53706, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-022-01796-6&domain=pdf
http://orcid.org/0000-0003-4464-7730


1412 N. Ho-Nguyen , S. J. Wright

1 Introduction

Optimization models have been used for prediction and pattern recognition in data
analysis as early as the work of Mangasarian [34] in the 1960s. Recent developments
have seenmodels grow in size and complexity,with success on a variety of tasks,which
has spurred many practical and theoretical advances in data science. However, it has
been observed that models that achieve remarkable prediction accuracy on unseen data
can lack robustness to small perturbations of the data [26, 47]. For example, the correct
classification of a data point for a trained model can often be switched to incorrect by
adding a small perturbation, carefully chosen. This fact is particularly problematic for
image classification tasks, where the perturbation that yields misclassification can be
imperceptible to the human eye1.

This observation has led to the emergence of adversarial machine learning, a field
that examines robustness properties of models to (potentially adversarial) data per-
turbations. Two streams of work in this area are particularly notable. The first is
adversarial attack [12, 13, 36], where the aim is to “fool” a trained model by con-
structing adversarial perturbations. The second is adversarial defense, which focuses
on model training methods that produce classifiers that are robust to perturbations
[7, 15, 20, 33, 37, 48–50]. Most models for adversarial defense are based on robust
optimization, where the training error is minimized subject to arbitrary perturbations
of the data in a ball defined by some distance function (for example, a norm in feature
space). As such, these algorithms are reminiscent of iterative algorithms from robust
optimization [4, 27, 38]. Theoretical works on adversarial defense also focus on the
robust optimization model, discussing several important topics such as hardness and
fundamental limits [11, 22, 23, 25], learnability and risk bounds [56, 57], as well as
margin guarantees and implicit bias for specific algorithms [14, 31].

In optimization under uncertainty and data-driven decision-making, the concept
of distributional robustness offers an intriguing alternative to stochastic optimization
and robust optimization [8, 17, 35, 52]. Instead of considering perturbations of the
data (as in robust optimization), this approach considers perturbations in the space of
distributions from which the data is drawn, according to some distance measure in
distribution space (for example,φ-divergence orWasserstein distance). This technique
enjoys strong statistical guarantees and its numerical performance often outperforms
models based on stochastic or robust optimization. In particular, for perturbations
based on Wasserstein distances, the new distributions need not have the same support
as the original empirical distribution.

In this paper, we explore adversarial defense by using ideas from distributional
robustness andWasserstein ambiguity sets.We focus on the fundamental classification
problem in machine learning, and its formulation as an optimization problem in which
we seek to minimize the probability of misclassification. We study a distributionally
robust version of this problem and explore connections between maximum-margin
classifiers and conditional value-at-risk objectives. We then focus on the linear classi-
fication problem. While convex linear classification formulations are well-known [5],
the model we study is based on a “zero-one” loss function r �→ 1(r ≤ 0), which

1 See, for example, https://adversarial-ml-tutorial.org/introduction/.
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is discontinuous and thus nonconvex. However, we show that in the case of binary
linear classification, the reformulation of the distributionally robust model gives rise
to the “ramp loss” function LR defined in (31), and we propose efficient first-order
algorithms for minimization. While the ramp loss is nonconvex, the nonconvexity is
apparently “benign”; the global minimizer appears to be found for sufficiently dense
distributions. Indeed, we prove that for a certain class of distributions, the global min-
imizer is the only stationary point. Numerical experiments confirm this observation.

1.1 Problem description

Suppose that data ξ is drawn from some distribution P over a set S. In the learning
task, we need to find a decision variable w, a classifier, from a space W . For each
(w, ξ) ∈ W × S, we evaluate the result of choosing classifier w for outcome ξ via
a “safety function” z : W × S → R ∪ {+∞}. We say that w “correctly classifies”
the point ξ when z(w, ξ) > 0, and w “misclassifies” ξ when z(w, ξ) ≤ 0. Thus, we
would like to choose w so as to minimize the probability of misclassification, that is,

inf
w∈W

Pξ∼P [z(w, ξ) ≤ 0] . (1)

This fundamental problem is a generalization of the binary classification problem,
which is obtained when S = X × {±1}, where ξ = (x, y) is a feature-label pair,
W describes the space of classifiers under consideration (e.g., linear classifiers or a
reproducing kernel Hilbert space), and z(w, (x, y)) = yw(x); sow correctly classifies
(x, y) if and only if sign(w(x)) = y.

In the context of adversarial classification, we are interested in finding decisions
w ∈ W which are robust to (potentially adversarial) perturbations of the data ξ . In
other words, if our chosen w correctly classifies ξ (that is, z(w, ξ) > 0), then any
small perturbation ξ + � should also be correctly classified, that is, z(w, ξ + �) > 0
for “sufficiently small” �. To measure the size of perturbations, we use a distance
function c : S × S → [0,+∞] that is nonnegative and lower semicontinuous with
c(ξ, ξ ′) = 0 if and only if ξ = ξ ′. (For binary classification ξ = (x, y) mentioned
above, the distance function can be c((x, y), (x ′y′)) = ‖x − x ′‖+ Iy=y′(y, y′) where
IA is the convex indicator of the set A.) For a classifier w ∈ W , we define the margin,
or distance to misclassification, of a point ξ ∈ S as

d(w, ξ) := inf
ξ ′∈S

{
c(ξ, ξ ′) : z(w, ξ ′) ≤ 0

}
. (2)

(Note that d(w, ξ) = 0 ⇔ z(x, ξ) ≤ 0.)
Two optimization models commonly studied in previous works on adversarial clas-

sification are the following:

inf
w∈W

Pξ∼P [d(w, ξ) ≤ ε] , (3a)

sup
w∈W

Eξ∼P [d(w, ξ)] . (3b)
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The first model (3a), which is the most popular such model, aims to minimize the
probability that the distance of a data point ξ to a bad result will be smaller than a
certain threshold ε ≥ 0. This is more commonly stated as a robust optimization type
problem:

inf
w∈W

Pξ∼P

[
inf

ξ ′:c(ξ,ξ ′)≤ε
z(w, ξ ′) ≤ 0

]
.

Note that (1) is a special case of (3a) inwhich ε = 0. The secondmodel (3b)maximizes
the expected margin. This model removes the need to choose a parameter ε, but
[23, Lemma 1] has shown that this measure is inversely related to the probability of
misclassification Pξ∼P [z(w, ξ) ≤ 0], that is, a lower probability of misclassification
(good) leads to a lower expected distance (bad), and vice versa. Thus, this model is
not used often.

Withdistributional robustness, rather than guarding against perturbations in the data
points ξ , we aim to guard against perturbations of the distribution P of the data. In this
paper, we study the following distributionally robust optimization (DRO) formulation
(stated in two equivalent forms that will be used interchangeably throughout):

inf
w∈W

sup
Q:dW (P,Q)≤ε

Pξ∼Q [z(w, ξ)≤0] ⇔ inf
w∈W

sup
Q:dW (P,Q)≤ε

Pξ∼Q [d(w, ξ)=0] ,

(4)

that is, we aim to minimize the worst-case misclassification probability over a ball of
distributions {Q : dW (Q, P) ≤ ε}. The ball is defined via the Wasserstein distance
between two distributions, which is defined via the function c as follows:

dW (P, Q) := inf
�

{
E(ξ,ξ ′)∼�

[
c(ξ, ξ ′)

] : � has marginals P, Q
}
. (5)

We use the Wasserstein distance due to the fact that distributions in the Wasserstein
ball can also capture perturbations in data points themselves, similar to (3a). Indeed,
[41, Corollary 1] prove that (3a) is upper bounded by (4), thus the two are intimately
related. One of our aims in this paper, however, is to understand the optimal solutions
to (4) and how they differ to those of (3a).

In practice, the true distribution P is not known to us; we typically have only a
finite sample ξi ∼ P , i ∈ [n] of training data, drawn from P , from which we can
define the empirical distribution Pn := 1

n

∑
i∈[n] δξi . We use Pn as the center of the

ball of distributions, that is, we solve the formulation (4) in which Pn replaces P .

1.2 Contributions and outline

In this paper, we first explore how using aWasserstein ambiguity set in (4) can result in
stronger guarantees for robustness to perturbations than (3a). Specifically, in Sect. 2.1,
we show that for sufficiently small ε, (4) yields the maximum-margin classifier. In
Sect. 2.2, we extend the link between the conditional value-at-risk of the distance
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function (2) and a chance-constrained version of (4) (observed by Xie [52]) to the
probability minimization problem (4). This link yields an interpretation of optimal
solutions of (4) for large ε, as optimizers of the conditional value-at-risk of the distance
function (2). Thus, solving the DRO problem ensures that, for a certain fraction ρ, the
average of the ρ-proportion of smallest margins is as large as possible.

In Sect. 3, we give a reformulation of (4) for linear classifiers, obtaining a reg-
ularized risk minimization problem with a “ramp loss” objective. This formulation
highlights the link between distributional robustness and robustness to outliers, a cri-
terion which has motivated the use of ramp loss in the past. We suggest a class of
smooth approximations for the ramp loss, allowing problems with this objective to be
solved (approximately) with standard continuous optimization algorithms.

In Sect. 4, we perform some numerical tests of linear classification on three different
data distributions. We observe that the regularized smoothed ramp loss minimization
problem arising from (4), while nonconvex, is “benign” in the sense that the global
minimum appears to be identified easily by smooth nonconvex optimization methods,
for modest values of the training set size n. We also experiment with nonseparable data
sets containing mislabelled points, showing that the problem arising from (4) is more
robust to these “attacks” than the hinge-loss function often used to find the classifying
hyperplane.

Motivated by the observations in Sect. 4, we prove in Sect. 5 that the ramp-loss prob-
lem indeed has only a single stationary point (which is therefore the global minimizer)
for the class of spherically symmetric distributions.

1.3 Related work

There are a number of works that explore distributional robustness for machine learn-
ingmodel training. These papers consider a distributionally robust version of empirical
risk minimization, which seeks to minimize the worst-case risk over some ambiguity
set of distributions around the empirical distribution. Lee and Raginsky [30] con-
sider a distributionally robust ERM problem, exploring such theoretical questions
as learnability of the minimax risk and its relationship to well-known function-class
complexity measures. Their work targets smooth loss functions, thus does not apply
to (4). Works that consider a Wasserstein ambiguity, similar to (4), include Chen and
Paschalidis [46], Shafieezadeh-Abadeh et al. [43, 44] Sinha et al. [16]; whereas Hu et
al. [28] uses a distance measure based on φ-divergences. For Wasserstein ambiguity,
Sinha et al. [46] provide an approximation scheme for distributionally robust ERM
by using the duality result of Lemma 2.3, showing convergence of this scheme when
the loss is smooth and the distance c used to define the Wasserstein distance in (5)
is strongly convex. When the loss function is of a “nice” form (e.g., logistic or hinge
loss for classification, 	1-loss for regression),

Chen and Paschalidis [43], Kuhn et al. [16], Shafieezadeh-Abadeh et al. [29, 44]
show that the incorporation of Wasserstein distributional robustness yields a regu-
larized empirical risk minimization problem. This observation is quite similar to our
results in Sect. 3, with a few key differences outlined in Remark 3.1. Also, discontinu-
ous losses, including the “0-1” loss explored in our paper, are not considered by Chen
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and Paschalidis [46], Shafieezadeh-Abadeh et al. [43, 44], Sinha et al. [16]. Further-
more, none of these works provide an interpretation the optimal classifier like the one
we provide in Sect. 2.

In this sense, the goals of Sect. 2 are similar to those of Hu et al. [28], whoworkwith
φ-divergence ambiguity sets. Their paper shows that the formulation that incorporates
φ-divergence ambiguity does not result in classifiers different from those obtained by
simplyminimizing the empirical distribution. They suggest amodification of the ambi-
guity set and show experimental improvements over the basic φ-divergence ambiguity
set. The main difference between our work and theirs is that we consider a different
(Wasserstein-based) ambiguity set, which results in an entirely different analysis and
computations. Furthermore, using φ-divergence ambiguity does not seem to have
a strong theoretical connection with the traditional adversarial training model (3a),
whereas we show that the Wasserstein ambiguity (4) has close links to (3a).

We mention some relevant works from the robust optimization-based models for
adversarial training.Charles et al. [14] andLi et al. [31] both providemargin guarantees
for gradient descent on an adversarial logistic regression model. We also give margin
guarantees for the distributionally robust model (4) in Sect. 2, but ours are algorithm-
independent, providing insight into use of theWasserstein ambiguity set for adversarial
defense. Bertsimas and Copenhaver [6] and Xu et al. [53, 54] have observed that for
“nice” loss functions, (non-distributionally) robust models for ERM also reformulate
to a regularized ERM problem.

Finally, we mention that our results concerning uniqueness of the stationary point
in Sect. 5 are inspired by, and are similar in spirit to, local minima results for low-rank
matrix factorization (see, for example, Chi et al. [18]).

2 Margin guarantees and conditional value-at-risk

In this section, we highlight the relationship between the main problem (4) and a
generalization of maximum-margin classifiers, as well as the conditional value-at-risk
of the margin function d(w, ξ).

2.1 Margin guarantees for finite support distributions

We start by exploring the relationship between solutions to (4) and maximum margin
classifiers. We recall the definition (2) of margin d(w, ξ) for any w ∈ W and data
point ξ ∈ S. We say that a classifier w has amargin of at least γ if d(w, ξ) ≥ γ for all
ξ ∈ S. When γ > 0, this implies that a perturbation of size at most γ (as measured by
the distance function c in (2)) for any data point ξ will still be correctly classified by
w. In the context of guarding against adversarial perturbations of the data, it is clearly
of interest to find a classifier w with maximum margin, that is, the one that has the
largest possible γ . On the other hand, some datasets S cannot be perfectly separated,
that is, for any classifier w ∈ W , there will exist some ξ ∈ S such that d(w, ξ) =
0. To enable discussion of maximum margins in both separable and non-separable
settings, we propose a generalized margin concept in Definition 2.1 as the value of
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a bilevel optimization problem. We then show that solving the DRO formulation (4)
is exactly equivalent to finding a generalized maximum margin classifier for small
enough ambiguity radius ε. This highlights the fact that the Wasserstein ambiguity set
is quite natural for modeling adversarial classification. We work with the following
assumption on P .

Assumption 2.1 The distribution P has finite support, that is, P = ∑
i∈[n] piδξi , where

each pi > 0 and
∑

i∈[n] pi = 1.

We make this assumption because for most continuous distributions, even our gen-
eralization of the margin will always be 0, so that a discussion of margin for such
distributions is not meaningful. Since any training or test set we encounter in practice
is finite, the finite-support case is worth our focus.

UnderAssumption 2.1,wedefine the notion ofgeneralizedmargin of P . Forw ∈ W
and ρ ∈ [0, 1], we define

I (w) := {i ∈ [n] : d(w, ξi ) = 0}
(points misclassified by w)

I(ρ) :=
{

I ⊆ [n] :
∑

i∈I
pi ≤ ρ

}

(subsets of [n] with cumulative probability at most ρ)

η(w) := min
i∈[n]\I (w)

d(w, ξi )

(margin of w with misclassified points excluded)

γ (ρ) := sup
w∈W

{η(w) : I (w) ∈ I(ρ)}

(max. margin with at most fraction ≤ ρ of points misclassified).

The usual concept of margin is γ (0). Given these quantities, we define the generalized
maximum margin of P with respect to the classifiersW as the value of the following
bilevel optimization problem.

Definition 2.1 Given P and W , the generalized maximum margin is defined to be

γ ∗ := sup
w∈W

{
η(w) : w ∈ argminw′∈W Pξ∼P [d(w′, ξ) = 0]} . (6)

Note that Definition 2.1 implicitly assumes that the argmin over w′ ∈ W is achieved
in (6). We show that under Assumption 2.1, this is indeed the case, and furthermore
that γ ∗ > 0.

Proposition 2.1 Suppose Assumption 2.1 holds. Define

ρ∗ := inf {ρ ∈ [0, 1] : γ (ρ) > 0} . (7)

Then ρ∗ = infw′∈W Pξ∼P [d(w′, ξ) = 0], there exists w ∈ W such that

Pξ∼P [d(w, ξ) = 0] = ρ∗, and γ ∗ = γ (ρ∗) > 0.
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Proof We first prove that under Assumption 2.1, the function ρ �→ γ (ρ) is a right-
continuous non-decreasing step function. The fact that γ (ρ) is non-decreasing follows
since I(ρ) ⊆ I(ρ′) for ρ ≤ ρ′. To show that it is a right-continuous step function,
consider the finite set of all possible probability sums P = {∑

i∈I pi : I ⊆ [n]} ⊂
[0, 1]. Let us order P as P = {

ρ1, . . . , ρK
}
where ρ1 < · · · < ρK . There is no

configuration I ⊆ [n] such that ρk <
∑

i∈I pi < ρk+1. Thus, I(ρ) = I(ρk) and
hence γ (ρ) = γ (ρk) for ρ ∈ [ρk, ρk+1), proving the claim.

To prove the proposition, first note that there exists no classifier w ∈ W such that
Pξ∼P [d(w, ξ) = 0] = ρ < ρ∗, otherwise, we have γ (ρ) ≥ η(w) > 0, contradicting
the definition of ρ∗. This shows that ρ∗ ≤ infw′∈W Pξ∼P [d(w′, ξ) = 0]. By the
description of ρ∗ as the infimal ρ such that γ (ρ) > 0 and by the right-continuity of
γ (·) and the fact that γ (·) is a step function, we must have γ (ρ∗) > 0. Since γ (ρ∗) >

0, there must exist some w ∈ W such that I (w) ∈ I(ρ∗), that is,
∑

i∈I (w) pi =
Pξ∼P [d(w, ξ) = 0] ≤ ρ∗. Since we cannot have Pξ∼P [d(w, ξ) = 0] < ρ∗ we
conclude that Pξ∼P [d(w, ξ) = 0] = ρ∗. Therefore infw∈W Pξ∼P [d(w, ξ) = 0] =
ρ∗. Furthermore, by definition, we have γ ∗ = γ (ρ∗) > 0. ��

The following result gives a precise characterization of the worst-case mis-
classification probability of a classifier w for a radius ε that is smaller than the
probability-weighted margin of w. It also gives a lower bound on worst-case error
probability when ε is larger than this quantity.

Proposition 2.2 Under Assumption 2.1, for w ∈ W such that

ε ≤ min
i∈[n]\I (w)

d(w, ξi )pi ,

we have

sup
Q:dW (P,Q)≤ε

Pξ∼Q[d(w, ξ) = 0] =
∑

i∈I (w)

pi + ε

η(w)
.

For w ∈ W such that ε > mini∈[n]\I (w) d(w, ξi )pi , we have

sup
Q:dW (P,Q)≤ε

Pξ∼Q[d(w, ξ) = 0] >
∑

i∈I (w)

pi + min
i∈[n]\I (w)

pi .

To prove Proposition 2.2, we will use the following key key duality result for the
worst-case error probability. Note that Lemma 2.3 does not need Assumption 2.1.

Lemma 2.3 ([8, Theorem 1, Eq. 15]) For any w ∈ W , we have

sup
Q:dW (P,Q)≤ε

Pξ∼Q[z(w, ξ) ≤ 0] = inf
t>0

{
εt + Eξ∼P [max {0, 1 − td(w, ξ)}]} . (8a)
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Proof First, by using (8a) in Lemma 2.3, using Assumption 2.1 and linear program-
ming duality, we have

sup
Q:dW (P,Q)≤ε

Pξ∼Q[d(w, ξ) = 0] = inf
t>0

⎧
⎨

⎩
εt +

∑

i∈[n]
pi max{0, 1 − td(w, ξi )}

⎫
⎬

⎭

= max
v

⎧
⎪⎨

⎪⎩

∑

i∈[n]
vi :

0 ≤ vi ≤ pi , i ∈ [n]
∑

i∈[n]
d(w, ξi )vi ≤ ε

⎫
⎪⎬

⎪⎭
.

The right-hand side is an instance of a fractional knapsack problem, which is solved
by the following greedy algorithm:

In increasing order of d(w, ξi ), increase vi up to pi or until the budget constraint∑
i∈[n] d(w, ξi )vi ≤ ε is tight, whichever occurs first.

Note that when i ∈ I (w) we have d(w, ξi ) = 0, so we can set vi = pi for such values
without making a contribution to the knapsack constraint. Hence, the value of the dual
program is at least

∑
i∈I (w) pi .

Whenw ∈ W is such that ε ≤ d(w, ξi )pi for all i ∈ [n] \ I (w), we will not be able
to increase any vi up to pi for those i ∈ [n]\ I (w) in the dual program.According to the
greedy algorithm, we choose the smallest d(w, ξi ) amongst i ∈ [n] \ I (w) — whose
value corresponds to η(w) — and increase this vi up to ε/d(w, ξi ) = ε/η(w) ≤ pi .
Therefore, we have

sup
Q:dW (P,Q)≤ε

Pξ∼Q[d(w, ξ) = 0] =
∑

i∈I (w)

pi + ε

η(w)
.

When w ∈ W is such that ε > d(w, ξi )pi for some i ∈ [n] \ I (w), the greedy
algorithm for the dual program allows us to increase vi up to pi for at least one
i ∈ [n] \ I (w). Thus, by similar reasoning to the above, we have that a lower bound
on the optimal objective is given by

∑

i∈I (w)

pi + min
i∈[n]\I (w)

pi ,

verifying the second claim. ��
The main result in this section, which is a consequence of the first part of this

proposition, is that as long as the radius ε > 0 is sufficiently small, solving the DRO
formulation (4) is equivalent to solving the bilevel optimization problem (6) for the
generalized margin, that is, finding the w that, among those that misclassifies the
smallest fraction of points Pξ∼P [d(w, ξ) = 0] = ρ∗, achieves the largest margin
η(w) = γ ∗ on the correctly classified points. The required threshold for radius ε is
ε = (ρ̄ −ρ∗)γ ∗, where ρ̄ is the smallest probability that is strictly larger than ρ∗, that
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is,

P :=
{
∑

i∈I
pi : I /∈ I(ρ∗)

}

=
{
∑

i∈I
pi :

∑

i∈I
pi > ρ∗

}

, ρ̄ := min {ρ : ρ ∈ P} .

(9)

We show too that classifiers that satisfy
∑

i∈I (w) pi = ρ∗ but whose margin may
be slightly suboptimal (greater that γ ∗ − δ but possibly less than γ ∗) are also nearly
optimal for (4).

Theorem 2.4 Let Assumption 2.1 be satisfied. Suppose that 0 < ε < (ρ̄ − ρ∗)γ ∗.
Then, referring to the DRO problem (4), we have

min
w∈W

sup
Q:dW (P,Q)≤ε

Pξ∼Q [d(w, ξ) = 0] = ρ∗ + ε

γ ∗ .

Furthermore, for any δ with 0 < δ < γ ∗ − ε/(ρ̄ − ρ∗), we have
{
w ∈ W : I (w) ∈ I(ρ∗), η(w) ≥ γ ∗ − δ

}

=
{

w ∈ W : I (w) ∈ I(ρ∗), sup
Q:dW (P,Q)≤ε

Pξ∼Q [d(w, ξ) = 0] ≤ ρ∗ + ε

γ ∗ − δ

}

.

In particular, if there exists some w ∈ W such that Pξ∼P [d(w, ξ) = 0] = ρ∗,
η(w) = γ ∗, then w solves (4), and vice versa.

Proof Since supw∈W :I (w)∈I(ρ∗) η(w) = γ (ρ∗) = γ ∗ > ε/(ρ̄−ρ∗), there exists some
w ∈ W such that

∑
i∈I (w) pi = ρ∗ and η(w) > ε/(ρ̄−ρ∗), that is, ε < η(w)(ρ̄−ρ∗).

Now, since ρ̄ − ρ∗ ≤ pi for all i ∈ [n] \ I (w) (by definition of P and ρ̄ in (9)), and
since η(w) ≤ d(w, ξi ) for all i ∈ [n] \ I (w), we have that ε < d(w, ξi )pi for all
i ∈ [n] \ I (w). Therefore, by Proposition 2.2, we have for this w that

sup
Q:dW (P,Q)≤ε

Pξ∼Q[d(w, ξ) = 0] =
∑

i∈I (w)

pi + ε

η(w)
= ρ∗ + ε

η(w)
< ρ̄.

This implies that any w ∈ W such that
∑

i∈I (w) pi ≥ ρ̄ is suboptimal for (4). (This is
because even when we set Q = P in (4), such a value of w has a worse objective than
the w for which

∑
i∈I (w) pi = ρ∗.) Furthermore, from Proposition 2.2 and the defi-

nition of ρ̄, any w ∈ W such that
∑

i∈I (w) pi = ρ∗ and ε ≥ mini∈[n]\I (w) d(w, ξi )pi
has

sup
Q:dW (P,Q)≤ε

Pξ∼Q[d(w, ξ) = 0] ≥
∑

i∈I (w)

pi + min
i∈[n]\I (w)

pi = ρ∗+ min
i∈[n]\I (w)

pi ≥ ρ̄,

hence is also suboptimal.
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This means that all optimal and near-optimal solutions w ∈ W to (4) with 0 < ε <

(ρ̄ − ρ∗)γ ∗ are in the set

⎧
⎨

⎩
w ∈ W :

∑

i∈I (w)

pi = ρ∗, ε < min
i∈[n]\I (w)

d(w, ξi )pi

⎫
⎬

⎭
,

and, by Proposition 2.2, the objective values corresponding to each such w are

sup
Q:dW (P,Q)≤ε

Pξ∼Q[d(w, ξ) = 0] = ρ∗ + ε

η(w)
.

By definition of γ (ρ∗) = γ ∗, the infimal value for this objective is ρ∗ + ε/γ ∗, and it
is achieved as η(w) → γ ∗. The first claim is proved.

For the second claim, consider any δ ∈ (0, γ ∗ − ε/(ρ̄ − ρ∗)). We have for any w

with
∑

i∈I (w) pi = ρ∗ that

η(w) ≥ γ ∗ − δ ⇐⇒ ρ∗ + ε

η(w)
≤ ρ∗ + ε

γ ∗ − δ
.

Furthermore, for suchw and δ, we have ε < (γ ∗−δ)(ρ̄−ρ∗) = (γ (ρ∗)−δ)(ρ̄−ρ∗) ≤
η(w)(ρ̄ − ρ∗) so, by noting as in the first part of the proof that ρ̄ − ρ∗ ≤ pi and
η(w) ≤ d(w, ξi ) for all i ∈ [n] \ I (w), we have ε < d(w, ξi )pi for all i ∈ [n] \ I (w).
By applying Proposition 2.2 again, we obtain

sup
Q:dW (P,Q)≤ε

Pξ∼Q [z(w, ξ) ≤ 0] = ρ∗ + ε

η(w)
≤ ρ∗ + ε

γ ∗ − δ
,

as required.
The final claim follows because, using the second claim, we have

{
w ∈ W : Pξ∼P [d(w, ξ) = 0] = ρ∗, η(w) = γ ∗}

=
⋂

δ>0

{
w ∈ W : I (w) ∈ I(ρ∗), η(w) ≥ γ ∗ − δ

}

=
⋂

δ>0

{

w ∈ W : I (w) ∈ I(ρ∗), sup
Q:dW (P,Q)≤ε

Pξ∼Q [d(w, ξ) = 0] ≤ ρ∗ + ε

γ ∗ − δ

}

=
{

w ∈ W : sup
Q:dW (P,Q)≤ε

Pξ∼Q [d(w, ξ) = 0] = ρ∗ + ε

γ ∗

}

,

as desired. ��
Theorem 2.4 shows that, for small Wasserstein ball radius ε, the solution of (4)

matches the maximum-margin solution of the classification problem, in a well defined
sense. How does the solution of (4) compare with the minimizer of the more widely
usedmodel (3a)? It is not hard to see that when the parameter ε in (3a) is chosen so that
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1422 N. Ho-Nguyen , S. J. Wright

ε < γ ∗, the solution of (3a) will be a pointwwithmargin η(w) ≥ ε. (Such a point will
achieve an objective of zero in (3a).) However, in contrast to Theorem 2.4, this point
may not attain themaximumpossiblemargin γ ∗. Themargin that we obtain verymuch
depends on the algorithm used to solve (3a). For fully separable data, for which ρ∗ = 0
and γ ∗ = γ (0) > 0, Charles et al. [14] and Li et al. [31] show that gradient descent
applied to a convex approximation of (3a) with parameter ε achieves a separation of
ε in an iteration count polynomial in (γ ∗ − ε)−1. Therefore, in order to strengthen
the margin guarantee, ε should be taken as close to γ ∗ as possible, but this adversely
affects the number of iterations taken to achieve this. By contrast, Theorem 2.4 shows
that, in the more general setting of non-separable data, the maximum-margin solution
is attained from (4) when the parameter ε is taken to be any value below the threshold
γ ∗(ρ̄ − ρ∗). In particular, this guarantee is algorithm independent.

2.2 Conditional value-at-risk characterization

Section 2.1 gives insights into the types of solutions that the distributionally robust
model (4) recovers when theWasserstein radius ε is below a certain threshold.When ε

is above this threshold however, (4) may no longer yield a maximum-margin solution.
In this section, we show in Theorem 2.6 that, in general, (4) is intimately related to
optimizing the conditional value-at-risk of the distance randomvariable d(w, ξ). Thus,
when ε is above the threshold of Theorem 2.4, (4) still has the effect of pushing data
points ξ away from the error set {ξ ∈ S : z(w, ξ) ≤ 0} as much as possible, thereby
encouraging robustness to perturbations. We note that unlike Sect. 2.1, we make no
finite support assumptions on the distribution P , that is, Assumption 2.1 need not hold
for our results below.

In stochastic optimization, when outcomes of decisions are random, different risk
measures may be used to aggregate these random outcomes into a single measure of
desirability (see, for example, [3, 42]). The most familiar risk measure is expectation.
However, this measure has the drawback of being indifferent between a profit of 1 and
a loss of −1 with equal probability, and a profit of 10 and a loss of −10 with equal
probability. In contrast, other risk measures can adjust to different degrees of risk
aversion to random outcomes, that is, they can penalize bad outcomes more heavily
than good ones. The conditional value-at-risk (CVaR) is a commonly used measure
that captures risk aversion and has several appealing properties. Roughly speaking,
it is the conditional expectation for the ρ-quantile of most risky values, for some
user-specified ρ ∈ (0, 1) which controls the degree of risk aversion. Formally, for
a non-negative random variable ν(ξ) where low values are considered risky (that is,
“bad”), CVaR is defined as follows:

CVaRρ(ν(ξ); P) := sup
t>0

{
t + 1

ρ
Eξ∼P [min {0, ν(ξ) − t}]

}
. (10)

[52, Corollary 1] gives a characterization of the chance constraint

max
Q:dW (P,Q)≤ε

Pξ∼Q[z(w, ξ) ≤ 0] ≤ ρ
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in terms of the CVaR of d(w, ξ) when P = Pn , a discrete distribution. We provide a
slight generalization to arbitrary P .

Lemma 2.5 Fix ρ ∈ (0, 1) and ε > 0. Then, for all w ∈ W , we have

sup
Q:dW (P,Q)≤ε

Pξ∼Q[z(w, ξ) ≤ 0] ≤ ρ ⇐⇒ ρ CVaRρ(d(w, ξ); P) ≥ ε. (11)

Proof We prove first the reverse implication in (11). Suppose that (following (10)) we
have

ρ CVaRρ(d(w, ξ); P) = sup
t>0

{
ρt + Eξ∼P [min {0, d(w, ξ) − t}]} ≥ ε,

then for all 0 < ε′ < ε, there exists some t > 0 such that

ρt + Eξ∼P [min {0, d(w, ξ) − t}] > ε′.

Dividing by t , we obtain ρ+Eξ∼P [min {0, d(w, ξ)/t − 1}] > ε′/t , so by rearranging
and substituting t ′ = 1/t , we have

ρ >
ε′

t
+ Eξ∼P

[
max

{
0, 1 − 1

t
d(w, ξ)

}]

≥ inf
t ′>0

{
ε′t ′ + Eξ∼P

[
max

{
0, 1 − t ′d(w, ξ)

}]}
.

Note that the function

ε′ �→ inf
t ′>0

{
ε′t ′ + Eξ∼P

[
max

{
0, 1 − t ′d(w, ξ)

}]} ∈ [0, ρ]

is concave and bounded, hence continuous. This fact together with the previous
inequality implies that

inf
t ′>0

{
εt ′ + Eξ∼P

[
max

{
0, 1 − t ′d(w, ξ)

}]} ≤ ρ,

which, when combined with (8a), proves that the reverse implication holds in (11).
We now prove the forward implication. Suppose that the left-hand condition in (11)

is satisfied for some ρ ∈ (0, 1), and for contradiction that there exists some ε′ ∈ (0, ε)
such that

ρ CVaRρ(d(w, ξ); P) = sup
t>0

{
ρt + Eξ∼P [min {0, d(w, ξ) − t}]} ≤ ε′ < ε.

Then for all t > 0, we have

ρt + Eξ∼P [min {0, d(w, ξ) − t}] ≤ ε′
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�⇒ ρ ≤ ε′

t
+ Eξ∼P

[
max

{
0, 1 − 1

t
d(w, ξ)

}]

�⇒ ρ ≤ inf
t ′>0

{
ε′t ′ + Eξ∼P

[
max

{
0, 1 − t ′d(w, ξ)

}]}
.

Since ε′ < ε, and using the left-hand condition in (11) together with (8a), we have

ρ ≤ inf
t>0

{
ε′t + Eξ∼P [max {0, 1 − td(w, ξ)}]} (12)

≤ inf
t>0

{
εt + Eξ∼P [max {0, 1 − td(w, ξ)}]} ≤ ρ, (13)

�⇒ ρ = inf
t>0

{
εt + Eξ∼P [max {0, 1 − td(w, ξ)}]} . (14)

Since ε′ < ε, there cannot exist any t > 0 such that

ρ = εt + Eξ∼P [max {0, 1 − td(w, ξ)}] .

Let ρk and tk be sequences such that 1 > ρk > ρ, ρk → ρ, tk > 0, and

ρk ≥ εtk + Eξ∼P [max {0, 1 − tkd(w, ξ)}] > ρ.

Since ε > 0, there cannot be any subsequence of tk that diverges to ∞, since in
that case εtk + Eξ∼P [max {0, 1 − tkd(w, ξ)}] ≥ εtk could not be bounded by ρk <

1. Thus {tk} is bounded, and there exists a convergent subsequence, so we assume
without loss of generality that tk → τ . By the dominated convergence theorem,
Eξ∼P [max {0, 1 − tkd(w, ξ)}] → Eξ∼P [max {0, 1 − τd(w, ξ)}], and εtk → ετ .
But then since

ρ < εtk + Eξ∼P [max {0, 1 − tkd(w, ξ)}] ≤ ρk → ρ,

we have by the squeeze theorem that

ετ + Eξ∼P [max {0, 1 − τd(w, ξ)}] = ρ.

But then, by the fact noted after (14), we must have τ = 0 so ρ = 1 (from (14)),
which contradicts our assumption that ρ ∈ (0, 1). ��

In the case of classification, the minimizers of (4) correspond exactly to the maxi-
mizers of CVaRρ(d(w, ξ); P), where ρ is the optimal worst-case error probability, as
we show now.

Theorem 2.6 Fix some ρ ∈ [0, 1] and define ε (using (10)) as follows:

ε := ρ sup
w∈W

CVaRρ(d(w, ξ); P) = sup
t>0

{
ρt + Eξ∼P [min {0, d(w, ξ) − t}]} .

(15)
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If 0 < ε < ∞, then

ρ = inf
w∈W

sup
Q:dW (P,Q)≤ε

Pξ∼Q[z(w, ξ) ≤ 0].

Furthermore, the optimal values of w coincide, that is,

argminw∈W sup
Q:dW (P,Q)≤ε

Pξ∼Q[z(w, ξ) ≤ 0] = argmaxw∈W CVaRρ(d(w, ξ); P).

Proof For any w ∈ W and t > 0, we have from (15) and (10) that

ε ≥ sup
t ′>0

{
ρt ′ + Eξ∼P

[
min

{
0, d(w, ξ) − t ′

}]} ≥ ρt + Eξ∼P [min {0, d(w, ξ) − t}] .

Dividing by t and rearranging, we obtain

ε

t
+ Eξ∼P

[
max

{
0, 1 − 1

t
d(w, ξ)

}]
≥ ρ.

Taking the infimum over t > 0, using (8a) (noting that 1/t > 0), then taking the
infimum over w ∈ W , we obtain

ρ ≤ inf
w∈W

sup
Q:dW (P,Q)≤ε

Pξ∼Q[z(w, ξ) ≤ 0]. (16)

In the remainder of the proof, we show that equality is obtained in this bound, when
0 < ε < ∞.

Trivially, the inequality in (16) can be replaced by an equality when ρ = 1. We
thus consider the case of ρ < 1, and suppose for contradiction that there exists some
ρ′ ∈ (ρ, 1] such that for all w ∈ W , we have

ρ < ρ′ < sup
Q:dW (P,Q)≤ε

Pξ∼Q[z(w, ξ) ≤ 0].

It follows from Lemma 2.5 that for all w ∈ W , we have

sup
t>0

{
ρ′t + Eξ∼P [min {0, d(w, ξ) − t}]} < ε. (17)

By taking the supremum over w ∈ W in this bound, and using ρ′ > ρ and the
definition of ε in (15), we have that

ε ≥ sup
w∈W,t>0

{
ρ′t + Eξ∼P [min {0, d(w, ξ) − t}]}

≥ sup
w∈W,t>0

{
ρt + Eξ∼P [min {0, d(w, ξ) − t}]} = ε,
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so that

ε = sup
w∈W,t>0

{
ρ′t + Eξ∼P [min {0, d(w, ξ) − t}]}

= sup
w∈W,t>0

{
ρt + Eξ∼P [min {0, d(w, ξ) − t}]} . (18)

From ρ < ρ′, (17), and (18), we can define sequences εk , tk > 0, and wk ∈ W
such that εk ↗ ε and

εk < ρtk + Eξ∼P [min {0, d(wk, ξ) − tk}] < ε.

By rearranging these inequalities, we obtain

εk

tk
+ Eξ∼P

[
max

{
0, 1 − 1

tk
d(wk, ξ)

}]

≤ ρ <
ε

tk
+ Eξ∼P

[
max

{
0, 1 − 1

tk
d(wk, ξ)

}]
.

Since εk → ε, we have either that tk is bounded away from 0, in which case

ε/tk + Eξ∼P [max {0, 1 − d(wk, ξ)/tk}] → ρ;

or there exists a subsequence on which tk → 0. In the former case, we have for k
sufficiently large that

ε

tk
+ Eξ∼P [max {0, 1 − d(wk, ξ)/tk}] ≤ ρ + ρ′ − ρ

2
< ρ′

�⇒ ε < ρ′tk + Eξ∼P [min {0, d(wk, ξ) − tk}]
�⇒ ε < sup

w∈W
sup
t>0

{
ρ′t + Eξ∼P [min{0, d(w, ξ) − t}]} ,

which contradicts (17).We consider now the other case, inwhich there is a subsequence
for which tk → 0, and assume without loss of generality that the full sequence has
tk → 0. Since Eξ∼P [min{0, d(wk, ξ) − tk}] ≤ 0 for any k, it follows that

0 ≥ lim sup
k→∞

{
ρ′tk + Eξ∼P [min{0, d(wk, ξ) − tk}]

}

≥ lim sup
k→∞

{
ρtk + Eξ∼P [min{0, d(wk, ξ) − tk}]

}

≥ lim
k→∞ εk = ε,

so that ε ≤ 0. This contradicts the assumption that ε > 0, so we must have

ρ = inf
w∈W

sup
Q:dW (P,Q)≤ε

Pξ∼Q[z(w, ξ) ≤ 0].
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This completes our proof of the first claim of the theorem.
Let w ∈ W be a maximizer of the CVaR, so that ε = ρ CVaRρ(d(w, ξ); P). Then

by Lemma 2.5, we have

sup
Q:dW (P,Q)≤ε

Pξ∼Q[z(w, ξ) ≤ 0] ≤ ρ,

so the same value of w is also a minimizer of the worst-case error probability. A
similar argument shows that minimizers of the worst-case error probability are also
maximizers of the CVaR. ��

3 Reformulation and algorithms for linear classifiers

In this section, we formulate (4) for a common choice of distance function c and safety
function z, and discuss algorithms for solving this formulation. We make use of the
following assumption.

Assumption 3.1 We have W = R
d × R and S = R

d × {±1}. Write w̄ = (w0, b0) ∈
R
d × R and ξ = (x, y) ∈ R

d × {±1}. Define c(ξ, ξ ′) := ‖x − x ′‖ + Iy=y′(y, y′) for
some norm ‖ · ‖ on Rd and IA(·) is the convex indicator function where IA(y, y′) = 0
if (y, y′) ∈ A and ∞ otherwise. Furthermore, z(w̄, ξ) := y(w�

0 ξ + b0).

From Lemma 2.3, the DRO problem (4) is equivalent to

inf
w̄=(w0,b0)∈Rd×R, t>0

{
εt + Eξ∼P [max {0, 1 − td(w̄, ξ)}]} . (19)

Letting ‖ · ‖∗ denote the dual norm of ‖ · ‖ from Assumption 3.1, the distance to
misclassification d(w̄, ξ) is as follows

d(w̄, ξ) = d((w0, b0), (x, y)) =

⎧
⎪⎨

⎪⎩

max
{
0,y(w�

0 x+b0)
}

‖w0‖∗ , w0 �= 0

∞, w0 = 0, yb0 > 0

0, w0 = 0, yb0 ≤ 0.

(20)

When w0 �= 0, we can define the following nonlinear transformation:

w ← tw0

‖w0‖∗
, b ← tb0

‖w0‖∗
, (21)

noting that t = ‖w‖∗, and substitute (20) into (19) to obtain

inf
w∈Rd ,b∈R

{
ε‖w‖∗ + Eξ∼P

[
max

{
0, 1 − max

{
0, y(w�x + b)

}}]}
. (22)

In fact, the next result shows that this formulation is equivalent to (19) even when
w0 = 0. (Here, we use the term “δ-optimal solution” to refer to a point whose objective
value is within δ of the optimal objective value for that problem.)
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Theorem 3.1 Under Assumption 3.1, (22) is equivalent to (19). Moreover, any δ-
optimal solution (w, b) for (22) can be converted into a δ-optimal solution t and
w̄ = (w0, b0) for (19) as follows:

t = ‖w‖∗, (w0, b0) :=
{(

w
‖w‖∗ , b

‖w‖∗

)
w �= 0

(0, b), w = 0.
(23)

Proof The first part of the proof shows that the optimal value of (22) is less than or
equal to that of (19), while the second part proves the converse.

To prove that the optimal value of (22) is less than or equal to that of (19), it suffices
to show that given any w̄ = (w0, b0), we can construct a sequence {(wk, bk)}k∈N such
that

ε‖wk‖∗ + Eξ∼P

[
max

{
0, 1 − max

{
0, y((wk)�x + bk)

}}]

→ inf
t≥0

{
εt + Eξ∼P [max {0, 1 − td(w̄, ξ)}]} . (24)

Consider first the case of w0 �= 0, and let tk > 0 be a sequence such that

lim
k→∞

{
εtk + Eξ∼P [max {0, 1 − tkd(w̄, ξ)}]}

= inf
t>0

{
εt + Eξ∼P [max {0, 1 − td(w̄, ξ)}]} . (25)

Following (21), we define wk := tkw0/‖w0‖∗ and bk := tkb0/‖w0‖∗. We then have
from (20) that

max{0, y((wk)�x + bk)} = max

{

0, tk
y(w�

0 x + b0)

‖w0‖∗

}

= tk
max{0, y(w�

0 x + b0)

‖w0‖∗
= tkd(w̄, ξ).

Thus, the left-hand sides of (25) and (24) are equivalent, so (24) holds.
Next, we consider the case of w̄ = (w0, b0) with w0 = 0. Note that d(w̄, ξ) = 0

when yb0 ≤ 0 and d(w̄, ξ) = ∞ when yb0 > 0, we have max {0, 1 − td(w̄, ξ)} =
1(yb ≤ 0) for all t > 0, where 1(·) has the value 1 when its argument is true and 0
otherwise. Thus, we have

inf
t>0

{
εt + Eξ∼P [max {0, 1 − td(w̄, ξ)}]}

= Pξ∼P [yb0 ≤ 0] =

⎧
⎪⎨

⎪⎩

Pξ∼P [y ≤ 0], b0 > 0

1, b0 = 0

Pξ∼P [y ≥ 0], b0 < 0.

(26)
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Now choose wk = 0 and bk = kb0 for k = 1, 2, . . . . We then have

max
{
0, 1 − max

{
0, y((wk)�x + bk)

}}

= max {0, 1 − max {0, kyb0}}
= max {0, 1 − max {0, kyb0}} 1(b0 > 0) + 1(b0 = 0)

+ max {0, 1 − max {0, kyb0}} 1(b0 < 0)

= (max{0, 1 − kyb0}1(y > 0) + 1(y ≤ 0)) 1(b0 > 0) + 1(b0 = 0)

+ (1(y ≥ 0) + max{0, 1 − kyb0}1(y < 0)) 1(b0 < 0). (27)

Now notice that for the first and last terms in this last expression, we have by taking
limits as k → ∞ that

(max{0, 1 − yb0k}1(y > 0) + 1(y ≤ 0)) 1(b0 > 0) → 1(y ≤ 0)1(b0 > 0),

(1(y ≥ 0) + max{0, 1 − yb0k}1(y < 0)) 1(b0 < 0) → 1(y ≥ 0)1(b0 < 0),

both pointwise, and everything is bounded by 1. Therefore, by the dominated conver-
gence theorem, we have from (27) that

Eξ∼P

[
max

{
0, 1 − max

{
0, y((wk)�x + bk)

}}]
→

⎧
⎪⎨

⎪⎩

Pξ∼P [y ≤ 0], b0 > 0

1, b0 = 0

Pξ∼P [y ≥ 0], b0 < 0.

(28)

By comparing (26) with (28), we see that (24) holds for the case of w0 = 0 too. This
completes our proof that the optimal value of (22) is less than or equal to that of (19).

We now prove the converse, that the optimal value of (19) is less than or equal to
that of (22). Given w and b, we show that there exists w̄ = (w0, b0) such that

ε‖w‖∗ + Eξ∼P

[
max

{
0, 1 − max

{
0, y(w�x + b)

}}]

≥ inf
t>0

{
εt + Eξ∼P [max {0, 1 − td(w̄, ξ)}]} . (29)

When w �= 0, we take t = ‖w‖∗, w0 = w/‖w‖∗ = w/t , and b0 = b/‖w‖∗ = b/t ,
and use (20) to obtain (29).

Specifically, we have

ε‖w‖∗ − Eξ∼P

[
max

{
0, 1 − max

{
0, y(w�x + b)

}}]

= εt − Eξ∼P

[

max

{

0, 1 − max

{

0,
t y(w�

0 x + b0)

‖w0‖∗

}}]

= εt − Eξ∼P

[

max

{

0, 1 − t
max{0, y(w�

0 x + b0)}
‖w0‖∗

}]
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= εt − Eξ∼P [max {0, 1 − td(w̄, ξ)}]
≥ inf

t>0

{
εt − Eξ∼P [max {0, 1 − td(w̄, ξ)}]} ,

as claimed.
For the case of w = 0, we set b0 = b and obtain

ε‖w‖∗ + Eξ∼P

[
max

{
0, 1 − max

{
0, y(w�x + b)

}}]

= Eξ∼P [max {0, 1 − max {0, yb}}] ≥ Pξ∼P [yb ≤ 0] = Pξ∼P [yb0 ≤ 0] .

By comparing with (26), we see that (29) holds in this case too. Hence, the objective
value of (19) is less than or equal to that of (22).

For the final claim, we note that the optimal values of the problems (19) and (22)
are equal and, from the second part of the proof above, the transformation (23) gives
a solution t and w̄ = (w0, b0) whose objective in (19) is at most that of (w, b) in
(22). Thus, whenever (w, b) is δ-optimal for (22), then the given values of t and w̄ are
δ-optimal for (19). ��

The formulation (22) can be written as the regularized risk minimization problem

inf
w,b

{
ε‖w‖∗ + Eξ∼P

[
LR(y(w�x + b))

]}
, (30)

where LR is the ramp loss function defined by

LR(r) := max {0, 1 − r} − max{0,−r} =

⎧
⎪⎨

⎪⎩

1, r ≤ 0

1 − r , 0 < r < 1

0, r ≥ 1.

(31)

Here, the risk of a solution (w, b) is defined to be the expected ramp loss
Eξ∼P

[
LR(y(w�x + b))

]
, and the regularization term ‖w‖∗ is defined via the norm

that is dual to the one introduced in Assumption 3.1.

Remark 3.1 The formulation (22) is reminiscent of [29, Proposition 2] (see also ref-
erences therein), where other distributionally robust risk minimization results were
explored, except the risk was defined via the expectation of a continuous and convex
loss function, and the reformulation was shown to be the regularized risk defined on
the same loss function. In contrast, the risk in (4) is defined as the expectation of the
discontinuous and non-convex 0-1 loss function 1(y(w�x+b) ≤ 0), and the resulting
reformulation uses the ramp loss LR , a continuous but still nonconvex approximation
of the 0-1 loss. ��
Remark 3.2 The ramp loss LR has been studied in the context of classification by
Shen et al. [45], Wu and Liu [51], and Collobert et al. [21] to find classifiers that are
robust to outliers. The reformulation (30) suggests that the ramp loss together with a
regularization term may have the additional benefit of also encouraging robustness to
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adversarial perturbations in the data. In previous work, there has been several variants
of ramp loss with different slopes and break points. The formulation (32) suggests a
principled form for ramp loss in classification problems. ��

Remark 3.3 Instead of considering (w, b) ∈ R
d × R, we may consider non-linear

classifiers via kernels (and the associated reproducing kernel Hilbert space-based clas-
sifiers). [44, Section 3.3] examined kernelization of linear classifiers in the context of
different Wasserstein DRO-based classification models. They provide approximation
results relating the well-known kernel trick to these problems under some assumptions
on the kernel k. Their results can easily be applied to the ramp loss reformulation (30)
as well. ��

In practice, the distribution P in (30) is taken to be the empirical distribution Pn
on given data points {ξi }i∈[n], so (30) becomes

inf
w,b

ε‖w‖∗ + 1

n

∑

i∈[n]
LR(yi (w

�xi + b)). (32)

This problemcan be formulated as amixed-integer program (MIP) and solved to global
optimality using off-the-shelf software; see [2, 10]. Despite significant advances in the
computational state of the art, the scalability of MIP-based approaches with training
set size m remains limited. Thus, we consider here an alternative approach based on
smooth approximation of LR and continuous optimization algorithms.

Henceforth, we consider ‖ · ‖ = ‖ · ‖∗ = ‖ · ‖2 to be the Euclidean norm. For a
given ε in (32), there exists ε̄ ≥ 0 such that a strong local minimizer (w(ε), b(ε)) of
(32) with w(ε) �= 0 is also a strong local minimizer of the following problem:

min
w,b

1

2
ε̄‖w‖2 + 1

n

∑

i∈[n]
LR(yi (w

�xi + b)), (33)

where we define ε̄ = ε/‖w(ε)‖. In the following result, we use the notation

g(w, b) := 1

n

∑

i∈[n]
LR(yi (w

�xi + b)),

for the summation term in (32) and (33).

Theorem 3.2 Suppose that for some ε > 0, there exists a local minimizer (w(ε), b(ε))
of (32) with w(ε) �= 0 and a constant τ > 0 such that for all (v, β) ∈ R

d × R

sufficiently small, we have

ε‖w(ε)‖ + g(w(ε), b(ε)) + τ‖v‖2 ≤ ε‖w(ε) + v‖ + g(w(ε) + v, b(ε) + β).

(34)
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Then for ε̄ = ε/‖w(ε)‖, w(ε) is also a strong local minimizer of (33), in the sense
that

1

2
ε̄‖w(ε)‖2 + g(w(ε), b(ε)) + τ

2
‖v‖2 ≤ 1

2
ε̄‖w(ε) + v‖2 + g(w(ε) + v, b(ε) + β),

for all (v, β) sufficiently small.

Proof For simplicity of notation, we denote (w, b) = (w(ε), b(ε)) throughout the
proof.

From a Taylor-series approximation of the term ‖w + v‖, we have

ε‖w‖ + g(w, b) + τ‖v‖2
≤ ε‖w + v‖ + g(w + v, b + β)

=
[
ε‖w‖ + ε

‖w‖wT v + 1

2

ε

‖w‖vT
(
I − wwT

wTw

)
v

]

+ O(‖v‖3) + g(w + v, b + β)

≤
[
ε‖w‖ + ε

‖w‖wT v + 1

2

ε

‖w‖vT v

]
+ O(‖v‖3) + g(w + v, b + β)

= 1

2
ε‖w‖ + 1

2

ε

‖w‖ (w + v)T (w + v) + O(‖v‖3) + g(w + v, b + β).

By rearranging this expression, and taking v small enough that the O(‖v‖3) term is
dominated by (τ/2)‖v‖2, we have

1

2
ε‖w‖ + g(w, b) + τ

2
‖v‖2 ≤ 1

2

ε

‖w‖ (w + v)T (w + v) + g(w + v, b + β).

By substituting ε̄ = ε/‖w‖, we obtain the result. ��
We note that the condition (34) is satisfied when the local minimizer satisfies a

second-order sufficient condition.
To construct a smooth approximation for LR(r) = max{0, 1−r}−max{0,−r}, we

follow Beck and Teboulle [1] and approximate the two max-terms with the softmax
operation: For small σ > 0 and scalars α and β,

max{α, β} ≈ σ log

(
exp

(α

σ

)
+ exp

(
β

σ

))
.

Thus, we can approximate LR(r) by the smooth function ψσ (r), parametrized by
σ > 0 and defined as follows:

ψσ (r) := σ log

(
1 + exp

(
1 − r

σ

))
− σ log

(
1 + exp

(
− r

σ

))

= σ log

(
exp(1/σ) + exp(r/σ)

1 + exp(r/σ)

)
. (35)
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For any r ∈ R, we have that limσ↓0 ψσ (r) = LR(r), so the approximation (35)
becomes increasingly accurate as σ ↓ 0.

By substituting the approximation ψσ in (35) into (33), we obtain

min
w,b

⎧
⎨

⎩
Fε̄,σ (w) := 1

2
ε̄‖w‖2 + 1

n

∑

i∈[n]
ψσ (yi (w

�xi + b))

⎫
⎬

⎭
. (36)

This is a smooth nonlinear optimization problem that is nonconvex becauseψ ′′
σ (r) < 0

for r < 1/2 and ψ ′′
σ (r) > 0 for r > 1/2. It can be minimized by any standard method

for smooth nonconvexoptimization. Stochastic gradient approacheswithminibatching
are best suited to cases in which n is very large. For problems of modest size, methods
based on full gradient evaluations are appropriate, such as nonlinear conjugate gradient
methods (see [39, Chapter 5] or L-BFGS [32]. Subsampled Newton methods (see for
example [9, 55]), in which the gradient is approximated by averaging over a subset of
the n terms in the summation in (36) and the Hessian is approximated over a typically
smaller subset, may also be appropriate. It is well known that these methods are highly
unlikely to converge to saddle points, but they may well converge to local minima of
the nonconvex function that are not global minima. We show in the next section that,
empirically, the global minimum is often found, even for problems involving highly
nonseparable data. In fact, as proved in Sect. 5, under certain (strong) assumptions on
the data, spurious local solutions do not exist.

4 Numerical experiments

We report on computational tests on the linear classification problem described above,
for separable and nonseparable data sets. We observe that on separable data, despite
the nonconvexity of the problem, the the smoothed formulation (36) appears to have
a unique local minimizer, found reliably by standard procedures for smooth nonlinear
optimization, for sufficiently large training set size n. Moreover, the classifier obtained
from the ramp loss formulation is remarkably robust to adversarial perturbations of
the training data: A solution whose classification performance is similar to the original
separating hyperplane is frequently identified even when a large fraction of the labels
from the separable data set are flipped randomly to incorrect values and when the
incorrectly labelled points are moved further away from the decision boundary.

Our results are intended to be “proof of concept" in that they both motivate and
support our analysis in Sect. 5 that the minimizer of the regularized risk minimization
problem (30) is the only point satisfying even first-order conditions, and that the
ramp loss can identify classifiers that are robust to perturbations. Our analysis in
Sect. 5 focuses on separable data sets and spherically symmetric distributions, but we
test here for a non-spherically-symmetric distribution too, and also experiment with
nonseparable data sets, which are discussed only briefly in Sect. 5.
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4.1 Test problems, formulation details, and optimization algorithms

We generate three binary classification problems in which the training data (x, y) ∼
P is such that x ∼ Px , where Px one of three possible distributions over Rd : (1)
N (0, 10I ); (2) N (0, �) where � is a positive definite matrix with random orientation
whose eigenvalues are log-uniformly distributed in [1, 10]; (3) a Laplace distribution
with zero mean and covariance matrix 10I . For each x , we choose the label y =
sign

(
(w∗)�x

)
where the “canonical separating hyperplane” w∗ = (1, 0, 0, . . . , 0),

that is, y is determined by the sign of the first component of x .
We modify this separable data set to obtain nonseparable data sets as follows.

First, we choose a random fraction κ of training points (xi , yi ) to modify. Within this
fraction, we select the points for which the first component (xi )1 of xi is positive,
and “flip” the label yi from +1 to −1. Second, we replace (xi )1 by 2(xi )1 + 1 for
these points i , moving them further from the canonical separating hyperplane. In our
experiments, we set κ to the values .1, .2 and .3. Since the points (xi , yi ) for which
(xi )1 < 0 are not changed, and (xi )1 < 0 with probability 1/2 for Px above, the total
fractions of of training points that are altered by this process are (approximately) .05,
.1 and .15, respectively.

We report on computations with the formulation (36) with σ = .05 and ε̄ = .1,
and various values of n. (The results are not particularly sensitive to the choice of σ ,
except that smaller values yield functions that are less smooth and thus require more
iterations to minimize. The value ε̄ = .1 tends to yield solutions (w, b) for which
‖w‖ = O(1).)

We tried various smooth unconstrained optimization solvers for the resulting
smooth optimization problem— the PR+ version of nonlinear conjugate gradient [39,
Chapter 5], the L-BFGS method [32], and Newton’s method with diagonal damping
— all in conjunction with a line-search procedure that ensures weakWolfe conditions.
These methods behaved in a roughly similar manner and all were effective in finding
minimizers. Our tables report results obtained only with nonlinear conjugate gradient.

4.2 Unique local minimizer

We performed tests on the separable data sets generated frommultiple instances of the
three distributions described above, each frommultiple starting points. Our goal was to
determine which instances appear to have a unique local solution: If the optimization
algorithm converges to the same point from a wide variety of starting points, we take
this observation as empirical evidence that the instance has a single local minimizer,
which is therefore the global minimizer. In particular, for each distribution and several
values of dimension d, we seek the approximate smallest training set size n for which
all instances of that distribution with that dimension appear to have a single local
minimizer. In our experiment, we try d = 5, 10, 20, 40, values of n of the form
100×2i for i = 0, 1, 2, . . . , and 10 different instances generated randomly from each
distribution. We solved (36) for each instance for the hyperplane (w, b), starting from
20 random points on the unit ball in R

d+1. If the same solution is obtained for all 20
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Table 1 Approximate training
set size n for a problem with
dimension d to have a single
(global) minimizer, empirically
determined

Distribution d = 5 d = 10 d = 20 d = 40

N (0, 10I ) 800 1600 1600 6400

N (0, �) 1600 1600 3200 6400

Laplace(0, 10I ) 1600 1600 6400 12,800

starting points, and this event occurs on all 10 instances, we declare the corresponding
value of n to be the value that yields a unique minimizer for this distribution and this
value of d.

The values so obtained are reported inTable 1.Wenote thatn growsonly slowlywith
d, at an approximately linear rate. These results suggest not only that the underlying
loss (33) has a single local minimizer, despite its nonconvexity, but also that this
behavior can be observed for modest training set sizes n in the empirical problem
(36).

4.3 Adversarial robustness

We now explore robustness of classifiers to adversarial perturbations via the nonsep-
arable data. Note that the “flipping” of a point (xi , yi ) described in Sect. 4.1 can be
interpreted as an adversarial perturbation. The motivation behind this is that for a pos-
itively labelled point (xi )1 > 0, we imagine that the “correct” side of the canonical
hyperplane is the negative side (w∗)�xi ≤ 0 (hence we set y = −1) but we perturb
the (xi )1 to the “incorrect” positive side (w∗)�xi ≥ 0. For these experiments we fix
the dimension to the value d = 10 and use n = 10, 000 training points in (36). For
comparison, we also solve a model identical to (36) except that the smoothed ramp-
loss function ψσ is replaced by a smoothed version of the familiar hinge-loss function
LH (r) = max{0, 1 − r}, which is σ log (1 + exp((1 − r)/σ )), where again σ = .05.
(Note that the latter formulation is convex, unlike (36).)

We measure the performance of the classifier (w, b) obtained from (36) for various
values of the flip fraction κ , and the performance of the classifier obtained from the
corresponding empirical hinge-loss objective, in two differentways. For bothmethods,
we generated 20 random instances of the problem from each of the three distributions,
and measure the outcomes using Monte Carlo sampling from ntest = 100, 000 test
points drawn from the original separable distribution P . In the first method, we simply
calculate the fraction of test points that are misclassified by (w, b), and calculate the
mean and standard deviation of this quantity over the 20 instances, for each value of
κ . In the second method, following Sect. 2.2, we measure the adversarial robustness
of a classifier (w, b) via the conditional value-at-risk CVaRρ(d((w, b), (x, y)); P) of

the distance function d((w, b), (x, y)) = max
{
0, y(w�x+b)

‖w‖2
}
according to (10). The

empirical value of CVaRρ is calculated over the ntest = 100, 000 test points. A higher
value of CVaRρ value means more robustness to perturbations, as the distances to
the classifying hyperplane are larger. Each ρ ∈ [0, 1] gives a different risk measure,
where smaller ρ means that we focus more on the lower tail of the distribution of
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Fig. 1 Test error (vertical axis) versus fraction flipped (horizontal axis) for nonseparable data, by distribution
type. Note: test error is averaged over 20 trials, with error bars shown for one standard deviation

d((w, b), (x, y)). We thus compute CVaRρ over a range of values of ρ and compare
the CVaR curves obtained in this way.

Figures1 to 2 plot our results comparing ramp and hinge loss for the three distri-
butions. As we increase the fraction of points flipped, Fig.1 shows that the test error
of hinge loss degrades severely, while the test error of ramp loss is much more stable.
Figure 2 shows that the ramp loss CVaR curve always lies on or above the hinge loss
CVaR curve, with the gap increasing as the fraction of flips increases. These results
provide convincing evidence that the ramp loss leads to more robust classifiers than
the hinge loss.

5 Benign nonconvexity of ramp loss on linearly separable symmetric
data

We consider (33), setting b = 0 for simplicity to obtain

min
w

{
Fε(w) := 1

2
ε‖w‖22 + E(x,y)∼P

[
LR(yw�x)

]}
. (37)

In this section, we explore the question: is the nonconvex problem (37) benign, in the
sense that, for reasonable data sets, descent algorithms for smooth nonlinear optimiza-
tion will find the global minimum? In the formulation (37), we make use of the true
distribution P rather than its empirical approximation Pn , because results obtained
for P will carry through to Pn for large n, with high probability. Exploring this ques-
tion for general data distributions is difficult, so we examine spherically symmetric
distributions.

Definition 5.1 Let � be a distribution on Rd . We say that � is spherically symmetric
about 0 if, for all measurable sets A ⊂ R

d and all orthogonal matrices H ∈ R
d×d ,

we have

Px∼�[x ∈ A] = Px∼�[Hx ∈ A].
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(a)

(b)

(c)

Fig. 2 CVaRρ(d((w, b), (x, y)); P) (vertical axis) versus ρ (horizontal axis) on nonseparable data, by
distribution type and fraction flipped. Note: CVaRρ is averaged over 20 trials

Spherically symmetric distributions include normal distributions and Student’s t-
distributions with covariances σ 2 I . One useful characterization is that x = r · s
where r is a random variable on R+ and s is a uniform random variable on the unit
sphere {s ∈ R

d : ‖s‖2 = 1}, with r and s independent.
We make the following assumption on the data-generating distribution

Assumption 5.1 Thedistribution P has the form y = sign((w∗)�x) and x ∼ Px where
Px is some spherically symmetric distribution about 0 on R

d which is absolutely
continuous with respect to Lebesgue measure on R

d (so the probability of lower-
dimensional sets is 0) and w∗ is some unit Euclidean norm vector in Rd .

Under this assumption,wewill show that Fε defined in (37) has a single localminimizer
w(ε) in the direction of the canonical hyperplane w∗: w(ε) = αw∗ for some α > 0.
Since the function is also bounded below (by zero) and coercive, this local minimizer
is the global minimizer.

We now investigate differentiability properties of the objective Fε .

Lemma 5.1 When w �= 0, the function Fε(w) is differentiable in w with gradient

∇Fε(w) = εw − E(x,y)∼P

[
1
(
0 ≤ yw�x ≤ 1

)
yx

]
.
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At w = 0, the directional derivative of Fε in the direction w∗ is F ′
ε(0;w∗) ≤

−Ex∼Px [|(w∗)�x |] < 0.

Proof We appeal to [19, Theorem 2.7.2] which shows how to compute the gen-
eralized gradient of a function defined via expectations. We note that for every
(x, y), w �→ LR(yw�x) is a regular function since it is a difference of two con-
vex functions, and is differentiable everywhere except when yw�x ∈ {0, 1}, with
gradient −1(0 < yw�x < 1)yx . When w �= 0, the set of (x, y) ∼ P such
that yw�x ∈ {0, 1} is a measure-zero set under Assumption 5.1, so [19, Theorem
2.7.2] states that the generalized gradient of E(x,y)∼P [LR(yw�x)] is the singleton
set

{−E(x,y)∼P
[
1
(
0 < yw�x < 1

)
yx

]}
. As it is a singleton, this coincides with

the gradient at w. Furthermore, we can write E(x,y)∼P
[
1
(
0 < yw�x < 1

)
yx

] =
E(x,y)∼P

[
1
(
0 ≤ yw�x ≤ 1

)
yx

]
since yw�x ∈ {0, 1} is a set of measure 0 by

Assumption 5.1. This proves the first claim.
For the final claim, note first that the gradient of the regularization term 1

2ε‖w‖22 is
zero at w = 0. Thus we need consider only the LR term in applying the definition of
directional derivative to (37). For the direction w∗, we have

F ′
ε(0;w∗) = lim

α↓0
1

α

(
E(x,y)∼P [LR(y(α(w∗)�x))] − E(x,y)∼P [LR(0)]

)

= lim
α↓0

1

α

(
Ex∼Px [LR(α|(w∗)�x |)] − 1

)

= lim
α↓0

1

α

(
Ex∼Px

[
(1 − α|(w∗)�x |) · 1(0 ≤ α|(w∗)�x | ≤ 1)

]
− 1

)

= lim
α↓0

1

α

(
Px∼Px [0 ≤ α|(w∗)�x | ≤ 1] − 1

)

− lim
α↓0 Ex∼Px

[
|(w∗)�x | · 1(0 ≤ α|(w∗)�x | ≤ 1)

]
.

Now observe that gα(x) := |(w∗)�x |1(0 ≤ α|(w∗)�x | ≤ 1)monotonically increases
pointwise to g(x) = |(w∗)�x | as α ↓ 0, therefore by the monotone convergence
theorem limα↓0 Ex∼Px [|(w∗)�x |1(0 ≤ α|(w∗)�x | ≤ 1)] = Ex∼Px [|(w∗)�x |]. Fur-
thermore, limα↓0 1

α

(
Px∼Px [0 ≤ α|(w∗)�x | ≤ 1] − 1

) ≤ 0. Therefore

F ′
ε(0;w∗) ≤ −Ex∼Px [|(w∗)�x |] < 0.

��
Lemma 5.1 shows that w = 0 is not a local minimum of Fε , hence any reason-

able descent algorithm will not converge to it. We now investigate stationary points
∇Fε(w) = 0 for w �= 0 under Assumption 5.1. To this end, we will use the following
properties of spherically symmetric distributions.

Lemma 5.2 ([24, Corollary 4.3], [40, Theorem C.3]) Let x ∼ Px be a spherically
symmetric distribution on R

d about 0. Decompose x = (x1, x2) where x1 ∈ R
p and
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x2 ∈ R
d−p, with 1 ≤ p ≤ d − 1. The marginal distribution of x1 and the conditional

distribution x1 | x2 are spherically symmetric on Rp about 0.

Lemma 5.3 Let P be a spherically symmetric distribution onRd absolutely continuous
with respect to Lebesgue measure onRd (i.e., it is a nondegenerate distribution which
has zero measure on any lower-dimensional set). Consider a closed full-dimensional
unbounded polyhedron A that contains the origin. Then Px∼Px [x ∈ A] > 0.

Proof Consider the disjoint union

A =
⋃

k∈N
Ak, where Ak = {x ∈ A : k − 1 ≤ ‖x‖2 < k} .

By our assumptions on A, each Ak is non-empty and full-dimensional. Note that
Px∼Px [x ∈ Ak] ≤ Px∼Px [x ∈ A] ≤ ∑

k′∈N Px∼Px [x ∈ Ak′ ] for every k ∈ N. Note
that whenever Px∼Px [x ∈ Ak] = 0, we must also have Px∼Px [k − 1 ≤ ‖x‖2 <

k] = 0 also, since we can cover {x : k − 1 ≤ ‖x‖2 < k} with finitely many rotated
copies of Ak , since it is full-dimensional, and each of these has identical measure by
spherical symmetry of P . Now, if all Px∼Px [x ∈ Ak] = 0, then Px∼Px [x ∈ R

d ] =∑
k∈N Px∼Px [k−1 ≤ ‖x‖2 < k] = 0 which is a contradiction. This implies that there

is at least one Px∼Px [x ∈ Ak] > 0, hence Px∼Px [x ∈ A] > 0. ��
We also use this general property of distributions, which we present without proof.
Given a set A ⊆ R

d , let Conv(A) and Cone(A) be the convex and conic hull respec-
tively.

Lemma 5.4 Let Px be a distribution over R
d . For any measurable set A ⊆ R

d ,
Ex∼Px [1(x ∈ A)x] = Px∼Px [x ∈ A]a ∈ Cone(A) for some a ∈ Conv(A).

We first prove that when d = 2, points which are not positive multiples of w∗
cannot be stationary points. We will then show how the proof for general d essentially
reduces to this setting. Since d = 2, we will write w = (w1, w2) and x = (x1, x2).

Theorem 5.5 Consider d = 2 and suppose Assumption 5.1 holds. For each vector
w �= (0, 0) that is not a positive multiple of w∗, we have ∇Fε(w) �= (0, 0).

Proof From the expression for ∇Fε(w) in Lemma 5.1, the result will be proved if we
can show that

E(x,y)∼P

[
1(0 ≤ yw�x ≤ 1)yx

]

= Ex∼Px

[
1(0 ≤ sign((w∗)T x)w�x ≤ 1) sign((w∗)T x)x

] (38)

is not a positivemultiple ofwwheneverw is not a positivemultiple ofw∗. Observe that
the “good” region {x : 0 ≤ sign((w∗)�x)w�x ≤ 1} is the union of two almost disjoint
polyhedra {x : (w∗)�x ≥ 0, 0 ≤ w�x ≤ 1} ∪ {x : (w∗)�x ≤ 0,−1 ≤ w�x ≤ 0}.
Define

R :=
{
x : (w∗)�x ≥ 0, 0 ≤ w�x ≤ 1

}
.
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Since {x : (w∗)�x ≤ 0,−1 ≤ w�x ≤ 0} = {−x : x ∈ R} can be obtained by an
orthogonal transformation ofR, we have by spherical symmetry of Px that

Ex∼Px

[
1(0 ≤ sign((w∗)�x)w�x ≤ 1) sign((w∗)�x)x

]

= Ex∼Px

[
1(0 ≤ w�x ≤ 1, (w∗)�x ≥ 0)x

]

− Ex∼Px

[
1(−1 ≤ w�x ≤ 0, (w∗)�x ≤ 0)x

]

= Ex∼Px

[
1(0 ≤ w�x ≤ 1, (w∗)�x ≥ 0)x

]

+ Ex∼Px

[
1(0 ≤ w�(−x) ≤ 1, (w∗)�(−x) ≥ 0)(−x)

]

= Ex∼Px [1(x ∈ R)x] + Ex∼Px [1(−x ∈ R)(−x)] = 2Ex∼Px [1(x ∈ R)x] .

Therefore we need to show that Ex∼Px [1(x ∈ R)x] is not a positive multiple of w

wheneverw is not a positive multiple ofw∗. Since Px is spherically symmetric, we can
without loss of generality change the basis so that w∗ = (1, 0), so that y = sign(x1)
and R = {

x : x1 ≥ 0, 0 ≤ w�x ≤ 1
}
.

Notice that sign(x1)x = (|x1|, sign(x1)x2), so that

Ex∼Px

[
1(0 ≤ sign(x1)w

�x ≤ 1) sign(x1)x
]

has a non-negative first component. Therefore, whenever w1 < 0, (38) cannot be a
positive multiple of w.

Consider now the case of w1 = 0. Since we have already dealt with the case
w = (0, 0) in Lemma 5.1, and are excluding it from consideration here, we must have
w2 �= 0. Then

R =
{
x : x1 ≥ 0, 0 ≤ w�x ≤ 1

}
=

{
{x : x1 ≥ 0, 0 ≤ x2 ≤ 1/|w2|} , w2 > 0,

{x : x1 ≥ 0,−1/|w2| ≤ x2 ≤ 0} , w2 < 0,

For either sign ofw2, since Px is spherically symmetric and absolutely continous with
respect to Lebesgue measure and R is full-dimensional, unbounded, and contains
the origin, by Lemma 5.3, Px∼Px [x ∈ R] > 0. Additionally, by Assumption 5.1,
Px∼Px [x1 = 0, x ∈ R] = 0, so that

Px∼Px [x1 > 0, x ∈ R] > 0.

Therefore Ex∼Px [1(x ∈ R)x1] > 0, hence Ex∼Px [1(x ∈ R)x] is not a multiple of
w = (0, w2).

We now consider w1 > 0 and without loss of generality w2 > 0. (When w2 < 0,
an analogous R can be obtained via a reflection across the x1-axis; See Fig.3 for an
illustration.)
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Fig. 3 Illustration of R when w1 > 0 for w2 > 0 (left) and w2 < 0 (right). Note that the two regions are
reflections of one another across the x1-axis (dashed line) when the sign of w2 flips

We define the lines R1, R2, R3 which boundR, and S = Span({w}) which we will
use in our analysis:

R1 = {x : (w∗)�x = 0} = {x : x1 = 0}
R2 = {x : w�x = 0}
R3 = {x : w�x = 1}
S = {tw : t ∈ R} .

Note that S is orthogonal to R2 and R3. We consider the following decomposition of
R:

T = (closed) triangle bounded byR1,R3 and S

T ′ = reflection ofT acrossS

R′ = R \ (T ∪ T ′).

This decomposition is illustrated in Fig. 4.
We will now show the following three facts.

1. We show that T ′ ⊂ R, so that in fact R′ ∪ T ∪ T ′ = R. To see that T ′ ⊂ R,
we will show that its three extreme points are in R. These correspond exactly to
the three extreme points of T , namely p1 = R1 ∩ S = (0, 0), p2 = R1 ∩ R3 and
p3 = S ∩ R3. Clearly the reflection of p1 and p3 are themselves since they are
already on S. For p2 = R1 ∩ R3, we know its reflection p′

2 is in R3 since R3 is
orthogonal to S. We check that the first coordinate of p′

2 is nonnegative in order
to deduce that it is in R. In fact this claim follows from the fact that p3 = tw for
some t > 0, from w1 > 0, and from the explicit formula p′

2 = p3 + (p3 − p2),
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Fig. 4 Decomposition of R into
different regions

which tells that the first component of p′
2 is 2tw1. Since this value is nonnegative,

we are done.
2. Ex∼Px

[
1(x ∈ T ∪ T ′)x

] ∈ S. The distribution Px is symmetric across S since
a reflection across a line through the origin is an orthogonal transformation. By
construction, T ∪ T ′ is symmetric across S, hence Ex∼Px

[
1(x ∈ T ∪ T ′)x

] ∈ S.
3. We shownow thatEx∼Px

[
1(x ∈ R′)x

]
/∈ S. Since Px is spherically symmetric and

absolutely continous with respect to Lebesguemeasure andR′ is full-dimensional,
unbounded, and its closure cl(R′) contains the origin, by Lemma 5.3 we have
0 < Px∼Px [x ∈ cl(R′)] = Px∼Px [x ∈ R′], where the equality follows by absolute
continuity of Px (Assumption 5.1). Also, since (0, 0) ∈ T ∪ T ′, it is not in
R′ (but it is an extreme point). Therefore (0, 0) /∈ Conv(R′). By Lemma 5.4,
Ex∼Px

[
1(x ∈ R′)x

] = Px∼Px [x ∈ R′]a �= (0, 0) where a ∈ Conv(R′). Finally,
since T was defined as a triangle with one side on S, we clearly haveR∩ S ⊂ T .
Clearly, S cannot intersect any part ofR′, hence S ∩Cone(R′) = {(0, 0)}, so that
Ex∼Px

[
1(x ∈ R′)x

]
/∈ S.

Since we have

Ex∼Px [1(x ∈ R)x] = Ex∼Px

[
1(x ∈ T ∪ T ′)x

] + Ex∼Px

[
1(x ∈ R′)x

]
,

where the second fact shows that the first vector on the right-hand side is in S while the
third fact shows that the second vector on the right-hand side is not in S, we conclude
that Ex∼Px [1(x ∈ R)x] /∈ S, as required. ��

We now prove the claim about uniqueness and form of the global minimizer for the
case of general dimension d.
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Theorem 5.6 For arbitrary dimension d, suppose Assumption 5.1 holds. Then for
w �= 0, ∇Fε(w) �= 0 whenever w is not a positive multiple of w∗. Furthermore, a
unique stationary point w(ε) = α(ε)w∗ exists for a unique α(ε) > 0.

Proof Since Px is spherically symmetric, without loss of generality, consider w∗ =
(1, 0, . . . , 0). Since yx1 = sign(x1)x1 = |x1|, we cannot have w = −αw∗ for α > 0
be a stationary point, because

∇x1Fε(−αw∗) = −εα − E(x,y)∼P

[
1(0 ≤ yw�x ≤ 1)yx1

]

= −εα − Ex∼Px [1(0 ≤ −α|x1| ≤ 1)|x1|] ≤ −εα < 0.

Now consider w �= 0 that is not a multiple of w∗. Consider the two-dimensional
plane in R

d spanned by w and w∗. Change the basis if necessary so that w =
(w1, w2, 0, . . . , 0) (this is without loss of generality as Px is symmetric hence invari-
ant to orthogonal transformations). With this change of basis, the first two entries of
E(x,y)∼P

[
1(0 ≤ yw�x ≤ 1)yx

]
are determined fully by what happens on the (x1, x2)

coordinates. More formally, we can without loss of generality consider the marginal
distribution Px (x1, x2) onR2 obtained by integrating out x3, . . . , xd (this is spherically
symmetric by Lemma 5.2). Then Theorem 5.5 applies to prove our first claim.

Finally, consider w = αw∗ = (α, 0, . . . , 0) for α > 0. Then the components of

E(x,y)∼P

[
1(0 ≤ yw�x ≤ 1)yx

]

are, for j ∈ [d],

E(x,y)∼P

[
1(0 ≤ yw�x ≤ 1)yx j

]
= Ex∼Px

[
1(0 ≤ |x1| ≤ 1/α) sign(x1)x j

]
.

By Lemma 5.2 the conditional distribution Px (x j | x1) is still spherically symmetric
about 0 for j ≥ 2, therefore Ex∼Px

[
1(0 ≤ |x1| ≤ 1/α) sign(x1)x j | x1

] = 1(0 ≤
|x1| ≤ 1/α) sign(x1)Ex∼Px

[
x j | x1

] = 0 for any x1. Consequently, for j ≥ 2, we
have

Ex∼Px

[
1(0 ≤ |x1| ≤ 1/α) sign(x1)x j

] = 0.

Now consider j = 1. Then first component of E(x,y)∼P
[
1(0 ≤ yw�x ≤ 1)yx

]
is

g(α) := Ex∼Px [1(0 ≤ |x1| ≤ 1/α)|x1|] .

Consequently, by Lemma 5.1 the first component of the gradient is

∇x1Fε(αw∗) = εα − g(α).

Since Px is absolutely continuous with respect to Lebesgue measure, g must be con-
tinuous. Also, we have limα→∞ g(α) = 0 and limα↓0 g(α) = Ex∼Px [|x1|] > 0.
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Furthermore, g is non-increasing by definition. We conclude that there must exist a
unique α(ε) > 0 for which εα(ε) = g(α(ε)), and w(ε) = α(ε)w∗ is the unique
stationary point. ��

Label Flipping. Our experiments in Sect. 4 showed that solutions of the problems
analyzed in this section showed remarkable resilience to “flipping” of the labels y
on a number of samples. To give some insight into this phenomenon, suppose that
y = δ sign((w∗)�x) where δ ∈ {±1} is a random variable independent of (x, y), and
δ = +1 (resp.−1) with probability p (resp. 1− p). Then some simple transformations
give

E(x,y)∼P

[
LR(yw�x)

]
= p · Ex∼Px

[
LR(sign((w∗)�x)w�x)

]

+ (1 − p) · Ex∼Px

[
LR(− sign((w∗)�x)w�x)

]

= p · Ex∼Px

[
LR(sign((w∗)�x)w�x)

]

+ (1 − p) · Ex∼Px

[
LR(sign((−w∗)�(−x))w�(−x))

]

= p · Ex∼Px

[
LR(sign((w∗)�x)w�x)

]

+ (1 − p) · Ex∼Px

[
LR(sign((−w∗)�x)w�x)

]

where the last equality uses the fact that x and −x have the same distribution as Px
is spherically symmetric. We see that in the noisy label setting, the objective Fε is a
combination of two noise-free objectives

Fε(w) = p ·
(
ε‖w‖22 + Ex∼Px

[
LR(sign((w∗)�x)w�x)

])

+ (1 − p) ·
(
ε‖w‖22 + Ex∼Px

[
LR(sign((−w∗)�x)w�x)

])
,

one where labels are y = sign((w∗)�x) with weight p, and the other where labels
are y = sign((−w∗)�x) generated by the opposite hyperplane. When p > 1 − p,
more weight is dedicated to the w∗-generated points, hence the solution to (37) is w∗,
and vice versa. This informal analysis explains to a large extent the results reported in
Sect. 4.3.
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