
Mathematical Programming (2023) 197:529–547
https://doi.org/10.1007/s10107-022-01777-9

FULL LENGTH PAPER

Series B

Approximating the discrete time-cost tradeoff problem
with bounded depth

Siad Daboul1 · Stephan Held1 · Jens Vygen1

Received: 20 April 2021 / Accepted: 17 January 2022 / Published online: 11 February 2022
© The Author(s) 2022

Abstract
We revisit the deadline version of the discrete time-cost tradeoff problem for the
special case of bounded depth. Such instances occur for example in VLSI design. The
depth of an instance is the number of jobs in a longest chain and is denoted by d. We
prove new upper and lower bounds on the approximability. First we observe that the
problem can be regarded as a special case of finding aminimum-weight vertex cover in
ad-partite hypergraph.Next,we study the natural LP relaxation,which can be solved in
polynomial time for fixed d and—for time-cost tradeoff instances—up to an arbitrarily
small error in general. ImprovingonpriorworkofLovász andofAharoni,Holzmanand
Krivelevich, we describe a deterministic algorithm with approximation ratio slightly
less than d

2 for minimum-weight vertex cover in d-partite hypergraphs for fixed d and
given d-partition. This is tight and yields also a d

2 -approximation algorithm for general
time-cost tradeoff instances, even if d is not fixed.We also study the inapproximability
and show that no better approximation ratio than d+2

4 is possible, assuming the Unique
Games Conjecture and P �= NP. This strengthens a result of Svensson [21], who
showed that under the same assumptions no constant-factor approximation algorithm
exists for general time-cost tradeoff instances (of unbounded depth). Previously, only
APX-hardness was known for bounded depth.

Mathematics Subject Classification 90C27 · 68W25 · 05C65

B Stephan Held
held@dm.uni-bonn.de

Siad Daboul
daboul@dm.uni-bonn.de

Jens Vygen
vygen@dm.uni-bonn.de

1 Research Institute for Discrete Mathematics and Hausdorff Center for Mathematics, University of
Bonn, Bonn, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-022-01777-9&domain=pdf
http://orcid.org/0000-0003-2188-1559

530 S. Daboul et al.

1 Introduction

The (deadline version of the discrete) time-cost tradeoff problemwas introduced in the
context of project planning and schedulingmore than 60 years ago [16]. An instance of
the time-cost tradeoff problem consists of a finite set V of jobs, a partial order (V ,≺),
a deadline T > 0, and for every job v a finite nonempty set Sv ⊆ R

2≥0 of time/cost
pairs. An element (t, c) ∈ Sv corresponds to a possible choice of performing job v

with delay t and cost c. The task is to choose a pair (tv, cv) ∈ Sv for each v ∈ V such
that

∑
v∈P tv ≤ T for every chain P (equivalently: the jobs can be scheduled within

a time interval of length T , respecting the precedence constraints), and the goal is to
minimize

∑
v∈V cv .

The partial order can be described by an acyclic digraph G = (V , E), where
(v,w) ∈ E if and only if v ≺ w. Every chain of jobs corresponds to a path in G, and
vice versa.

De et al. [6] proved that this problem is strongly NP-hard. Indeed, there is an
approximation-preserving reduction from vertex cover [11], which implies that, unless
P = NP, there is no 1.3606-approximation algorithm [8].Assuming theUniqueGames
Conjecture and P �= NP, Svensson [21] could show that no constant-factor approxi-
mation algorithm exists.

Even though the time-cost tradeoff problem has been extensively studied due to
its numerous practical applications, only few positive results about approximation
algorithms are known. Skutella [20] described an algorithm that works if all delays
are natural numbers in the range {0, . . . , l} and returns an l-approximation. If one is
willing to relax the deadline, one can use Skutella’s bicriteria approximation algorithm
[20]. For a fixed parameter 0 < μ < 1, it computes a solution in polynomial time
such that the optimum cost is exceeded by a factor of at most 1

1−μ
and the deadline T

is exceeded by a factor of at most 1
μ
. Unfortunately, for many applications, including

VLSI design, relaxing the deadline is out of the question.
The instances of the time-cost tradeoff problem that arise in the context of VLSI

design usually have a constant upper bound d on the number of jobs in any chain [5].
In these instances the jobs correspond to gates in a Boolean circuit. Gate delays can
be accelerated by choosing a smaller threshold voltage, at the cost of a higher power
consumption. These instances have bounded depth due to a given target frequency of
the chip, which can only be achieved if the logic depth is bounded. For this important
special case, we will describe better approximation algorithms.

The special case d = 2 reduces to weighted bipartite matching and can thus be
solved optimally in polynomial time. However, already the case d = 3 is strongly
NP-hard [6]. The case d = 3 is even APX-hard, because Deı̌neko and Woeginger
[7] devised an approximation-preserving reduction from vertex cover in cubic graphs
(which is known to be APX-hard [2]).

On the other hand, it is easy to obtain a d-approximation algorithm: either by
applying the Bar-Yehuda–Even algorithm for set covering [3, 5] or (for fixed d) by
simple LP rounding; see the end of Sect. 3.

As we will observe in Sect. 3, the time-cost tradeoff problem with depth d can
be viewed as a special case of finding a minimum-weight vertex cover in a d-partite

123

Approximating the discrete time-cost tradeoff problem… 531

hypergraph. Lovász [19] studied the unweighted case and proved that the natural LP
has integrality gap d

2 . Aharoni et al. [1] showed this ratio for more general unweighted
hypergraphs1 by randomly rounding a given LP solution. Guruswami et al. [13] proved
that approximating the vertex cover problem in d-partite hypergraphs with a better
ratio than d

2 − 1 + 1
2d is NP-hard, and better than d

2 is NP-hard if the Unique Games
Conjecture holds.

2 Results and outline

In this paper, we first reduce the time-cost tradeoff problem with depth d to finding a
minimum-weight vertex cover in a d-partite hypergraph. Then we simplify and deran-
domize the LP rounding algorithm of Lovász [19] and Aharoni et al. [1] and show
that it works for general nonnegative weights. This yields a simple deterministic d

2 -
approximation algorithm for minimum-weight vertex cover in d-partite hypergraphs
for a given d-partition and a given LP solution. This implies a d

2 -approximation algo-
rithm for the time-cost tradeoff problem if d is bounded by a constant, in particular if
d ≤ 4. For general d, we develop a slightly stronger bound for rounding the LP solu-
tion, making up for the fact that the vertex cover LP can only be solved approximately
unless d is fixed. This will imply our first main result:

Theorem 1 There is a polynomial-time d
2 -approximation algorithm for the time-cost

tradeoff problem, where d denotes the depth of the instance.

The algorithm is based on rounding an approximate solution to the vertex cover LP.
The basic idea is quite simple: we partition the jobs into levels and carefully choose
an individual threshold for every level, then we accelerate all jobs for which the LP
solution is above the threshold of its level. For d ≥ 5 we get a solution that costs at
most (1 − �(1n)) d2 times the LP value, which is essentially best possible since the
integrality gap tends to d

2 as n → ∞; see [1] and Sect. 3. The small improvement over
our simple d

2 rounding algorithm compensates for solving the LP only approximately.
The results by [13] suggest that this approximation guarantee is essentially best

possible for general instances of the vertex cover problem in d-partite hypergraphs.
Still, better algorithms might exist for special cases such as the time-cost tradeoff
problem. However, we show that much better approximation algorithms are unlikely
to exist even for time-cost tradeoff instances. More precisely, we prove:

Theorem 2 Let d ∈ N with d ≥ 2 and ρ < d+2
4 be constants. Assuming the Unique

Games Conjecture and P �= NP, there is no polynomial-time ρ-approximation algo-
rithm for time-cost tradeoff instances with depth d.

This gives strong evidence that our approximation algorithm is best possible up to
a factor of 2. To obtain our inapproximability result, we leverage Svensson’s theorem
on the hardness of vertex deletion to destroy long paths in an acyclic digraph [21] and
strengthen it to instances of bounded depth by a novel compression technique.

1 They assume a partition {V1, . . . , Vk } of the vertex set and integers p1, . . . , pk with
∑k

i=1 pi = d such
that every hyperedge contains at most pi vertices of Vi for i = 1, . . . , k.

123

532 S. Daboul et al.

Section 3 introduces the vertex cover LP and explains why the time-cost tradeoff
problem with depth d can be viewed as a special case of finding a minimum-weight
vertex cover in a d-partite hypergraph. In Sect. 4 we describe our approximation
algorithm, which rounds a solution to this LP. Then, in Sects. 5 and 6 we prove our
inapproximability result.

3 The vertex cover LP

Let us define the depth of an instance of the time-cost tradeoff problem to be the
number of jobs in the longest chain in (V ,≺), or equivalently the number of vertices
in the longest path in the associated acyclic digraph G = (V , E). We write n = |V |,
and the depth will be denoted by d throughout this paper.

First, we note that one can restrict attention to instances with a simple structure,
where every job has only two alternatives and the task is to decide which jobs to
accelerate. This has been observed already by Skutella [20]. The following definition
describes the structure that we will work with.

Definition 3 An instance I of the time-cost tradeoff problem is called normalized if
for each job v ∈ V the set of time/cost pairs is of the form Sv = {(0, c), (t, 0)} for
some c, t ∈ R+ ∪ {∞}.

In a normalized instance, every job has only two possible ways of being executed.
The slow execution is free and the fast execution has a delay of zero. Therefore, the
time-cost tradeoff problem is equivalent to finding a subset F ⊆ V of jobs that are to
be executed fast. The objective is to minimize the total cost of jobs in F . Note that for
notational convenience we allow one of the alternatives to have infinite delay or cost,
but of course such an alternative can never be chosen in a feasible solution of finite
cost, and it could be as well excluded.

We call two instances I and I ′ of the time-cost tradeoff problem equivalent if any
feasible solution to I can be transformed in polynomial time to a feasible solution to
I ′ with the same cost and vice-versa. We include a proof of Skutella’s observation for
sake of completeness.

Proposition 4 (Skutella [20]) For any instance I of the time-cost tradeoff problem one
can construct an equivalent normalized instance I ′ of the same depth in polynomial
time.

Proof Let v be a job of instance I with Sv = {(t1, c1), . . . , (tr , cr)}. By sorting and
removing dominated pairs, we may assume t1 < . . . < tr and c1 > . . . > cr .

To construct I ′, we replace v by r + 1 copies v0, v1, . . . , vr of v, each with the
same predecessors and successors as v. We define Svi := {(0, ci − ci+1), (ti+1, 0)},
where c0 := ∞, cr+1 := 0, and tr+1 := ∞.

As the slow alternatives of the copies vi have increasing delay in i , an optimum
solution always sets consecutive jobs v j , v j+1, . . . vr to the fast solution. As the last
slow solution has infinite delay and the first one has infinite cost, 1 ≤ j ≤ r . Then the
total cost at v is given by

∑r
i= j (ci − ci+1) = c j − cr+1 = c j . As accelerated jobs

have delay 0, the longest path through a copy of v is determined by v j−1, which has
delay t j .

123

Approximating the discrete time-cost tradeoff problem… 533

Note that it is easy to convert the corresponding solutions of both instances into
each other in polynomial time. �

The structure of only allowing two execution times per job gives rise to a useful
property, as we will now see. As noted above, for a normalized instance I the solutions
correspond to subsets of jobs F ⊆ V to be accelerated. Consider the clutter C of
inclusion-wise minimal feasible solutions to I . Denote by B = bl(C) the blocker of
C, i.e., the clutter over the same ground set V whose members are minimal subsets of
jobs that have nonempty intersection with every element of C.

Let T > 0 be the deadline of our normalized time-cost tradeoff instance. Further-
more, let tv denote the slow delay of executing job v ∈ V and cv denote the cost of
accelerating it to delay 0. By the properties of a normalized instance, the elements
of B are the minimal chains P ⊆ V with

∑
v∈P tv > T . The well-known fact that

bl(bl(C)) = C [9, 14] immediately implies the next proposition, which also follows
from an elementary calculation.

Proposition 5 A set F ⊆ V is a feasible solution to a normalized instance I of the
time-cost tradeoff problem if and only if P ∩ F �= ∅ for all P ∈ B. �

Therefore, our problem is to find a minimum-weight vertex cover in the hypergraph
(V ,B). If our time-cost tradeoff instance has depth d, this hypergraph is d-partite2

and a d-partition can be computed easily:

Proposition 6 Given a time-cost tradeoff instance with depth d, we can partition the
set of jobs in polynomial time into sets V1, . . . , Vd (called layers) such that v ≺ w

implies that v ∈ Vi and w ∈ Vj for some i < j . Then, |P ∩ Vi | ≤ 1 for all P ∈ B
and i = 1, . . . , d.

Proof Such a partition can be found by constructing the acyclic digraph G = (V , E)

with (v,w) ∈ E if and only if v ≺ w and setting Vi := {v ∈ V : l(v) = i}, where
l(v) denotes the maximum number of vertices in any path in G that ends in v. �

This also leads to a simple description as an integer linear program. The feasible
solutions correspond to the vectors x ∈ {0, 1}V with

∑
v∈P xv ≥ 1 for all P ∈ B. We

consider the following linear programming relaxation, which we call the vertex cover
LP:

minimize:
∑

v∈V
cv · xv

subject to:
∑

v∈P

xv ≥ 1 for all P ∈ B

xv ≥ 0 for all v ∈ V . (1)

Let LP denote the value of this linear program (for a given instance). Unless P=NP,
one cannot solve this linear program exactly in polynomial time:

2 A hypergraph (V ,B) is d-partite if there exists a partition V = V1∪̇V2 . . . ∪̇Vd such that |P ∩ Vi | ≤ 1
for all P ∈ B and i ∈ {1, . . . , d}. We call {V1, . . . , Vd } a d-partition. We do not require the hypergraph to
be d-uniform.

123

534 S. Daboul et al.

Proposition 7 If the vertex cover LP (1) can be solved in polynomial time for normal-
ized time-cost tradeoff instances, then P = NP.

Proof By the equivalence of optimization and separation [12], it suffices to show that
the separation problem is NP-hard. In fact, we show that deciding whether a given
vector x is infeasible for a given instance is NP-complete. To this end, we transform the
Partition problem, which is well known to beNP-complete: given a list a1, . . . , an of
positive integers, is there a subset I ⊆ {1, . . . , n} with ∑

i∈I ai = ∑
i /∈I ai? Given an

instance a1, . . . , an of Partition, construct a normalized time-cost tradeoff instance
with n jobs vi (i = 1, . . . , n), where vi ≺ vi ′ whenever i < i ′. The fast execution time
is 0 for all jobs, and the slow execution time is ai for vi . The deadline is T := A−1

2 ,

where A = ∑n
i=1 ai . Let xvi := 2ai

A+1 . Then x is a feasible solution to the LP if and
only if for all subsets I ⊆ {1, . . . , n} ∑

i∈I ai ≤ T or
∑

i∈I xvi ≥ 1, which means
∑

i∈I ai ≤ A−1
2 or

∑
i∈I ai ≥ A+1

2 , or equivalently
∑

i∈I ai �= A
2 . �

However, we can solve the LP up to an arbitrarily small error; in fact, there is a
fully polynomial approximation scheme (as essentially shown by [15]):

Proposition 8 For normalized instances of the time-cost tradeoff problemwhose depth
is bounded by a constant, the vertex cover LP (1) can be solved in polynomial time.
For general normalized instances and any given ε > 0, a feasible solution of cost at
most (1 + ε)LP can be found in time bounded by a polynomial in n and 1

ε
.

Proof If the depth is bounded by a constant d, the number of constraints is bounded
by the polynomial nd , so the first statement follows from any polynomial-time linear
programming algorithm.

Otherwise, we solve the LP up to a factor 1+ ε for any given 0 < ε ≤ 1 as follows.
Implement an approximate separation oracle by first rounding up the components of
a given vector x to integer multiples of ε

2d and then applying dynamic programming

(similar to the knapsack problem) to checkwhether
∑

v∈P
ε
2d � 2dxv

ε
� ≥ 1 for all P ∈ B.

If not, the oracle returns the violated constraint
∑

v∈P xv ≥ 1. This oracle requires

O(dn
2

ε
) time.

Run the ellipsoid method with this oracle. It computes an optimum solution x to a
relaxed linear program that contains only the constraints returned by the approximate
separation oracle. Hence x has cost at most LP. Moreover, (1 + ε)x is a feasible
solution to the original LP (1) because for every P ∈ B we have ε

2 + ∑
v∈P xv ≥

∑
v∈P

(
xv + ε

2d

) ≥ 1, implying (1 + ε)
∑

v∈P xv ≥ (1 + ε)(1 − ε
2) ≥ 1. �

We remark that the d-partite hypergraph vertex cover instances given by [1] can be
also considered as normalized instances of the time-cost tradeoff problem; see Fig. 1.
This shows that the integrality gap of LP (1) is at least d

2 .
Since |P| ≤ d for all P ∈ B, the Bar-Yehuda–Even algorithm [3] can be used to

find an integral solution to the time-cost tradeoff instance of cost at most d · LP, and
can be implemented to run in polynomial time because for integral vectors x there is a
linear-time separation oracle [5]. A d-approximation can also be obtained by rounding
up all xv ≥ 1

d .

123

Approximating the discrete time-cost tradeoff problem… 535

...

...

...

(1, k) (2, k) (3, k)

(3, 1)(2, 1)(1, 1)

(1, 0) (2, 0) (3, 0)

Fig. 1 For d = 3, the figure shows an instance of the d-partite hypergraph vertex cover problem given by
[1], which can also be interpreted as a normalized instance of the time-cost tradeoff problem. We have a
set V = {(i, j) | i = 1, . . . , d, j = 0, . . . , k} of n = d(k + 1) jobs for some k ∈ N, with (i, j) ≺ (i ′, j ′)
whenever i < i ′. The deadline is given by T = dk

2 . The slow variant of job (i, j) has delay j without any
cost. By paying a cost of 1 the delay drops to 0. The above figure illustrates this for d = 3. One can easily

verify that assigning vertex (i, j) a fractional value of x(i, j) = j
T is feasible with total cost k + 1. Let

τi be the number of vertices in Vi = {(i, 0), . . . , (i, k)} that an optimum solution accelerates. The delay
of the slowest job in level i is then at least k − τi , and we conclude that

∑d
i=1(k − τi) ≤ T and hence

∑d
i=1 τi ≥ dk − T = dk

2 . Therefore the integrality gap is at least dk/2
k+1 −−−−→

k→∞
d
2

In the followingwewill improve on this. From now on, we assume that we are given
a d-partition of a hypergraph and an LP solution; for time-cost tradeoff instances we
get this from Propositions 6 and 8.

4 Rounding fractional vertex covers in d-partite hypergraphs

In this section,we showhow to round a fractional vertex cover in a d-partite hypergraph
(V ,B) with given d-partition {V1, . . . , Vd} and costs cv ≥ 0 for v ∈ V . Together with
the results of the previous section, this yields an approximation algorithm for time-cost
tradeoff instances and will prove Theorem 1.

Our algorithm does not need an explicit list of the edge set of the hypergraph, which
is interesting if d is not constant and there can be exponentially many hyperedges. The
algorithm only requires the vertex set, a d-partition, and a feasible solution to the LP
(a fractional vertex cover). For normalized instances of the time-cost tradeoff problem
such a fractional vertex cover can be obtained as in Proposition 8, and a d-partition
by Proposition 6.

Our algorithm is based on two previous works for the unweighted d-partite hyper-
graph vertex cover problem. For rounding a given fractional solution, Lovász [19]
obtained a deterministic polynomial-time (d2 + ε)-approximation algorithm for any
ε > 0. Let us quickly sketch his idea.

123

536 S. Daboul et al.

First, Lovász showed that for all integers d ≥ 2 and w ≥ 0 there exists a matrix
Ad,w = (ai j)i=1,...,d, j=0,...,w, with the properties:

• each row of Ad,w is a permutation of {0, . . . , w} and
• the sum of each column is at most ≤ � dw

2 �.
Now, for a fractional solution x to the d-partite hypergraph vertex cover problem, a
(large) constant C is chosen, such that xvC ∈ N. The idea is to setw = �2(C −1)/d�.
Then, for every j ∈ {0, . . . , w} we may obtain a feasible cover by rounding all xv for
v ∈ Vi to 1 if and only if xvC > ai j (where V1, . . . , Vd is the given d-partition of
our hypergraph). A simple analysis shows that returning the cheapest such cover is a
d
2

C
C−1 approximation, which converges to d

2 for C → ∞.
Based on this, Aharoni et al. [1] described a randomized recursive algorithm that

works in more general unweighted hypergraphs. We simplify their algorithm for
d-partite hypergraphs, which will allow us to obtain a deterministic polynomial-
time algorithm that also works for the weighted problem and always computes a
d
2 -approximation. At the end of this section, we will slightly improve on this guaran-
tee in order to compensate for an only approximate LP solution.

We will first describe the algorithm in the even simpler randomized form; then we
will derandomize it. To compute the random thresholds, and to allow efficient deran-
domization later, Like Lovász’s, our algorithm computes a threshold for each layer
to determine whether a variable xv is rounded up or down. we will use a probability
distribution with the following properties.

Lemma 9 There is a probability distribution that selects x ∈ [0, 2
9], y ∈ [29 , 4

9], z ∈
[49 , 6

9], such that x+ y+ z = 1 and x, y, z are uniformly distributed in their respective
intervals.

Proof Generate three randomnumbers in base 3,a = 0.a1a2a3, . . .,b = 0.b1b2b3, . . .,
c = 0.c1c2c3, . . ., by randomly sampling digits {ai , bi , ci } = {0, 1, 2} (that is, we
select a random permutation of {0, 1, 2} to be the i-th digit of the three numbers). Let
x ′ be the smallest number, y′ the second smallest, and z′ the largest number of a, b, c.
It is easy to see, that x ′ ∈ [0, 1

3], y′ ∈ [13 , 2
3] and z′ ∈ [23 , 1]. Also by construction

x ′ + y′ + z′ = 3
2 . Setting x = 2

3 x
′, y = 2

3 y
′, z = 2

3 z
′ yields the desired result. �

We remark that for implementing an algorithm that samples from this distribution,
a different construction is more suitable. For example, one may start by selecting
x ∈ [0, 2

9] randomly, and then use a case distinction as illustrated in Fig. 2 to select y
randomly in a suitable subset of [29 , 4

9]. Finally, we may set z = 1 − x − y. It is easy
to verify that this also achieves the claimed properties.

For our proof we will need to slightly generalize this distribution to an arbitrary
number of elements.

Lemma 10 For any d ≥ 2, there is a probability distribution that selects a1, . . . , ad ,
such that

∑d
i=1 ai = 1 and ai is uniformly distributed in [2(i−1)

d2
, 2i
d2

]. For any i, j such
that |i − j | ≥ 3, the random variables corresponding to ai and a j are independent.

Proof For d = 2 we can just choose a1 uniformly in [0, 1
2] and set a2 = 1 − a1. The

case d = 3 follows from Lemma 9. In general, note that the sum of the expectations

123

Approximating the discrete time-cost tradeoff problem… 537

Fig. 2 Selecting a pair (x, y) by uniformly sampling a point in the yellow area gives an example of how to
choose random numbers x, y (and z = 1 − x − y) as in Lemma 9

of the ai is
∑d

i=1
2i−1
d2

= 1. Hence we can partition 1, . . . , d into groups of two or
three and apply the above with appropriate scaling and shifting.

More precisely, ifd is odd,we choose x, y, z according toLemma9 and seta1 = 9x
d2
,

a2 = 9y
d2
, and a3 = 9z

d2
. Then the remaining number of indices is even, and we group

them into pairs; for indices i and i + 1 we choose ai uniformly in [2(i−1)
d2

, 2i
d2

] and set
ai+1 := 4i

d2
− ai . �

Theorem 11 Let x be a fractional vertex cover in a d-partite hypergraph (V ,B) with
given d-partition. Let cv ≥ 0 for v ∈ V . There is a randomized linear-time algorithm
that computes an integral solution x̄ of expected costE[∑v∈V cv ·x̄v] ≤ d

2

∑
v∈V cv ·xv .

Proof Let V1, . . . , Vd be the given d-partition of our hypergraph (V ,B), so |P∩Vi | ≤
1 for all i = 1, . . . , d and every hyperedge P ∈ B. We write l(v) = i if v ∈ Vi and
call Vi a layer of the given hypergraph.

Now consider the following randomized algorithm, which is also illustrated in
Fig. 3: Choose a randompermutation σ : {1, . . . , d} → {1, . . . , d} and choose random
numbers ai uniformly distributed in

[2(σ (i)−1)
d2

,
2σ(i)
d2

]
for i = 1, . . . , d such that

∑d
i=1 ai = 1, as constructed in Lemma 10. Then, for all v ∈ V , set x̄v := 1 if

xv ≥ al(v) and x̄v := 0 if xv < al(v).
To show that x̄ is a feasible solution, observe that any hyperedge P ∈ B has∑
v∈P xv ≥ 1 = ∑d

i=1 ai ≥ ∑
v∈P al(v) and hence xv ≥ al(v) for some v ∈ P .

It is also easy to see that the probability that x̄v is set to 1 is exactly min{1, d
2 xv}.

Indeed, if xv ≥ 2
d , we surely set x̄v = 1. Otherwise, xv ∈ [2(j−1)

d2
,
2 j
d2

]
for some

j ∈ {1, . . . , d}; then we set x̄v = 1 if and only if σ(l(v)) < j or (σ(l(v)) = j and
al(v) ≤ xv), which happens with probability j−1

d + 1
d (xv − 2(j−1)

d2
) d

2

2 = d
2 xv . Hence

the expected cost E[∑v∈V cv · x̄v] is at most d
2

∑
v∈V cv · xv . �

Now we derandomize this algorithm and show how to implement it in polynomial
time.

123

538 S. Daboul et al.

a1

a2

a3 a4

a5
s1

s4
s3

s2
s5

2
5

0

1

V1 V2 V3 V4 V5

σ(i)
1i 2 3 4 5
3 5 2 1 4

Fig. 3 A sketch of thresholds a1, . . . , a5 chosen by our randomized algorithm in Theorem 11 for the case
d = 5. The circles represent vertices in the hypergraph, drawn by their position in the partition and the value
of their corresponding variable in the LP. Suppose the permutation (σ (1), . . . , σ (5)) = (3, 5, 2, 1, 4) is
chosen. Then the thresholds ai are randomly chosen in the light blue intervals

[2(σ (i)−1)
d2

,
2σ(i)
d2

]
; moreover,

the thresholds a1, a3, a4 are chosen independently of the thresholds a2, a5, as indicated by their color. The
points above the thresholds are filled; these variables are rounded up to 1, while the empty circles represent
variables that are rounded down to 0. Finally, the figure also shows “slack” values s1, . . . , s5, telling how
much each threshold could be lowered without changing the solution returned by our algorithm. These will
play a key role to improve the approximation guarantee in Theorem 13

Theorem 12 Let x be a fractional vertex cover in a d-partite hypergraph (V ,B) with
given d-partition. Let cv ≥ 0 for v ∈ V . There is a deterministic algorithm that
computes an integral solution x̄ of cost

∑
v∈V cv · x̄v ≤ d

2

∑
v∈V cv · xv in timeO(n3).

Proof We follow the notation of the previous proof. For a fixed value σ(i) = j and a
random choice of ai ∈ [2(j−1)

d2
,
2 j
d2

]
we have the expected cost

E [x̄v | σ(i) = j] =

⎧
⎪⎨

⎪⎩

0 if xv <
2(j−1)

d2

xv − 2(j−1)
d2

· d2
2 if xv ∈ [2(j−1)

d2
,
2 j
d2

]

1 if xv >
2 j
d2

Let ρ(i, j) := ∑
v∈Vi cv · E [x̄v | σ(i) = j] be the total expected cost of layer i

if we assign σ(i) = j in the random permutation. We compute a permutation σ that
minimizes the total expected cost

∑d
i=1 ρ(i, σ (i)); this is a minimum-cost perfect

matching problem in a complete bipartite graph with d + d vertices. Hence this step
can be implemented with a running time of O(d3) [10, 22].

Therefore, we may now assume that the permutation σ is fixed. The probability
distribution described in Lemma 10 chooses the values ai for i ∈ {1, . . . , d} indepen-
dently for groups of two or three layers, with fixed sum SI := ∑

i∈I ai for each such
group I . Setting a′

i = max{xv : v ∈ Vi , xv < ai }, we see that the result in group I

123

Approximating the discrete time-cost tradeoff problem… 539

depends only on the numbers a′
i (i ∈ I) and that there are less than n3 possibilities.

Among all choices of the a′
i (i ∈ I) with

∑
i∈I a′

i < SI , we can thus choose an
optimum one (with minimum

∑
i∈I

∑
v∈Vi :xv>a′

i
cv) in O(n3) time. �

It is easy to improve the running time in Theorem 12 toO(d3 + n2/d2), but this is
not important since already for time-cost tradeoff instances solving the LP dominates
the overall running time of our approximation algorithm.

Since the vertex cover LP can be solved only approximately (Proposition 8), this
would only yield an approximation ratio of d

2 + ε for the time-cost tradeoff problem
(unless d is fixed). In order to obtain a true d

2 -approximation algorithm (and thus prove
Theorem 1), we need a slightly stronger bound, which we derive next. Again, we first
describe an improved randomized algorithm and then derandomize it.

Theorem 13 Let d ≥ 4. Let x be a fractional vertex cover in a d-partite hypergraph
(V ,B) with given d-partition. Let cv ≥ 0 for v ∈ V . There is a randomized linear-
time algorithm that computes an integral solution x̄ of expected cost

∑
v∈V cv · x̄v ≤

(d2 − d
64n)

∑
v∈V cv · xv .

Proof First we choose the permutation σ and thresholds a1, . . . , ad with
∑d

i=1 ai = 1
randomly as above such that the thresholds are independent except within groups of
two or three. For i ∈ {1, . . . , d} denote the slack of level i by si := min{ 1d , ai , ai −
max{xv : v ∈ Vi , xv < ai }}. The slack is always non-negative. Lowering the threshold
ai by less than si would yield the same solution x̄ . The reason for cutting off the slack
at 1

d will become clear only below.
Next we randomly select one level λ ∈ {1, . . . , d}. Let � be the corresponding

group (cf. Lemma 10), i.e., λ ∈ � ⊆ {1, . . . , d}, |�| ≤ 3, and ai is independent of aλ

whenever i /∈ �. Now raise the threshold aλ to a′
λ = aλ + ∑

i /∈� si . Set a′
i = ai for

i ∈ {1, . . . , d} \ {λ}.
As before, for all v ∈ V , set x̄v := 1 if xv ≥ a′

l(v) and x̄v := 0 if xv < a′
l(v).

We first observe that x̄ is feasible. Indeed, if there were any hyperedge P ∈ B with
xv < a′

l(v) for all v ∈ P , we would get 1 ≤ ∑
v∈P xv <

∑
v∈P:l(v)/∈�(al(v) − sl(v)) +

∑
v∈P:l(v)∈� a′

λ ≤ ∑
i /∈�(ai −si)+∑

i∈�\{λ} ai +a′
λ = ∑d

i=1 ai = 1, a contradiction.

We now bound the expected cost of x̄ . Let v ∈ V . With probability d−1
d we have

l(v) �= λ and, conditioned on this, an expectationE [x̄v | λ �= l(v)] = d
2 min{xv,

2
d } ≤

d
2 xv as before. Now we condition on l(v) = λ and in addition, for any S with 0 ≤
S ≤ d−2

d , on
∑

i /∈� si = S; note that aλ is independent of S. The probability that x̄v

is set to 1 is d
2 max{0, min{xv − S, 2

d }} ≤ xv
2
d +S

≤ d
2 (1− S)xv in this case. In the last

inequality we used S ≤ d−2
d , and this was the reason to cut off the slacks. In total we

have for all v ∈ V :

E [x̄v] = d − 1

d
· E[x̄v | λ �= l(v)]

+ 1

d
·
∫ d−2

d

0
P

[
∑

i /∈�

si = S | λ = l(v)

]

· E
[

x̄v | λ = l(v),
∑

i /∈�

si = S

]

dS

123

540 S. Daboul et al.

≤ d − 1

d
· d
2
xv + 1

d
·
∫ d−2

d

0
P

[
∑

i /∈�

si = S | λ = l(v)

]

· d
2
(1 − S)xv dS

≤ d

2

(

1 − 1

d

∫ d−2
d

0
P

[
∑

i /∈�

si = S | λ = l(v)

]

· S dS

)

· xv

= d

2

(

1 − 1

d
· E [S | λ = l(v)]

)

xv.

Let �[v] be the the set � in the event λ = l(v). We estimate

E [S | λ = l(v)] =
∑

i /∈�(v)

E [si] ≥
∑

i /∈�(v)

1

d(ni + 1)
≥ (d − 3)2

d(n + d)
≥ d

32n
.

Here ni = |Vi |, and the first inequality holds because E [si] is maximal if {xv :
v ∈ Vi } = { 2 j

d(ni+1) : j = 1, . . . , ni }. We conclude E
[∑

v∈V cv · x̄v

] ≤ (d2 −
d
64n)

∑
v∈V cv · xv . �

Let us now derandomize this algorithm. This is easier than before because we can
afford to lose a little again.

Theorem 14 Let d ≥ 4. Let x be a fractional vertex cover in a d-partite hypergraph
with given d-partition. There is a deterministic algorithm that computes an integral
solution x̄ of cost

∑
v∈V cv · x̄v ≤ (d2 − d

128n)
∑

v∈V cv · xv in time O(n3).

Proof Let again LP = ∑
v∈V cv · xv denote the LP value. We first round down the

costs to integer multiples of d LP
128n2

by setting c′
v := � 128n2cv

d LP � d LP
128n2

for v ∈ V . Then
we compute the best possible choice of threshold values ai for i ∈ {1, . . . , d} such
that

∑d
j=1 a j ≤ 1 and

∑d
j=1

∑
v∈Vj ,xv≥a j

c′
v is minimized. This is a simple dynamic

program (like for the knapsack problem) that runs in O(n3) time. By Theorem 13
there is such a solution with cost

∑d
j=1

∑
v∈Vj ,xv≥a j

c′
v ≤ ∑d

j=1
∑

v∈Vj ,xv≥a j
cv ≤

(d2 − d
64n)LP. Hence the solution that we find costs

∑d
j=1

∑
v∈Vj ,xv≥a j

cv <
∑d

j=1
∑

v∈Vj ,xv≥a j
c′
v + n d LP

n2
≤ (d2 − d

64n)LP + d LP
128n as required. �

As explained above, together with Propositions 6 and 8 (with ε = 1
128n), Theorem

14 implies Theorem 1.

5 Inapproximability

Guruswami et al. [13] proved that approximating the vertex cover problem in d-partite
hypergraphs with a better ratio than d

2 is NP-hard under the Unique Games Conjecture.
We show that even for the special case of time-cost tradeoff instances, the problem is
hard to approximate by a factor of d+2

4 .

123

Approximating the discrete time-cost tradeoff problem… 541

Note that this is really a special case: for example the 3-partite hypergraph with
vertex set {1, 2, 3, 4, 5, 6} and hyperedges {1, 4, 6}, {2, 3, 6}, and {2, 4, 5} does not
result from a time-cost tradeoff instance of depth 3 with our construction.3

Let us briefly sketch a technique of [13] and explain why it does not serve our
purpose. Let d ≥ k ≥ 2 be integers. One can reduce the vertex cover problem in
k-uniform hypergraphs, i.e., for hypergraphs H = (U , F) such that |e| = k for all
e ∈ F , to the d-partite case. The idea is to take d disjoint copies of the vertex set U
as the vertex set of a new hypergraph G. For every hyperedge e ∈ F , the hypergraph
G contains all hyperedges e′ that contain exactly one copy of every vertex in e and at
most one vertex of any of the d copies ofU . Clearly this hypergraph G is d-partite. It
is easy to see that any optimal solution in G must contain either no or at least d−k+1
of the copies of a vertex and there is always a vertex cover of size d · OPT, where
OPT denotes the size of an optimum vertex cover in H . By a result of Khot and Regev
[17], the vertex cover problem in k-uniform hypergraphs is NP-hard to approximate
with a factor of k − ε under the Unique Games Conjecture. Therefore, for any d ≥ 4,
by letting k = � d+1

2 �, we obtain a d-partite hypergraph vertex-cover instance. From
this, one can conclude that these instances do not admit a d

4 -approximation algorithm
(assuming the Unique Games Conjecture and P �=NP). However, as indicated above,
these instances are more general than those resulting from time-cost tradeoff instances
of depth d. Nevertheless we will use some of these ideas below.

In this and the next section, we will show Theorem 2, which is our main inapprox-
imability result. Instead of starting from k-uniform hypergraphs, we devise a reduction
from the vertex deletion problem in acyclic digraphs, which Svensson [21] called
DVD.4 Let k be a positive integer; then DVD(k) is defined as follows: given an acyclic
digraph, compute a minimum-cardinality set of vertices whose deletion destroys all
paths with k vertices. This problem is easily seen to admit a k-approximation algo-
rithm:

Lemma 15 For all k ≥ 1, DVD(k) admits a k-approximation algorithm.

Proof Find a maximal set of vertex-disjoint paths, each with k vertices, and take the
set of all their vertices. �

Svensson proved that anything better than this simple approximation algorithm
would solve the unique games problem:

Theorem 16 ([21]) Let k ∈ Nwith k ≥ 2 and ρ < k be constants. Let OPT denote the
size of an optimum solution for a givenDVD(k) instance. Assuming theUniqueGames
Conjecture it is NP-hard to compute a number l ∈ R+ such that l ≤ OPT ≤ ρl.

3 Assume we have an instance of the time-cost tradeoff instance on the same vertex set such that the
minimal chains requiring speedup correspond to precisely these hyperedges. For v ∈ {1, 2, 3, 4, 5, 6} let
l(v) ∈ {1, 2, 3} denote the layer of job v. Note that jobs 2, 4, and 6 must belong to distinct layers. Since
the pairs (1, 2), (3, 4), and (5, 6) are symmetric (any permutation of these pairs yields an automorpishm
of (V ,B)), we may assume without loss of generality l(2) < l(4) < l(6). Then l(1) = l(2) = 1,
l(3) = l(4) = 2, and l(5) = l(6) = 3.
But then {1, 4, 5} and {2, 4, 6} are chains, and their total delay equals the total delay of the chains {1, 4, 6}
and {2, 4, 5}. Since the latter two chains exceed the deadline, at least one of the former two chains must
also exceed the deadline. This is a contradiction since neither {1, 4, 5} nor {2, 4, 6} nor any subset is in B.
4 An undirected version of this problem has been called k-path vertex cover [4], vertex cover Pk [23], or
k-path transversal [18] and admits an O(log k)-approximation if k is bounded by a constant [18].

123

542 S. Daboul et al.

Fig. 4 The transformation in Lemma 17. An instance of DVD(k) is transformed into an equivalent instance
of the time-cost tradeoff problem. Jobs with fixed execution time are depicted as blue squares

This is the starting point of our proof. Svensson [21] already observed that DVD(k)
can be regarded as a special case of the time-cost tradeoff problem. Note that this does
not imply Theorem 2 because the hard instances of DVD(k) constructed in the proof
of Theorem 16 have unbounded depth even for fixed k. (Recall that the depth of an
acyclic digraph is the number of vertices in a longest path.) The following is a variant
(and slight strengthening) of Svensson’s observation.

Lemma 17 Any instance of DVD(k) (for any k) can be transformed in linear time to
an equivalent instance of the time-cost tradeoff problem, with the same depth and the
same optimum value.

Proof Let G = (V , E) be an instance of DVD(k), an acyclic digraph, say of depth
d. Let l(v) ∈ {1, . . . , d} for v ∈ V such that l(v) < l(w) for all (v,w) ∈ E . Let
J := {(v, i) : v ∈ V , i ∈ {1, . . . , d}} be the set of jobs of our time-cost tradeoff
instance. Job (v, i) must precede job (w, j) if (v = w and i < j) or ((v,w) ∈ E and
l(v) ≤ i < j). Let ≺ be the transitive closure of these precedence constraints. For
v ∈ V , the job (v, l(v)) is called variable and has a fast execution time 0 at cost 1
and a slow execution time d + 1 at cost 0. All other jobs are fixed; they have a fixed
execution time d at cost 0. The deadline is d2 + k − 1. A sketch of this construction
is given in Fig. 4.

We claim that any set of variable jobs whose acceleration constitutes a feasible
solution of this time-cost tradeoff instance corresponds to a set of vertices whose
deletion destroys all paths in G with k vertices, and vice versa. Indeed, the total delay
of a chain in the time-cost tradeoff instance is at most (d − 1)(d + 1) unless the chain
contains a job in each level and contains no variable job that is accelerated, in which
case the total delay is d2 + j , where j is the number of variable jobs in the chain.
These chains with total delay d2 + j correspond to the paths with j vertices in G. �

Therefore a hardness result for DVD(k) for bounded depth instances transfers to a
hardness result for the time-cost tradeoff problem with bounded depth. We will show
the following strengthening of Theorem 16:

Theorem 18 Let k, d ∈ N with 2 ≤ k ≤ d and ρ <
k(d+1−k)

d be constants. Let
OPT denote the size of an optimum solution for a given DVD(k) instance. Assuming
the Unique Games Conjecture it is NP-hard to compute a number l ∈ R+ such that
l ≤ OPT ≤ ρl.

123

Approximating the discrete time-cost tradeoff problem… 543

v

v

w

w

x

x

y

y

v w x y

v w x y1

2

3

4

v w x y

Fig. 5 A directed path P4 and the graph tensor product with the acyclic tournament on 4 vertices. The
colored vertices show a solution to the vertex deletion problems with k = 2

It is easy to see that Theorem 18 and Lemma 17 imply Theorem 2. Indeed, let d ∈ N

with d ≥ 2 and ρ < d+2
4 , and suppose that a ρ-approximation algorithm A exists

for time-cost tradeoff instances of depth d. Let k := � d+1
2 � and consider an instance

of DVD(k) with depth d. Transform this instance to an equivalent time-cost tradeoff
instance by Lemma 17 and apply algorithm A. This constitutes a ρ-approximation
algorithm for DVD(k) with depth d. Since ρ < d+2

4 ≤ k(d+1−k)
d , Theorem 18 then

implies that the Unique Games Conjecture is false or P = NP.5

It remains to prove Theorem 18, which will be the subject of the next section.

6 Reducing vertex deletion to constant depth

In this section we prove Theorem 18. The idea is to reduce the depth of a digraph
by transforming it to another digraph with small depth but related vertex deletion
number. Let k, d ∈ N with 2 ≤ k ≤ d, and let G be a digraph. We construct an
acyclic digraph Gd of depth at most d by taking the tensor product with the acyclic
tournament on d vertices: Gd = (V d , Ed), where V d = V × {1, . . . , d} and Ed =
{((v, i), (w, j)) : (v,w) ∈ E and i < j}. It is obvious that Gd has depth d. An
example of this construction is depicted in Fig. 5. Here is our key lemma:

Lemma 19 Let G be an acyclic directed graph and k, d ∈ N with 2 ≤ k ≤ d. If we
denote by OPT(G, k) the minimum number of vertices of G hitting all paths with k
vertices, then

(d + 1 − k) · OPT(G, k) ≤ OPT(Gd , k) ≤ d · OPT(G, k). (2)

Lemma 19, together with Theorem 16, immediately implies Theorem 18: assuming
a ρ-approximation algorithm for DVD(k) instances with depth d, with ρ <

k(d+1−k)
d ,

we can computeOPT(G, k)up to a factor less than k for anydigraphG. ByTheorem16,
this would contradict the Unique Games Conjecture or P �= NP.

5 In fact, this proof shows that the threshold in Theorem 2 can be taken 1
4d larger for odd d; e.g., there is

no ρ-approximation algorithm for ρ < 4
3 for d = 3.

123

544 S. Daboul et al.

1

1

2

2

4

4

1 2 4

1 2 41

2

3

4

1 2 4

5

5

7

7

5 7

5 7

5 7

8

8

10

10

8 10

8 10

8 10

11

11

11

11

115 3

3

3

3

3

6

6

6

6

6

9

9

9

9

9

Fig. 6 Construction of rd vertex-disjoint paths, each with k vertices, in Pd
(r+1)k−1 for r = 3, d = 5, and

k = 3. The edge sets corresponding to paths are highlighted in red

Before we prove Lemma 19, let us give two examples that show that the bounds in
(2) are sharp for all d and k, for infinitely many acyclic digraphs.

For the lower bound, consider the acyclic tournament Dn on the vertices 1, . . . , n.
Obviously, OPT(Dn, k) = n−k+1. Moreover, OPT(Dd

n , k) ≤ (d+1−k)(n−k+1)
because {(i, j) : i = 1, . . . , n − k + 1, j = 1, . . . , d + 1 − k} is a feasible solution
for DVD(Dd

n , k).
For the upper bound, consider the directed path Pn on the vertices 1, . . . , n, where

n = (r +1)k−1 for some r ∈ N. Obviously OPT(Pn, k) = r because {k, 2k, . . . , rk}
is a feasible solution. To show OPT(Pd

n , k) ≥ rd, we find rd vertex-disjoint paths
in Pd

n , each with k vertices: for i = 1, . . . , r and j = 1, . . . , d, the vertex set of the
(di −d + j)-th path arises from {(ki, j), (ki +1, j +1), . . . , (ki + k −1, j + k−1)}
by replacing (s, d + t) by (s − k + t, t) for all s, t ≥ 1. See Fig. 6.

We remark that the left inequality in (2) holds also for general (not necessarily
acyclic) digraphs. However, for general digraphs it may be that OPT(Gd , k) > d ·
OPT(G, k).

Finally, we prove Lemma 19.

Proof (Lemma 19) Let G be an acyclic digraph. The upper bound in (2) is trivial: for
any set W ⊆ V that hits all k-vertex paths in G we can take X := W × {1, . . . , d} to
obtain a solution to the DVD(k) instance Gd .

To show the lower bound, we fix a minimal solution X to the DVD(k) instance Gd .
Let Q be a path in Gd with at most k vertices. We write start(Q) = i if Q begins in a
vertex (v, i). We defineQ as the set of paths in Gd with exactly k vertices. For Q ∈ Q
let lasthit(Q) denote the last vertex of Q that belongs to X . For x ∈ X we define

ϕ(x) := max{start(Q) : Q ∈ Q, lasthit(Q) = x}.

Note that this is well-defined due to the minimality of X , and 1 ≤ ϕ(x) ≤ d + 1 − k
for all x ∈ X .

123

Approximating the discrete time-cost tradeoff problem… 545

We will show that for j = 1, . . . , d + 1 − k,

S j := {v ∈ V : (v, i) ∈ X and ϕ((v, i)) = j for some i ∈ {1, . . . , d}}

hits all k-vertex paths in G. This shows the lower bound in (2) because then
OPT(G, k) ≤ mind+1−k

j=1 |S j | ≤ |X |
d+1−k .

Let P be a path in G with k vertices v1, . . . , vk in this order. Consider d “diagonal”
copies D1, . . . , Dd of (suffixes of) P inGd : the path Di consists of the vertices (vs, s+
i − k), . . . , (vk, i), where s = max{1, k + 1 − i}. Note that the paths D1, . . . , Dk−1
have fewer than k vertices.

We show that for each j = 1, . . . , d + 1 − k, at least one of these diagonal paths
contains a vertex x ∈ X with ϕ(x) = j . This implies that S j ∩ P �= ∅ and concludes
the proof.

First, Dd contains a vertex in x ∈ X with ϕ(x) = d + 1 − k, namely lasthit(Dd).
Now we show for i = 1, . . . , d − 1 and j = 1, . . . , d − k:
Claim: If Di+1 contains a vertex x ∈ X with ϕ(x) = j + 1, then Di contains a vertex
x ′ ∈ X with ϕ(x ′) ≥ j .

This Claim implies the theorem because D1 consists of a single vertex (vk, 1), and
if it belongs to X , then ϕ((vk, 1)) = 1.

To prove the Claim (see Fig. 7 for an illustration), let x = (vh, l(x)) ∈ X∩Di+1 and
ϕ(x) ≥ j + 1, and let x be the last such vertex on Di+1. We have ϕ(x) ≥ start(Di+1)

for otherwise we have start(Di+1) > 1, so Di+1 contains k vertices and we should
have chosen x = lasthit(Di+1); note that ϕ(lasthit(Di+1)) ≥ start(Di+1).

Let Q ∈ Q be a path attaining themaximum in the definition of ϕ(x). So start(Q) =
ϕ(x) and lasthit(Q) = x . Suppose x is the p-th vertex of Q; note that

p ≤ 1 + l(x) − ϕ(x) (3)

because Q starts on level ϕ(x), rises at least one level with every vertex, and reaches
level l(x) at its p-th vertex.

Now consider the following path Q′. It begins with part of the diagonal Di , namely
(vh+1−p, l(x) − p), . . . , (vh, l(x) − 1), and continues with the k − p vertices from
the part of Q after x . Note that by (3)

l(x) − p ≥ ϕ(x) − 1 ≥ max{ j, start(Di+1) − 1} ≥ max{1, start(Di)},

so Q′ is well-defined.
The second part of Q′ does not contain any vertex from X because lasthit(Q) = x .

Hence x ′ := lasthit(Q′) is in the diagonal part of Q′, i.e., in Di . By definition,
ϕ(x ′) ≥ start(Q′) = l(x) − p ≥ j . �

123

546 S. Daboul et al.

D

Di

i+1

j+1

j

Q

Q′

x′

x

Fig. 7 A visualization of the proof idea of the central Claim in the proof of Lemma 19. The Claim asserts
that if Di+1 contains a vertex x ∈ X with ϕ(x) = j + 1, then Di contains a vertex x ′ ∈ X with ϕ(x ′) ≥ j .
The upper diagonal Di+1 is colored in light green, the lower diagonal Di is depicted in dark green. We
start by selecting a path Q with lasthit(Q) ∈ Di+1 and start(Q) = j + 1. This path is depicted on the
left; the vertex x = lasthit(Q) is highlighted in red. We construct a path Q′ (shown on the right) such that
x ′ = lasthit(Q′) ∈ Di and start(Q′) = start(Q) − 1. This path Q′ results from appending the end of path
Q to an appropriate subpath of the next lower diagonal Di

Conclusion

We showed a simple d
2 -approximation algorithm for (the deadline version of the dis-

crete) time-cost tradeoff problem, where d is the depth. We used a reduction to the
minimum-weight vertex cover problem in d-partite hypergraphs and devised a deter-
ministic algorithm that rounds a solution to the vertex cover LP. For this more general
problem, it was known [13] that no better approximation ratio is possible, assuming the
Unique Games Conjecture and P �= NP.We proved that—with the same assumptions
— no better approximation ratio than d+2

4 is possible for time-cost tradeoff instances.
Closing the gap between d+2

4 and d
2 remains an open problem.

Acknowledgements The authors thankNikhil Bansal for fruitful discussions at an early stage of this project.
We also thank the reviewers for helpful remarks.

Funding Open Access funding enabled and organized by Projekt DEAL.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Aharoni, R., Holzman, R., Krivelevich,M.: On a theorem of Lovász on covers in r -partite hypergraphs.
Combinatorica 16(2), 149–174 (1996)

123

http://creativecommons.org/licenses/by/4.0/

Approximating the discrete time-cost tradeoff problem… 547

2. Alimonti, P., Kann, V.: Some APX-completeness results for cubic graphs. Theoret. Comput. Sci.
237(1–2), 123–134 (2000)

3. Bar-Yehuda, R., Even, S.: A linear-time approximation algorithm for the weighted vertex cover prob-
lem. J. Algorithms 2(2), 198–203 (1981)

4. Brešar, B., Kardoš, F., Katrenič, J., Semanišin, G.: Minimum k-path vertex cover. Discret. Appl. Math.
159(12), 1189–1195 (2011)

5. Daboul, S., Held, S., Vygen, J., Wittke, S.: An approximation algorithm for threshold voltage opti-
mization. Trans. Des. Autom. Electron. Syst. 23(6), 68 (2018)

6. De, P., Dunne, E.J., Ghosh, J.B., Wells, C.E.: Complexity of the discrete time-cost tradeoff problem
for project networks. Oper. Res. 45(2), 302–306 (1997)

7. Deı̌neko, V.G.,Woeginger, G.J.: Hardness of approximation of the discrete time-cost tradeoff problem.
Oper. Res. Lett. 29(5), 207–210 (2001)

8. Dinur, I., Safra, S.: On the hardness of approximating minimum vertex cover. Ann. Math. 162(1),
439–485 (2005)

9. Edmonds, J., Fulkerson, D.R.: Bottleneck extrema. J. Combin. Theory 8(3), 299–306 (1970)
10. Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for network flow prob-

lems. J. ACM 19, 248–264 (1972)
11. Grigoriev, A., Woeginger, G.J.: Project scheduling with irregular costs: complexity, approximability,

and algorithms. Acta Informatica 41(2), 83–97 (2004)
12. Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences in combinatorial

optimization. Combinatorica 1, 169–197 (1981)
13. Guruswami, V., Sachdeva, S., Saket, R.: Inapproximability of minimum vertex cover on k-uniform

k-partite hypergraphs. SIAM J. Discret. Math. 29(1), 36–58 (2015)
14. Isbell, J.R.: A class of simple games. Duke Math. J. 25(3), 423–439 (1958)
15. Karmarkar, N., Karp, R.M.: An efficient approximation scheme for the one-dimensional bin-packing

problem. In: Proceedings of the 23rd Annual IEEE Symposium on Foundations of Computer Science,
pp. 312–320 (1982)

16. Kelley, J.E., Walker, M.R.: Critical-path planning and scheduling. In: Proceedings of the AIEE-ACM
’59, pp. 160–173 (1959)

17. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2 − ε. J. Comput. Syst. Sci.
74(3), 335–349 (2008)

18. Lee, E.: Partitioning a graph into small pieces with applications to path transversal. Math. Program.
177, 1–19 (2019)

19. Lovász, L.: On minmax theorems of combinatorics, Doctoral Thesis (in Hungarian). Mathematikai
Lapok 26, 209–264 (1975)

20. Skutella, M.: Approximation algorithms for the discrete time-cost tradeoff problem. Math. Oper. Res.
23(4), 909–929 (1998)

21. Svensson, O.: Hardness of vertex deletion and project scheduling. Theory Comput. 9(24), 759–781
(2013)

22. Tomizawa, N.: On some techniques useful for solution of transportation network problems. Networks
1(2), 173–194 (1971)

23. Tu, J., Zhou, W.: A primal-dual approximation algorithm for the vertex cover P3 problem. Theoret.
Comput. Sci. 412(50), 7044–7048 (2011)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Approximating the discrete time-cost tradeoff problem with bounded depth
	Abstract
	1 Introduction
	2 Results and outline
	3 The vertex cover LP
	4 Rounding fractional vertex covers in d-partite hypergraphs
	5 Inapproximability
	6 Reducing vertex deletion to constant depth
	Conclusion
	Acknowledgements
	References

