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Abstract
Optimization problems with uncertain black-box constraints, modeled by warped
Gaussian processes, have recently been considered in the Bayesian optimization
setting. This work considers optimization problems with aggregated black-box con-
straints. Each aggregated black-box constraint sums several draws from the same
black-box function with different decision variables as arguments in each individual
black-box term. Such constraints are important in applications where, e.g., safety-
critical measures are aggregated over multiple time periods. Our approach, which
uses robust optimization, reformulates these uncertain constraints into deterministic
constraints guaranteed to be satisfied with a specified probability, i.e., deterministic
approximations to a chance constraint. While robust optimization typically consid-
ers parametric uncertainty, our approach considers uncertain functions modeled by
warped Gaussian processes. We analyze convexity conditions and propose a cus-
tom global optimization strategy for non-convex cases. A case study derived from
production planning and an industrially relevant example from oil well drilling show
that the approach effectively mitigates uncertainty in the learned curves. For the drill
scheduling example, we develop a custom strategy for globally optimizing integer
decisions.
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1 Introduction

In mathematical programming, optimization under uncertainty often focuses on para-
metric uncertainty [10,13,16,53,58]. But many application areas rely on uncertain,
expensive to evaluate black-box functions, e.g., automatic chemical design, production
planning, scheduling with equipment degradation, adaptive vehicle routing, automatic
control and robotics, and biological systems [15,21,23,29,37,59,63].

Bayesian optimization optimizes such functions by (i) fitting a Gaussian process to
a small number of collected data points and (ii) subsequently choosing new sampling
points using an acquisition function [42,55,57]. The Bayesian optimization literature
also considers problems with black-box constraints, e.g., by multiplying the acqui-
sition function with the probability of constraint satisfaction [25,26,49]. The global
optimization community often handles black-box constraints by (i) generating a small
data set from the black box function, (ii) fitting a surrogate model to this data, and
(iii) replacing the black box constraint by the surrogate model [14,18,19,30,40,43,52].
This approach, however, rarely considers uncertainty in the black box function.

One way of including uncertain black-box function into the optimization problem
is to consider the surrogate model’s parameters to be uncertain and use classical
parametric uncertaintymethods. Hüllen et al. [33] recently demonstrated this approach
for polynomial surrogates using robust optimization. This paper proposes amore direct
approach utilizing probabilistic surrogate models to model the uncertain curves. We
study optimization problems with constraints which aggregate black-box functions:

∑

i

ãi xi ≤ b (1a)

ãi = g(zi ), (1b)

where xi is a decision variable and ãi depends on a vector of decision variables
zi ∈ R

k through a black-box function g(·). Constraint (1) occurs in many highly
relevant applications. In production planning, one may limit the total allowed equip-
ment degradation

∑
i r(pi )Δti ≤ b, where r(pi ) is the black-box degradation rate

depending on production pi in time period i and Δt i is equipment operation time in
period i [63]. A second example is vehicle routing, where the total travelling time∑

i Δt(ti , si , di )γi is the sum of travelling times Δt(ti , si , di ) for individual legs i ,
dependent on starting time ti , source si , and destination di , and γi is a binary variable
indicatingwhether leg i is part of the route. A third example is project scheduling under
uncertainty in which duration uncertainty may be aggregated over multiple activities
[60]. Lastly, the drill scheduling case study described in detail later in this paper is an
industrially relevant example.

When black-box constraints are risk or safety-critical, hedging solutions against
uncertainty is essential. Evaluating black-box functions may require expensive com-
puter simulations or physical experiments, so available data is generally limited and
may be subject to model errors and measurement noise. We therefore consider the
function g(·) to be uncertain and aim to find solutions for which Constraint (1) holds
with confidence 1 − α:
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P

(
∑

i

g(zi )xi ≤ b

)
≥ 1 − α. (2)

To capture the uncertainty in g(·), we model it by stochastic surrogate models.
A common stochastic surrogate is the Gaussian process (GP) model. Depending on
the underlying data generating distribution, however, a GP may be an inadequate
model. Warped Gaussian processes, which map observations to a latent space using a
warping function, are an alternative, more flexible model [56]. This paper considers
both standard and warped GPs.

We note that other contributions have connected Bayesian optimization with robust
optimization [7,11,12,17]. These works have focused on implementation errors. An
adversary can perturb the input x to a black-box function f by δ ∈ U . Robust solutions
optimize performance under the worst-case perturbation realization: min

x∈Rn
max
δ∈U

f (x +
δ). Our work does not consider implementation errors. We instead focus on the setting
where the uncertainty is in the output of the black-box function. Most of these works
also focus on uncertain black-box objective functions with some making extensions
to uncertain black-box constraints [7,11]. Our work focuses on aggregated black-
box constraints which are relevant in safety-critical applications. To the best of our
knowledge, no prior work has connected either warped GPs or aggregated black-box
constraints with robust optimization.

1.1 Contributions

For the standard GP model, we show how chance constraint Eq. (2) can be exactly
reformulated as a deterministic constraint using existing approaches. For the warped
case, we develop a robust optimization approach which conservatively approximates
the chance constraint. By constructing decision-dependent uncertainty sets from con-
fidence ellipsoids based on the warped GP models, we obtain probabilistic constraint
violation bounds.WeutilizeWolfe duality to reformulate the resulting robust optimiza-
tion problem and obtain explicit deterministic robust counterparts. This reformulation
expresses uncertain constraints, modeled by GPs, as deterministic constraints with a
guaranteed probability of constraint satisfaction, i.e., deterministic approximations to
a chance constraint. We analyze convexity conditions of the warping function under
which the Wolfe duality based reformulation is applicable. For non-convex cases, we
develop a global optimization strategy which utilizes problem structure. To reduce
solution conservatism, we furthermore propose an iterative a posteriori procedure of
selecting the uncertainty set size which complements the obtained a priori guarantee.

We show how the proposed approach hedges against uncertainty in learned curves
for two case studies: (i) a production planning-inspired case study with an uncertain
price-supply curve and (ii) an industrially relevant drill-scheduling case study with
uncertain motor degradation characteristics. For the drill-scheduling case study we
develop a custom strategy for dealing with discrete decisions.
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1.2 Notation

See “Appendix A” for a table of notation.

2 Method

Sections 2.1–2.3 review (warped) GPs, robust optimization, and chance constraint
reformulations for Gaussian distributions. Sections 2.4 and 2.5 outline our proposed
robust approximation approach.

2.1 Warped Gaussian processes

GPs are widely used for Bayesian optimization and non-parametric regression [51,55,
64].

Definition 1 (Gaussian process) A continuous stochastic process G(x) for which
Gx1,...,xl = (Gx1 , . . . ,Gxl ) is a multivariate Gaussian random variable for every
finite set of points x1, . . . , xl .

A GP defines a probability distribution over functions and it is fully specified by its
mean function m(·) and kernel function k(·, ·). Given a set of N data points X =
[x1, . . . , xN ], y = [y1, . . . , yN ]ᵀ and using a zero mean function, we can predict the
mean μ and covariance matrix Σ of the multivariate Gaussian distribution defined by
a set of new test points X∗ = [x∗

1, . . . , x
∗
n]:

μ(X∗) = K (X∗, X)[K (X , X) + σ 2
n I ]−1z

Σ(X∗) = K (X∗, X∗)
− K (X∗, X)[K (X , X) + σ 2

n I ]−1K (X , X∗),

where σn is the standard deviation of noise in the data, K (X∗, X) = K (X , X∗)ᵀ is
the n × N covariance matrix between test and training points, K (X , X) the N × N
covariance matrix between training points, K (X∗, X∗) the n × n covariance matrix
between test points, and I the identity matrix. We denote the i j-element of Σ as
σ 2
i j = σ 2(x∗

i , x
∗
j ).

The standard GP approach assumes that the data follows a multivariate Gaussian.
While this assumption allows prediction using simple matrix multiplication, it can be
an unreasonable for non-Gaussian data [56]. A slightly more flexible model, which
still retains many of the benefits of GPs, is the warped GP model. The key idea is
to warp the observations z to a latent space ξ using a monotonic warping function
ξ = h(z,Ψ ) , where Ψ is a vector of parameters. A standard GP then models the
data in the latent space ξ ∼ GP(x). The Jacobian ∂h(z)

∂ y is included in the likelihood
and the GP and warping parameters are learned simultaneously. A common warping
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function is the neural net style function:

ξi = h(zi ) = zi +
nw∑

j=1

a j tanh(b j (zi + c j )), (3)

where a j ≥ 0, b j ≥ 0,∀ j to guarantee monotonicity [35,39,56] and nw is the number
of warping terms. Note that we use h(·) to denote the vector version h : R

n →
R
n, h(z) = [h(z1), . . . , h(zn)]ᵀ, which warps each component individually.

2.2 Robust optimization

Robust optimization immunizes optimization problems against (typically parametric)
uncertainty by requiring constraints with uncertain parameters ãi to hold for all values
inside some uncertainty set U [27]. Application areas range from finance and engi-
neering to scheduling and compressed least squares [6,27]. The uncertainty set U can
take many different geometries, e.g., box [58], ellipsoidal [9], and polyhedral sets
[13]. When U is convex and the constraint is concave, the semi-infinite constraint can
often be reformulated into a deterministic equivalent using duality [8]. The general
case can be solved using bilevel optimization [3,41], but this requires solving the inner
maximization problem to global optimality, even to obtain feasible solutions.

2.3 Standard GPs: chance constrained optimization

When g(·) is modeled well by a standard GP, chance constraint Eq. (2) can be exactly
replaced by a deterministic equivalent [20]. Since {g(zi ), i ∈ S} ∼ N (μ,Σ) is nor-
mal distributed, the linear combination:

β =
∑

i∈S
g(zi )xi

is also normal distributed with distribution:

β ∼ N
⎛

⎝
∑

i∈S
μi xi ,

∑

i, j∈S
xiσ

2
i, j x j

⎞

⎠ .

Note that we have suppressed the dependence ofμ andΣ on zi for notational simplic-
ity. For a given confidence level α, we can therefore replace chance constraint Eq. (2)
by:

∑

i∈S
μi xi + F(1 − α) ·

√ ∑

i, j∈S
xiσ 2

i, j x j ≤ b, (4)
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where F(·) is the cumulative distribution function of the standard normal distribution.
If the GP models g(·) well, Eq. (4) is an exact deterministic reformulation of chance
constraint Eq. (2).

2.4 Warped GPs: robust approximation

If g(·) is insufficiently modeled by a standard GP, a warped GPmay be a more suitable
model [56]. In this case, a direct reformulation of the chance constraint as outlined
above for the standard GP case is not known. Such chance constraints are generally
addressed by (i) sample approximation [38,47,48] or (ii) safe outer-approximation
[1,36,45,46,50,65]. Instead, we develop a robust approximation. First consider an
optimization problem containing a nominal version of Constraint (1):

min
(x,z)∈X

f (x, z) (5a)

s.t
∑

i

h−1(μ(zi ))xi ≤ b, i ∈ [n] (5b)

where z is the vector containing all elements of zi ,∀i and the objective function
f : x, z → R is assumed to be known explicitly, i.e., it is not a black-box function.
Here, the inversely warped mean prediction of the GP h−1(μ(·)) replaces the black-
box function g(·). Clearly, a solution to Problem (5) is not guaranteed to be feasible
in practice if the prediction μ(zi ) is uncertain. Using the full multivariate distribution
generated by the sampling points {zi }, we can construct an α–confidence ellipsoid in
the latent space:

Eα(z) = {
ξ : (ξ − μ(z))ᵀ Σ−1(z) (ξ − μ(z)) ≤ F1−α

n

}
. (6)

Here, F1−α
n is the cumulative distribution function of theχ2 distributionwith n degrees

of freedom. Note that when the GP kernel is positive definite, the covariance matrix
Σ is also positive definite and the inverse Σ−1 exists. Assuming that the warped
GP models the black-box function well, Eα(z) contains the true value h(g(zi )) with
probability at least 1 − α. We therefore construct the following robust optimization
problem:

min
(x,z)∈X

f (x, z) (7a)

s.t. yᵀx ≤ b ∀ y : h( y) ∈ Eα(z) (7b)

Any solution to Problem (7) is feasible with probability at least 1 − α given that the
warped GP models the underlying data generating distribution well. Alternatively, we
can take the warping into the uncertainty set:

min
(x,z)∈X

f (x, z) (8a)

s.t. yᵀx ≤ b ∀ y ∈ U(z) (8b)
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Fig. 1 Example of uncertainty sets Eα in latent and U in observation space

where U :

U(z) = {
y ∈ R

l : (h( y) − μ(z))ᵀ Σ−1(z) (h( y) − μ(z)) ≤ F1−α
n

}
. (9)

Note that Problem (8) can also be interpreted as approximating a robust problem
with an uncertainty set over functions g̃ ∈ U g (see Theorem3, “AppendixB”). Figure 1
shows an example of the ellipsoidal and warped sets Eα and U for n = 2. The warped
set U (Eq. 9) may or may not be convex, depending on the warping function h(·).

2.4.1 Reformulation for convex warped setsU

We first assume that the warped set U retains convexity and utilize Wolfe duality to
reformulate the semi-infinite Problem (8) into a deterministic problem with a finite
number of constraints. Consider the min-max equivalent of Problem (8):

min
(x,z)∈X

f (x, z) (10a)

s.t. max
y∈U(z)

yᵀx ≤ b (10b)

When U is convex, the inner maximization, Eq. (10b), is convex:

max
y

yᵀx (11a)

s.t. (h( y) − μ)ᵀΣ−1(h( y) − μ) ≤ F1−α
n , (11b)

Note that we suppress the dependence of μ and Σ on z for notational simplicity
from here onward. Problem (11) generally doesn’t have a simple closed form solu-
tion. Instead, we can use Wolfe duality to transform Problem (11) into an equivalent
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minimization problem, leading to a deterministic reformulation of Problem (8):

min
(x,z)∈X , y,u

f (x) (12a)

s.t yᵀx + u ·
(
(h( y) − μ)ᵀΣ−1(h( y) − μ) − F1−α

n

)
≤ b (12b)

x + 2u · ∇h( y)Σ−1(h( y) − μ) = 0 (12c)

u ≥ 0, (12d)

where u is a dual variable,∇h( y) = diag(h′(yi )), and Constraint (12c) is the Karush–
Kuhn–Tucker (KKT) stationarity condition. Note that, unless x = 0, the stationarity
condition means that u �= 0 and, due to complementary slackness, w( y, z) = 0, i.e.:

(h( y) − μ)ᵀΣ−1(h( y) − μ) = F1−α
n . (13)

Furthermore, we can reformulate Eq. (12c) to:

h( y) − μ = − 1

2u
Σ(∇h( y))−1x

Substituting this in Eq. (13) yields:

1

4u2
xᵀ (∇h( y))−1 Σ (∇h( y))−1 x = F1−α

n .

This leads to a slightly different formulation which has the advantage that it does
not depend on the inverse of the covariance matrix Σ−1:

min
(x,z)∈X , y,u

f (x, z) (14a)

s.t yᵀx ≤ b (14b)

Σ (∇h( y))−1 x + 2u · (h( y) − μ) = 0 (14c)

4u2F1−α
n = xᵀ (∇h( y))−1 Σ (∇h( y))−1 x (14d)

u ≥ 0, (14e)

where the inverse (∇h( y))−1 exists when h′(y) �= 0 because ∇h( y) is a diagonal
matrix. Note that h(yi ) > 0, ∀yi ∈ R for the neural net style warping function in
Eq. (3). Formulation (14) has the advantages that it does not depend on the inverse
Σ−1(z), which generally cannot be formulated explicitly, and that it can be solved
using off-the-shelf solver software. While Problem (14) is non-convex due to bilin-
earities between y and x, the potentially non-convex objective function f , and the
dependence of μ and Σ on z, even a non-optimal solution will be robustly feasible.
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2.4.2 Convexity conditions

Section 2.4.1 relies on the convexity of the inner maximization problem. If U is non-
convex, Problem (14) is not necessarily equivalent to Problem (8) as there may be
more than one KKT point. Since U is the confidence set of a multivariate distribution,
however, may often be convex, especially when the distribution is unimodal. The
following section analyzes conditions where the Wolfe duality approach is justified.

First consider the inner maximization Problem (11) transformed into the latent
space by substituting y = h−1(ξ):

max
ξ

xᵀh−1(ξ) (15a)

s.t. (ξ − μ)ᵀΣ−1(ξ − μ) ≤ F1−α
n , (15b)

which depends on the generally not explicitly known inverse warping function h−1.
We further state the well known result on the derivative of inverse functions [4]:

Lemma 1 If f : R → R is continuous, bijective, and differentiable and f ′( f −1(x)) �=
0, then [ f −1]′(x) = 1

f ′( f −1(x))
.

Using this, we can show the following proposition.

Theorem 1 Let the warping function h(·) be concave (convex) and let xi ≥ 0 (≤
0), ∀i , then the inner maximization Problem (11) has a unique KKT point.

Proof Note that Problem (15) is convex when h−1 is concave (convex) and xi ≥
0 (xi ≤ 0),∀i . The KKT conditions for Problems (11) and (15) are:

x + 2u∇h( y)Σ−1(h( y) − μ) = 0 (16a)

(h( y) − μ)ᵀΣ−1(h( y) − μ) = F1−α
n (16b)

and:

∇h−1(ξ)x + 2uΣ−1(ξ − μ) = 0 (17a)

(ξ − μ)ᵀΣ−1(ξ − μ) = F1−α
n , (17b)

where:

[∇h−1(ξ)]i, j =
{
h−1(ξi ), i = j

0, i �= j
(18)

By Lemma 1:

[∇h−1(ξ)]i, j =
{
h−1(ξi ), i = j

0, i �= j
=

{
1

h′(h−1(ξi ))
, i = j

0, i �= j
= [∇h(h−1(ξ))]−1

i, j .

(19)
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So Problem 17 is equivalent to:

∇[h(h−1(ξ))]−1x + 2uΣ−1(ξ − μ) = 0 (20a)

(ξ − μ)ᵀΣ−1(z − μ) = F1−α
n . (20b)

Let y∗ be a KKT point for Problem (11), then z∗ = h( y∗) is clearly a solution to
Problem (20), and therefore a KKT point for Problem (15). Since Problem (15) is
convex, y∗ is unique. �


2.4.3 Strategy for non-convex warped setsU

When U is non-convex, we need to globally optimize the inner maximization problem
efficiently. To this end we develop a custom divide and conquer strategy which makes
use of the problems special structure. We first note the following properties of the
inner maximization problem.

Lemma 2 Let y∗ be the solution of Problem 11, then y∗ is on the boundary of U , i.e.,
y∗ ∈ ∂U .

Proof See “Appendix C”. �

Lemma 3 The bounding box of an ellipsoid (x − μ)ᵀΣ−1(x − μ) ≤ r2 is given by
the extreme points xi = μi ± rσi i .

Proof See “Appendix C”. �

Lemma 4 Consider a version of Problem (15) in which the ellipsoidal feasible region
is replaced by its bounding box:

max
ξ

xᵀh−1(ξ) (21a)

s.t. μi − rσi i ≤ ξi ≤ μi + rσi i ∀i . (21b)

If xi ≥ 0,∀i , the optimal solution ξ∗ to this problem is the corner of the bounding
box with ξ∗

i = μi + rσi i ,∀i .
Proof Let ξ∗ be the optimal solution to Problem (21). Note that ξ∗ lies on the boundary
of the feasible space (Lemma 2). Assume ∃i , s.t., ξ∗

i < μ+rσi i . Because h−1 is strictly
monotonically increasing and xi ≥ 0, xi h−1(ξi ) > xi h−1(μ + rσi i ). Therefore we
can construct a new solution ξ̂ :

ξ̂ j =
{

ξ∗
j j �= i

μ j + rσ j j j = i,
(22)

for which xᵀξ̂ ≥ xᵀξ∗, which is a contradiction. �
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Theorem 2 Let ξ̄ (ξ
¯
) be ξ̄i = μi + rσi i (ξ

¯ i
= μi − rσi i ) and ξ∗ the optimal solution

to Problem (15). Then (i) xᵀh−1(ξ
¯
) ≤ xᵀh−1(ξ∗) ≤ xᵀh−1(ξ̄) and (ii) xᵀh−1(ξ̄)

xᵀh−1(ξ∗) ≤
xᵀh−1(μ+rσ )

xᵀh−1(μ+rσ/
√

σᵀΣ−1σ )
where σ = [σ11, . . . , σnn]ᵀ.

Proof Part (i) follows immediately fromLemma4 because Problem (21) is a relaxation
of Problem (15). To prove (ii), first consider a scaled version of the bounding box with
corner ξ̂ = μ+λrσ . Assume that scaling factor λ ∈ [0, 1] is chosen so that the corner
of the scaled box ξ̂ lies on the ellipsoid, i.e.:

(
ξ̂ − μ

)ᵀ
Σ−1

(
ξ̂ − μ

)
= r2.

Substituting ξ̂ = μ + λrσ and rearranging leads to

λ = 1√
σΣ−1σ

Furthermore, since ξ̂ is contained in the ellipsoid, xᵀh−1(ξ̄)

xᵀh−1(ξ∗) ≤ xᵀh−1(ξ̄)

xᵀh−1(ξ̂)
. Substituting

ξ̄ = μ + rσ and ξ̂ = μ + rσ√
σΣ−1σ

concludes the proof. �


Using Lemma 2 and Theorem 2 we develop the spatial branching strategy shown
in Algorithm 1. Algorithm 1 works similarly to other elimination-based algorithms
[34,44]. It starts by outer-approximating the ellipsoid by its bounding box and evalu-
ating the objective xᵀh−1(ξ) at the two corner points (ξ

¯
, ξ̄), obtaining an upper and

lower bound (Theorem 2). The algorithm then branches on the dimension of largest
width. Boxes can be pruned if they are fully inside or outside the ellipsoid (Lemma 2).
Theorem 2 also provides an a-posteriori bound for the tightness of the outer approxi-
mation. In the special case when the ellipsoid is an n-D ball with zero mean, the bound

can be simplified to an a-priori bound: xᵀh−1(ξ̄)

xᵀh−1(ξ∗) ≤ h−1(r)
h−1( r√

n
)
.

2.5 Iterative a posteriori approximation

The apriori probabilistic bound implied byEα maybeoverly conservative.Algorithm2
is an alternative, less conservative strategy that iteratively determines the uncertainty
set size.

Starting with the confidence level α equal to the target feasibility ε0, Algorithm 2
iteratively solves the robust optimization problem, estimates the feasibility of the
solution, and consequently adjusts the confidence level α using bisection search. To
estimate the feasibility of a solution, we generate 10,000 random samples ξ i from the
warped GP distribution N (μ(z),Σ(z)), evaluate the constraint xᵀh−1(ξ i ) for each
sample i , and calculate the percentage of samples for which xᵀh−1(ξ i ) ≤ b. The
search terminates when a solution has been found that is sufficiently close (tolerance
δ) to the target feasibility ε0.
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Algorithm 1 Globally optimize inner maximization problem

lower bound, upper bound ← xᵀh−1(ξ
¯
), xᵀh−1(ξ̄)

nodes ← [(ξ
¯
, ξ̄)]

while (upper bound - lower bound)/upper bound ≤ ε do
(ξ
¯
, ξ̄) ← choose element in nodes with largest xᵀh−1(ξ̄)

upper bound ← xᵀh−1(ξ̄)

children ← split (ξ
¯
, ξ̄) along single axis

for (ξ
¯
, ξ̄) in children do

if (ξ
¯
, ξ̄) contains boundary point of ellipsoid and lower bound ≤ xᵀh−1(ξ̄) then

add (ξ
¯
, ξ̄) to nodes

lower bound ← min{xᵀh−1(ξ
¯
),lower bound}

end if
end for

end while

Algorithm 2 Posteriori approximation
1: α ← ε0
2: while ‖ε − ε0‖ ≥ δ do
3: x ← solution of Problem (14) with α

4: ε ← percentage of 1000 samples ξi drawn fromN (μ(z), Σ(z)) with xᵀh−1(ξ i ) ≤ b
5: if ε − ε0 ≥ 0 then
6: αU ← α, εU ← ε

7: else
8: αL ← α, εL ← ε

9: end if
10: α ← αL+αU

2 {Bisection search}
11: end while

3 Case studies

3.1 Production planning

Our first case study is inspired by production planning. Assume that a company wants
to decide how much product xt to produce in a number of subsequent time periods
x = [x1, . . . , xt , . . . , xT ]. There is a known cost of production ct which may vary
from period to period. The company seeks to maximize its profitψ , which depends on
the total production cost

∑
t ct xt and revenue

∑
t p̃t xt . Here p̃t is the price at which

the product can be sold in period t . The company has to sell all its product in the same
time period, e.g., because the product is perishable. The sale price depends on the
amount the company produces in that period p̃t = p̃(xt ), e.g., because the company
has a very large market share.

The company uses GP regression to predict p̃(xt ) based on limited historical data.
Additional features, e.g., season and general state of the economy, could be part of
this regression but are irrelevant for our purpose as they are not decision variables.
The prediction has to be considered uncertain and the company wants a production
plan guaranteeing a certain profit with some confidence. This decision problem can
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Fig. 2 GP trained using 50 observations from the price-supply curve p(xt ) = exp(−xt ) + ε with non-
uniform Gaussian noise ε ∼ N (0, 4 · 0.3 · exp(−x/2)). The confidence region is two standard deviations
wide

be formulated as a chance constrained optimization problem:

max
x∈RT ,ψ

ψ (23a)

s.t P

(
T∑

t=1

( p̃(xt ) − ct ) xt ≥ ψ

)
≥ 1 − α (23b)

Choosing p(xt ) = exp (−xt ) as ground truth for the price-supply curve, we generate
noisy data p̃(xt ) = p(xt ) + ε and fit a GP surrogate as shown in Fig. 2. We consider
uniform Gaussian noise (ε ∼ N (0, σnoise)) and non-uniform Gaussian noise (ε ∼
N (0, 4 · σnoise · exp(−x/2))), where σnoise is a parameter determining the amount
of noise. We use a squared exponential kernel for this case study, but the proposed
method does not generally rely on a specific choice for k(·, ·).

3.2 Drill scheduling

The objective in drilling oil wells is generally minimizing total well completion time.
The aim of the drill scheduling problem, illustrated in Fig. 3, is to find a schedule of the
two decision variables, rotational speed Ṅ ∈ R and weight on bitW ∈ R, as a function
of depth x ∈ R. Current practice often consists of minimizing the total drilling time,
which depends on Ṅ and W through a non-linear bit-rock interaction model [22] and
the motor’s power-curves (see “Appendix D”). Total well completion time, however,
also depends on maintenance time. Current practice may increase maintenance time
because drilling quickly can detrimentally effect motor degradation. Furthermore, the
motors degradation characteristics are subject to uncertainty and are often obtained
through a mixture of experiments and expensive numerical simulations [2]. Other
works have considered uncertain equipment degradation in scheduling applications
[5,63], but not with predicted degradation rates.
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Fig. 3 Illustration of drill scheduling problemwith two rock types. The rock type changes at x1,maintenance
is scheduled at x2, and the target depth is x3. The right side shows an example schedule of the decision
variables Ṅ and W

To find the optimal trade off between drilling and maintenance time, we propose a
drill schedulingmodel which explicitly considers uncertainty in themotor degradation
characteristics. First consider a model which discretizes the drill trajectory into nd
equidistant intervals:

min
W ,Ṅ, y,z,V ,Δp,R

nd∑

i=1

(
Δxi
Vi

+ ziΔtmaint
i

)
(24a)

s.t Vi = f (Ṅ top
i ,Wi ,Δpi ) ∀i ∈ [nd ] (24b)

0 ≤ Ri =
i∑

j=1

(
Δx j
Vj

· r(Δp j ) − y j

)
≤ 1 ∀i ∈ [nd ] (24c)

zi ≥ yi , zi ∈ {0, 1} ∀i ∈ [nd ], (24d)

The rate of penetration Vi in each segment depends on the drill parameters (Ṅi and
Wi ) through the non-linear model in “Appendix D”. The rate of degradation r(·) is a
black-box function of the differential pressure across the motor Δp. We model r(·)
with a warped GP based on 10 data points from a curve obtained by Ba et al. [2]
through a combination of experiments and numerical simulation. The maintenance
indicator Ri keeps track of the total cumulative degradation of the motor. We assume
the motor fails when Ri reaches 1. Binary variable zi indicates whether maintenance is
scheduled in segment i . If maintenance is scheduled, the continuous variable yi resets
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the total degradation indicator Ri to zero. Note that the bit-rock interaction model
depends on rock parameters which can change from segment to segment.

A major disadvantage of Model (24) is that it requires a large number of segments
in order to get a good resolution on the optimal maintenance depth. To avoid this
we propose, in analogy with continuous time formulations [24,54], an alternative
continuous depth scheduling formulation:

min
W ,Ṅ,x,Δp,V ,R

∑

i∈N

(
xi − xi−1

Vi

)
+

∑

m∈M
Δtmaint(xm) (25a)

s.t Vi = f (Ṅi ,Wi ,Δpi ) ∀i ∈ N = [nd ] (25b)

Rm =
m∑

j=m−

(
x j − x j−1

Vj
· r(Δp j )

)
≤ 1 ∀m ∈ M ∪ {nd} (25c)

Model (25) only considers geological segments (segments with constant rock param-
eters) and maintenance induced segments. The vector x is ordered and contains the
fixed rock formation depths as well as the variable maintenance depths. M is a set
containing the indices of the variable maintenance depths. Figure 3 shows an example
instance where x0, x1, x3 are fixed depths and x2 is the variable depth of a maintenance
event, i.e., x = [x0, x1, x2, x3] and M = {2}. The indices i ∈ M of the variable main-
tenance depths are determined a priori, i.e., we decide both the number of maintenance
events as well as the geological segment in which they occur a priori. m− is either the
index of the previous maintenance event or 1 if m is the first element in M .

While Problem (25) cannot decide the optimal number of maintenance events, it is
easier to solve than Problem (24) because it does not contain integer variables and gen-
erally has amuch smaller number of segments, i.e., fewer variables and constraints. The
following discusses strategies for deciding the optimal number and segment assign-
ment of maintenance events.

3.2.1 Integer strategy

In drill scheduling, the number of maintenance events m is generally small (m ≤ 4).
The number of geological segments nd can be large in practice but will not be known a
priori. We therefore consider groupings of segments into a small number (nd ≤ 10) of
longer segments with average rock parameters which are known a priori. Given nd and
m, the combinatorial complexity of enumerating themaintenance-segment assignment
problem is N = (nd+m−1

m

)
. However, the optimal number of maintenance events m

is a decision variable. Therefore, finding the globally optimal maintenance-segment
assignment also requires enumerating different values ofm. Algorithm 3 derives upper
bounds for the number of maintenance events m as well as their location. It starts by
solving Problem (25)without anymaintenance events and ignoring the upper bound on
the degradation indicator Rnd � 1. The floor of the maintenance indicator at the target
depth xnd , �Rnd � is an upper bound for the necessary number of maintenance events
m. Algorithm 3 then starts at the target depth xnd and inserts �Rnd �maintenance events
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Algorithm 3 Deriving upper bounds for m and xm
1: x, R, V̂ ← solution of Problem (25) without Constraint (25c), M = ∅
2: m ← �Rn� {Upper bound on number of maint.}
3: x̂m ← 0 ∈ R

m {Vector of maintenance depths}
4: for i ∈ {m, . . . , 1} do
5: x̂mi ← smallest depth s.t. Cons. (25c) is satisfied
6: end for

at the earliest possible points that satisfy the maintenance constraint. The locations x̂m
are upper bounds for the maintenance locations.

Lemma 5 Let x̂m be the maintenance depths determined by Algorithm 3. Let x∗,m

contain the globally optimal maintenance depths. Let xm,∗ further be padded with
zeroes at the beginning such that x̂m and x∗,m have the same length. Then x∗,m

i ≤ x̂mi .

Proof Assume x∗,m
i ≤ x̂mi but x∗,m

i+1 > x̂mi+1. Construct a new solution (x′,m, V ′) by
moving x∗,m

i+1 to x̂mi+1 and drilling at maximum speed V̂i+1 between x̂mi+1 and x∗,m
i+1 :

x ′,m
k =

{
x∗,m
k k �= i + 1

x̂mk k = i + 1
,

{
V ∗
k k �= i + 1

V̂k k = i + 1
.

(x′m, V ′) has drilling and maintenance cost lower than (x∗,m, V ∗), which is a contra-
diction. Therefore x∗,m

i ≤ x̂mi �⇒ x∗,m
i+1 ≤ x̂mi+1. Furthermore, note that x∗,m

m ≤ x̂mm
(last maintenance event) has to be true by the same logic as above. The proposition
follows by induction. �


Lemma 5 reduces the number of maintenance-segment assignments to enumerate:

Note 1 et x̂ be the upper bounds onmaintenance locations fromAlgorithm 3. Let ni be
the segment containing x̂i . The complexity of enumerating the maintenance-segment
assignment problem using the upper bounds from Algorithm 3 is:

N =
n1∑

i1=1

n2∑

i2=i1

. . .

nm∑

im=im−1

1 =
n1∑

i1=1

n2∑

i2=i1

. . .

nm−1∑

im−1=im−2

nm − im−1 + 1.

3.2.2 Heuristics

Algorithm 3 is equivalent to minimizing the drilling cost without considering
degradation—a strategy often used in practice. It provides feasible but likely sub-
optimal solutions to Problem (25), i.e., it can be used as a heuristic. We call this the
no–degradation heuristic and propose a second, improved heuristic: the boundary
heuristic, outlined in Algorithm 4. Algorithm 4 starts with the solution of the no–
degradation heuristic (Algorithm 3). It improves the solution by iteratively solving
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Problem (25) and reassigning maintenance events occurring at geological boundaries
to the adjacent segment. It terminates after finding a solution with all maintenance
events occurring in the interior of their segment. Note that moving a maintenance
event occurring at a geological boundary to the adjacent segment cannot lead to a
worse solution, i.e. Algorithm 4 is an anytime algorithm.

Algorithm 4 Boundary heuristic

1: M̂ ← no–degradation heuristic (Algorithm 3)
2: x ← solve Problem (25) with M = M̂
3: while ∃m ∈ M, s.t. xm at geological boundary do
4: M̂ ← reassign m to neighboring segment, drop maintenance event if at x0.
5: x ← solve Problem (25) with M = M̂
6: end while

While it does not guarantee global optimality of the maintenance-segment assign-
ment, the boundary heuristic may be useful for very large instances when enumeration
is prohibitive.

4 Results

The deterministic reformulations of both case studies were implemented in Pyomo
(Version 5.6.8) [31,32], an algebraic modeling language for expressing optimization
problems. As part of this work, we developed a Python (Version 3.6.8) module which
takes a GP model trained using the Python library GPy (Version 1.9.6) [28] and pre-
dicts μ(x) and Σ(x) as Pyomo expressions. The module is available open source on
GitHub [62]. This allows the easy incorporation of GP models into Pyomo optimiza-
tion models. We use the interior-point convex optimization solver Ipopt [61] with a
multistart strategy to solve the problem. Each instance was solved 30 times with a
random starting point. The multistart procedure ends prematurely if it finds the same
optimal solution (with a relative tolerance of 10−4) 5 times.

Figure 4 shows the warping functions for both case studies. Since the production
planning warping function is concave and the production amounts xt are strictly posi-
tive, Theorem1 applies and thewarped setU is convex. Theorem1 cannot be applied to
the drill scheduling case, because its warping function is neither convex nor concave.
However, because the warping function is only slightly non-convex, the warped set U
may still be convex for many instances. To avoid solving the bilevel problem directly
we therefore use the following strategy: (i) solve the robust reformulation (Eq. 14),
(ii) check feasibility of the obtained solution using Algorithm 1 (to a tolerance of
10−2), and (iii) only solve the bilevel problem (Eq. 8) directly if the obtained solution
is infeasible. For the instances considered in this work, the obtained solution always
turns out to be feasible.
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Fig. 4 Warping functions for the drilling and production planning case studies. Input values are normalized
to zero mean and σ = 1

Table 1 Production costs ct for
each time period t

Period 1 2 3 4 5 6

Cost 0.1 0.05 0.01 0.02 0.1 0.15

Period 7 8 9 10 11 12

Cost 0.04 0.03 0.1 0.11 0.25 0.1

4.1 Production planning

For the production planning case study,we consider 4model instanceswith T = 1, 2, 3
and 6 time periods.

Table 1 shows the cost of production c. We solve each instance for 30 different con-
fidence values 1−α. The GP was trained based on 20 randomly generated data points
using both uniform and non-uniform Gaussian noise with σnoise = 0.01, 0.03, 0.05,
and 0.08.

4.1.1 Standard GP

Figure 5 shows results for the chance constrained approach using a standardGPmodel.
We plot the fraction of feasible scenarios out of 1 million random samples from the
true underlying distribution. Figure 5 shows results for four different noise scenarios.
By varying the confidence 1 − α, we adjust the robustness of the obtained solution.
Clearly, the resulting feasibility does not exactlymatch the expected feasibility (shown
as a dotted line) determined by the confidence level 1 − α. This is due to a mismatch
between the true underlying distribution and the normal distribution estimated by the
GP. As the amount of noise increases, the GP estimate deteriorates and the mismatch
between feasibility and confidence increases.
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Fig. 5 Fraction of feasible solutions as a function of confidence 1− α for the planning problem with three
time periods. 1−α = 0 corresponds to the nominal case and 1−α = 1 to 0% chance of constraint violation.
The noise in the data is uniform Gaussian with σnoise = 0.01, 0.03, 0.05 and 0.08 and a standard GP model
was used. The smaller the noise, the closer the actual feasibility is to the expected confidence (dotted line)

Fig. 6 Fraction of feasible solutions as a function of confidence 1 − α for non-uniform Gaussian noise
with σnoise = 0.01, 0.03, 0.05, and 0.08 for the production planning case study. Results are shown for
four different numbers of time periods T = 1, 2, 3 and 6. The dotted line shows the a priori bound. With
increasing numbers of time periods, the robust approximation becomes increasingly conservative
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Fig. 7 Profit, normalized with respect to nominal profit with σnoise = 0.01 (objective of Problem (5)), as
a function of confidence 1 − α for four different noise scenarios and time periods T = 1, 2, 3 and 6. As
expected, the objective value decreases with increasing confidence 1−α, because more extreme worst case
scenarios are considered

4.1.2 Warped GP

Figure 6 shows solution feasibility as a function of confidence 1− α for non-uniform
noise using a warped GPmodel and the proposed robust approach.We show results for
four different numbers of time periods. In the nominal case (1−α = 0), the feasibility
is always close to 50% because a solution which is valid for the mean price-supply
curve will also be valid for many scenarios with higher prices. In the robust case, as
expected, feasibility increases as the size of the uncertainty set, i.e. 1 − α, increases.
Notice that the robust approach is almost always a conservative approximation to the
chance constraint, as the achieved feasibility is generally larger than the confidence
1 − α. Small violations of the a priori bound (dotted line) can still occur due to a
mismatch between the GP model and the true underlying data generating distribution.
The solution conservatism also varies with the number of time periods considered.
The a priori bound relaxes as T increases.

Figure 7 shows the worst case profit, normalized with respect to the nominal profit
for σnoise = 0.01, achieved as a function of the confidence level 1 − α. As expected,
increasing the confidence 1 − α leads to a lower worst case profit, because a larger
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Fig. 8 Fraction of feasible solutions versus confidence 1− α for the iterative a posteriori procedure (Algo-
rithm 2). If the noise is small, feasibility generally tracks the expected confidence (dotted line) well. For
larger noise, deviations can occur due to mismatch between the warped GP model and the true data gener-
ating distribution

confidence hedges against more uncertain price outcomes. Note that results are shown
for values of 1− α between 0.001 and 0.999. At 1− α = 1, the profit is always zero,
because the uncertainty set includes negative prices and the optimal solution is to not
produce anything. For a fixed confidence level, noisier data will generally lead to a
smaller objective value as there is more uncertainty to hedge against.

4.1.3 Iterative procedure

Figure 8 shows solution feasibility for the iterative a posteriori procedure (Algo-
rithm 2).We use confidence values between 0.55 and 0.999, since smaller confidences
can often not be achieved using the iterative approach (the smallest achievable confi-
dence is the feasibility of the nominal solution, i.e.,∼ 50%). The a posteriori approach
is clearly less conservative than the a priori approach, however, this comes at the cost
of additional computational expense and also potential bound violations when the
warped GP does not model the underlying distribution perfectly. The a posteriori
approach could therefore be a viable less conservative alternative in relatively low
noise scenarios or when more training data is available.

4.1.4 Comparison

Figures 9 and10 compare the performance of the chance constraint reformulation using
the standard GP, the Wolfe duality based robust approximation of the warped GP, and
the a-posteriori approach. In addition to the non-uniform Gaussian distribution, we
also generate training data by sampling from a Gaussian distribution and warping the
samples through a square root function. Figures 9 and 10 show results for T = 3 only,
but the results for other uncertainty set dimensions follow the same patterns.
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Fig. 9 Percentage of α’s for which chance constraint is violated for non-uniform Gaussian data and Gaus-
sian data warped through a square root function. Results are shown for the standard GP chance constraint
approach (Standard), the warped GP robust approximation (Wolfe), and the a-posteriori approach (posteri-
ori). For an ideal approximation of the chance-constraint Eq. 23b, the percentage of α’s would always be
100%. All results are for the production planning case study with T = 3

Fig. 10 Violation of the chance constraint (when it is violated), averaged of different values of α, for non-
uniform Gaussian data and Gaussian data warped through a square root function. Results are shown for the
standard GP chance constraint approach (Standard), the warped GP robust approximation (Wolfe), and the
a-posteriori approach (Posteriori). All results are for the production planning case study with T = 3. Some
lines do not start at σnoise = 0 because for small noise values all instances are feasible and the average
violation doesn’t exist
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Figure 9 shows the percentage of 30 solutions with different values of α for which
the chance constraint is feasible. To determine if the chance constraint is feasible for
a given solution we draw 10,000 samples from the true data-generating distribution,
calculate the percentage of samples for which the constraint is satisfied, and compare it
to the intended feasibility of the chance constraint 1−α. I.e., Fig. 9 shows the percent-
age of instances for which the probability of constraint violation is actually smaller
than α. Ideally, this percentage should always be 100%. The standard GP chance con-
straint reformulation comes fairly close to 100% for the non-uniform Gaussian data
with small noise, but does considerably worse for the square root warped data and for
larger noise in general. The robust approximation leads to the highest percentage of
feasible solutions for both data generating distributions. Solutions also remain largely
feasible even as the noise in the data becomes very large. In safety-critical applications
with non-Gaussian noise, the proposed approach is therefore clearly beneficial. The
proposed a-posteriori strategy achieves high rates of feasibility when the noise in the
data is small, but deteriorates quickly as noise increases. It may therefore be beneficial
in applications with relatively low noise and where the robust approximation leads to
overly conservative solutions.

Figure 10 shows the average violation of the chance constraint in percentage points,
i.e., the average absolute difference between the actual feasibility of the solution and
the intended feasibility 1−α is shown. Only instances for which the chance constraint
is indeed violated are included in the average, so Figs. 9 and 10 show complementary
aspects of the competing approaches. Figure 10 shows that, even when the chance
constraint is violated, the robust approximation leads to smaller violations than the
standard GP chance constraints approach, again motivating the use of our proposed
approach in safety-critical applications.

4.2 Drill scheduling

For the drill scheduling case study, we consider two different geologies with 2 and
6 geological segments. We consider a range of target depths and confidence values.
Figure 11 shows the drilling, maintenance, and total cost for a target depth of 2200 m
as a function of the confidence parameter 1−α. In the deterministic case (1−α = 0.5),
the optimal strategy is to not do maintenance at all and drill as fast as possible. As
we increase 1− α to obtain more robust solutions, we eventually reach a point where
the average rate of penetration is slightly lower in order to reduce degradation and
guarantee that the well can be completed without a motor failure. For the 2-segment
geology the increased cost of drilling outweighs the zero maintenance cost at around
1 − α = 0.92. After this point the optimal strategy is to do maintenance once.

Results are shown for both the no-degradation and boundary heuristics as well as
total enumeration. For this instance, the boundary heuristic leads to the same solution
as the globally optimal enumeration strategy. The no-degradation heuristic, on the
other hand, leads to suboptimal solutions when the optimal maintenance number is
lower than the upper bound �Rn�.

Figure 12 shows the same cost components as Fig. 11 as a function of the target
depth xnd . Results are shown for three different values of 1−α (0.5, 0.75, and 0.99). A
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Fig. 11 Cost of drilling to a depth of 2200 m through a geologies with 2 and 6 segments for different values
of confidence parameter α. Results are shown for three different integer strategies. The boundary heuristic
gives the same results as total enumeration, while the no-degradation heuristic gives suboptimal solutions

Fig. 12 Cost of drilling as a function of target depth for three different for a geology with two rock types for
and for three different values of confidence parameter α. All results are obtained with the globally optimal
enumeration strategy

larger confidence always leads to a higher cost, aswould be expected, but the difference
between the deterministic solution and a 99%—confidence robust solution can be
larger or small, depending on the target depth, e.g., for a target depth of xnd = 3000m
hedging against uncertainty does not lead to significant cost increases.

Finally, Fig. 13 shows the total solution time for the three integer strategies for the
instancewith 6 geological segments as a function of confidence parameter 1−α.While
the no-degradation heuristic often leads to suboptimal solutions, as seen above, it is
computationally very cheap. The boundary heuristic comprises a good compromise: it
frequently finds the global optimumwhile beingmuch cheaper computationally. Espe-
cially for instances with many geological segments and maintenance events, where
the combinatorial complexity of the enumeration strategy becomes prohibitive, it may
therefore be a good alternative.
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Fig. 13 Total time to solve instance with 6 rock types as a function of confidence parameter α. While the
enumeration strategy is the only approach which is guaranteed to find the globally optimal solution, the
boundary heuristic often finds the same solution in significantly less time

5 Conclusion

Our approach reformulates uncertain black-box constraints, modeled by warped
Gaussian processes, into deterministic constraints guaranteed to hold with a given
confidence. We achieve this deterministic reformulation of chance constraints by con-
structing confidence ellipsoids and utilizingWolfe duality.We show that this approach
allows the solution conservatism to be controlled by a sensible confidence probabil-
ity choice. This could be especially useful in safety-critical settings where constraint
violations should be avoided.
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See Table 2.
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Table 2 Table caption ãi Uncertain parameter

F1−α
n CDF of the χ2

u Dual variable

x, z Decision variable vectors

zi Subset of decision variables z

y Observation vector in original space

f (·) Black-box objective function

g(·) Black-box constraint

h(·) Warping function

K (·, ·) Kernel function of GP

w(·) Constraint defining U
Eα α-Confidence ellipsoid

U (Warped) uncertainty set

X Deterministic feasible set

α Probability of constraint violation

δ Disturbances vector

ε Estimated feasibility

ε0 Target feasibility

ξ Observation vector in latent space

ψ = {a j , b j , c j } Parameters of warping function

μ Mean of GP at zi

σ 2
i j i j-element of covariance matrix

Σ Covariance matrix of GP at zi
Production planning

ct Production cost in period t

p̃t Uncertain price in period t

xt Production amount in period t

Drill scheduling

W Weight on bit

Ṅ Rotational speed

V Rate of penetration

Δp Differential pressure

R Degradation indicator

M Set of maintenance depths

B Connection to uncertain functions

Consider the following robust optimization problem:

min
(x,z)∈X

f (x, z) (26a)
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Fig. 14 Any l1-dimensional α-confidence ellipsoid Eα
l1

is a strict subset of the projection of higher order

α-confidence ellipsoids Eα
l2

, l2 > l1 onto the l1-dimensional space

s.t
n∑

i=1

g̃(zi )xi ≤ b ∀g̃ ∈ U g (26b)

zi ∈ R
k, k ≤ n. (26c)

Instead of uncertain parameters, Problem (26) considers an uncertainty set U g over
uncertain functions g̃(·). We are interested in defining U g in a way that it contains
“likely” realizations of the GP.

Recall that for any finite set of points z1, . . . , zl , l ∈ N, G z1,...,zl = [G(z1), . . . ,
G(zl)]ᵀ is a multivariate Gaussian with mean μ(z1, . . . , zl) and covariance matrix
Σ(z1, . . . , zl). For any such G z1,...,zl , we can construct a confidence ellipsoid
Eα(z1, . . . , zl) containing the true values [g(z1), . . . , g(zl)]ᵀ with probability 1−α:

Eα(z1, . . . , zl)l =
⎧
⎨

⎩

y ∈ R
l

s.t. (h( y) − μ)ᵀΣ−1(h( y) − μ)

≤ F1−α
l

⎫
⎬

⎭ ,

where F1−α
l = Fl(1−α) is the cumulative distribution function of the χ2 distribution

with l degrees of freedom. We then construct a set U g over functions g̃(·) for which
[g̃(z1), . . . , g̃(zl)] lies in the corresponding α-confidence ellipsoid Eα(z1, . . . , zl)l
for any l ∈ N and z1, . . . , zl with zi ∈ R

k :

UE =
⎧
⎨

⎩

g̃ : R
k → R s.t.

[g̃(z1), . . . , g̃(zl)]ᵀ ∈ Eα(z1, . . . , zl),
∀{z1, . . . , zl}, zi ∈ R

k, l ∈ N

⎫
⎬

⎭

Replacing U g with UE transforms Problem (26) into a robust optimization problem
with an uncertainty set over functions defined by an infinite number of confidence
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ellipsoids which can have arbitrarily many dimensions. This set is not semialgebraic
and it is not clear how it could practically be used in optimization. In practice, however,
we are only interested in evaluating the GP at a finite number of points. Here, the
number of evaluation points is the number of times |S| that the GP occurs in the
optimization problem. Consider the following robust optimization problem:

min
(x,z)∈X

f (x, z) (27a)

s.t yᵀx ≤ b ∀ y ∈ Eα(z) (27b)

zi ∈ R
k, k ≤ n. (27c)

Theorem 3 A vector x∗ which is a feasible solution to Problem (27) is also a feasible
solution to Problem (26).

Proof Assume x∗ is a solution to Problem (27) but not to Problem (26). Then ∃ĝ ∈ U g

s.t.
∑

i∈S ĝ(z∗i )x∗
i > 0. The definition of U g implies that [ĝ(z∗i ) : i ∈ S]ᵀ ∈ Eα(z∗i :

i ∈ S). Choosing ŷ = [ĝ(z∗i ) : i ∈ S]ᵀ, it follows that∑i∈S ŷi x∗
i = ∑

i∈S ĝ(z∗i )x∗
i >

0, meaning that {x∗, ŷ} is not feasible in Problem (27). But ŷ ∈ Eα(z∗i : i ∈ [n]),
which is a contradiction. �


Figure (14) shows that the converse of Theorem (3) is not necessarily true. Because
all confidence ellipsoids are symmetric and centered at the mean of the distribution,
any lower dimensional ellipsoid Eα

l = Eα(z1, . . . , zl), l < n is a strict subset of the
projection of Eα

n = Eα(z) onto the l-dimensional space (otherwise it would have to
contain a larger probabilitymass). Problem (27) therefore conservatively approximates
Problem (26). Furthermore, the α-confidence ellipsoid Eα(z) implies that a solution
to Problem (27) is a feasible solution to the black-box constrained problem with a
probability of at least 1 − α (see Theorem 1).

C Globally optimizing non-convex inner maximization problems

Lemma 2 Let y∗ be the solution of Problem 11, then y∗ is on the boundary of U , i.e.,
y∗ ∈ ∂U .
Proof For the sake of contradiction assume y∗ ∈ int(U), then ∃ ε > 0 s.t. y0 ∈
U ∀ y0 ∈ { y0 | ‖ y∗ − y0‖ < ε}. Let:

ẑ = y∗ + x
‖x‖

ε

2
,

then:

‖ y∗ − ẑ‖ = ‖ y∗ − y∗ − x
‖x‖

ε

2
‖ = ε

2
< ε,

and therefore ẑ ∈ U , but:

xᵀ ẑ = xᵀ
(
y∗ − x

‖x‖
ε

2

)
= xᵀ y∗ + xᵀx

‖x‖
ε

2
> xᵀ y∗,
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which is a contradiction. �

Lemma 3 The bounding box of an ellipsoid (x − μ)ᵀΣ−1(x − μ) ≤ r2 is given by
the extreme points xi = μi ± rσi i .

Proof Consider the optimization problem:

max
x

xi (28a)

s.t. (x − μ)ᵀΣ−1(x − μ) = r2 (28b)

It’s stationarity condition is:

δ = 2λΣ−1(x − μ), (29)

Pre-multiplying by (x−μ)ᵀ and substituting primal feasibility leads to the expression:

λ = xi−μi

2r2
. (30)

Substituting this back into the stationarity condition and rearranging gives:

x−μ = r2

xi−μi
Σδ, (31)

which, substituted into the primal constraint leads to the desired results:

xi = μi ± rσi i (32)

�


DDrill schedulingmodel

In order to connect the penetration rate V and degradation rate r to the drilling param-
eters, weight-on-but W and rotational speed Ṅ , we require two models:

– A bit-rock interaction model [22] connecting W and Ṅ with V and differential
pressure across the mud motor Δp

– A mud motor degradation model [2] connecting the degradation rate r with the
differential pressure Δp.

D.1 Detournay’s bit-rock interactionmodel

To model the connection between W , Ṅ , V , and Δp, we combine the bit-rock inter-
action model by Detournay et al. [22] with the PDM’s powercurve. There are three
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relevant rotational speeds in the drilling process: The drill-string speed Ṅtop, the PDM
speed (relative to the drill string) ṄPDM , and the drill-bit speed Ṅbit :

Ṅbit = Ṅtop + ṄPDM (33)

Based on Detournay et al. [22], the following drilling response model can be for-
mulated relating Nbit with the weight-on-bit W and the rate of penetration V :

V =d · Ṅbit [22, Eq. 4] (34a)

w = W

a(1 − ρ)
[22, Eq. 4] (34b)

d =
⎧
⎨

⎩

w
S∗
w∗
S∗ + w−w∗

ξε

[22, Eqs. 24,37] (34c)

where d is the depth of cut per revolution, w is a scaled weight-on-bit, and a, ρ, S∗,
w∗, ξε, Nmax , and Wmax are rock and equipment parameters.

The relationship between torque T and weight-on-bit W is given by:

t = 2T

a2(1 − ρ2)
[22, Eqn. 4]

t =
{

μγ ′w
1
ξ

(w − (1 − β)w∗)
[22, Eqs. 29,38]

(35)

For the bit parameters a = 100.4 and ρ = 0.0was used. Rock parameters are available
for Lower Jurassic shale and Sandstone in the open literature [22]:

Parameter Lower Jurassic shale Sandstone

S∗ [MPa] 278 315
w∗ [N/mm] 199 59
ξε [MPa] 125 50
μγ ′ [–] 0.48 0.93
(1 − β)w f ∗ [N/mm] 157 33
ξ [–] 0.98 0.65

Using the PDM’s power curve (Fig. 15), the bit rotational speed Ṅbit can be deter-
mined as a function of Ṅ , T , and Δp. Figure 15 shows the relationship between T ,
ṄPDM , the differential pressure over the PDM Δp, and the flow rate through the
PDM Q̇. Since torque T is specified through W (Eq. 35), Δp can be determined from
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Fig. 15 Example of a PDM power curve [2]

the power curve (Fig. 15). If additionally the flow Q̇(t) is given, ṄPDM is also fully
specified.

Putting this together, we obtain the following model relating V to W and Ṅ :

V = d
(
Ṅtop + ṄPDM

)
(36a)

w = W

a(1 − ρ)
(36b)

t = 2T

a2(1 − ρ2)
(36c)

t =
{

μγ ′w
1
ξ

(w − (1 − β)w∗)
(36d)

d =
{

w
S∗
w∗
S∗ + w−w∗

ξε

(36e)

ṄPDM = f
(
T , Q̇

)
(from Fig. 15) (36f)

Ṅtop ≤ Ṅmax (36g)

W ≤ Wmax (36h)

(safety constraints), (36i)

Assuming that the flow rate Q̇(t) is treated as a parameter, the only decision variables
areW (t), and Ṅtop(t). For the purpose of this work we model the above power curves
using quadratic equations. Notice that the variables w, t, d, and ṄPDM could easily

123



836 J. Wiebe et al.

be eliminated, resulting in a more compact albeit less intuitive/physically meaningful
formulation.

D.2Mudmotor degradationmodel

For the mud motor degradation characteristics we use data obtained by Ba et al. [2],
determined through a combination of simulation and experiments, shown in Fig. 16
[2].

Fig. 16 Maximum lifetime of a PDM as a function of differential Δp (for a given PDM geometry and
elastomer, mud, flow, and temperature) [2]
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