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Abstract
Due to their relation to the linear complementarity problem, absolute value equations
have been intensively studied recently. In this paper, we present error bound conditions
for absolute value equations. Along with the error bounds, we introduce a condition
number. We consider general scaled matrix p-norms, as well as particular p-norms.
We discuss basic properties of the condition number, including its computational
complexity. We present various bounds on the condition number, and we give exact
formulae for special classes of matrices. Moreover, we consider matrices that appear
based on the transformation from the linear complementarity problem. Finally, we
apply the error bound to convergence analysis of two methods for solving absolute
value equations.
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1 Introduction

We consider the absolute value equation problem of finding an x ∈ R
n such that

Ax − b = |x |, (AVE)
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where A ∈ R
n×n , b ∈ R

n and | · | denotes the componentwise absolute value. A
slightly more generalized form of (AVE) was introduced by Rohn [43] (see also [41]).

Many methods, including Newton-like methods [12,30,53] or concave optimiza-
tion methods [32,33,52], have been developed for solving (AVE). An important point
concerning numerical methods is the precision of the computed solution. To the best
knowledge of the authors, there exist only few papers which are devoted to this sub-
ject for (AVE); for instance see [1,49,50]. Wang et al. [49,50] use interval methods
for numerical validation. Hladík [20] derives various bounds for the solution set of
(AVE).

Error bounds play a crucial role in theoretical and numerical analysis of linear
algebraic and optimization problems [11,13,14,18,38]. In this paper, we study error
bounds for (AVE) under the assumption that uniqueness of the solution of (AVE) is
guaranteed. Then, we compute upper bounds for ‖x − x�‖, the distance to the solution
x� of (AVE), in terms of a computable residual function.

1.1 Organization and contribution of the paper

The paper is organized as follows. Section 1.2 presents basic definitions and prelimi-
naries needed to state the results. In Sect. 2, we propose error bounds for the absolute
value equations. They naturally give rise to a corresponding condition number of
(AVE). We further investigate properties of the condition number for various norms,
including the computational complexity issues. Since the calculation of the condition
number can be computationally hard, we present several bounds, and we also inspect
special classes of matrices, for which it can be computed efficiently.

It is well known that a linear complementarity problem can be formulated as an
absolute value equation [31]. Indeed, it is one of themain applications of absolute value
equations. In Sect. 3, we study error bounds for absolute value equations obtained by
the reformulation of linear complementarity problems. In addition, thanks to the given
results, we provide a new error bound condition for linear complementarity problems.

Section 4 is devoted to a relative condition number of (AVE). The motivation stems
from the relative error bounds that we propose there.

Error bounds are important in convergence analysis of iterative methods. That is
why in Sect. 5, we apply the presented error bounds for (AVE) to convergence analysis
of two prominent methods; we prove their convergence and also address the rate of
convergence.

Lastly, Sect. 6 discusses the case when (AVE) has not a unique solution. We show
a so-called local error bounds property under certain assumptions.

1.2 Basic definitions and preliminaries

The n-dimensional Euclidean space is denoted by R
n . We use e and I to denote the

vector of ones and the identity matrix, respectively. We denote an arbitrary scaling
p-norm on R

n by ‖ · ‖, that is, ‖x‖ = ‖Dx‖p for a positive diagonal matrix D and a
p-norm. In particular, ‖ · ‖1, ‖ · ‖2 and ‖ · ‖∞ stand for 1-norm, 2-norm and ∞-norm,
respectively. We use sgn(x) to denote the componentwise sign of x .
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Let A and B be n×nmatrices.Wedenote the smallest singular value and the spectral
radius of A by σmin(A) and ρ(A), respectively. The eigenvalues of a symmetric matrix
A ∈ R

n×n are denoted and sorted as follows: λmax(A) = λ1(A) ≥ · · · ≥ λn(A) =
λmin(A). For a given norm ‖ · ‖ on Rn , ‖A‖ denotes the induced matrix norm by ‖ · ‖,
i.e.,

‖A‖ = max{‖Ax‖ : ‖x‖ = 1}.

Throughout the paper, we consider only induced matrix norms. The matrix inequality
A ≥ B, |A| and max(A, B) are understood entrywise. For d ∈ R

n , diag(d) stands for
the diagonal matrix whose entries on the diagonal are the components of d. In contrast,
Diag(A) denotes the vector of diagonal elements of A. The i th row and j th column
of A are denoted by Ai∗ and A∗ j , respectively. We denote the comparison matrix of
A by 〈A〉, which is defined as

〈A〉i i = |Aii |, i = 1, . . . , n,

〈A〉i j = −|Ai j |, i, j = 1, . . . , n, i 	= j .

We recall the following definitions for an n × n real matrix A:

– A is a P-matrix if each principal minor of A is positive.
– A is an M-matrix if A−1 ≥ 0 and Ai j ≤ 0 for i, j = 1, 2, . . . , n with i 	= j .
– A is an H-matrix if its comparison matrix is an M-matrix.

We will exploit some results from interval linear algebra, so we recall some results
from this discipline. For two n × n matrices A and A, A ≤ A, the interval matrix
A = [A, A] is defined as A = {A : A ≤ A ≤ A}. An interval matrix A is called
regular if each A ∈ A is nonsingular; similarly, we defineH-matrix property of interval
matrices. Furthermore, we denote and define the inverse of a regular interval matrix A
as A−1 := {A−1 : A ∈ A}. Note that the inverse of an interval matrix is not necessarily
an interval matrix.

In this paper, generalized Jacobian matrices [9] are used in the presence of nons-
mooth functions. Let f : Rn → R

m be a locally Lipschitz function. The generalized
Jacobian of f at x̂ , denoted by ∂ f (x̂), is defined as

∂ f (x̂) := co{limn→∞ ∇ f (xn) : xn → x̂, xn /∈ X f },

where X f is the set of points at which f is not differentiable and co(S) denotes the
convex hull of a set S.

In what follows, we remind some known theorems that we will need later on.

Theorem 1 (Wu and Li [51, Theorem 3.3]) (AVE) has a unique solution for each
b ∈ R

n if and only if the interval matrix [A − I , A + I ] is regular.
Theorem 2 (Rohn et al. [45, Theorem 4]) (AVE) has a unique solution for each b ∈ R

n

if ρ(|A−1|) < 1.
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Theorem 3 (Kuttler [25]) An interval matrix A is inverse nonnegative (i.e., A−1 ≥ 0

for every A ∈ A) if and only if A−1 ≥ 0 and A
−1 ≥ 0. In which case, A−1 ⊆

[A−1
, A−1].

The first item of the following results can be found, e.g., in Berman and Plemmons
[3], Theorem2.3 inChapter 6. The second item is Proposition 3.6.3(iii) fromNeumaier
[36] with B := I .

Theorem 4 If A ∈ R
n×n is an M-matrix, then the following properties hold:

(i) A + I is an M-matrix and ρ((A + I )−1(A − I )) < 1;
(ii) A − I is an M-matrix if and only if ρ(A−1) < 1.

The following result is a special case of Theorem 3.7.5 from Neumaier [36].

Theorem 5 Let A ∈ R
n×n be an H-matrix. Then

(i) |A−1| ≤ 〈A〉−1;
(ii) [A − I , A + I ] is an H-matrix if and only if ρ(〈A〉−1) < 1.

The Sherman-Morrison formula for the inverse of a rank-one update can be found,
e.g., in [22].

Theorem 6 (Sherman-Morrison formula) Let A ∈ R
n×n be nonsingular and u, v ∈

R
n. If vT A−1u 	= −1, then (A + uvT )−1 = A−1 − 1

1+vT A−1u
A−1uvT A−1.

2 Error bounds for the absolute value equations

Consider an absolute value equation (AVE).We will need the assumption of regularity
of [A − I , A + I ] throughout this section; by Theorem 1, (AVE) has then a unique
solution and we denote it by x�. Even though (AVE) can possess multiple solutions in
practice (we discuss the case of multiple solutions in Sect. 6), there are also important
classes of problems leading to a unique solution. Consider, for instance, strictly convex
quadratic programs or Rohn’s characterization of extreme points of the solution set of
interval equations [41].

Theorem 7 If the interval matrix [A − I , A + I ] is regular, then

‖x − x�‖ ≤ max‖d‖∞≤1
‖(A − diag(d))−1‖ · ‖Ax − |x | − b‖, ∀x ∈ R

n . (1)

Proof Note that due to regularity of [A− I , A+ I ] the right side of the above inequality
is finite. Define the residual function φ : Rn → R

n by φ(x) = Ax − |x | − b. By the
mean value theorem, see Theorem 8 in [19],

φ(x) = φ(x) − φ(x�) = (
∑n

i=1 λiAi )(x − x�),
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where Ai ∈ ∂φ(xi ), xi ∈ co({x, x�}), λi ≥ 0, i = 1, . . . , n and
∑n

i=1 λi = 1. It is
easily seen that ∂φ(y) ⊆ {A + diag(d) : ‖d‖∞ ≤ 1} = [A − I , A + I ] for y ∈ R

n .
Due to the convexity of {A + diag(d) : ‖d‖∞ ≤ 1}, we have

φ(x) = Â(x − x�),

for some Â ∈ [A− I , A+ I ]. By multiplying Â−1 on both sides and using the induced
norm property, we obtain

‖x − x�‖ = ‖ Â−1φ(x)‖ ≤ ‖ Â−1‖ · ‖φ(x)‖ ≤ max‖d‖∞≤1
‖(A − diag(d))−1‖ · ‖φ(x)‖,

which completes the proof. ��
To take advantage of this formulation, we need to compute the optimal value of the

following optimization problem,

c(A) := max ‖(A − diag(d))−1‖ s.t. ‖d‖∞ ≤ 1. (2)

We call the optimal value of (2) the condition number of the absolute value equa-
tion (AVE) with respect to the norm ‖ · ‖. In addition, we denote the condition number
with respect to the 1-norm, 2-norm and ∞-norm by c1(A), c2(A) and c∞(A), respec-
tively. By the properties of matrix norms, we have the following results.

Proposition 1 Let [A − I , A + I ] be regular and α be a scalar with |α| ≥ 1. Then
c(A) and c(αA) exist, and

(i) c(−A) = c(A);
(ii) c1(AT ) = c∞(A);
(iii) c(αA) ≤ |α−1|c(A).

Proof Parts (i) and (ii) are straightforward. Part (iii) follows from the fact that

max‖d‖∞≤1
‖(αA − diag(d))−1‖ = max

‖d‖∞≤|α−1|
‖(αA − αdiag(d))−1‖

≤ |α−1| max‖d‖∞≤1
‖(A − diag(d))−1‖.

��
In the next proposition, we show that optimization problem (2) attains its maximum

at some vertices of the box {d : ‖d‖∞ ≤ 1} = [−e, e].
Proposition 2 Let the interval matrix [A − I , A + I ] be regular. Then, there exists a
vertex of the box [−e, e] which is a solution of (2).

Proof It is enough to show that function d �→ ‖(A − diag(d))−1‖ is convex in each
coordinate di , i = 1, . . . , n. Then themaximummust be attained in a vertex of [−e, e].

Without loss of generality we show convexity in d1. Let f : [−1, 1] → R be
given by f (t) = ‖(A − diag((t, ď)))−1‖, where ď is obtained by removing the first
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component of d̂ . By the Sherman-Morrison formula (Theorem 6), f (t) = ‖ Â−1 −
t

1+t Â−1
11

E‖, where Â = A + diag((0, ď)) and E = Â−1
∗1 Â−1

1∗ . Due to regularity of

[A − I , A + I ], function t
1+t Â−1

11
is well-defined for t ∈ [−1, 1]. Since ‖A + τ E‖

as a function of τ is convex and g(t) = t
1+t Â−1

11
is strictly monotone on [−1, 1], f is

convex on its domain [4]. ��
Remark 1 Note that function d �→ ‖(A − diag(d))−1‖ is not necessarily convex or
concave; see Example 1. By Proposition 2, to handle problem (2), one needs to check
solely all vertices of [−e, e]. As the number of vertices is 2n , this method may not be
effective for large n. Indeed, problem (2) is NP-hard in general. It is known that for
any rational p ∈ [1,∞), except for p = 1, 2, computation of the matrix p-norm of a
given matrix is NP-hard [17]. Consequently, problem (2) is NP-hard for any rational
p ∈ [1,∞) except p = 1, 2. We prove intractability for 1-norm, so it is NP-hard for
∞-norm, too. We conjecture that it is also NP-hard for 2-norm.

Proposition 3 Computation of c1(A) is an NP-hard problem.

Proof By [42], solving the problem

max eT |x | s.t. |Ax | ≤ e (3)

is NP-hard. Even more, it is intractable even with accuracy less than 1
2 when A−1 is a

so called MC-matrix [42]. Recall that M ∈ R
n×n is an MC matrix if it is symmetric,

Mii = n and Mi j ∈ {0,−1}, i 	= j . For anMCmatrix M we have λmax(M) ≤ 2n−1,
from which λmin(M−1) ≥ 1

2n−1 . Therefore λmin(A) ≥ 1
2n−1 and we can achieve

λmin(A) > 1 by a suitable scaling. As a consequence, [A − I , A + I ] is regular.
Feasible solutions to the above optimization problem can be equivalently charac-

terized as

Ax = b, b ∈ [−e, e],
or, substituting b = diag(b)e = diag(b)y with y = e,

(
A −diag(b)
0 I

) (
x
y

)

=
(
0
e

)

, b ∈ [−e, e].

Introducing an auxiliary variable z = 1, we get

⎛

⎝
A −diag(b) 0
0 I −e
0 0 1

⎞

⎠

⎛

⎝
x
y
z

⎞

⎠ =
⎛

⎝
0
0
1

⎞

⎠ , b ∈ [−e, e].

Rewrite the system as

⎛

⎝
D A 0
I 0 −e
0 0 1

⎞

⎠

⎛

⎝
y
x
z

⎞

⎠ =
⎛

⎝
0
0
1

⎞

⎠ , |D| ≤ I .
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Let α > 0 be sufficiently large. The system equivalently reads

⎛

⎝
D A 0
α I 0 −eα
0 0 2

⎞

⎠

⎛

⎜
⎝

1
α
y

1
α
x

1
α
z

⎞

⎟
⎠ =

⎛

⎝
0
0
2
α

⎞

⎠ , |D| ≤ I .

Now, we relax the system by introducing intervals on the remaining diagonal entries

⎛

⎝
D A 0
α I D′ −eα
0 0 2 + d

⎞

⎠

⎛

⎜
⎝

1
α
y

1
α
x

1
α
z

⎞

⎟
⎠ =

⎛

⎝
0
0
2
α

⎞

⎠ , |D|, |D′| ≤ I , |d| ≤ 1.

Denote by M(D, D′, d) the constraint matrix. The solution is 2
α
-multiple of the last

column of the inverse matrix M(D, D′, d)−1. That is why we analytically express the
inverse matrix (notice that it exists due to regularity of [αA − I , αA + I ])

M(D, D′, d)−1 =
⎛

⎜
⎝

−D′C 1
α
(I + D′CD) 1

2+d (e + D′CDe)

αC −CD − α
2+d CDe

0 0 1
2+d

⎞

⎟
⎠ ,

where C := (αA−DD′)−1, |D|, |D′| ≤ I , |d| ≤ 1. The idea of the proof is to reduce
the above mentioned NP-hard problem to computation of the condition number for
matrix M(0, 0, 0). Obviously, 1-norm of M(D, D′, d)−1 is attained for the value of
d = −1, so we can fix it for the remainder of the proof.

Claim A. There exist D̄ and D̄′ such that |D̄| = |D̄′| = I and c1(M(0, 0, 0)) =
‖M(D̄, D̄′,−1)−1

∗(2n+1)‖1.
Proof of the Claim A. By Proposition 2, the maximum norm is attained for |D| =
|D′| = I . Therefore, we need only to investigate the matrices with |D| = |D′| = I .
Let c1(M(0, 0, 0)) = ‖M(D, D′,−1)−1‖1 with |D| = |D′| = I . If 1-norm of
M(D, D′,−1)−1 is attained for the last column, the claim is resulted. Otherwise,
since α > 0 is arbitrarily large, the 1-norm is attained for no column of the middle
part. Suppose that the norm is attained for the i th column of the first column block.
We compare the norms of this column and the last column of M(D, D′, d)−1, that is,
we compare vectors

⎛

⎝
−D′C∗i
αC∗i
0

⎞

⎠ and

⎛

⎝
e + D′CDe

−αCDe
1

⎞

⎠ .

We compare separately their three blocks. Obviously, for the last entry the latter is
larger. Since C → 0 as α → ∞, the first block of entries of the former vector is
arbitrarily small and neglectable. Thus, we focus on the second block. The former
vector has entries αC∗i . Notice that by the triangle inequality one has either ‖u‖ ≤
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‖u + v‖ or ‖u‖ ≤ ‖u − v‖ for any u, v ∈ R
n and any norm. Thus, one can choose a

suitable D̄ such that |D̄| = I and ‖αC∗i‖1 ≤ ‖αC D̄e‖1 = ‖αC∗i+α
∑

j 	=i C∗ j d̄ j j‖1.
Furthermore, one can select a matrix D̄′ with |D̄′| = I and ‖e + D′CDe‖1 = ‖e +
D̄′C D̄e‖1. Because c1(M(0, 0, 0)) = ‖M(D, D′,−1)−1‖1, the givenmatrices D̄ and
D̄′ fulfill the claim.

Claim B. The 1-norm of the last column is arbitrarily close to 1+ n + eT |A−1De|.
Proof of the Claim B. The last entry of the column is 1. Since C → 0 as α → ∞,
the first block tends to e as α → ∞. The second block reads −αCDe = −(A −
1
α
DD′)−1De, which tends to−A−1De asα → ∞. So its 1-norm tends to eT |A−1De|.
By ClaimB, the 1-norm of the last column is by 1+n larger than the objective value

of (3). So by maximizing 1-norm of M(D, D′, d)−1 we can deduce the maximum of
(3) with arbitrary precision. Notice that eT |A−1|e is an upper bound on (3) and it has
polynomial size, so we can find α of polynomial size, too by the standard means (c.f.
[46]). ��

In general, the computation of c(A) is not easy. However, computation of the condi-
tion number with respect to some norms or for some classes of matrices is not difficult.
In the rest of the section, we study the given condition number from this aspect.

Proposition 4 If maxD∈[−I ,I ] ‖A−1D‖ ≤ γ < 1, then

c(A)‖·‖ ≤ ‖A−1‖
1 − γ

.

Proof Let D := diag(d) for some d with |d| ≤ e. By the assumption, ρ(A−1D) ≤
‖A−1D‖ < 1. By using Neumann series [22],

(A − D)−1 = (I − A−1D)−1A−1 =
∞∑

k=0

(
A−1D

)k
A−1.

We have

‖(A − D)−1‖ ≤
∞∑

k=0

∥
∥A−1D

∥
∥k · ‖A−1‖ ≤ ‖A−1‖

1 − γ
.

��
We say that a matrix norm is monotone if |A| ≤ B implies ‖A‖ ≤ ‖B‖. For

instance, the scaled matrix p-norms are monotone. It is seen that if ‖(|A−1|)‖ < 1 for
a monotone norm ‖ · ‖, the assumption of Proposition 4 holds. It is worth mentioning
that if ‖A−1‖ < 1 and if maxD∈[−I ,I ] ‖D‖ ≤ 1, then we have the the assumption of
Proposition 4, too.

Theorem 8 If ρ(|A−1|) < γ < 1, then there exists a scaling 1-norm � · � such that

�
�x − x�

�
� ≤ γ

1−γ

�
�Ax − |x | − b

�
� , ∀x ∈ R

n . (4)
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Proof By Theorems 1 and 2, (AVE) has a unique solution and [A− I , A+ I ] is regular.
Due to the continuity of eigenvalues with respect to the matrix elements, there exists
an invertible matrix B with |A−1| < B and ρ(B) = γ . By Perron-Frobenius theorem,
there exists v > 0 such that Bv = ρ(B)v. We define norm � ·� as �x� = vT |x |. Note
that �B� = ρ(B). As Ax� − b − |x�| = 0, we have

Ax − |x | − b = A(x − x�) − (|x | − |x�|)
⇒ x − x� = A−1(Ax − |x | − b) + A−1(|x | − |x�|)
⇒ |x − x�| ≤ |A−1||Ax − |x | − b| + |A−1|(||x | − |x�||)
⇒ (I − |A−1|)|x − x�| ≤ |A−1||Ax − |x | − b|

By Neumann series theorem [22], (I − |A−1|)−1 and (I − B)−1 exist and are non-
negative. Hence,

|x − x�| ≤ (I − |A−1|)−1|A−1||Ax − |x | − b|
⇒ |x − x�| ≤ (I − B)−1B|Ax − |x | − b|

The last inequality follows from (I − |A−1|)−1 = ∑∞
i=0 |A−1|i ≤ ∑∞

i=0 B
i =

(I − B)−1. Hence,

�x − x�� ≤ �(I − B)−1� · �B� · �
�Ax − |x | − b

�
�

≤
( ∞∑

i=0

�Bi�
)

�B� · �
�Ax − |x | − b

�
�

≤ γ
1−γ

�
�Ax − |x | − b

�
� .

Moreover, for d with ‖d‖∞ ≤ 1,

|(B−1 − diag(d))−1| = |(I − Bdiag(d))−1B| =
∣
∣
∣
∣

∞∑

i=0

(Bdiag(d))i B

∣
∣
∣
∣ ≤

∞∑

i=1

Bi .

Since
∑∞

i=0 B
i = −(B−1 − I )−1, the Perron–Frobenius theorem then implies

c�·�(B−1) = γ
1−γ

. ��
Onemaywonderwhywedonot use thewell-known resultwhich states the existence

of a matrix norm �.� with �A� < ρ, see Lemma 5.6.10 in [22], to prove the above
theorem. The underlying reason is that the given matrix norm by this result is not
necessarily a scaled matrix p-norm. It is worth mentioning that, under the assumption
of Theorem 8, when |A−1| > 0, one obtains

c�·�(A) = ρ(|A−1|)
1 − ρ(|A−1|) , (5)

123



94 M. Zamani, M. Hladík

for some scaling 1-norm.Note that a sufficient condition for havingρ(|A−1|) < 1 is the
existence of a diagonalmatrix Swith |S| = I such that A−1S ≥ 0 and (A−S)−1S ≥ 0.
In fact, Theorem5.2 inChapter 7 of [3] implies thatρ(A−1S) < 1 under this condition,
which is equivalent to ρ(|A−1|) < 1.

Error bounds can be utilized as a tool in stability analysis [10,14]. As mentioned
earlier, (AVE) has a unique solution for each b ∈ R

n if and only if [A − I , A + I ] is
regular. Denote

A := {A ∈ R
n×n : [A − I , A + I ] is regular}.

It is easily seen thatA is an open set. Let function X(A, b) : A×R
n → R

n return the
solution of (AVE). In the following proposition, we list some properties of function
X .

Proposition 5 Let A ∈ A.

(i) For any b1, b2 ∈ R
n,

‖X(A, b1) − X(A, b2)‖ ≤ c(A)‖b1 − b2‖.

(ii) Function X is locally Lipschitz with modulus c(A), that is,

‖X(A1, b1) − X(A2, b2)‖ ≤ c(A)(‖A1 − A2‖ + ‖b1 − b2‖) (6)

for any A1, A2 and b1, b2 in certain neighborhoods of A and b, respectively.

Proof First, we show the first part. Suppose that X(A, b1) = x1 and X(A, b2) = x2.
Thus,

Ax1 − |x1| − (Ax2 − |x2|) = b1 − b2.

There exists a matrix D ∈ [−I , I ] such that |x2| − |x1| = D(x1 − x2). So the above
equality can be written as

(A + D)(x1 − x2) = b1 − b2,

which implies that ‖x1 − x2‖ ≤ ‖(A + D)−1‖ · ‖b1 − b2‖ ≤ c(A)‖b1 − b2‖.
Now,we prove the second part. Consider the locally Lipschitz functionφ : A×R

n×
R
n → R

n given byφ(A, b, x) = Ax−|x |−b.We have ∂xφ(A, b, x) ⊆ [A− I , A+ I ].
As [A − I , A + I ] is regular, the implicit function theorem (see Chapter 7 in [9])
implies that there exists a locally Lipschitz function X(A, b) : A × R

n → R
n with

φ(A, b, X(A, b)) = 0. In addition, (6) holds. ��
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2.1 Condition number of AVE for 2-norm

Since ‖A−1‖2 = 1
σmin(A)

, the value of c2(A) can be computed as the optimal value of
the following optimization problem,

min σmin(A − diag(d)) s.t. ‖d‖∞ ≤ 1. (7)

In general, the function σmin(·) is neither convex nor concave; see Remark 5.2 in [39].
In (7), σmin(·) is a function of the matrix diagonal entries. Nonetheless, σmin(·) is also
neither convex nor concave in this case; the following example clarifies this point.
From this perspective, Proposition 2 mentioned above is by far not obvious.

Example 1 Let A = (
2 1−2 1

)
and E = (

0 0
0 1

)
. We have

σmin(A) = √
2 < 1

2σmin(A + I ) + 1
2σmin(A − I ) ≈ 1.541,

σmin(A) = √
2 > 1

2σmin(A + E) + 1
2σmin(A − E) ≈ 1.34.

In the next proposition, we give a formula for symmetric matrices. Before we get
to the proposition, we present a lemma, which follows directly from [21, Thm. 17].

Lemma 1 Let A be symmetric. The interval matrix [A − I , A + I ] is regular if and
only if

|λi (A)| > 1, i = 1, . . . , n. (8)

Note that condition (8) is equivalent to σmin(A) > 1.

Proposition 6 Let the interval matrix [A − I , A + I ] be regular. If A is symmetric,
then c2(A) = 1

σmin(A)−1 .

Proof As [A − I , A + I ] is regular, σmin(A) > 1. For d with ‖d‖∞ ≤ 1, σmin(A +
diag(d)) ≥ σmin(A) − 1. By the proof of Lemma 1, it is seen that there exists d̄ with
‖d̄‖∞ = 1 such that σmin(A+diag(d̄)) = σmin(A)−1. Hence, the proposition follows
from formulation (7). ��
Proposition 7 If σmin(A) > 1, then

c2(A) ≤ 1

σmin(A) − 1
. (9)

Proof Note that under the assumption, (AVE) has a unique solution for any b, see
Proposition 3 in [31], and consequently [A − I , A + I ] is regular. Let d̂ ∈ {d :
‖d‖∞ ≤ 1}. Consider the formulation (7). Since σmin(A+ B) ≥ σmin(A)−‖B‖2 and
max‖d‖∞≤1 ‖diag(d)‖2 = 1, we obtain the desired inequality. ��

In the following example, we show that the bound (9) can be arbitrary large while
the error bound with respect to 2-norm, c2(A), is bounded.
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Example 2 Let ε > 0,

A =
√
2
2

(
1 −1
1 1

) (
5 0
0 1 + ε

)

and E =
(−1 0

0 1

)

.

As σmin(A) = 1 + ε, we have the assumption of Proposition 7. By Proposition 2,

c2(A) = max
{
‖(A − I )−1‖2, ‖(A − E)−1‖2, ‖(A + E)−1‖2, ‖(A + I )−1‖2

}
.

With a little algebra, it is seen that c2(A) ≤ 6, while 1
σmin(A)−1 goes to infinity as ε

tends to zero.

For matrix A, let

ri (A) =
n∑

j=1, j 	=i

|Ai j |, cli (A) =
n∑

j=1, j 	=i

|A ji |.

Proposition 8 Let d̄ = sgn(Diag(A)). If

α := min
i=1,...,n

{|Aii | − 1
2 (ri (A) + cli (A))

}
> 1,

then c2(A) = ‖(A − diag(d̄))−1‖2.

Proof Let d ∈ {d : ‖d‖∞ ≤ 1}. By Theorem 3 in [23], σmin(A − diag(d)) ≥ α − 1.
So, [A − I , A + I ] is regular. Since ‖A−1‖−2

2 = λmin(AT A), by Proposition 2,
c2(A)−2 = min|d|=e λmin

(
(A − diag(d))T (A − diag(d))

)
. Suppose that |d| = e.

Consider matrix

T = (A − diag(d))T (A − diag(d)) − (A − diag(d̄))T (A − diag(d̄))

= diag(d̄)A + AT diag(d̄) − diag(d)A − AT diag(d).

It is easily seen that T is diagonally dominant with nonnegative diagonal, so it
is positive semi-definite. Consequently, λmin

(
(A − diag(d))T (A − diag(d))

) ≥
λmin

(
(A − diag(d̄))T (A − diag(d̄))

)
, which implies the desired equality. ��

Note that under the assumptions of Proposition 8, we also have the following bound

c2(A) ≤ 1

α − 1
.

As for a permutation matrix P , ‖AP‖2 = ‖A‖2 and [−I , I ]P = [−I , I ], the follow-
ing corollary gives a more generalized form of Proposition 8.
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Corollary 1 Let P be a permutation matrix and B = AP. If

α := min
i=1,...,n

{|Bii | − 1
2 (ri (B) + cli (B))

}
> 1,

then c2(A) = ‖(B − diag(d̄))−1‖2, where d̄ = sgn(Diag(B)).

Asmentioned earlier, one class of effective approaches to handle (AVE). is concave
optimizationmethods.Mangasarian [32] proposed the following concave optimization
problem,

min eT (Ax − |x | − b) s.t. (A + I )x ≥ b, (A − I )x ≥ b. (10)

He showed that (AVE) has a solution if and only if the optimal value of (10) is zero.
Now,we show that (10) has theweak sharpminima property. Consider an optimization
problemminx∈X f (x)with the optimal solution set S. The set S is called a weak sharp
minima if there is an α > 0 such that

α · distS(x) ≤ f (x) − f (s), ∀x ∈ X , ∀s ∈ S,

where distS(x) := min{‖x − s‖2 : s ∈ S}. Weak sharp minima notion has wide
applications in the convergence analysis of iterative methods and error bounds [5,6].

Proposition 9 Let A ∈ A. Then the optimal solution of (10) is a weak sharp minimum.

Proof Let X and x� denote the feasible set and the unique solution of (10), respectively.
By Theorem 7, c2(A) ∈ R+ and

1

c2(A)
‖x − x�‖2 ≤ ‖Ax − |x | − b‖2, ∀x ∈ X .

As ‖Ax − |x | − b‖2 ≤ ‖Ax − |x | − b‖1 and Ax − |x | − b ≥ 0 for x ∈ X , we have

1

c2(A)
‖x − x�‖2 ≤ eT (Ax − |x | − b), ∀x ∈ X ,

which shows that x� is a weak sharp minimum. ��

2.2 Condition number of AVE for∞-norm

Some upper bounds were proposed for ‖A−1‖∞ and ‖A−1‖1; see [24,26,35,48]. As
Theorem 7 holds for any scaling p-norm, it would be advantageous to use these norms.

Proposition 10 If (AP − I )−1 ≥ 0 and (AP + I )−1 ≥ 0 for some diagonal matrix
P with |Diag(P)| = e, then c∞(A) = ‖(AP − I )−1e‖∞.
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Proof By Theorem 3, under the assumptions of the proposition, the interval matrix
[AP − I , AP + I ] is regular and inverse nonnegative. In addition, [AP − I , AP +
I ]−1 ⊆ [(AP + I )−1, (AP − I )−1]. Since [AP − I , AP + I ] = [A − I , A + I ]P ,
the interval matrix [A− I , A+ I ] is regular. It is easily seen that for any non-negative
matrix M we have ‖M‖∞ = ‖Me‖∞. Because ‖PM‖∞ = ‖M‖∞ for any matrix M ,
we get c∞(A) = ‖(AP − I )−1e‖∞. ��

Onecan establish that the assumptionof Proposition 10 is equivalent to the condition
that each row of B has a constant pattern of signs for any B ∈ [A − I , A + I ]−1.
Moreover, we have c1(A) = ‖(AP− I )−1‖1 under the assumptions of Proposition 10.

Proposition 11 If ρ(|A−1|) < 1, then

c∞(A) ≤ ‖max(|B1|, |B2|)‖∞, (11)

where H = (I − |A−1|)−1, T = (2diag(Diag(H)) − I )−1 and

B1 = min{−H |A−1| + T (A−1 + |A−1|), T (−H |A−1| + T (A−1 + |A−1|))},
B2 = max{H |A−1| + T (A−1 − |A−1|), T (H |A−1| + T (A−1 − |A−1|))}.

Proof By Theorem 2.40 in [15], [A − I , A + I ]−1 ⊆ [B1, B2]. Thus,

c∞(A) = max‖d‖∞≤1
‖(A − diag(d))−1‖∞

≤ max
X∈[B1,B2]

‖X‖∞ ≤ ‖max(|B1|, |B2|)‖∞.

��
Proposition 12 Let A be an M-matrix. If ρ(A−1) < 1, then

c∞(A) = ‖(A − I )−1e‖∞. (12)

Proof ByTheorem4(ii), A−I is anM-matrix. In addition, asM-matrices are preserved
by the addition of positive diagonal matrices [3], A + I is also an M-matrix. Hence,
by Theorem 3, [A− I , A+ I ] is inverse nonnegative. The statement now follows from
Proposition 10 with P = I . ��
Proposition 13 Let A be an H-matrix. If ρ(〈A〉−1) < 1, then

c∞(A) ≤ ‖(〈A〉 − I )−1e‖∞. (13)

Proof By Theorem 5, the interval matrix [A − I , A + I ] is an H-matrix, and thus
it is regular. In addition, 〈[A − I , A + I ]〉 = [〈A〉 − I , 〈A〉 + I ]. By Theorem 3,
[〈A〉 − I , 〈A〉 + I ]−1 ⊆ [(〈A〉 + I )−1, (〈A〉 − I )−1]. Because (〈A〉 + I )−1 ≥ 0,
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c∞(A) = max‖d‖∞≤1
‖(A − diag(d))−1‖∞

≤ max‖d‖∞≤1
‖〈A − diag(d)〉−1‖∞

= ‖(〈A〉 − I )−1e‖∞,

where the first inequality follows from Theorem 5. ��

Proposition 14 Let r > 0 and �x� := ‖diag(r)−1x‖∞. If

α := min
i=1,...,n

{|Aii | − 1 − r−1
i

∑

j 	=i

r j |Ai j |} > 0,

then c�·�(A) ≤ 1
α
.

Proof First, we show that for a given d with ‖d‖∞ ≤ 1, we have the following
inequality

min
�x�=1

�(A + diag(d))x� ≥ α. (14)

Suppose that x̄ ∈ argmin�x�=1 �(A + diag(d))x� and x̄k = rk . We have

�(A + diag(d))x̄� ≥ |r−1
k (A − diag(d))k∗ x̄ |

≥ |Akk − dk | − r−1
k

∑

j 	=k

|Akj x̄ j |

≥ |Akk | − 1 − r−1
k

∑

j 	=k

r j |x̄ j |
r j

|Akj |

≥ |Akk | − 1 − r−1
k

∑

j 	=k

|Akj |r j ≥ α.

Consequently, interval matrix [A − I , A + I ] is regular. Similarly to the proof of
Proposition 8, one can show that

c�·�(A)−1 = min‖d‖∞≤1,�x�=1
�(A + diag(d))x�.

The above equality and (14) imply c�·�(A) ≤ 1
α
, and the proof is complete. ��

Corollary 2 If α := mini=1,...,n{|Aii | − ri (A)} > 1, then c∞(A) ≤ 1
α−1 .

Corollary 3 If β := min j=1,...,n{|A j j | − cl j (A)} > 1, then c1(A) ≤ 1
β−1 .
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3 Error bounds and a condition number of AVE related to linear
complementarity problems

The study of (AVE) is inspired from the well-known linear complementarity problem
(LCP) [31], which provides a unified framework for many mathematical programs
[10]. In the section, we study error bounds for (AVE) obtained by transforming LCPs.
Consider a general linear complementarity problem

Mx + q ≥ 0, x ≥ 0, xT (Mx + q) = 0, (LCP)

where M ∈ R
n×n and q ∈ R

n . Throughout the section, without loss of generality, we
may assume that one is not an eigenvalue of M . So matrix (M − I ) is non-singular.
This assumption is not restrictive, as one can rescale M and q in (LCP). Problem
(LCP) can be formulated as the following (AVE),

(M + I )(M − I )−1(x + q) = |x |; (15)

see [29]. The following proposition states the relationship between M and (M +
I )(M − I )−1; see Theorem 2 in [44].

Proposition 15 Let M − I be non-singular. Matrix M is a P-matrix if and only if
[(M + I )(M − I )−1 − I , (M + I )(M − I )−1 + I ] is regular.

In addition to the error bounds introduced for some classes of matrices in the former
section, in the following results, we propose error bounds for absolute value equation
(15) according to some properties of M .

Proposition 16 Let M be an M-matrix with Diag(M) ≤ e and M − I be nonsingular.
Then

c((M + I )(M − I )−1) = 1

2
‖I − M−1‖.

Proof Since the off-diagonal elements of M are non-positive and M−1 ≥ 0, we have
Diag(M−1) ≥ e. Putting A = (M + I )(M − I )−1, we get

A − I = ((M + I ) − (M − I ))(M − I )−1 = 2(M − I )−1,

A + I = 2M(M − I )−1 = 2(I − M−1)−1.

Therefore, (A− I )−1 = 1
2 (M− I ) ≤ 0 and (A+ I )−1 = 1

2 (I −M−1) ≤ 0. Theorem 3
implies that [A − I , A + I ] is regular and [A − I , A + I ]−1 ⊆ 1

2 [I − M−1, M − I ],
and consequently, c(A) = 1

2‖I − M−1‖. ��
It is worth noting that the assumption Diag(M) ≤ e is not restrictive since

LCP(M, q) is equivalent to LCP(λM, λq) for λ > 0. In the following, we inves-
tigate the case that M is an H-matrix. Before we get to the theorem, which gives a
bound in this case, we need to present a lemma first.
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Lemma 2 If M is an H-matrix with non-negative diagonal, then M+ I is an H-matrix.

Proof By the assumption, 〈M + I 〉 = 〈M〉+ I . By using Theorem 4(i), M + I should
be an H-matrix. ��
Theorem 9 Let M− I be nonsingular and let M be an H-matrix with 0 ≤ Diag(M) ≤
e. Then

c((M + I )(M − I )−1) ≤ 1

2
‖〈M〉−1 − I‖.

Proof Consider vector d ∈ R
n with ‖d‖∞ ≤ 1. We have

|(M − I )(M + I )−1diag(d)| ≤ |(M − I )(M + I )−1|
≤ |M − I ||(M + I )−1|
≤ (I − 〈M〉)(〈M〉 + I )−1,

where the last inequality follows from |M − I | ≤ I −〈M〉, Theorem 5 and Lemma 2.
Thus, ρ((M − I )(M + I )−1diag(d)) ≤ ρ((I − 〈M〉)(〈M〉 + I )−1). Since 〈M〉 is
an M-matrix and ρ(BC) = ρ(CB), we have ρ((I − 〈M〉)(〈M〉 + I )−1) < 1; see
Theorem 4(i). Hence, ρ((M − I )(M + I )−1diag(d)) < 1.

Let Â ∈ [(M + I )(M − I )−1 − I , (M + I )(M − I )−1 + I ]. So Â = (M + I )(M −
I )−1 − diag(d) for some d with ‖d‖∞ ≤ 1. Hence,

((M + I )(M − I )−1 − diag(d))−1

= (I − (M − I )(M + I )−1diag(d))−1(M − I )(M + I )−1.

By applying Neumann series and the obtained results, we have

|((M + I )(M − I )−1 − diag(d))−1|

≤
∣
∣
∣
∣
∣

∞∑

i=0

((M − I )(M + I )−1diag(d))i

∣
∣
∣
∣
∣
|(M − I )(M + I )−1|,

≤
∞∑

i=1

|(M − I )(M + I )−1|i ,

≤
∞∑

i=1

((I − 〈M〉)(〈M〉 + I )−1)i ,

= (I − (I − 〈M〉)(〈M〉 + I )−1)−1(I − 〈M〉)(〈M〉 + I )−1

= 1

2
(〈M〉−1 − I ),

where the last equality is obtained by using the relations (I − A)−1A = (A−1 − I )−1

and ((I + 〈M〉)(I − 〈M〉)−1 − I )−1 = (2〈M〉(I − 〈M〉)−1)−1 = 1
2 (〈M〉−1 − I ).

Therefore, ‖ Â−1‖ ≤ 1
2‖〈M〉−1 − I‖, and the proof is complete. ��
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In the rest of this section, by using the obtained results, we present new error bounds
for linear complementarity problems. Many papers were devoted to the error bounds
for the LCP(M, q); see [7,8,10,16,38]. It is easily seen that x̂ is a solution of (LCP) if
and only if x̂ solves

θ(x) := min(Mx + q, x) = 0.

The function θ(x) is called the natural residual of (LCP). As mentioned earlier, (LCP)
has a unique solution for each q if and only ifM is a P-matrix. For M being a P-matrix,
Chen and Xiang [7] proposed the following error bound

‖x − x�‖ ≤ max
0≤D≤I

‖(I − D + DM)−1‖ · ‖θ(x)‖,

where x� is the solution of (LCP) and x ∈ R
n arbitrary. By introducing a new variable

d with diag(d) = 2D − I , we have

max
0≤D≤I

‖(I − D + DM)−1‖
= max‖d‖∞≤1

‖(I − 1
2 (diag(d) + I ) + 1

2 (diag(d) + I )M)−1‖
= 2 max‖d‖∞≤1

‖(I − M)−1((I + M)(I − M)−1 − diag(d))−1‖. (16)

Because c(A) = c(−A), we have

max
0≤D≤I

‖(I − D + DM)−1‖ ≤ 2c((I + M)(M − I )−1)‖(I − M)−1‖.

Therefore, the given results in this paper can be exploited for providing an upper bound
for this maximization. For instance, Chen and Xiang, see Theorem 2.2 in [7], proved
that when M is an M-matrix, then

max
0≤D≤I

‖(I − D + DM)−1‖1 = max
v∈V f (v),

where f (v) = max1≤i≤n(e+ v − MT v)i and V = {v : MT v ≤ e, v ≥ 0}. As seen, f
is a piece-wise linear convex function. However, maximization of a convex function
is an intractable problem in general. In this case, one needs to solve n linear programs.
In the next proposition, we give an explicit formula for the optimal value for∞-norm.

Proposition 17 Let M be an M-matrix with Diag(M) ≤ e. Then

max
0≤D≤I

‖(I − D + DM)−1‖∞ = ‖B̂‖∞,
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where for i, j = 1, . . . , n

Bi j =
n∑

k=1

min{(I − M)−1
ik (I − M)k j , (I − M)−1

ik (M−1 − I )k j },

Bi j =
n∑

k=1

max{(I − M)−1
ik (I − M)k j , (I − M)−1

ik (M−1 − I )k j },

and B̂ = max(|B|, |B|).
Proof Similarly to the proof of Proposition 16, if Diag(M) ≤ e, we have [(I +M)(I −
M)−1 − I , (I + M)(I − M)−1 + I ]−1 ⊆ 1

2 [I − M, M−1 − I ]. Therefore, by (16)

max
0≤D≤I

‖(I − D + DM)−1‖∞ ≤ max
I−M≤X≤M−1−I

‖(I − M)−1X‖∞.

Furthermore, {(I − M)−1X : I − M ≤ X ≤ M−1 − I } ⊆ [B, B]. Hence,

max
0≤D≤I

‖(I − D + DM)−1‖∞ ≤ ‖B̂‖∞.

On the other hand, suppose that ‖B̂‖∞ = ‖B̂i∗‖∞. There exist B̌ ∈ {(I − M)−1X :
I − M ≤ X ≤ M−1 − I } such that |B̌i∗| = B̂i∗, which implies the above inequality
holds as equality, and the proof will be complete. ��

For M being an H-matrix with 0 ≤ Diag(M) ≤ e, similarly to the proof of Theo-
rem 9, one can show that for d with ‖d‖∞ ≤ 1,

∣
∣(I − M)−1((I + M)(I − M)−1 − diag(d)

)−1∣∣

= ∣
∣
(
(I + M) − diag(d)(I − M)

)−1∣∣,

=
∣
∣
∣
∣
∣
(I + M)−1

∞∑

i=0

(
diag(d)(I − M)(M + I )−1)i

∣
∣
∣
∣
∣
,

≤ (〈M〉 + I )−1
∞∑

i=0

(
(I − 〈M〉)(〈M〉 + I )−1)i ,

= (〈M〉 + I )−1(I − (I − 〈M〉)(〈M〉 + I )−1)−1 = 1

2
〈M〉−1.

Therefore, by (16), we get

max
0≤D≤I

‖(I − D + DM)−1‖ ≤ 〈M〉−1, (17)

which is a well-known bound; see Theorem 2.1 in [7]. Here, we obtain inequality (17)
with a different method as a by-product of our analysis.
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4 Relative condition number of AVE

We introduce a relative condition number as follows

c∗(A) := max‖d‖∞≤1
‖(A − diag(d))−1‖ · max‖d‖∞≤1

‖A − diag(d)‖,

which is equal to c(A)max‖d‖∞≤1 ‖A− diag(d)‖. The meaning of the relative condi-
tion number follows from the bounds presented in the proposition below. They extend
the bounds known for the error of standard linear systems of equations [18].

Proposition 18 If the interval matrix [A − I , A + I ] is regular and b 	= 0, then for
each x ∈ R

n

c∗(A)−1 ‖Ax − |x | − b‖
‖b‖ ≤ ‖x − x�‖

‖x�‖ ≤ c∗(A)
‖Ax − |x | − b‖

‖b‖ .

Proof Since b 	= 0, we have x� 	= 0. First, we show the upper bound. Denote s� :=
sgn(x�). As Ax� − b = |x�| = diag(s�)x�, we derive (A − diag(s�))x� = b, from
which ‖A − diag(s�)‖ · ‖x�‖ ≥ ‖b‖. Now, we have by Theorem 7

‖x − x�‖ ≤ c(A)‖Ax − |x | − b‖ ≤ c(A)‖Ax − |x | − b‖‖A − diag(s�)‖ · ‖x�‖
‖b‖ ,

from which the bound follows.
Now, we establish the lower bound. From the proof of Theorem 7, we know that

there exist some Â ∈ [A − I , A + I ] such that Ax − |x | − b = Â(x − x�). Hence,

‖Ax − |x | − b‖ = ‖ Â(x − x�)‖ ≤ ‖ Â‖ · ‖x − x�‖

≤ ‖ Â‖ · ‖x − x�‖‖(A − diag(s�))−1‖ · ‖b‖
‖x�‖ ,

from which the statement follows. ��
Remark 2 The solutions of (AVE) lying in orthant diag(d) ≥ 0, d ∈ {±1}n , are
described by (A−diag(d))x = b. This may suggest to introduce the condition number
as

max
d∈{±1}n κ(A − diag(d)),

where κ is the classical condition number. This value then reads

max
d∈{±1}n ‖(A − diag(d))−1‖ · ‖A − diag(d)‖.

The main difference to c∗(A) is that in the definition of c∗(A) we have two separated
maximization problems. The need for that may stem from possible variations of the
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solution between different orthants (e.g., when it lies on the border between two of
them), whereas the above expression handles orthants separately.

In order to compute c∗(A) we have to determine c(A) and max‖d‖∞≤1 ‖A −
diag(d)‖. The former is discussed in detail in the previous sections, so we focus
on the latter now. Recall that a norm is absolute if ‖A‖ = ‖|A|‖, and it is monotone
if |A| ≤ |B| implies ‖A‖ ≤ ‖B‖. For example, 1-norm, ∞-norm, Frobenius norm or
max norm are both absolute and monotone.

Proposition 19 For any absolute and monotone matrix norm

max‖d‖∞≤1
‖A − diag(d)‖ = ‖|A| + In‖.

Proof We have

max‖d‖∞≤1
‖A − diag(d)‖ ≤ max‖d‖∞≤1

‖|A| + |diag(d)|‖ = ‖|A| + I‖,

and equation is attained for certain d with ‖d‖∞ = 1. ��
Proposition 20 For spectral norm we have

max‖d‖∞≤1
‖A − diag(d)‖2 ≤ ‖A‖2 + 1.

Moreover, It holds as an equality when A is symmetric.

Proof We have ‖A − diag(d)‖2 ≤ ‖A‖2 + ‖diag(d)‖2 ≤ ‖A‖2 + 1. ��

5 Error bounds and convergence analysis

Asmentioned earlier, error boundswere employed as a powerful tool for the analysis of
iterative methods. In the section, we study two well-known algorithms, a generalized
Newton method [30] and the Picard method [45], for solving (AVE). By using error
bounds, we provide some sufficient conditions for the convergence. In addition, we
establish the linear convergence of the aforementioned methods. Our approach is in
the spirit of convergence analysis in [27,28,47].

Mangasarian [30] proposed a generalized Newton method for solving (AVE). In
this method, the starting point x1 is chosen arbitrary and the Newton iteration is as
follows,

(A − Dk)xk+1 = b, k = 1, 2, . . . (18)

where Dk = diag(sgn(xk)). The function U (x) = ‖Ax − |x | − b‖2 is non-negative
and U (x̄) = 0 if and only if x̄ is a solution of (AVE). In the literature, function U is
called a potential function or a Lyapunov function.
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Mangasarian established that the generalized Newton method is convergent when
σmin(A) > 4; see Proposition 7 in [30]. Cruz et al. proved the convergence under the
weaker assumption σmin(A) > 3; see Remark 3 in [12]. In the next theorem, we show
the convergence of the generalized Newton method with a different method. Indeed,
we prove the linear convergence of {U (xk)} by using error bounds.

Theorem 10 If σmin(A) > 3, then the generalized Newton iteration (18) converges
linearly from any starting point and

U (xk+1) ≤ 2

σmin(A) − 1
U (xk). (19)

Proof The assumption implies that the interval matrix [A − I , A + I ] is regular, and
consequently it has a unique solution. Due to the Newton iteration (18), we have

U (xk+1) =
∥
∥
∥Axk+1 −

∣
∣
∣xk+1

∣
∣
∣ − b

∥
∥
∥
2

=
∥
∥
∥Dkxk+1 −

∣
∣
∣xk+1

∣
∣
∣
∥
∥
∥
2

=
∥
∥
∥Dk(xk+1 − xk) −

∣
∣
∣xk+1

∣
∣
∣ +

∣
∣
∣xk

∣
∣
∣
∥
∥
∥
2

≤ 2
∥
∥
∥xk+1 − xk

∥
∥
∥
2
. (20)

Hence, by Theorem 7, we get

‖xk+1 − x�‖2 ≤ c2(A)U (xk+1) ≤ 2c2(A)

∥
∥
∥xk+1 − xk

∥
∥
∥
2
. (21)

On the other hand, by (20) together with (18), we obtain

U (xk+1) −U (xk) ≤ 2‖xk+1 − xk‖2 − ‖Axk − |xk | − b‖2
= 2

∥
∥
∥xk+1 − xk

∥
∥
∥
2
− ‖(A − Dk)(xk − xk+1)‖2

≤ −
(
σmin(A − Dk) − 2

) ∥
∥
∥xk+1 − xk

∥
∥
∥
2

≤ − (σmin(A) − 3)
∥
∥
∥xk+1 − xk

∥
∥
∥
2
, (22)

where the last inequality follows from σmin(A−Dk) ≥ σmin(A)−σmax(Dk). Inequal-
ities (20) and (22) imply

U (xk+1) ≤ 2
∥
∥
∥xk+1 − xk

∥
∥
∥
2

≤ 2 (σmin(A) − 3)−1
(
U (xk) −U (xk+1)

)
,

yielding (19). Since the functionU is non-negative, inequality (19) implies thatU (xk)
goes to zero as k tends to infinity. Hence, by (21), ‖xk+1 − x�‖2 tends to zero and the
algorithm is convergent. Moreover, inequalities (19) implies the linear convergence
of {U (xk)}. ��

In the next theorem, we prove that the generalized Newton method is convergent
under the assumptions of Proposition 10. Barrios et al. employed similar assumptions
to prove the convergence of a semi-smooth Newton method for the piecewise linear
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systemmax(x, 0)+T x = b, where A ∈ R
n×n , b ∈ R

n ; see Theorem3 in [2]. Note that
the piecewise linear system max(x, 0)+T x = b is equivalent to −(I +2T )x −|x | =
−2b. To prove the convergence of the generalizedNewtonmethod,we use the potential
function W (x) = ‖x − x�‖1.
Theorem 11 Let (AP − I )−1 ≥ 0 and (AP + I )−1 ≥ 0 for a diagonal matrix P such
that |Diag(P)| = e. Then the generalized Newton iteration (18) converges linearly
from any starting point and

W (xk+1) ≤ �c1(A)−1
�c1(A)

W (xk), k = 2, 3, . . . , (23)

where � = max‖d‖∞≤1 ‖A − diag(d)‖1.
Proof By the proof of Proposition 10, one can infer that (AVE) has a unique solution.
Without loss of generality, we may assume that P = I . For the residual function
φ(x) = Ax − |x | − b, we have

φ(y) − φ(x) − (A − diag(sgn(x)))(y − x) = −|y| + diag(sgn(x))y ≤ 0, (24)

for x, y ∈ R
n . By (24) together with φ(xk) = (A − Dk)(xk − xk+1), we get

φ(xk+1) ≤ 0, k = 1, 2, . . . . (25)

By virtue of (24) for k ≥ 2, we obtain

φ(x�) − φ(xk) − (A − Dk)(x� − xk) ≤ 0

⇒ xk ≤ xk − (A − Dk)−1φ(xk) ≤ x�

where the last inequalities follows from (A − Dk)−1 ≥ 0 and (25). Because xk+1 =
xk − (A − Dk)−1φ(xk), we get

xk ≤ xk+1 ≤ x�, k = 2, 3, . . . . (26)

By the above inequality, we get

W (xk+1) − W (xk) ≤ −‖xk+1 − xk‖1. (27)

By using Theorem 7 and φ(xk) = (A − Dk)(xk − xk+1), we have

‖xk − x�‖1 ≤ c1(A)‖φ(xk)‖1 ≤ �c1(A)

∥
∥
∥xk+1 − xk

∥
∥
∥
1
. (28)

We can infer from inequalities (26)–(28),

W (xk+1) ≤ −‖xk+1 − xk‖1 + ‖xk − x�‖1 ≤ (�c1(A) − 1)‖xk+1 − xk‖1
= (�c1(A) − 1)(W (xk) − W (xk+1)),
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from which the statement follows. ��
Note that, under the assumptions of Theorem 11, the unique solution of (AVE)

can be obtained by solving just one linear program; see Proposition 4 in [52]. In the
following proposition, we establish the finite convergence of the generalized Newton
method under some mild conditions.

Proposition 21 Let [A − I , A + I ] be regular. If {xk} converges to x�, then the gen-
eralized Newton method is finitely convergent.

Proof First, we consider the case that all components of x� are non-zero. In this case,
the proof follows from the fact that we have Dk = diag(sgn(x�)) for xk sufficiently
close to x�. Now, we investigate the case that some components of x� are zero. Let
K = {i : x�

i = 0}. Due to the regularity of [A − I , A + I ], it is seen that x� is the
unique solution of the linear system (A − D)x = b for any diagonal matrix D with

Dii =
{

−1, 0 or 1 if i ∈ K
sgn(x�

i ), otherwise.

Hence, for xk sufficiently close to x�, we have (A − Dk)x� = b and the proof is
complete. ��

In what follows, we investigate the Picard iterative method for solving (AVE). We
refer the interested reader to Chapter 7 in [37] for more information on this method.

The Picard iterative method was employed by Rohn et al. [45] for tackling (AVE).
The method can be summarized as follows

xk+1 = A−1
(
|xk | + b

)
, k = 1, 2, . . . , (29)

where x1 ∈ R
n is an arbitrary point. They proved that the Picard method (29) is

convergent if ρ(|A−1|) < 1; see Theorem 2 in [45]. The next proposition gives a
sufficient condition for the convergence by using error bounds.

Proposition 22 If σmin(A) > 1, then the Picard method (29) converges from any
starting point and

U (xk+1) ≤ 1

σmin(A)k
U (x1).

Proof We follow the analogous arguments used in Theorem 10. By (29),

U (xk+1) =
∥
∥
∥Axk+1 −

∣
∣
∣xk+1

∣
∣
∣ − b

∥
∥
∥
2

=
∥
∥
∥|xk | − |xk+1|

∥
∥
∥
2

≤
∥
∥
∥xk+1 − xk

∥
∥
∥
2
. (30)

Due to Theorem 7, we have

‖xk+1 − x�‖ ≤ c2(A)U (xk+1) ≤ c2(A)

∥
∥
∥xk+1 − xk

∥
∥
∥
2
.
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By virtue of (29) and (30), we get

U (xk+1) −U (xk) ≤
∥
∥
∥xk+1 − xk

∥
∥
∥
2
−

∥
∥
∥Axk − |xk | − b

∥
∥
∥
2

=
∥
∥
∥xk+1 − xk

∥
∥
∥
2
−

∥
∥
∥A(xk+1 − xk)

∥
∥
∥
2

≤ −(σmin(A) − 1)
∥
∥
∥xk+1 − xk

∥
∥
∥
2
.

The rest of the proof is analogous to that of Theorem 10. ��
It is worth mentioning that the conditions σmin(A) > 1 and ρ(|A−1|) < 1 do

not necessarily imply each other. To prove the convergence under the assumption
ρ(|A−1|) < 1 by using this framework, one needs to modify the potential function
U . Let ρ(|A−1|) < γ < 1. Similarly to the proof of Theorem 8, there exists an
invertible matrix B with |A−1| < B and ρ(B) = γ . In addition, for some v > 0,
� · � = vT | · | is a norm with �B� = ρ(B). We define the potential function V (x) =
�
�A−1(Ax − |x | − b)

�
�.

Proposition 23 If ρ(|A−1|) < γ < 1, then the Picard method (29) converges from
any starting point and

V (xk+1) ≤ γ kV (x1).

Proof By virtue of (29),

V (xk+1) = �
�A−1(Axk+1 − |xk+1| − b)

�
� = �

�A−1(|xk | − |xk+1|)��
≤ γ�xk+1 − xk�, (31)

where the last inequality follows from �A−1� ≤ �
�|A−1|�� ≤ �B� = γ . By Theo-

rem 8, we have

�
�xk+1 − x�

�
� ≤ γ�A�

1−γ
V (xk+1) ≤ γ 2�A�

1−γ

�
�xk+1 − xk

�
�.

Equations (29) and (31) imply that

V (xk+1) − V (xk) ≤ γ
�
�xk+1 − xk

�
� − �

�xk+1 − xk
�
�

≤ −(1 − γ )
�
�xk+1 − xk

�
�.

The rest of the proof is analogous to the proof of Theorem 10. ��

6 Error bounds for the absolute value equations withmultiple
solutions

The section studies error bounds for (AVE) when the solution set is non-empty and
the interval matrix [A− I , A+ I ] is not necessarily regular. Under this setting, (AVE)
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may have multiple or infinite number of solutions. Let X� ⊆ R
n denote the solution

set of (AVE). It is easily seen that X� may be written as a finite union of polyhedral
sets.

By the locally upper Lipschitzian property of polyhedral set-valued mappings, see
Proposition 1 in [40], (AVE) has the local error bounds property. That is, there exist
ε > 0 and κ > 0 such that

distX� (x) ≤ κ‖Ax − |x | − b‖, (32)

when ‖Ax −|x |−b‖ ≤ ε. However, in general, the global error bounds property does
not hold necessarily. The following example illustrates this point.

Example 3 Consider the system (AVE) in the form

1
4

(
3 1
2 2

)(
x1
x2

)

−
(|x1|

|x2|
)

−
(−4

−4

)

= 0.

One can check that X� = {
(−2,−2)T , (−3, 5)T , (10,−6)T

}
. Let x(t) = (t, t)T ,

where t > 0. It is seen that ‖Ax(t) − |x(t)| − b‖ = ‖b‖, while distX� (x(t)) tends to
infinity as t → ∞.

In the next theorem, we give a sufficient condition under which the global error
bounds hold.

Theorem 12 Let X� be non-empty. If zero is the unique solution of Ax −|x | = 0, then
there exists κ > 0 such that

distX� (x) ≤ κ‖Ax − |x | − b‖, ∀x ∈ R
n . (33)

Proof The idea of the proof is similar to that of Theorem 2.1 in [34]. Suppose to the
contrary that (33) does not hold. Hence, for each k ∈ N, there exists xk such that

‖xk − x̄‖ ≥ distX� (xk) > k‖Axk − |xk | − b‖, (34)

where x̄ ∈ X�. Due to the local error bounds property (32), there exists ε > 0 such that
‖Axk − |xk | − b‖ > ε for each k ≥ k0, where k0 is sufficiently large. Consequently,
‖xk − x̄‖ tends to infinity as k → ∞. Choosing subsequences if necessary, we may

assume that xk

‖xk‖ goes to a non-zero vector d. By dividing both sides of (34) by k‖xk‖
and taking the limit as k goes to infinity, we get

Ad − |d| = 0,

which contradicts the assumptions. ��
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7 Conclusion

In this paper, we studied error bounds for absolute value equations. We suggested
formulas for the computation of error bounds for certain classes of matrices. The
investigation of other classes of matrices may be of interest for further research. The
proposed formulas can be employed not only for the absolute value equations obtained
by transforming the linear complementarity problem, but also for the linear comple-
mentarity problem itself. In addition, we showed that the computation of error bounds,
except for 2-norm, for a general matrix is an NP-hard problem, and it remains an open
problem for 2-norm. To demonstrate importance of the error bounds, we applied them
in a convergence analysis of two methods used to solve the absolute value equations.
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