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Abstract
The arboricity of a graph is the minimum number of forests required to cover all
its edges. In this paper, we examine arboricity from a game-theoretic perspective
and investigate cost-sharing in the minimum forest cover problem. We introduce the
arboricity game as a cooperative cost game defined on a graph. The players are edges,
and the cost of each coalition is the arboricity of the subgraph induced by the coalition.
We study properties of the core and propose an efficient algorithm for computing the
nucleolus when the core is not empty. In order to compute the nucleolus in the core,
we introduce the prime partition which is built on the densest subgraph lattice. The
prime partition decomposes the edge set of a graph into a partially ordered set defined
fromminimal densest minors and their invariant precedence relation. Moreover, edges
from the same partition always have the same value in a core allocation. Consequently,
when the core is not empty, the prime partition significantly reduces the number of
variables and constraints required in the linear programs of Maschler’s scheme and
allows us to compute the nucleolus in polynomial time. Besides, the prime partition
provides a graph decomposition analogous to the celebrated core decomposition and
the density-friendly decomposition, which may be of independent interest.
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1 Introduction

The arboricity of a graph is the minimum number of forests required to cover all edges
of the graph.Hence arboricity concerns forest cover, a special case ofmatroid covering.
Besides, arboricity is a measure of graph density. A graph with large arboricity always
contains a dense subgraph. By employing the nontrivial interplay between forest cover
and graph density under the polyhedral framework, we examine arboricity from a
game-theoretic perspective and introduce the so-called arboricity game. Briefly, the
arboricity game is a cooperative cost game defined on a graph, where the players are
edges and the cost of each coalition is the arboricity of the subgraph induced by the
coalition.

A central question in cooperative game theory is to distribute the total cost to
its participants. Many solution concepts have been proposed for cost-sharing. One
solution concept is the core, which requires that no coalition benefits by breaking
away from the grand coalition. Another solution concept is the nucleolus, which is
the unique solution that lexicographically maximizes the vector of non-decreasingly
ordered excess. Following the definition, Kopelowitz [22] and Maschler et al. [24]
proposed a standard procedure to compute the nucleolus by solving a sequence of
linear programs. However, the size of these linear programs may be exponentially
large due to the number of constraints corresponding to all possible coalitions. Hence
it is in general unclear how to apply this procedure. The first polynomial algorithm
for computing the nucleolus was proposed by Megiddo [25] for cooperative cost
games defined on directed trees. Later on, a number of polynomial algorithms were
developed for, e.g., bankruptcy games [1], matching games [5,9,19,20,32], standard
tree games [18], airport profit games [6], flow games [10], voting games [14], spanning
connectivity games [2], shortest path games [3], and network strength games [4]. On
the negative side, NP-hardness results for computing the nucleolus were shown for,
e.g., minimum spanning tree games [15], threshold games [13], b-matching games
[21], flow games and linear production games [10,16].

The main contribution of this paper is twofold. One contribution is concerned
with the arboricity game, where cost-sharing in the minimum forest cover problem
is considered. We study properties of the core and propose an efficient algorithm for
computing the nucleolus when the core is nonempty. Our results are in the same spirit
as [4,20], but justifications are different. The other contribution goes to the prime par-
tition, which is a graph decomposition analogous to the celebrated core decomposition
[31] and the density-friendly decomposition [33,34]. The prime partition is inspired by
the principle partition of matroids [7] and by the graph decompositions developed in
[2,4]. For arboricity games, the prime partition dramatically reduces the size of linear
programs involved in Maschler’s scheme and enables us to compute the nucleolus in
polynomial time.

The rest of this paper is organized as follows. Section 2 introduces relevant concepts.
Section 3 reviews some polyhedral results on arboricity. Section 4 studies properties
of the core. Section 5 is devoted to the prime partition, a graph decomposition of
independent interest. Section 6 develops an efficient algorithm for computing the
nucleolus. Section 7 concludes this paper.
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Arboricity Games: the Core and the Nucleolus 3

2 Preliminaries

A cooperative game � = (N , γ ) consists of a player set N and a characteristic
function γ : 2N → R with convention γ (∅) = 0. The player set N is called the grand
coalition. Any subset S of N is called a coalition. Given a vector x ∈ R

N , we use
x(S) to denote

∑
i∈S xi for any S ⊆ N . A vector x ∈ R

N≥0 is called an allocation
of � if x(N ) = γ (N ). The excess of a coalition S at an allocation x is defined as
e(S, x) = γ (S) − x(S). The core of �, denoted by C(�), is the set of allocations
where all excesses are nonnegative, i.e.,

C(�) = {
x ∈ R

N≥0 : x(N ) = γ (N ); x(S) ≤ γ (S), ∀S ⊆ N
}
.

The excess vector θ(x) of an allocation x is the 2|N | − 2 dimensional vector whose
components are the non-trivial excesses e(S, x) for S ∈ 2N\{∅, N } arranged in a non-
decreasing order. The nucleolus [28] is the unique allocation x that lexicographically
maximizes the excess vector θ(x). When the core is nonempty, the nucleolus always
exists and lies in the core. Moreover, the nucleolus can always be computed with a
standard procedure of Maschler et al. [22,24] by recursively solving a sequence of
linear programs.

max ε (1)

(LP1) s.t. x(N ) = γ (N ), (2)

x(S) + ε ≤ γ (S), ∀ S ∈ 2N\{∅, N }, (3)

xi ≥ 0, ∀ i ∈ N . (4)

To compute the nucleolus with Maschler’s scheme, first solve linear program LP1
to maximize the minimum excess among all non-trivial coalitions. For any constant
ε, let P1(ε) denote the set of vectors x ∈ R

N such that (x, ε) satisfies (2)–(4), i.e.,
P1(ε) is the set of allocations whose minimum excess is no less than ε. It follows that
C(�) = P1(0). Let ε1 be the optimal value of LP1. Then P1(ε1) is the set of optimal
solutions of LP1, which is also called the least core of �. Thus C(�) 	= ∅ if and only
if ε1 ≥ 0. For any polyhedron P ⊆ R

N , let Fix(P) denote the set of coalitions fixed
by P , i.e.,

Fix(P) = {
S ⊆ N : x(S) = y(S), ∀ x, y ∈ P

}
.

After solving linear program LPr , let εr be the optimal value and Pr (εr ) be the set
of optimal solutions. Then solve linear program LPr+1 to maximize the minimum
excess on coalitions that are not fixed by Pr (εr ).

max ε (5)

(LPr+1) s.t. x(S) + ε ≤ γ (S), ∀ S /∈ Fix
(
Pr (εr )

)
, (6)

x ∈ Pr (εr ). (7)
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4 H. Xiao, Q. Fang

Clearly, εr+1 ≥ εr and Pr+1(εr+1) ⊆ Pr (εr ). Moreover, the dimension of Pr+1(εr+1)

decreases before it collapses to zero. Hence it takes up to |N | rounds before Pr+1(εr+1)

becomes a singleton which is exactly the nucleolus. However, the linear programs
involved inMaschler’s scheme are usually of exponential size. Even if linear programs
LP1, . . . , LPr have been successfully solved, it may be intractable in polynomial time
to determine all coalitions not fixed by Pr (εr ). Hence it is in general unclear how to
apply Maschler’s scheme. For arboricity games, we show that the number of variables
and constraints required in the successive linear programs of Maschler’s scheme can
be dramatically reduced, and the nucleolus can always be determined efficiently on
the second round of Maschler’s scheme.

We assume that the readers have a moderate familiarity with graph theory. But
assumptions, notions and notations used in this paper should be clarified before pro-
ceeding. Throughout this paper, we assume that all graphs are loopless but parallel
edges are allowed.We also assume that loops are always removed during edge contrac-
tion. An image is a vertex obtained from edge contraction. Aminor is a graph obtained
from repeated vertex deletion, edge deletion and edge contraction. Let G = (V , E)

be a graph. We use c(G) to denote the number of components of G. We use n(G) and
m(G) to denote the number of vertices and edges in G respectively. We write n for
n(G) and m for m(G) when no ambiguity occurs. LetU ⊆ V be a set of vertices. We
write G −U for the graph obtained from G by deleting all vertices in U . Let F ⊆ E
be a set of edges. We write G/F for the graph obtained from G by contracting all
edges in F . Let H be a subgraph of G. We write G − H for G − V (H) and write
G/H for G/E(H). If X and Y are two sets of vertices, we use (X ,Y ) and m(X ,Y )

to denote the set and the number of crossing edges between X and Y respectively. If
X and Y are two subgraphs, we write (X ,Y ) for

(
V (X), V (Y )

)
.

3 Polyhedral results on arboricity

This section reviews some polyhedral results on arboricity. For more details about
polyhedral combinatorics, we refer to [29,30].

Let G = (V , E) be a graph. A forest cover of G is a set of forests that covers
all edges of G. The arboricity of G, denoted by a(G), is the minimum size of forest
covers of G. The arboricity measures how dense a graph is. The density of G, denoted
by g(G), is the value of m(G)

n(G)−c(G)
. Hence g(G) = m(G)

n(G)−1 if G is connected. By
convention, the density of a single vertex is zero. Nash-Williams [26] showed that the
arboricity of a graph is lower bounded by the maximum density of subgraphs.

Theorem 1 (Nash-Williams [26]) The edges of a graph G can be covered by k forests
if and only if maxH⊆G g(H) ≤ k.

The value of maxH⊆G g(H) is called the fractional arboricity of G and denoted by
a f (G). Theorem 1 implies that a(G) = 
a f (G)�. Notice that the fractional arboricity
is necessarily achieved at connected subgraphs. It follows that the fractional arboricity
of G can be computed by
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Arboricity Games: the Core and the Nucleolus 5

max
H⊆G

m(H)

n(H) − 1
. (8)

LetF denote the set of forests inG. Clearly,F makes a graphicmatroidwith ground
set E , and every forest cover ofG is essentially an independent set cover of the graphic
matroid. Additionally, the definition for density and (fractional) arboricity in the forest
cover problem respects the conventional definition in the matroid covering problem
[12]. Hence the forest cover problem is a special case of the matroid covering problem.
Notice that the fractional arboricity of a matroid is always equal to the fractional cover
number of independent sets [27,30]. It follows that the value of (8) is equal to the
optimal value of linear program (9)–(11)

min
∑

F∈F
zF (9)

s.t.
∑

F :e∈F
zF ≥ 1, ∀ e ∈ E, (10)

zF ≥ 0, ∀ F ∈ F . (11)

and the optimal value of its dual (12)–(14).

max
∑

e∈E
xe (12)

s.t.
∑

e:e∈F
xe ≤ 1, ∀ F ∈ F , (13)

xe ≥ 0, ∀ e ∈ E . (14)

Notice that (8) can be reformulated as

max
H⊆G

1 · λH

n(H) − 1
, (15)

where 1 ∈ Z
E is an all-one vector and λH ∈ Z

E is the incidence vector of E(H).
Moreover, λH

n(H)−1 satisfies (13) and (14) for any H ⊆ G. Consequently, optimal solu-

tions of (12)–(14) are among the vectors λH

n(H)−1 in (15), which leads to the following
corollary that will be used in Section 4. In the remainder of this paper, a densest
subgraph always refers to a connected subgraph with the maximum density, and a
densest minor always refers to a connected minor the density of which is equal to the
fractional arboricity of the graph.

Lemma 2 The set of optimal solutions of (12)–(14) is the convex hull of the vectors
λH

n(H)−1 for every densest subgraph H of G.

Lemma 2 suggests that the set of optimal solutions of (12)–(14) is a convex polytope
where every extreme point corresponds to a densest subgraph. By polyhedral theory
[29], all faces of a convex polytope form a partially ordered set under inclusion. It
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6 H. Xiao, Q. Fang

turns out that all densest subgraphs also form a partially ordered set under inclusion,
which suggests that faces of the optimal solution polytope of (12)–(14) may be related
to densest subgraphs. It is this observation that leads to the graph decomposition in
Sect. 5.

4 The core and its properties

Throughout this paper, we always assume that the underlying graph of arboricity
games is connected. Let �G = (N , γ ) denote the arboricity game defined on a graph
G = (V , E), where N = E and γ (S) = a(G[S]) for S ⊆ N . We start with an
alternative characterization for the core.

Lemma 3 Let �G = (N , γ ) be an arboricity game and T be the set of spanning trees
in G. Then

C(�G) = {
x ∈ R

E≥0 : x(E) = γ (E); x(T ) ≤ 1, ∀ T ∈ T
}
. (16)

Proof Denote by C′(�G) the right hand of (16). We first show that C(�G) ⊆ C′(�G).
Let x ∈ C(�G). For any T ∈ T , we have x(T ) ≤ γ (T ) = 1. It follows that x ∈
C′(�G). Now we show that C′(�G) ⊆ C(�G). Let x ∈ C′(�G) and S ∈ 2N\{∅}.
Assume that γ (S) = k and G[S] can be covered by k forests F1, . . . , Fk . Let Ti be a
spanning tree containing Fi . It follows that

x(S) =
k∑

i=1

x(Fi ) ≤
k∑

i=1

x(Ti ) ≤ k = γ (S),

which implies that x ∈ C(�G). �
Anecessary and sufficient condition for the core nonemptiness follows immediately.

Theorem 4 Let �G = (N , γ ) be an arboricity game. Then C(�G) 	= ∅ if and only if
a f (G) = a(G).

Proof Let x be an optimal solution of (12)–(14). It follows that x(E) = a f (G) ≤
a(G) = γ (E). Since T ⊆ F , Lemma 3 implies that x ∈ C(�G) if a f (G) = a(G).

Let x ∈ C(�G). Since every forest is a subgraph of a spanning tree, Lemma 3
implies that x is a feasible solution of (12)–(14). It follows that x(E) ≤ a f (G) ≤
a(G) = γ (E). Hence x(E) = γ (E) implies a f (G) = a(G). �

Since the arboricity game is a special case of the covering game, Theorem 4 respects
the universal characterization for the core nonemptiness of covering games [11]. The
corollary below also follows from the results for covering games.

Corollary 5 Let �G = (N , γ ) be an arboricity game. Then the nonemptiness of C(�G)

can be determined in polynomial time. Moreover, we can decide in polynomial time if
a vector belongs to C(�G), and if not, find a separating hyperplane.
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Arboricity Games: the Core and the Nucleolus 7

Theorem 4 implies that, when the core is nonempty, a vector belongs to the core if
and only if it is an optimal solution of (12)–(14). Lemma 2 suggests that the nonempty
core can be characterized by the incidence vector of densest subgraphs. Thus we have
the following corollary.

Corollary 6 Let �G = (N , γ ) be an arboricity game with a nonempty core. Then

C(�G) is the convex hull of the vectors λH

n(H)−1 for every densest subgraph H of G.

Corollary 6 implies that every core allocation is a convex combination of vectors, each
of which is associated with a densest subgraph. For edges not in any densest subgraph,
we have the following corollary.

Corollary 7 Let �G = (N , γ ) be an arboricity game with a nonempty core. For any
x ∈ C(�G), xe = 0 if edge e does not belong to any densest subgraph of G.

It is well known that the nucleolus lies in the core when the core is nonempty.
To compute the nucleolus in the core, we need a better understanding of the core
polytope. Corollary 6 states that every extreme point of the core polytope is associated
with a densest subgraph, which suggests that faces of the core polytope may also be
associated with densest subgraphs. Inspired by the face lattice of convex polytopes
[29], we introduce a graph decomposition built on densest subgraphs, which is crucial
for computing the nucleolus in the core of arboricity games.

5 The prime partition

This section is self-contained anddevoted to the primepartition, a graphdecomposition
analogous to the core decomposition [31] and the density-friendly decomposition
[33,34]. The prime partition is inspired by the face lattice of convex polytopes and
built on the densest subgraph lattice where the edge set intersection of any two densest
subgraphs is either empty or inducing a densest subgraph again. By utilizing the
uncrossing technique [23] to a chain of subgraphs with the maximum density, we
introduce the prime partition. The prime partition decomposes the edge set of a graph
into a non-prime set and a number of prime sets. The non-prime set is the set of edges
that are not in any densest subgraph. The prime sets are the incremental edge sets of
a chain of subgraphs with the maximum density. In general, there is more than one
chain of subgraphs with the maximum density that defines the prime sets. A partial
order can be defined on the prime sets according to the invariant inclusion relation in
any chain of subgraphs defining the prime sets. There are other graph decompositions
[2,4] inspired by the face lattice of convex polytopes. But they are defined on different
discrete structures. The remainder of this section is organized as follows. In Sect. 5.1,
we investigate properties of minimal densest subgraphs which are basic ingredients of
the prime partition. In Sect. 5.2, we define prime sets by levels and introduce the non-
prime set as a byproduct. In Sect. 5.3, we show that every densest subgraph admits a
unique decomposition with prime sets. In Sect. 5.4, we introduce the ancestor relation
of prime sets and define a partial order from the ancestor relation. Throughout this
section, we always assume that the graph G = (V , E) is connected.

123



8 H. Xiao, Q. Fang

5.1 Minimal densest subgraphs

The following properties ofminimal densest subgraphs are useful in defining the prime
partition.

Lemma 8 (Cut-vertex-free property) Let H be aminimal densest subgraph of G. Then
H has no cut vertex.

Proof Assume to the contrary that v is a cut vertex in H . Let H1 and H2 be two
subgraphs of H such that H1 ∪ H2 = H and H1 ∩ H2 = {v}. Since H is a minimal
densest subgraph, we have

g(Hi ) = m(Hi )

n(Hi ) − 1
< g(H), (17)

for i = 1, 2. It follows that

g(H) = m(H)

n(H) − 1
= m(H1) + m(H2)

[n(H1) − 1] + [n(H2) − 1] < g(H), (18)

which is a contradiction. Hence H has no cut vertex. �
Lemma 9 (Noncrossing property) Let H be a minimal densest subgraph of G. For
any densest subgraph K of G, either E(H) ⊆ E(K ) or E(H) ∩ E(K ) = ∅.
Proof When E(H) ∩ E(K ) 	= ∅, assume to the contrary that E(H) � E(K ). Let
X = H ∩ K . Then X is a proper subgraph of H with E(X) 	= ∅. On one hand, we
have

m(H − X) + m(H − X , X)

n(H − X)
> g(H). (19)

Indeed, since otherwise

g(X) = m(X)

n(X) − 1
= m(H) − m(H − X) − m(H − X , X)

n(H) − n(H − X) − 1

≥ m(H) − n(H − K ) · g(H)

n(H) − n(H − K ) − 1
= m(H) − n(H − K ) · m(H)

n(H)−1

n(H) − n(H − K ) − 1
= g(H),

(20)

which contradicts the minimality of H . On the other hand, we have

m(K − X) + m(K − X , X) + m(X)

n(K − X) + n(X) − 1
= g(K ). (21)

Since g(H) = g(K ), (19) and (21) imply that

g(H ∪ K ) ≥ [m(H − X) + m(H − X , X)] + [m(K − X) + m(K − X , X) + m(X)]
n(H − X) + [n(K − X) + n(X) − 1]

> g(K ), (22)
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Arboricity Games: the Core and the Nucleolus 9

which contradicts themaximum density of K . Hence either E(H) ⊆ E(K ) or E(H)∩
E(K ) = ∅. �

Lemma 9 implies that any two minimal densest subgraphs share no common edge,
which is the key property for defining prime sets. We also notice that any two min-
imal densest subgraphs share at most one common vertex. This observation can be
generalized to a “cycle”-free property for minimal densest subgraphs.

Lemma 10 (“Cycle”-free property) Let H1, . . . , Hr be minimal densest subgraphs of
G. Then |{v : v ∈ V (Hi ) ∩ V (Hj ), i 	= j}| < r .

Proof Assume to the contrary that |{v : v ∈ V (Hi ) ∩ V (Hj ), i 	= j}| ≥ r . Let
H = ∪r

i=1Hi . Lemma 9 implies that

g(H) ≥
∑r

i=1 m(Hi )
∑r

i=1 n(Hi ) − |{v : v ∈ V (Hi ) ∩ V (Hj ), i 	= j}| − 1

>

∑r
i=1 m(Hi )

∑r
i=1[n(Hi ) − 1] = g(H1),

(23)

which contradicts the maximum density of H1. �
To illustrate the “cycle”-free property, we introduce an auxiliary graphH(G). Every

vertex vH inH(G) is associated with a minimal densest subgraph H of G. Every edge
inH(G) joins two vertices vH1 and vH2 inH(G) if H1 and H2 share a common vertex.
Lemma 10 implies that if any three minimal densest subgraphs ofG share no common
vertex, thenH(G) is acyclic. The “cycle”-free property will be used repeatedly in our
arguments.

To define the prime partition, we have to determine all minimal densest subgraphs.
Gabow [17] provided an O(nm log n2

m ) algorithm for computing the fractional arboric-
ity of a graph with n vertices andm edges. By employing the algorithm of Gabow, the
enumeration of all minimal densest subgraphs can be done in polynomial time.

Lemma 11 All minimal densest subgraphs of G can be enumerated in O(n3m log n2
m ).

Proof We first show that a minimal densest subgraph of G can be found in
O(n2m log n2

m ). Initially, compute the fractional arboricity of G and let H = G.
Compute the fractional arboricity of H −v where v ∈ V (H). If a f (H −v) = a f (G),
then a densest subgraph of G can be found in H −v. Update H with H −v and repeat
the process for H until a f (H − v) < a f (G) for any v ∈ V (H). Then H is a minimal
densest subgraph of G. It takes O(n) iterations before achieving a minimal densest
subgraph of G. Each iteration, which involves computing the fractional arboricity of
a subgraph of G, can be done in O(nm log n2

m ). Hence a minimal densest subgraph of

G can be found in O(n2m log n2
m ).

Now we show that all minimal densest subgraphs of G can be enumerated in
O(n3m log n2

m ). Let H1, . . . , Hk beminimal densest subgraphs that have been found in
G. Let Gk = G − ∪k

i=1E(Hi ). Compute the fractional arboricity of Gk . If a f (Gk) =
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10 H. Xiao, Q. Fang

a f (G), then a minimal densest subgraph Hk+1 of G can be found in Gk and let
Gk+1 = G − ∪k+1

i=1 E(Hi ). Repeat this process for Gk+1 until a f (Gk+1) < a f (G).
Then no minimal densest subgraph of G remains in Gk+1. Lemma 10 implies that
any two minimal densest subgraphs share at most one common vertex and there is
a “cycle”-free property among minimal densest subgraphs. It follows that ∪k+1

i=1 Hi

has at least one more vertex than ∪k
i=1Hi . Therefore, there are O(n) minimal densest

subgraphs of G. A minimal densest subgraph of G can be found in O(n2m log n2
m ).

Therefore, all minimal densest subgraphs of G can be enumerated in O(n3m log n2
m ).

�

5.2 Defining prime sets by levels

Now we define prime sets in the prime partition. In short, every prime set is the edge
set of a minimal densest minor. Since edge contractions are involved, we introduce
prime sets by levels. A prime set of level zero in G is the edge set of a minimal densest
subgraph. By Lemma 9, prime sets of level zero arewell defined.Moreover, Lemma 11
implies that all prime sets of level zero can be enumerated efficiently. To define prime
sets of higher levels, we study properties of densest subgraphs under edge contraction.

Lemma 12 (Density preserving contraction) Let H be a proper densest subgraph of
G. Then g(G/H) ≤ g(G) and a f (G/H) ≤ a f (G). Moreover, both equalities hold if
g(G) = a f (G).

Proof Let Ĝ = G/H and vH be the image of H in Ĝ.We first prove that g(Ĝ) ≤ g(G)

and the equality holds if g(G) = f (G). Notice that m(Ĝ − vH ) = m(G − H),
m(Ĝ−vH , vH ) = m(G− H , H) and n(G− H) = n(Ĝ−vH ). Hence g(G) ≤ g(H)

implies that

m(Ĝ − vH ) + m(Ĝ − vH , vH )

n(Ĝ − vH )
︸ ︷︷ ︸

=g(Ĝ)

≤ [m(G − H) + m(G − H , H)] + m(H)

n(G − H) + [n(H) − 1]
︸ ︷︷ ︸

=g(G)

≤ m(H)

n(H) − 1
︸ ︷︷ ︸

=g(H)

.

(24)

Notice that g(Ĝ) = m(G)−m(H)
n(G)−n(H)

. Therefore, g(Ĝ) = g(G) if g(G) = g(H).

Now we prove that a f (Ĝ) ≤ a f (G). It suffices to show that g(Ĝ ′) ≤ a f (G) for
any induced subgraph Ĝ ′ of Ĝ. When vH /∈ V (Ĝ ′), it is trivial that g(Ĝ ′) ≤ a f (G).
Now assume that vH ∈ V (Ĝ ′). Then there is an induced subgraph G ′ of G such
that H ⊆ G ′ and Ĝ ′ = G ′/H . Hence (24) implies that g(Ĝ ′) ≤ g(G ′) ≤ a f (G). It
follows that a f (Ĝ) ≤ a f (G). We have seen that g(G) = g(H) implies g(Ĝ) = g(G).
Therefore, a f (Ĝ) = a f (G) if g(G) = g(H). �

Lemma 12 implies that contracting a densest subgraph does not change the frac-
tional arboricity if this subgraph is a proper subgraph of another densest subgraph. By
Lemma 9, minimal densest subgraphs possess an uncrossing property. Hence minimal
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Arboricity Games: the Core and the Nucleolus 11

Fig. 1 An example for the prime partition

densest subgraphs can be contracted simultaneously. After contracting all minimal
densest subgraphs, if the fractional arboricity remains unchanged, densest subgraphs
of the resulting graph are densest minors of the original graph; moreover, minimal
densest subgraphs of the resulting graph are used to define prime sets of level one.
The procedure can be repeated to define prime sets of higher levels until the fractional
arboricity of the resulting graph decreases. In the following, we formally define prime
sets of higher levels.

Let Ĝ(0) = G and Ĝ(k+1) be the graph obtain from Ĝ(k) by contracting all edges
in minimal densest subgraphs of Ĝ(k), where k ≥ 0. If a f (Ĝ(k+1)) = a f (G), then
a prime set of level k + 1 is the edge set of a minimal densest subgraph in Ĝ(k+1).
Otherwise, there is no more prime set and the edge set of Ĝ(k+1) is the non-prime set.
Therefore, every prime set is essentially the edge set of a minimal densest minor, and
the non-prime set is the set of edges that are not in any minimal densest minor. For
simplicity, we introduce some notations for the prime partition ofG. For a prime set P
of level k, we use n(P) to denote the number of vertices in its definingminimal densest
subgraph Ĝ(k)[P]. We use Pk to denote the collection of all prime sets of level k, use
P = ∪kPk to denote the collection of all prime sets, use E0 to denote the non-prime
set, and use E = P ∪{E0} to denote the prime partition. Figure 1 provides an example
of the prime partition. The fractional arboricity of G is 2. There are 4 prime sets of
level zero, 3 prime sets of level one, and 2 prime sets of level two. The non-prime set
is empty.

Since the enumeration of minimal densest subgraphs can be done in polynomial
time, the prime partition can be computed efficiently.

Theorem 13 The prime partition of G has O(n) prime sets and can be computed in

O(n4m log n2
m ).

Proof Lemmas 9 and 10 imply that contractions on different minimal densest sub-
graphs can be performed simultaneously. Notice that n(Ĝ(k+1)) ≤ n(Ĝ(k)) − |Pk |.
Consequently, there are O(n) prime sets in P . The definition of prime sets naturally
yields an efficient algorithm for computing the prime partition of G. Since there are
O(n) prime sets, it takes O(n) iterations to compute the prime partition of G, and
each iteration computes all prime sets of the same level. Computing all prime sets
of the same level is equivalent to enumerating all minimal densest subgraphs, which
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12 H. Xiao, Q. Fang

can be done in O(n3m log n2
m ). Hence the prime partition of G can be computed in

O(n4m log n2
m ). �

5.3 Decomposing densest subgraphs with prime sets

To show that any densest subgraph admits a decomposition of prime sets, we first
generalize the uncrossing property of minimal densest subgraphs to prime sets.

Lemma 14 (Generalized noncrossing property) For any prime set P and any densest
subgraph H of G, either P ⊆ E(H) or P ∩ E(H) = ∅.
Proof We apply induction on the level of prime set P . When P ∈ P0, G[P] is a
minimal densest subgraph of G. Lemma 9 implies that either P ⊆ E(H) or P ∩
E(H) = ∅.

Now assume that P ∈ Pl where l ≥ 1 and assume that for any prime set Q of
level less than l either Q ⊆ E(H) or Q ∩ E(H) = ∅. Let Ĥ (0) = H and Ĥ (k+1) be
the graph obtained from Ĥ (k) by contracting all edges in prime sets of level k, where
k ≥ 0. Assume that E(Ĥ (l)) 	= ∅, since otherwise we have P ∩ E(H) = ∅. By the
induction hypothesis and Lemma 12, we have g(Ĥ (l)) = g(H) = a f (G) = a f (Ĝ(l)).
Hence Ĥ (l) is a densest subgraph of Ĝ(l). Since Ĝ(l)[P] is a minimal densest subgraph
of Ĝ(l), Lemma 9 implies that either P ⊆ E(Ĥ (l)) or P ∩ E(Ĥ (l)) = ∅. Therefore,
either P ⊆ E(H) or P ∩ E(H) = ∅. �

It follows from Lemma 14 that every densest subgraph admits a decomposition of
prime sets.

Lemma 15 (Prime set decomposition) For any densest subgraph H of G, there are
prime sets P1, . . . , Pr such that E(H) = ∪r

i=1Pi , where r ≥ 1. Moreover, n(H) =∑r
i=1[n(Pi ) − 1] + 1.

Proof Lemmas 12 and 14 imply that there are prime sets P1, . . . , Pr such that E(H) =
∪r
i=1Pi . Assume that P1, . . . , Pr are arranged in a non-decreasing order of levels.

Let Ĥ0 = H and Ĥk = Ĥk−1/Pk for k = 1, . . . , r . By Lemmas 9 and 10, we
have n(Ĥk) = n(Ĥk−1) − n(Pk) + 1. Besides, n(Ĥr ) = 1. Therefore, n(H) =∑r

i=1[n(Ĥi−1) − n(Ĥi )] + n(Ĥr ) = ∑r
i=1[n(Pi ) − 1] + 1. �

Since the non-prime set consists of edges that are not in any densest subgraph, we
have the following corollary.

Lemma 16 Let E0 be the non-prime set of G. Then every component of G − E0 is a
densest subgraph of G.

The left Venn diagram in Figure 2 illustrates the relation of all 11 densest subgraphs
of G in Figure 1. It shows that the intersection of any two densest subgraphs is either
empty or a densest subgraph again. Hence, all densest subgraphs of G, together with
∅, form a lattice under inclusion. It also shows that every densest subgraph can be
decomposed into prime sets.
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Arboricity Games: the Core and the Nucleolus 13

Fig. 2 Illustrations for the prime partition of G in Figure 1

5.4 The ancestor relation

Lemmas 14 and 15 suggest that there exists a laminar family of subgraphs with the
maximum density that defines the prime sets. We may determine a chain of subgraphs
that defines the prime sets as follows. Start with G0 = G − E0. For k ≥ 1, let Sk
be the edge set of a minimal densest subgraph in Gk−1, Gk be the graph obtained
from Gk−1 by contracting edges in Sk , and Hk = G[∪k

i=1Si ]. Then Hl = G − E0

for some integer l and Hk = G[∪k
i=1Si ] is a subgraph with the maximum density for

k = 1, . . . , l. Consequently, {H1, . . . , Hl}with H1 � . . . � Hl is a chain of subgraphs
with the maximum density that defines the prime sets. Furthermore, every prime set
is precisely the incremental edge set of consecutive subgraphs in the chain. The right
Venn diagram in Fig. 2 provides a chain of subgraphs with the maximum density that
defines the prime sets of G in Fig. 1. It shows that all prime sets of G are precisely
incremental edges sets of subgraphs in the chain.

Generally, there is more than one chain of subgraphs with the maximum density
that defines the prime sets. However, some prime sets are always preceded by other
prime sets in any chain of subgraphs defining the prime sets, as some minimal densest
minors occur only after the contraction of other minimal densest minors. Therefore,
we introduce the notion of ancestor to represent the invariant precedence relation in
the prime sets. A prime set Q is called an ancestor of a prime set P if the minimal
densest minor defining P occurs only after the contraction of Q. Alternatively, Q is
an ancestor of P if Q always precedes P in any chain of subgraphs with the maximum
density that defines the prime sets. Clearly, the ancestor relation is transitive. If Q is
an ancestor of P but not an ancestor of any other ancestors of P , then Q is called a
parent of P .

To prove the ancestor relation is well defined, it suffices to show that the parent
relation is well defined since the ancestor relation is transitive. Let P be a prime set of
level k ≥ 1. Let G ′ denote the graph obtained from G by contracting all non-parent
ancestors of P by levels, i.e., first contract all non-parent ancestors of level zero and
then repeatedly contract all non-parent ancestors of higher levels. Let G ′′ denote the
graph obtained from G ′ by contracting all parents of P . Let e1, e2 be edges from P
that become incident at some vertex in G ′′. Let Q1, . . . , Qr be a minimal collection
of parents of P whose contraction concatenates e1 and e2. Clearly, G ′[∪r

i=1Qi ] is
connected. Denote by vQ the image of ∪r

i=1Qi in G ′′. We show that Q1, . . . , Qr

make the unique collection of parents of P that concatenates e1 and e2 at vQ in
G ′′. Assume to the contrary that there exists another collection of parents of P , say
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14 H. Xiao, Q. Fang

Q′
1, . . . , Q

′
s , such that G ′[∪s

i=1Q
′
i ] is connected and vQ is the image of ∪s

i=1Q
′
i in

G ′′. Then G ′ has a “cycle” consisting of minimal densest subgraphs induced by prime
sets from Q1, . . . , Qr , Q′

1, . . . , Q
′
s , which contradicts Lemma 10. Hence the parent

relation is well defined.
Notice that all ancestors of a prime set constitute the minimal collection of prime

sets that have to be contracted before arriving at its corresponding minimal densest
minor. Thus if a densest subgraph contains a prime set, it also contains all ancestors
of the prime set.

Lemma 17 Let H be a densest subgraph of G. Let P be a prime set of G and Q be
an ancestor of P. Then P ⊆ E(H) implies Q ⊆ E(H).

Moreover, the ancestor relation can be determined efficiently.

Lemma 18 Given the prime partition of G, the ancestor relation can be determined
in O(n2m).

Proof Let P be a prime set of level k + 1, where k ≥ 0. We show that all ancestors of
P can be determined in O(nm). To determine all ancestors of P , it suffices to check
every prime set Q of level less than k + 1. Let Ĝ(l+1)

−Q denote the graph obtained from

Ĝ(l)
−Q by contracting all edges in prime sets of level l, where Ĝ(0)

−Q = G − Q. Then Q

is an ancestor of P if and only if n(Ĝ(k+1)
−Q [P]) 	= n(Ĝ(k+1)[P]). Since there are O(n)

prime sets, all ancestors of P can be determined in O(nm). Therefore, all ancestors
for O(n) prime sets can be determined in O(n2m). �

We conclude this sectionwith a partially ordered set defined from the prime sets and
the ancestor relation. Indeed, if we view every prime set as an ancestor of itself, then
the ancestor relation naturally yields a partial order on the prime sets. Write P ≺ Q
for any two prime sets P and Q if Q is an ancestor of P . Consequently, a partial order
≺ is defined on the prime sets from the ancestor relation.

6 Computing the nucleolus

In this section, we develop an efficient algorithm for computing the nucleolus of
arboricity gameswhen the core is not empty. In Sect. 6.1,we employ the prime partition
of the underlying graph to reformulate linear programs involved inMaschler’s scheme.
In Sect. 6.2, we prove the correctness of our formulation for Maschler’s scheme. In
Sect. 6.3, we show that Maschler’s scheme always terminates on the second round
and the nucleolus can be computed in polynomial time. Throughout this section, in
addition to assuming that graph G = (V , E) is connected, we further assume that
arboricity game �G = (N , γ ) has a nonempty core.

6.1 ReformulatingMaschler’s scheme

To compute the nucleolus of �G , the first round of Maschler’s scheme is to solve
linear program LP1 (1)–(4) defined from the standard characterization for the core.
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Arboricity Games: the Core and the Nucleolus 15

By referring to the alternative characterization for the core in Lemma 3, we introduce
linear program LP ′

1 (25)–(28). For any constant ε, let P
′
1(ε) denote the set of vectors

x ∈ R
E such that (x, ε) satisfies (26)–(28).We show that LP1 and LP ′

1 are equivalent.

max ε (25)

(LP ′
1) s.t. x(E) = γ (E), (26)

x(T ) + ε ≤ 1, ∀ T ∈ T , (27)

xe ≥ 0, ∀ e ∈ E . (28)

Lemma 19 Let ε1 and ε′
1 be the optimal value of L P1 and LP ′

1 respectively. Then
ε1 = ε′

1 and P1(ε1) = P ′
1(ε

′
1).

Proof Wefirst show that ε1 = ε′
1. It is easy to see that ε1 ≤ ε′

1, since LP
′
1 is a relaxation

of LP1. Let S ⊆ E and CS be a minimum forest cover in G[S]. For any x ∈ P ′
1(ε

′
1),

Lemma 3 implies that

γ (S) − x(S) =
∑

TS∈CS

1 −
∑

e∈S
xe =

∑

TS∈CS

(1 −
∑

e∈TS
xe) ≥

∑

TS∈CS

ε′
1 ≥ ε′

1. (29)

We remark that the last inequality follows from the assumption that C(�G) 	= ∅which
implies ε1 ≥ 0. By the optimality of ε1, we have ε1 ≥ ε′

1. Thus ε1 = ε′
1 follows.

Next we show that P1(ε1) = P ′
1(ε

′
1). Clearly, P1(ε1) ⊆ P ′

1(ε
′
1), since ε1 = ε′

1 and
LP ′

1 is a relaxation of LP1. Since for any x ∈ P ′
1(ε

′
1), x also satisfies the constraints of

LP1 and gives the optimum. Then x ∈ P1(ε1), which implies that P ′
1(ε

′
1) ⊆ P1(ε1).

Thus, P1(ε1) = P ′
1(ε

′
1). �

Before proceeding to the second round ofMaschler’s scheme, we have to determine
the optimal value ε′

1 of LP
′
1. Clearly, ε

′
1 ≥ 0 as C(�G) 	= ∅. Assume that γ (E) = k

and that G can be covered by k disjoint forests F1, . . . , Fk . Let Ti be a spanning
tree containing Fi and x ∈ C(�G). Clearly, x(Fi ) ≤ x(Ti ) ≤ γ (Ti ) = 1. It follows
that x(E) = ∑k

i=1 x(Fi ) ≤ ∑k
i=1 x(Ti ) ≤ k = γ (E). Then x(E) = γ (E) implies

x(Fi ) = x(Ti ) = 1. Hence ε′
1 = 0, implying that the core P ′

1(0) and the least core
P ′
1(ε

′
1) coincide. Consequently, there are spanning trees T ∈ T such that x(T ) = 1

for any x ∈ C(�G), i.e., T is fixed by P ′
1(ε

′
1). Denote by T0 the set of spanning trees

that are fixed by P ′
1(ε

′
1). Let E0 denote the set of edges that are not in any densest

subgraph of G. Corollary 7 implies that xe = ε′
1 = 0 for any e ∈ E0. By Lemma 19,

the second round of Maschler’s scheme can be formulated as LP ′
2 from LP ′

1.

max ε (30)

s.t. x(T ) + ε ≤ 1, ∀ T ∈ T \T0, (31)

(LP ′
2) x(T ) = 1, ∀ T ∈ T0, (32)

xe ≥ ε, ∀ e ∈ E\E0, (33)

xe = 0, ∀ e ∈ E0. (34)
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16 H. Xiao, Q. Fang

However, LP ′
2 still has an exponential number of constraints. We derive an equiva-

lent formulation of LP ′
2 that has only polynomial size by resorting to the primepartition

of G. Notice that E0 in (34) is precisely the non-prime set of G. LetP = ∪kPk denote
the collection of all prime sets of G, where Pk is the collection of all prime sets of
level k. Let E = P ∪ {E0} denote the the prime partition of G. Corollary 7 states that
all edges in the non-prime set have the same value in a core allocation. It turns out that
this property also holds for edges from the same prime set.

Lemma 20 Let x be a core allocation of �G and P be a prime set of G. Then xe = x f

for any e, f ∈ P.

Proof Let xH be the vector associated with a densest subgraph H of G. By Lemma
14, either P ⊆ E(H) or P ∩ E(H) = ∅. Thus for any e, f ∈ P , xHe = xHf = 1

n(H)−1

if P ⊆ E(H) and xHe = xHf = 0 otherwise. Since any vector x ∈ C(�G) is a convex
combination of vectors associated with a densest subgraph of G, we have xe = x f for
any e, f ∈ P . �

Corollary 7 and Lemma 20 state that all edges in the same set of the prime partition
have the same value in a core allocation. Hence every core allocation x ∈ R

E of �G

defines a vector y ∈ R
E associated with the prime partition of G. Moreover, LP ′

2 can
be reformulated with y. Let (P,≺) denote the partially ordered set defined on P from
the ancestor relation. Let Pmin denote the set of minimal prime sets in (P,≺). Denote
by LP ′′

2 the linear program (35)–(39) defined on y. In Sect. 6.2, we show that LP ′
2

and LP ′′
2 are equivalent, i.e., x is feasible to LP ′

2 if and only if y is feasible to LP ′′
2 .

In Sect. 6.3, we propose a combinatorial algorithm for LP ′′
2 and show that LP ′′

2 has a
unique optimal solution which yields the nucleolus of �G .

max ε (35)

s.t. yP + ε ≤ yQ, ∀ P ≺ Q, (36)

(LP ′′
2 )

∑
P∈P [n(P) − 1]yP = 1, (37)

yP ≥ ε, ∀ P ∈ Pmin, (38)

yE0 = 0. (39)

6.2 Equivalence of LP′
2 and LP

′′
2

Let x ∈ C(�G) and y ∈ R
E be a pair of associated vectors. We show that x is feasible

to LP ′
2 if and only if y is feasible to LP ′′

2 . By Corollary 7, it is trivial that (34) and
(39) are equivalent. The equivalence of (33) and (38) follows from Lemma 20 and the
observation below.

Lemma 21 Let x be a core allocation of �G and P, Q be two prime sets of G such
that Q is an ancestor of P. Then xe ≤ x f for any e ∈ P and any f ∈ Q.

Proof Let xH be the vector associated with a densest subgraph H of G. Lemma 17
implies that Q ⊆ E(H) if P ⊆ E(H). If follows that for any e ∈ P and any f ∈ Q,
xHe = xHf = 1

n(H)−1 if P ⊆ E(H) and xHe = 0 ≤ xHf otherwise. Since any vector
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x ∈ C(�G) is a convex combination of vectors associated with densest subgraph of
G, we have xe ≤ x f for any e ∈ P and any f ∈ Q. �

Next, we show the equivalence of (32) and (37). Notice that (32) provides a charac-
terization for trees in T0 with x ∈ R

E . Thus (37) serves the same purpose. To associate
trees in T0 with y ∈ R

E , we introduce the following lemma.

Lemma 22 A spanning tree T belongs to T0 if and only if for any prime set P we have

|T ∩ P| = n(P) − 1. (40)

Proof (⇐) Assume that T is a spanning tree satisfying (40) for any prime set P .
Let H be a densest subgraph of G. The vector xH associated with H is defined
by xHe = 1

n(H)−1 if e ∈ E(H) and xHe = 0 otherwise. By Lemma 15, we have
E(H) = ∪r

i=1Pi and n(H) = ∑r
i=1[n(Pi ) − 1] + 1, where Pi ∈ P for i = 1, . . . , r .

Thus

xH (T ) =
∑r

i=1|T ∩ Pi |
n(H) − 1

=
∑r

i=1[n(Pi ) − 1]
n(H) − 1

= n(H) − 1

n(H) − 1
= 1.

Since every vector in C(�G) is a convex combination of vectors associatedwith densest
subgraph of G, we have x(T ) = 1 for any x ∈ C(�G), implying that T ∈ T0.

(⇒) Assume that T ∈ T0, i.e., T is a spanning tree such that x(T ) = 1 for any
x ∈ C(�G). Among all densest subgraphs of G containing P , let H be a minimal one.
We apply induction on the level of prime set P ∈ P .

First assume that P ∈ P0. Hence P = E(H), implying that H is a densest subgraph
of G. Then the vector xH ∈ C(�G) associated with H is defined by xHe = 1

n(H)−1 for

e ∈ P and xHe = 0 otherwise. Since xH (T ) = 1
n(H)−1 |T ∩ P| = 1, it follows that

|T ∩ P| = n(H) − 1 = n(P) − 1. Hence (40) holds for P .
Now assume that P ∈ Pk , where k ≥ 1. Lemma 15 implies that there exist prime

sets Q1, . . . , Qr such that E(H) = P ∪ (∪r
i=1Qi ). The minimality of H implies

that P ≺ Qi for i = 1, . . . , r . By induction hypothesis, we have |T ∩ (∪r
i=1Qi )| =

∑r
i=1[n(Qi ) − 1]. Then the vector xH ∈ C(�) associated with H is defined by

xHe = 1
n(H)−1 if e ∈ P ∪ (∪r

i=1Qi ) and xHe = 0 otherwise. Since

xH (T ) = |T ∩ [P ∪ (∪r
i=1Qi )]|

n(H) − 1
= |T ∩ P| + ∑r

i=1[n(Qi ) − 1]
n(H) − 1

= 1,

Lemma 15 implies that |T ∩ P| = n(H)− 1−∑r
i=1[n(Qi )− 1] = n(P)− 1. Hence

(40) holds for P ∈ Pk where k ≥ 1. �
Now we are ready to prove the equivalence of (32) and (37).

Lemma 23 Let x ∈ C(�G) be a vector and y ∈ R
E be the vector defined from x. Then

x satisfies (32) if and only if y satisfies (37).
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18 H. Xiao, Q. Fang

Proof Notice that every spanning tree T ∈ T admits a decomposition from the prime
partition. Lemma 22 implies that

x(T ) =
∑

e∈T
xe = |T ∩ E0|yE0 +

∑

P∈P
|T ∩ P|yP =

∑

P∈P
[n(P) − 1]yP = 1. (41)

Thus x satisfies (32) if and only if y satisfies (37). �
Finally, we come to the equivalence of LP ′

2 and LP ′′
2 . We first show that any vector

y ∈ R
E defined from a feasible solution x ∈ R

E of LP ′
2 satisfies (36) and hence is a

feasible solution of LP ′′
2 . Our proof is based on the idea that for two any prime sets

P and Q with P ≺ Q, a specific spanning tree outside T0 can be constructed from
any spanning tree in T0 by repeatedly performing edge exchanges along a pathway
consisting of ancestors of P and ending with Q. To this end, we need the following
lemma.

Lemma 24 Let P, Q ∈ P be a pair of prime sets with P ≺ Q in (P,≺). For any
spanning tree T ∈ T0, there exists a spanning tree T ′ ∈ T \T0 such that

|T ′ ∩ P| = |T ∩ P| + 1, (42)

|T ′ ∩ Q| = |T ∩ Q| − 1, (43)

|T ′ ∩ R| = |T ∩ R|, ∀ R ∈ P\{P, Q}. (44)

Proof Assume that P ∈ Pl and Q ∈ Pl−r , where l ≥ r ≥ 1. We claim that there exist

– a sequence S0, . . . , Sr of ancestors of P such that S0 = P , Sr = Q and Sk ∈ Pl−k

for k = 0, . . . , r ;
– a sequence T0, . . . , Tr of spanning trees obtained from T such that T0 = T and

Tk+1 = Tk + e′
k − ek+1, (45)

where ek, e′
k ∈ Sk for k = 0, . . . , r .

It follows that

Tk+1 = T0 + e′
0 −

k∑

i=1

(ei − e′
i ) − ek+1. (46)

Notice that |Tk+1 ∩ S0| = |T0 ∩ S0| + 1, |Tk+1 ∩ Sk+1| = |T0 ∩ Sk+1| − 1, and
|Tk+1 ∩ S| = |T0 ∩ S| for any S ∈ P\{S0, Sk+1}. Lemma 22 implies that Tr is a
spanning tree satisfying (42)–(44) in T \T0.

The sequence S0, . . . , Sr sets a pathway for edge exchange operations in (45),
which can be identified as follows. Start with Sr = Q and work backwards. Suppose
Sk+1 ∈ Pl−k−1 has been identified. If Sk+1 is a parent of an ancestor R ∈ Pl−k

of P , then let Sk = R. Otherwise, there exist two ancestors R1, R2 ∈ Pl−k of P
such that Ĝ(l−k−1)[R1] and Ĝ(l−k−1)[R2] share no common vertex but Ĝ(l−k)[R1]
and Ĝ(l−k)[R2] share a common vertex sk+1 which is the image of Sk+1 in Ĝ(l−k).
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Then let Sk be any one of R1 and R2, say Sk = R1. Repeat this process until S0 = P .
Denote by S the set of S0, . . . , Sr .

It remains to show how to perform edge exchange operations in (45). Let Ĝk be
the graph obtained from G by contracting all edges in prime sets of level less than Sk
and all edges in other prime sets of the same level with Sk . Let sk+1 denote the image
of Sk+1 in Ĝk . Clearly, sk+1 is a vertex in Ĝk[Sk]. Let Tk ∈ T be a spanning tree
constructed from Tk−1 by (45). It follows that Tk ∩ Si = T ∩ Si for i = k + 1, . . . , r
and Tk ∩ S = T ∩ S for S ∈ P\S. Let Ĝk+1[Tk] denote the edge-induced subgraph
of Ĝk+1 on the common edges of Ĝk+1 and Tk . Lemma 22 implies that Ĝk+1[Tk] is a
spanning tree of Ĝk+1. In particular, Ĝk+1[Tk∩Sk+1] is a spanning tree of Ĝk+1[Sk+1].
To construct Tk+1 from Tk , we distinguish two cases based on whether Sk+1 is a parent
of Sk .

First assume that Sk+1 is a parent of Sk . Then there exist edges from Sk incident to
two distinct vertices u1, u2 ∈ V (Ĝk+1[Sk+1]) in Ĝk+1. To construct Tk+1 from Tk by
(45), we concentrate on Ĝk+1 and further distinguish two cases on edges in Tk ∩ Sk .

• Edges from Tk ∩ Sk are only incident to one vertex, say u1, of Ĝk+1[Sk+1] (cf., left
graph in Fig. 3). Then there exists an edge e′

k ∈ Sk incident to u2. Since Ĝk+1[Tk]
is a spanning tree of Ĝk+1, adding e′

k to Tk creates a cycle involving edges in
Ĝk+1[Tk ∩ Sk+1]. Remove an edge ek+1 from Ĝk+1[Tk ∩ Sk+1] to break the cycle
and denote the new tree by Tk+1. Thus we have Tk+1 = Tk + e′

k − ek+1.

• Edges from Tk ∩ Sk are incident to more than one vertices in Ĝk+1[Sk+1] (cf.,
middle graph in Fig. 3). For i = 1, 2, let fi ∈ Tk ∩ Sk be an edge incident to
ui ∈ V (Ĝk+1[Sk+1]), and vi be the other endpoint of fi . Since Ĝk+1[Tk ∩ Sk+1]
is a tree, v1 and v2 are distinct vertices in Ĝk+1[Tk]. For i = 1, 2, let Ui be the
set of vertices in Ĝk+1[Sk] that are connected to ui with edges in Tk . Clearly,
v1 ∈ U1 and v2 ∈ U2. Now consider Ĝk . Since Ĝk+1[Tk] is a spanning tree of
Ĝk+1, Ĝk[Tk ∩ Sk] is a spanning tree of Ĝk[Sk]. Notice that Ĝk[Tk] is a spanning
tree of Ĝk[∪k

i=1Si ]. It follows that U1 ∪ U2 ∪ {sk+1} = V (Ĝk[Sk]). Notice that
Ĝk[Sk] is a minimal densest subgraph of Ĝk . By Lemma 8, there is a crossing edge
e′
k ∈ Sk betweenU1 andU2 in Ĝk[Sk]. Since Ĝk+1[Tk] is a spanning tree of Ĝk+1,

adding e′
k to Tk creates a cycle involving edges in Ĝk+1[Tk ∩ Sk+1]. Remove an

edge ek+1 from Ĝk+1[Tk ∩ Sk+1] to break the cycle and denote the new tree by
Tk+1. Thus we have Tk+1 = Tk + e′

k − ek+1.

Now assume that Sk+1 is not a parent of Sk where k ≥ 1 (cf., right graph in Fig.
3). Then there exists another ancestor S′

k ∈ Pl−k of S0 such that Ĝ(l−k−1)[Sk] and
Ĝ(l−k−1)[S′

k] share no common vertex but Ĝ(l−k)[Sk] and Ĝ(l−k)[S′
k] share a common

vertex sk+1 which is the image of Sk+1. Now consider Ĝk+1. Notice that Ĝk+1[Sk+1],
Ĝk+1[Sk] and Ĝk+1[S′

k] are all minimal densest subgraphs in Ĝk+1. Moreover,

Ĝk+1[Sk+1] shares a common vertex u with Ĝk+1[Sk] and shares a common vertex u′
with Ĝk+1[S′

k] respectively. Clearly, u 	= u′. Since |Tk∩Sk |= |T0∩Sk |−1 = n(Sk)−2,

Ĝk+1[Tk ∩ Sk] is not connected. Notice that Ĝk+1[Tk] is a spanning tree of Ĝk+1. Let
U and U ′ be the set of vertices in Ĝk+1[Sk] that are connected to u and u′ respec-
tively in Ĝk+1[Tk]. Hence U and U ′ form a nontrivial bipartition of V (Ĝk+1[Sk]).
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Fig. 3 The dashed line denotes the edge e′k added to Tk . The dash-dotted line denotes the path in Tk avoiding
edges in Sk

Then there is a crossing edge e′
k ∈ Sk between U and U ′ in V (Ĝk+1[Sk]). Since

Ĝk+1[Tk] is a spanning tree of Ĝk+1, adding e′
k to Tk creates a cycle involving edges

in Ĝk+1[Tk ∩ Sk+1]. Remove an edge ek+1 from Ĝk+1[Tk ∩ Sk+1] to break the cycle
and denote the new tree by Tk+1. Thus we have Tk+1 = Tk + e′

k − ek+1. �
Lemma 25 Let x ∈ C(�G) be a vector satisfying (32)–(34) and y ∈ R

E be the vector
defined from x. If x satisfies (31), then y satisfies (36).

Proof Let T ∈ T0 be a spanning tree. Lemma 24 implies that there exists a spanning
tree T ′ ∈ T \T0 such that |T ′ ∩ P| = |T ∩ P| + 1, |T ′ ∩ Q| = |T ∩ Q| − 1, and
|T ′ ∩ R| = |T ∩ R| for any R ∈ P\{P, Q}. It follows that

x(T ′) = |T ′ ∩ P| · yP + |T ′ ∩ Q| · yQ +
∑

R∈P\{P,Q}
|T ′ ∩ R| · yR

= (|T ∩ P| + 1) · yP + (|T ∩ Q| − 1) · yQ +
∑

R∈P\{P,Q}
|T ∩ R| · yR

= x(T ) + yP − yQ .

Since T ∈ T0 and T ′ ∈ T \T0, we have x(T ) = 1 and x(T ′) + ε ≤ 1. Hence
yP + ε ≤ yQ follows. �

Now we show that if y ∈ R
E is a feasible solution of LP ′′

2 , then its associated
vector x ∈ C(�G) satisfies (31) and hence is a feasible solution of LP ′

2. Our proof
is based on the idea that a spanning tree in T0 can be constructed from any spanning
tree outside T0 by repeatedly performing edge exchanges between a prime set and the
non-prime set or between a prime set and another prime set of higher level. To this
end, we need the following lemma.

Lemma 26 Let T be a spanning tree in T \T0. Among prime sets that violate (40) with
T , let P be a prime set of minimum level. Then we have |T ∩ P| < n(P) − 1.

Proof Let T be a spanning tree in T \T0 and k be the minimum level of prime sets
that violate (40) with T . For any prime set P ∈ Pk that violates (40) with T , we show
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Fig. 4 A cycle C ′ in Ĝ(k−1)[T ]
is constructed from a cycle C in
Ĝ(k)[T ]

that |T ∩ P| > n(P) − 1 is absurd. Assume to the contrary that |T ∩ P| > n(P) − 1.
It follows that Ĝ(k)[T ∩ P] contains a cycle consisting of edges from T . We apply
induction on k to show that a cycle in Ĝ(k)[T ] implies a cycle in T , which is absurd.

It is trivial for k = 0, since Ĝ(0)[T ] = T . Now assume that k ≥ 1 and that all
prime sets of level less than k satisfies (40) with T . Hence Ĝ(k−1)[T ] is a tree. Let C
be a cycle in Ĝ(k)[T ] (cf. left graph in Fig. 4). It follows that C contains images of
prime sets of level k − 1. Let q1, . . . , qs be the images of prime sets of level k − 1
in C which appear in a clockwise order along C . Denote by ei and fi the two edges
incident to qi in C and denote by Qi the union of prime sets of level k − 1 with
image qi , for i = 1, . . . , s. Hence ei and fi are incident to two distinct vertices ui
and wi in Ĝ(k−1)[Qi ] respectively. By assumption, |T ∩ Q| = n(Q) − 1 for any
Q ∈ Pk−1. It follows that Ĝ(k−1)[T ∩ Qi ] is a tree. Let pi denote the unique ui -wi

path in Ĝ(k−1)[T ∩ Qi ]. Now inserting the ui -wi path pi between ei and fi in C for
i = 1, . . . , s creates a cycle C ′ in Ĝ(k−1)[T ] (cf. right graph in Fig. 4). However, this
contradicts the acyclicity of Ĝ(k−1)[T ]. �

Lemma 27 Let x ∈ C(�G) be a vector satisfying (32)–(34) and y ∈ R
E be the vector

defined from x. If y satisfies (36), then x satisfies (31).

Proof Let T ∈ T \T0. Among all prime sets that violates (40) with T , let P ∈ Pk be
a prime set of minimum level, where k ≥ 0. Since every prime set of level less than k
satisfies (40) with T , Ĝ(k)[T ] is a spanning tree of Ĝ(k).

Lemma 26 implies that |T ∩ P| < n(P) − 1. It follows that Ĝ(k)[T ∩ P] is not
connected and there exists an edge e′ in P\T that joins two components of Ĝ(k)[T∩P].
Moreover, e′ joins two non-adjacent vertices of Ĝ(k)[T ]. Hence adding e′ to Ĝ(k)[T ]
creates a cycle C . As we shall see, C involves edges either from the non-prime set E0
or from a prime set of level greater than k. Now we show that a new spanning tree
T ′ ∈ T can be constructed from T such that x(T ) ≤ x(T ′)−ε with an edge exchange
operation. We distinguish two cases.

• C ∩ E0 	= ∅. Remove an edge e from C ∩ E0 to break the cycle C and denote the
new tree by T ′. Hence T ′ = T − e + e′ where e ∈ C ∩ E0 and e′ ∈ P\T . Since
xe = 0 and xe′ ≥ ε, it follows that x(T ) = x(T ′) + xe − xe′ ≤ x(T ′) − ε.

• C ∩ E0 = ∅. It follows that C is a cycle in a component of Ĝ(k) − E0. Lemmas
12 and 16 imply that every component of Ĝ(k) − E0 is a densest subgraph of
Ĝ(k). By Lemma 10, C involves edges from prime sets of level higher than k,
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since otherwise there are minimal densest subgraphs in Ĝ(k) which are pairwise
connected along the cycle C and the number of common vertices violates Lemma
10. Let Q ∈ Pl where l > k be a prime set of the largest level that intersectsC . We
claim that Ĝ(l)[Q ∩C] is a cycle. To see this, consider Ĝ(l)[C] which is the edge-
induced subgraph of Ĝ(l) on the common edges of Ĝ(l) and C ⊆ Ĝ(k). If there
exists a cycleC ′ in Ĝ(l)[C] involving more than one prime sets of level l, then their
defining minimal densest subgraphs are pairwise connected along the cycleC ′ and
the number of common vertices violates Lemma 10. Hence the claim follows. It
follows that Q ≺ P . To see this, we apply induction on l−k. If l = k+1, then two
edges in C ∩ Q become incident (or share one more common vertex) at the image
vP of P in Ĝ(l). Thus P is a parent of Q and Q ≺ P follows. Now assume that
l > k + 1. Let C ′ be the cycle in Ĝ(k+1) consisting of edges from C and involving
edges in Q. For any prime set R ∈ Pk+1 that intersects C ′, R ≺ P implies Q ≺ P
inductively. Hence assume that P is not a parent of any prime set of level k + 1
that intersects C ′. Let vP be the image of P in Ĝ(k+1). Then vP is a vertex in C ′
which concatenates two minimal densest subgraphs of Ĝ(k+1) involving edges of
C ′. There exists a prime set R ∈ Pr where k + 1 < r ≤ l such that two edges in
R ∩ C ′ become incident (or share one more common vertex) in Ĝ(r), and a cycle
C ′′ in Ĝ(r) consisting of edges fromC ′ and involving edges from Q and R. Further
assume that the prime set R introduced above is of minimum level. Hence P is a
parent of R. If Q = R, then Q ≺ P follows directly. Otherwise, Q ≺ R follows
inductively. Thus in either case, we have Q ≺ P . Remove an edge e in C ∩ Q to
break the cycle C and denote the new tree by T ′. Then T ′ = T − e + e′ where
e ∈ C ∩ Q and e′ ∈ P\T . Since Q ≺ P , we have yQ + ε ≤ yP which implies
xe + ε ≤ xe′ . It follows that x(T ) = x(T ′) + xe − xe′ ≤ x(T ′) − ε.

Hence a new spanning tree T ′ can be constructed from T such that x(T ) ≤ x(T ′)−ε

with an edge exchange operation. Now we consider T ′. If T ′ /∈ T0, then among all
prime sets that violates (40) associated with T ′, let P ′ be one of minimum level. By
Lemma 26, |T ′ ∩ P ′| < n(P ′) − 1 follows again. Denote T by T0 and T ′ by T1. Then
repeating the process that constructs T1 from T0 yields a sequence T1, . . . , Tk ∈ T of
spanning trees until the last tree Tk appears in T0. And we have x(Ti ) ≤ x(Ti+1) − ε

for i = 1, . . . , k−1. This sequence ends properly because each time an edge exchange
operation is performed between a prime set and the non-prime set or between a prime
set and another prime set of higher levels. This sequence ends with a spanning tree in
T0 because each time an edge is added to the prime set of minimum level that violates
(40). Finally, Tk ∈ T0 implies that

x(T ) = x(T0) ≤ x(Tk) − kε = 1 − kε ≤ 1 − ε, (47)

where the last inequality follows from the fact that ε > 0 �

6.3 A combinatorial algorithm for LP′′
2

The following lemma reveals how to solve LP ′′
2 .
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Lemma 28 Let ( y∗, ε∗) be an optimal solution of L P ′′
2 . Then for each prime set P ∈ P ,

either (36) or (38) is tight for ( y∗, ε∗).

Proof Assume to the contrary that neither (36) nor (38) is tight for P0 ∈ P . For
a constant δ > 0 small enough, define y� by y�

P0
= y∗

P0
− δ and y�

P = y∗
P for any

P ∈ P\{P0}. Then ( y�, ε∗) satisfies (36), (38) and (39), but
∑

P∈P [n(P)−1]y�
P < 1.

Hence ( y�, ε∗) can be scaled up with a constant θ > 1 such that (θ y�, θε∗) satisfies
(36)–(39). However, this contradicts the optimality of ( y∗, ε∗). �

Based on the lemma above, we derive a combinatorial algorithm for solving LP ′′
2 .

Algorithm A combinatorial algorithm for LP ′′
2

1: k = 0
2: while P 	= ∅ do
3: k ← k + 1
4: Pmin ← the set of minimal prime sets in (P,≺)

5: yP ← kε for any P ∈ Pmin

6: P ← P\Pmin

7: end while
8: Since yP = kPε where kP is an integer for any P ∈ P , solving ε in (37) gives the

unique optimal solution of LP ′′
2 .

The algorithm above implies that LP ′′
2 has a unique optimal solution, which yields

the nucleolus of �G . Now we are ready to present our main result.

Theorem 29 Let �G = (N , γ ) be an arboricity game with a nonempty core. The

nucleolus of �G can be computed in O(n4m log n2
m ).

Proof The prime partition can be computed in O(n4m log n2
m ). The ancestor relation of

prime sets can be determined in O(n2m). The algorithm above takes O(n) iterations
and each iteration requires O(n2) time to determine the minimal prime sets in the
remaining partially ordered set. Hence the algorithm above ends in O(n3). Notice that
the prime partition computation dominates the computing time of all other parts. Thus
the nucleolus can be computed in O(n4m log n2

m ). �

7 Concluding remarks

This paper provides an efficient algorithm for computing the nucleolus of arboricity
games when the core is not empty. Notice that a variant of the arboricity game arises
when the cost of each coalition is defined by fractional arboricity instead of arboricity.
Despite a new cost function, our algorithm for computing the nucleolus remains valid
since the variant always has a nonempty core.
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This paper also offers a graph decomposition built on the densest subgraph lattice.
The prime partition decomposes the edge set of a graph into a non-prime set and a
number of prime sets, where prime sets correspond to minimal densest minors. Notice
that the non-prime set can be further decomposed following the same procedure for
defining prime sets. Therefore, the prime partition indeed provides a hierarchical graph
decomposition analogous to the celebrated core decomposition.
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