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Abstract
Flows over time have received substantial attention from both an optimization and
(more recently) a game-theoretic perspective. In this model, each arc has an associ-
ated delay for traversing the arc, and a bound on the rate of flow entering the arc;
flows are time-varying. We consider a setting which is very standard within the trans-
portation economic literature, but has received little attention from an algorithmic
perspective. The flow consists of users who are able to choose their route but also
their departure time, and who desire to arrive at their destination at a particular time,
incurring a scheduling cost if they arrive earlier or later. The total cost of a user is
then a combination of the time they spend commuting, and the scheduling cost they
incur. We present a combinatorial algorithm for the natural optimization problem, that
of minimizing the average total cost of all users (i.e., maximizing the social welfare).
Based on this, we also show how to set tolls so that this optimal flow is induced as an
equilibrium of the underlying game.
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1 Introduction

The study of flows over time is a classical one in combinatorial optimization; it began
already with the work of Ford and Fulkerson [10] in the 50s. It is a natural extension
of static flows, which associates a single numerical value, representing a total quantity
or rate of flow on the arc. In a flow over time, a second value associated with each
arc represents the time it takes for flow to traverse it; the flow is then described by
a function on each arc, representing the rate of flow entering the arc as a function of
time.

Classical optimization problems involving static flows have natural analogs in the
flow over time setting (see the surveys [17,26]). For example (restricting the discussion
to single commodity flows), themaximum flow over time problem asks to send asmuch
flow as possible, departing from the source starting from time 0 and arriving to the sink
by a given time horizon T ; this can be solved in polynomial time [9–11]. A quickest
flow asks, conversely, for the shortest time horizon necessary to send a given amount
of flow. Of particular importance for us is the notion of an earliest arrival flow: this
has the very strong property that simultaneously for all T ′ ≤ T , the amount of flow
arriving by time T ′ is as large as possible [13]. Such a flow can also be characterized as
minimizing the average arrival time [15]. Earliest arrival flows can be “complicated”,
in that they can require exponential space (in the input size) to describe [31], and
determining the average arrival time of an earliest arrival flow is NP-hard [8]. But they
can be constructed in time strongly polynomial in the sum of the input and output size
[3].

Another important aspect of many settings where flow-over-time models are
applicable—such as traffic—involves game theoretic considerations. In traffic set-
tings, the flow is made up of a large number of individuals making their own routing
choices, and aiming to maximize their own utility rather than the overall social wel-
fare (e.g., average journey time). Dynamic equilibria, which is the flow over time
equivalent of Wardrop equilibria for static flows, are key objects of study. Existence,
uniqueness, structural and algorithmic issues, and much more have been receiving
increasing recent interest from the optimization community [4–7,16,23,24].

Traffic, being such a relevant and important topic, has received attention frommany
different communities, each with their own perspective. Within the transportation
economic literature, modelling other aspects of user choice besides route choice has
been considered particularly important. A very standard setting, motivated bymorning
rush-hour traffic, is the following [2,28]. Users are able to choose not only their route,
but also their departure time. They are then concerned not only with their journey
time, but also their arrival time at the destination. This is captured in a scheduling
cost function which we will denote by ρ: a user arriving at time θ will experience a
scheduling cost of ρ(θ). The total disutility of a user is then the sum of their scheduling
cost and their journey time (scaled by some factor α > 0 representing their value for
time spent commuting). A very standard choice of ρ is

ρ(θ) =
{

−βθ if θ ≤ 0

γ θ if θ > 0
, (1)
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where 0 is the desired arrival time and 0 < β < α < γ (it is very bad to be late, but
time spent in the office early is better than time spent in traffic). We will allow general
scheduling cost functions, though for most of the paper we will focus on strongly
unimodal cost functions; these are the most relevant, and this avoids some distracting
technical details.

Two very natural questions can be posed at this point. The first is a purely opti-
mization question, with no attention paid to the decentralized nature of traffic.

Problem 1 How can one compute a flow over time minimizing the average total cost
paid by users, i.e., maximizing the social welfare?

From now on, we will call a solution to this problem simply an optimal flow.
It is well understood that users will typically not coordinate their actions to induce

a flow that minimizes total disutility. There is a huge body of literature (particularly
in the setting of static flows [19]) investigating this phenomenon. In the traffic setting,
the relevance of an optimal flow represented by an answer to this question comes
primarily via the possibility of pricing. By putting appropriate tolls on roads, we can
influence the behaviour of users and the resulting dynamic equilibrium. Thus:

Problem 2 Howcan one set tolls (possibly time-varying) on the arcs of a given instance
so that an optimal flow is obtained in dynamic equilibrium?

One subtlety is that since dynamic equilibria need not be precisely unique, there is a
distinction between tolls that induce an optimal flow as an equilibrium, compared to
tolls for which all dynamic equilibria are optimal. We will call this weak and strong
enforcement of optimality, respectively, and will return to this subtlety shortly. (See
Harks [14] for some related notions of enforcement in a general pricing setting.)

It is also natural to ask about equilibria without tolls. This is closely related to work
on dynamic equilibria under exogenous demand—meaning that users do not have a
choice of departure time, but enter the network according to some given rate function.
Issues of existence and uniqueness, algorithmic concerns, and other properties of
dynamic equilibria in this setting, have received a lot of attention (see above for a
list of relevant references). However, the modelling issues are rather orthogonal to
the thrust of this paper, so we will not discuss this in any more detail. We refer the
interested reader to Frascaria, Olver and Verhoef [12], who define dynamic equilibria
in the endogenous departure model and investigate some properties of it.

Questions like these are of great interest to transportation economists. However,
most work in that community has focused on obtaining a fine-grained understanding
of very restricted topologies (such as a single link, or multiple parallel links); see [27]
for a survey.

Both of these questions (for general network topologies) were considered by Yang
and Meng [30] in a discrete time setting, by exploiting the notion of time-expanded
graphs. This is a standard tool in the area of flows over time; discrete versions all of the
optimization questions concerning flows over time mentioned earlier can (in a sense)
be dealt with in this way. A node v in the graph is expanded to a collection (v, i) of
nodes, for i ∈ Z in a suitable interval, and an arc vw of delay τvw becomes a collection
of arcs ((v, i), (w, i+τvw)) (this assumes a scaling so that τvw is a length inmultiples of
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the chosen discrete timesteps). Scheduling costs are encoded by appropriately setting
arc costs from (t, i) to a supersink t ′ for each i , and the problem can be solved by a
minimum cost static flow computation. A primary disadvantage of this approach (and
in the use of time-expanded graphs more generally) is that the running time of the
algorithm depends polynomially on the number of time steps, which can be very large.
Further, it cannot be used to exactly solve the continuous time version (our interest in
this paper); by discretizing time, it can be used to approximate it, but the size of the
time-expanded graph is inversely proportional to the step size of the discretization. In
the same work [30], the authors also observe that in the discrete setting, an answer to
the second question can be obtained from the time-expanded graph as well. Taking
the LP describing the minimum cost flow problem on the time-expanded graph, the
optimal dual solution to this LP provides the necessary tolls to enforce (weakly) an
optimal flow. (This is no big surprise—dual variables can frequently be interpreted as
prices.)

An assumption on ρ Suppose we consider ρ in the standard form given in (1), but with
β > α. This means that commuting is considered to be less unpleasant than arriving
early. A user arriving earlier than time 0 at the sink would be better off “waiting” at the
sink before leaving, in order to pay a scheduling cost of 0.Whether waiting in this way
is allowed or not depends on the precise way one specifies the model, but it is most
natural (and convenient) to allow this. If we do so, then it is clear that a scheduling
cost function ρ can be replaced by

ρ̂(θ) := min
ξ≥θ

ρ(ξ) + α(ξ − θ)

without changing the optimal flow (except there is no longer any incentive to wait at
the sink, and we need not even allow it). Then θ → ρ̂(θ)+αθ is nondecreasing. From
now on, we always assume that ρ satisfies this; we will call it the growth bound on ρ.

Our resultsWe give a combinatorial algorithm to compute an optimal flow. Similarly
to the case of earliest arrival flows, this flow can be necessarily complicated, and
involves a description length that is exponential in the input size.

The algorithm is also similar to that for computing an earliest arrival flow. It is
based on the (possibly exponentially sized) path decomposition of a minimum cost
flow into successive shortest paths. In particular, suppose we choose the scheduling
cost function to be

ρ(θ) =
{

−αθ if θ ≤ 0

∞ if θ > 0
. (2)

Then the disutility a user experiences is precisely described by howmuch before time
0 they depart; all users must arrive by time 0 to ensure finite cost. This is precisely
the reversal (both in time and direction of all arcs) of an earliest arrival flow, from the
sink to the source. (By writing the average arrival time objective as the integral over
time of the total flow not yet arrived by this time, this exact correspondence is easy
to see.) Our algorithm, in this case, is the same (up to the time reversal) as the usual
algorithm for earliest arrival flow [9].
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Algorithms for flows over time with scheduling costs 181

This also shows that there are instances where all optimal solutions to Problem 1
require exponential size (as a function of the input encoding length), since this is the
case for earliest arrival flows [31].

Despite the close relation to earliest arrival flows, the proof of optimality of our
algorithm is rather different. A key reason for this is the following. As mentioned,
earliest arrival flows have the strong property that the amount of flow arriving before
a given deadline T ′ is the maximum possible, simultaneously for all choices of T ′ (up
to some maximum depending on the total amount of flow being sent). This implies
that an earliest arrival flow certainly minimizes the average arrival time amongst all
possible flows [15], but is a substantially stronger property. A natural analog of this
stronger property in our settingwould be to ask for a flow forwhich, simultaneously for
any given cost horizon C ′ ≤ C , the amount of flow consisting of agents experiencing
disutility at most C ′ is as large as possible. Unfortunately, in general no such flow
exists. The example is too involved to discuss here, but it relates to some questions
on the behaviour of dynamic equilibria in this model that are investigated in a parallel
manuscript [12].

Since the proofs for earliest arrival flows [3,13,18,29] show this stronger property
which does not generalize, we take a different approach. Our proof is based on duality
(of an infinite dimensional LP, though we do not require any technical results on such
LPs). The main technical challenge in our work comes from determining the correct
ansatz for the dual solution, as well as exploiting properties of the residual networks
obtained from the successive shortest paths algorithm in precisely the right way to
demonstrate certain complementary slackness conditions.

We remark that some of the work on maximum flow over time does make the
connection to infinite dimensional LPs; see Sharkey [25] for a survey and some further
references. In particular, we point out the flow-over-time version of max-flow min-
cut by Philpott [20], which can be viewed as a derivation of strong duality for the
corresponding infinite linear program.

As was the case with the time-expanded graph approach, the optimal dual solution
immediately provides us with corresponding tolls for which the optimal flow is an
equilibrium. However, we obtain an explicit formula for the optimal tolls, in terms of
the successive shortest paths of the graph (see Sect. 3). This may be useful in obtaining
a better structural understanding of optimal tolls, beyond just their computation. We
also remark that a corollary of our result is that there is always an optimal solution
without waiting (except at the source).

Consider for a moment the model where users cannot choose their departure time,
but instead are released from the source at a fixed rate u0, and simply wish to reach the
destination as early as possible. This is the game-theoretic model that has received the
most attention from the flow-over-time perspective [4,6,7,16,24]. Our construction of
optimal tolls is applicable to this model as well, as discussed in Sect. 5. As far as we
are aware, no explicit description of optimal tolls was previously known even in this
setting.

We now return to the subtlety alluded to earlier: the distinction between strongly
enforcing an optimal flow, and only weakly enforcing it.

Consider the simple instance in Fig. 1. Suppose that the outflow of arc a is larger
than 1 for some period in the optimum flow, due to the choice of scheduling cost
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Fig. 1 An instance where
time-varying arc tolls cannot
enforce that all equilibria are
optimal flows

function. In this period, one unit of flow would take the bottom arc c, and the rest will
be routed on b. Since the total cost (including tolls) of all users is the same in a tolled
dynamic equilibrium, a toll of cost equivalent to a unit delay on arc c is needed in this
period to induce the optimal flow. But then it will also be an equilibrium to send all
flow in this period along b.

To strongly enforce an optimal flow, we need more flexible tolls. One way that we
can do it is by “tolling lanes”. If we are allowed to dynamically divide up the capacity
of an arc into “lanes” (say a “fast lane” and a “slow lane”), and then separately set
time-varying tolls on each lane, then we can strongly enforce any optimal flow. We
discuss this further in Sect. 5. We are not aware of settings where this phenomenon
has been previously observed, and it would be interesting to explore this further in a
more applied context.

Outline of the paperWe introduce some basic notation and notions, as well as formally
define our model, in Sect. 2. In Sect. 3, we describe our algorithm, and show that it
returns a feasible flow over time; we restrict ourselves to the most relevant case of
a strictly unimodal scheduling cost function. In Sect. 4 we show optimality of this
algorithm, and in Sect. 5 we derive optimal tolls from this analysis. Finally, in Sect. 6
we discuss general scheduling cost functions.

2 Model and preliminaries

We use [n] to denote the set {1, 2, . . . , n}, for any positive integer n, andR+ to denote
the nonnegative reals. The notation (z)+ is used to denote the nonnegative part of z,
i.e., (z)+ := max{z, 0}. Given v ∈ R

X and A ⊆ X , we will use the shorthand notation
v(A) := ∑

a∈A va . All graphs considered will be directed. We assume all graphs to be
simple, and that there are no digons (i.e., there are no pairs v,w ∈ V so that vw and
wv are both arcs). This is for notational convenience only—this restriction can easily
be lifted.

We begin with some basic notions and results about static flows and flows over time.
For further details regarding static flows, we refer the reader to the book by Ahuja,
Magnanti and Orlin [1]. For more about flows over time, we suggest the surveys by
Skutella [26] and Köhler et al. [17].

Static flows Let G = (V , E) be a directed graph, with source node s ∈ V and sink
node t ∈ V . Each arc e ∈ E has a capacity νe and a delay τe (both nonnegative). We
use δ+(v) to denote the set of arcs in E with tail v, and δ−(v) the set of arcs with head
v.
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Consider some f ∈ R
E . For v ∈ V , we define the net flow at v (denoted ∇ fv) to

be the quantity

∇ fv := f (δ−(v)) − f (δ+(v)) =
∑

e∈δ−(v)

fe −
∑

e∈δ+(v)

fe.

We say that f is a (static) s-t-flow of value Q if

(i) ∇ fv = 0 for all v ∈ V \ {s, t}, with ∇ ft = −∇ fs = Q; and
(ii) 0 ≤ fe ≤ νe for all e ∈ E .

Given an s-t-flow f , its residual network G f = (V , E f ) is defined by

E f = {vw : vw ∈ E and fvw < νvw} ∪ {vw : wv ∈ E and fwv > 0}.

Call arcs in E f ∩ E forward arcs and arcs in E f \ E backwards arcs. The residual
capacity ν

f
e of an arc e ∈ E f is then ν

f
vw := νvw − fvw for vw a forward arc, and

ν
f
vw := fwv for vw a backwards arc. We also define τvw := −τwv for all backwards
arcs vw.

Given a subset F of arcs, we use χ(F) to denote the characteristic vector of F . In
particular, if P is a path from v to w, then χ(P) is a unit flow from v to w.

We make the definitions
←−
E := {wv : vw ∈ E} and ←→

E := E ∪ ←−
E . We will regard a

vector g ∈ R

←→
E+ as a flow in (V ,

←→
E ) if for every vw ∈ E , either gvw = 0 or gwv = 0.

Given two such flows f and g, we define their sum f +g by taking the sum as vectors,
and then cancelling flows on oppositely directed arcs if necessary (so ( f + g)vw and
( f + g)wv are never both nonzero). Define f − g similarly.

Given a choice of value Q, a minimum cost flow is an s-t-flow f ∗ minimizing∑
e∈E feτe (amongst all s-t-flows f of value Q). An s-t-flow f (of the correct value)

is a minimum cost flow if and only if E f contains no negative cost cycles, i.e., cycles
C ⊆ E f with τ(C) < 0.

Flows over time Let L denote the space of measurable functions on R with compact
support. Consider some vector f ∈ LE . Define the net flow into v at time θ by

∇ fv(θ) :=
∑

e∈δ−(v)

fe(θ − τe) −
∑

e∈δ+(v)

fe(θ).

Note that fe(θ) represents the flow entering arc e at time θ ; this flow will exit the arc
at time θ +τe (explaining the asymmetry between the terms for flow entering and flow
leaving in the above).

We say that f ∈ LE is a flow over time of value Q if the following hold.

(i)
∫ ∞
−∞ ∇ fv(θ)dθ = Q(1v=t − 1v=s) for all v ∈ V .

(ii)
∫ ξ

−∞ ∇ fv(θ)dθ ≥ 0 for all v ∈ V \ {s} and ξ ∈ R.
(iii) 0 ≤ fe(θ) ≤ νe for all e ∈ E and θ ∈ R.

Note that this definition allows for flow to wait at a node; to disallow this and consider
only flows over time without waiting, we would additionally require with the condition
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(iv) ∇ fv(θ) = 0 for all v ∈ V \ {s, t} and θ ∈ R.

We also have a natural notion of a residual network in the flow over time setting.
Define, for any flow over time f and θ ∈ R,

E f (θ) = {vw : vw ∈ E and fvw(θ) < νvw} ∪ {vw : wv ∈ E and fwv(θ − τwv) > 0}.

Minimizing scheduling cost We are concerned with the following optimization prob-
lem. Given a scheduling cost function ρ : R → R+, as well as a value α > 0,
determine a flow over time f of value Q that minimizes the sum of the commute cost
α

∑
e∈E τe · ∫ ∞

−∞ fe(θ)dθ and the scheduling cost
∫ ∞
−∞ ∇ ft (θ) · ρ(θ)dθ . As already

discussed, we assume that ρ satisfies the growth bound, i.e., that θ → ρ(θ) + αθ

is nondecreasing. This ensures that waiting at t is not needed, which is in fact disal-
lowed by our definition,1 and makes various arguments cleaner. We will also make the
assumption that ρ is strongly unimodal.2 We then assume w.l.o.g. that the minimizer
of ρ is at 0, and that ρ(0) = 0. For further technical convenience, by adjusting ρ on a
set of measure zero we take ρ to be lower semi-continuous.3

The above conditions will suffice for our structural characterization of an optimum
flow and its analysis, but more is needed in order to be able to implement the algorithm.
The algorithm will require not just oracle access to ρ, but also to ρ−1. That is, given
y > 0, we are able to query the pair of solutions (one positive, one negative) that map
to y under ρ. In order to ensure that the optimal solution has a rational description,
we should require not only that ρ maps rationals to rationals, but that ρ−1 does too;
a simple function like ρ(θ) = θ2 that violates this can lead to irrational optimum
solutions, as we will remark on later. For algorithmic purposes, it is sensible to restrict
attention to scheduling costs that are explicitly given as piecewise linear functions;
we will focus primarily on this case.

The assumption of strong unimodality is not necessary; the algorithm and analysis
can be extended (with some additional effort). We postpone this discussion to the end
of the paper.

3 A combinatorial algorithm

In this section we present an algorithm that computes an optimal flow over time,
assuming that ρ is strongly unimodal. The proof of optimality is discussed in Sect. 4.

3.1 Successive shortest paths

We begin by recalling the successive shortest paths (SSP) algorithm for computing a
minimum cost static flow. It is not a polynomial time algorithm, so it is inefficient as
an algorithm for static flows, but it provides a structure that is relevant for flows over

1 Were this really needed, one could simply add a dummy arc t t ′ to a new sink t ′.
2 I.e., strictly decreasing until some moment, and then strictly increasing.
3 Since an increasing function is continuous almost everywhere, we can replace ρ(θ) by limε↓0 ρ(θ + ε)

for all θ ≥ 0; and similarly with limε↑0 ρ(θ + ε) for θ < 0.
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time. This is of course well known from its role in constructing earliest arrival flows,
which we will briefly detail.

The SSP algorithm construct a sequence of paths (P1, P2, . . .) and associated
amounts (x1, x2, . . .) inductively as follows. Suppose P1, . . . , Pj and x1, . . . , x j have
been defined. Let

f ( j) =
j∑

i=1

xiχ(Pi ),

and let G j denote the residual graph of f ( j) (G0 being the original network). Also let
d j (v,w) denote the length (w.r.t. arc delays τ in G j ) of a shortest path from v to w

in G j (this may be infinite). By construction, G j will contain no negative cost cycles,
so that d j is computable. If d j (s, t) = ∞, we are done; set m := j . Otherwise, define
Pj+1 to be any shortest s-t-path inG j , and x j+1 the minimum capacity inG j of an arc
in Pj+1. It can be shown that

∑r
j=1 x̃ jχ(Pj ), with r and x̃ defined such that x̃ j = x j

for j < r , 0 ≤ x̃r ≤ xr and
∑r

j=1 x̃ j = M , is a minimum cost flow of value M , as
long as M is not larger than the value of a maximum flow.

To construct an earliest arrival flow with time horizon T , we (informally) send
flow at rate x j along path Pj for the time interval [0, T − τ(Pj )], for each j ∈ [m]
(if τ(Pj ) > T , we send no flow along the path). By this, we mean that for each
e = vw ∈ Pj , we increase by x j the value of fe(θ) for θ ∈ [d j−1(s, v), T−d j−1(v, t)]
(or if e is a backwards arc, we instead decrease fwv(θ − τwv)). An argument is needed
to show that this defines a valid flow, sincewemust not violate the capacity constraints,
and moreover, Pj may contain reverse arcs not present in G (see, e.g., [26]).

3.2 The algorithm

We are now ready to describe our algorithm for minimizing the disutility, which is a
natural variation on the earliest arrival flow algorithm. It is also constructed from the
successive shortest paths, but using a cost horizon rather than a time horizon. For now,
consider C to be a given value (it will be the “cost horizon”).

• For each j ∈ [m], let [a j , b j ] be the maximal interval so that

[ρ(ξ + d j−1(s, t)) ≤ C − αd j−1(s, t) for all ξ ∈ [a j , b j ].

(If ρ is continuous, then of course ρ(a j + d j−1(s, t)) = ρ(b j + d j−1(s, t)) =
C − αd j−1(s, t)). Note that a user leaving at time a j or b j and using path Pj ,
without waiting at any moment, incurs disutility C ; whereas a user leaving at
some time θ ∈ (a j , b j ) and using path Pj will incur a strictly smaller total cost.

• Construct the flow over time which sends flow at rate x j along path Pj for the
time interval [a j , b j ], for each j ∈ [m]. More formally: for any j ∈ [m] and node
v ∈ P , let τ j (v) denote the sum of the delays on the arcs of Pj between v and t .
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Then the algorithm returns the vector f ∈ LE given by

fvw(θ) =
∑

j∈[m]:vw∈Pj
θ+τ j (v)∈[a j ,b j ]

x j −
∑

j∈[m]:wv∈Pj
θ+τ j (v)∈[a j ,b j ]

x j for all vw ∈ E, θ ∈ R.

We remark that this structure is closely related to that of “generalized temporally
repeated flows” [26].

As we will shortly argue, the vector f returned by this algorithm is a feasible
flow over time (the main issue is checking that f is nonnegative and satisfies the
capacity constraints). Given this, its value will be

∑m
j=1 x j (b j − a j ). Since ρ is

strongly unimodal, this value changes continuously and monotonically with C . Thus
a bisection search can be used to determine the correct choice of C for a given value
Q, at least to within some predetermined error ε. Determining the precisely correct
value of C may not be possible without some additional information about ρ.

If ρ is piecewise linear (as is the case, in particular, for the “standard” β/γ choice
generally used in the transportation economics literature), bisection search can be
avoided. Let Kl and Kr denote the number of linear segments of ρ to the left and right
of 0, respectively, and let K = Kl + Kr . Write a j (C) and b j (C) to explicitly indicate
the dependence of the interval in which flow is sent along Pj as a function of C . Then
let Q j (C) := x j (b j (C) − a j (C)); this is the total mass sent along path Pj in the
solution obtained with time horizon C . Now notice that a j (C) is a piecewise linear
function with at most Kl +1 linear segments; it is defined by ρ(a j (C)+d j−1(s, t)) =
C −αd j−1(s, t) for C ≥ αd j−1(s, t), and a j (C) = −d j−1(s, t) otherwise. Similarly,
b j (C) is a piecewise linear function with at most Kr + 1 linear segments. The total
value

∑m
j=1 Q j (C) is thus piecewise linear with at most m(K + 2) linear segments.

Thus, even the entire parametric curve of cost horizon C against flow value Q can be
computed in time O(mK ), once the successive shortest paths have been computed.

Before proving the correctness of our algorithm, we show an example of a flow over
time minimizing a given scheduling cost, as would be constructed by our algorithm.

Example 1 Consider the graphG = (V , E) illustrated in Fig. 2a, with V = {s, a, b, t},
E = {sa, sb, ab, at, bt} and capacities νe and delays τe as indicated in the figure, in
the order (νe, τe).

The successive shortest paths are P1 = {s, a, b, t}, with length 3, P2 = {s, a, t}
and P3 = {s, b, t}, both with length 4, and P4 = {s, b, a, t} with length 5. All the
associated amounts are equal to 1 (see Fig. 2b–d).

Consider now a cost horizonC equal to 6 and the standard scheduling cost function
given in Equation 1 with α = 1, β = 0.5, γ = 2. Our algorithm then sends 1 unit of
flow along P1 for the time interval [−9,−1.5]; 1 unit of flow along P2 and 1 along
P3 for the time interval [−8,−3]; and 1 unit of flow along P4 for the time interval
[−7,−4.5]. The resulting flow is described in Fig. 3 with a sequence of snapshots of
the network.
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(a) (b)

(c) (d)

Fig. 2 The network and the successive shortest paths of Example 1

3.3 Feasibility

In the following we show that the resulting flow f is a feasible flow over time. Given
a vertex v ∈ V , a time θ ∈ R and j ∈ [m], let

c j (v, θ) = αd j−1(s, t) + ρ(θ + d j−1(v, t)).

If v ∈ Pj then c j (v, θ) is the total cost of a user that utilizes path Pj and passes
through node v at time θ ; there does not seem to be a simple interpretation if v /∈ Pj

however. Now define

J (v, θ) = max{ j ∈ [m] : c j (v, θ) ≤ C}, (3)

with the convention that the maximum over the empty set is 0. We remark for future
reference that since dm(s, t) = ∞, we do have that

αdJ (v,θ)(s, t) + ρ(θ + dJ (v,θ)(v, t)) > C . (4)

The motivation for this definition comes from the following theorem, which com-
pletely characterizes f in terms of the static flows arising from successive shortest
paths. (If preferred, one could even think of this theorem as providing the definition
of f .)

Theorem 1 fvw(θ) = f (J (v,θ))
vw for any vw ∈ E and θ ∈ R.

Before proving Theorem 1, we need the following lemma.

Lemma 2 c j (v, θ) is nondecreasing in j for any θ ∈ R and v ∈ V .
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Fig. 3 Chronological sequence of snapshots of the optimal flow for the instance given in Example 1
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Proof Consider any j ∈ [m − 1]; we show that c j+1(v, θ) ≥ c j (v, θ). Suppose R
is a shortest v-t-path in G j−1, so τ(R) = d j−1(v, t). Consider the unit v-t flow
g = χ(Pj+1) − χ(Pj ) + χ(R) in

←→
E . Now observe that the support of g is contained

in G j : Pj+1 and
←−
Pj are certainly contained in G j ; and if e ∈ R ∩ (E j−1 \ E j ), then

e ∈ Pj , which means ge = 0. Since G j contains no negative cost cycles, the cost of
g is at least that of a shortest v-t-path in G j , and so

d j (v, t) ≤ τ(Pj+1) − τ(Pj ) + τ(R) = d j (s, t) − d j−1(s, t) + d j−1(v, t) .

Finally, we can conclude

αd j (s, t) + ρ(θ + d j (v, t)) = αd j (s, t) + ρ(θ + d j−1(v, t)) − ρ(θ + d j−1(v, t)) + ρ(θ + d j (v, t))

≥ αd j (s, t) + ρ(θ + d j−1(v, t)) − α(d j (v, t) − d j−1(v, t))

≥ αd j−1(s, t) + ρ(θ + d j−1(v, t)),

where the first inequality follows from the growth bound, using d j (v, t) ≥ d j−1(v, t).
��

Proof of Theorem 1 Fix some vw ∈ E and θ ∈ R. Consider now any j ∈ [m] for
which ατ(Pj ) ≤ C (so that Pj is used for a nonempty interval) and vw ∈ Pj . Since
Pj is a shortest path in G j−1, if we send flow along this path starting from some time
ξ , it will arrive at v at time ξ + d j−1(s, v). Considering the definition of the interval
[a j , b j ], we see that Pj contributes flow to vw at time θ if c j (v, θ) ≤ C . By Lemma 2,
this occurs precisely if j ≤ J (v, θ).

Considering in similar fashion paths Pj with wv ∈ Pj (and noting that J (w, θ +
τvw) = J (v, θ)), we determine that

fvw(θ) =
∑

j :vw∈Pj
j≤J (v,θ)

x j −
∑

j :wv∈Pj
j≤J (v,θ)

x j = f (J (v,θ))
vw .

��

Feasibility of f is now immediate.

Corollary 3 f is a feasible flow over time without waiting.

Proof By the way that we constructed f , it has value Q, satisfies flow conservation,
and has no waiting. Only nonnegativity and the capacity constraint remain, which
follows from Theorem 1. ��

4 Optimality

In this section, we show that our proposed algorithm does return an optimal flow.
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4.1 Duality-based certificates of optimality

We can write the problem we are interested in as an infinite continuous linear program
as follows:

min
∫ ∞

−∞
ρ(θ)∇ ft (θ)dθ + α

∑
e∈E

τe

∫ ∞

−∞
fe(θ)dθ + α

∑
v∈V \{s,t}

∫ ∞

−∞
zv(θ)dθ

s.t.
∫ ∞

−∞
∇ fs(θ)dθ = −Q∫ ∞

−∞
∇ ft (θ)dθ = Q

∫ θ

−∞
∇ fv(ξ)dξ = zv(θ) ∀v ∈ V \ {s, t}, θ ∈ R

fe(θ) ≤ νe ∀e ∈ E, θ ∈ R

z, f ≥ 0

(5)

Here, zv(θ) represents the amount of flow waiting at node v at time θ (which must
always be nonnegative). Both fe for any e ∈ E and zv for any v ∈ V should be
bounded and measurable functions with compact support. This implies that in fact zv
is absolutely continuous for each v ∈ V . Note that the objective function captures
separately the contribution to the journey time coming from actually travelling across
arcs, and the contribution from waiting at nodes. As a further remark, this linear
program does not explicitly prevent flow from departing and then returning to t ; only
the aggregate constraint

∫ ∞
−∞ ∇ ft (θ) = Q is imposed. The growth condition on ρ,

however, ensures that it is never profitable to do this; the reduction of scheduling cost
is never more than the cost incurred in travelling (including waiting at nodes).

Given that this is an infinite-dimensional linear program, onemay reasonably expect
to be able to write down a dual, and make use of weak and strong duality, as well as
complementary slackness conditions.However, care is needed: the situation for infinite
(even countable) dimensional linear programs is subtle. Strong duality and even weak
duality may fail to hold, even for infinite linear programs with a countable number of
variables and constraints [22]. Here, our primal variables live in the space of bounded
measurable functions, and there are an uncountably infinite set of constraints: it is a
continuous linear program (see [25] for a review of some of the relevant literature).
Fortunately, the particular structure of our continuous linear program is of a well-
behaved form.

A continuous time linear program [21] is (after a possible change of variables) of
the form

min
∫ T̃1

T̃0
c̃�(θ)y(θ)dθ
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s.t. B̃(θ)y(θ) ≥ b̃(θ) +
∫ θ

T̃0
K̃ (ξ, θ)y(ξ)dξ ∀ T̃0 ≤ θ ≤ T̃1

y(θ) ≥ 0 ∀ T̃0 ≤ θ ≤ T̃1.

Here, [T̃0, T̃1] is a compact interval, c̃ and b̃ are vectors of bounded measurable func-
tions, and B̃, K̃ are matrices of bounded measurable functions. Note that K̃ (ξ, θ) is
only required for ξ ≤ θ . The components of a feasible solution y are required also to
be bounded and measurable. The corresponding dual program is

max
∫ T̃1

T̃0
b̃�(θ)w(θ)dθ

s.t. B̃�(θ)w(θ) ≤ c̃(θ) +
∫ T̃1

θ

K̃�(θ, ξ)w(ξ)dξ ∀ T̃0 ≤ θ ≤ T̃1

w(θ) ≥ 0 ∀ T̃0 ≤ θ ≤ T̃1.

Strong duality does not hold without further assumptions, but weak duality (and hence
sufficiency of related complementary slackness conditions) do hold [21, Theorem 1].
As a consequence, if solutions y and w are feasible to the primal and dual, and satisfy

∫ T̃1

T̃0

[
w�(θ)

(
b̃(θ) −

∫ θ

T̃0
K̃ (ξ, θ)y(ξ)dξ − B̃(θ)y(θ)

)]
= 0,

∫ T̃1

T̃0

[
y�(θ)

(
c̃(θ) −

∫ T̃1

θ

K̃ (θ, ξ)w(ξ)dξ − B̃�(θ)w(θ)
)]

= 0,

then y and w are both optimal. Reiland [21] gives constraint qualifications under
which a version of this is both necessary and sufficient for optimality, i.e., where
strong duality holds; we will not need this, and so don’t discuss this further here.

Our continuous LP (5) fits within this class. First, we note that while we wrote the
program with an unbounded interval, this was purely for notational convenience; any
optimal solution must be contained in the interval {θ : |θ | ≤ Q/νSP + τSP}, where
νSP is the minimum capacity of an arc of some shortest s-t-path in G, and τSP is the
length of this path. (This comes from considering a solution thatminimizes the average
journey time, and has minimum scheduling cost subject to this.) One may introduce
the additional variables Fe(θ) = ∫ θ

−∞ fe(ξ)dξ , after which it is straightforward to
place things in the desired form.

After writing down the dual constraints and the complementary slackness con-
ditions, the following sufficient conditions for optimality to (5) are obtained. The
theorem is stated only for the case where the primal flow has no waiting: our algo-
rithm produces such a flow, and so this is the case of interest to us (it will thus be an
immediate corollary of our result that there is always an optimal flow without wait-
ing). For completeness and convenience, we give a short, self-contained proof of this
theorem; none of the above discussion will be used.
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Theorem 4 Let f be a flow over time without waiting and with value Q, and suppose
that π : V × R → R satisfies the following, for some choice of C:

(i) θ → πv(θ) − αθ is nonincreasing.
(ii) πw(θ + τvw) ≤ πv(θ) + ατvw for all θ ∈ R, vw ∈ E f (θ).
(iii) πs(θ) = 0 for all θ ∈ R.
(iv) πt (θ) = (C − ρ(θ))+ for all θ ∈ R, and ∇ ft (θ) = 0 whenever ρ(θ) > C.

Then f is an optimal solution.

Proof We will need the following technical lemma (obvious via integrating by parts
in the case that h is also absolutely continuous).

Claim 5 Let h : R → R be a nonincreasing function, and z : R → R+
be an absolutely continuous nonnegative function with compact support. Then∫ ∞
−∞ h(θ)z′(θ)dθ ≥ 0.

Proof Since z is absolutely continuous with compact support,
∫ ∞
−∞ z′(θ)dθ =

limR→∞ z(R) − z(−R) = 0. Thus the integral in the claim is invariant to replac-
ing h with θ → h(θ) + C for any constant C , and so we may assume without loss
of generality that h is nonnegative on the support of z. Let μ be a measure so that
μ([θ,∞)) = h(θ) for almost every θ in the support of z. We certainly have that for
any θ ,

∫ θ

−∞
z′(ξ)dξ = [

z(ξ)
]θ
−∞ = z(θ) − 0 ≥ 0.

Thus ∫ ∞

−∞

∫ ∞

−∞
1ξ≤θ z

′(ξ)dξdμ(θ) ≥ 0.

But Fubini’s theorem tells us that∫ ∞

−∞

∫ ∞

−∞
1ξ≤θ z

′(ξ)dξdμ(θ) =
∫ ∞

−∞

∫ ∞

−∞
1ξ≤θ z

′(ξ)dμ(θ)dξ =
∫ ∞

−∞
h(ξ)dξ,

which proves the claim. ��
Define, for each vw ∈ E ,

μvw(θ) := (πw(θ + τvw) − πv(θ) − ατvw)+.

Now let g, z be any feasible solution to (5) with compact support. Consider any
v ∈ V \ {s, t}, and observe that

∫ ∞

−∞
πv(θ)∇gv(θ) + αzv(θ)dθ =

∫ ∞

−∞
(πv(θ) − αθ)∇gv(θ)dθ + α

∫ ∞

−∞
θ∇gv(θ) + zv(θ)dθ

=
∫ ∞

−∞
(πv(θ) − αθ)∇gv(θ)dθ +

[
αθ zv(θ)

]∞
−∞

≥ 0.

(6)
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The final inequality comes from observing that the first term is nonnegative byClaim 5
(applied with h(θ) = πv(θ) − αθ , which is nonincreasing by property (i), and z(θ) =
zv(θ)), and that the second term is zero since z has compact support.

We then have the following sequence of inequalities (detailed explanations for each
step follow).

cost(g) =
∫ ∞

−∞
ρ(θ)∇gt (θ)dθ +

∑
e∈E

∫ ∞

−∞
ατege(θ)dθ + α

∑
v∈V \{s,t}

∫ ∞

−∞
zv(θ)dθ

(∗)≥
∫ ∞

−∞
(C − πt (θ))∇gt (θ)dθ +

∑
vw∈E

∫ ∞

−∞
(
πw(θ + τvw) − πv(θ) − μvw(θ)

)
gvw(θ)dθ

+ α
∑

v∈V \{s,t}

∫ ∞

−∞
zv(θ)dθ

(∗∗)= CQ +
∑

v∈V \{s,t}

∫ ∞

−∞
[πv(θ)∇gv(θ) + αzv(θ)]dθ −

∑
e∈E

∫ ∞

−∞
μe(θ)ge(θ)dθ

(∗∗∗)≥ CQ −
∑
e∈E

∫ ∞

−∞
μe(θ)νedθ.

Inequality (∗) follows from property (iv) of π , along with the definition of μe. The
equality (∗∗) follows by recombining the ge(θ) terms and recalling that πs ≡ 0 and
that g has value Q. Finally, (∗∗∗) follows from (6), and the inequalities μe(θ) ≥ 0
and ge(θ) ≤ νe that hold for all e ∈ E and θ ∈ R.

To complete the proof of the theorem, we now observe that all of the inequalities in
the above hold with equality if g = f and (consistent with the no-waiting assumption
on f ) z = 0. Property (ii) implies that if fvw(θ) > 0 (so that wv ∈ E f (θ)), then
μvw(θ) = πw(θ + τvw) − πv(θ) − ατvw, yielding equality in (∗). It also implies that
if fvw(θ) < νvw (so that vw ∈ E f (θ)) then μvw(θ) = 0. This, together with z = 0,
implies the equality in (∗∗∗). ��

As is often the case, the optimal dual solution also provides us the prescription for
tolls to induce the optimum flow. We delay this discussion to Sect. 5.

4.2 The dual prescription

We now give a certificate of optimality π : V × R → R for (5) that satisfies the
conditions of Theorem 4. Given a vertex v ∈ V and a time θ ∈ R let

πv(θ) = max{π̂v(θ), π̄v(θ), 0}

where

π̂v(θ) = −αdJ (v,θ)(v, s),

π̄v(θ) = C − αdJ (v,θ)(v, t) − ρ(θ + dJ (v,θ)(v, t)).

Some intuition for this choice of π can be obtained by thinking in terms of “tempo-
ral” shortest paths in the residual E f (θ) of the flow f returned by the algorithm. For
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Fig. 4 Dual values to show optimality of the flow in Example 1. πs (θ) = 0 for all θ ∈ R, and is not shown

some v ∈ V and θ ∈ R, consider a shortest s-v-path P = (s = v0, v1, . . . , vk−1, vk =
v) in f (J (v,θ)). This path can be turned into a “temporal” path that ends at v at time θ , in
the obvious way: the path should visit node vi at time θi , such that θi = θi−1 + τvi−1vi

for each i ∈ [k], and θk = θ . It turns out that every arc in this temporal path lies
in the residual E f (θ), and given that πs ≡ 0, this implies an upper bound on πv(θ)

by Theorem 4 property (ii); this upper bound motivates the definition of π̂ . A simi-
lar consideration of a shortest t-v-path in G(J (v,θ)), along with the requirement that
πt (θ) = (C − ρ(θ))+, motivates π̄ .

Example 2 Figure 4 shows the dual values πv for the instance of Example 1. The
conditions for Theorem 4 are all satisfied, for example:

• 0 < fsb(−7) < νsb, and so we should have that πb(−7+3) = πs(−7)+α ·3 = 3,
which is indeed the case.

• 0 < fsa(θ) for θ ∈ [−9,−2), and so we should have that πa(θ + 1) ≥ πs(−θ) +
α · 1 = 1 in this interval, which indeed holds.

Lemma 6 We have πs(θ) = 0 and πt (θ) = (C − ρ(θ))+ for all θ ∈ R.

Proof Notice that

π̂s(θ) = −αdJ (s,θ)(s, s) = 0

and π̄s(θ) = C − αdJ (s,θ)(s, t) − ρ(θ + dJ (s,θ)(s, t) < 0;

the last inequality comes from (4). Thus πs(θ) = 0 for all θ .
Next, set j = J (t, θ) and observe that

π̄t (θ) = C − αd j (t, t) − ρ(θ + d j (t, t)) = C − ρ(θ).
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For π̂t (θ), we consider two cases.

• If j = 0, then π̂t (θ) = −αd0(t, s) ≤ 0.
• If j ≥ 1, then by (3) (and using d j−1(t, t) = 0),

αd j−1(s, t) + ρ(θ) ≤ C .

Since d j−1(s, t) is equal to the length of path Pj , and the reverse of Pj is a t-s-path
inG j , we deduce that d j (t, s) ≤ −d j−1(t, s), and hence that π̂t (θ) = αd j (t, s) ≤
C − ρ(θ).

In either case, πt (θ) = max{C − ρ(θ), 0}. ��
Thus conditions (iii) and (iv) of Theorem 4 hold. For the remaining conditions, we

begin with some basic facts about distance labels associated with successive shortest
paths (statements of a similar flavour can be found in Ahuja et al. [1], for example).

Lemma 7 For every v ∈ V , d j (v, s) is nonincreasing in j , and d j (v, t) is nondecreas-
ing in j .

Proof We show that d j−1(v, s) ≥ d j (v, s) for all v ∈ V and j ∈ [m]. If d j−1(v, s) is
infinite, there is nothing to prove; by possibly restricting to a subgraph in the following
argument, assume that all nodes can reach s in G j−1. For any node labels σ ∈ R

V ,
and any vw ∈ ←→

E , let cσ
vw := cvw +σw −σv . Notice that for any � ∈ [m] and u, z ∈ V

with z reachable from u in G�, if σ is such that cσ
vw ≥ 0 for all vw ∈ E�, then by

summing the constraints along a shortest path from any u to z, σz − σu ≥ d�(u, z).
(Note that we make use of the fact that G� has no negative cost cycles.)

Nowdefineσv = −d j (v, s) for eachnodev; then cσ
vw = cvw−d j (w, s)+d j (v, s) ≥

0 for all vw ∈ E j , with equality ifw lies on a shortest path from v to s. Pj is a shortest
path from s to t in G j−1, and hence it is a shortest path from t to s in G j . Thus all
arcs vw in the path Pj satisfy cσ

vw = 0. Hence cσ
vw ≥ 0 for all vw ∈ E j−1, implying

that d j (v, s) = −σv ≤ d j−1(v, s) for all v ∈ V .
A similar argument “in reverse” applies for distances to t . This time, define σv =

−d j−1(v, t); then cσ
vw ≥ 0 for all vw ∈ E j−1, with equality for all arcs of Pj . So

cσ
vw ≥ 0 for all vw ∈ E j , and hence d j−1(v, t) = σt − σv ≥ d j (v, t) for all nodes v.

��
Lemma 8 For all j ∈ [m] and v ∈ V , d j−1(v, t) − d j−1(s, t) = d j (v, s).

Proof First of all, notice that d j−1(v, t) is finite precisely if d j (v, s) is, since a v-t-path
in G j−1 can be combined with the reverse of Pj to obtain a v-s-path in G j , and vice
versa. Since d j−1(s, t) is always finite, the claim holds if d j−1(v, t) = d j (v, s) = ∞,
so we assume both are finite in what follows.

We continue along the lines of the proof of the previous lemma, and define cσ for
σ ∈ R

V in the same way. Let σw = −d j−1(w, t) for all w ∈ V . Then (just as in the
proof of Lemma 7) cσ

uw ≥ 0 for all uw ∈ E j−1, and cσ
uw = 0 for all uw ∈ E j−1 lying

on a shortest path from any node to t in G j−1 (including all arcs in Pj ). This implies
that cσ

uw ≥ 0 for all uw ∈ E j , with equality for arcs in
←−
Pj .
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Now consider a shortest path from v to t in G j−1, and let R be the segment of this
path from v until the first time a node in Pj is encountered, at some node z. Let Q
be the v-s-path obtained by concatenating R and the portion of

←−
Pj from z to s; Q is

a path in G j . Further, cσ
uw = 0 for all arcs uw in Q. Thus d j (v, s) = σs − σv =

d j−1(v, t) − d j−1(s, t), as required. ��
Now we are ready to show that π satisfies conditions (i) and (ii) of Theorem 4.

Lemma 9 θ → πv(θ) − αθ is nonincreasing.

Proof Fix any θ ∈ R and ε ≥ 0. We show that πv(θ) ≥ πv(θ + ε) − αε. Let
j := J (v, θ) and � := J (v, θ + ε).

• Case 1: πv(θ + ε) = −αd�(v, s).

If � ≤ j , then by Lemma 7

πv(θ) ≥ π̂v(θ) = −αd j (v, s) ≥ −αd�(v, s) = πv(θ + ε).

So suppose � > j . By the definition of J (v, θ + ε), we know that

αd�−1(s, t) + ρ(θ + ε + d�−1(v, t)) ≤ C . (7)

As a consequence, we have that:

πv(θ) ≥π̄v(θ)

=C − αd j (v, t) − ρ(θ + d j (v, t))

(∗)≥C − αd j (v, t) − ρ(θ + ε + d�−1(v, t))

− α
(
ε + d�−1(v, t) − d j (v, t)

)
≥αd�−1(s, t) − αε − αd�−1(v, t) by (7)

= − αε − αd�(v, s) by Lemma 8

=πv(θ + ε) − αε.

Inequality (∗) follows from the growth bound on ρ combined with the fact that
θ + ε + d�−1(v, t) ≥ θ + d j (v, t) by Lemma 7.

• Case 2: πv(θ + ε) = C − αd�(v, t) − ρ(θ + ε + d�(v, t)).

If � ≥ j , then:

πv(θ) ≥ π̄v(θ)

= C − αd j (v, t) − ρ(θ + d j (v, t))

= C − αd j (v, t) − ρ(θ + ε + d�(v, t)) + ρ(θ + ε + d�(v, t)) − ρ(θ + d j (v, t))

≥ C − αd j (v, t) − ρ(θ + ε + d�(v, t)) − α
(
ε + d�(v, t) − d j (v, t)

)
= C − ρ(θ + ε + d�(v, t)) − αε − αd�(v, t)
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= πv(θ + ε) − αε.

The second inequality follows again from the growth bound, this time combined
with the inequality d�(v, t) ≥ d j (v, t).

If � < j , by definition of J (v, θ + ε) we have that

αd�(s, t) + ρ(θ + ε + d�(v, t)) > C .

From this, we obtain

πv(θ) ≥ π̂v(θ)

= −αd j (v, s)

> C − αd�(s, t) − ρ(θ + ε + d�(v, t)) − αd j (v, s)

≥ C − αd�(s, t) − ρ(θ + ε + d�(v, t)) − αd�+1(v, s) by Lemma 7

= C − αd�(v, t) − ρ(θ + ε + d�(v, t)) by Lemma 8

= πv(θ + ε).

• Case 3: πv(θ + ε) = 0.

This case is immediate from the definition of πv . ��
Lemma 10 If vw ∈ E f (θ), then πw(θ + τvw) ≤ πv(θ) + ατvw.

Proof Let j := J (v, θ) and � := J (w, θ + τvw). Note that since vw ∈ E f (θ),
Theorem 1 implies that vw ∈ E j .

• Case 1: πw(θ + τvw) = −αd�(w, s).

If � ≤ j , then

πv(θ) ≥ −αd j (v, s)

≥ −ατvw − αd j (w, s) since vw ∈ E j

≥ −ατvw − αd�(w, s) by Lemma 7

= πw(θ + τvw) − ατvw.

So suppose � > j . By the definition of J (w, θ + τvw) we know that

αd�−1(s, t) + ρ(θ + τvw + d�−1(w, t)) ≤ C . (8)

Since vw ∈ E j and d j (w, t) ≤ d�−1(w, t) by Lemma 7, we also have

θ + d j (v, t) ≤ θ + τvw + d�−1(w, t). (9)
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Thus

πv(θ) ≥C − αd j (v, t) − ρ(θ + d j (v, t))

≥C − αd j (v, t) − ρ(θ + τvw + d�−1(w, t))

− α
(
τvw + d�−1(w, t) − d j (v, t)

)
≥αd�−1(s, t) − ατvw − αd�−1(w, t) by (8)

= − ατvw − αd�(w, s) by Lemma 8

=πw(θ + τvw) − ατvw

where the second inequality follows from the growth bound and from (9).
• Case 2: πw(θ + τvw) = C − αd�(w, t) − ρ(θ + τvw + d�(w, t)).

If � ≥ j , since vw ∈ E j and d j (w, t) ≤ d�(w, t) by Lemma 7, we have that

θ + d j (v, t) ≤ θ + τvw + d�(w, t). (10)

As a consequence, exploiting also the growth bound, we have

πv(θ) ≥π̄v(θ)

=C − αd j (v, t) − ρ(θ + d j (v, t))

=C − αd j (v, t) − ρ(θ + τvw + d�(w, t))

+ ρ(θ + τvw + d�(w, t)) − ρ(θ + d j (v, t))

≥C − αd j (v, t) − ρ(θ + τvw + d�(w, t)) − α
(
τvw + d�(w, t) − d j (v, t)

)
=C − ρ(θ + τvw + d�(w, t)) − ατvw − αd�(w, t)

=πw(θ + τvw) − ατvw.

If � < j , by definition of J (w, θ + τvw) we have that

αd�(s, t) + ρ(θ + τvw + d�(w, t)) > C . (11)

Thus

πv(θ) ≥ −αd j (v, s)

≥ −αd j (w, s) − ατvw since vw ∈ E j

≥ −αd�+1(w, s) − ατvw by Lemma 7

> C − αd�(s, t) − ρ(θ + τvw + d�(w, t)) − αd�+1(w, s) − ατvw by (11)

= C − αd�(w, t) − ρ(θ + τvw + d�(w, t)) − ατvw by Lemma 8

= πw(θ + τvw) − ατvw.

• Case 3: πw(θ + τvw) = 0.
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By Lemma 9, we have πv(θ)+ατvw ≥ πv(θ + τvw), which is nonnegative by the
definition of πv . ��

This completes the proof that π satisfies all conditions of Theorem 4with respect to
the flow over time f produced by the algorithm, hence demonstrating the optimality
of the algorithm.

5 Optimal tolls

Tolls μ : E × R → R+ are per-arc, time-varying and nonnegative. The value μe(ξ)

represents the toll a user is charged upon entering the link at time ξ .
We have the following theorem.

Theorem 11 Let ( f , π) be an optimal primal-dual solution to (5) (as constructed in
Sects. 3 and 4) and define, for each vw ∈ E,

μvw(θ) = (πw(θ + τvw) − πv(θ) − ατvw)+.

Then f is a dynamic equilibrium under tolls μ.

Of course, to make sense of this theorem we must know what is meant by a
dynamic equilibrium under tolls. Informally, it means that no user (represented as
an infinitesimal flow particle) has an alternative strategy (route choice and departure
time combination) of strictly smaller disutility. Making this precise in general requires
defining precisely what disutility a user would incur for any given route and depar-
ture time choice, by considering the full game-theoretic fluid queueing model (also
known as the Vickrey bottleneck model) [16,28]. Tolls and departure time choice can
be introduced into the definition of a dynamic equilibrium discussed in these works.
However, the complexity of this is only needed because in general, a user may have to
incur additional waiting time on arcs that are fully utilized, meaning that the disutility
of a particular strategy depends in a complicated way on the actions of the other users.
Instead we show that even if a user is allowed to traverse any link at any time—as
if the other users were not present—there is no incentive to deviate. This is clearly a
stronger property than any reasonable notion of equilibrium.

Let C be the cost horizon associated with ( f , π). We will show that all users
experience a disutility of exactly C with f under tolls μ, and in addition that the
disutility of any other possible choice is at least C . To see this, consider any s-t-path
P in G, along with departure times θv for each v ∈ P valid for this path, meaning
that θw = ε + θv + τvw for every vw ∈ P , with ε ≥ 0. (So we allow the possibility
of waiting at a vertex). Thus by the definition of μ and by properties (i) and (ii) of
Theorem 4,

μvw(θv + ε) + α(τvw + ε) ≥ πw(θw) − πv(θv + ε) + αε ≥ πw(θw) − πv(θv) ,
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with equality if wv ∈ E f (θw) and ε = 0. Then the disutility of a user using this route
is

ρ(θt ) +
∑

e=vw∈P

[α(θw − θv) + μe(θw − τe)]

≥ ρ(θt ) + πt (θt ) − πs(θs)

= ρ(θt ) + (C − ρ(θt ))
+

≥ C .

The inequalities are all tight if for all vw ∈ P , θw = θv +τvw and fvw(θv) > 0, by the
previous observations as well as property (iv). So if the aggregate choices of the users
are described by f , all users pay exactly C . This completes the proof of Theorem 11.

5.1 Strong vs weak enforcement

As already discussed, we cannot in general strongly enforce an optimal flow, i.e., set
tolls such that every dynamic equilibrium is optimal. The following shows that the
“lane tolling” approach suffices to do this.

Theorem 12 Let f , π and μ be as in the previous theorem, and suppose g is any
dynamic equilibrium satisfying ge(θ) ≤ fe(θ) for all e ∈ E, θ ∈ R. Then g is
optimal.

Proof The cost of g cannot exceed the cost of f , and so it must be optimal. ��
Essentially, being able to dynamically split and separately toll the capacity of a link

allows us to easily rule out all other potential equilibria just by using tolls to artificially
constrict the capacities (in addition to choosing tolls that weakly enforce the desired
flow, which is still needed). Tolling in this way seems quite distant from what could
be imaginable in realistic traffic scenarios. But it does raise the interesting question
of whether there is a tolling scheme which can strongly enforce an optimum flow, but
which is more restricted (and more plausible) than fully dynamic lane tolling. Another
natural question would be to determine if an optimum flow can be strongly enforced
using lane tolling only on certain specified edges. We leave these as open questions.

5.2 Exogenous demand

Now let us consider the case of exogenous, and fixed, demand. Users depart from the
source s at a fixed rate u0 over a time interval [0, T ], and simply wish to reach the
destination t as early as possible. Correspondingly, the social cost wewish tominimize
is the average journey time. Note that there is no longer any departure time choice;
as such, users departing at different times need not experience the same disutility
(journey time) in an equilibrium.

We can view this within our setting as follows. Let G ′ = (V ′, E ′) be the instance
obtained by adding a node s′ and an arc s′s of capacity u0 and delay 0; s′ becomes the
new source. The total flow to send is Q = Tu0. The arc s′s ensures that the amount
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of flow departing s by time θ in any flow over time cannot exceed u0θ . A flow over
time need not saturate the arc s′s in the interval [0, T ]; however, as long as a given
flow is nonzero only for nonnegative times, we can easily convert it to one that does.
Simply adjust the flow to send flow from s′ to s earlier, saturating s′s on [0, T ], and
then waiting at s (that is, we do not modify the flow on any other arcs). This clearly
has no impact on arrival times. As such, we can view the restriction to G of any flow
over time on G ′ (that is nonzero only for nonnegative times) as a potential solution to
the exogenous demand problem.

Now let Ḡ be obtained from G ′ by reversing all arcs. We consider now the source
to be t and the sink s′, and the scheduling cost function described in (2). Let f̄ be an
optimal flow of value Q = Tu0, and let μ̄ be the optimal tolls from Theorem 11 that
induce it.

We now “reverse time”. For any arc vw ∈ E ′, and θ ∈ R, let fvw(θ) = f̄wv(τvw −
θ), and let μvw(θ) = μ̄wv(τvw − θ). Then f is an earliest arrival flow in G ′: f is zero
for all negative times (since all flow in f̄ arrives by time 0), and since f̄ minimizes
the average departure time from t in Ḡ, f minimizes the average arrival time at t in
G ′.

Lemma 13 The tolls μ restricted to E induce the restriction of f to G as a dynamic
equilibrium under exogenous demand.

Proof First, we observe that the tolls μ induce f as a dynamic equilibrium in G ′. This
is simply because given any s′-t-path P and valid departure times (θv)v∈P , these can
be mapped to a reversed path P̄ from t to s′ in Ḡ, along with corresponding reversed
departure times (θ̄v)v∈P̄ (given by, for any vw ∈ P , θ̄w = τvw − θv). The disutility
experienced by a user in G ′ choosing the strategy described by P and (θv)v∈P is
then precisely equal to the disutility experienced by a user in Ḡ choosing the strategy
described by P̄ and (θ̄v)v∈P .

All that remains is to go from G ′ to G; that is, we need to argue that the restriction
of μ to V does induce the restriction of f to G. The role of μs′s in G ′ is only to
ensure equal costs between particles that traverse s′s at different times. This is not a
requirement of an equilibrium in the exogenous setting. Some care is required however,
since by restricting f to G, we are possibly introducing waiting at s.

Let θ ′ = inf{θ ≥ 0 : fs′s(θ) < u0}. Then μs′s(θ) = 0 for all θ > θ ′ with
fs′s(θ) > 0. To see this, consider any θ̃ ∈ (θ, θ ′) for which fs′s(θ̃) < u0. Then
s′s ∈ E f (θ̃), implying by property (ii) of the dual solution π (see Theorem 4) that
μs′s(θ̃) = 0. But then ifμs′s(θ ′)were larger than 0, it would be an improving deviation
to traverse s′s at time θ̃ and then wait at s, so this is not possible.

It follows that there is no waiting at s for users departing before time θ ′ in G (since
f had no waiting, and fs′s(θ) = u0 until time θ ′), whereas all users departing after
time θ ′ experience the same disutility. Thus, no user has an incentive to deviate, and
we have a dynamic equilibrium in G. ��
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6 General scheduling costs

We now consider general scheduling costs, satisfying only the growth bound assump-
tion as well as the following fairly unrestrictive condition. We will assume that for
any C , {θ ∈ R : ρ(θ) ≤ C} consists of a finite number of compact intervals, and
this number is uniformly bounded by some value K . Insisting that this set has finite
measure ensures that the total mass associated with any given choice of cost horizon is
finite. The assumption that this set is always closed, or in other words, that ρ is lower
semicontinuous, is a matter of convenience, and was already assumed in the strongly
unimodal case. Given a scheduling function that does not satisfy this, but with a finite
number of discontinuities, the property can be obtained by adjusting ρ only at points
of discontinuity, and without affecting the optimal solution. Finally, the assumption
that the number of intervals is bounded by some K ensures that the algorithm has a
finite description, and also rules out various pathological choices of ρ.

In order to actually implement the algorithm, oracle access to ρ will not suffice.
Instead, we assume that given C , we are able to obtain the sets ρ−1((−∞,C]) and
ρ−1({C}), described as collections of intervals. Note that ρ−1({C}) consists of a union
of at most 2K intervals, since ρ−1({C}) = ρ−1((−∞,C])\⋃

ε>0 ρ−1((−∞,C−ε]).
There are essentially two separate complications that arise compared to the strongly

unimodal case. The first complication is that the set of arrival times where the schedul-
ing cost is bounded by some value need no longer be an interval. The second is that
the total mass corresponding to a given cost horizon C need no longer depend contin-
uously on C , meaning that once we have found the “correct” choice of cost horizon,
the algorithm as stated might send too much mass.

Let us begin by dealing with the first complication alone. So suppose that in addi-
tion to the stated restrictions, μ

(
ρ−1((−∞,C])) is a continuous function of C , where

throughout this sectionμ(A)denotes theLebesguemeasure of a set A. Theuseof bisec-
tion search (or, if ρ is given as a piecewise constant function, perhaps parametrized
search) to determine the correct cost horizon will thus not be affected. We need only
describe how the algorithm and analysis for finding an optimal solution for a given
cost horizon should be modified.

The principle of the algorithm remains identical to its description in Sect. 3. All
that changes is that for a path Pj obtained from successive shortest paths, the set of
times respecting the cost horizon C is no longer an interval. Thus, we let I j ⊆ R be a
maximal set such that

ρ(ξ + d j−1(s, t)) ≤ C − αd j−1(s, t) for all ξ ∈ I j . (12)

Given our assumptions on ρ, I j is a finite set of compact intervals. The resulting flow

f has precisely the same definition as before, namely fvw(θ) = f (J (v,θ))
vw , where the

definition of J (v, θ) also remains unchanged. The proof of feasibility of this flow, and
the proof of its optimality, both did not depend on any way on I j being an interval, and
the existing proofs stand as written. Note that the value of the flow is

∑m
j=1 μ(I j ); as

expected, our current assumptions ensure that this is a continuous function of C .
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Let us now relax the condition on continuity of C → μ
(
ρ−1((−∞,C])). The

essential idea is as follows.

• The algorithm as described will find the maximum mass corresponding to a given
cost horizon C . We can also find the minimum corresponding mass, by slightly
adjusting the algorithm.

• Oncewe have determined the correct value ofC via bisection or parametric search,
we must choose a solution that in a sense interpolates between the minimum and
maximum mass solutions. Some care is required to ensure that we have a feasible
flow. In particular, consider removing flow sent along a generalized path Pj coming
from the SSP decomposition for some interval of time. If an edge e is a forward
edge in Pj , then removing flow on it for a certain period of time may not be
possible without also removing flow from a generalized path that uses e in the
opposite direction.

We now describe the algorithm. As previously, a bisection search (or possibly
parametrized search) is used to find the correct cost horizon. However, given a current
guess C , we will compute a corresponding interval [Qmin(C), Qmax(C)] of possible
total masses corresponding to this. To do this, we construct, for each path Pj obtained
from successive shortest paths, two sets Imin

j and Imax
j defined as follows. Imax

j is

defined precisely as before, i.e., according to (12). Imin
j is defined instead as

Imin
j := cl

(
Imax
j \ {ξ : ρ(ξ + d j−1(s, t)) = C − αd j−1(s, t)}

)
,

where cl(A) denotes the closure of the set A ⊆ R. Again, our assumptions on ρ ensure
that Imin

j is a finite collection of compact intervals. This results in two different flows

over time, f min and f max, of values

Qmin(C) =
m∑
j=1

μ(Imin
j ) and Qmax(C) =

m∑
j=1

μ(Imax
j )

respectively. (Feasibility and optimality of f min has not yet been demonstrated; we
will return to this point.)

Once we have foundC such that Q ∈ [Qmin(C), Qmax(C)], we proceed as follows.
Let θ0 ∈ R be a value we will choose later. For each j ∈ [m], let

I θ0
j := Imin

j ∪ (
Imax
j ∩ (−∞, θ0 − d j−1(s, t)]

);
so Imin

j ⊆ I θ0
j ⊆ Imax

j (see Fig. 5 for an example). Now take f θ0 to be the flow

over time obtained by sending flow on path Pj for times in I θ0
j , for each j . Delaying

concerns about feasibility, the value of this flow is Q(θ0) := ∑m
j=1 μ(I θ0

j ). Since this
is continuous and piecewise linear in θ0, with

Qmin(C) = inf
θ

Q(θ) ≤ Q ≤ sup
θ

Q(θ) = Qmax(C),
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Fig. 5 An example of a general scheduling cost function, and intervals I θ0j corresponding to three paths of
different lengths, for some particular choice of C and the indicated value of θ0

we can easily determine the correct choice for θ0 so that Q(θ0) = Q. The output of
the algorithm is then f := f θ0 for this choice of θ0.

It remains to show the correctness of this algorithm, by demonstrating that the flow
over time f constructed by this algorithm is both feasible and optimal. This could be
done by suitably tweaking the arguments in Sects. 3 and 4.Wewill however avoid this,
and instead proceed as follows. Suppose we are able to define a family of perturbed
scheduling cost functions ρ(ε) and flows f (ε) for all ε > 0 such that the following
hold:

(i) ρ(ε) converges uniformly to ρ as ε → 0. Note that this implies that the cost of
an optimal solution under scheduling cost ρ(ε) converges to the cost of an optimal
solution under ρ.

(ii) f (ε) is an optimal flow of maximum total mass with cost horizon C , with respect
to the cost function ρ(ε), and f (ε) converges to f as ε → 0.

Together, this implies feasibility and optimality of f for ρ.
We define ρ(ε) as follows:

ρ(ε)(θ) =

⎧⎪⎨
⎪⎩

ρ(θ) if θ ≤ θ0

ρ(θ) + ε if θ > θ0

min{ρ(θ0), limθ ′→θ+
0

ρ(θ ′) + ε} if θ = θ0

.

(That is, we increase ρ by ε to the right of θ0, choosing the value at θ0 so that ρ(ε)

is lower semicontinuous.) Property (i) is then immediate. Property (ii) follows from
(12) applied to ρ(ε): the maximal interval corresponding to path Pj in ρ(ε) converges
to I θ0

j .
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