
Mathematical Programming (2022) 195:367–401
https://doi.org/10.1007/s10107-021-01694-3

FULL LENGTH PAPER

Series A

Empowering the configuration-IP: new PTAS results for
scheduling with setup times

Klaus Jansen1 · Kim-Manuel Klein1 ·Marten Maack1 ·Malin Rau2

Received: 13 August 2019 / Accepted: 17 June 2021 / Published online: 11 August 2021
© The Author(s) 2021

Abstract
Integer linear programs of configurations, or configuration IPs, are a classical tool in
the design of algorithms for scheduling and packing problems where a set of items has
to be placed in multiple target locations. Herein, a configuration describes a possible
placement on one of the target locations, and the IP is used to choose suitable con-
figurations covering the items. We give an augmented IP formulation, which we call
the module configuration IP. It can be described within the framework of n-fold inte-
ger programming and, therefore, be solved efficiently. As an application, we consider
scheduling problemswith setup times inwhich a set of jobs has to be scheduled on a set
of identical machines with the objective of minimizing the makespan. For instance,
we investigate the case that jobs can be split and scheduled on multiple machines.
However, before a part of a job can be processed, an uninterrupted setup depending
on the job has to be paid. For both of the variants that jobs can be executed in parallel
or not, we obtain an efficient polynomial time approximation scheme (EPTAS) of
running time f (1/ε) · poly(|I |). Previously, only constant factor approximations of
5/3 and 4/3 + ε, respectively, were known. Furthermore, we present an EPTAS for

This research was partially funded by German Research Foundation (DFG) Project JA 612/20-1. There is
a published conference version [18] as well as a preprint version of this work [17].

B Marten Maack
mmaa@informatik.uni-kiel.de

Klaus Jansen
kj@informatik.uni-kiel.de

Kim-Manuel Klein
kmk@informatik.uni-kiel.de

Malin Rau
Malin.Rau@inria.fr

1 Department of Computer Science, University of Kiel, 24118 Kiel, Germany

2 Department of Computer Science, University of Grenoble Alpes, 38401 Saint Martin, d’Héres cedex,
France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-021-01694-3&domain=pdf
http://orcid.org/0000-0001-7918-6642

368 K. Jansen et al.

a problem where classes of (non-splittable) jobs are given, and a setup has to be paid
for each class of jobs being executed on one machine.

Keywords Parallel machines · Setup time · EPTAS · n-fold integer programming

Mathematics Subject Classification 68W25 · 90C10

1 Introduction

In this paper, we present an augmented formulation of the classical integer linear
program of configurations (configuration IP) and demonstrate its use in the design
of efficient polynomial time approximation schemes for scheduling problems with
setup times. Configuration IPs are widely used in the context of scheduling or packing
problems in which items have to be distributed to multiple target locations. The con-
figurations describe possible placements on a single location, and the integer linear
program (IP) is used to choose a proper selection covering all items. Two fundamental
problems, for which configuration IPs have prominently been used, are bin pack-
ing and minimum makespan scheduling on identical parallel machines, or machine
scheduling for short. For bin packing, the configuration IP was introduced as early as
1961 by Gilmore and Gomory [13], and the recent results for both problems typically
use configuration IPs as a core technique, see, e.g., [14,19]. In the present work, we
consider scheduling problems and therefore introduce the configuration IP in more
detail using the example of machine scheduling.

Configuration IP for Machine Scheduling In the problem of machine scheduling,
a set J of n jobs is given together with processing times p j for each job j and a
number m of identical machines. The objective is to find a schedule σ : J → [m]
such that the makespan is minimized, that is, the latest finishing time of any job
Cmax(σ) = maxi∈[m]

∑
j∈σ−1(i) p j . For a given makespan bound, the configurations

may be defined as multiplicity vectors indexed by the occurring processing times such
that the overall length of the chosen processing times does not violate the bound. The
configuration IP is then given by variables xC for each configuration C ; constraints
ensuring that there is a machine for each configuration, i.e.,

∑
C xC = m; and further

constraints due to which the jobs are covered, i.e.,
∑

C CpxC = |{ j ∈ J | p j = p}|
for each processing time p. In combination with certain simplification techniques,
this type of IP is often used in the design of polynomial time approximation schemes
(PTAS). A PTAS is a procedure that, for any fixed accuracy parameter ε > 0, returns a
solutionwith approximation guarantee (1+ε), that is, a solutionwhose objective value
lies within a factor of (1+ε) of the optimum. In the context of machine scheduling, the
aforementioned simplification techniques can be used to guess the target makespan T
of the given instance; to upper bound the cardinality of the set of processing times P
by a constant (depending in 1/ε); and to lower bound the processing times in size such
that they are within a constant factor of the makespan T (see, e.g., [4,19]). Hence, only
a constant number of configurations is needed, which leads to an integer program with
a constant number of variables. Integer programs of that kind can be efficiently solved

123

Empowering the configuration-IP: new PTAS results for… 369

using the classical algorithm by Lenstra and Kannan [22,27], yielding a PTAS for
machine scheduling. Here, the error of (1+ε) in the quality of the solution is due to the
simplification steps, and the scheme has a running time of the form f (1/ε) ·poly(|I |),
where |I | denotes the input size and f some computable function. A PTAS with this
property is called efficient (EPTAS). Note that for a regular PTAS a running time of
the form |I | f (1/ε) is allowed. It is well-known that machine scheduling is strongly
NP-hard, and therefore it admits no optimal polynomial time algorithm, unless P=NP.
Moreover, a so-called fully polynomial PTAS (FPTAS)—which is an EPTAS with a
polynomial function f—cannot be hoped for either.

Machine Scheduling with Classes The configuration IP is used in a wide variety
of approximation schemes for machine scheduling problems [4,19]. However, for
scheduling problems where the jobs have to meet some additional requirements, such
as class dependencies, the approach often ceases to work. A problem emerging, in this
case, is that the additional requirements have to be represented in the configurations,
resulting in a super-constant number of variables in the IP. We elaborate on this using
a concrete example: Consider the variant of machine scheduling in which the jobs
are partitioned into K setup classes. For each job j , a class k j is given; and for each
class k, a setup time sk has to be paid on a machine if a job belonging to that class
is scheduled on it, i.e., Cmax(σ) = maxi∈[m]

(∑
j∈σ−1(i) p j + ∑

k∈{k j | j∈σ−1(i)} sk
)
.

With some effort, simplification steps similar to the ones for machine scheduling can
be applied. In the course of this, the setup times as well can be suitably bounded in
number and guaranteed to be sufficiently big (see [20]). However, it is not obvious
how the configuration IP should be extended without losing the property that it can
be solved efficiently. For instance, extending the configurations with multiplicities of
setup times creates a need to encode class information into the configurations or to
introduce other class dependent variables. This leads to a super-constant number of
variables and constraints.

Module Configuration IP Our approach to deal with the class dependencies of the
jobs is to cover the job classes with so-called modules and cover the modules in turn
with configurations in an augmented IP, called the module configuration IP (MCIP).
In the setup class model, for instance, the modules may be defined as combinations
of setup times and multiplicity vectors of processing times, and the configurations,
in turn, as multiplicity vectors of module sizes. The number of both the modules and
the configurations will typically be bounded by a constant. To cover the classes by
modules, each class is provided with its own set of modules, that is, there are variables
for each pair of class and module. Since the number of classes is part of the input,
the number of variables in the resulting MCIP is super-constant, and therefore the
algorithm by Lenstra and Kannan [22,27] is not the proper tool for the solving of the
MCIP. However, the MCIP has a certain simple structure: The mentioned variables
are partitioned into uniform classes each corresponding to the set of modules, and
for each class, the modules have to do essentially the same, that is, cover the jobs of
the class. Utilizing these properties, we can formulate the MCIP in the framework
of n-fold integer programs—a class of IPs whose variables and constraints fulfill
certain uniformity requirements. In 2013 Hemmecke et al. [15] presented the first

123

370 K. Jansen et al.

Fig. 1 On the left, there is a schematic representation of the configuration IP. There is a constant number of
different sizes each occurring a super-constant number of times. The sizes are directly mapped to configu-
rations. On the right, there is a schematic representation of the MCIP. There is a super-constant number of
classes each containing a constant number of sizes which have super-constant multiplicities. The elements
from the class are mapped to a constant number of different modules, which have a constant number of
sizes. These module sizes are mapped to configurations

fixed parameter tractable (FPT) algorithm for n-fold IPs, that is, an algorithm with a
running time f (k) ·poly(|I |)where k is some parameter (or a sequence of parameters)
depending in the instance. In the MCIP the corresponding parameters can be properly
bounded which enables the present result. For a more detailed description of n-fold
IPs and the MCIP, the reader is referred to Sects. 2 and 3, respectively. In Fig. 1, the
basic idea of the MCIP is visualized.

Using the MCIP, we are able to formulate an EPTAS for machine scheduling in the
setup class model described above. Before, only a regular PTAS with running time
nmO(1/ε5) was known [20]. To the best of our knowledge, this is the first use of n-fold
integer programing in the context of approximation algorithms.

Results and Methodology To show the conceptual power of the MCIP, we utilize
it for two more problems: The splittable and the preemptive setup model of machine
scheduling. In both variants, for each job j , a setup time s j is given. Each job may be
partitioned into multiple parts that can be assigned to different machines, but before
any part of the job can be processed the setup time has to be paid. In the splittable
model, job parts belonging to the same job can be processed in parallel, and therefore
it suffices to find a partition of the jobs and an assignment of the job parts to machines.
This is not the case for the preemptive model, in which additionally a starting time
for each job part has to be found, and two parts of the same job may not be processed
in parallel. In 1999, Schuurman and Woeginger [33] presented a polynomial time
algorithm for the preemptive model with approximation guarantee 4/3 + ε, and for
the splittable case, a guarantee of 5/3 was achieved by Chen et al. [6]. These are
the best known approximation guarantees for the problems at hand. We show that
solutions arbitrarily close to the optimum can be found in polynomial time:

123

Empowering the configuration-IP: new PTAS results for… 371

Theorem 1 There is an efficient PTAS with running time 2 f (1/ε)poly(|I |) for minimum
makespan scheduling on identical parallel machines in the setup-class model, as well
as in the preemptive and splittable setup models.

More precisely, we get a running time of 2O(1/ε3(log 1/ε)4)K 1+o(1)nm in the setup class

model, 2O(1/ε2(log 1/ε)3)n2+o(1) in the splittable, and 22
O(1/ε log 1/ε)

n1+o(1)m in the preemp-
tive model. Note that all three problems are strongly NP-hard, due to trivial reductions
from machine scheduling, and hence FPTAS results cannot be hoped for.

Summing up, the main achievement of this work is the development of the module
configuration IP and its application in the design of approximation schemes.Up to now,
EPTAS or even PTAS results seemed out of reach for the considered problems, and for
the preemptivemodel, we provide the first improvement in 20 years. The simplification
techniques developed for the splittable and preemptive model in order to employ the
MCIP are original and in the latter case quite sophisticated and therefore interesting
by themselves. Furthermore, we expect the MCIP to be applicable to other packing
and scheduling problems as well, in particular for variants of machine scheduling and
bin packing with additional class dependent constraints. On a more conceptual level,
we have presented a first demonstration of the potential of n-fold integer programming
in the theory of approximation algorithms and hope to inspire further studies in this
direction.

We conclude this paragraph with a more detailed overview of our results and their
presentation. For all three EPTAS results, we employ the classical dual approximation
framework by Hochbaum and Shmoys [16] to get a guess of the makespan T . This
approach is introduced in Sect. 2 together with n-fold IPs and formal definitions of
the problems. In the following section, we develop the module configuration IP and
argue that it is indeed an n-fold IP. The EPTAS results follow the same basic approach
described above for machine scheduling: We find a schedule for a simplified instance
via the MCIP and transform it into a schedule for the original one. The simplification
steps typically include rounding of the processing and setup times using standard
techniques, as well as the removal of certain jobs which later can be reinserted via
carefully selected greedy procedures. For the splittable and preemptive model, we
additionally have to prove that schedules with a certain simple structure exist, and in
the preemptive model, the MCIP has to be extended. In Sect. 4 the basic versions of
the EPTAS are presented, and in Sect. 5 some improvements of the running time for
the splittable and the setup class model are discussed.

Related work For an overview on n-fold IPs and their applications, we refer to the
following works [12,28,31]. The first FPT algorithm for n-fold IPs was presented by
Hemmecke et al. [15] in 2013, and it has a running time with a cubic dependence in
n. In 2018, Eisenbrand et al. [11] and independently Koutecký et al. [26] developed
algorithms with running times with near quadratic dependence in n and improved
dependencies in the parameters. Then, in 2019, a near linear dependence in n was
achieved by Jansen et al. [21] as well as Eisenbrand et al. [12]. Finally, in 2021,
Cslovjecsek et al. [10] further improved and parallelized the result. For an overview
on recent results on n-fold IPs and related topics we refer to [12].

123

372 K. Jansen et al.

There have been recent applications of n-fold integer programming to scheduling
problems in the context of parameterized algorithms:Knop andKouteckỳ [23] showed,
among other things, that the problem of makespan minimization on unrelated parallel
machineswhere the processing times are dependent on both jobs andmachines is fixed-
parameter tractable with respect to the maximum processing time and the number of
distinct machine types. This was generalized to the parameters maximum processing
time and rank of the processing timematrix by Chen et al. [7]. Furthermore, Knop et al.
[25] provided an improved algorithm for a special type of n-fold IPs, yielding improved
running times for several applications of n-fold IPs including results for scheduling
problems. In a recent result [24], published after the present work, the configuration IP
is strongly generalized. The resulting problem is modeled as an n-fold IP and shown
to catch several allocation problems.

There is extensive literature concerning scheduling problems with setup times. We
highlight a few closely related results and otherwise refer to the surveys [1–3]. In
the following, we use the term α-approximation as an abbreviation for polynomial
time algorithms with approximation guarantee α. The setup class model was first
considered byMäcker et al. [29] in the special case that all classes have the same setup
time. They designed a 2-approximation and additionally a (3/2 + ε)-approximation
for the case that the overall length of the jobs from each class is bounded. Jansen and
Land [20] presented a simple 3-approximation with linear running time, a (2 + ε)-
approximation, and the aforementioned PTAS for the general setup class model. As
indicated before, Chen et al. [6] developed a 5/3-approximation for the splittable
model. A generalization of this, in which both setup and processing times are job
and machine dependent, has been considered by Correa et al. [8]. They achieve a
(1+φ)-approximationwhereφ denotes the golden ratio, using a newly designed linear
programming formulation. Moreover, there are recent results concerning machine
scheduling in the splittable model considering the sum of (weighted) completion times
as the objective function, e.g., [9,32]. For the preemptivemodel, a PTAS for the special
case that all jobs have the same setup time has been developed by Schuurman and
Woeginger [33]. The mentioned (4/3 + ε)-approximation for the general case [33]
follows the same approach. Furthermore, a combination of the setup class and the
preemptive model has been considered in which the jobs are scheduled preemptively,
but the setup times are class dependent. Monma and Potts [30] presented, among
other things, a (2− 1/(�m/2� + 1))-approximation for this model, and later Chen [5]
achieved improvements for some special cases.

2 Preliminaries

In the following, we establish some concepts and notations, formally define the con-
sidered problems, and outline the dual approximation approach by Hochbaum and
Shmoys [16], as well as n-fold integer programs.

For any integer n, we denote the set {1, . . . , n} by [n]; we write log(·) for the
logarithmwith basis 2; andwewill usually assume that some instance I of the problem
considered in the respective context is given together with an accuracy parameter
ε ∈ (0, 1) such that 1/ε is an integer. Furthermore, for any two sets X ,Y , we write

123

Empowering the configuration-IP: new PTAS results for… 373

Y X for the set of functions f : X → Y . If X is finite, we say that Y is indexed by X
and sometimes denote the function value of f for the argument x ∈ X by fx .

Problems For all three of the considered problems, a setJ of n jobs with processing
times p j ∈ Q>0 for each job j ∈ J and a number of machines m is given. In
the preemptive and the splittable model, the input additionally includes a setup time
s j ∈ Q>0 for each job j ∈ J ; while in the setup class model, it includes a number
K of setup classes, a setup class k j ∈ [K] for each job j ∈ J , as well as setup times
sk ∈ Q>0 for each k ∈ [K].

We take a closer look at the definition of a schedule in the preemptive model. The
jobs may be split. Therefore, partition sizes κ : J → Z>0, together with processing
time fractions λ j : [κ(j)] → (0, 1] such that

∑
k∈[κ(j)] λ j (k) = 1 have to be found,

meaning that job j is split into κ(j) many parts and the k-th part for k ∈ [κ(j)] has
processing time λ j (k)p j . This given, we define J ′ = {(j, k) | j ∈ J , k ∈ [κ(j)]}
to be the set of job parts. Now, an assignment σ : J ′ → [m] along with starting
times ξ : J ′ → Q>0 has to be determined such that any two job parts assigned to the
same machine or belonging to the same job do not overlap. More precisely, we have
to assure that for each two job parts (j, k), (j ′, k′) ∈ J ′ with σ(j, k) = σ(j ′, k′) or
j = j ′, we have ξ(j, k)+ s j +λ j (k)p j ≤ ξ(j ′, k′) or vice versa. A schedule is given
by (κ, λ, σ, ξ), and the makespan can be defined as Cmax = max(j,k)∈J ′(ξ(j, k) +
s j + λ j (k)p j). Note that the variant of the problem in which overlap between a job
part and setup of the same job is allowed is equivalent to the one presented above. This
was pointed out by Schuurmann and Woeginger [33] and can be seen with a simple
swapping argument.

In the splittable model, it is not necessary to determine starting times for the job
parts because, given the assignment σ , the job parts assigned to each machine can
be scheduled as soon as possible in arbitrary order without gaps. Hence, in this case,
the output is of the form (κ, λ, σ), and the makespan can be defined as Cmax =
maxi∈[m]

∑
(j,k)∈σ−1(i)(s j + λ j (k)p j).

Lastly, in the setup class model, the jobs are not split, and the jobs assigned to each
machine can be scheduled in batches comprised of the jobs of the same class assigned
to the machine without overlaps and gaps. The output is therefore just an assignment
σ : J → [m], and the makespan is given by Cmax = maxi∈[m]

∑
j∈σ−1(i) p j +∑

k∈{k j | j∈σ−1(i)} sk .
Note that in the preemptive and the setup class model, we can assume that the

number of machines is bounded by the number of jobs: If there are more machines
than jobs, placing each job on a private machine yields an optimal schedule in both
models, and the remaining machines can be ignored. This, however, is not the case in
the splittable model, which causes a minor problem in the following.

Dual Approximation All of the presented algorithms follow the dual approximation
framework introduced by Hochbaum and Shmoys [16]: Instead of solving the mini-
mization version of a problem directly, it suffices to find a procedure that for a given
bound T on the objective value either correctly reports that there is no solution with
value T , or returns a solution with value at most (1+ aε)T for some constant a. If we
have some initial upper bound B for the optimal makespan OPT with B ≤ bOPT for

123

374 K. Jansen et al.

some b, we can define a PTAS by trying different values T from the interval [B/b, B]
in a binary search fashion, and find a value T ∗ ≤ (1+O(ε))OPT afterO(log b/ε) iter-
ations. Note that for all of the considered problems, constant approximation algorithms
are known, and the sum of all processing and setup times is a trivialm-approximation.
Hence, we always assume that a target makespan T is given. Furthermore, we assume
that the setup times and in the preemptive and setup class cases also the processing
times are bounded by T because otherwise we can reject T immediately.

n-fold Integer Programs We briefly define n-fold integer programs (IPs) following
the notation of [15] and [23], and state the main algorithmic result needed in the
following. Let n, r , s, t ∈ Z>0 be integers and A be an integer ((r + ns) · nt)-matrix
of the following form:

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

A1 A1 · · · A1
A2 0 · · · 0
0 A2 · · · 0
...

...
. . .

...

0 0 · · · A2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

The matrix A is the so-called n-fold product of the bimatrix
(A1
A2

)
, with A1 an r × t

and A2 an s× t matrix. Furthermore, letw,
, u ∈ Znt and b ∈ Zr+ns . Then the n-fold
integer programming problem is given by:

min{wx | Ax = b,
 ≤ x ≤ u, x ∈ Znt }

We set � to be the maximum absolute value occurring in A. There are several algo-
rithms for solving n-fold IPs. We use the most recent result by Cslovjecsek et al. [21]:

Theorem 2 The n-fold integer programming problem can be solved in time 2O(rs2)

(rs�)O(r2s+s2)(nt)1+o(1).

The variables x can naturally be partitioned into bricks x (q) of dimension t for
each q ∈ [n] such that x = (x (1), . . . x (n)). Furthermore, we denote the constraints
corresponding to A1 as globally uniform and the ones corresponding to A2 as locally
uniform. Hence, r is the number of globally and s the number of locally uniform
constraints (ignoring their n-fold duplication), t the brick size and n the brick number.

3 Module configuration IP

In this section, we state the configuration IP for machine scheduling; introduce a basic
version of the module configuration IP (MCIP) that is already sufficiently general to
work for both the splittable and setup class model; and lastly show that the configu-
ration IP can be expressed by the MCIP in multiple ways. Before that, however, we
formally introduce the concept of configurations.

123

Empowering the configuration-IP: new PTAS results for… 375

Given a set of objects A, such as jobs, a configuration C of these objects is a
vector of multiplicities indexed by the objects, i.e., C ∈ ZA≥0. For given sizes �(a) of
the objects a ∈ A, the size �(C) of a configuration C is defined as

∑
a∈A Ca�(a).

Moreover, for a given upper bound B, we define CA(B) to be the set of configurations
of A that are bounded in size by B, that is, CA(B) = {C ∈ ZA≥0 | �(C) ≤ B}.

Configuration IP We provide a recollection of the configuration IP for machine
scheduling. Let P be the set of distinct processing times for some instance I with
multiplicities n p for each p ∈ P , meaning, I includes exactly n p jobs with processing
time p. The size �(p) of a processing time p is the processing time itself, that is,
�(p) = p. Furthermore, let T be a guess of the optimal makespan. The configuration
IP for I and T is given by variables xC ≥ 0 for each C ∈ CP (T) and the following
constraints:

∑

C∈CP (T)

xC = m (1)

∑

C∈CP (T)

CpxC = n p ∀p ∈ P (2)

Due to constraint (1), exactly one configuration is chosen for each machine; while (2)
ensures that the correct number of jobs or job sizes is covered.

Module Configuration IP Let B be a set of basic objects (e.g., jobs or setup classes)
and let there be D integer values B1, . . . , BD for each basic object B ∈ B (e.g., pro-
cessing time or numbers of different kinds of jobs). Our approach is to cover the basic
objects with so-called modules and, in turn, cover the modules with configurations.
Depending on the context, modules correspond to batches of jobs or job piece sizes
together with a setup time and can also encompass additional information like a start-
ing time. Let M be a set of such modules. In order to cover the basic objects, each
moduleM ∈ M also has D integer valuesM1, . . . , MD . Furthermore, eachmoduleM
has a size �(M) and a set of eligible basic objects B(M). The latter is needed because
not all modules are compatible with all basic objects, e.g., because they do not have
the right setup times. The configurations are used to cover the modules, however, it
typically does not matter which module exactly is covered, but rather which size the
module has. Let H be the set of distinct module sizes, i.e., H = {�(M) | M ∈ M},
and for each module size h ∈ H let M(h) be the set of modules with size h. We
consider the set C of configurations of module sizes which are bounded in size by a
guess of themakespan T , i.e., C = CH (T). In the preemptive case, configurations need
to additionally encompass information about starting times of modules, and therefore
the definition of configurations will be slightly more complicated in that case.

Since we want to choose configurations for each machine, we have variables xC for
each C ∈ C and constraints corresponding to (1). Furthermore, we choose modules
with variables yM for eachM ∈ M, and because wewant to cover the chosenmodules
with configurations, we have some analogue of constraint (2), say

∑
C∈C(T) ChxC =∑

M∈M(h) yM for each module size h ∈ H . However, while a module M may be used

123

376 K. Jansen et al.

to cover multiple basic objects, each instance of M should only be used for one of
them. Hence, it makes sense to introduce the variables yM for each basic object, and
this is were n-fold IPs come into play. The variables stated so far form a brick of the
variables of the n-fold IP, and there is one brick for each basic object, that is, we have,
for each B ∈ B, variables x (B)

C for each C ∈ C, and y(B)
M for each M ∈ M. Using the

upper bounds of the n-fold model, variables y(B)
M are set to zero, if B is not eligible

for M ; and we set the lower bounds of all variables to zero. Sensible upper bounds for
the remaining variables will be typically clear from context. Besides that, the module
configuration integer program MCIP (for B,M and C) is given by:

∑

B∈B

∑

C∈C
x (B)
C = m (3)

∑

B∈B

∑

C∈C(T)

Chx
(B)
C =

∑

B∈B

∑

M∈M(h)

y(B)
M ∀h ∈ H (4)

∑

M∈M
Md y

(B)
M = Bd ∀B ∈ B, d ∈ [D] (5)

It is easy to see that the constraints (3) and (4) are globally uniform. They are the
mentioned adaptations of (1) and (2). The constraint (5), on the other hand, is locally
uniform and ensures that the basic objects are covered.

Note that, while the duplication of the configuration variables does not carry mean-
ing, it also does not upset the model: Consider the modified MCIP that is given by
not duplicating the configuration variables. A solution (x̃, ỹ) for this IP gives a solu-
tion (x, y) for the MCIP by fixing some basic object B∗, setting x (B∗)

C = x̃C for
each configuration C , setting the remaining configuration variables to 0, and copying
the remaining variables. Given a solution (x, y) for the MCIP, on the other hand,
gives a solution for the modified version (x̃, ỹ) by setting x̃C = ∑

B∈B x BC for each
configuration C . Summarizing we get:

Observation 1 TheMCIP is an n-fold IP with brick-size t = |M|+|C|, brick number
n = |B|, r = |H | + 1 globally uniform and s = D locally uniform constraints.

Moreover, in all of the considered applications, we will minimize the overall size of
the configurations, i.e.,

∑
B∈B

∑
C∈C �(C)x (B)

C . This will be required because in the
simplification steps of our algorithms some jobs are removed and have to be reinserted
later, and we therefore have to make sure that no space is wasted.

First Example We conclude the section by pointing out several different ways to
replace the classical configuration IP for machine scheduling with the MCIP, thereby
giving some intuition for the model. The first possibility is to consider the jobs as the
basic objects and their processing times as their single value (B = J , D = 1); the
modules are the processing times (M = P), and a job is eligible for a module, if its
processing time matches; and the configurations are all the configurations bounded in
size by T . Another option is to choose the processing times as basic objects keeping all
the other definitions essentially like before. Lastly, we could consider the whole set of

123

Empowering the configuration-IP: new PTAS results for… 377

jobs or thewhole set of processing times as a single basic objectwith D = |P| different
values. In this case, we can define the set of modules as the set of configurations of
processing times bounded by T .

4 EPTAS results

In this section, we present approximation schemes for each of the three considered
problems. Each of the results follows the same approach: The instance is carefully
simplified, a schedule for the simplified instance is found using the MCIP, and this
schedule is transformed into a schedule for the original instance. The presentation of
the result is also similar for each problem: We first discuss how the instance can be
sensibly simplified and how a schedule for the simplified instance can be transformed
into a schedule for the original one. Next, we discuss how a schedule for the simplified
instance can be found using theMCIP, and, lastly, we summarize and analyze the taken
steps.

For the sake of clarity, we have given rather formal definitions for the problems at
hand in Sect. 2. In the following, however, we will use the terms in a more intuitive
fashion for the most part, and we will, for instance, often take a geometric rather than
a temporal view on schedules and talk about the length or the space taken up by jobs
and setups on machines rather than time. In particular, given a schedule for an instance
of any one of the three problems together with an upper bound for the makespan T , the
free spacewith respect to T on a machine is defined as the summed up lengths of time
intervals between 0 and T in which the machine is idle. The free space (with respect
to T) is the summed up free space of all the machines. For bounds T and L for the
makespan and the free space, respectively, we say that a schedule is a (T , L)-schedule
if its makespan is at most T and the free space with respect to T is at least L .

When transforming the instance, we will increase or decrease processing and setup
times and fill in or remove extra jobs. Consider a (T ′, L ′)-schedule where T ′ and
L ′ denote some arbitrary makespan or free space bounds. If we fill in extra jobs or
increase processing or setup times, but can bound the increase on each machine by
some bound b, we end up with a (T ′ +b, L ′)-schedule for the transformed instance. In
particular, we have the same bound for the free space because we properly increased
the makespan bound. If, on the other hand, jobs are removed or setup times decreased,
we obviously still have a (T ′, L ′)-schedule for the transformed instance. This will be
used frequently in the following.

4.1 Setup class model

We start with the setup class model. In this case, we can essentially reuse the sim-
plification steps that were developed by Jansen and Land [20] for their PTAS. The
main difference between the two procedures is that we solve the simplified instance
via the MCIP, while they used a dynamic program. For the sake of self-containment,
we include our own simplification steps, but remark that they are strongly inspired by

123

378 K. Jansen et al.

Table 1 Overview on the job
classifications

sk j p j

< ε4T < εT ≥ εT

< ε3T J sst
tiny J sst

small J sst
large

≥ ε3T J bst
tiny J bst

small J bst
large

those from [20]. In Sect. 5, we present a more elaborate rounding procedure resulting
in an improved running time.

Simplification of the Instance In the following, we distinguish big setup jobs j
belonging to classes k with setup times sk ≥ ε3T and small setup jobs with sk <

ε3T . We denote the corresponding subsets of jobs by J bst and J sst, respectively.
Furthermore, we call a job tiny or small, if its processing time is smaller than ε4T or
εT , respectively, and big or large otherwise. For any given set of jobs J , we denote
the subset of tiny jobs from J with Jtiny and the small, big, and large jobs analogously
(see Table 1 for an overview).

We simplify the instance in four steps, aiming for an instance that exclusively
includes big jobs with big setup times and additionally only a constant number of
distinct processing and setup times. For technical reasons, we assume ε ≤ 1/2.

We proceed with the first simplification step. Let I1 be the instance given by the
job set J \J sst

small and Q the set of setup classes completely contained in J sst
small, i.e.,

Q = {k | ∀ j ∈ J : k j = k ⇒ j ∈ J sst
small}. An obvious lower bound on the space taken

up by the jobs from J sst
small in any schedule is given by L = ∑

j∈J sst
small

p j + ∑
k∈Q sk .

Note that the instance I1 may include a reduced number K ′ of setup classes.

Lemma 1 A schedule for I with makespan T induces a (T , L)-schedule for I1, that is,
a schedule with makespan T and free space at least L; and any (T ′, L)-schedule for I1
can be transformed into a schedule for I withmakespan at most (1+ε)T ′+εT+2ε3T .

Proof The first claim is obvious and we therefore assume that we have a (T ′, L)-
schedule for I1. We group the jobs from J sst

small by setup classes and first consider
the groups with summed up processing time at most ε2T . For each of these groups,
we check whether the respective setup class contains a large job. If this is the case,
we schedule the complete group on a machine on which such a large job is already
scheduled if possible using up free space. Since the large jobs have a length of at least
εT , there are at most T ′/(εT) many large jobs on each machine, and therefore the
schedule on the respective machine has length at most (1+ ε)T ′, or there is free space
with respect to T ′ left. If, on the other hand, the respective class does not contain a
large job and is therefore fully contained in J sst

small, we create a container including
the whole class and its setup time. Note that the overall length of the container is at
most (ε2 + ε3)T ≤ εT (using ε ≤ 1/2). Next, we create a sequence containing the
containers and the remaining jobs ordered by setup class. We insert the items from this
sequence greedily into the remaining free space in a next-fit fashion exceeding T ′ on
each machine by at most one item from the sequence, thereby creating an error of at

123

Empowering the configuration-IP: new PTAS results for… 379

most εT . This can be done because we had a free space of at least L , and the inserted
objects had an overall length of at most L . To make the resulting schedule feasible,
we have to insert some setup times. However, because the overall length of the jobs
from each class in need of a setup is at least ε2T , and the sequence was ordered by
classes, there are at most T ′/(ε2T) + 2 distinct classes without a setup time on each
machine. Inserting the missing setup times will therefore increase the makespan by at
most (T ′/(ε2T) + 2)ε3T = εT ′ + 2ε3T . �

Next, we deal with the remaining (large) jobs with small setup times j ∈ J sst
large.

Let I2 be the instance we get by increasing the setup times of the classes with small
setup times to ε3T . We denote the setup time of class k ∈ [K ′] for I2 by s′

k . Note that
there are no small setup jobs in I2.

Lemma 2 A (T ′, L ′)-schedule I1 induces a ((1 + ε2)T ′, L ′)-schedule for I2, and a
(T ′, L ′)-schedule for I2 is also a (T ′, L ′)-schedule for I1.

Proof The first claim is true because in a schedule with makespan at most T ′ there
can be at most T ′/(εT) many large jobs on any machine, and the second claim is
obvious. �

Let I3 be the instance we get by replacing the jobs from J bst
tiny with placeholders of

size ε4T . More precisely, we remove J bst
tiny, and, for each class k ∈ [K], we introduce

�(∑ j∈J bst
tiny,k j=k p j)/(ε

4T)� many jobs with processing time ε4T and class k. We

denote the job set of I3 by J ′ and the processing time of a job j ∈ J ′ by p′
j . Note

that I3 exclusively contains big jobs with big setup times.

Lemma 3 If there is a (T ′, L ′)-schedule for I2, there is also a ((1+ε)T ′, L ′)-schedule;
and if there is a (T ′, L ′)-schedule for I3, there is also a ((1 + ε)T ′, L ′)-schedule for
I2.

Proof Note that for any (T ′, L ′)-schedule for I2 or I3, there are atmost T ′/(ε3T)many
distinct big setup classes scheduled on any machine. Hence, when considering such
a schedule for I2, we can remove the tiny jobs belonging to J bst

tiny from the machines
and instead fill in the placeholders, such that each machine for each class receives at
most as much length from that class, as was removed, rounded up to the next multiple
of ε4T . All placeholders can be placed like this and the makespan is increased by at
most (T ′/(ε3T))ε4T = εT ′. If, on the other hand, we consider such a schedule for
I3, we can remove the placeholders and instead fill in the respective tiny jobs, again
overfilling by at most one job. This yields a ((1 + ε)T ′, L ′)-schedule for I2 with the
same argument. �

Lastly, we perform both a geometric and an arithmetic rounding step for the pro-
cessing and setup times. The geometric rounding is needed to suitably bound the
number of distinct processing and setup times, and due to the arithmetic rounding,
we will be able to guarantee integral coefficients in the IP. More precisely, we set

p̃ j = (1+ ε)
�log1+ε p′

j /(ε
4T)�

ε4T and p̄ j = � p̃ j/ε
5T �ε5T for each j ∈ J ′, as well as

s̃ j = (1+ ε)
�log1+ε s

′
j /(ε

3T)�
ε3T and s̄k = �s̃ j/ε5T �ε5T for each setup class k ∈ [K ′].

The resulting instance is called I4.

123

380 K. Jansen et al.

Lemma 4 A (T ′, L ′)-schedule for I3 induces a ((1 + 3ε)T ′, L ′)-schedule for I4, and
any (T ′, L ′)-schedule for I4 can be turned into a (T ′, L ′)-schedule for I3.

Proof For the first claim, we first stretch a given schedule by (1+ ε). This enables us
to use the processing and setup times due to the geometric rounding step. Now, using
the ones due to the second step increases the schedule by at most 2εT ′, because there
where at most T ′/(ε4T) many big jobs on any machine to begin with. The second
claim is obvious. �
Based on the rounding steps, we define two makespan bounds T̄ and T̆ : Let T̄ be the
makespan bound that is obtained from T by the application of the Lemmata 1–4 in
sequence, i.e., T̄ = (1+ ε2)(1+ ε)(1+ 3ε)T = (1+O(ε))T . We will find a (T̄ , L)-
schedule for I4 utilizing the MCIP and afterward apply the Lemmata 1–4 backwards
to get a schedule with makespan T̆ = (1 + ε)2T̄ + εT + 2ε3T = (1 + O(ε))T .

Let P and S be the sets of distinct occurring processing and setup times for
instance I4. Because of the rounding, the minimum and maximum lengths of the
setup and processing times, and ε < 1, we can bound |P| and |S| byO(log1+ε 1/ε) =
O(1/ε log 1/ε).

Utilization of the MCIP At this point, we can employ the module configuration IP.
The basic objects in this context are the setup classes, i.e., B = [K ′], and the different
values are the numbers of jobs with a certain processing time, i.e., D = |P|. We set
nk,p to be the number of jobs from setup class k ∈ [K ′] with processing time p ∈ P .
The modules correspond to batches of jobs together with a setup time. Batches of
jobs can be modeled as configurations of processing times, that is, multiplicity vectors
indexed by the processing times. Hence, we define the set of modules M to be the
set of pairs of configurations of processing times and setup times with a summed up
size bounded by T̄ , i.e.,M = {(C, s) |C ∈ CP (T̄), s ∈ S, s + �(C) ≤ T̄ }, and write
Mp = Cp and sM = s for each module M = (C, s) ∈ M. The values of a module
M are given by the numbers Mp and its size �(M) by sM + ∑

p∈P Mp p. Remember
that the configurations C are the configurations of module sizes H that are bounded
in size by T̄ , i.e., C = CH (T̄). A setup class is eligible for a module if the setup times
fit, i.e., BM = {k ∈ [K ′] | sk = sM }. Lastly, we establish ε5T = 1 by scaling.

For the sake of readability, we state the resulting constraints of the MCIP with
adapted notation and without duplication of the configuration variables:

∑

C∈C
xC = m (6)

∑

C∈C
ChxC =

∑

k∈[K ′]

∑

M∈M(h)

y(k)
M ∀h ∈ H (7)

∑

M∈M
Mpy

(k)
M = nk,p ∀k ∈ [K ′], p ∈ P (8)

Note that the coefficients are all integral and this includes those of the objective
function, i.e.,

∑
C �(C)xC , because of the scaling step.

123

Empowering the configuration-IP: new PTAS results for… 381

Lemma 5 With the above definitions, there is a (T̄ , L)-schedule for I4 if and only if
theMCIP has a solution with objective value at most mT̄ − L.

Proof Let there be a (T̄ , L)-schedule for I4. Then the schedule on a given machine
corresponds to a distinct configuration C that can be determined by counting for each
possible module size h the batches of jobs from the same class whose length together
with the setup time adds up to an overall length of h. Note that the length of this
configuration is equal to the used up space on that machine. We fix an arbitrary setup

class k and set the variables x (k)
C accordingly (and x (k′)

C = 0 for k′ �= k and C ∈ C). By
this setting, we get an objective value of at most mT̄ − L because there was at least L
free space in the schedule. For each class k and module M , we count the number of
machines on which there are exactly Mp jobs with processing time p from class k for

each p ∈ P and set y(k)
M accordingly. It is easy to see that the constraints are satisfied

by these definitions.
Given a solution (x, y) of the MCIP, we define a corresponding schedule: Because

of (6), we canmatch themachines to configurations such that eachmachine is matched
to exactly one configuration. If machine i is matched to C , for each module size h,
we create Ch slots of length h on i . Next, we divide the setup classes into batches.
For each class k and module M , we create y(k)

M batches of jobs from class k with Mp

jobs with processing time p for each p ∈ P and place the batch together with the
corresponding setup time into a fitting slot on some machine. Because of (8) and (7),
all jobs can be placed by this process. Note that the used space equals the overall size
of the configurations, and we therefore have free space of at least L . �

Result Using the above results, we can formulate and analyze the following proce-
dure:

Algorithm 1 1. Generate the modified instance I4:

– Remove the small jobs with small setup times.
– Increase the setup times of the remaining classes with small setup times.
– Replace the tiny jobs with big setup times.
– Round up the resulting processing and setup times.

2. Build and solve the MCIP for I4.
3. If the MCIP is infeasible, or the objective value greater than mT̄ − L , report that

I has no solution with makespan T .
4. Otherwise build the schedule with makespan T̄ and free space at least L for I4.
5. Transform the schedule into a schedule for I with makespan at most T̆ :

– Use the prerounding processing and setup times.
– Replace the placeholders by the tiny jobs with big setup times.
– Use the original setup times of the classes with small setup times.
– Insert the small jobs with small setup times into the free space.

Theprocedure is correct due to the above results. To analyze its running time,wefirst
bound the parameters of theMCIP.We have |B| = K ′ ≤ K and D = |P| by definition
and |M| = O(|S|(1/ε3)|P|) = 2O(1/ε log2 1/ε) because |S|, |P| ∈ O(1/ε log 1/ε). This

123

382 K. Jansen et al.

is true due to the last rounding step which also implies |H | = O(1/ε5) yielding
|C| = |H |O(1/ε3) = 2O(1/ε3 log 1/ε). According to Observation 1, this yields a brick
size of t = 2O(1/ε3 log 1/ε), a brick number of K , r = O(1/ε5) globally, and s =
O(1/ε log 1/ε) locally uniform constraints for the MCIP. We have � = O(1/ε5)
because all occurring values in the processing time matrix are bounded in T̄ , and we
have T̄ = O(1/ε5) due to the scaling.

By Theorem 2 and some arithmetic, the MCIP can be solved in time:

2O(rs2)(rs�)O(r2s+s2)(nt)1+o(1) = 2O(1/ε11(log 1/ε)2)K 1+o(1)

When building the actual schedule, we iterate through the jobs and machines like
indicated in the proof of Lemma 5 yielding the following:

Theorem 3 The algorithm for the setup class model finds a schedule with makespan
(1 + O(ε))T or correctly determines that there is no schedule with makespan T in
time 2O(1/ε11(log 1/ε)2)K 1+o(1)nm.

4.2 Splittable model

The approximation scheme for the splittablemodel presented in this section is probably
the easiest one discussed in this work. There is, however, one problem concerning this
procedure: Its running time is polynomial in the number of machines which might be
exponential in the input size in this case, since the input only includes the number
of machines m with encoding length O(logm). For the other two problems, we can
assume that we have at most as many machines as jobs (see Sect. 2) and hence this is
not an issue. But in the splittable case we may have many more machines than jobs.
Note that is not an issue for the other two problems (see Sect. 2). In Sect. 5, we show
how this problem can be overcome and further improve the running time.

Simplification of the Instance In this context, the set of big setup jobs J bst is given
by the jobs with setup times at least εT and the small setup jobs J sst are all the others.
Let L = ∑

j∈J sst (s j + p j). Because every job has to be scheduled and every setup
has to be paid at least once, L is a lower bound on the summed up space due to small
jobs in any schedule. Let I1 be the instance that we get by removing all the small setup
jobs from the given instance I .

Lemma 6 A schedule with makespan T for I induces a (T , L)-schedule for I1; and
any (T ′, L)-schedule for I1 can be transformed into a schedule for I with makespan
at most T ′ + εT .

Proof The first claim is obvious. Hence, consider a sequence consisting of the jobs
from J sst together with their setup times where the setup time of a job is the direct
predecessor of the job. We insert the setup times and jobs from this sequence greedily
into the schedule in a next-fit fashion: Given a machine, we keep inserting the items
from the sequence on to the machine at the end of the schedule until the taken up
space reaches T ′. If the current item does not fit exactly, we cut it such that the used

123

Empowering the configuration-IP: new PTAS results for… 383

space on the machine is exactly T ′. Then we continue with the next machine (without
the insertion of an additional setup time). We can place the whole sequence like this
without exceeding the makespan T ′, because we have free space of at least L which is
the summed up length of the items in the sequence. Next, we remove each setup time
that was placed only partly on a machine together with those that were placed at the
end of the schedule Furthermore, we insert a fitting setup time for the jobs that were
scheduled without one, which can happen only once for each machine. This yields a
feasible schedule whose makespan is increased by at most εT . �
Next, we round up the processing and setup times of I1 to the next multiple of ε2T ,
that is, for each job j ∈ J , we set p̄ j = �p j/(ε

2T)�ε2T and s̄ j = �s j/(ε2T)�ε2T .
We call the resulting instance I2 and denote its job set by J ′.
Lemma 7 If there is a (T , L ′)-schedule for I1, then there is also a ((1 + 2ε)T , L ′)-
schedule for I2 in which the length of each job part is a multiple of ε2T ; and any
(T ′, L ′)-schedule for I2 yields a (T ′, L ′)-schedule for I1.
Proof Consider a (T , L)-schedule for I1. There are at most 1/ε jobs scheduled on
each machine since each setup time has a length of at least εT . On each machine, we
extend each occurring setup time and the processing time of each occurring job part
by at most ε2T to round it to a multiple of ε2T . This step extends the makespan by at
most 2εT . Since now each job part is a multiple of ε2T , the total processing time of
the job is a multiple of ε2T too. However, its overall length might be greater than its
rounded processing time, and we simply discard some processing time in this case.
The second claim is obvious. �
Based on the two Lemmata, we define two makespan bounds T̄ = (1 + 2ε)T and
T̆ = T̄ + εT = (1 + 3ε)T . We will use the MCIP to find a (T̄ , L)-schedule for I2 in
which the length of each job part is a multiple of ε2T . Using the two Lemmata, this
will yield a schedule with makespan at most T̆ for the original instance I .

Utilization of the MCIP The basic objects, in this context, are the (big setup) jobs,
i.e., B = J bst = J ′, and they have only one value (D = 1), namely, their processing
time. Moreover, the modules are defined as the set of pairs of job piece sizes and
setup times, i.e.,M = {[| }](q, s)s, q ∈ {xε2T | x ∈ Z, 0 < x ≤ 1/ε2}, s ≥ εT , and
we write sM = s and qM = q for each module M = (q, s) ∈ M. Corresponding to
the value of the basic objects, the value of a module M is qM , and its size �(M) is
given by qM + sM . A job is eligible for a module if the setup times fit, i.e., BM = { j ∈
J ′ | s j = sM }. In order to ensure integral values, we establish ε2T = 1 via a simple
scaling step. The set of configurations C is comprised of all configurations of module
sizes H that are bounded in size by T̄ , i.e., C = CH (T̄). We state the constraints of
the MCIP for the above definitions with adapted notation and without duplication of
the configuration variables:

∑

C∈C
xC = m (9)

∑

C∈C
ChxC =

∑

j∈J ′

∑

M∈M(h)

y(j)
M ∀h ∈ H (10)

123

384 K. Jansen et al.

∑

M∈M
qM y(j)

M = p j ∀ j ∈ J ′ (11)

Note that we additionally minimize the summed up size of the configurations via the
objective function

∑
C �(C)xC .

Lemma 8 With the above definitions, there is a (T̄ , L)-schedule for I2 in which the
length of each job piece is a multiple of ε2T if and only if the MCIP has a solution
with objective value at most mT̄ − L.

Proof Given such a schedule for I2, the schedule on each machine corresponds to
exactly one configuration C that can be derived by counting the job pieces and setup
times with the same summed up length h and setting Ch accordingly. This yields
the values for the x variables. The size of the configuration C is equal to the used
space on the respective machine. Hence, the objective value is bounded by mT̄ − L .
Furthermore, for each job j and job part length q, we count the number of times a
piece of j with length q is scheduled and set y(j)

(q,s j)
accordingly. It is easy to see that

the constraints are satisfied.
Now, let (x, y) be a solution to the MCIP with objective value at most mT̄ − L .

We use the solution to construct a schedule: For each configuration C we reserve xC
machines. On each of these machines we create Ch slots of length h for each module
size h ∈ H . Note that because of (9), there is the exact right number of machines for
this. Next, consider each job j and possible job part length q and create y(j)

(q,s j)
split

pieces of length q and place them together with a setup of s j into a slot of length
s j + q on any machine. Because of (11), the entire job is split up by this, and because
of (10), there are enough slots for all the job pieces. Note that the used space in the
created schedule is equal to the objective value of (x, y) and therefore there is at least
L free space. �

Result Summing up, we can find a schedule of length at most (1+3ε)T or correctly
determine that there is no schedule of length T with the following procedure:

Algorithm 2 1. Generate the modified instance I2:

– Remove the small setup jobs.
– Round the setup and processing times of the remaining jobs.

2. Build and solve the MCIP for this case.
3. If the IP is infeasible, or the objective value greater thanmT̄ − L , report that I has

no solution with makespan T .
4. Otherwise build the schedule with makespan T̄ and free space at least L for Ī .
5. Transform the schedule into a schedule for I with makespan at most T̆ :

– Use the original processing and setup times.
– Greedily insert the small setup jobs.

To assess the running time of the procedure, we mainly need to bound the parameters
of the MCIP, namely |B|, |H |, |M|, |C| and D. By definition, we have |B| = |J ′| ≤ n
and D = 1. Since all setup times and job piece lengths are multiples of ε2T and

123

Empowering the configuration-IP: new PTAS results for… 385

bounded by T , we have |M| = O(1/ε4) and |H | = O(1/ε2). This yields |C| ≤
|H |O(1/ε) = 2O(1/ε log 1/ε) because the size of each module is at least εT and the size
of the configurations bounded by (1 + 2ε)T .

According toObservation 1, we now have brick-size t = 2O(1/ε log 1/ε), brick number
|B| = n, r = |H | + 1 = O(1/ε2) globally uniform and s = D = 1 locally uniform
constraints. Because of the scaling step, all occurring numbers in the constraint matrix
of the MCIP are bounded by O(1/ε2), and therefore we have � = O(1/ε2). Hence,
the MCIP can be solved in time:

2O(rs2)(rs�)O(r2s+s2)(nt)1+o(1) = 2O(1/ε4 log 1/ε)n1+o(1)

While the first step of the procedure is obviously dominated by the above, this is
not the case for the remaining ones. In particular, building the schedule from the IP
solution has linear costs in both n and m if the procedure described in the proof of
Lemma 8 is realized in a straight-forward fashion. Note that the number of machines
m could be exponential in the number of jobs, and therefore the described procedure
is a PTAS only for the special case of m = poly(n). However, this limitation can be
overcome with a little extra effort, as we discuss in Sect. 5.

Theorem 4 The algorithm for the splittable model finds a schedule with makespan at
most (1+ 3ε)T or correctly determines that there is no schedule with makespan T in
time 2O(1/ε4 log 1/ε)n1+o(1)m.

4.3 Preemptive model

In the preemptive model, we have to actually consider the timeline of the schedule
on each machine, instead of just the assignment of the jobs or job pieces, and this
causes some difficulties. For instance, we will have to argue that it suffices to look for
a schedule with few possible starting points, and we will have to introduce additional
constraints in the IP in order to ensure that pieces of the same job do not overlap.
Our first step in dealing with this extra difficulty is to introduce some concepts and
notation: For a given schedule with a makespan bound T , we call a job piece together
with its setup a block, and we call the schedule X -layered, for some value X , if each
block starts at a multiple of X . Corresponding to this, we call the time in the schedule
between two directly succeeding multiples of X a layer and the corresponding time
on a single machine a slot. We number the layers bottom to top and identify them with
their number, that is, the set of layers is given by {
 ∈ Z>0 | (
 − 1)X ≤ T }. Note
that in an X -layered schedule there is at most one block in each slot, and for each
layer there can be at most one block of each job present. Furthermore, we slightly
alter the definition of free space for X -layered schedules: We solely count the space
from slots that are completely free. If in such a schedule for each job there is at most
one slot occupied by this job but not fully filled, we additionally call the schedule
layer-compliant.

123

386 K. Jansen et al.

Table 2 Overview on the job
classifications

p j s j

< μT ≥ μT , < δT ≥ δT

< εT J sst
small Jmst

small J bst
small

≥ εT J sst
big Jmst

big J bst
big

Simplification of the instance

In the preemptive model, we distinguish big, medium and small setup jobs using two
parameters δ and μ: The big setup jobs J bst are those with setup time at least δT , the
small J sst have a setup time smaller than μT , and the medium J mst are the ones in
between. We set μ = ε2δ and choose δ ∈ {ε1, . . . , ε2/ε2} such that the summed up
processing time together with the summed up setup time of the medium setup jobs
is upper bounded by mεT , i.e.,

∑
j∈J mst (s j + p j) ≤ mεT . If there is a schedule

with makespan T , such a choice is possible because of the pidgeon hole principle and
because the setup time of each job has to occur at least once in any schedule. Similar
arguments are widely used, e.g., in the context of geometrical packing algorithms.
Furthermore, we distinguish the jobs by processing times calling thosewith processing
time at least εT big and the others small. For a given set of jobs J , we call the subsets
of big or small jobs Jbig or Jsmall, respectively. An overview of the job classification
is provided in Table 2. We perform three simplification steps, aiming for an instance
in which the small and medium setup jobs are big; small setup jobs have setup time 0;
and for which an εδT -layered, layer-compliant schedule exists. The rationale behind
the above approach will only become clear step by step in the following, and we kindly
ask the reader to be patient. In particular, we moved a particularly complicated proof
to the end of this part.

Let I1 be the instance we get by removing the small jobs with medium setup times
J mst
small from the given instance I .

Lemma 9 If there is a schedule with makespan at most T for I , then there is also such
a schedule for I1; and if there is a schedule with makespan at most T ′ for I1, then
there is a schedule with makespan at most T ′ + (ε + δ)T for I .

Proof The first claim is obvious. For the second, we create a sequence containing
the jobs from J mst

small each directly preceded by its setup time. Recall that the overall
length of the objects in this sequence is at most mεT , and the length of each job is
bounded by εT . We greedily insert the objects from the sequence considering each
machine in turn. On the current machine, we start at time T ′ + δT and keep inserting
until T ′ + δT + εT is reached. If the current object is a setup time, we discard it and
continue with the next machine and object. If, on the other hand, it is a job, we split
it such that the remaining space on the current machine can be perfectly filled. We
can place all objects like this, however the first job part placed on a machine might be
missing a setup. We can insert the missing setups because they have length at most
δT and between time T ′ and T ′ + δT there is free space. �

123

Empowering the configuration-IP: new PTAS results for… 387

Next, we consider the jobs with small setup times: Let I2 be the instance we get by
removing the small jobs with small setup times J sst

small and setting the setup time of
the big jobs with small setup times to zero, i.e., s̄ j = 0 for each j ∈ J sst

big . Note
that in the resulting instance each small job has a big setup time. Furthermore, let
L := ∑

j∈J sst
small

p j + s j . Then L is an obvious lower bound for the space taken up by

the jobs from J sst
small in any schedule.

Lemma 10 If there is a schedule with makespan at most T for I1, then there is also a
(T , L)-schedule for I2; and if there is a γ T -layered (T ′, L)-schedule for I2 with T ′ a
multiple of γ T , then there is also a schedule with makespan at most (1+ γ −1μ)T ′ +
(μ + ε)T for I1.

Proof The first claim is obvious, and for the second consider a γ T -layered (T ′, L)-
schedule for I2. We create a sequence that contains the jobs of J sst

small and their setups
such that each job is directly preceded by its setup. Remember that the remaining space
in partly filled slots is not counted as free space. Hence, since the overall length of the
objects in the sequence is L , there is is enough space in the free slots of the schedule
to place them. We do so in a greedy fashion guaranteeing that each job is placed
on exactly one machine: We insert the objects from the sequence into the free slots
considering each machine in turn, starting on the current machine from the beginning
of the schedule, and moving on towards its end. If an object cannot be fully placed
into the current slot there are two cases: It could be a job or a setup. In the former
case, we cut it and continue placing it in the next slot, or, if the current slot was the
last one, we place the rest at the end of the schedule. In the latter case, we discard the
setup and continue with the next slot and object. The resulting schedule is increased
by at most εT , which is caused by the last job placed on a machine.

To get a proper schedule for I1 we have to insert some setup times: For the large
jobs with small setup times and for the jobs that were cut in the greedy procedure.
We do so by inserting a time window of length μT at each multiple of γ T and at the
end of the original schedule on each machine. By this, the schedule is increased by at
most γ −1μT ′ + μT . Since all the job parts in need of a setup are small and did start
at multiples of μT or at the end, we can insert the missing setups. Note that blocks
that span over multiple layers are cut by the inserted time windows. This, however,
can easily be repaired by moving the cut pieces properly down. �

We continue by rounding the medium and big setup and all the processing times.
In particular, we round the processing times and the big setup times up to the next
multiple of εδT and the medium setup times to the next multiple of εμT , i.e., p̄ j =
�p j/(εδT)�εδT for each job j , s̄ j = �s j/(εδT)�εδT for each big setup job j ∈ J bst,
and s̄ j = �s j/(εμT)�εμT for each medium setup job j ∈ J mst

big .

Lemma 11 If there is a (T , L)-schedule for I2, then there is also an εδT -layered,
layer-compliant ((1+ 3ε)T , L)-schedule for I3; and if there is a γ T -layered (T ′, L)-
schedule for I3, then there is also such a schedule for I2.

While the second claim is easy to see, the proof of the first is rather elaborate and
unfortunately a bit tedious. Hence, since we believe Lemma 11 to be fairly plausible

123

388 K. Jansen et al.

by itself, we postpone its proof to the end of the section and proceed discussing its
use.

For the big and small setup jobs, both processing and setup times are multiples of
εδT . Therefore, the length of each of their blocks in an εδT -layered, layer-compliant
schedule is a multiple of εδT . For a medium setup job, on the other hand, we know
that the overall length of its blocks has the form xεδT + yεμT , with non-negative
integers x and y. In particular, it is a multiple of εμT because εδT = (1/ε2)εμT .
In a εδT -layered, layer-compliant schedule, for each medium setup job the length of
all but at most one block is a multiple of εδT and therefore a multiple of εμT . If
both the overall length and the lengths of all but one block are multiples of εμT , this
is also true for the one remaining block. Hence, we will use the MCIP not to find
an εδT -layered, layer-compliant schedule in particular, but an εδT -layered one with
block sizes as described above and maximum free space.

Based on the simplification steps, we define two makespan bounds T̄ and T̆ : Let
T̄ be the makespan bound we get by the application of the Lemmata 9–11, i.e., T̄ =
(1 + 3ε)T . We will use the MCIP to find an εδT -layered (T̄ , L)-schedule for I3 and
apply the Lemmata 9–11 backwards to get a schedule for I with makespan at most
T̆ = (1 + (εδ)−1μ)T̄ + (μ + ε)T + (ε + δ)T ≤ (1 + 9ε)T (using ε ≤ 1/2).

Utilization of the MCIP

Similar to the splittable case, the basic objects are the (big) jobs, i.e., B = Jbig, and
their single value is their processing time (D = 1). Themodules, on the other hand, are
more complicated, because they additionally need to encode which layers are exactly
used and, in case of the medium jobs, to which degree the last layer is filled. For
the latter, we introduce buffers, representing the unused space in the last layer and
define modules as tuples (
, q, s, b) of starting layer, job piece size, setup time and
buffer size. For a module M = (
, q, s, b), we write
M =
, qM = q, sM = s and
bM = b, and we define the size �(M) of M as s + q + b. The overall set of modules
M is the union of the modules for big, medium and small setup jobs Mbst, Mmst

and Msst that are defined as follows. Let Qbst = {q | q = xεδT , x ∈ Z>0, q ≤ T̄ }
and Qmst = {q | q = xεμT , x ∈ Z>0, q ≤ T̄ } be the sets of possible job piece
sizes of big and medium setup jobs; Sbst = {s | s = xεδT , x ∈ Z≥1/ε, s ≤ T̄ } and
Smst = {s | s = xεμT , x ∈ Z≥1/ε, s ≤ δT } be the sets of possible big and medium
setup times; B = {b | b = xεμT , x ∈ Z≥0, b < εδT } the set of possible buffer sizes;
and = {1, . . . , 1/(εδ) + 3/δ} the set of layers. We set:

Mbst ={[| }](
, q, s, 0)
 ∈ , q ∈ Qbst, s ∈ Sbst, (
 − 1)εδT + s + q ≤ T̄

Mmst ={
(
, q, s, b) ∈ × Qmst× Smst× B

∣
∣

x = s + q + b ∈ εδTZ>0, (
 − 1)εδT + x ≤ T̄
}

Msst ={[| }](
, εδT , 0, 0)
 ∈

Concerning the small setup modules, note that the small setup jobs have a setup time
of 0 and therefore may be covered slot by slot. We establish εμT = 1 via scaling, to

123

Empowering the configuration-IP: new PTAS results for… 389

ensure integral values. A big, medium or small job is eligible for a module if it is also
big, medium or small, respectively, and the setup times fit.

We have to avoid that two modules M1, M2 whose corresponding time intervals
overlap are used to cover the same job or in the same configuration. Such an overlap
occurs if there is some layer
 used by both of them, that is, (
M − 1)εδT ≤ (
 −
1)εδT < (
M −1)εδT +�(M) for both M ∈ {M1, M2}. Hence, for each layer
 ∈ ,
we set M
 ⊆ M to be the set of modules that use layer
. Furthermore, we partition
the modules into groups � by size and starting layer, i.e., � = {G ⊆ M | M, M ′ ∈
G ⇐⇒ �(M) = �(M ′) ∧
M =
M ′ }. The size of a group G ∈ � is the size
of a module from G, i.e., �(G) = �(M) for M ∈ G. Unlike before we consider
configurations of module groups rather than module sizes. More precisely, the set of
configurationsC is given by the configurations of groups such that for each layer atmost
one group using this layer is chosen, i.e., C = {C ∈ Z�≥0 | ∀
 ∈ : ∑

G⊆M

CG ≤ 1}.

With this definition we prevent overlap conflicts on the machines. Note that unlike
in the cases considered so far, the size of a configuration does not correspond to a
makespan in the schedule, but to used space, and the makespan bound is realized in
the definition of the modules instead of in the definition of the configurations. To also
avoid conflicts for the jobs, we extend the basic MCIP with additional locally uniform
constraints. In particular, the constraints of the extendedMCIP for the above definitions
with adapted notation and without duplication of the configuration variables are given
by:

∑

C∈C
xC = m (12)

∑

C∈C(T)

CGxC =
∑

j∈J

∑

M∈G
y(j)
M ∀G ∈ � (13)

∑

M∈M
qM y(j)

M = p j ∀ j ∈ J (14)

∑

M∈M

y(j)
M ≤ 1 ∀ j ∈ J ,
 ∈ (15)

Like in the first two cases, we minimize the summed-up size of the configurations via
the objective function

∑
C �(C)xC . Note that in this case the size of a configuration

does not have to equal its height. It is easy to see that the last constraint is indeed
locally uniform. However, since we have an inequality instead of an equality, we have
to introduce || slack variables in each brick, yielding:

Observation 2 The MCIP extended like above is an n-fold IP with brick-size t =
|M|+|C|+||, brick number n = |J |, r = |�|+1 globally uniform and s = D+||
locally uniform constraints.

Lemma 12 With the above definitions, there is an εδT -layered (T̄ , L)-schedule for I3
in which the length of a block is a multiple of εδT if it belongs to a small or big setup
job or a multiple of εμT otherwise, if and only if the extended MCIP has a solution
with objective value at most mT̄ − L.

123

390 K. Jansen et al.

Proof We first consider such a schedule for I3. For each machine, we can derive
a configuration that is given by the starting layers of the blocks together with the
summed-up length of the slots the respective block is scheduled in. The size of the
configuration C is equal to the used space on the respective machine. Hence, we can
fix some arbitrary job j and set x (j)

C to the number of machines corresponding to j

(and x (j ′)
C = 0 for j ′ �= j). Keeping in mind that in an εδT -layered schedule the free

space is given by the free slots, the above definition yields an objective value bounded
by mT̄ − L because there was free space of at least L . Next, we consider the module
variables for each job j in turn: If j is a small setup job, we set y(j)

(
,εδT ,0,0) to 1 if j
occurs in
 and to 0 otherwise. Now, let j be a big setup job. For each of its blocks, we
set y(j)

(
,z−s j ,s j ,0)
= 1, where
 is the starting layer and z the length of the block. The

remaining variables are set to 0. Lastly, let j be a medium setup job. For each of its
blocks, we set y(j)

(
,z−s j ,s j ,b)
= 1, where
 is the starting layer of the block, z its length

and b = �z/(εδT)�εδT − z. Again, the remaining variables are set to 0. It is easy to
verify that all constraints are satisfied by this solution.

If, on the other hand, we have a solution (x, y) to the MCIP with objective value
at most mT̄ − L , we reserve

∑
j x

(j)
C machines for each configuration C . There are

enough machines to do this, because of (12). On each of these machines we reserve
space: For each G ∈ �, we create an allocated space of length �(G) starting from the
starting layer of G if CG = 1. Let j be a job and
 be a layer. If j has a small setup
time, the variable y(j)

(
,εδT ,0,0) may have the value 0 or 1. In the latter case, we create
a piece of length εδT and place it into an allocated space of length εδT in layer
.
If, on the other hand, j is a big or medium setup job, we consider each possible job
part length q ∈ Qbst or q ∈ Qmst, respectively, create y(j)

(
,q,s j ,0)
or y(j)

(
,q,s j ,b)
(with

b = �q/(εδT)�εδT − εδT) pieces of length q, and place them together with their
setup time into allocated spaces of length q in layer
. Because of (14), the entire job
is split up by this, and because of (13), there are enough allocated spaces for all the job
pieces. The makespan bound is ensured by the definition of the modules, and overlaps
are avoided due to the definition of the configurations and (15). Furthermore, the used
slots have an overall length equal to the objective value of (x, y) and therefore there
is at least L free space. �

Result

Summing up the above considerations, we get:

Algorithm 3

1. Determine a suitable class of medium setup jobs. If there is no such class, report
that there is no schedule with makespan T and terminate the procedure.

2. Generate the modified instance I3:

– Remove the small jobs with medium setup times.
– Remove the small jobs with small setup times, and decrease the setup time of
big jobs with small setup time to 0.

– Round the big processing times, as well as themedium, and the big setup times.

123

Empowering the configuration-IP: new PTAS results for… 391

3. Build and solve the MCIP for I3.
4. If the MCIP is infeasible, or the objective value greater than mT̄ − L , report that

I has no solution with makespan T .
5. Otherwise build the εδT -layered schedule with a makespan of at most T̄ and a

free space of at least L for I3.
6. Transform the schedule into a schedule for I with makespan at most T̆ :

– Use the prerounding processing and setup times.
– Insert the small jobs with small setup times into the free slots and insert the
setup times of the big jobs with small setup times.

– Insert the small jobs with medium setup times.

We analyze the running time of the procedure and start by bounding the parameters
of the extended MCIP. We have |B| = n and D = 1 by definition, and the number
of layers || is obviously O(1/(εδ)) = O(1/ε2/ε+1) = 2O(1/ε log 1/ε). Furthermore, it
is easy to see that |Qbst| = O(1/(εδ)), |Qmst| = O(1/(ε3δ)), |Sbst| = O(1/(εδ)),
|Smst| = O(1/(ε3)), and |B| = O(1/ε2). This gives us Mbst ≤ |||Qbst||Sbst|,
Mmst ≤ |||Qmst||Smst||B| andMsst = ||, and therefore |M| = |Mbst|+|Mmst|+
|Msst| = 2O(1/ε log 1/ε). Since their are O(1/(δε)) distinct module sizes, the number
of groups |�| can be bounded by O(||/(εδ)) = 2O(1/ε log 1/ε). Hence, for the number

of configurations we get |C| = O((1/(εδ))|�|) = 22
O(1/ε log 1/ε)

. By Observation 2, the
modifiedMCIP has r = 2O(1/ε log 1/ε) many globally and s = 2O(1/ε log 1/ε) many locally

uniform constraints; its brick number is n, and its brick size is t = 22
O(1/ε log 1/ε)

. All
occurring values in the matrix are bounded by T̄ yielding � ≤ T̄ = 1/(εμ) + 1/μ =
2O(1/ε log 1/ε) due to the scaling step. Hence, we can solve the MCIP in time:

2O(rs2)(rs�)O(r2s+s2)(nt)1+o(1) = 22
O(1/ε log 1/ε)

n1+o(1)

A straight-forward realization of the procedure for the creation of the εδT -layered
(T̄ , L)-schedule for I3 (the fifth step), which is described in the proof of Lemma 12,
is linear with respect to m, yielding:

Theorem 5 The algorithm for the preemptive model finds a schedule with makespan
at most (1+ 9ε)T or correctly determines that there is no schedule with makespan T

in time 22
O(1/ε log 1/ε)

n1+o(1)m.

Proof of Lemma 11

We divide the proof into three steps, which can be summarized as follows:

1. We transform a (T , L)-schedule for I2 into a ((1 + 3ε)T , L)-schedule for I3 in
which the big setup jobs are already properly placed inside the layers.

2. We construct a flow network with integer capacities and a maximum flow based
on the placement of the remaining jobs in the layers.

3. Using flow integrality and careful repacking, we transform the schedule into a
εδT -layered, layer-compliant schedule.

123

392 K. Jansen et al.

Fig. 2 The stretching and rounding steps, for a small job part with big setup time starting in the first layer of
the schedule, depicted from left to right: The schedule and the containers are stretched; the block is moved
up; and the processing and the setup time are increased. The hatched part represents the setup time, the
thick rectangle the container, and the dashed lines the layers, with ε = δ = 1/8

More precisely, the above transformation steps will produce a εδT -layered, layer-
compliant ((1 + 3ε)T , L)-schedule with the additional properties that too much
processing time may be inserted for some jobs or setup times are produced that are not
followed by the corresponding job pieces. Note that this does not cause any problems:
We can simply remove the extra setups and processing time pieces. For the medium
jobs, this results in a placement with at most one used slot that is not fully filled, as
required in a layer-compliant schedule.

Step 1 Remember that a block is a job piece together with its setup time placed in
a given schedule. Consider a (T , L)-schedule for I2 and suppose that for each block
in the schedule there is a container perfectly encompassing it. Now, we stretch the
entire schedule by a factor of (1 + 3ε) and in this process we stretch and move the
containers correspondingly. The blocks are not stretched but moved in order to stay
in their container, and we assume that they are positioned at the bottom, that is, at the
beginning of the container. Note that we could move each block inside its respective
container without creating conflicts with other blocks belonging to the same job. In
the following, we use the extra space to modify the schedule. Similar techniques are
widely used in the context of geometric packing algorithms.

Let j be a big setup job. In each container containing a block belonging to j , there is
a free space of at least 3εδT because the setup time of j is at least δT and therefore the
container had at least that length before the stretching. Hence, we have enough space
to perform the following two steps. We move the block up by at most εδT such that
it starts at a multiple of εδT . Next, we enlarge the setup time and the processing time
by at most εδT such that both are multiples of εδT . Now the setup time is equal to the
rounded setup time, while the processing time might be bigger because we performed
this step for each piece of the job. We outline the procedure in Fig. 2.

We continue with the small setup jobs. These jobs are big and therefore for each
of them there is a summed up free space of at least 3ε2T in the containers belonging
to the respective job—more than enough to enlarge some of the pieces such that their
overall length matches the rounded processing time.

123

Empowering the configuration-IP: new PTAS results for… 393

Lastly, we consider the medium setup jobs. These jobs are big as well and we could
apply the same argument as above, but we need to be a little bit more careful in order
to additionally realize the rounding of the setup times and an additional technical step
we need in the following. Fix a medium setup job j and a container filled with a block
belonging to j . Since the setup time has a length of at leastμT , the part of the container
filled with it was increased by at least 3εμT . Hence, we can enlarge the setup time to
the rounded setup time without using up space in the container that was created due
to the processing time part. We do this for all blocks belonging to medium setup jobs.
The extra space in the containers of a medium setup job due to the processing time
parts is still at least 3ε2T ≥ 3εδT . For each medium setup job j , we spend at most
εδT of this space to enlarge its processing time to its rounded size and again at most
εδT to create a little bit of extra processing time in the containers belonging to j . The
size of this extra processing time is bounded by εδT and chosen in such a way that the
overall length of all blocks belonging to j in the schedule is also a multiple of εδT .
Because of the rounding, the length of the added extra processing time for each j is a
multiple of εμT . The purpose of the extra processing time is to ensure integrality in
the flow network, which is constructed in the next step.

Note that the free space that was available in the original schedule was not used
in the above steps, in fact, it was even increased by the stretching. Hence, we have
created a ((1+3ε)T , L)-schedule for I3—or a slightly modified version thereof—and
the big setup jobs are already well-behaved with respect to the εδT -layers, that is, they
start at multiples of εδT and fully fill the slots they are scheduled in.

Step 2 Note that for each job j and layer
 ∈ , the overall length q j,
 of job and
setup pieces belonging to j and placed in
 is bounded by εδT . We say that j is fully,
or partially, or not scheduled in layer
 if q j,
 = 1, or q j,
 ∈ (0, 1), or q j,
 = 0,
respectively. Let X j be the set of layers in which j is scheduled partially and Y
 the
set of (medium or small setup) jobs partially scheduled in
. Then a j = ∑

∈X j
q j,

is a multiple of εδT , and we set n j = a j/(εδT). Furthermore, let b
 = ∑
j∈Y

q j,

and k
 = �b
/(εδT)�.
Our flow network has the following structure: There is a node v j for each medium

or small setup job, a node u
 for each layer
, as well as a source α and a sink ω.
The source node is connected to the job nodes via edges (α, v j) with capacity n j , and
the layer nodes are connected to the sink via edges (u
, ω) with capacity k
. Lastly,
there are edges (v j , u
) between job and layer nodes with capacity 1 if j is partially
scheduled in layer
 or 0 otherwise. In Fig. 3, a sketch of the network is given.

The schedule can be used to define a flow f with value
∑

j n j in the network by
setting f (α, v j) = n j , f (u
, ω) = b
/(εδT), and f (v j , u
) = q j,
/(εδT). It is easy
to verify that f is a maximum flow, and because all capacities in the flow network are
integral, we can find another maximum flow f ′ with integral values.

Step 3 We start by introducing some notation and a basic operation for the trans-
formation of the schedule: Given two machines i and i ′ and a time t , a machine swap
between i and i ′ at moment t produces a schedule in which everything that was sched-
uled on i from t on is now scheduled on i ′ and vice versa. If on both machines there is

123

394 K. Jansen et al.

Fig. 3 Flow network for layers and partially scheduled jobs

either nothing scheduled at t , or blocks are starting or ending at t , the resulting sched-
ule is still feasible. Moreover, if there is a block starting at t on one of the machines
and another one belonging to the same job ending on the other, we can merge the two
blocks and transform the setup time of the first into processing time. We assume in
the following that we always merge if this is possible when performing a machine
swap. Remember that by definition blocks belonging to the same job cannot overlap.
However, if there was overlap, it could be eliminated using machine swaps [33].

If a given slot only contains pieces of jobs that are partially scheduled in the layer,
we call the slot usable. Furthermore, we say that a job j is flow assigned to layer

 if f ′(v j , u
) = 1. In the following, we will iterate through the layers, create as
many usable slots as possible, reserve them for flow assigned jobs, and fill them with
processing and setup time of the corresponding jobs later on. To do so, we have to
distinguish different types of blocks belonging to jobs that are partially placed in a
given layer: Inner blocks which lie completely inside the layer and touch at most one
of its borders, upper cross-over blocks which start inside the layer and end above
it, and lower cross-over blocks which start below the layer and end inside it. When
manipulating the schedule layer by layer, the cross-over jobs obviously can cause
problems. To deal with this, we will need additional concepts: A repair piece for a
given block is a piece of setup time of length less than εδT , with the property that
the block and the repair piece together make up exactly one setup of the respective
job. Hence, if a repair-piece is given for a block, the block is comprised completely of
setup time. Moreover, we say that a slot reserved for a job j has a dedicated setup if
there is a block of j including a full setup starting or ending inside the slot.

In the following, we give a detailed description of the transformation procedure
followed by a high-level summarization. The procedure runs through two phases. In
the first phase the layers are transformed one after another from bottom to top. After
a layer is transformed the following invariants will always hold:

1. A scheduled block either includes a full setup or has a repair piece. In the latter
case it was an upper cross-over block in a previous iteration.

2. Reserved slots that are not full have a dedicated setup.

123

Empowering the configuration-IP: new PTAS results for… 395

Fig. 4 The rectangles represent blocks, the hatched parts the setup times, and the dashed lines layer borders.
The push and cut step is performed on two blocks. For one of the two a repair piece is created

Note that the invariants are trivially fulfilled in the beginning. During the first phase,
we remove some job and setup parts from the schedule that are reinserted into the
reserved slots in the second phase. Let
 ∈ denote the current layer.

In the first step, our goal is to ensure that jobs that are fully scheduled in
 occupy
exactly one slot thereby creating as many usable slots as possible. Let j be a job that
is fully scheduled in layer
. If there is a block belonging to j and ending inside the
layer at time t , there is another block belonging to j and starting at t because j is fully
scheduled in
 and there are no overlaps. Hence, we can perform a machine swap at
time t between the two machines the blocks are scheduled on. We do so for each job
fully scheduled in the layer and each corresponding pair of blocks. After this step,
there are at least k
 usable slots and at most k
 flow assigned jobs in layer
.

Next, we consider upper cross-over blocks of jobs that are partially scheduled in
the layer
 but are not flow assigned to it. These are the blocks that cause the most
problems, and we perform a so-called push and cut step (see Fig. 4) for each of them:
If q is the length of the part of the block lying in
, we cut away the upper part of
the block of length q and move the remainder up by q. If the piece we cut away does
contain some setup time, we create a repair piece for the block out of this setup time.
The processing time part of the piece, on the other hand, is removed. Note that this
step preserves the first invariant. The repair piece is needed in the case that the job
corresponding to the respective block is flow assigned to the layer in which the block
ends.

We now remove all inner blocks from the layer as well as the parts of the upper and
lower cross-over blocks that lie in the layer. After this all usable slots are completely
free. Furthermore, note that the first invariant might be breached by this.

Next, we arbitrarily reserve usable slots for jobs flow assigned to the layer. For
this, note that due to the definition of the flow network, there are at most k
 jobs flow
assigned to the layer and there are at least as many usable slots, as noted above. This
step might breach the second invariant as well. Using machine swaps at the upper and
lower border of the layer, we then ensure that the upper and lower cross-over blocks of
the jobs flow assigned to the layer lie on the same machine as the reserved slot. Note
that for each job there can be at most one upper or lower cross-over block, respectively,
in the layer.

123

396 K. Jansen et al.

To restore the invariants, we perform the following repair steps for each job j flow
assigned to the layer:

Case 1 If there is an upper cross-over block for j or a lower cross-over blockwithout
a repair peace, we reinsert the removed part (or parts) at the end or beginning
of the slot, respectively. This provides a dedicated setup for the job and
furthermore the first invariant once again holds for the respective cross-over
blocks.

Case 2 If there is neither an upper nor a lower block for j , there is an inner block
belonging to j . This has to be the case because otherwise the capacity in the
flow network between j and
 is 0, and j could not have been flow assigned
to
. Moreover, this inner block contains a full setup, and we can place it in
the beginning of the slot thus providing the dedicated setup. The invariants
are both restored.

Case 3 The last possibility is that there is no upper cross-over block but a lower
cross-over block with a repair piece. In this case, the removed part of the
block is fully comprised of setup and we reinsert it in the beginning of the
reserved slot. Furthermore, we insert as much setup of the repair piece as
possible. If the repair piece is not used up, we now consider the remainder
as the new repair piece of the block. Hence, the first invariant holds, and
since the slot is full in this case, the second one holds as well. If, on the other
hand, the full repair piece is inserted, we thereby provide a dedicated setup
for the slot and the block once again contains a full setup. In this case, the
jobs does not have a repair piece anymore.

After the first phase is finished, we have to deal with the removed pieces in the
second one. The overall length of the reserved slots for a job j equals the overall
length a j of its setup and job pieces from layers in which j was partially scheduled.
Since we did not create or destroy any job piece, we can place the removed pieces
corresponding to job j into the remaining free space of the slots reserved for j , and
we do so after transforming them completely into processing time. Because of the
second invariant, there is a dedicated setup in each slot, however, it may be positioned
directly above the newly inserted processing time. This can be fixed by switching the
processing time with the top part of the respective setup time. Furthermore, there may
be some blocks that still have a repair piece. We may remove these blocks together
with their repair pieces.

Lastly, all remaining usable slots are completely free at the end of this procedure,
and since the others are full, they have an overall size of at least L . We conclude the
proof of Lemma 11 with an overview of the transformation procedure.

Algorithm 4 Phase 1: For each layer
 ∈ , considered bottom to top, perform the
following steps:

1. Use machine swaps to ensure that jobs fully scheduled in
 occupy exactly one
slot.

2. For each upper cross-over block of a job partially scheduled but not flow assigned
to
 perform a push and cut step.

3. Remove inner blocks and parts of cross-over blocks that lie in
.

123

Empowering the configuration-IP: new PTAS results for… 397

4. Reserve usable slots for jobs flow assigned to the layer.
5. Use machine swaps to ensure that cross-over blocks of flow assigned jobs lie on

the same machine as the reserved slot.
6. For each job j flow assigned to the layer, perform one of the repair steps.

Phase 2:

1. Transform all removed pieces into processing time and insert the removed pieces
into the reserved slots.

2. If processing time has been inserted ahead of the dedicated setup of the slot,
reschedule properly.

3. Remove blocks that still have a repair piece.

5 Improvements of the running time

In this section, we revisit the splittable and the setup time model. For the former, we
address the problem of the running time dependence in the number of machines m,
and for both, we present an improved rounding procedure yielding a better running
time.

5.1 Splittable model: machine dependence

In the splittable model, the number of machines m may be super-polynomial in the
input size because it is not bounded by the number of jobs n. Hence, we need to be
careful already when defining the schedule in order to get a polynomially bounded
output. We say a machine is composite if it contains more than one job, and we say it
is plain if it contains at most one job. For a schedule with makespan T , we call each
machine trivial if it is plain and has load T or if it is empty and nontrivial otherwise.
We say a schedule with makespan T is simple if the number of nontrivial machines is
bounded by

(n
2

)
.

Lemma 13 If there is a schedule with makespan T for I there is also a simple schedule
with makespan at most T .

Proof Let there be a schedule with makespan T for I . For the first step, let us assume
there are more than

(n
2

)
composite machines. In this case, there exist two distinct

machines i1 and i2 and two distinct jobs j1 and j2 such that both machines contain
parts of both jobs since there are at most

(n
2

)
different pairs of jobs. For x, y ∈ {1, 2},

let t(x, y) be the processing time combined with the setup time of job x ∈ { j1, j2}
on machine y ∈ {i1, i2}. W.l.o.g., let t(j1, i1) be the smallest value of the four. We
swap this job part and its setup time with some of the processing time of the job j2
on machine i2. If the processing time of j2 on i2 is smaller than t(j1, i1), there is
no processing time of j2 on i2 left and we can discard the corresponding setup time.
Afterwards, themakespan has not increased and at least onemachine processes one job
less. We can repeat this step iteratively until there are at most

(n
2

)
machines containing

more than one job.

123

398 K. Jansen et al.

In the second step, we shift processing time from the composite machines to the
plain ones. We do this for each job until it is either not contained on a composite
machine or each plain machine containing this job has load T . If the job is no longer
contained on a composite machine, we shift the processing time of the job such that
all except one machine containing this job has load T . Since this job does not appear
on any composite machine, the number of such machines can in this case be bounded
by

(n−1
2

)
by repeating the first step. Therefore, the number of nontrivial machines is

bounded by
(n−i

2

) + i ≤ (n
2

)
for some i ∈ {0, . . . , n}. �

For a simple schedule, a polynomial representation of the solution is possible: For
each job, we state the number of trivial machines containing this job or fix a first and
last trivial machine belonging to this job. This enables a polynomial encoding length
of the output, given that the remaining parts of the jobs are not fragmented into too
many parts which can be guaranteed using the results of Sect. 4.

To guarantee that the MCIP finds a simple solution, we need to modify it a little.
We have to ensure that nontrivial configurations are not used too often. Let C′ ⊆ C be
the set of nontrivial configurations, i.e., the set of configurations containing more than
one module or one module with size smaller than T . We add the following globally
uniform constraint to the MCIP:

∑

C∈C′
xC ≤

(|J bst|
2

)

(16)

Since this is an inequality, we have to introduce a slack variable increasing the brick
size by one. However, this does not change the running time.

The number of modules with maximum size denotes for each job in J bst how
many trivial machines it uses. The other modules can be mapped to the nontrivial
configurations and the jobs can be mapped to the modules.

We still have to schedule the jobs in J sst. We do this as described in the proof
of Lemma 6. We fill the nontrivial machines greedily step by step starting with the
jobs having the smallest processing time. When these machines are filled, there are
some completely empty machines left. Now, we estimate how many machines can be
completely filled with the current job j . This can be done by dividing the remaining
processing time by T − si in O(1). The remaining part is scheduled on the next free
machine. This machine is filled up with the next job and again the number of machines
which can be filled completely with the rest of this new job is determined. These steps
are iterated until all jobs in J sst are scheduled. This greedy procedure needs at most
O(|J bst|(|J bst| − 1) + |J sst|) = O(n2) operations. Therefore, we can avoid the
dependence in the number of machines at the cost of a quadratic dependency in n in
the running time.

5.2 Improved rounding procedures

To improve the running time in the splittable and setup class model, we reduce the
number of module sizes via a geometric and an arithmetic rounding step. In both

123

Empowering the configuration-IP: new PTAS results for… 399

cases, the additional steps are performed following all the other simplification steps.
The basic idea is to include setup times together with their corresponding job pieces or
batches of jobs respectively into containers with suitably rounded sizes and to model
these containers using the modules. The containers have to be at least as big as the
objects they contain and the load on a machine is given by the summed up sizes of the
containers on the machine. Let H∗ be a set of container sizes. Then an H∗-structured
schedule is a schedule in which each setup time together with its corresponding job
piece or batch of jobs is packed in a container with the smallest size h ∈ H∗ such that
the summed up size of the setup and the job piece or batch of jobs is upper bounded
by h.
Splittable Model Consider the instance I2 for the splittable model described in
Sect. 4.2. In this instance, each setup and processing time is a multiple of ε2T and
we are interested in a schedule of length (1 + 2ε)T . For each multiple h of ε2T , let
h̃ = (1+ε)�log1+ε h/(ε2T)�ε2T and h̄ = �h̃/ε2T �ε2T , and H̄ = {h̄ | h ∈ ε2TZ≥1, h ≤
(1 + 2ε)2T }. Note that |H̄ | ∈ O(1/ε log 1/ε)

Lemma 14 If there is a ((1 + 2ε)T , L ′)-schedule for I2 in which the length of each
job part is a multiple of ε2T , there is also an H̄-structured ((1+ 2ε)2T , L ′)-schedule
for I2 with the same property.

Proof Consider such a schedule for I2 and a pair of setup time s and job piece q
scheduled on some machine. Let h = s + q. Stretching the schedule by (1 + 2ε)
creates enough space to place the pair into a container of size h̄, because (1+ε)h ≤ h̃,
and εh ≤ ε2T , since s ≥ εT . �

To implement this lemma into the procedure, the processing time bounds T̄ and T̆
both have to be properly increased. Modeling an H̄ -structured schedule can be done
quite naturally: We simply redefine the size �(M) of a module M = (s, q) ∈ M to
be (s + q). With this definition, we have |H | = |H̄ | = O(1/ε log 1/ε) yielding an
improved running time for solving the MCIP of:

2O(1/ε2(log 1/ε)3)n1+o(1)

Combining this with the results above and the considerations in Sect. 4.2 yields the
running time claimed below Theorem 1.
Setup Class Model In the setup class model, an analogous approach also yields a
reduced set of module sizes, that is, |H | = O(1/ε log 1/ε). Therefore, the MCIP can
be solved in time:

2O(1/ε3(log 1/ε)4)K 1+o(1)

Hence, we get the running time claimed beneath Theorem 1.

123

400 K. Jansen et al.

6 Conclusion

We presented a more advanced version of the classical configuration IP, showed that
it can be solved efficiently using algorithms for n-fold IPs, and developed techniques
to employ the new IP for the formulation of efficient polynomial time approximation
schemes for three scheduling problems with setup times for which no such algorithms
were known before.

For further research the immediate questions are whether improved running times
for the considered problems, in particular for the preemptive model, can be achieved;
whether the MCIP can be solved more efficiently; and to which other problems it
can be reasonably employed. From a broader perspective, it would be interesting to
further study the potential of new algorithmic approaches in integer programming
for approximation, and, on the other hand, further study the respective techniques
themselves.

Acknowledgements We thank Syamantak Das for helpful discussions on the problem.

Funding Open Access funding enabled and organized by Projekt DEAL.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Allahverdi, A.: The third comprehensive survey on scheduling problems with setup times/costs. Eur.
J. Oper. Res. 246(2), 345–378 (2015). https://doi.org/10.1016/j.ejor.2015.04.004

2. Allahverdi, A., Gupta, J.N., Aldowaisan, T.: A review of scheduling research involving setup consid-
erations. Omega 27(2), 219–239 (1999)

3. Allahverdi, A., Ng, C., Cheng, T.E., Kovalyov, M.Y.: A survey of scheduling problems with setup
times or costs. Eur. J. Oper. Res. 187(3), 985–1032 (2008)

4. Alon, N., Azar, Y., Woeginger, G.J., Yadid, T.: Approximation schemes for scheduling on parallel
machines. J. Sched. 1(1), 55–66 (1998)

5. Chen, B.: A better heuristic for preemptive parallel machine scheduling with batch setup times. SIAM
J. Comput. 22(6), 1303–1318 (1993)

6. Chen, B., Ye, Y., Zhang, J.: Lot-sizing scheduling with batch setup times. J. Sched. 9(3), 299–310
(2006)

7. Chen, L., Marx, D., Ye, D., Zhang, G.: Parameterized and approximation results for scheduling with a
low rank processing time matrix. In: LIPIcs-Leibniz International Proceedings in Informatics, vol. 66.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

8. Correa, J., Marchetti-Spaccamela, A., Matuschke, J., Stougie, L., Svensson, O., Verdugo, V., Verschae,
J.: StrongLP formulations for scheduling splittable jobs on unrelatedmachines.Math. Program. 154(1–
2), 305–328 (2015)

9. Correa, J., Verdugo, V., Verschae, J.: Splitting versus setup trade-offs for scheduling to minimize
weighted completion time. Oper. Res. Lett. 44(4), 469–473 (2016)

10. Cslovjecsek, J., Eisenbrand, F., Hunkenschröder, C., Rohwedder, L., Weismantel, R.: Block-structured
integer and linear programming in strongly polynomial and near linear time. In: D.Marx (ed.) Proceed-

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.ejor.2015.04.004

Empowering the configuration-IP: new PTAS results for… 401

ings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference,
January 10–13, 2021, pp. 1666–1681. SIAM (2021)

11. Eisenbrand, F., Hunkenschröder, C., Klein, K.: Faster algorithms for integer programs with block
structure. In: 45th International Colloquium on Automata, Languages, and Programming, ICALP
2018, July 9–13, 2018, Prague, Czech Republic, pp. 49:1–49:13 (2018)

12. Eisenbrand, F., Hunkenschröder, C., Klein, K., Koutecký, M., Levin, A., Onn, S.: An algorithmic
theory of integer programming. CoRR (2019). http://arxiv.org/abs/abs/1904.01361

13. Gilmore, P.C., Gomory, R.E.: A linear programming approach to the cutting-stock problem. Oper. Res.
9(6), 849–859 (1961)

14. Goemans, M.X., Rothvoss, T.: Polynomiality for bin packing with a constant number of item types. J.
ACM 67(6), 38:1–38:21 (2020)

15. Hemmecke, R., Onn, S., Romanchuk, L.: N-fold integer programming in cubic time. Math. Program.
137, 1–17 (2013)

16. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for scheduling problems theo-
retical and practical results. J. ACM (JACM) 34(1), 144–162 (1987)

17. Jansen, K., Klein, K., Maack, M., Rau, M.: Empowering the configuration-ip—new PTAS results for
scheduling with setups times. CoRR (2018). http://arxiv.org/abs/abs/1801.06460

18. Jansen, K., Klein, K., Maack, M., Rau, M.: Empowering the configuration-ip—new PTAS results for
scheduling with setups times. In: 10th Innovations in Theoretical Computer Science Conference, ITCS
2019, January 10–12, 2019, San Diego, California, USA, pp. 44:1–44:19 (2019)

19. Jansen, K., Klein, K., Verschae, J.: Closing the gap for makespan scheduling via sparsification tech-
niques. Math. Oper. Res. 45(4), 1371–1392 (2020)

20. Jansen, K., Land, F.: Non-preemptive scheduling with setup times: A ptas. In: European Conference
on Parallel Processing, pp. 159–170. Springer, Berlin (2016)

21. Jansen, K., Lassota, A., Rohwedder, L.: Near-linear time algorithm for n-fold ilps via color coding.
SIAM J. Discret. Math. 34(4), 2282–2299 (2020)

22. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math. Oper. Res. 12(3),
415–440 (1987)

23. Knop, D., Koutecký, M.: Scheduling meets n-fold integer programming. J. Sched. 21, 1–11 (2017)
24. Knop, D., Koutecký, M., Levin, A., Mnich, M., Onn, S.: Multitype integer monoid optimization and

applications. CoRR abs/1909.07326 (2019)
25. Knop, D., Koutecký, M., Mnich, M.: Combinatorial n-fold integer programming and applications.

Math. Program. 184(1), 1–34 (2020)
26. Koutecký, M., Levin, A., Onn, S.: A parameterized strongly polynomial algorithm for block structured

integer programs. In: 45th International Colloquium on Automata, Languages, and Programming,
ICALP 2018, July 9–13, 2018, Prague, Czech Republic, pp. 85:1–85:14 (2018)

27. Lenstra Jr., H.W.: Integer programming with a fixed number of variables. Math. Oper. Res. 8(4),
538–548 (1983)

28. Loera, J.A.D., Hemmecke, R., Köppe, M.: Algebraic and Geometric Ideas in the Theory of Discrete
Optimization. MOS-SIAM Series on Optimization, vol. 14. SIAM, Philadelphia (2013)

29. Mäcker, A., Malatyali, M., auf der Heide, F.M., Riechers, S.: Non-preemptive scheduling on machines
with setup times. In: Workshop on Algorithms and Data Structures, pp. 542–553. Springer, Berlin
(2015)

30. Monma, C.L., Potts, C.N.: Analysis of heuristics for preemptive parallel machine scheduling with
batch setup times. Oper. Res. 41(5), 981–993 (1993)

31. Onn, S.: Nonlinear Discrete Optimization. Zurich Lectures inAdvancedMathematics. EuropeanMath-
ematical Society, Zurich (2010)

32. Schalekamp, F., Sitters, R., Van Der Ster, S., Stougie, L., Verdugo, V., Van Zuylen, A.: Split scheduling
with uniform setup times. J. Sched. 18(2), 119–129 (2015)

33. Schuurman, P., Woeginger, G.J.: Preemptive scheduling with job-dependent setup times. In: Proceed-
ings of the tenth annual ACM-SIAM symposium on Discrete algorithms, pp. 759–767. Society for
Industrial and Applied Mathematics, Philadelphia (1999)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/abs/1904.01361
http://arxiv.org/abs/abs/1801.06460

	Empowering the configuration-IP: new PTAS results for scheduling with setup times
	Abstract
	1 Introduction
	2 Preliminaries
	3 Module configuration IP
	4 EPTAS results
	4.1 Setup class model
	4.2 Splittable model
	4.3 Preemptive model
	Simplification of the instance
	Utilization of the MCIP
	Result
	Proof of Lemma 11

	5 Improvements of the running time
	5.1 Splittable model: machine dependence
	5.2 Improved rounding procedures

	6 Conclusion
	Acknowledgements
	References

