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Abstract
We give asymptotically converging semidefinite programming hierarchies of outer
bounds on bilinear programs of the form Tr

[
H(D ⊗ E)

]
, maximized with respect to

semidefinite constraints onD and E. Applied to the problem of approximate error cor-
rection in quantum information theory, this gives hierarchies of efficiently computable
outer bounds on the success probability of approximate quantumerror correction codes
in any dimension. The first level of our hierarchies corresponds to a previously stud-
ied relaxation (Leung and Matthews in IEEE Trans Inf Theory 61(8):4486, 2015) and
positive partial transpose constraints can be added to give a sufficient criterion for
the exact convergence at a given level of the hierarchy. To quantify the worst case
convergence speed of our sum-of-squares hierarchies, we derive novel quantum de
Finetti theorems that allow imposing linear constraints on the approximating state.
In particular, we give finite de Finetti theorems for quantum channels, quantifying
closeness to the convex hull of product channels as well as closeness to local opera-
tions and classical forward communication assisted channels. As a special case this
constitutes a finite version of Fuchs-Schack-Scudo’s asymptotic de Finetti theorem for
quantum channels. Finally, our proof methods answer a question of Brandão and Har-
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row (Proceedings of the forty-fourth annual ACM symposium on theory of computing,
STOC’12, p 307, 2012) by improving the approximation factor of de Finetti theorems
with no symmetry from O(dk/2) to poly(d,k), where d denotes local dimension and
k the number of copies.

Keywords Quantum error correction · De Finetti theorems · Semidefinite
programming · Separability problem · Bilinear optimization · Sum-of-squares
hierarchies.

Mathematics Subject Classification 49 · 68 · 81 · 90

1 Introduction

In this paper, we study constrained bilinear optimization problems of the form

Q = max Tr
[
H(D ⊗ E)

]

s.t. D ∈ PD = ΠA→D(S+
A ∩ AA)

E ∈ PE = ΠB→E(S+
B ∩ AB), (1)

where H denotes a matrix in SD ⊗ SE for SD = C
dD×dD and ⊗ the Kronecker

tensor product, and PD and PE are positive semidefinite representable sets such that:

• ΠA→D : SA → SD and ΠB→E : SB → SE are linear maps
• S+

A and S+
B are the sets of positive semidefinite unit trace matrices in SA and SB,

respectively
• AA and AB are affine subspaces of SA and SB, respectively.

Our main motivation to study problems of the form (1) comes from quantum infor-
mation theory—or more specifically the problem of approximate quantum error
correction. We present this application and its motivation in detail in Sect. 4, but
continue here with the general mathematical setting.

To discuss our approach, we first rewrite (1) by defining GAB = (Π†
A→D ⊗

Π†
B→E)(H), where Π† denotes the adjoint map of Π in the Hilbert-Schmidt inner

product. This leads to the form

Q = max Tr
[
GAB(WA ⊗ WB)

]

s.t. WA � 0, WB � 0, Tr[WA] = Tr[WB] = 1

ΛA→CA
(WA) = XCA

, ΓB→CB
(WB) = YCB

, (2)

where GAB ∈ SA ⊗ SB, ΛA→CA
: SA → SCA

and ΓB→CB
: SB → SCB

denote
linear maps, and XCA

∈ SCA
and YCB

∈ SCB
are the matrices defining AA and

AB as the affine subspaces associated with the kernels of the linear maps ΛA→CA

and ΓB→CB
, respectively. Now, by the linearity of the objective function we can
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Semidefinite programming hierarchies for constrained… 783

equivalently optimise over the convex hull of feasible points

Q = max Tr

[

GAB

(
∑

i∈I

piW
i
A ⊗ Wi

B

)]

s.t. pi � 0, Wi
A � 0, Wi

B � 0, Tr
[
Wi

A

]
= Tr

[
Wi

B

]
= 1 ∀i ∈ I,

∑

i∈I

pi = 1, ΛA→CA

(
Wi

A

)
= XCA

, ΓB→CB

(
Wi

B

)
= YCB

∀i ∈ I.

(3)

That is, in the language of quantum information theorywe aremaximizing over a subset
of the so-called separable quantum states—where the latter is defined on A ⊗ B as

Sep(A : B) =

{
∑

i∈I

piW
i
A ⊗ Wi

B : Wi
A � 0,Wi

B � 0, Tr
[
Wi

A

]

= Tr
[
Wi

B

]
= 1,pi � 0,

∑

i∈I

pi = 1

}
.

Recall that matricesWA ∈ S+
A are called quantum states on systemA—and similarly

for bipartite states on A ⊗ B.
Now, to approximate the set of separable states within the set of bipartite states

is a ubiquitous but hard problem in quantum information theory (see, e.g., [4]).
Nevertheless, as realized in [25] the set of separable states can be approximated
by the sum-of-squares hierarchies of Lasserre [52] and Parrilo [60]. This lead to
the semidefinite programming hierarchy of Doherty-Parrilo-Spedalieri (DPS), which
is extensively employed to characterize quantum correlations in quantum informa-
tion theory [24]. The underlying idea of the DPS hierarchy is that separable states
WAB =

∑
i piW

i
A ⊗ Wi

B on A ⊗ B, where {pi}i∈I is a probability distribution, are
n-extendible to WABn

1
=

∑
i piW

i
A ⊗ (Wi

B)
⊗n on A ⊗ B⊗n for any n, such that

we have for any permutation π that1

WABn
1
=

(
IA ⊗ Uπ

Bn
1

)
(WABn

1
)

with IA the identity map on SA and Uπ
Bn

1
the unitary map that permutes the systems

Bn
1 according to π ∈ Sn—the symmetric group of n elements. The state WABn

1
=∑

i piW
i
A ⊗ (Wi

B)
⊗n is an extension of WAB, meaning that we again get back the

original state WAB when throwing away all additional systems Bn
2 : TrBn

2
(WABn

1
) =

WAB.2 Due to the monogamy of quantum correlations, however, general states do

1 Here and henceforth we use the notation B
j
i to denote the systems Bi ⊗ · · · ⊗ Bj, which should be

interpreted as empty if i > j.
2 We refer to Sect. 2.1 for the formal definition of the so-called partial trace map TrBn

2
[·].
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784 M. Berta et al.

not have this property [20], [40]. In fact, finite quantum de Finetti theorems quantify,
with upper bounds, the distance of n-extendible states to separable states [17], with
convergence in the limit n → ∞ [69]. More precisely, [17, Theorem II.7] gives that
for states WAB n-extendible to WABn

1
, there exists a probability distribution {pi}i∈I

and states Wi
A,Wi

B on A and B, respectively, such that

∥
∥
∥
∥
∥
WAB −

∑

i∈I

piW
i
A ⊗ Wi

B

∥
∥
∥
∥
∥
1

� 2d2
B

n
, (4)

where ‖X‖1 = Tr [|X|] denotes the Schatten one-norm and dB the dimension of B.
Crucially, n-extendability has a semidefinite representation and this then immediately
gives efficient semidefinite approximations of the set Sep(A : B) for any fixed n.

For our setting, however, we are interested more generally in characterizing bipar-
tite states that are separable, but subject to linear constraints on the Wi

A,Wi
B as well.

As such, the approach we use to generate convergent semidefinite programming hier-
archies for the constrained bilinear optimizations (3) is based on deriving finite de
Finetti representation theorems with additional linear constraints. This leads to our
main finding, the semidefinite programs

SDPn = max Tr
[
GABWAB

]

s.t. WABn
1

� 0, Tr(WABn
1
) = 1, WABn

1
=

(
IA ⊗ Uπ

Bn
1

) (
WABn

1

)
∀π ∈ Sn

(
ΛA→CA

⊗ IBn
1

) (
WABn

1

)
= XCA

⊗ WBn
1
,

(
I

Bn−1
1

⊗ ΓBn→CB

) (
WBn

1

)
= W

Bn−1
1

⊗ YCB
(5)

form a sequence of upper bounds on Q with the property

0 � SDPn − Q � poly(d)√
n

implying Q = lim
n→∞

SDPn,

where d = max{dA,dB} and poly(d) denotes a term at most polynomial in d. Notice
that the state WAB appearing in the objective function of (5), is the reduced state of
WABn

1
on A ⊗ B1, i.e., TrBn

2
(WABn

1
) = WAB.

The remainder of ourmanuscript is structured as follows. In Sect. 2we give quantum
deFinetti theoremswith linear constraints and inSect. 3wepresent how these lead to an
outer hierarchy of converging SDP relaxations for constrained bilinear optimization
of the form (1). In Sect. 4, we then discuss as a special case de Finetti theorems
for quantum channels (Sect. 4.3), which we utilise for our main application about
approximate quantum error correction (Sect. 4.4). We end with some conclusions in
Sect. 5. Some arguments and extended material are deferred to appendices, which
includes some basic numerical studies in Appendix B.

We should mention that in recent work, optimization problems similar to (1) and
termed jointly constrained semidefinite bilinear programming were studied in [41],
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where it was pointed out that they appear in various forms throughout quantum infor-
mation theory. We notice that the approach in [41] is based on non-commutative
extensions of the classical branch-and-bound algorithm from [1] and is complemen-
tary to ours. Another remark is that we should distinguish the setting (2) studied
here from our previous work on quantum bilinear optimization [9], where we were
interested in bilinear optimizations of the form

max
∑

α,β

Gα,β〈ψ|EαDβ|ψ〉

s.t. |ψ〉 ∈ H : Hilbert space

Eα,Dβ Hermitian with [Eα,Dβ] = 0, (6)

where Eα and Dβ are operators acting on H subject to polynomial constraints given
by the set of conditions {[Eα,Dβ] = 0}α,β expressed by commutators, i.e., [Eα,
Dβ] = EαDβ − DβEα. Note that in this latter setting (6) the dimension of the
underlying Hilbert space is unbounded and optimized over as well [62]. In contrast,
for our optimisation (2) the dimension of the variables is fixed in advance. As such,
the scope of applications of our current work is different.

2 De Finetti theorems with linear constraints

2.1 Notation

In the following, we introduce some notation that is standard in quantum information
theory. A dA-dimensional quantum system (or in short system) is given by an inner
product space CdA and denoted by A. Quantum states (or in short states) on A are
matrices3

WA ∈ SA := C
dA×dA with Tr[WA] = 1 andWA � 0,

where � denotes the operator (Loewner) order. Quantum states of rank one are called
pure and can be written as WA = |ψ〉〈ψ|A, where |ψ〉A ∈ C

dA and |ψ〉〈ψ|A ∈ SA

denotes the rank-one projector on the vector |ψ〉A.
A bipartite system AB := A ⊗ B is given by an inner product space CdA ⊗ C

dB ,
where ⊗ denotes the Kronecker tensor product. Correspondingly, states on AB are
matrices WAB ∈ SA ⊗ SB with Tr[WAB] = 1 and WAB � 0. Separable states are
states onAB that are in the convex hull of product statesWA⊗WB, withWA andWB

states on A and B, respectively. The maximally entangled state ΦAB := |Φ〉〈Φ|AB

on AB for d := dA = dB is not separable and defined via

|Φ〉AB :=
1√
d

d∑

x=1

|x〉A ⊗ |x〉B for some orthonormal basis {|x〉}dx=1 ofC
d.

3 Here and henceforth we use the symbol := as equal by definition.
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786 M. Berta et al.

The swap operator FAB on A ⊗ B exchanges the two quantum systems, i.e.,
FAB(WA⊗WB) = WB ⊗WA for every stateWA andWB onA andB, respectively.
Classical-quantum states are bipartite states that can be written in the form

WXB =

dX∑

x=1

px|x〉〈x|X ⊗ Wx
B

for a probability distribution {px}
dA
x=1, an orthonormal basis {|x〉X}dX

x=1 of CdX , and
states Wx

B on B for x = 1, . . . ,dX. We refer to X as the classical part of the bipartite
classical-quantum system XB.

Quantum channels (or in short channels) are linear maps NA→B : SA → SB that
are trace preserving and completely positive4 (cp). In particular, they map states from
the input system A to states on the output system B. We often abbreviate bipartite
channels IA ⊗ NB that act trivially on the A-system as NB, where IA denotes the
identity channel on SA. The partial trace TrB[·] is a channel from AB to A defined
via

TrB[·] :=
dB∑

x=1

(
1A ⊗ 〈x|B

)
(·)(1A ⊗ |x〉B

)
,

where 1A denotes the identity matrix onA, and {|x〉}dB
x=1 an orthonormal basis ofCdB .

For bipartite states WAB, we write WA = TrB[WAB] for the reduced state on A.
Quantum measurements (or in short measurements) are a special case of channels that
can be written in the form

MA→I(·) :=
∑

i∈I

Tr
[
Mi

A(·)
]
|i〉〈i|I

with an orthonormal basis {|i〉I}i∈I and Mi
A � 0 ∀i ∈ I with

∑
i∈I Mi

A = 1A.
The Choi-Jamiołkowski isomorphism relates channels with states. For a channel

NA→B, its Choi state is given by

JNBA ′ := (NA→B ⊗ IA ′)(ΦAA ′), (7)

where dA ′ := dA. Note that JNA ′ =
1A ′
dA ′ . Vice versa, for a bipartite state WA ′B with

WA ′ =
1A ′
dA ′ , its Choi channel is given as

NW
A→B : ZA �→ dA · TrA ′

[
WA ′B(Z

T
A ′ ⊗ 1B)

]
, (8)

where the transpose T is taken with respect to the orthonormal basis of the maximally
entangled state in (7).

4 A linear mapNA→B : SA → SB is said to be completely positive ifNA→B ⊗ IC is a positive map
for every quantum system C, where IC denotes the identity map on SC
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The distance between states is quantified by the metric induced from the Schatten
one-norm ‖X‖1 := Tr [|X|]. The distance between channels is quantified by the metric
induced from the Diamond norm

‖NA→B‖♦ := sup
‖X‖1�1

‖(NA→B ⊗ IA)(XAA)‖1.

Amultipartite stateWABn
1
onABn

1 ≡ AB1 · · ·Bn is called symmetric with respect
to A if

(IA ⊗ Uπ
Bn

1
)(WABn

1
) = WABn

1
∀π ∈ Sn,

where Sn denotes the symmetric group of n elements and

Uπ
Bn

1
(WB1 ⊗ · · · ⊗ WBn) := WB

π−1(1)
⊗ · · · ⊗ WB

π−1(n)
.

A bipartite state WAB is called n-extendable if there exists a multipartite extension
WABn

1
, i.e., TrBn

2
(WABn

1
) = WAB, that is symmetric with respect to A.

2.2 Previous work

General de Finetti representation theorems state that if a multipartite state on ABn
1 is

symmetric with respect toA, then the reduced state on the first k systemsABk
1 is close

to a separablemixture of independent and identical states fork sufficiently smaller than
n. De Finetti [21] first proved for the classical case with A trivial, i.e. A = C, that if
n = ∞ and k is finite, then the statement holds exactly. Quantitative finite versions for
the classical casewere later proven and the state-of-the-art bounds can be found in [22].
In the quantum setting, early works considered then = ∞ setting including [28,42,61,
64,69] in the mathematical physics community and [15] in the quantum information
theory community. The first finite quantum de Finetti representation theorem was
proved in [47]. The state-of-the-art bounds from [17,46] show that for multipartite
states WABn

1
symmetric with respect to A, we have that

∥
∥
∥
∥
∥
WABk

1
−

∑

i∈I

piW
i
A ⊗

(
Wi

B

)⊗k
∥
∥
∥
∥
∥
1

� 2kd2
B

n
,

for a probability distribution {pi}i∈I and states Wi
A,Wi

B on A and B, respectively.
Note that the special case k = 1 exactly recovers (4).

2.3 Proof methods

In the following, we provide a brief sketch of our proof ideas. For simplicity we restrict
to k = 1, which is the relevant case for (3). Namely, we start with a multipartite state
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788 M. Berta et al.

WABn
1
symmetric with respect to A and the goal is to identify constraints such that

WAB1 is approximated by a mixture of states of the form

Wi
A ⊗ Wi

B with ΛA→CA

(
Wi

A

)
= XCA

and ΓB→CB

(
Wi

B

)
= YCB

.

The standard approach for proving de Finetti theorems [17] proceeds by measuring
the systems Bn

1 with the uniform measurement on the symmetric subspace given by{
|ψ〉〈ψ|⊗n

B

}
ψ
. In this case, the candidate mixture of product states is given by

∫
p (ψ)d|ψ〉WA|ψ ⊗ |ψ〉〈ψ|B ,

where the integral is computedwith respect to theHaarmeasure,p(ψ)d|ψ〉 denotes the
probability of outcomeψ, andWA|ψ the state onA conditioned on obtaining outcome
ψ in the measurement. The problem with this candidate is that, in this mixture, there
will in general be many terms where

|ψ〉〈ψ|B is such that ΓB→CB
(|ψ〉〈ψ|B) �= YCB

.

One could try to modify the measurement so that we only get |ψ〉〈ψ|B that satisfy the
desired constraint, but this seems difficult. Instead, we use an alternative approach,
where the candidate mixture of product states is chosen differently [12,47]. Namely,
starting fromWABn

1
awell-chosenmeasurement on the systemsBn

2 withmeasurement
outcomes zn

2 leads to the candidate mixture of product states

E
zn
2

{
WA|zn

2
⊗ WB|zn

2

}
.

The advantage of this candidate state is that by enforcing the right constraints on the
global state WABn

1
, namely the ones in (5), we can ensure that ΛA→CA

(WA|zn
2
) =

XCA
and ΓB→CB

(WB|zn
2
) = YCB

. Note that in order for this strategy towork properly,
we need the chosen measurement to be informationally complete—that is, allowing
to estimate the expectation value of arbitrary states—-and have a small distortion in
the sense that the loss in distinguishibility resulting from applying the measurement
is small.

2.4 Information-theoretic tools

The starting point for our proof technique is the use of the chain rule of the conditional
mutual information, first used in this context in [11] and further exploited in [12].
More precisely, we will use the quantum relative entropy defined as

D(ρ‖σ) :=

{
Tr(ρ log ρ) − Tr(ρ logσ) if support(ρ) ⊆ support(σ)

∞ otherwise
,
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Semidefinite programming hierarchies for constrained… 789

where ρ and σ are quantum states and the logarithm is taken with respect to the basis
two. Recall that the support of an operator is defined as the orthogonal complement
of its kernel. The following lemma, which can be found in [12], says that if some
classical systems Zn

1 are symmetric with respect to A, then conditioning on Zm
1 for

some value of m breaks the correlations between A and Zm+1. Before stating the
lemma, we introduce notation that will be used throughout the section. For a state
ρAZ with a classical Z-system, we write

ρA|z :=
TrZ

[
ρAZ (1A ⊗ |z〉〈z|)

]

Tr
[
ρAZ (1A ⊗ |z〉〈z|)

] .

We simply write E
zm
1

{·} for the expectation over the choices of zm
1 and the distribution

will be clear from the context.

Lemma 2.1 [12] Let ρAZn
1

be a classical-quantum state with the Zn
1 -systems classical

and Uπ
Zn

1
(ρAZn

1
) = ρAZn

1
for all π ∈ Sn. Then, there exists 0 � m < n such that

E
zm
1

{
D(ρAZm+1|z

m
1

‖ρA|zm
1

⊗ ρZm+1|z
m
1
)
}

� logdA

n

as well as

E
zm
1

{
‖ρAZm+1|z

m
1
− ρA|zm

1
⊗ ρZm+1|z

m
1

‖21
}

� (2 ln 2) logdA

n
,

where ln(·) denotes the natural logarithm.

Proof For the quantum mutual information we have I (A : Zn
1 )ρ := D(ρAZn

1
‖ρA ⊗

ρZn
1
) � logdA as well as (see, e.g., [57, Chapter 11])

I (A : Zn
1 )ρ =

n−1∑

m=0

I(A : Zm+1|Z
m
1 )ρ

for the quantum conditional mutual information I(A : Zm+1|Z
m
1 )ρ := I(A :

Zm+1
1 )ρ − I(A : Zm

1 )ρ. As a result, there exists an m ∈ {0, · · · ,n − 1} such that

I(A : Zm+1|Z
m
1 )ρ � logdA

n , which implies

E
zm
1

{
I(A : Zm+1)ρAZm+1|z

m
1

}
� logdA

n
,

where we used I(A : Zm+1|Z
m
1 )ρ = E

zm
1

{
I(A : Zm+1)ρAZm+1|z

m
1

}
, which holds

since the conditioning systems are classical. The second statement then followsdirectly
from Pinsker’s inequality D(ρ‖σ) � 1

2 ln 2 ‖ρ − σ‖21 [78, Theorem 5.38]. ��
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790 M. Berta et al.

To prove the de Finetti theorem, we will crucially make use of so-called informa-
tionally complete measurements for which the loss in distinguishability, or distortion,
can be bounded.

Lemma 2.2 [12, Lemma 14] There exist a product measurement MA ⊗ MB with
finitely many outcomes such that for any Hermitian and traceless matrix ξAB on
A ⊗ B, we have

‖(MA ⊗ MB)(ξAB)‖1 � 1

18
√

dAdB
‖ξAB‖1.

This [12, Lemma 14] follows from the methods in [51]. More generally, we define
the minimal distortion for the bipartite system A ⊗ B as

f(A,B) := inf
MA,MB

max
ξ†

AB=ξAB
ξA=0,ξB=0

‖ξAB‖1
‖(MA ⊗ MB)(ξAB)‖1 , (9)

where the infimum is over all product measurements on AB. In this notation,
Lemma 2.2 shows that

f(A,B) � 18
√

dAdB.

Note that in the definition of f(A,B) we restricted the maximization to matrices sat-
isfying ξA = 0 and ξB = 0 because this is sufficient for us.

A drawback of Lemma 2.2 is that the distortion depends on the dimension dA.
More generally, we define the minimal distortion with side information for a system
B as

f(B|·) := inf
MB

sup
ξ†

AB=ξAB
ξA=0,ξB=0

‖ξAB‖1
‖(IA ⊗ MB)(ξAB)‖1 , (10)

where the infimum is over all measurements on B and the supremum is over all finite-
dimensional systems A. In Lemma D.1 we give an elementary proof that

f(B|·) � d2
B(dB + 1)

using state two-designs and properties of weighted non-commutative Lp-spaces. In
fact, after completion of our work we realised that methods from operator space theory
even give the stronger bound

f(B|·) �
√
18d3

B,

which is discussed in [13, Equation 66]. We leave it as an open question to determine
the exact dimensional dependence of the minimal distortion with side information.
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2.5 Main technical result

Combining the tools from the previous subsection we find the following de Finetti
theorem with linear constraints.

Theorem 2.3 Let ρABn
1

be a quantum state, ΛA→CA
, ΓB→CB

linear maps, and
XCA

,YCB
matrices such that

Uπ
Bn

1
(ρABn

1
) = ρABn

1
∀π ∈ Sn symmetric with respect to A

ΛA→CA
(ρABn

1
) = XCA

⊗ ρBn
1

linear constraint on A

ΓBn→CB
(ρBn

1
) = ρBn−1

1
⊗ YCB

linear constraint on B.

Then, we have that

∥
∥
∥
∥
∥
ρAB −

∑

i∈I

piσ
i
A ⊗ ωi

B

∥
∥
∥
∥
∥
1

� min
{
f(A,B), f(B|·)}

√
(2 ln 2) log (dA)

n

with {pi}i∈I a probability distribution, ρAB = TrBn
2

[
ρABn

1

]
, and quantum states

σi
A,ωi

B such that for i ∈ I:

ΛA→CA

(
σi

A

)
= XCA

and ΓB→CB

(
ωi

B

)
= YCB

.

As stated in Sect. 2.4, we can, e.g., take f(A,B) � 18
√

dAdB or f(B|·) �
√
18d3

B.

Proof Let MB be a measurement of the B system and call the outcome system Z.
Consider the state ρAZn

1
obtained by measuring all the B systems with MB. This

distribution is symmetric with respect to A and so we can apply Lemma 2.1. We find
that there exists an m ∈ {0, · · · ,n − 1} such that

E
zm
1

{
‖ρAZm+1|z

m
1
− ρA|zm

1
⊗ ρZm+1|z

m
1

‖21
}

� (2 ln 2) logdA

n
.

Note that we have for any zm
1 , ρAZm+1|z

m
1

= (IA ⊗ MB)(ρABm+1|z
m
1
) and

correspondingly ρZm+1|z
m
1

= MB(ρBm+1|z
m
1
). Now, we choose the measurement

MB to be as in Lemma D.1 and achieving f(B|·) in (10), we get that ‖ξAB‖21 �
f(B|·)2‖(IA ⊗ MB)(ξAB)‖21, where ξAB = ρABm+1|z

m
1
− ρA|zm

1
⊗ ρBm+1|z

m
1
. As

a result, we have

E
zm
1

{
‖ρABm+1|z

m
1
− ρA|zm

1
⊗ ρBm+1|z

m
1

‖21
}

� f(B|·)2 (2 ln 2) logdA

n
.
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But note we can also choose measurements MA and MB achieving f(A,B) in (9).
In this case,

‖ρABm+1|z
m
1

− ρA|zm
1

⊗ ρBm+1|z
m
1

‖21
� f(A,B)2‖(MA ⊗ MB)(ρABm+1|z

m
1

− ρA|zm
1

⊗ ρBm+1|z
m
1
)‖21

� f(A,B)2‖(IA ⊗ MB)(ρABm+1|z
m
1

− ρA|zm
1

⊗ ρBm+1|z
m
1
)‖21

= f(A,B)2‖ρAZm+1|z
m
1

− ρA|zm
1

⊗ ρZm+1|z
m
1

‖21,

where we used the fact that the trace norm cannot increase when applying the quantum
channel MA [78, Theorem 3.39]. As a result, we get

E
zm
1

{
‖ρABm+1|z

m
1
− ρA|zm

1
⊗ ρBm+1|z

m
1

‖21
}

� f(A,B)2
(2 ln 2) logdA

n
.

Now, using the convexity of the square function, we get

E
zm
1

{
‖ρABm+1|z

m
1
− ρA|zm

1
⊗ ρBm+1|z

m
1

‖1
}

�
√

E
zm
1

{
‖ρABm+1|z

m
1
− ρA|zm

1
⊗ ρBm+1|z

m
1

‖21
}

� min
{
f(A,B), f(B|·)}

√
(2 ln 2) logdA

n
.

Then, using the convexity of the norm and the fact that E
zm
1

{
ρABm+1|z

m
1

}
= ρABm+1 ,

we obtain

∥
∥
∥
∥ρABm+1 − E

zm
1

{
ρA|zm

1
⊗ ρBm+1|z

m
1

}∥
∥
∥
∥
1

� min
{
f(A,B), f(B|·)}

√
(2 ln 2) logdA

n
.

The state E
zm
1

{
ρA|zm

1
⊗ ρBm+1|z

m
1

}
corresponds to our candidate mixture of product

states. It now remains to show that all the states in the mixture satisfy the linear
constraints. Indeed we have for any zm

1 , writing Mz for matrices of the measurement
MB,

ΛA→CA
(ρA|zm

1
) =

TrBm
1

[
(1A ⊗ Mz1 ⊗ · · · ⊗ Mzm)ΛA→CA

(ρABm
1
)
]

Tr
[
(1A ⊗ Mz1 ⊗ · · · ⊗ Mzm)ρABm

1

]

=
TrBm

1

[
(1A ⊗ Mz1 ⊗ · · · ⊗ Mzm)(XCA

⊗ ρBm
1
)
]

Tr
[
(1A ⊗ Mz1 ⊗ · · · ⊗ Mzm)ρABm

1

]

= XCA
,
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and similarly

ΓB→CB
(ρBm+1|z

m
1
) =

TrBm
1

[
(Mz1 ⊗ · · · ⊗ Mzm ⊗ 1CB

)ΓBm+1→CB
(ρBm+1

1
)
]

Tr
[
(Mz1 ⊗ · · · ⊗ Mzm ⊗ 1Bm+1)ρBm+1

1

]

=
TrBm

1

[
(Mz1 ⊗ · · · ⊗ Mzm ⊗ 1Bm+1)(ρB1···Bm ⊗ YCB

)
]

Tr
[
(Mz1 ⊗ · · · ⊗ Mzm ⊗ 1Bm+1)ρBm+1

1

]

= YCB
.

��

This can then be extended to a full quantum de Finetti theorem for any reduced
state ρABk

1
with 0 < k < n.

Theorem 2.4 For the same setting as in Theorem 2.3, we have for 0 < k < n that

∥
∥
∥
∥
∥
ρABk

1
−

∑

i∈I

piσ
i
A ⊗

(
ωi

B

)⊗k
∥
∥
∥
∥
∥
1

� kf(B|·)
√

(2 ln 2)
logdA + (k − 1) logdB

n − k + 1
.

Proof Note that the for the state ρ
ABk−1

1 Bn
k
, the systems Bn

k are symmetric with

respect to ABk−1
1 . As such, we can apply the same argument used in the proof of

Theorem 2.3, but this time starting from the decomposition I
(
ABk−1

1 : Zn
k

)

ρ
=

∑n−1
m=k−1 I(ABk−1

1 : Zm+1|Z
m
k )ρ, leading to

1
n − k + 1

n∑

m=k

E
zm

k+1

{
‖ρABk

1 |z
m
k+1

− ρ
ABk−1

1 |zm
k+1

⊗ ρBk|z
m
k+1

‖1
}

� f(B|·)
√

(2 ln 2) log(dAdk−1
B )

n − k + 1
.

Similarly, for any i ∈ {1, . . . ,k}, we have

1
n − k + 1

n∑

m=k

E
zm

k+1

{
‖ρABi

1|z
m
k+1

− ρ
ABi−1

1 |zm
k+1

⊗ ρBi|z
m
k+1

‖1
}

� f(B|·)
√

(2 ln 2) log(dAdi−1
B )

n − k + 1
. (11)

Now, using the triangle inequality k− 1 times, we get for any m ∈ {k, . . . ,n} and any
zm
k+1 that
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∥
∥
∥
∥ρABk

1 |z
m
k+1

− ρA|zm
k+1

⊗ ρB1|z
m
k+1

⊗ · · · ⊗ ρBk|z
m
k+1

∥
∥
∥
∥
1

�
k∑

i=1

∥
∥∥ρABi

1|z
m
k+1

⊗ ρBi+1|z
m
k+1

⊗ · · ·⊗

ρBk|z
m
k+1

− ρ
ABi−1

1 |zm
k+1

⊗ ρBi|z
m
k+1

⊗ ρBi+1|z
m
k+1

⊗ · · · ⊗ ρBk|z
m
k+1

∥∥
∥
1

=

k∑

i=1

∥
∥∥
∥ρABi

1|z
m
k+1

− ρ
ABi−1

1 |zm
k+1

⊗ ρBi|z
m
k+1

∥
∥∥
∥
1
.

Taking the average over m and zm
k+1 and using (11), we get

1
n − k + 1

n∑

m=k

E
zm

k+1

{∥
∥
∥ρABk

1 |z
m
k+1

− ρA|zm
k+1

⊗ ρB1|z
m
k+1

⊗ · · · ⊗ ρBk|z
m
k+1

∥
∥
∥
1

}

� kf(B|·)
√

(2 ln 2) log(dAdk−1
B )

n − k + 1
.

As a result, there is an m such that the previous inequality holds. Then, as before, we
use the convexity of the norm to put the expectation inside, getting the existence of an
m such that

∥
∥
∥
∥
∥
ρABk

1
− E

zm
k+1

{
ρA|zm

k+1
⊗ ρB1|z

m
k+1

⊗ · · · ⊗ ρBk|z
m
k+1

}∥
∥
∥
∥
∥
1

� kf(B|·)
√

(2 ln 2)
logdA + (k − 1) logdB

n − k + 1
.

To conclude, it suffices to observe that by symmetry ρBi|z
m
k+1

= ρB1|z
m
k+1

for all

i ∈ {1, . . . ,k} and the linear constraints are satisfied by the same calculation as in the
proof of Theorem 2.3. ��

2.6 De Finetti theorems without symmetries

These results can again be strengthened to a form studied in [12], where ρABn
1
is not

assumed to be symmetric but rather the systems that are kept are chosen at random.
More precisely, we improve the so-called de Finetti theorem without symmetries of

[12, Section 3] by reducing the dependence from d
k/2
B to polynomial in both dB and

k, thereby solving one of the problems [12, Section 9] had left open.

Theorem 2.5 Let ρBn
1

be a quantum state with the systems Bi all having dimension

dB. Furthermore, let the entries of�i = (i1, . . . , ik),�j = (j1, . . . , jn−k) be a random
permutation of {1, . . . ,n}, and assume we measure the systems j1, . . . , jn−k each using
the measurement MB, getting the classical systems Zj1 , . . . ,Zjn−k

. Then, there exists
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m ∈ {0, . . . ,n − k} such that

E
�i,�j,zj1

,...,zjm

{∥
∥
∥
∥ρB�i

|zj1
···zjm

− ρBi1
|zj1

···zjm
⊗ · · · ⊗ ρBik|zj1

···zjm

∥
∥
∥
∥
1

}

� kf(B|·)
√

(2 ln 2)
(k − 1) logdB

n − k + 1

� 3k3/2d3
B logdB√

n − k + 1
,

where f(B|·) is defined in (10).

To compare with the usual de Finetti theorems with symmetry, the expectation is
taken inside the trace norm (by convexity)—which can then be understood as enforcing
the permutation invariance of the state.

Proof For fixed�i,�j, m ∈ {0, . . . ,n − k}, and zj1 · · · zjm , we have using the triangle
inequality k − 1 times,

‖ρBi1
···Bik

|zj1
···zjm

− ρBi1
|zj1

···zjm
⊗ · · · ⊗ ρBik

|zj1
···zjm

‖1

�
k∑

t=1

∥
∥
∥ρBi1···it |zj1

···zjm
⊗ ρBit+1

|zj1
···zjm

⊗ · · · ⊗ ρBik
|zj1

···zjm

− ρBi1···it−1
|zj1

···zjm
⊗ ρBit

|zj1
···zjm

⊗ · · · ⊗ ρBik
|zj1

···zjm

∥
∥
∥
1

=

k∑

t=1

∥
∥
∥ρBi1···it |zj1

···zjm
− ρBi1···it−1

|zj1
···zjm

⊗ ρBit
|zj1

···zjm

∥
∥
∥
1
. (12)

Now, consider a fixed t and fixed values for i1, . . . , it−1, and assume we additionally
measure the system Bit using the measurement MB, getting the classical system
Zit . Then, for fixed i1, . . . , it−1, the resulting distributions on (it, j1) and (j1, it) are
identical, and the same holds for (it, j1, j2) and (j2, j1, it), and so on. Hence, we find
by elementary entropic identities that

E
it,�j

{
I(Bi1 · · ·Bit−1 : ZitZj1 · · ·Zjn−k

)ρ
}

=

n−k∑

m=1

E
it,�j

{
I(Bi1 · · ·Bit−1 : Zit)ρ + I(Bi1 · · ·Bit−1 : Zjm |Zj1 · · ·Zjm−1Zit)ρ

}

=

n−k∑

m=0

E
it,�j

{
I(Bi1 · · ·Bit−1 : Zit |Zj1 · · ·Zjm)ρ

}

=

n−k∑

m=0

E
it,�j,zj1

,...,zjm

{
I(Bi1 · · ·Bit−1 : Zit)ρ|zj1

···zjm

}
.
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Note on the other hand that we have I(Bi1 · · ·Bit−1 : ZitZj1 · · ·Zjn−k
) � log(dt−1

B )
and thus we get, using Pinsker’s inequality,

1
n − k+1

n−k∑

m=0

E
it,�j,zj1

,...,zjm

{‖ρBi1···it−1
Zit

|zj1
···zjm

−ρBi1···it−1
|zj1

···zjm
⊗ρZit

|zj1
···zjm

‖21}

�(2 ln 2)
logdt−1

B

n − k + 1
.

Observe that ρBi1···it−1
Zit

|zj1
···zjm

= MBit
(ρBi1···it−1

Bit
|zj1

···zjm
) and using a

measurement MB achieving f(B|·) in (10) (or using the measurement in Lemma D.1,
in which case we should replace f(B|·) by d2

B(dB + 1) in the following equations),
we get that

1
n − k + 1

n−k∑

m=0

E
it,�j,zj1

,...,zjm

{‖ρBi1···it−1
Bit

|zj1
···zjm

− ρBi1···it−1
|zj1

···zjm
⊗ ρBit

|zj1
···zjm

‖21} � (2 ln 2)f(B|·)2 logdt−1
B

n − k + 1
.

This implies, using the convexity of the square function, that

1
n − k + 1

n−k∑

m=0

E
it,�j,zj1

,...,zjm

{‖ρBi1···it−1
Bit

|zj1
···zjm

− ρBi1···it−1
|zj1

···zjm
⊗ ρBit

|zj1
···zjm

‖1} � f(B|·)
√

(2 ln 2)
logdt−1

B

n − k + 1
,

and we get, continuing on (12), that

1
n − k + 1

n−k∑

m=0

E
it,�j,zj1

,...,zjm

{‖ρBi1
···Bik

|zj1
···zjm

− ρBi1
|zj1

···zjm
⊗ · · · ⊗ ρBik

|zj1
···zjm

‖1}

×
k∑

t=1

1
n − k + 1

n−k∑

m=0

E
it,�j,zj1

,...,zjm

{‖ρBi1···it |zj1
···zjm

− ρBi1···it−1
|zj1

···zjm
⊗ ρBit

|zj1
···zjm‖1

} � kf(B|·)
√

(2 ln 2)
logdk−1

B

n − k + 1
.

��
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3 Constrained bilinear optimization

As stated in (2), the constrained bilinear optimization problem we are interested in
takes the form

Q := max Tr
[
GAB(WA ⊗ WB)

]

s.t. WA � 0,WB � 0, Tr(WA) = Tr(WB) = 1

ΛA→CA
(WA) = XCA

, ΓB→CB
(WB) = YCB

.

Lower bounds on the optimal value can, e.g., be derived by means of seesaw meth-
ods [48] (see [79] for an example in quantum information theory). These then often
converge in practice and sometimes even provably reach a local maxima. What was
missing, however, is a general method to give an approximation guarantee to the global
maximum.

Our deFinetti theoremwith linear constraints (Theorem2.3) gives anSDPhierarchy
of outer bounds, that exactly provides such a criterion.

Theorem 3.1 For the SDPs

SDPn := max Tr
[
GABWAB1

]

s.t. WABn
1

� 0, Tr(WABn
1
) = 1, WABn

1
= Uπ

Bn
1

(
WABn

1

)
∀π ∈ Sn

ΛA→CA

(
WABn

1

)
= XCA

⊗ WBn
1
, ΓBn→CB

(
WBn

1

)
= WBn−1

1
⊗ YCB

and Q defined as above, we have for d := max{dA,dB} that

0 � SDPn − Q � poly(d)√
n

implying Q = lim
n→∞

SDPn.

Proof We have by construction 0 � SDPn − Q and the remaining inequality arises
from

Tr
[
GABWAB1

]
= Tr [GAB(WA ⊗ WB)] + Tr

[
GAB

(
WAB1 − WA ⊗ WB

)]

� Tr [GAB(WA ⊗ WB)] + ‖GAB‖∞ · ‖WAB1 − WA ⊗ WB‖1
� Tr [GAB(WA ⊗ WB)] +

poly(d)√
n

,

where we used Hölder’s inequality and the de Finetti argument as in Theorem 2.3.
��

The bounds from Theorem 2.3 give worst case convergence guarantees that are
slow—as to ensure that the approximation error is small we need at least the level
n = poly(d). However, note that constrained bilinear optimization contains as a
special case the best separable state problem and so we cannot expect much better
bounds on the convergence speed in general.We refer to [36] and the references therein
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for a detailed discussion about the computational complexity of the best separable state
problem.

We can add positive partial transpose (PPT) constraints5

W
TA
ABn

1
� 0, W

TB1
ABn

1
� 0, W

T
B2
1

ABn
1

� 0, . . . , W
T

Bn−1
1

ABn
1

� 0

to SDPn and we denote the resulting relaxations by SDPn,PPT. It is important to
point out that any separable state is also a PPT state, and hence we still have a valid
relaxation to the problem (2). It is an interesting question to study if these constraints
can lead to a faster convergence speed, cf. the discussions in [27,56]. Based on the
PPT constraints, we can give a sufficient condition when already

SDPn,PPT = Q for some finite n.

The condition—known as rank loop condition—is based on [56], which in turn builds
on [39].

Lemma 3.2 [39,56]LetWABn
1
= Uπ

Bn
1

(
WABn

1

)
for allπ ∈ Sn and fixed0 � k � n

such that W
TBn

k+1
ABn

1
� 0. Then, WAB1 is separable if

rank(WABn
1
) � max

{
rank

(
WABk

1

)
, rank

(
WBn

k+1

)}
.

Finally, note that instead of extending the B-systems we could equally well extend
the A-systems to get another hierarchy. In the next section we directly study our main
setting of interest—approximate quantum error correction—and refrain from further
analysing the general case.

4 Approximate quantum error correction

4.1 Motivation

In order to introduce the problem, we describe its relevance and applications in quan-
tum information theory. First, we introduce the theoretical setting, then we apply the
results of the previous sections, thus obtaining specific convergent hierarchies. Corre-
sponding numerical tests can be found in Appendix B.

Given a noisy classical channel NX→Y , a central quantity of interest in error
correction is the maximum success probability p(N,M) for transmitting a uniform
M-dimensional message under the noise model NX→Y . This is a bilinear maximiza-
tion problem, which is in general NP-hard to approximate up to a sufficiently small
constant factor [5]. Nevertheless, there are efficient methods for constructing feasible

5 The partial transpose of a matrix WAB is defined for a fixed product basis as 〈ij|WTA
AB|kl〉 :=

〈kj|WAB|il〉.
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coding schemes approximating p(N,M) from below as well as an efficiently com-
putable linear programming relaxation lp(N,M) (sometimes called meta converse
[37,63]) giving upper bounds on p(N,M).6 In fact, it was shown in [5] that p(N,M)
and lp(N,M) cannot be very far from each other

p(N,M) � lp(N,M) � 1

1− 1
e

· p(N,M).

Furthermore, the meta-converse has many appealing analytic properties, such as, e.g.,
the ability to evaluate it efficiently in the limit ofmany independent repetitionsN×n

X→Y ,
leading to very precise asymptotic bounds on the capacity of noisy classical channels
[5].

The analogue quantum problem is to determine the maximum fidelity F(N ,M),
a quantity that will be formally defined later (Definition 4.1), for transmitting one
part of a maximally entangled state of dimension M over a noisy quantum channel
NA→B. As in the classical case, this is a bilinear optimization problem, only nowwith
matrix-valued variables. In order to approximate F(N ,M), an efficiently computable
semidefinite programming relaxation SDP(N ,M) was given in [53].7 However, con-
trary to the classical case the gap betweenSDP(N ,M) and F(N ,M) is not understood.
On the other hand, the tools introduced in Sect. 2 will exactly be used to generate a
converging hierarchy of efficiently computable semidefinite programming relaxations,
allowing us to quantify the gap between these new relaxations and F(N ,M).

Moreover, the relaxation SDP(N ,M) is lacking most of the analytic properties of
its classical analogue lp(N,M). In fact, in quantum communication theory so-called
non-additivity problems caused by quantum correlations make it notoriously hard to
compute asymptotic limits in the first place [23]. Hence, we propose to use methods
from optimization theory to directly study the maximum fidelity F(N ,M) in order to
quantify the ability of a quantum channel to transmit quantum information. The goal is
then to identify a quantum version of the meta converse for approximating F(N ,M),
having similar properties as the classical meta converse lp(N,M) for approximating
p(N,M). This approach can also be justified by the fact that most of the quantum
devices that will be available in the near future are likely to be noisy and small in size.
As such, efficient algorithms approximating F(N ,M) for reasonable error models N
and dimension M are more relevant in such settings than computing the asymptotic
limit of the rate achievable for multiple copies of a given noise model.

Numerical lower boundmethods for F(N ,M) are available through iterative seesaw
methods that lead to efficiently computable semidefinite programs [31,32,43,49,65,
66,70]. These algorithms often converge in practice and sometimes even provably
reach a local maximum. What was previously missing, however, is a general method
to give an approximation guarantee to the global maximum. Here, the techniques as
developed in Sect. 3 exactly lead to a converging hierarchy of efficiently computable
semidefinite programming relaxations on the maximum fidelity F(N ,M). As such,

6 Operationally, lp(N,M) corresponds to the non-signalling assisted maximum success probability [55].
7 Operationally, SDP(N,M) corresponds to the positive partial transpose preserving, non-signalling
assisted maximum fidelity [53].
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this can be seen as a tool for benchmarking existing quantum error correction codes
and to understand in what direction to look for improved codes

We note that references [45,72,74,75] gave refined relaxations on the size of a
maximally entangled state that can be sent over a noisy quantum channel for fixed
fidelity 1 − ε. These approaches are complementary to our work and contrary to our
findings they do not lead to a converging hierarchy of efficiently computable bounds.

4.2 Setting

The mathematical setting of approximate quantum error correction we study is as
follows.

Definition 4.1 Let NĀ→B be a quantum channel and M ∈ N. The channel fidelity
for message dimension M is defined as

F(N ,M) := max F
(
ΦB̄R,

(
(DB→B̄ ◦ NĀ→B ◦ EA→Ā) ⊗ IR

)
(ΦAR)

)

s.t. DB→B̄, EA→Ā quantum channels,

where F(ρ,σ) :=
∥
∥√

ρ
√

σ
∥
∥2
1 denotes the fidelity, ΦAR denotes the maximally entan-

gled state on AR, and we have M = dA = dB̄ = dR.

In information-theoretic language, the channel fidelity corresponds to an average
error criteria for preserving uniformly distributed information. Alternatively, wemight
also aim for a worst error criteria and we discuss this in Appendix C.

By the Choi-Jamiołkowski isomorphism the channel fidelity is conveniently rewrit-
ten as a bilinear optimization.

Lemma 4.2 Let NĀ→B be a quantum channel and M ∈ N. Then, the channel fidelity
can be written as

F(N ,M) = max dĀdB · Tr
[(

JN̄
AB

⊗ ΦAB̄

)
(EAĀ ⊗ DBB̄)

]

s.t. EAĀ � 0, DBB̄ � 0, EA =
1A

dA
, DB =

1B

dB
,

where JN
BĀ

:= (NĀ→B ⊗ IĀ)(ΦĀĀ) denotes the Choi state of NĀ→B.

The advantage of this notation is that all A-systems are with the sender (termed
Alice) and all B-systems are with the receiver (termed Bob), which is consistent with
[53].

Proof By using the adjoint map in Hilbert-Schmidt inner product and multiple times
the Choi-Jamiołkowski isomorphism as given in (7) and (8), and noting that ΦB̄R
allows us to use the simplified expression for the fidelitywhen one of the two arguments
is pure [80, Section 9.2], we can write the objective function from Definition 4.1 as

F
(
ΦB̄R,

(
(DB→B̄ ◦ NĀ→B ◦ EA→Ā) ⊗ IR

)
(ΦAR)

)
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= Tr
[
ΦB̄R

(
(DB→B̄ ◦ NĀ→B ◦ EA→Ā) ⊗ IR

)
(ΦAR)

]

= Tr
[
JD†

BR (NĀ→B ⊗ IR)
(
JĒ
AR

)]
.

Taking advantage of dA = dB̄ = dR, we relabel the systems and we proceed as
follows

F
(
ΦB̄R,

(
(DB→B̄ ◦ NĀ→B ◦ EA→Ā) ⊗ IR

)
(ΦAR)

)

= Tr
[
JD†

BR (NĀ→B ⊗ IR)
(
JĒ
AR

)]

= Tr
[
JD†

BB̄
(NĀ→B ⊗ IA→B̄)

(
JĒ
AA

)]

= dAdĀ · Tr
[(

JN̄
AB

⊗ ΦAB̄

)((
JE
AĀ

)T ⊗ JD†

BB̄

)]

= dĀdB · Tr
[(

JN̄
AB

⊗ ΦAB̄

)((
JE
AĀ

)T ⊗ dA

dB
· JD†

BB̄

)]
,

where the transpose is taken with respect to the canonical basis, and the dimensional
factors come from the connection between the Hilbert-Schmidt inner product and the
maximally entangled state [81, Example 1.2]. Due to the basic proprieties of the Choi-
Jamiołkowski isomorphism it is immediate to see that (JE

AĀ
)T can be identified with

the EAĀ of Lemma 4.2. In addition, we have dA
dB

· JD†

BB̄
� 0, and tracing out the B̄

system as well as using dA = dB̄ we get

dA

dB
· JD†

B =
dA

dB
· D†

(
1B̄

dB̄

)
=

dA

dB
· 1
dB̄

· 1B =
1B

dB
.

Thus, we can identify dA
dB

· JD†

BB̄
with the DBB̄ of Lemma 4.2. ��

The following simple dimension bounds hold for the channel fidelity.

Lemma 4.3 Let NĀ→B be a quantum channel and M ∈ N. Then, we have

0 � F(N ,M) � min

{
1,

(
dĀ

M

)2

,
dB

M

}
.

The proof can be found in Appendix E. By the linearity of the objective function
we can furthermore rewrite the channel fidelity as

F(N ,M) = max dĀdB · Tr
[
(
JN̄
AB

⊗ ΦAB̄

)
(

∑

i∈I

piE
i
AĀ

⊗ Di
BB̄

)]

s.t. pi � 0 ∀i ∈ I,
∑

i∈I

pi = 1

Ei
AĀ

� 0, Di
BB̄

� 0, Ei
A =

1A

dA
, Di

B =
1B

dB
∀i ∈ I.
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4.3 De Finetti theorems for quantum channels

Recall that a quantum channel is just a completely positive, trace preserving map
between two spaces of quantum states. Here, we establish a sufficient criterion under
which permutation invariance of a quantum channel implies that it can be well approx-
imated by a mixture of product quantum channels.

Theorem 4.4 Let ρAĀ(BB̄)n
1

be a quantum state with

ρAĀ(BB̄)n
1
= Uπ

(BB̄)n
1
(ρAĀ(BB̄)n

1
) ∀π ∈ Sn (13)

ρA(BB̄)n
1
=

1A

dA
⊗ ρ(BB̄)n

1
(14)

ρ(BB̄)n−1
1 Bn

= ρ(BB̄)n−1
1

⊗ 1Bn

dB
. (15)

Then, we have for 0 < k < n that
∥
∥
∥
∥
∥
ρAĀ(BB̄)k

1
−

∑

i∈I

piσ
i
AĀ

⊗
(
ωi

BB̄

)⊗k
∥
∥
∥
∥
∥
1

� kf(BB̄|·)
√

(2 ln 2)
log(dAdĀ) + (k − 1) log(dBdB̄)

n − k + 1

with {pi}i∈I a probability distribution, and σi
AĀ

,ωi
BB̄

� 0 such that σi
A = 1A

dA
and

ωi
B = 1B

dB
for i ∈ I.

Proof We simply apply Theorem 2.4 for the linear maps ΛAĀ→A = TrĀ and
ΓBB̄→B = TrB̄. ��

We emphasize that the representation we obtain in this theorem, ρAĀ(BB̄)k
1
is close

to a mixture of products of Choi states of completely positive and trace-preserving
maps. We note that applying standard de Finetti theorems for quantum states would
only show that ρAĀ(BB̄)k

1
is close to a mixture of products states—or in other

words Choi states of completely positive maps that are in general not even trace-non-
increasing. This is not sufficient for our applications, and having the constraints (15)
and (14) are needed in our proofs to achieve this stronger statement. We discuss this
in more detail by means of the following examples.

Example 4.5 For ĀB̄ trivial and k = 1 Theorem 4.4 says that ρAB is close to the
product state 1AB

dAdB
, as this is the only valid state satisfying the linear constraints.

However, having only the permutation invariance condition (13) without the other two
conditions in Theorem 4.4, this conclusion does not hold. In fact, choose ρABn

1
to be

maximally classically correlated between all systems AIB1IBn
2

ρABn
1
=

1
d

∑

i

|i〉〈i|⊗n+1.
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Then, the systems Bn
1 are symmetric with respect to A and even more, the state is

supported on the symmetric subspace (1A ⊗ P
sym
Bn

1
)(ρABn

1
) = ρABn

1
. However, of

course ρAB1 is not close to the state
1AB1
dAdB

.

Example 4.6 This following example shows that imposing the constraint ρAB1 =
1AB1
dAdB

is not enough either. Let A, Ā,B, B̄ all be of dimension d � 2. Then, define for
any n � 1

ρABn
1 ĀB̄n

1
=

1
d2

∑

i,j

|j〉〈j|A ⊗ |i〉〈i|Ā ⊗ |i〉〈i|⊗n
B ⊗ |i〉〈i|⊗n

B̄
.

Then, the state is invariant under permutations of the BB̄ systems and ρAB1 =
1AB1
d2 .

However, the reduced state ρAĀB1B̄1
is not close to states of the form

∑

�

p�σ
�
AĀ

⊗ ω�
BB̄

with σ�
A =

1A

d
,ω�

B =
1B

d
.

To see this, consider the projector ΠĀB =
∑

i |i〉〈i|Ā ⊗ |i〉〈i|B. Then, we get

Tr(ΠĀBρAĀBB̄) = 1 but Tr(ΠĀBσ�
AĀ

⊗ ω�
BB̄

) = Tr

(

ΠĀBσ�
Ā

⊗ 1B

d

)

=
1
d
.

By the Choi-Jamiołkowski isomorphism and relating the trace norm distance of
Choi states to the diamond norm distance of the quantum channels [73, Lemma 7], we
can alternatively state the bounds from Theorem 4.4 directly in terms of the quantum
channels.

Corollary 4.7 Let NABn
1 →ĀB̄n

1
be a quantum channel such that

Uπ
B̄n

1

(
NABn

1 →ĀB̄n
1
(·)

)
= NABn

1 →ĀB̄n
1

(
Uπ

Bn
1
(·)

)
∀π ∈ Sn (16)

TrB̄n

[
NABn

1 →ĀB̄n
1
(·)

]
= TrB̄n

[
NABn

1 →ĀB̄n
1

(
TrBn [·] ⊗

1Bn

dB

)]
(17)

TrĀ

[
NABn

1 →ĀB̄n
1
(·)

]
= TrĀ

[
NABn

1 →ĀB̄n
1

(
1A

dA
⊗ TrA [·]

)]
. (18)

Then, we have for 0 < k < n with

NABk
1 →ĀB̄k

1
(XABk

1
) := TrB̄n

k+1

[

NABn
1 →ĀB̄n

1

(

XABk
1

⊗
1Bn

k+1

dn−k
B

)]

(19)
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that
∥
∥
∥
∥
∥
NABk

1 →ĀB̄k
1
−

∑

i∈I

piEi
A→Ā

⊗
(
Di

B→B̄

)⊗k
∥
∥
∥
∥
∥

♦

� dAdk
B · kf(BB̄|·) ×

√

(2 ln 2)
log(dAdĀ) + (k − 1) log(dBdB̄)

n − k + 1

with {pi}i∈I a probability distribution and Di
B→B̄

, Ei
A→Ā

quantum channels for i ∈ I.

In (19) we chose a specific extension of XABk
1
to define NABk

1 →ĀB̄k
1
(XABk

1
),

namely XABk
1

⊗
1Bn

k+1

dn−k
B

. This is still well-defined as the conditions (16) and (17) we

require ofNABn
1 →ĀB̄n

1
actually say that the choice of extension does not matter. That

is, we have for any XABn
1
that

TrB̄n
k+1

[
NABn

1 →ĀB̄n
1
(XABn

1
)
]
= TrB̄n−1

k+1

[
TrB̄n

[
NABn

1 →ĀB̄n
1

(
XABn−1

1
⊗ 1Bn

dB

)]]

= TrB̄n
k+1

[

NABn
1 →ĀB̄n

1

(

XABk
1

⊗
1Bn

k+1

dn−k
B

)]

= NABk
1 →ĀB̄k

1

(
XABk

1

)
,

where we used (17) for the first equality as well as (16) and (17) multiple times for
the second equality.

In the following we state several comments about de Finetti theorems for quantum
channels:

• We emphasize that the de Finetti reductions—called post-selection technique
[18]—for quantum channels proved in [14,29] are different from what we need
in our work (also see [3,38] for classical versions). In particular, unlike de Finetti
theorems, de Finetti reductions provide an operator inequality upper bound to a
symmetric quantum state in the form of an integral superposition of product states.

• In contrast to the bound for Choi states (Theorem 4.4), the diamond norm bound
in Corollary 4.7 does not have a polynomial dependence in dB and k. We leave it
as an open question to give a de Finetti theorem for quantum channels in terms of
the diamond norm distance with a dimension dependence polynomial in dB and
k. (For our purposes we only need the k = 1 bound, in terms of the Choi states.)

• In the case k = 1, the conditions of the above theorem can be seen as approxi-
mations for the convex hull of product quantum channels, just as extendible states
provide an approximation for the set of separable states.8 We note that in SDP
hierarchies for the quantum separability problem the permutation invariance can
be replaced by the stronger Bose symmetric condition. That is, the state in ques-
tion is supported on the symmetric subspace. The reason is that every separable

8 The class of channels we consider here is more restricted than general separable channels, which usually
refers to a mixture of product completely positive and not necessarily trace-preserving maps.
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state can without loss of generality be decomposed in a convex combination of
pure product states. However, in our setting, we cannot assume that we have a
mixture of a product of pure channels, and so we keep the more general notion of
permutation invariance.

• In the following, we never directly make use of Corollary 4.7 but rather state it
for connecting to the previous literature. In particular, when choosing AĀ trivial
as a special case we find a finite version of the asymptotic de Finetti theorem
for quantum channels from [33,34].9 We emphasize that our derived conditions
then become a finite version of the notion of exchangeable sequences of quantum
channels of [34] defined as a sequence of channels {NBn

1 →B̄n
1
} satisfying for all

n that

Uπ
B̄n

1

(
NBn

1 →B̄n
1
(·)

)
= NBn

1 →B̄n
1

(
Uπ

Bn
1
(·)

)
∀π ∈ Sn

NBn−1
1 →B̄n−1

1

(
TrBn [·]

)
= TrB̄n

[
NBn

1 →B̄n
1
(·)

]
.

They show that under these conditions, for any k, the channel NBk
1 →B̄k

1
is in the

convex hull of tensor power channels. In Corollary 4.7, we start with a channel10

NBn
1 →B̄n

1
and quantify the closeness of such NBk

1 →B̄k
1
to convex combinations

of tensor product channels
∑

i pi

(
Di

B→B̄

)⊗k
.

Channels that arewritten asmixtures of channels of the formEA→Ā⊗DB→B̄ where
EA→Ā and DB→B̄ are channels can straightforwardly be implemented between two
parties having access to shared randomness but no communication. There is a natural
relaxation to this set of channels, often called LOCC(1) channels, corresponding to
channels that can be implemented with additional classical communication from A to
B. Mathematically, these are channels of the form

∑

i∈I

Ei
A→Ā

⊗ Di
B→B̄

,

where Di
B→B̄

are channels and Ei
A→Ā

are completely positive but not necessarily
trace-preserving. We discuss this variation of approximate quantum error correction
in Appendix A.

4.4 Hierarchy of outer bounds

Following the de Finetti theorem for quantum channels as given in Theorem 4.4, the
n-th level of the SDP hierarchy for the quantum channel fidelity becomes

9 We also refer to [59] for previous related work and [19] for a classical version. Moreover, following [45],
conditions related to our (16)–(18) give rise to extendible channels in the resource theory of unextendibility.
10 This is equivalent to being given afinite sequenceN

Bk
1 →B̄k

1
fork ∈ {1, . . . ,n} satisfying the exchange-

ability condition, as the reduced channels are then completely determined by NBn
1 →B̄n

1
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SDPn(N ,M) := max dĀdB · Tr
[(

JN̄
AB1

⊗ ΦAB̄1

)
WAĀB1B̄1

]

s.t. WAĀ(BB̄)n
1

� 0, Tr
[
WAĀ(BB̄)n

1

]
= 1

WAĀ(BB̄)n
1
= Uπ

(BB̄)n
1

(
WAĀ(BB̄)n

1

)
∀π ∈ Sn

WA(BB̄)n
1
=

1A

dA
⊗ W(BB̄)n

1
, WAĀ(BB̄)n−1

1 Bn

= WAĀ(BB̄)n−1
1

⊗ 1Bn

dB
.

Here, we identified B1 ≡ B and hence then-th level of the hierarchy then corresponds
to taking n − 1 extensions. Note that instead of stating the last condition for the final
block Bn we could have equivalently stated it for any block Bj with j = 1, . . . ,n (by
the permutation invariance). Iteratively, the condition then also holds on all pairs of
blocks of size two, and so on. Moreover, we slightly strengthened the last condition by
including the A-systems compared to the minimal condition on the B-system needed
for Theorem 4.4

W(BB̄)n−1
1 Bn

= W(BB̄)n−1
1

⊗ 1Bn

dB
.

We then immediately have asymptotic convergence.

Theorem 4.8 Let N be a quantum channel and n,M ∈ N. Then, we have

0 � SDPn(N ,M) − F(N ,M) � poly(d)√
n

implying F(N ,M) = lim
n→∞

SDPn(N ,M),

where d := max{dA,dĀ,dB,dB̄}.

Proof By construction 0 � SDPn(N ,M) − F(N ,M) and the remaining inequality
arises from

dĀdB · Tr
[(

JN̄
AB

⊗ ΦAB̄

)
WAĀBB̄

]

= dĀdB · Tr
[(

JN̄
AB

⊗ ΦAB̄

)
(EAĀ ⊗ DBB̄)

]

+ dĀdB · Tr
[(

JN̄
AB

⊗ ΦAB̄

)
(WAĀBB̄ − EAĀ ⊗ DBB̄)

]

� dĀdB · Tr
[(

JN̄
AB

⊗ ΦAB̄

)
(EAĀ ⊗ DBB̄)

]

+ dĀdB · ‖JN̄
AB

⊗ ΦAB̄‖∞ · ‖WAĀBB̄ − EAĀ ⊗ DBB̄‖1
� dĀdB · Tr

[(
JN̄
AB

⊗ ΦAB̄

)
(EAĀ ⊗ DBB̄)

]
+

poly(d)√
n

,

where we used Hölder’s inequality and the de Finetti reduction from Theorem 2.3.
��
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We note that the worst case convergence guarantee is slow, as to ensure that the
approximation error becomes small, we need at least the level n = poly(d).

Remark 4.9 Instead of extending the B-systems we could alternatively extend the A-
systems, which leads to the (non-equivalent) hierarchy

SDPn(N ,M) := max dĀdB · Tr
[(

JN̄
AB1

⊗ ΦAB̄1

)
WA1Ā1BB̄

]

s.t. W(AĀ)n
1 BB̄ � 0, Tr

[
W(AĀ)n

1 BB̄

]
= 1

W(AĀ)n
1 BB̄ = Uπ

(AĀ)n
1

(
W(AĀ)n

1 BB̄

)
∀π ∈ Sn

W(AĀ)n
1 B = W(AĀ)n

1
⊗ 1B

dB
, W(AĀ)n−1

1 AnBB̄

=
1An

dA
⊗ W(AĀ)n−1

1 BB̄.

For the first level we have SDP1(N ,M) = SDP1(N ,M) by inspection, but for the
higher levels it depends on the input-output dimensions dĀ,dB which hierarchy is
potentially more powerful.

The relaxations SDPn(N ,M) behave naturally with respect to the first two bounds
of Lemma 4.3.

Lemma 4.10 Let NĀ→B be a quantum channel and n,M � 1. Then, we have

0 � SDPn(N ,M) � min

{
1,

(
dĀ

M

)2
}
.

The proof can be found inAppendix E.We can again add all the PPT constraints and
denote the resulting relaxations by SDPn,PPT(N ,M). In the following we study more
closely these levels SDPn,PPT(N ,M), which are our tightest outer bound relaxations
on the channel fidelity.

4.5 Low level relaxations

We find

SDP1,PPT(N ,M) = max dĀdB · Tr
[(

JN̄
AB

⊗ ΦAB̄

)
WAĀBB̄

]

s.t. WAĀBB̄ � 0, W
TBB̄

AĀBB̄
� 0, Tr [WAĀBB̄] = 1

WABB̄ =
1A

dA
⊗ WBB̄, WAĀB = WAĀ ⊗ 1B

dB
,

which is the SDP outer bound found in [53, Section IV], up to their a priori stronger
condition
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WAB =
1AB

dAdB
instead of our Tr [WAĀBB̄] = 1.

However, as implicitly shown in [53, Theorem 3] these two conditions actually
become equivalent because of the structure of the objective function. Operationally
SDP1(N ,M) corresponds to the non-signalling assisted channel fidelity, whereas
SDP1,PPT(N ,M) adds the PPT-preserving constraint—as discussed in [53, Corol-
lary 4]. Moreover, in the objective function the symmetry11

∫ (
UA ⊗ UB̄

)
(·) (

UA ⊗ UB̄

)†
dU

can be used to achieve a dimension reduction of M2 leading to [53, Theorem 3]

SDP1,PPT(N ,M) = max dĀdB · Tr
[
JN̄
AB

YĀB

]

s.t. ρĀ ⊗ 1B

dB
� YĀB � 0, Tr[ρĀ] = 1

M2 · YB =
1B

dB
, ρĀ ⊗ 1B

dB
� M · YTB

ĀB

� −ρĀ ⊗ 1B

dB
. (20)

The level n = 2 reads as

SDP2,PPT(N ,M) = max dĀdB · Tr
[(

JN̄
AB1

⊗ ΦAB̄1

)
WAĀB1B̄1

]

s.t. WAĀB1B2B̄1B̄2
� 0, Tr

[
WAĀB1B2B̄1B̄2

]
= 1

Uπ
B1B2B̄1B̄2

(
WAĀB1B2B̄1B̄2

)
= WAĀB1B2B̄1B̄2

∀π ∈ Π2

WAB1B2B̄1B̄2
=

1A

dA
⊗ WB1B2B̄1B̄2

, WAĀB1B2B̄1

= WAĀB1B̄1
⊗ 1B2

dB

W
TAĀ

AĀB1B2B̄1B̄2
� 0, W

TB2B̄2
AĀB1B2B̄1B̄2

� 0. (21)

Numerical evaluations of (20) and (21) can be found in Appendix B.

5 Conclusion

We have shown that quantum de Finetti theorems which impose linear constraints on
the approximating state lead to converging SDP hierarchies for constrained bilinear
optimization. As our main application, this gave efficiently computable outer bounds

11 Here, UA denotes the complex conjugate of UA with respect to some standard basis.
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on the optimal quantum channel fidelity in approximate quantum error correction.
In Appendix B, we provide some numerical evidence that the resulting bounds are
sometimes tight for low dimensional error models, but it would be desirable to do
more extensive numerical studies for practically relevant settings. For example, it
would be interesting to apply the techniques from [67] to automatically detect the
symmetries in the problem in order to significantly improve the performance. One
could also explore other operational settings in quantum information theory that are
described in terms of jointly constrained semidefinite bilinear or multilinear programs
(cf. the related work [41]).

On the mathematical side, it remains unclear if the linear constraint conditions
in our quantum de Finetti theorem (Theorem 2.3) are minimal or could be further
simplified. Recall that, for the linear constraint on system B, we had the condition

ΓBk→CB
(ρBk

1
) = ρ

Bk−1
1

⊗ YCB
.

As in Example 4.6, it is simple to see that only requiring ΓBk→CB
(ρBk

) = YCB
is not

sufficient. However, the following weaker condition might be sufficient

Γ⊗k
B→CB

(ρBk
1
) = Y⊗k

CB
.

We leave this as an open question (also see the related works on de Finetti reduc-
tions [14,29]). Another mathematical question is to determine the optimal dimension
dependence of theminimal distortionwith side information (see LemmaD.1). It would
also be interesting to improve Corollary 4.7 and give de Finetti theorems for quantum
channels directly in terms of the diamond norm distance with a dimension dependence
polynomial in dB and k. Finally, there are variants of quantum de Finetti theorems
which provably lead to (exponentially) faster convergence for certain settings of the
quantumseparability problem [11,13,17], and the consequences for approximate quan-
tum error correction remain to be explored.
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Appendix A: Classically-assisted approximate quantum error correc-
tion

A.1. Setting

It is often useful to add classical forward communication assistance to the problem
of quantum error correction. The corresponding assisted channel fidelity is defined as
follows.

Definition A.1 Let NĀ→B be a quantum channel and M ∈ N. The LOCC(1)-assisted
channel fidelity for message dimension M is defined as12

FLOCC(1)(N ,M) := max F
(
ΦB̄R,

∑

i∈I

( (
Di

B→B̄
◦ NĀ→B ◦ Ei

A→Ā

)
⊗ IR

)
(ΦAR)

)

s.t.
∑

i∈I

Ei
A→Ā

quantum channel with Ei
A→Ā

cp for i ∈ I

Di
B→B̄

quantum channel ∀i ∈ I,

where ΦAR denotes the maximally entangled state on AR, cp is the abbreviation for
completely positive, and we have M = dA = dB̄ = dR.

By the Choi-Jamiołkowski isomorphism this can again be rewritten as a bilinear
optimization.

Lemma A.2 Let NĀ→B be a quantum channel and M ∈ N. Then, the LOCC(1)-
assisted channel fidelity can be written as

FLOCC(1)(N ,M) = max dĀdB · Tr
[
(
JN̄
AB

⊗ ΦAB̄

)
(

∑

i∈I

Ei
AĀ

⊗ Di
BB̄

)]

s.t. Ei
AĀ

� 0, Di
BB̄

� 0 ∀i ∈ I

∑

i∈I

Ei
A =

1A

dA
, Di

B =
1B

dB
∀i ∈ I.

The proof follows similarly as in Lemma 4.2 about plain quantum error correction,

and is based on the manipulation of the objective function F
(
ΦB̄R,

∑
i∈I

( (
Di

B→B̄

◦NĀ→B ◦ Ei
A→Ā

)
⊗ IR

)
(ΦAR)

)
by using the Choi-Jamiołkowski isomorphism.

We have that FLOCC(1)(N ,M) is closely connected to the channel fidelity F(N ,M).

Lemma A.3 Let N be a quantum channel and M ∈ N. Then, we have

FLOCC(1)(N ,M) � F(N ,M) �
(
FLOCC(1)(N ,M)

)2
.

12 The term LOCC(1) stands for local operations and one-way classical communication from sender to
receiver [16].
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Semidefinite programming hierarchies for constrained… 811

Asymptotically this corresponds to the well-known statement that forward classical
communication assistance does not increase the capacity.

Proof The first inequality is trivial because the addition of a forward classi-
cal communication channel cannot decrease the channel fidelity. The fact that(
FLOCC(1)(N ,M)

)2
gives a lower bound on F(N ,M) can be seen from [50, Propo-

sition 4.5]. Consider an arbitrary coding scheme for the quantum channel N assisted
with a forward classical communication channel and callFLOCC(1) the channel fidelity
obtained using that scheme. We then want to show that it is always possible to find
a coding scheme for the quantum channel N alone allowing us to achieve a channel
fidelity F � F2

LOCC(1). Say we are able to send, through the forward classical com-

munication channel, a symbol in the set {1, . . . ,S} with S ∈ N. An arbitrary coding
scheme for the assisted quantum channel can be modelled by a collection of instru-
ments {Es

A→Ā
}s∈{1,...,S}, i.e., trace-nonincreasing cp maps summing up to a channel,

and channels {Ds
B→B̄

}s∈{1,...,S}. It is then easy to show that there must exist a symbol s̃

such that the fidelity of the mapDs̃ ◦N ◦ E s̃

es̃ is lower bounded byFLOCC(1), where the

factor es̃ is chosen such that the completely positive map E s̃

es̃ becomes trace preserving

with respect to the maximally mixed state 1A
dA

, as done in [50, Proposition 5.1]. Using

the polar decomposition it is possible to find an isometric encoder V s̃ such that the
channel fidelity F obtained using the coding scheme with encoder V s̃ and decoder
Ds̃ is lower bounded by the squared fidelity of the map Ds̃ ◦ N ◦ E s̃

es̃ . This implies
F � F2

LOCC(1). ��

We have the dimension bounds for the LOCC(1)-assisted setting. Notice that the
following result readily implies Lemma 4.3.

Lemma A.4 Let NĀ→B be a quantum channel and M ∈ N. Then, we have

0 � FLOCC(1)(N ,M) � min

{
1,

(
dĀ

M

)2

,
dB

M

}
.

Proof The lower bound is trivial. For the upper bounds, as in the proof of Lemma 4.3,
we mainly use that for any sub-normalized bipartite quantum state ρXY we have

dX · 1X ⊗ ρY � ρXY . Now, for the first upper bound note that dB̄
dB

· 1BB̄ = dB̄ ·
1B̄ ⊗ Di

B � Di
BB̄

for all i ∈ I, and hence we get for the objective function (with
dA = dB̄ = M)

FLOCC(1)(N ,M) � dĀdB̄ · Tr
[
(
JN̄

AB
⊗ ΦAB̄

)1/2
(

∑

i∈I

Ei
AĀ

⊗ 1BB̄

)
(
JN̄

AB
⊗ ΦAB̄

)1/2
]

= dĀdB̄ · Tr
[(

1Ā

dĀ

⊗ 1A

dA

) ∑

i∈I

Ei
AĀ

]

= Tr

[
∑

i∈I

Ei
AĀ

]

= 1.
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812 M. Berta et al.

For the second upper bound, note that from Ei
AĀ

� 0, Di
BB̄

� 0 we get

FLOCC(1)(N ,M) � dĀdB · Tr
⎡

⎣
(
JN̄
AB

⊗ ΦAB̄

)
⎛

⎝
∑

i∈I

Ei
AĀ

⊗
∑

j∈I

D
j
BB̄

⎞

⎠

⎤

⎦ .

Now, we employ that dĀ · Ei
A ⊗ 1Ā � Ei

AĀ
giving dĀ

dA
· 1AĀ � ∑

i∈I Ei
AĀ

, which
in turn leads to

FLOCC(1)(N ,M) �
d2

Ā
dB

dA
· Tr

⎡

⎣
(
JN̄

AB
⊗ ΦAB̄

)
⎛

⎝1AĀ ⊗
∑

j∈I

Dj
BB̄

⎞

⎠

⎤

⎦

=
d2

Ā
dB

dA
· Tr

⎡

⎣
(

JN
B ⊗ 1B̄

dB̄

)∑

j∈I

Dj
BB̄

⎤

⎦

=
d2

Ā
dB

d2
AdB̄

· Tr
⎡

⎣JN
B

∑

j∈I

Dj
B

⎤

⎦ =
d2

Ā
dB

d2
AdB̄

· Tr
[
JN

B dA
1B

dB

]
=

d2
Ā

dAdB̄

.

For the third upper bound, note that 1BB̄ � Di
BB̄

and thus

FLOCC(1)(N ,M) � dĀdB · Tr
[
(
JN̄

AB
⊗ ΦAB̄

)
(

∑

i∈I

Ei
AĀ

⊗ 1BB̄

)]

= dĀdB · Tr
[(

1Ā

dĀ

⊗ 1A

dA

)∑

i∈I

Ei
AĀ

]

=
dB

dA
· Tr

[
∑

i∈I

Ei
AĀ

]

=
dB

dA
.

��

A.2. Hierarchy of outer bounds

By removing one of the two conditions in Theorem 4.4, we get the following approx-
imation for the set of LOCC(1) channels—stated in terms of the corresponding Choi
states.

Proposition A.5 Let ρAĀ(BB̄)n
1

be a quantum state with

ρAĀ(BB̄)n
1
= Uπ

(BB̄)n
1
(ρAĀ(BB̄)n

1
) ∀π ∈ Sn, ρA =

1A

dA
, ρ(BB̄)n−1

1 Bn
= ρ(BB̄)n−1

1
⊗ 1Bn

dB
.

Then, we have for 0 < k < n that

∥
∥
∥
∥ρAĀ(BB̄)k

1
−

∑
i∈I σi

AĀ
⊗

(
ωi

BB̄

)⊗k
∥
∥
∥
∥
1

is

upper bounded by the same term as in Theorem 4.4, where ωi
BB̄

� 0 with ωi
B = 1B

dB

and σi
AĀ

� 0 with
∑

i∈I σi
A = 1A

dA
.
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The n-th level of the SDP hierarchy then becomes

SDPLOCC(1)n (N ,M) := max dĀdB · Tr
[(

JN̄
AB1

⊗ ΦAB̄1

)
ZAĀB1B̄1

]

s.t. ZAĀ(BB̄)n
1

� 0, Uπ
(BB̄)n

1

(
ZAĀ(BB̄)n

1

)
= ZAĀ(BB̄)n

1
∀π ∈ Sn

ZABn
1

=
1ABn

1

dAdn
B

, Z
AĀ(BB̄)

n−1
1

Bn
= Z

AĀ(BB̄)
n−1
1

⊗ 1Bn

dB
.

By inspection, the only difference between SDPn(N ,M) and SDPLOCC(1)n (N ,M) is
the weakened second to last condition. The asymptotic convergence follows immedi-
ately from Proposition A.5.

Theorem A.6 Let N be a quantum channel and n,M ∈ N. Then, we have

SDPLOCC(1)n+1 (N ,M) � SDPLOCC(1)n (N ,M) and FLOCC(1)(N ,M) = lim
n→∞

SDPLOCC(1)n (N ,M).

Note that for SDPLOCC(1)n (N ,M) we slightly strengthened the last two conditions
by including some more A- and B-systems in the conditions compared to the minimal
conditions

ZA =
1A

dA
and Z

(BB̄)
n−1
1

Bn
=

1Bn

dB
⊗ Z

(BB̄)
n−1
1

needed for Proposition A.5. By an iterative argument the last condition implies in
particular that

ZAĀBn
1 B̄1

=
1Bn

2

dn
B

⊗ ZAĀB1B̄1
,

which together with the other three conditions in SDPLOCC(1)n (N ,M) then corre-
sponds to the notion of extendible channels from [45, Definition 5] (also see [26]
for similar conditions). We note, however, that when relaxing the conditions to n-
extendible channels our proofs for the asymptotic convergence of the resulting outer
bounds do not apply.

The SDP relaxations again behave naturally in the sense that they are upper bounded
by one.

Lemma A.7 Let N be a quantum channel and n,M ∈ N. Then, we have

0 � SDPLOCC(1)n (N ,M) � 1.

Proof The lower bound is trivial. For the upper bound, by the monotonicity in n

(Theorem A.6) it is enough to restrict to n = 1. As in the proof of Lemma A.4, we

make use of dB̄
dB

· ZAĀ ⊗ 1B1B̄1
� ZAĀB1B̄1

. This again gives
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814 M. Berta et al.

SDPLOCC(1)1 (N ,M) � dĀdB · Tr
[(

JN̄
AB

⊗ ΦAB̄

) dB̄

dB
· ZAĀ ⊗ 1B1B̄1

]
= 1.

��
We can again add PPT constraints and we denote the resulting relaxations

by SDPLOCC(1)n,PPT (N ,M). In the following we study more closely these levels

SDPLOCC(1)n,PPT (N ,M), which are our tightest outer bound relaxations on the LOCC(1)-
assisted channel fidelity. We find

SDPLOCC(1)1,PPT (N ,M) = max dĀdB · Tr
[(

JN̄
AB

⊗ ΦAB̄

)
ZAĀBB̄

]

s.t. ZAĀBB̄ � 0, Z
TBB̄

AĀBB̄
� 0

ZAB =
1AB

dAdB
, ZAĀB = ZAĀ ⊗ 1B

dB
.

This is exactly the SDP outer bound found in [53, Section IV], which simplifies to

SDPLOCC(1)1,PPT (N ,M) = max dĀdB · Tr
[
JN̄
AB

XĀB

]

s.t. ρĀ ⊗ 1B

dB
� XĀB � 0, Tr[ρĀ] = 1

ρĀ ⊗ 1B

dB
� M · X

TB

ĀB
� −ρĀ ⊗ 1B

dB
.

By inspection, this corresponds to SDP1,PPT(N ,M) but with one missing constraint,
namely M2XB = 1B

dB
. For n = 2 we get

SDPLOCC(1)2,PPT (N ,M) = max dĀdB · Tr
[(

JN̄
AB1

⊗ ΦAB̄1

)
ZAĀB1B̄1

]

s.t. ZAĀB1B2B̄1B̄2
� 0, Z

TAĀ

AĀB1B2B̄1B̄2
� 0, Z

TB2B̄2
AĀB1B2B̄1B̄2

� 0

Uπ
B1B2B̄1B̄2

(
ZAĀB1B2B̄1B̄2

)
= ZAĀB1B2B̄1B̄2

∀π ∈ Π2

ZAB1B2 =
1AB1B2

dAd2
B

, ZAĀB1B2B̄1
= ZAĀB1B̄1

⊗ 1B2

dB
,

and we recover the exact same conditions as for the notion of extendible channels [45,
Definition 5].

Appendix B: Numerical examples

B.1. Methods

In the following we present the proof of concept numerics we implemented to test the
low levels of our hierarchy for the application of approximate quantumerror correction.
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The experiments have been done in MATLAB using the QETLAB library [44], CVX
[35], MOSEK [2], and SDPT3 [71].13 As discussed in Lemma 3.2, the authors of
[56] gave a rank loop condition to certify that a certain level of the hierarchy already
gives the optimal value. We restate the condition here in the exact form needed for
approximate quantum error correction.

Lemma B.1 Let WAĀ(BB̄)n
1

= Uπ
(BB̄)n

1

(
WAĀ(BB̄)n

1

)
for all π ∈ Sn and fixed

0 � k � n such that W
T(BB̄)n

k+1

AĀ(BB̄)n
1

� 0. If we have

rank
(
WAĀ(BB̄)n

1

)
� max

{
rank

(
WAĀ(BB̄)k

1

)
, rank

(
W(BB̄)n

k+1

)}
,

then WAĀBB̄ is separable with respect to the partition AĀ|BB̄.

Using Lemma B.1 it is in principle possible to, e.g., certify the optimality of the
first level using the second level of our hierarchy. Moreover, if the criterion is fulfilled
it will also allow us to extract the actual encoder and decoder of the optimal quantum
error correction code. However, in order to facilitate the search for solutions having
rank loops we need to look for low rank solutions WAĀ(BB̄)n

1
. It is not possible to

directly write a rank condition into our semidefinite programs because rank constraints
are not convex. In addition, SDP solvers typically give high rank solutions since they
tend to look for solutions at the interior of the convex set.14 Nevertheless, a possible
strategy is to find a solution WAĀ(BB̄)n

1
and then employ a heuristic to minimize the

rankwhile keeping the hierarchy constraints. The heuristic we found themost effective
for our purposes was the log-det method described in [30]. The idea is to minimize
the first-order Taylor series expansion of

log det
(
WAĀ(BB̄)n

1
+ δ · 1

)
,

which is used as a smooth surrogate for rank
(
WAĀ(BB̄)n

1

)
and δ > 0 is a small

regularization constant. The procedure is iterative, meaning that we start from W0 =
1AĀ(BB̄)n

1
, then compute W1 minimizing the log-det objective function, and so on.

In particular, the choice W0 = 1AĀ(BB̄)n
1
connects the method to the trace heuristic,

which is known to be an effective heuristic for rank reduction. We stop after a certain
number l of iterations and then we find a solution Wl having hopefully lower rank
than the original rank

(
WAĀ(BB̄)n

1

)
.

B.2. Qubit Channels

We computed SDP relaxations in the plain coding setting for all the most common
qubit channels: depolarizing, amplitude damping, bit flip, phase flip, bit-phase flip,

13 All our code is available at https://github.com/FrancescoBorderi/Quantum-SDPs.
14 We noticed that SDPT3 compared to MOSEK gives results having in general lower rank.
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Fig. 1 Comparison of the SDP upper bounds n = 1, 2 on the channel fidelity of the 3-dimensional
depolarizing channel for LOCC(1)-assisted coding (see Appendix A). We see an improvement for the
second level for p ∈ (0, 0.8)

Werner-Holevo and generalized Werner-Holevo channel. We found the upper bounds

SDP1,PPT(N2, 2) = SDP2,PPT(N2, 2) = SDP3,PPT(N2, 2) = SDP1(N2, 2)

= SDP2(N2, 2) = SDP3(N2, 2),

where the subscript in N2 refers to the two-dimensional input and output of the chan-
nel. These identities also remain true for random qubit channels and one might then
conjecture that for qubit channels indeed already SDP1(N2, 2) captures F(N , 2).

For the qubit depolarizing channel the trivial coding scheme is known to be optimal
and we retrieve this result using the rank loop condition of the second level based on
the log-det method. Similarly, for the qubit bit flip channel with parameter p = 0.1
we find a rank-one state solution of the second level using again the log-det method,
implying that the rank loop condition holds. In this case the solution is not just the state
associated with the trivial coding scheme via the Choi isomorphism but the resulting
encoder/decoder pair with optimal fidelity 0.9 is given by the unitary channels with
Kraus matrices UE = −|1〉〈0| + |0〉〈1| and UD = |0〉〈0| − |1〉〈1|, respectively. Note
that the trivial coding scheme is largely suboptimal for a qubit bit flip channel with
p = 0.1, as the corresponding fidelity is 0.1.
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B.3. Qutrit Channels

We computed SDP relaxations in the plain coding setting for the following qutrit
channels: depolarizing, Werner-Holevo and generalized Werner-Holevo channel. We
found the upper bounds SDP1,PPT(N3, 2) = SDP2,PPT(N3, 2) and this identity also
remains true for random qutrit channels. Removing the PPT conditions, however, we
found qutrit channels N3 such that SDP2(N3, 2) < SDP1(N3, 2).

B.4. Depolarizing channel

The depolarizing channel for p ∈ [0, 4/3] is given as

Depd : ρĀ �→ p · Tr[ρĀ]
1B

dB
+ (1− p) · ρB,

where d denotes the dimension of the input and output. Notice that even though often
the channel is only studied for p ∈ [0, 1] where we can interpret p as a depolarizing
probability, the above expression also represents a channel for p ∈ (1, 4/3] (as, e.g.,
discussed in [66, Chapter 3]). We find that

SDP1,PPT(Dep2, 2) = SDP2,PPT(Dep2, 2) = SDP1,PPT(Dep3, 2) = SDP2,PPT(Dep3, 2).

However, in Section B.3 we found that in general removing the PPT conditions allows
us to see a difference for the first two levels. This behaviour is not shown by the qutrit
depolarizing channel, probably due to its highly symmetrical structure. We computed
the upper bound for LOCC(1) coding (see Appendix A) and found for p ∈ (0, 0.8)
(Fig. 1) that

SDPLOCC(1)2,PPT (Dep2, 2) = SDPLOCC(1)1,PPT (Dep2, 2), while SDP
LOCC(1)
2,PPT (Dep3, 2)

< SDPLOCC(1)1,PPT (Dep3, 2).

We compared, for the plain coding setting, the n = 1 level for five repetitions of
the qubit depolarizing channel with the fidelity of the trivial coding scheme, as well
as the 5 qubit stabilizer code from [7]. In particular, following [75] we exploited the
symmetries of the qubit depolarizing channel to get the linear program

SDP1,PPT
(
Dep⊗N

2 , 2
)
= max

N∑

i=0

(
N

i

) (
1−

3p
4

)i (
3p
4

)N−i

mi

s.t. 0 � mi � 1 i ∈ {0, . . . ,N}

−
1
2

�
N∑

i=0

xi,kmi � 1
2

k ∈ {0, . . . ,N}
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Fig. 2 Comparison of the SDP upper bound n = 1 on the channel fidelity for five repetitions of the qubit
depolarizing channel in the plain coding setting, with the trivial coding scheme and the 5 qubit stabilizer
code from [7]. Notice the intersection of the 5 qubit code and the trivial scheme in the regionp ∈ (0.1, 0.2)
and the singular behaviour of the first level in the region p ∈ (0.6, 0.7). In addition, for p ∈ [1, 4/3] the
behaviour of the first level seems to match exactly with the lower bound obtained with an iterative seesaw
algorithm reported in Fig. 3.7 of [66, Chapter 3]

N∑

i=0

(
N

i

)
3N−imi = 22N−2.

wherexi,k = 1
dN

∑min{i,k}
r=max{0,i+k−N}

(k
r

)(N−k
i−r

)
(−1)i−r(d−1)k−r(d+1)N−k+r−i

with i,k ∈ {0, . . . ,N}. Notice that the number of variables is an affine function of N.
The results are reported in Fig. 2. Comparing these with Figure 3.7 in [66, Chapter 3],
it seems that the first level of the hierarchy matches their lower bounds in the region
p ∈ [1, 4/3]. Notice the intersection of the five qubit code and the trivial coding scheme
in the region p ∈ (0.1, 0.2) and the singular behaviour in the region p ∈ (0.6, 0.7). We
have also examined five, ten, fifteen, twenty and twenty five repetitions of the qubit
depolarizing channel, again using the above linear program. The results are shown in
Fig. 3. Notice that the singular behaviour noted in Fig. 2 is now even more accentuated
when increasing the number of repetitions.

B.5. Amplitude damping channel

The qubit amplitude damping channel with damping probability γ ∈ [0, 1] is given as
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Fig. 3 Comparison of the SDP upper bound n = 1 on the channel fidelity for 5, 10, 15, 20, 25 repetitions
of the 2-dimensional depolarizing channel in the plain coding setting. Notice that the singular behaviour
of the first level in the region p ∈ (0.6, 0.7) is even more accentuated with the increase of the number of
repetitions

Ampγ : ρĀ → E0
BρBE0

B
†
+ E1

BρBE1
B
†
, where E0

B = |0〉〈0|+
√
1− γ|1〉〈1|, E1

B

=
√

γ|0〉〈1|.

We compared the results given by one, two, three, and four repetitions of the channel
for the level n = 1. The bounds are shown in Fig. 4, compared with the fidelity of
the trivial coding scheme, and the 4 qubit code from [54]. Notice the overlap between
the first level of the hierarchy and the trivial coding scheme for the one-shot setting.
Comparing these results with Figure 3.12 in [66, Chapter 3] we see that there is gap
between their lower bounds (that significantly improve on the trivial coding scheme)
and our upper bounds.

Appendix C: Worst case error criteria

C.1. Setting

So far we have used the channel fidelity from Definition 4.1 as the measure to study
approximate quantum error correction—which corresponds to the average error case.
In this appendix, we consider the diamond norm to study the worst case error and we
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Fig. 4 Comparison of the SDP upper bound n = 1 on the channel fidelity of the qubit amplitude damping
channel for 1,2,3 and 4 repetitions in the plain coding setting, as well as the trivial encoder and decoder and
the 4 qubit code from [54]

find a program for which the hierarchy can be used to generate, in this case, lower
bounds. We prove the sequence of semidefinite relaxations do in fact converge to the
exact value of the original optimization program.

Definition C.1 Let NĀ→B be a quantum channel and M ∈ N, with M = dA = dB̄.
The channel distance is defined as

Δ(N ,M) := min
1
2

‖DB→B̄ ◦ NĀ→B ◦ EA→Ā − IA→B̄‖♦

s.t. DB→B̄, EA→Ā quantum channels.

The following lemmawrites the channel distance as given inDefinition C.1 in terms
of the Choi matrices of the encoder EA→Ā and decoder DB→B̄, respectively.

Lemma C.2 Let NĀ→B be a quantum channel and M ∈ N. Then, we have that

Δ(N ,M) = min λ

s.t. EAĀ � 0, EA =
1A

dA
, DBB̄ � 0, DB =

1B

dB

ZAB̄ � 0,
λ

dA
· 1A � ZA

ZAB̄ + ΦAB̄ � dĀdB · TrĀB

[(
1A ⊗ JN̄

AB
⊗ 1B̄)(EAĀ ⊗ DBB̄

)]
,
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where JN̄
AB

denotes the Choi matrix of NĀ→B.

Proof Following [77], the channel distance Δ(N ,M) can be written as

Δ(N ,M) = min ‖ZA‖∞
s.t. DB→B̄, EA→Ā quantum channels

ZAB̄ � 0, ZAB̄ � dA · JD◦N◦E−I
AB̄

.

We simplify

JD◦N◦E−I
AB̄

= JD◦N◦E
AB̄

− JI
AB̄

= JD◦N◦E
AB̄

− ΦAB̄,

write for the infinity norm ‖ZA‖∞ = min {λ ∈ R : λ · 1A � ZA}, and relabel ZAB̄
dA

as ZAB̄, leading to

Δ(N ,M) = min λ

s.t. DB→B̄, EA→Ā quantum channels

ZAB̄ � 0,
λ

dA
· 1A � ZA

ZAB̄ + ΦAB̄ � JD◦N◦E
AB̄

. (22)

Following [53] and in particular [76, Equation 7], we have the Choi state

JD◦N◦E
AB̄

= dĀdB · TrĀB

[(
1A ⊗ JN̄

AB
⊗ 1B̄

)(
JE
AĀ

⊗ JD
BB̄

)]

and writing JE
AĀ

= EAĀ as well as JD
BB̄

= DBB̄ concludes the proof. ��

C.2. Hierarchy of lower bounds

Similarly as in Sect. 4.4, we define a hierarchy of semidefinite programs labelled by an
index n. Our framework directly applies as the structure of the optimization problem
derived in Lemma C.2 involves the tensor product EAĀ ⊗ DBB̄. The n-th level of
the SDP hierarchy then generates the lower bounds SDPΔ

n(N ,M) for the distance
Δ(N ,M) as

SDPΔ
n(N ,M) := min λ

s.t. WAĀ(BB̄)n
1

� 0, Tr
[
WAĀ(BB̄)n

1

]
= 1

WAĀ(BB̄)n
1
= Uπ

(BB̄)n
1

(
WAĀ(BB̄)n

1

)
∀π ∈ Sn

WA(BB̄)n
1
=

1A

dA
⊗ W(BB̄)n

1
, WAĀ(BB̄)n−1

1 Bn

= WAĀ(BB̄)n−1
1

⊗ 1Bn

dB
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ZAB̄ � 0,
λ

dA
· 1A � ZA

ZAB̄ + ΦAB̄ � dĀdB · TrĀB

[(
1A ⊗ JN̄

AB
⊗ 1B̄

)
WAĀBB̄

]
.

We can also add PPT constraints and denote the resulting relaxations by SDPΔ
n,PPT(N ,

M). The following theorem states the convergence of the hierarchy.

Theorem C.3 Let N be a quantum channel and n,M ∈ N. Then, we have

0 � Δ(N ,M) − SDPΔ
n(N ,M) � poly(d)√

n
implying Δ(N ,M) = lim

n→∞
SDPΔ

n(N ,M),

where d = max{dA,dĀ,dB,dB̄}.

Proof The bound 0 � Δ(N ,M) − SDPΔ
n(N ,M) holds by construction and thus we

consider the upper bound. First, note that again applying (22) we can write

SDPΔ
n(N ,M) = min

1
2

‖W(N )A→B̄ − IAB̄‖♦

s.t. WAĀ(BB̄)n
1

� 0, Tr
[
WAĀ(BB̄)n

1

]
= 1

WAĀ(BB̄)n
1
= Uπ

(BB̄)n
1

(
WAĀ(BB̄)n

1

)
∀π ∈ Sn

WA(BB̄)n
1
=

1A

dA
⊗ W(BB̄)n

1
, WAĀ(BB̄)n−1

1 Bn

= WAĀ(BB̄)n−1
1

⊗ 1Bn

dB

with the quantum channel W(N )A→B̄ defined via its Choi state

J
W(N )

AB̄
:= dĀdB · TrĀB

[(
1A ⊗ JN̄

AB
⊗ 1B̄

)
WAĀBB̄

]
.

Second, using the de Finetti Theorem 2.3 we get that for every feasible Choi state
WAĀ(BB̄)

n
1

in SDPΔ
n(N ,M), there exists a feasible Choi state EAĀ ⊗ DBB̄ in

Δ(N ,M) from Lemma C.2, such that

‖EAĀ ⊗ DBB̄ − WAĀBB̄‖1 � poly(d)√
n

.

Third, employing the triangle inequality for the diamond norm we have

‖DB→B̄ ◦ NĀ→B ◦ EA→Ā − IA→B̄‖♦ − ‖W(N )A→B̄ − IA→B̄‖♦
� ‖DB→B̄ ◦ NĀ→B ◦ EA→Ā − W(N )A→B̄‖♦ . (23)
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Forth, relating the trace norm distance of Choi states to the diamond norm distance of
quantum channels [73, Lemma 7], we have

‖DB→B̄ ◦ NĀ→B ◦ EA→Ā − W(N )A→B̄‖♦ � dA ·
∥
∥
∥JD◦N◦E

AB̄
− J

W(N )

AB̄

∥
∥
∥
1

and thanks to the monotonicity under partial trace and Hölder’s inequality this bounds
(23) as

‖DB→B̄ ◦ NĀ→B ◦ EA→Ā − W(N )A→B̄‖♦

� dAdĀdB ·
∥
∥
∥TrĀB

[(
1A ⊗ JN̄

AB
⊗ 1B̄

)
(EAĀ ⊗ DBB̄ − WAĀBB̄)

]∥∥
∥
1

� dAdĀdB ·
∥
∥
∥
(
1A ⊗ JN̄

AB
⊗ 1B̄

)
(EAĀ ⊗ DBB̄ − WAĀBB̄)

∥
∥
∥
1

� dAdĀdB ·
∥
∥
∥1A ⊗ JN̄

AB
⊗ 1B̄

∥
∥
∥

∞
‖EAĀ ⊗ DBB̄ − WAĀBB̄‖1

� poly(d)√
n

with d = max{dA,dĀ,dB,dB̄}.

Finally, optimising in (23) over all feasibleChoi statesWAĀ(BB̄)
n
1
and thenoptimising

over all feasible Choi states EAĀ ⊗ DBB̄, we get the claimed upper bound

Δ(N ,M) − SDPΔ
n(N ,M) � poly(d)√

n
.

��

Numerically, we have found that for the qubit depolarizing channel the first level
of our hierarchy already gives the exact optimal value

Δ(Dep2, 2) = SDPΔ
1,PPT(Dep2, 2),

which coincides with 1 − F(Dep2, 2). That is, for the qubit depolarizing channel the
average and worst case error criteria become the same.

Appendix D: Distortion with side information

The following lemma shows that if the A system is not measured, then the loss in
distinguishability after applying a measurement on the B system can be bounded
independently of dA.

Lemma D.1 Consider a state two-design on B, i.e., a set of rank-one projectors
{Pz}z∈{1,...,t} such that 1

t

∑t
z=1 Pz ⊗ Pz = 2Psym

dB(dB+1) , where Psym denotes the pro-
jector onto the symmetric subspace of B ⊗ B. Let MB be the measurement defined
as
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MB(X) =
∑

z

dB

t
· Tr[PzX

]
|z〉〈z|,

and ξAB be a Hermitian matrix on A ⊗ B. Then, we have that

‖(IA ⊗ MB)(ξAB)‖1 � 1

d2
B(dB + 1)

‖ξAB‖1.

We note that the existence of such two-designs is known for any dimension, see
e.g., [68, Corollary 5.3] for unitary two-designs and applying these unitaries to any
fixed state leads to a state two-design.

Proof For any full rank quantum state σA, we have by a Hölder type inequality for
σ-weighted Schatten norms that (see, e.g., [58] or [6])

‖(IA ⊗ MB)(ξAB)‖1 �

∥
∥
∥σ

−1/4
A (IA ⊗ M)(ξAB)σ

−1/4
A

∥
∥
∥
2

2∥
∥
∥σ

−1/2
A (IA ⊗ MB)(ξAB)σ

−1/2
A

∥
∥
∥

∞

.

For example, the above inequality can be obtained using [6, Corollary 3] with the

operator σ
−1/2
A (IA ⊗ MB)(ξAB)σ

−1/2
A , weight σ, and pθ = 2, θ = 1/2, p0 = 1,

p1 = ∞. We note that this particular Hölder type inequality for σ-weighted norms is
elementary and follows easily from the usual Hölder inequality, but one way of poten-
tially improving the dimension dependence in Lemma D.1 might be to use another
Hölder inequality, in particular the (1, 4) inequality.

Henceforth, we abbreviated ≡ dB. To further bound the numerator, letting ξ̃AB :=

σ
−1/4
A ξABσ

−1/4
A we get

‖(IA ⊗ MB)(ξ̃AB)‖2
2 =

∥
∥
∥∥
∥

∑

z

d

t
|z〉〈z| ⊗ TrB

[
(1A ⊗ Pz)ξ̃AB

]
∥
∥
∥∥
∥

2

2

=
∑

z

d2

t2
Tr

[
TrB

[
(1A ⊗ Pz)ξ̃AB

] ⊗ TrB̄
[
(1Ā ⊗ Pz)ξ̃ĀB̄

]†
FAĀ

]

=
∑

z

d2

t2
Tr

[((
(1A ⊗ Pz)ξ̃AB

) ⊗ (
(1Ā ⊗ Pz)ξ̃ĀB̄

)†)
(FAĀ ⊗ 1BB̄)

]

=
d2

t2
Tr

[(
ξ̃AB ⊗ ξ̃†

ĀB̄

)(
∑

z

(1AĀ ⊗ Pz ⊗ Pz)

)

(FAĀ ⊗ 1BB̄)

]

=
1
t

d2

d(d + 1)
Tr

[(
ξ̃AB ⊗ ξ̃†

ĀB̄

)
(1AĀ ⊗ (1BB̄ + FBB̄)) (FAĀ ⊗ 1BB̄)

]

=
1
t

d2

d(d + 1)

(
Tr

[
ξ̃Aξ̃†

A

]

︸ ︷︷ ︸
�0

+Tr
[
ξ̃ABξ̃†

AB

]

︸ ︷︷ ︸
=‖ξ̃AB‖2

2

)

� 1
t

d2

d2(d + 1)
‖ξAB‖2

1,
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where F denotes the swap operator (as defined in Sect. 2.1) and in the last step used
the Hölder inequality (see, e.g., [10])

‖ξAB‖1 =
∥
∥
∥σ1/4σ−1/4ξABσ−1/4σ1/4

∥
∥
∥
1

�
∥
∥
∥σ1/4 ⊗ 1B

∥
∥
∥
4

∥
∥
∥σ

−1/4
A ξABσ

−1/4
A

∥
∥
∥
2

∥
∥
∥σ1/4 ⊗ 1B

∥
∥
∥
4

�
√

d
∥
∥ξ̃AB

∥
∥
2 .

For further bounding the denominator we write

∥
∥
∥σ

−1/2
A (IA ⊗ MB)(ξAB)σ

−1/2
A

∥
∥
∥

∞
= max

z

d

t

∥
∥
∥TrB

[
(1A ⊗ Pz)σ

−1/2
A ξABσ

−1/2
A

]∥∥
∥

∞

� d

t
max

|φ〉A ,|ψ〉B

〈φ|A ⊗ 〈ψ|Bσ
−1/2
A ξABσ

−1/2
A |φ〉A ⊗ |ψ〉B

� d

t

∥
∥
∥σ

−1/2
A ξABσ

−1/2
A

∥
∥
∥

∞
,

where we used the fact that Pz is a rank 1 projector. Now, observe that for any ξAB,
there exists a σA of unit trace such that

√
ξABξ†AB

‖ξAB‖1 � d · σA ⊗ 1B.

This just follows from, e.g., [8, Lemma B.6], where it is shown that we can in fact
choose15

σA = ‖ξAB‖−1
1 · TrB

[√
ξABξ†AB

]
.

As a result, we have

√
ξABξ†AB � d‖ξAB‖1 · σA ⊗ 1B.

As ξAB is Hermitian, we can decompose it into the positive and negative part ξAB =

P − Q with P and Q positive semidefinite and PQ = 0, then
√

ξABξ†AB = P + Q

and so −
√

ξABξ†AB � ξAB �
√

ξABξ†AB. Thus, we get

−dB‖ξAB‖1 · σA ⊗ 1B � ξAB � dB‖ξAB‖1 · σA ⊗ 1B,

and we find ‖σ
−1/2
A ξABσ

−1/2
A ‖∞ � d‖ξAB‖1. This concludes the proof. ��

15 By a continuity argument σA can be assumed to have full rank.
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Appendix E: Missing proofs

In the following we give the proofs omitted in the main discussion.

Proof The lower bound is trivial and the upper bounds follow directly from the more
general statements about the optimal fidelity under additional classical communication
assistance as given in Lemma A.4. ��
Proof The lower bound is trivial. By themonotonicity inn (Theorem 4.8), it is enough
to restrict ton = 1 for the upper bounds.16 As in the proof of LemmaA.4wemostly use
that for any sub-normalized bipartite quantum state ρXY we havedX ·1X⊗ρY � ρXY .

For the first upper bound we find dB̄
dB

· WAĀ ⊗ 1B1B̄1
� WAĀB1B̄1

, which gives for
the objective function

SDP1(N ,M) � dĀdB · Tr
[(

JN̄
AB1

⊗ ΦAB̄1

) (
dB̄

dB
· WAĀ ⊗ 1B1B̄1

)]

= dĀdB̄ · Tr
[(

1A

dA
⊗ 1Ā

dĀ

)
WAĀ

]
= Tr [WAĀ] = 1.

For the second upper bound we find similarly as for the first upper bound dĀ
dA

·1AĀ ⊗
WB1B̄1

� WAĀB1B̄1
, which then leads to the claim by the same argument as for the

second upper bound in Lemma 4.3. ��
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