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Abstract
We study the local convergence of classical quasi-Newton methods for nonlinear
optimization. Although it was well established a long time ago that asymptotically
these methods converge superlinearly, the corresponding rates of convergence still
remain unknown. In this paper, we address this problem. We obtain first explicit non-
asymptotic rates of superlinear convergence for the standard quasi-Newton methods,
which are based on the updating formulas from the convexBroyden class. In particular,
for the well-known DFP and BFGS methods, we obtain the rates of the form ( nL2

μ2k
)k/2

and ( nL
μk )k/2 respectively, where k is the iteration counter, n is the dimension of the

problem, μ is the strong convexity parameter, and L is the Lipschitz constant of the
gradient.
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1 Introduction

Motivation In this work, we investigate the classical quasi-Newton algorithms for
smooth unconstrained optimization, the main examples of which are the Davidon–
Fletcher–Powell (DFP) method [1,2] and the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) method [3–7]. These algorithms are based on the idea of replacing the exact
Hessian in the Newton method with some approximation, that is updated in iterations
according to certain formulas, involving only the gradients of the objective function.
For an introduction into the topic, see [8] and [9, Chapter 6]; also see [10] for the
treatment of quasi-Newton algorithms in the context of nonsmooth optimization and
[11–13] for randomized variants of quasi-Newton methods.

One of the questions about quasi-Newtonmethods, that has been extensively studied
in the literature, is their superlinear convergence. First theoretical results here were
obtained for the methods with exact line search, first by Powell [14], who analyzed
the DFP method, and then by Dixon [15,16], who showed that with the exact line
search all quasi-Newton algorithms in the Broyden family [17] coincide. Soon after
that Broyden, Dennis and Moré [18] considered the quasi-Newton algorithms without
line search and proved the local superlinear convergence of DFP, BFGS and several
other methods. Their analysis was based on the Frobenius-norm potential function.
Later, Dennis and Moré [19] unified the previous proofs by establishing the necessary
and sufficient condition of superlinear convergence. This condition together with the
original analysis of Broyden, Dennis and Moré have been applied since then in almost
every work on quasi-Newton methods for proving superlinear convergence (see e.g.
[20–27]). Finally, one should mention that an important contribution to the theoretical
analysis of quasi-Newton methods has been made by Byrd, Liu, Nocedal and Yuan
in the series of works [28–30], where they introduced a new potential function by
combining the trace with the logarithm of determinant.

However, the theory of superlinear convergence of quasi-Newton methods is still
far from being complete. The main reason for this is that all currently existing results
on superlinear convergence of quasi-Newton methods are only asymptotic: they sim-
ply show that the ratio of successive residuals in the method tends to zero as the
number of iterations goes to infinity, without providing any specific bounds on the
corresponding rate of convergence. It is therefore important to obtain some explicit
and non-asymptotic rates of superlinear convergence for quasi-Newton methods.

This observation was the starting point for a recent work [31], where the greedy
analogs of the classical quasi-Newton methods have been developed. As opposed to
the classical quasi-Newton methods, which use the difference of successive iterates
for updating Hessian approximations, these methods employ basis vectors, greedily
selected to maximize a certain measure of progress. As shown in [31], greedy quasi-
Newton methods have superlinear convergence rate of the form (1 − μ

nL )k2/2( nL
μ

)k ,
where k is the iteration counter, n is the dimension of the problem, μ is the strong
convexity parameter, and L is the Lipschitz constant of the gradient.

In this work, we continue the same line of research but now we study the classical
quasi-Newton methods. Namely, we consider the methods, based on the updates from
the convex Broyden class, which is formed by all convex combinations of the DFP
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and BFGS updates. For this class, we derive explicit bounds on the rate of superlinear
convergence of standard quasi-Newton methods without line search. In particular, for
the standard DFP and BFGS methods, we obtain the rates of the form ( nL2

μ2k
)k/2 and

( nL
μk )k/2 respectively.

Contents This paper is organized as follows. First, in Sect. 2, we study the convex
Broyden class of updating rules for approximating a self-adjoint positive definite linear
operator, and establish several important properties of this class. Then, in Sect. 3, we
analyze the standard quasi-Newton scheme, based on the updating rules from the
convex Broyden class, as applied to minimizing a quadratic function. We show that
this scheme has the same rate of linear convergence as that of the classical gradient
method, and also a superlinear convergence rate of the form (

Q
k )k/2, where Q ≥ 1 is a

certain constant, related to the condition number, and depending on the method. After
that, in Sect. 4, we consider the general problem of unconstrainedminimization and the
corresponding quasi-Newton scheme for solving it. We show that, for this scheme, it
is possible to prove absolutely the same results as for the quadratic function, provided
that the starting point is sufficiently close to the solution. In Sect. 5, we compare
the rates of superlinear convergence, that we obtain for the classical quasi-Newton
methods, with the corresponding rates of the greedy quasi-Newton methods. Sect. 6
contains some auxiliary results, that we use in our analysis.

Notation In what follows, E denotes an arbitrary n-dimensional real vector space.
Its dual space, composed by all linear functionals on E, is denoted by E

∗. The value
of a linear function s ∈ E

∗, evaluated at point x ∈ E, is denoted by 〈s, x〉.
For a smooth function f : E → R, we denote by ∇ f (x) and ∇2 f (x) its gradient

and Hessian respectively, evaluated at a point x ∈ E. Note that ∇ f (x) ∈ E
∗, and

∇2 f (x) is a self-adjoint linear operator from E to E∗.
The partial ordering of self-adjoint linear operators is defined in the standard way.

We write A 	 A1 for A, A1 : E → E
∗ if 〈(A1 − A)x, x〉 ≥ 0 for all x ∈ E, and

W 	 W1 for W , W1 : E∗ → E if 〈s, (W1 − W )s〉 ≥ 0 for all s ∈ E
∗.

Any self-adjoint positive definite linear operator A : E → E
∗ induces in the spaces

E and E
∗ the following pair of conjugate Euclidean norms:

‖h‖A
def= 〈Ah, h〉1/2, h ∈ E, ‖s‖∗

A
def= 〈s, A−1s〉1/2, s ∈ E

∗. (1.1)

When A = ∇2 f (x), where f : E → R is a smooth function with positive definite
Hessian, and x ∈ E, we prefer to use notation ‖ · ‖x and ‖ · ‖∗

x , provided that there is
no ambiguity with the reference function f .

Sometimes, in the formulas, involving products of linear operators, it is convenient
to treat x ∈ E as a linear operator fromR to E, defined by xα = αx , and x∗ as a linear
operator from E

∗ to R, defined by x∗s = 〈s, x〉. Likewise, any s ∈ E
∗ can be treated

as a linear operator fromR toE∗, defined by sα = αs, and s∗ as a linear operator from
E to R, defined by s∗x = 〈s, x〉. In this case, xx∗ and ss∗ are rank-one self-adjoint
linear operators from E

∗ to E and from E
∗ to E respectively, acting as follows:

(xx∗)s = 〈s, x〉x, (ss∗)x = 〈s, x〉s, x ∈ E, s ∈ E
∗.
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162 A. Rodomanov, Y. Nesterov

Given two self-adjoint linear operators A : E → E
∗ and W : E∗ → E, we define

the trace and the determinant of A with respect to W as follows:

〈W , A〉 def= Tr(W A), Det(W , A)
def= Det(W A).

Note that W A is a linear operator from E to itself, and hence its trace and determinant
are well-defined real numbers (they coincide with the trace and determinant of the
matrix representation of W A with respect to an arbitrary chosen basis in the space
E, and the result is independent of the particular choice of the basis). In particular, if
W is positive definite, then 〈W , A〉 and Det(W , A) are respectively the sum and the
product of the eigenvalues1 of A relative to W −1. Observe that 〈·, ·〉 is a bilinear form,
and for any x ∈ E, we have

〈Ax, x〉 = 〈xx∗, A〉. (1.2)

When A is invertible, we also have

〈A−1, A〉 = n, Det(A−1, δA) = δn . (1.3)

for any δ ∈ R. Also recall the following multiplicative formula for the determinant:

Det(W , A) = Det(W , G)Det(G−1, A), (1.4)

which is valid for any invertible linear operator G : E → E
∗. If the operator W is

positive semidefinite, and A 	 A1 for some self-adjoint linear operator A1 : E → E
∗,

then 〈W , A〉 ≤ 〈W , A1〉 and Det(W , A) ≤ Det(W , A1). Similarly, if A is positive
semidefinite and W 	 W1 for some self-adjoint linear operator W1 : E∗ → E, then
〈W , A〉 ≤ 〈W1, A〉 and Det(W , A) ≤ Det(W1, A).

2 Convex Broyden class

Let A and G be two self-adjoint positive definite linear operators from E to E
∗,

where A is the target operator, which we want to approximate, and G is the current
approximation of the operator A. The Broyden family of quasi-Newton updates of G
with respect to A along a direction u ∈ E \ {0}, is the following class of updating
formulas, parameterized by a scalar φ ∈ R:

Broydφ(A, G, u)
def= φ

[
G − Auu∗G + Guu∗ A

〈Au, u〉 +
( 〈Gu, u〉

〈Au, u〉 + 1

)
Auu∗ A

〈Au, u〉
]

+ (1 − φ)

[
G − Guu∗G

〈Gu, u〉 + Auu∗ A

〈Au, u〉
]

. (2.1)

1 Recall that, for linear operators A, B : E → E
∗, a scalar λ ∈ R is called a (relative) eigenvalue of A

with respect to B if Ax = λBx for some x ∈ E \ {0}. If A, B are self-adjoint and B is positive definite, it
is known that there exist eigenvalues λ1, . . . , λn ∈ R and a basis x1, . . . , xn ∈ E, such that Axi = λi Bxi ,
‖xi ‖B = 1, 〈Bxi , x j 〉 = 0 for all 1 ≤ i, j ≤ n, i �= j .
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Note that Broydφ(A, G, u) depends on A only through the product Au. For the sake
of convenience, we also define Broydφ(A, G, u) = G when u = 0.

Two importantmembers of theBroyden family,DFPandBFGSupdates, correspond
to the values φ = 1 and φ = 0 respectively:

DFP(A, G, u)
def= G − Auu∗G + Guu∗ A

〈Au, u〉 +
( 〈Gu, u〉

〈Au, u〉 + 1

)
Auu∗ A

〈Au, u〉 ,

BFGS(A, G, u)
def= G − Guu∗G

〈Gu, u〉 + Auu∗ A

〈Au, u〉 . (2.2)

Thus, the Broyden family consists of all affine combinations of DFP and BFGS
updates:

Broydφ(A, G, u)
(2.1)= φDFP(A, G, u) + (1 − φ)BFGS(A, G, u). (2.3)

The subclass of the Broyden family, corresponding to φ ∈ [0, 1], is known as the
convex Broyden class (or the restricted Broyden class in some texts).

Our subsequent developments will be based on two properties of the convex Broy-
den class. The first property states that each update from this class preserves the bounds
on the relative eigenvalues with respect to the target operator.

Lemma 2.1 Let A, G : E → E
∗ be self-adjoint positive definite linear operators such

that

A

ξ
	 G 	 ηA, (2.4)

where ξ, η ≥ 1. Then, for any u ∈ E, and any φ ∈ [0, 1], we have

A

ξ
	 Broydφ(A, G, u) 	 ηA. (2.5)

Proof Suppose that u �= 0 since otherwise the claim is trivial. In view of (2.3), it
suffices to prove (2.5) only for the DFP and BFGS updates independently.

For the DFP update, we have

DFP(A, G, u)
(2.2)= G − Auu∗G + Guu∗ A

〈Au, u〉 +
( 〈Gu, u〉

〈Au, u〉 + 1

)
Auu∗ A

〈Au, u〉
=

(
IE∗ − Auu∗

〈Au, u〉
)

G

(
IE − uu∗ A

〈Au, u〉
)

+ Auu∗ A

〈Au, u〉 ,
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where IE, IE∗ are the identity operators in the spaces E, E∗ respectively. Hence,

DFP(A, G, u)
(2.4)	 η

(
IE∗ − Auu∗

〈Au, u〉
)

A

(
IE − uu∗ A

〈Au, u〉
)

+ Auu∗ A

〈Au, u〉
= η

(
A − Auu∗ A

〈Au, u〉
)

+ Auu∗ A

〈Au, u〉 = ηA − (η − 1)
Auu∗ A

〈Au, u〉 	 ηA,

DFP(A, G, u)
(2.4)
 1

ξ

(
IE∗ − Auu∗

〈Au, u〉
)

A

(
IE − uu∗ A

〈Au, u〉
)

+ Auu∗ A

〈Au, u〉
= 1

ξ

(
A − Auu∗ A

〈Au, u〉
)

+ Auu∗ A

〈Au, u〉 = 1

ξ
A +

(
1 − 1

ξ

)
Auu∗ A

〈Au, u〉 
 1

ξ
A.

For the BFGS update, we apply Lemma 6.1 (see Appendix):

BFGS(A, G, u)
(2.2)= G − Guu∗G

〈Gu, u〉 + Auu∗ A

〈Au, u〉
(2.4)	 η

(
A − Auu∗ A

〈Au, u〉
)

+ Auu∗ A

〈Au, u〉
= ηA − (η − 1)

Auu∗ A

〈Au, u〉 	 ηA,

BFGS(A, G, u)
(2.2)= G − Guu∗G

〈Gu, u〉 + Auu∗ A

〈Au, u〉
(2.4)
 1

ξ

(
A − Auu∗ A

〈Au, u〉
)

+ Auu∗ A

〈Au, u〉
= 1

ξ
A +

(
1 − 1

ξ

)
Auu∗ A

〈Au, u〉 
 1

ξ
A.

The proof is finished ��
Remark 2.1 Lemma 2.1 has first been established in [5] in a slightly stronger form and
using a different argument. It was also shown there that one of the relations in (2.5)
may no longer be valid if φ ∈ R \ [0, 1].

The second property of the convex Broyden class, which we need, is related to the
question of convergence of the approximations G to the target operator A. Note that
without any restrictions on the choice of the update directions u, one cannot guarantee
any convergence of G to A in the usual sense (see [19,31] for more details). However,
for our goals it will be sufficient to show that, independently of the choice of u, it
is still possible to ensure that G converges to A along the update directions u, and
estimate the corresponding rate of convergence.

Let us define the following measure of the closeness of G to A along the direction
u:

θ(A, G, u)
def=

[ 〈(G − A)A−1(G − A)u, u〉
〈G A−1Gu, u〉

]1/2
, (2.6)
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where, for the sake of convenience, we define θ(A, G, u) = 0 if u = 0. Note that
θ(A, G, u) = 0 if and only if Gu = Au. Thus, our goal now is to establish some upper
bounds on θ , which will help us to estimate the rate, at which this measure goes to
zero. For this, we will study how certain potential functions change after one update
from the convex Broyden class, and estimate this change from below by an appropriate
monotonically increasing function of θ . We will consider two potential functions.

The first one is a simple trace potential function, that we will use only when we can
guarantee that A 	 G:

σ(A, G)
def= 〈A−1, G − A〉 ≥ 0. (2.7)

Lemma 2.2 Let A, G : E → E
∗ be self-adjoint positive definite linear operators such

that

A 	 G 	 ηA (2.8)

for some η ≥ 1. Then, for any φ ∈ [0, 1] and any u ∈ E, we have

σ(A, G) − σ(A,Broydφ(A, G, u)) ≥
(

φ
1

η
+ 1 − φ

)
θ2(A, G, u). (2.9)

Proof We can assume that u �= 0 since otherwise the claim is trivial. Denote G+
def=

Broydφ(A, G, u) and θ
def= θ(A, G, u). Then,

σ(A, G) − σ(A, G+)
(2.7)= 〈A−1, G − G+〉

(2.1)= 2φ
〈Gu, u〉
〈Au, u〉 −

[
φ

〈Gu, u〉
〈Au, u〉 + 1

]
+ (1 − φ)

〈G A−1Gu, u〉
〈Gu, u〉

= φ
〈Gu, u〉
〈Au, u〉 + (1 − φ)

〈G A−1Gu, u〉
〈Gu, u〉 − 1

= φ
〈(G − A)u, u〉

〈Au, u〉 + (1 − φ)
〈G(A−1 − G−1)Gu, u〉

〈Gu, u〉 . (2.10)

Note that

0
(2.8)	 G − A

(2.8)	 (η − 1)A 	 ηA.

Therefore2,

(G − A)A−1(G − A) 	 η(G − A). (2.11)

2 This is evident when G − A is non-degenerate. The general case then follows by continuity.
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Consequently,

〈(G − A)u, u〉
〈Au, u〉

(2.11)≥ 1

η

〈(G − A)A−1(G − A)u, u〉
〈Au, u〉

(2.8)≥ 1

η

〈(G − A)A−1(G − A)u, u〉
〈G A−1Gu, u〉

(2.6)= 1

η
θ2. (2.12)

At the same time,

(G − A)A−1(G − A) = G A−1G − 2G + A
(2.8)	 G A−1G − G = G(A−1 − G−1)G.

Hence,

〈G(A−1 − G−1)Gu, u〉
〈Gu, u〉 ≥ 〈(G − A)A−1(G − A)u, u〉

〈Gu, u〉
(2.8)≥ 〈(G − A)A−1(G − A)u, u〉

〈G A−1Gu, u〉
(2.6)= θ2. (2.13)

Substituting now (2.12) and (2.13) into (2.10), we obtain (2.9). ��

The second potential function is more universal since we can work with it even if
the condition A 	 G is violated. This function was first introduced in [29], and is
defined as follows:

ψ(A, G)
def= 〈A−1, G − A〉 − ln Det(A−1, G). (2.14)

In fact,ψ is nothing else but the Bregman divergence, generated by the strictly convex

function d(G)
def= − ln Det(B−1, G), defined on the set of self-adjoint positive definite

linear operators from E to E
∗, where B : E → E

∗ is an arbitrary fixed self-adjoint
positive definite linear operator. Indeed,

ψ(A, G)
(1.3)= − ln Det(B−1, G) + ln Det(B−1, A) − 〈−A−1, G − A〉

= d(G) − d(A) − 〈∇d(A), G − A〉.

Thus, ψ(A, G) ≥ 0 and ψ(A, G) = 0 if and only if G = A.
Let ω : (−1,+∞) → R be the univariate function

ω(t)
def= t − ln(1 + t) ≥ 0. (2.15)
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Clearly, ω is a convex function, which is decreasing on (−1, 0] and increasing on
[0,+∞). Also, on the latter interval, it satisfies the following bounds (see [32,
Lemma 5.1.5]):

t2

2(1 + t)
≤ t2

2
(
1 + 2

3 t
) ≤ ω(t) ≤ t2

2 + t
, t ≥ 0. (2.16)

Thus, for large values of t , the function ω(t) is approximately linear in t , while for
small values of t , it is quadratic.

There is a close relationship between ω and the potential function ψ . Indeed, if
λ1, . . . , λn ≥ 0 are the relative eigenvalues of G with respect to A, then

ψ(A, G)
(2.14)=

n∑
i=1

(λi − 1 − ln λi )
(2.15)=

n∑
i=1

ω(λi − 1).

Weare going to use the functionω to estimate frombelow the change in the potential
function ψ , which is achieved after one update from the convex Broyden class, via
the closeness measure θ . However, first of all, we need an auxiliary lemma.

Lemma 2.3 For any real α ≥ β > 0, we have

α − ln β − 1 ≥ ω(
√

αβ − 2β + 1).

Proof Equivalently, we need to prove that

α − 1 ≥ ω(
√

αβ − 2β + 1) + ln β. (2.17)

Let us show that the right-hand side of (2.17) is increasing in β. This is evident if
α ≥ 2 because ω is increasing on [0,+∞), so suppose that α < 2. Denote

t
def= √

αβ − 2β + 1 = √
1 − (2 − α)β ∈ [0, 1). (2.18)

Note that t is decreasing in β. Therefore, it suffices to prove that the right-hand side
of (2.17) is decreasing in t . But

ω(
√

αβ − 2β + 1) + ln β
(2.18)= ω(t) + ln

1 − t2

2 − α

= ω(t) + ln(1 − t2) − ln(2 − α)

(2.15)= t − ln(1 + t) + ln(1 − t2) − ln(2 − α)

= t + ln(1 − t) − ln(2 − α)

(2.15)= −ω(−t) − ln(2 − α),

which is indeed decreasing in t since ω is decreasing on (−1, 0].
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Thus, it suffices to prove (2.17) only in the boundary case β = α:

α − 1 ≥ ω(
√

α2 − 2α + 1) + ln α = ω(|α − 1|) + ln α,

or, equivalently, in view of (2.15), that

ω(α − 1) ≥ ω(|α − 1|)

For α ≥ 1, this is obvious, so suppose that α ≤ 1. It now remains to justify that

ω(−t) ≥ ω(t), (2.19)

for all t ∈ [0, 1). But this easily follows by integration from the fact that

d

dt
ω(−t) = −ω′(−t)

(2.15)= t

1 − t
≥ t

1 + t
(2.15)= ω′(t)

for all t ∈ [0, 1). ��
Now we are ready to prove the main result.

Lemma 2.4 Let A, G : E → E
∗ be self-adjoint positive definite linear operators such

that

1

ξ
A 	 G 	 ηA (2.20)

for some ξ, η ≥ 1. Then, for any φ ∈ [0, 1] and any u ∈ E, we have

ψ(A, G) − ψ(A,Broydφ(A, G, u)) ≥ φ ω

(
θ(A, G, u)

ξ3/2
√

η

)
+ (1 − φ)ω

(
θ(A, G, u)

ξ

)
.

Proof Suppose that u �= 0 since otherwise the claim is trivial. Let us denote G+
def=

Broydφ(A, G, u) and θ
def= θ(A, G, u). We already know that

〈A−1, G − G+〉 (2.10)= φ
〈Gu, u〉
〈Au, u〉 + (1 − φ)

〈G A−1Gu, u〉
〈Gu, u〉 − 1.

Applying now Lemma 6.2, we obtain

Det(G−1, G+) = φ
〈AG−1Au, u〉

〈Au, u〉 + (1 − φ)
〈Au, u〉
〈Gu, u〉 .

Thus,

ψ(A, G) − ψ(A, G+)
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(2.14)= 〈A−1, G − G+〉 + ln Det(A−1, G+) − ln Det(A−1, G)

(1.4)= 〈A−1, G − G+〉 + ln Det(G−1, G+)

= φ
〈Gu, u〉
〈Au, u〉 + (1 − φ)

〈G A−1Gu, u〉
〈Gu, u〉

−1 + ln

[
φ

〈AG−1Au, u〉
〈Au, u〉 + (1 − φ)

〈Au, u〉
〈Gu, u〉

]

≥ φ

[ 〈Gu, u〉
〈Au, u〉 + ln

〈AG−1Au, u〉
〈Au, u〉

]
+ (1 − φ)

[ 〈G A−1Gu, u〉
〈Gu, u〉 + ln

〈Au, u〉
〈Gu, u〉

]
− 1

= φ

[ 〈Gu, u〉
〈Au, u〉 − ln

〈Au, u〉
〈AG−1Au, u〉 − 1

]

+(1 − φ)

[ 〈G A−1Gu, u〉
〈Gu, u〉 − ln

〈Gu, u〉
〈Au, u〉 − 1

]
, (2.21)

where we have used the concavity of the logarithm.
Denote

α1
def= 〈Gu, u〉

〈Au, u〉 , β1
def= 〈Au, u〉

〈AG−1Au, u〉 ,

α0
def= 〈G A−1Gu, u〉

〈Gu, u〉 , β0
def= 〈Gu, u〉

〈Au, u〉 . (2.22)

Clearly, α1 ≥ β1 and α0 ≥ β0 by the Cauchy–Schwartz inequality. Also,

α1β1 − 2β1 + 1
(2.22)= 〈Gu, u〉

〈AG−1Au, u〉 − 2
〈Au, u〉

〈AG−1Au, u〉 + 1

= 〈(G − A)G−1(G − A)u, u〉
〈AG−1Au, u〉

(2.20)≥ 1

η

〈(G − A)A−1(G − A)u, u〉
〈AG−1Au, u〉

(2.20)≥ 1

ξ3η

〈(G − A)A−1(G − A)u, u〉
〈G A−1Gu, u〉

(2.6)= θ2

ξ3η
,

α0β0 − 2β0 + 1
(2.22)= 〈G A−1Gu, u〉

〈Au, u〉 − 2
〈Gu, u〉
〈Au, u〉 + 1

= 〈(G − A)A−1(G − A)u, u〉
〈Au, u〉

(2.20)≥ 1

ξ2

〈(G − A)A−1(G − A)u, u〉
〈G A−1Gu, u〉

(2.6)= θ2

ξ2
.
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Therefore, by Lemma 2.3 and the fact that ω is increasing on [0,+∞), we have

〈Gu, u〉
〈Au, u〉 − ln

〈Au, u〉
〈AG−1Au, u〉 − 1 ≥ ω

([ 〈(G − A)G−1(G − A)u, u〉
〈AG−1Au, u〉

]1/2)

≥ ω

(
θ

ξ3/2
√

η

)
,

〈G A−1Gu, u〉
〈Gu, u〉 − ln

〈Gu, u〉
〈Au, u〉 − 1 ≥ ω

([ 〈(G − A)A−1(G − A)u, u〉
〈Au, u〉

]1/2)

≥ ω

(
θ

ξ

)
.

Combining these inequalities with (2.21), we obtain the claim. ��

3 Unconstrained quadratic minimization

In this section, we study the classical quasi-Newton methods, based on the updat-
ing formulas from the convex Broyden class, as applied to minimizing the quadratic
function

f (x)
def= 1

2
〈Ax, x〉 − 〈b, x〉, (3.1)

where A : E → E
∗ is a self-adjoint positive definite operator, and b ∈ E

∗.
Let B : E → E

∗ be a self-adjoint positive definite linear operator, that we will use
to initialize our methods. Denote by μ > 0 the strong convexity parameter of f , and
by L > 0 the Lipschitz constant of the gradient of f , both measured with respect to
B:

μB 	 A 	 L B. (3.2)

Consider the following standard quasi-Newton scheme for minimizing (3.1). For
the sake of simplicity, we assume that the constant L is available.

Initialization: Choose x0 ∈ E. Set G0 = L B.

For k ≥ 0 iterate:

1. Update xk+1 = xk − G−1
k ∇ f (xk).

2. Set uk = xk+1 − xk and choose φk ∈ [0, 1].

3. Compute Gk+1 = Broydφk
(A, Gk, uk).

(3.3)
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Remark 3.1 In an actual implementation of scheme (3.3), it is typical to store in mem-

ory and update in iterations the matrix Hk
def= G−1

k instead of Gk (or, alternatively, the
Cholesky decomposition of Gk). This allows one to compute G−1

k+1∇ f (xk) in O(n2)

operations. Note that, due to a low-rank structure of the update (2.1), Hk can be updated
into Hk+1 also in O(n2) operations (for specific formulas, see e.g. [8, Section 8]).

To measure the convergence rate of scheme (3.3), we look at the norm of the
gradient, measured with respect to A:

λ f (x)
def= ‖∇ f (x)‖∗

A
(1.1)= 〈∇ f (x), A−1∇ f (x)〉1/2. (3.4)

The following lemma shows that the measure θ(A, Gk, uk), that we introduced in
(2.6) to measure the closeness of Gk to A along the direction uk , is directly related
to the progress of one step of the scheme (3.3). Note that it is important here that the
updating direction uk = xk+1 − xk is chosen as the difference of the iterates, and, for
other choices of uk , this result is no longer true.

Lemma 3.1 In scheme (3.3), for all k ≥ 0, we have

λ f (xk+1) = θ(A, Gk, uk)λ f (xk). (3.5)

Proof Indeed,

∇ f (xk+1)
(3.1)= ∇ f (xk) + A(xk+1 − xk)

(3.3)= −Gkuk + Auk = −(Gk − A)uk .

Hence, denoting θk
def= θ(A, Gk, uk), we get

λ f (xk+1)
(3.4)= 〈(Gk − A)A−1(Gk − A)uk, uk〉1/2 (2.6)= θk〈Gk A−1Gkuk, uk〉1/2

(3.3)= θk〈∇ f (xk), A−1∇ f (xk)〉1/2 (3.4)= θkλ f (xk).

The proof is finished ��
Let us show that the scheme (3.3) has global linear convergence, and that the corre-
sponding rate is at least as good as that of the standard gradient method.

Theorem 3.1 In scheme (3.3), for all k ≥ 0, we have

A 	 Gk 	 L

μ
A, (3.6)

and

λ f (xk) ≤
(
1 − μ

L

)k
λ f (x0). (3.7)
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Proof For k = 0, (3.6) follows from the fact that G0 = L B and (3.2). For all other
k ≥ 1, it follows by induction using Lemma 2.1.

Thus, we have

0
(3.6)	 A−1 − G−1

k

(3.6)	
(
1 − μ

L

)
A−1. (3.8)

Therefore,

(Gk − A)A−1(Gk − A) = Gk(A−1 − G−1
k )A(A−1 − G−1

k )Gk

	
(
1 − μ

L

)2
Gk A−1Gk,

and so

θ(A, Gk, uk)
(2.6)≤ 1 − μ

L
.

Applying now Lemma 3.5, we obtain (3.7). ��

Now, let us establish the superlinear convergence of the scheme (3.3). First, we do
this by working with the trace potential function σ , defined by (2.7). Note that this is
possible since A 	 Gk in view of (3.6).

Theorem 3.2 In scheme (3.3), for all k ≥ 1, we have

λ f (xk) ≤ 1∏k−1
i=0

(
φi

μ
L + 1 − φi

)1/2
(

nL

μk

)k/2

λ f (x0). (3.9)

Proof Denote σi
def= σ(A, Gi ), θi

def= θ(A, Gi , ui ), and pi
def= φi

μ
L + 1 − φi for any

i ≥ 0. Let k ≥ 1 be arbitrary. From (3.6) and Lemma 2.2, it follows that

σi − σi+1 ≥ piθ
2
i

for all 0 ≤ i ≤ k − 1. Summing up these inequalities, we obtain

k−1∑
i=0

piθ
2
i ≤ σ0 − σk

(2.7)≤ σ0
(3.3)= σ(A, L B)

(2.7)= 〈A−1, L B − A〉

(3.2)≤ 〈A−1,
L

μ
A − A〉 (1.3)= n

(
L

μ
− 1

)
≤ nL

μ
. (3.10)
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Hence, by Lemma 3.1 and the arithmetic-geometric mean inequality,

λ f (xk) = λ f (x0)
k−1∏
i=0

θi = 1∏k−1
i=0 p1/2i

[
k−1∏
i=0

piθ
2
i

]1/2

λ f (x0)

≤ 1∏k−1
i=0 p1/2i

(
1

k

k−1∑
i=0

piθ
2
i

)k/2

λ f (x0)
(3.10)≤ 1∏k−1

i=0 p1/2i

(
nL

μk

)k/2

λ f (x0).

The proof is finished ��
Remark 3.2 As can be seen from (3.10), the factor nL

μ
in the efficiency estimate (3.9)

can be improved up to 〈A−1, L B − A〉 = ∑n
i=1(

L
λi

− 1), where λ1, . . . , λn are the
eigenvalues of A relative to B. This improved factor can be significantly smaller than
the original one if the majority of the eigenvalues λi are much larger thanμ. However,
for the sake of simplicity, we prefer to work directly with constants n, L and μ. This
corresponds to the worst-case analysis. The same remark applies to all other theorems
on superlinear convergence, that will follow.

Let us discuss the efficiency estimate (3.9). Note that its maximal value over all
φi ∈ [0, 1] is achieved at φi = 1 for all 0 ≤ i ≤ k − 1. This corresponds to the DFP
method. In this case, the efficiency estimate (3.9) looks as follows:

λ f (xk) ≤
(

nL2

μ2k

)k/2

λ f (x0).

Hence, the moment, when the superlinear convergence starts, can be described as
follows:

nL2

μ2k
≤ 1 ⇐⇒ k ≥ nL2

μ2 .

In contrast, the minimal value of the efficiency estimate (3.9) over all φi ∈ [0, 1] is
achieved at φi = 0 for all 0 ≤ i ≤ k − 1. This corresponds to the BFGS method. In
this case, the efficiency estimate (3.9) becomes

λ f (xk) ≤
(

nL

μk

)k/2

λ f (x0), (3.11)

and the moment, when the superlinear convergence begins, can be described as fol-
lows:

nL

μk
≤ 1 ⇐⇒ k ≥ nL

μ
.

Thus, we see that, compared to DFP, the superlinear convergence of BFGS starts in L
μ

times earlier, and its rate is much faster.
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Let us present for the scheme (3.3) another justification of the superlinear conver-
gence rate in the form (3.9). For this, instead of σ , we will work with the potential
function ω, defined by (2.15). The advantage of this analysis is that it is extendable
onto general nonlinear functions.

Theorem 3.3 In scheme (3.3), for all k ≥ 1, we have

λ f (xk) ≤ 1∏k−1
i=0

(
φi

μ
L + 1 − φi

)1/2
(
4nL

μk

)k/2

λ f (x0). (3.12)

Proof Denote θi
def= θ(A, Gi , ui ), ψi

def= ψ(A, Gi ), and pi
def= φi

μ
L + 1 − φi for any

i ≥ 0. Let k ≥ 1 and 0 ≤ i ≤ k − 1 be arbitrary. In view of (3.6) and Lemma 2.4, we
have

ψi − ψi+1
(2.21)≥ φiω

(√
μ

L
θi

)
+ (1 − φi )ω(θi ). (3.13)

Note that θi ≤ 1. Indeed, if ui = 0, then θi = 0 by definition. Otherwise,

θ2i
(2.6)= 1 − 〈(2Gi − A)ui , ui 〉

〈Gi A−1Gi ui , ui 〉
(3.6)≤ 1.

Therefore,

ω

(√
μ

L
θi

)
(2.16)≥ μ

L

θ2i

2
(
1 +

√
μ
L θi

) ≥ μ

L

θ2i

4
, ω(θi )

(2.16)≥ θ2i

2(1 + θi )
≥ θ2i

4
,

and we conclude that

ψi − ψi+1
(3.13)≥ 1

4
piθ

2
i .

Summing this inequality and using the fact that ψk ≥ 0, we obtain

1

4

k−1∑
i=0

piθ
2
i ≤ ψ0 − ψk ≤ ψ0

(3.3)= ψ(A, L B)

(2.14)= 〈A−1, L B − A〉 − ln Det(A−1, L B)

(3.2)≤ 〈A−1,
L

μ
A − A〉 − ln Det(A−1,

L

μ
A)

(1.3)= n

(
L

μ
− 1 − ln

L

μ

)
≤ nL

μ
. (3.14)
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Hence, by Lemma 3.1 and the arithmetic-geometric mean inequality,

λ f (xk) = λ f (x0)
k−1∏
i=0

θi = 1∏k−1
i=0 p1/2i

[
k−1∏
i=0

piθ
2
i

]1/2

λ f (x0)

≤ 1∏k−1
i=0 p1/2i

(
1

k

k−1∑
i=0

piθ
2
i

)k/2

λ f (x0)

(3.14)≤ 1∏k−1
i=0 p1/2i

(
4nL

μk

)k/2

λ f (x0).

The proof is finished ��
Comparing our new efficiency estimate (3.12) with the previous one (3.9), we see that
they differ only in a constant. Thus, for the quadratic function, we do not gain anything
by working with the potential function ω instead of σ . Nevertheless, our second proof
is more universal, and, in contrast to the first one, can be generalized onto general
nonlinear functions, as we will see in the next section.

4 Minimization of general functions

Consider now a general unconstrained minimization problem:

min
x∈E f (x), (4.1)

where f : E → R is a twice differentiable function with positive definite Hessian.
Towrite down the standard quasi-Newton scheme for (4.1), we fix some self-adjoint

positive definite linear operator B : E → E
∗ and a constant L > 0, that we use to

define the initial Hessian approximation.

Initialization: Choose x0 ∈ E. Set G0 = L B.

For k ≥ 0 iterate:

1. Update xk+1 = xk − G−1
k ∇ f (xk).

2. Set uk = xk+1 − xk and choose φk ∈ [0, 1].

3. Denote Jk = ∫ 1
0 ∇2 f (xk + tuk)dt .

4. Set Gk+1 = Broydφk
(Jk, Gk, uk).

(4.2)
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Remark 4.1 Similarly to Remark 3.1, when implementing scheme (4.2), it is common

to work directly with the inverse Hk
def= G−1

k instead of Gk . Also note that it is not
necessary to compute Jk explicitly. Indeed, for implementing the Hessian approxima-
tion update at Step 4 (or the corresponding update for its inverse), one only needs the
product

Jkuk = ∇ f (xk+1) − ∇ f (xk),

which is just the difference of the successive gradients.

In what follows, we make the following assumptions about the problem (4.1). First,
we assume that, with respect to the operator B, the objective function f is strongly
convex with parameter μ > 0 and its gradient is Lipschitz continuous with constant
L , i.e.

μB 	 ∇2 f (x) 	 L B (4.3)

for all x ∈ E. Second, we assume that the objective function f is strongly self-
concordant with some constant M ≥ 0, i.e.

∇2 f (y) − ∇2 f (x) 	 M‖y − x‖z∇2 f (w) (4.4)

for all x, y, z, w ∈ E. The class of strongly self-concordant functions was recently
introduced in [31], and contains at least all strongly convex functions with Lipschitz
continuous Hessian (see [31, Example 4.1]). It gives us the the following convenient
relations between the Hessians of the objective function:

Lemma 4.1 (see [31, Lemma 4.1]) Let x, y ∈ E, and let r
def= ‖y − x‖x . Then,

∇2 f (x)

1 + Mr
	 ∇2 f (y) 	 (1 + Mr)∇2 f (x). (4.5)

Also, for J
def= ∫ 1

0 ∇2 f (x + t(y − x))dt, we have

∇2 f (x)

1 + Mr
2

	 J 	
(
1 + Mr

2

)
∇2 f (x), (4.6)

∇2 f (y)

1 + Mr
2

	 J 	
(
1 + Mr

2

)
∇2 f (y). (4.7)

As a particular example of a nonquadratic function, satisfying assumptions (4.3),

(4.4), one can consider the regularized log-sum-exp function, defined by f (x)
def=

ln(
∑m

i=1 e〈ai ,x〉+bi ) + μ
2 ‖x‖2, where ai ∈ E

∗, bi ∈ R for i = 1, . . . , m, and μ > 0,

‖x‖ def= 〈Bx, x〉1/2.
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Remark 4.2 Since we are interested in local convergence, it is possible to relax our
assumptions by requiring that (4.3), (4.4) hold only in some neighborhood of a mini-
mizer x∗. For this, it suffices to assume that the Hessian of f is Lipschitz continuous
in this neighborhood with∇2 f (x∗) being positive definite. These are exactly the stan-
dard assumptions, used in [8] and many other works, studying local convergence of
quasi-Newton methods. However, to avoid excessive technicalities, we do not do this.

Let us now analyze the process (4.2). For measuring its convergence, we look at
the local norm of the gradient:

λ f (x)
def= ‖∇ f (x)‖∗

x
(1.1)= 〈∇ f (x),∇2 f (x)−1∇ f (x)〉1/2, x ∈ E. (4.8)

First, let us estimate the progress of one step of the scheme (4.2). Recall that
θ(Jk, Gk, uk) is the measure of closeness of Gk to Jk along the direction uk (see
(2.6)).

Lemma 4.2 In scheme (4.2), for all k ≥ 0 and rk
def= ‖uk‖xk , we have

λ f (xk+1) ≤
(
1 + Mrk

2

)
θ(Jk, Gk, uk)λ f (xk).

Proof Denote θk
def= θ(Jk, Gk, uk). In view of Taylor’s formula,

∇ f (xk+1) = ∇ f (xk) + Jk(xk+1 − xk)
(4.2)= −(Gk − Jk)uk . (4.9)

Therefore,

λ f (xk+1)
(4.8)= 〈∇ f (xk+1),∇2 f (xk+1)

−1∇ f (xk+1)〉1/2
(4.7)≤

√
1 + Mrk

2
〈∇ f (xk+1), J−1

k ∇ f (xk+1)〉1/2

(4.9)=
√
1 + Mrk

2
〈(Gk − Jk)J−1

k (Gk − Jk)uk, uk〉1/2

(2.6)=
√
1 + Mrk

2
θk〈Gk J−1

k Gkuk, uk〉1/2

(4.2)=
√
1 + Mrk

2
θk〈∇ f (xk), J−1

k ∇ f (xk)〉1/2

(4.6)≤
(
1 + Mrk

2

)
θk〈∇ f (xk),∇2 f (xk)

−1∇ f (xk)〉1/2

(4.8)=
(
1 + Mrk

2

)
θkλ f (xk).

The proof is finished ��
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Our next result states that, if the starting point in scheme (4.2) is chosen sufficiently
close to the solution, then the relative eigenvalues of the Hessian approximations Gk

with respect to both the Hessians ∇2 f (xk) and the integral Hessians Jk are always
located between 1 and L

μ
, up to some small numerical constant. As a consequence, the

process (4.2) has at least the linear convergence rate of the gradient method.

Theorem 4.1 Suppose that, in scheme (4.2),

Mλ f (x0) ≤ ln 3
2

4

μ

L
. (4.10)

Then, for all k ≥ 0, we have

1

ξk
∇2 f (xk) 	 Gk 	 ξk

L

μ
∇2 f (xk), (4.11)

1

ξ ′
k

Jk 	 Gk 	 ξ ′
k

L

μ
Jk, (4.12)

ξkλ f (xk) ≤
(
1 − μ

2L

)k
λ f (x0), (4.13)

where3

ξk
def= eM

∑k−1
i=0 ri ≤

(
1 + Mrk

2

)
eM

∑k−1
i=0 ri def= ξ ′

k ≤
√
3

2
, (4.14)

and ri
def= ‖ui‖xi for any i ≥ 0.

Proof Note that ξ0 = 1 and G0 = L B. Therefore, for k = 0, both (4.11), (4.13)
are satisfied. Indeed, the first one reads ∇2 f (x0) 	 L B 	 L

μ
∇2 f (x0) and follows

from (4.3), while the second one reads λ f (x0) ≤ λ f (x0) and is obviously true.
Now assume that k ≥ 0, and that (4.11), (4.13) have already been proved for all

0 ≤ k′ ≤ k. Combining (4.11) with (4.6), using the definition of ξ ′
k , we obtain (4.12).

Further, denote λi
def= λ f (xi ) for 0 ≤ i ≤ k. Note that

rk
(4.2)= ‖G−1

k ∇ f (xk)‖xk

(1.1)= 〈∇ f (xk), G−1
k ∇2 f (xk)G

−1
k ∇ f (xk)〉1/2

(4.11)≤ ξk〈∇ f (xk),∇2 f (xk)
−1∇ f (xk)〉1/2 (4.8)= ξkλk . (4.15)

Therefore,

M
k∑

i=0

ri
(4.15)≤ M

k∑
i=0

ξiλi
(4.13)≤ Mλ0

k∑
i=0

(
1 − μ

2L

)i

3 Here we follow the standard convention that the sum over the empty set is defined as zero. Thus, ξ0 =
e0 = 1.
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≤ 2L

μ
Mλ0

(4.10)≤ ln 3
2

2
. (4.16)

Consequently, by the definition of ξk and ξ ′
k ,

ξk ≤ ξ ′
k ≤ e

Mrk
2 eM

∑k−1
i=0 ri ≤ eM

∑k
i=0 ri

(4.16)≤
√
3

2
.

Thus, (4.12), (4.14) are now proved. To finish the proof by induction, it remains to
prove (4.11), (4.13) for k′ = k + 1.

We start with (4.11). Applying Lemma 2.1, using (4.12), we obtain

1

ξ ′
k

Jk 	 Gk+1 	 ξ ′
k

L

μ
Jk . (4.17)

Consequently,

Gk+1
(4.7)	

(
1 + Mrk

2

)
ξ ′

k
L

μ
∇2 f (xk+1)

(4.14)=
(
1 + Mrk

2

)2

ξk
L

μ
∇ f (xk+1)

	 eMrk ξk
L

μ
∇2 f (xk+1)

(4.14)= ξk+1
L

μ
∇2 f (xk+1),

and

Gk+1
(4.7)
 ∇2 f (xk+1)(

1 + Mrk
2

)
ξ ′

k

(4.14)= ∇2 f (xk+1)(
1 + Mrk

2

)2
ξk


 ∇2 f (xk+1)

eMrk · ξk

(4.14)= ∇2 f (xk+1)

ξk+1
.

Thus, (4.11) is proved for k′ = k + 1.
It remains to prove (4.13) for k′ = k + 1. By Lemma 4.2,

λk+1 ≤
(
1 + Mrk

2

)
θkλk, (4.18)

where θk
def= θ(Jk, Gk, uk). Note that

−
(
1 − μ

ξ ′
k L

)
J−1

k

(4.12)	 G−1
k − J−1

k

(4.12)	 (ξ ′
k − 1)J−1

k .

Hence,

(J−1
k − G−1

k )Jk(J−1
k − G−1

k ) 	 ρ2
k J−1

k ,

where

ρk
def= max

{
1 − μ

ξ ′
k L

, ξ ′
k − 1

}
(4.14)≥ 0. (4.19)
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Therefore,

θ2k
(2.6)= 〈(Jk − Gk)J−1

k (Jk − Gk)uk, uk〉
〈Jk G−1

k Jkuk, uk〉

= 〈Gk(J−1
k − G−1

k )Jk(J−1
k − G−1

k )Gkuk, uk〉
〈Jk G−1

k Jkuk, uk〉
≤ ρ2

k .

Thus,

λk+1
(4.18)≤

(
1 + Mrk

2

)
ρkλk .

Consequently,

ξk+1λk+1 ≤ ξk+1

(
1 + Mrk

2

)
ρkλk

(4.14)= eMrk

(
1 + Mrk

2

)
ρkξkλk

≤ e
3Mrk
2 ρkξkλk

(4.13)≤ e
3Mrk
2 ρk

(
1 − μ

2L

)k
λ0.

It remains to show that

e
3Mrk
2 ρk ≤ 1 − μ

2L
. (4.20)

Note that

ζk
def= 3Mrk

2

(4.15)≤ 3Mξkλk

2

(4.13)≤ 3Mλ0

2
(4.10)≤ 3 ln 3

2

8

μ

L
≤ 3μ

16L
≤ μ

5L
≤ 1

5
. (4.21)

Hence,

eζk ≤
∞∑

i=0

ζ i
k = 1 + ζk

∞∑
i=0

ζ i
k

(4.21)≤ 1 + ζk

∞∑
i=0

(
1

5

)i

= 1 + 5ζk

4

(4.21)≤ 1 + μ

4L
. (4.22)

Also,

ξ ′
k

(4.14)≤
√
3

2
≤ 4

3
. (4.23)
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Combining (4.22) and (4.23), we obtain

e
3Mrk
2

(
1 − μ

ξ ′
k L

)
≤

(
1 + μ

4L

) (
1 − 3μ

4L

)
≤ 1 −

(
3

4
− 1

4

)
μ

L
= 1 − μ

2L
,

and

e
3Mrk
2 (ξ ′

k − 1) ≤
(
1 + 1

4

)(√
3

2
− 1

)
=

5
4 · 1

2√
3
2 + 1

≤ 5

16
≤ 1

2
≤ 1 − μ

2L
.

Thus,

e
3Mrk
2 ρk

(4.19)= e
3Mrk
2 max

{
1 − μ

ξ ′
k L

, ξ ′
k − 1

}
≤ 1 − μ

2L
,

and (4.20) follows. ��

Now we are ready to prove the main result of this section on the superlinear con-
vergence of the scheme (4.2). In contrast to the quadratic case, now we cannot use the
proof, based on the trace potential function σ , defined by (2.7), because we cannot
longer guarantee that Jk 	 Gk . However, the proof, based on the potential function
ψ , defined by (2.14), still works.

Theorem 4.2 Suppose that the initial point x0 in scheme (4.2) is chosen sufficiently
close to the solution, as specified by (4.10). Then, for all k ≥ 1, we have

λ f (xk) ≤ 1∏k−1
i=0

(
φi

μ
L + 1 − φi

)1/2
(
11nL

μk

)k/2

λ f (x0).

Proof Denote ri
def= ‖ui‖xi , θi

def= θ(Ji , Gi , ui ), ψi
def= ψ(Ji , Gi ), ψ̃i+1

def=
ψ(Ji , Gi+1), and pi

def= φi
μ
L + 1− φi for any i ≥ 0. Let k ≥ 1 and 0 ≤ i ≤ k − 1 be

arbitrary. By (4.12), (4.14) and Lemma 2.4, we have

ψi − ψ̃i+1 ≥ φiω

(
2

3

√
μ

L
θi

)
+ (1 − φi )ω

(√
2

3
θi

)
. (4.24)

Moreover, since

θ2i
(2.6)= 〈(Gi − Ji )J−1

i (Gi − Ji )ui , ui 〉
〈Gi J−1

i Gi ui , ui 〉
= 1 − 〈(2Gi − Ji )ui , ui 〉

〈Gi J−1
i Gi ui , ui 〉

(4.12)≤ 1,
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we also have

ω

(
2

3

√
μ

L
θi

)
(2.16)≥

4
9

μ
L θ2i

2
(
1 + 2

3 · 2
3

√
μ
L θi

) ≥
4
9

2(1 + 4
9 )

μ

L
θ2i = 2

13

μ

L
θ2i ≥ 1

7

μ

L
θ2i ,

ω

(√
2

3
θi

)
(2.16)≥

2
3θ

2
i

2

(
1 +

√
2
3θi

) ≥
2
3

2

(
1 +

√
2
3

) ≥
2
3

4
θ2i = 1

6
θ2i ≥ 1

7
θ2i .

Thus,

1

7
piθ

2
i

(4.24)≤ ψi − ψ̃i+1 = ψi − ψi+1 + Δi , (4.25)

where

Δi
def= ψi+1 − ψ̃i+1

(2.14)= 〈J−1
i+1 − J−1

i , Gi+1〉 + ln Det(J−1
i , Ji+1). (4.26)

Let us estimate
∑k−1

i=0 Δi from above. Note that

Ji+1
(4.6)
 ∇2 f (xi+1)

1 + Mri+1
2

(4.7)
 1

δi
Ji , (4.27)

where

δi
def=

(
1 + Mri+1

2

) (
1 + Mri

2

)
. (4.28)

Hence,

〈J−1
i+1 − J−1

i , Gi+1〉
(4.27)≤ (1 − δ−1

i )〈J−1
i+1, Gi+1〉

(4.12)≤ (1 − δ−1
i )

√
3

2

L

μ
〈J−1

i+1, Ji+1〉

(1.3)=
√
3

2

nL

μ
(1 − δ−1

i )
(4.23)≤ 4nL

3μ
(1 − δ−1

i ),

and

k−1∑
i=0

Δi
(4.26)≤ 4nL

3μ

k−1∑
i=0

(1 − δ−1
i ) +

k−1∑
i=0

ln Det(J−1
i , Ji+1)

= 4nL

3μ

k−1∑
i=0

(1 − δ−1
i ) + ln Det(J−1

0 , Jk). (4.29)
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At the same time,

k−1∑
i=0

(1 − δ−1
i ) ≤

k−1∑
i=0

(
1 − e− M(ri +ri+1)

2

)
≤ M

2

k−1∑
i=0

(ri + ri+1) ≤ M
k∑

i=0

ri

(4.13)≤ Mλ0

k−1∑
i=0

(
1 − μ

2L

)i ≤ 2L

μ
Mλ0

(4.10)≤ ln 3
2

2
≤ 1

4
.

Thus,

k−1∑
i=0

Δi
(4.29)≤ nL

3μ
+ ln Det(J−1

0 , Jk). (4.30)

Summing up (4.25) and using the fact that ψk ≥ 0, we obtain

1

7

k−1∑
i=0

piθ
2
i

(4.25)≤ ψ0 − ψk +
k−1∑
i=0

Δi ≤ ψ0 +
k−1∑
i=0

Δi

(4.2)= ψ(J0, L B) +
k−1∑
i=0

Δi

(2.14)= 〈J−1
0 , L B − J0〉 − ln Det(J−1

0 , L B) +
k−1∑
i=0

Δi

(4.30)≤ 〈J−1
0 , L B − J0〉 + nL

3μ
− ln Det(J−1

k , L B)

(4.3)≤ 〈J−1
0 ,

L

μ
J0 − J0〉 + nL

3μ

(1.3)= n

(
L

μ
− 1

)
+ nL

3μ
≤ 4

3

nL

μ
. (4.31)

Since (1 + t)p ≤ 1 + pt for all t ≥ −1 and 0 ≤ p ≤ 1, we further have

1 + Mri

2
≤ e

Mri
2

(4.13)≤ e
Mλ0
2

(4.10)≤
(
3

2

)1/8

=
√(

3

2

)1/4

≤
√
1 + 1

4
· 1
2

=
√
9

8
.
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Therefore, by Lemma 4.2 and the arithmetic-geometric mean inequality,

λ f (xk) ≤ λ f (x0)
k−1∏
i=0

[√
9

8
θi

]
= 1∏k−1

i=0 p1/2i

[(
9

8

)k k−1∏
i=0

piθ
2
i

]1/2

λ f (x0)

≤ 1∏k−1
i=0 pi

(
9

8
· 1

k

k−1∑
i=0

piθ
2
i

)k/2

λ f (x0)
(4.31)≤

(
9

8
· 7 · 4

3

nL

μk

)k/2

λ f (x0)

≤
(
21nL

2μk

)k/2

λ f (x0) ≤
(
11nL

μk

)k/2

λ f (x0).

The proof is finished ��

5 Discussion

Let us compare the rates of superlinear convergence, that we have obtained for the
classical quasi-Newtonmethods, with those of the greedy quasi-Newtonmethods [31].
For brevity, we discuss only theBFGSmethod.Moreover, since the complexity bounds
for the general nonlinear case differ from those for the quadratic one only in some
absolute constants (both for the classical and the greedy methods), we only consider
the case, when the objective function f is quadratic.

As before, let n be the dimension of the problem, μ be the strong convexity param-
eter, L be the Lipschitz constant of the gradient of f , and λ f (x) be the local norm of
the gradient of f at the point x ∈ E (as defined by (3.4)). Also, let us introduce the
following condition number to simplify our notation:

Q
def= nL

μ
≥ 1. (5.1)

The greedy BFGSmethod [31] is essentially the classical BFGS algorithm (scheme
(3.3) with φk ≡ 0) with the only difference that, at each iteration, the update direction
uk is chosen greedily according to the following rule:

uk
def= argmax

u∈{e1,...,en}
〈Gku, u〉
〈Au, u〉 ,

where e1, . . . , en is a basis in E, such that B−1 = ∑n
i=1 ei e∗

i . For this method, we
have the following recurrence (see [31, Theorem 3.2]):

λ f (xk+1) ≤
(
1 − 1

Q

)k

Qλ f (xk) ≤ e− k
Q Qλ f (xk), k ≥ 0.
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Hence, its rate of superlinear convergence is described by the expression

λ f (xk) ≤ λ f (x0)
k−1∏
i=0

[
e− i

Q Q
]

= e− k(k−1)
2Q Qkλ f (x0)

def= Ak, k ≥ 0. (5.2)

Although the inequality (5.2) is valid for all k ≥ 0, it is useful only when

e− k(k−1)
2Q Qk ≤ 1 ⇐⇒ k ≥ 1 + 2Q ln Q. (5.3)

In other words, the relation (5.3) specifies the moment, starting fromwhich it becomes
meaningful to speak about the superlinear convergence of the greedy BFGS method.

For the classical BFGS method, we have the following bound (see (3.11)):

λ f (xk) ≤
(

Q

k

)k/2

λ f (x0)
def= Bk, k ≥ 1,

and the starting moment of its superlinear convergence is described as follows:

(
Q

k

)k/2

≤ 1 ⇐⇒ k ≥ Q. (5.4)

Comparing (5.3) and (5.4), we see that, for the standard BFGS, the superlinear
convergence may start slightly earlier than for the greedy one. However, the difference
is only in the logarithmic factor.

Nevertheless, let us show that, very soon after the superlinear convergence of the
greedy BFGS begins, namely, after

K
def= 1 + 6Q ln(4Q) (

(5.1)≥ 7) (5.5)

iterations, it will be significantly faster than the standard BFGS. Indeed,

Ak

Bk
= e− k(k−1)

2Q Qk
(

k

Q

)k/2

= e− k(k−1)
2Q (Qk)k/2

= e− k(k−1)
2Q + k

2 ln(Qk) = e
− k(k−1)

2Q

[
1− Q ln(Qk)

k−1

]
(5.6)

for all k ≥ 1. Note that the function t �→ ln t
t is decreasing on [e,+∞) (since its

logarithm ln ln t − ln t is a decreasing function of u = ln t for u ∈ [1,+∞), which
is easily verified by differentiation). Hence, for all k ≥ K , we have (using first that
k ≤ 2(k − 1) since k ≥ 2)

Q ln(Qk)

k − 1
≤ Q ln(2Q(k − 1))

k − 1
≤ Q ln(2Q(K − 1))

K − 1
(5.5)= ln

(
12Q2 ln(4Q)

)
6 ln(4Q)
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≤ ln(48Q3)

6 ln(4Q)
≤ ln(64Q3)

6 ln(4Q)
= 3 ln(4Q)

6 ln(4Q)
= 1

2
.

Consequently, for all k ≥ K , we obtain

Ak

Bk

(5.6)≤ e− k(k−1)
4Q ≤ 1.

Thus, after K iterations, the rate of superlinear convergence of the greedy BFGS is
always better than that of the standard BFGS. Moreover, as k → ∞, the gap between
these two rates grows as e−k2/Q . At the same time, the complexity of the Hessian
update for the greedy BFGS method is more expensive than for the standard one.

6 Appendix

Lemma 6.1 Let A, B : E → E
∗ be self-adjoint linear operators such that

0 ≺ A 	 B. (6.1)

Then, for any u ∈ E \ {0}, we have

A − Auu∗ A

〈Au, u〉 	 B − Buu∗ B

〈Bu, u〉 .

Proof Indeed, for all h ∈ E, we have

〈Ah, h〉 − 〈Au, h〉2
〈Au, u〉 = min

α∈R

[
〈Ah, h〉 − 2α〈Ah, u〉 + α2〈Au, u〉

]

= min
α∈R 〈A(h − αu), h − αu〉
(6.1)≤ min

α∈R 〈B(h − αu), h − αu〉

= min
α∈R

[
〈Bh, h〉 − 2α〈Bh, u〉 + α2〈Bu, u〉

]

= 〈Bh, h〉 − 〈Bu, h〉2
〈Bu, u〉 .

The proof is finished ��
Lemma 6.2 For any self-adjoint positive definite linear operators A, G : E → E

∗,
any scalar φ ∈ R, and any direction u ∈ E \ {0}, we have

Det(G−1,Broydφ(A, G, u)) = φ
〈AG−1Au, u〉

〈Au, u〉 + (1 − φ)
〈Au, u〉
〈Gu, u〉 . (6.2)
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Remark 6.1 Note that formula (6.2) is known in the literature (see e.g. [30, eq. (1.9)]),
although we do not know any reference, which contains an explicit proof of this result.

Proof Denote G+
def= Broydφ(A, G, u),

G0
def= G − Guu∗G

〈Gu, u〉 + Auu∗ A

〈Au, u〉 , s
def= Au

〈Au, u〉 − Gu

〈Gu, u〉 . (6.3)

Note that

G+
(2.1)= G0 + φ

[ 〈Gu, u〉Auu∗ A

〈Au, u〉2 + Guu∗G

〈Gu, u〉 − Auu∗G + Guu∗ A

〈Au, u〉
]

= G0 + φ〈Gu, u〉ss∗,

and

〈s, u〉 = 0. (6.4)

Let Q
def= G + Auu∗ A

〈Au,u〉 . Note that

Qu = Gu + Au, QG−1Au =
(
1 + 〈AG−1Au, u〉

〈Au, u〉
)

Au, (6.5)

and G0 = Q − Guu∗G
〈Gu,u〉 . Therefore, applying twice Lemma 6.3, we find that

Det(G−1, Q) = 1 + 〈AG−1Au, u〉
〈Au, u〉 ,

Det(Q−1, G0) = 1 − 〈G Q−1Gu, u〉
〈Gu, u〉

(6.5)= 1 − 〈Gu − G Q−1Au, u〉
〈Gu, u〉

= 〈G Q−1Au, u〉
〈Gu, u〉

(6.5)= 〈Au, u〉
〈Gu, u〉

(
1 + 〈AG−1 Au,u〉

〈Au,u〉
) .

Hence,

Det(G−1, G0)
(1.4)= Det(G−1, Q)Det(Q−1, G0) = 〈Au, u〉

〈Gu, u〉 . (6.6)

Further, note that

G0u
(6.3)= Au, G0G−1Au

(6.3)= 〈AG−1Au, u〉
〈Au, u〉 Au + Au − 〈Au, u〉

〈Gu, u〉Gu.

(6.7)
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So, applying Lemma 6.3 again, we obtain

Det(G−1
0 , G+)

(6.3)= 1 + φ〈Gu, u〉〈s, G−1
0 s〉

(6.3)= 1 + φ
〈Gu, u〉
〈Au, u〉 〈s, G−1

0 Au − 〈Au, u〉
〈Gu, u〉G−1

0 Gu〉
(6.7)= 1 + φ

〈Gu, u〉
〈Au, u〉 〈s, G−1Au − 〈AG−1Au, u〉

〈Au, u〉 G−1
0 Au〉

(6.7)= 1 + φ
〈Gu, u〉
〈Au, u〉 〈s, G−1Au − 〈AG−1Au, u〉

〈Au, u〉 u〉
(6.4)= 1 + φ

〈Gu, u〉
〈Au, u〉 〈s, G−1Au〉

(6.3)= 1 + φ
〈Gu, u〉
〈Au, u〉 〈 Au

〈Au, u〉 − Gu

〈Gu, u〉 , G−1Au〉

= φ
〈Gu, u〉〈AG−1Au, u〉

〈Au, u〉2 + 1 − φ. (6.8)

Consequently,

Det(G−1, G+)
(1.4)= Det(G−1, G0)Det(G

−1
0 , G+)

(6.6)= 〈Au, u〉
〈Gu, u〉Det(G

−1
0 , G+)

(6.8)= 〈Au, u〉
〈Gu, u〉

(
φ

〈Gu, u〉〈AG−1Au, u〉
〈Au, u〉2 + 1 − φ

)

= φ
〈AG−1Au, u〉

〈Au, u〉 + (1 − φ)
〈Au, u〉
〈Gu, u〉 .

The proof is finished ��
Lemma 6.3 (Determinant of rank-1 perturbation) Let A : E → E

∗ be a self-adjoint
positive definite linear operator, s ∈ E

∗, and α ∈ R. Then,

Det(A−1, A + αss∗) = 1 + α〈s, A−1s〉.

Proof Indeed, with respect to A, the operator A +αss∗ has n −1 unit eigenvalues and
one eigenvalue 1 + α〈s, A−1s〉 (corresponding to the eigenvector A−1s). ��
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