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Abstract
We present an algorithm for the minimization of a nonconvex quadratic function sub-
ject to linear inequality constraints and a two-sided bound on the 2-normof its solution.
The algorithm minimizes the objective using an active-set method by solving a series
of trust-region subproblems (TRS). Underpinning the efficiency of this approach is
that the global solution of the TRS has been widely studied in the literature, resulting
in remarkably efficient algorithms and software. We extend these results by proving
that nonglobal minimizers of the TRS, or a certificate of their absence, can also be
calculated efficiently by computing the two rightmost eigenpairs of an eigenproblem.
We demonstrate the usefulness and scalability of the algorithm in a series of experi-
ments that often outperform state-of-the-art approaches; these include calculation of
high-quality search directions arising in Sequential Quadratic Programming on prob-
lems of the CUTEst collection, and Sparse Principal Component Analysis on a large
text corpus problem (70 million nonzeros) that can help organize documents in a user
interpretable way.
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1 Introduction

Optimization with spherical ‖x‖2 = 1 or norm constraints rmin ≤ ‖x‖2 ≤ rmax is
used in a number of scientific fields. Many optimization problems, such as eigen-
value problems [29], dimensionality reduction [21] and compressed sensing [5], are
naturally posed on or in the unit sphere, while norm constraints are often useful for
regularization, e.g. in general nonlinear [7] or robust optimization [20]. In this paper
we consider the solution of norm constrained problems in the form

minimize f (x) := 1
2 x

T Px + qT x
subject to rmin ≤ ‖x‖2 ≤ rmax

Ax ≤ b
(P)

where x ∈ R
n is the decision variable, P ∈ S

n , i.e. an n × n symmetric matrix,
A = [aT1 . . . aTm ] ∈ R

m×n , q ∈ R
n , b = [b1 . . . bm]T ∈ R

m and rmin, rmax non-
negative scalars.

It is generally difficult to solve problems of the form (P) due to the nonconvexity
of the lower bounding norm constraint and the potential indefiniteness of the matrix
P , which renders many, but certainly not all [20], of these problems intractable. Even
finding a feasible point for (P) or testing if a first-order critical point of (P) is a local
minimizer can be intractable (see Proposition 4 and [16]). As a result, we restrict our
attention to the search for first order critical points and we assume that a feasible point
is given or can be computed.

A specific tractable variation of (P) is the famous trust-region subproblem1:

minimize 1
2 x

T Px + qT x
subject to ‖x‖2 = r

Ax = b.
(TRS)

Perhaps surprisingly, the TRS can be solved to global optimality despite its non-
convexity, and global solution of the TRS has been widely studied in the literature.
Specific approaches to its solution include exact Semidefinite Reformulations, Gradi-
ent Steps, Truncated Conjugate Gradient Steps, Truncated Lanczos Steps and Newton
root-finding, with associated software packages for its solution. The reader can find
details in [7] and [27, Chapter 4].

We suggest an active-set algorithm for the solution of (P) that, as we proceed to
describe, takes advantage of the existing efficient global solutionmethods for the TRS.
Using such an approach, (P) is optimized by solving a series of equality constrained
subproblems. Each subproblem is a modification of (P) where a subset of its inequal-
ities (called the working-set) is replaced by equalities while the rest are ignored. If a
subproblemdoes not include a norm constraint then it is called anEquality-constrained
Quadratic Problem (EQP); otherwise it is a Trust Region Subproblem (TRS). As
described earlier, the global solution for the TRS, and also for the EQP [14], has been

1 Note that the TRS is typically defined in the ball ‖x‖ ≤ r rather than the sphere ‖x‖ = r . We consider
only the boundary solution as this fits better the needs of this paper.
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An active-set algorithm for norm constrained quadratic… 449

widely studied in the literature. Thus we can efficiently address the global solution of
each subproblem. However, a complication exists for the TRS because, unlike EQP,
it can exhibit local-nonglobal minimizers i.e. local minimizers that are not globally
optimal, which complicate the analysis. Indeed, if the optimal working-set includes a
norm constraint and the global solutions of the respective TRS subproblem are infeasi-
ble for (P), then the solution of (P) must be obtained from a local-nonglobal optimizer
of the TRS subproblem.

Thus, an algorithm for computing local-nonglobal minimizers of the TRS is
required for our active-set algorithm. Unfortunately, algorithms for detecting the pres-
ence of/computing local-nonglobal solutions of (TRS) are significantly less mature
than their global counterparts. A notable exception is the work ofMartinez [25], which
proved that there exists at most one local-nonglobal minimizer and gave conditions for
its existence.Moreover, [25] presented a root-finding algorithm for the computation of
the Lagrange Multiplier associated with the local-nonglobal minimizer that entailed
the computation of the two smallest eigenvalues of the Hessian and the solution of a
series of indefinite linear systems.

More recent work is based on a result from [1], which shows that each KKT point
of the TRS, in the absence of linear equality constraints Ax = b (i.e. with a norm
constraint on x only), can be extracted from an eigenpair of

M :=
[−P qqT /r2

I −P

]
.

This result was used in [30] to calculate the local-nonglobal minimizer under the
assumption that it exists. We extend these results by proving that both checking if the
local-nonglobal minimizer exists and computing it, in the case where it exists, can
be performed at the same time by simply calculating the two rightmost eigenpairs of
M . Crucially, and similarly to the results of [1] for the global minimizer, this allows
the use of efficient factorization-free methods such as the Arnoldi method for the
detection and computation of the local-nonglobal minimizer. Furthermore, we show
that this approach can efficiently handle equality constraints Ax = b in the Trust
Region Subproblem, without the need for variable reduction, by means of a projected
Arnoldi method.

The paper is organised as follows. In Sect. 2 we present an introduction to the
TRS and present novel results for the detection/computation of its local-nonglobal
minimizer and for the incorporation of linear equality constraints. In Sect. 3.1 we
introduce an active-set algorithm for solving (P) starting from the special case where
rmin = rmax, and then generalizing to any rmin, rmax. Finally, in Sect. 4, we conclude
with a series of numerical results.

Notation used: Sn denotes the set of symmetric n × n real matrices. Given a vector
(or matrix) x , xT denotes its transpose and xH its conjugate transpose.
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2 The trust-region subproblem

This section concerns the computation of global as well as local-nonglobal minimizers
for (TRS).Although this section only considers solutions on the boundary ‖x‖ = r , the
results can be trivially extended to the interior ‖x‖ ≤ r . Indeed, if an interior solution
exists then the TRS is essentially convex (P is positive semidefinite in the nullspace
of A [15, §1]), thus no local-nonglobal solution exists and the interior solution is
obtained by solving an equality constrained quadratic problem. The presence of a
(necessarily global) interior solution can be detected by checking the sign of the
Lagrange Multiplier of the global boundary solution(s) [25, Lemma 2.2].

For clarity of exposition, we will first assume that there are no linear equality
constraints in (TRS), resulting in the following problem:

minimize 1
2 x

T Px + qT x
subject to ‖x‖2 = r ,

(T)

where x ∈ R
n is the decision variable, and P ∈ S

n , q ∈ R
n, r ∈ R+ are the problem

data. For the rest of the section we will assume that n > 1, excluding the trivial one
dimensional case where the feasible set consists of two points, and that r > 0. We
will then show in Sect. 2.1 how to extend the results of this section to allow for the
inclusion of linear equality constraints. Finally, in Sect. 2.3 we prove the main result of
this section, which is presented in a separate subsection to facilitate the presentation.

In the sequel wewill make frequent use of the eigendecomposition of P :=WΛWT

defined by an orthonormal matrix W :=[w1 . . . wn] and Λ:= diag(λ1, . . . , λn) where
λ1 ≤ · · · ≤ λn .

Every KKT point of (T) satisfies

Px + q + μx = 0 ⇒ x = −(P + μI )−1q, (1)

where μ is a Lagrange multiplier associated with the norm constraint2. Equation
(1) is well defined when μ �= −λi , i = 1, . . . , n. For the purposes of clarity of
the subsequent introduction, which follows [27, §4], we will assume that this holds.
However, the conclusions of this section are independent of this assumption.

Using the feasibility of x , we have

‖x‖22 = r2 ⇔
∥∥∥(P + μI )−1q

∥∥∥2
2
− r2 = 0. (2)

Then, noting that

∥∥∥(P + μI )−1q
∥∥∥2
2

=
∥∥∥(W (Λ + μI )WT )−1q

∥∥∥2
2

=
∥∥∥W (Λ + μI )−1WTq

∥∥∥2
2

=
∥∥∥(Λ + μI )−1WTq

∥∥∥2
2

=
n∑

i=1

(wT
i q)2

(λi + μ)2
,

2 Technically, μ is the Lagrange multiplier of the equivalent constraint 1
2 ‖x‖22 = 1

2 r
2. We define (T) with

‖x‖2 = r for simplicity and to match the notation of [1].
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An active-set algorithm for norm constrained quadratic… 451

Fig. 1 A typical example of the secular equation s(μ). The dashed vertical lines mark the locations of
the eigenvalues of −P , i.e. −λ1, . . . , −λn . The Lagrange multiplier of the global solution of (T) is the
rightmost root of s(μ) (marked by a cross). The TRS associated with this Figure also exhibits a local-
nonglobal minimizer with a Lagrange multiplier that corresponds to the second-rightmost root of s(μ)

(marked by a circle)

we can express the rightmost condition in (2) as

s(μ):=
n∑

i=1

(wT
i q)2

(λi + μ)2
− r2 = 0. (3)

Determining the KKT points of (T) is therefore equivalent to finding the roots of s,
which is often referred to as the secular equation [27]. We depict s for a particular
choice of P, q, r in Fig. 1. As might be expected from the tight connection between
polynomial root-finding problems and eigenproblems, solving s(μ) = 0 is equivalent
to the following eigenproblem [1, Equation (22)]:

[−P qqT /r2

I −P

]
︸ ︷︷ ︸

:=M

[
z1
z2

]
= μ

[
z1
z2

]
. (4)

This elegant result was first noted more than 50 years ago [9, Equation (2.21)], only
to be later disregarded as inefficient by some of the same authors [10], and then
rediscovered by [1] who highlighted its great applicability owing to the remarkable
efficacy of modern eigensolvers [24].

The relation between the spectrum of M and the Lagrange multipliers of (T) is
formally stated below:

Lemma 1 The spectrum of M includes the Lagrange multiplier of every KKT point of
(T).
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Proof This is a consequence of Proposition 2 of Sect. 2.3 and [9, Theorem 4.1]. �	
Note that the eigenvalues of M are complex in general since M is asymmetric. Fur-
thermore, Lemma 1 and all the subsequent results allow for potential “degenerate”
KKT points with μ = −λi .

We will focus on the KKT points that are minimizers of (T) rather than maximizers
or saddle points. The characterization of global minimizers is widely known in the
literature. The following theorem shows that the Lagrange multiplier μg of the global
minimizer corresponds to the rightmost eigenvalue of M in C, which is always real:

Theorem 1 A KKT point of (T) with Lagrange multiplier μg is a global minimizer if
and only if μg is the rightmost eigenvalue of M. Furthermore, we necessarily have
that μg ∈ [−λ1,∞).

Proof See [1, Theorem 3.2]. �	
In general, (T) is guaranteed to possess a unique global optimizer, except perhaps in
a special case that has deservedly been given a special name:

Definition (Hard case) Problem (T) belongs to the hard case when μg = −λ1.

We will see that in the hard case (T) is still guaranteed to have a global minimizer, but
it is not necessarily unique. Furthermore, the computation of the minimizer(s) can be
more challenging than in the “standard” case.

Moreover, due to the nonconvexity of (T) there can exist a local minimizer that
is not global. We derive an analogous result for this minimizer that is called “local-
nonglobal” [25]:

Theorem 2 Problem (T) has a second-order sufficient local-nonglobal minimizer if
and only if it does not belong to the hard case and the second-rightmost eigenvalue
of M is real and simple. Furthermore, if such a minimizer exists, then its Lagrange
multiplier μ� is equal to this second-rightmost eigenvalue.

Proof See Sect. 2.3. �	
The Lagrange multipliers for the global and local-nonglobal minimizers of (T) can

therefore be identified by calculating the two rightmost eigenvalues3 of M , which can
be done efficiently e.g. with the Arnoldi method.

Furthermore, for each of the respective multipliers a corresponding minimizer can
be extracted immediately by the respective eigenvectors [z∗1; z∗2] of M using as

x∗ = −sign(qT z∗2)r
z∗1∥∥z∗1∥∥2 , (5)

unless z∗1 = 0. Indeed, this follows from the next Proposition:

Proposition 1 Every eigenpair (μ∗, [z∗1; z∗2]) of M gives a KKT point (μ∗, x∗) for
(T) where x∗ is defined by (5), unless z∗1 = 0.

3 Except perhaps when the local-nonglobal minimizer is not second-order sufficient.
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Proof This proof is based on [1, §3.3] that shows the result only for the rightmost
eigenpair of M .

We will first show the result for y∗ = −r2

qT z∗2
z∗1 and then show that y∗ = x∗. Note

that using x∗ is preferred over y∗ because it can avoid unnecessary numerical errors
according to [1, §3.3]. We also emphasize that all of the proof assumes that z∗1 is
nonzero.

For y∗, we have to show that it is well defined, feasible and stationary. Regarding
the first two points, note that (4) (first row) gives

−Pz∗1 + qqT z∗2/r2 = μ∗z∗1 ⇒ (z∗2)T (P + μ∗ I )z∗1 = (z∗2)T qqT z∗2/r2,

or since (P + μ∗ I )z∗2 = z∗1 due to (4) (second row), we have
∥∥z∗1∥∥2 = (qT z∗2/r)

2
,

which implies that qT z∗2 �= 0 because z∗1 �= 0 by assumption. Thus:

∥∥z∗1∥∥22 = (qT z∗2/r)2 ⇒
∥∥∥∥− r2

qT z∗2
z∗1

∥∥∥∥
2

2

= r2 ⇒ ∥∥y∗∥∥
2 = r .

To show stationarity, note that the first row of (4) also gives:

−Pz∗1 + qqT z∗2/r2 = μ∗z∗1 ⇒ P
−z∗1r2

qT z∗2
+ q + μ∗ −z∗1r2

qT z∗2
= 0

⇒ Py∗ + q + μ∗y∗ = 0.

Finally, we show that y∗ = x∗:

y∗ = y∗ r

‖y∗‖2
= −r2z∗1

qT z∗2
|qT z∗2|∥∥−r2z∗1

∥∥
2

r = −sign(qT z∗2)r
z∗1∥∥z∗1∥∥2 = x∗.

�	
Dealing with the hard case: Extracting a solution x∗ via (5) is not possible when
z∗1 = 0, since (5) is not well-defined in that case. In this case, (μ∗, z∗2) is an eigenpair
of −P due to (4). Note that, according to [25, Lemma 3.3], this can never happen
for the local-nonglobal minimizer; thus we can always extract the local-nonglobal
minimizer with (5). However, it is possible for global minimizers in the hard case, i.e.
the case where μ∗ = −λ1. In the hard case, the necessary and sufficient conditions
for global optimality are, due to the KKT conditions of (T) and Theorem (1), the
following:

(P − λ1 I )x + q = 0 (6)

‖x‖2 = r . (7)

Note that P − λ1 I is singular, and the above system of equations represents the
intersection of an affine subspace with a sphere. This intersection must be non-empty,
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since (T) necessarily has a global minimizer as it arises from the minimization of a
smooth functionover a compact subset ofRn .One can then solve (6)–(7), by computing
the minimum length solution ymin of (P −λ1 I )x + q = 0 and return x∗ = ymin +αυ

where α is a scalar such that ‖x∗‖2 = ‖ymin + αυ‖2 = r and υ is any null-vector
of P − λ1 I . Interestingly, when z∗1 = 0, z∗2 is a null vector of P − λ1 I due to (4),
thus the only additional computation for extracting a solution when z∗1 = 0 is finding
the minimum-length solution of a symmetric linear system. This can be achieved e.g.
with MINRES-QLP [6], or with the Conjugate Gradient method [1, Theorem 4.3].

2.1 Equality-constrained trust-region subproblems

Wewill now extend the preceding results of this section to also account for the presence
of linear equality constraints, Ax = b, in the TRS.Wewill show that, given an operator
that projects an n−dimensional vector to the nullspace of A, we can calculate global
as well as local-nonlocal minima of (TRS) by applying a projected Arnoldi method
to M .

For simplicity, and without loss of generality4, we will assume that b = 0, thus
solving the following problem:

minimize 1
2 x

T Px + qT x
subject to ‖x‖2 = r

Ax = 0
(8)

where x ∈ R
n is the decision variable, P ∈ S

n , i.e. an n × n symmetric matrix, A is
a m × n matrix of full row rank and q is an n−dimensional vector. Similarly to the
preceding results for (T), we assume that n − m > 1 and r > 0.

In principle, (8) can be solved with the “eigenproblem approach” described in this
section if we reduce (8) into a smaller TRS subproblem via a nullspace elimination
procedure [27, §15.3], obtaining

minimize 1
2 y

T P̃ y + q̃T y
subject to ‖y‖2 = r

(9)

where we define Z to be a n × (n − m) orthonormal matrix withR(Z) = N (A) and

P̃:=ZT PZ , q̃:=ZT q.

According to the preceding results of this section, global and local-nonglobal min-
imizer(s) y∗ of (9) can be computed by calculating the two rightmost eigenvectors
of

M̃ :=
[−P̃ q̃q̃T /r2

I −P̃

]
.

4 Problems with linear constraints of the form Ax = b can be transformed to (8) via a change of variables
x̃ = x + x0 where x0 ⊥ N (A) such that Ax0 = b, resulting in a quadratic cost and constraints: Ax̃ =
0, ‖x̃‖2 =

√
r2 − ‖x0‖22.

123



An active-set algorithm for norm constrained quadratic… 455

The respective solution(s) x∗ of (P) can then be recovered as

x∗ = Zy∗. (10)

Some disadvantages of this approach are that a nullspace basis is required and that the
structure or sparsity of the problem might be destroyed.

We will present an alternative method that avoids these issues, mirroring standard
approaches for solving equality constrained quadratic programs [14]. To this end, note
that

M̃ =
[−P̃ q̃q̃T /r2

I −P̃

]
=

[
ZT 0
0 ZT

] [−P qqT /r2

I −P

] [
Z 0
0 Z

]
.

Since Z is an orthonormal matrix, every eigenvalue-eigenvector pair {μ, [z̃1; z̃2]} of
M̃ corresponds to an eigenvalue-eigenvector pair {μ, [z1; z2]} of the matrix

[
Z ZT 0
0 Z ZT

] [−P qqT /r2

I −P

]
︸ ︷︷ ︸

=M

[
Z ZT 0
0 Z ZT

]
(11)

with Z [z̃1; z̃2] = [z1; z2]. Note that (11) also has an extra eigenvalue at zero with
multiplicity 2m.

Recalling that Z is an orthonormal matrix spanning N (A), we note that multi-
plication with Z ZT is equivalent to projection onto the nullspace of A. In practice,
eigenvalues of (11) can therefore be calculated using the Arnoldi method on M where
we project the starting vector and every requested matrix-vector product with M onto

the nullspace of

[
A 0
0 A

]
.

Note that the two rightmost eigenvalues of M̃ correspond to the two rightmost
eigenvalues of (11) if at least two eigenvalues of M̃ have positive real parts. We will
show that we can always transform (8) so that this holds. Indeed if we shift P to P−α I
with an appropriate α ∈ R so that P̃ become negative definite5, then M̃ has at least
two eigenvalues with positive real part:

Lemma 2 If P̃ ∈ S
n−m is negative definite then M̃ has at least two eigenvalues with

positive real part, unless we trivially have n − m = 1.

Proof To avoid redefining the notation used in the introduction of §2 we will show
the equivalent result for (P, M), i.e. that M has at least two eigenvalues with positive
real part when P is negative definite and n > 1.

To do so, it suffices to show that s has at most one root with non-positive real part.
This is because M has 2n ≥ 4 eigenvalues and the spectrum of M matches the roots
of s on the left-hand complex plane (shown in Proposition 2 that we will prove on
Sect. 2.3, given that P is negative definite).

5 Such an α can be obtained by applying e.g., the Lanczos method, or the Gershgorin circle Theorem on
P .
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To show this, note that s has at most one (simple) real root with nonpositive real
part since

s′(α) = −2
n∑
j=1

(wT
j q)2

(λ j + α)3
(12)

is positive for any α ≤ 0 since λ1, . . . , λn < 0 by assumption. To conclude the proof,
it suffices to show that all the roots of s with nonpositive real part are real. Indeed,
note that for any a, b ∈ R we have

Im(s(a + bi)) = −
n∑
j=1

2(λ j + a)b

((λ j + a)2 + b2)2
(wT

j q)2,

where i is the imaginary unit. A detailed derivation of the above equation is provided
in Lemma 4. For any a ≤ 0 we have −a ≥ 0 > λ1, . . . , λn ⇒ 2(λ j + a) < 0,
j = 1, . . . , n by assumption. Thus Im(s(a+bi)) �= 0 ⇒ s(a+bi) �= 0 for any a ≤ 0
unless b = 0. �	

Such a shift would not affect the (local/global) optimizers of (P) as

1

2
xT (P − α I )x + qT x = 1

2
xT Px + qT x − α

2
||x ||22

or, since ‖x‖2 = r ,

1

2
xT (P − α I )x + qT x = 1

2
xT Px + qT x − α

2
r2,

where α ∈ R. Thus, we can always transform (8) so that the two rightmost eigenvalues
of M̃ are equal to the two rightmost eigenvalues of (11).

Having computed the two rightmost eigenvalues/vectors with a projected Arnoldi
method applied to M , global/local solutions of (P) can be obtained from the respec-
tive eigenvectors. Indeed, recall that according to (5) and (10), an appropriate
(rightmost/second-rightmost) eigenvector [z̃∗1; z̃∗2] of (11) gives a solution x∗ to (P)
as follows

x∗ = Zy∗ = −Zsign(q̃T z̃∗2)r
z̃∗1∥∥z̃∗1∥∥2 = −sign(qT (Z z̃∗2))r

Z z̃∗1∥∥Z z̃∗1∥∥2 (13)

= −sign(qT z∗2)r
z∗1∥∥z∗1∥∥2 (14)

where [z∗1; z∗2] is an eigenvector of M . Thus, x∗ can be extracted solely by the
eigenvector of M unless z∗1 = 0.
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Dealing with the hard case: In the case where z∗1 = 0, which can appear in the hard
case, one would have to calculate the minimum length solution of

(P̃ + μ∗ I )y + q̃ = 0 (15)

and then construct a global solution x∗ as x∗ = Z(y + αz̃∗2) = Zy + αz∗2, where α is
a scalar such that ‖x∗‖2 = r . However, the minimum length solution of (15) can be
obtained by the minimum length solution of

(P + μ∗ I )x + q = 0 (16)

Ax = 0 (17)

which can be calculated via projected MINRES-QLP or a projected CG algorithm [1,
Theorem 4.3] [14].

2.2 An algorithm for computing global and local solutions of the TRS

Using the ideas presented in this section, we now present Algorithm 1, a practical
algorithm for computing global and second-order sufficient local-nonglobal solutions
of equality constrained trust-region subproblems. In the remainder of this section, we
establish the correctness of Algorithm 1.

Algorithm1uses the results of this section (in particular Theorems 1 and 2, Equation
(13) and the paragraph “dealing with the hard case” of Sect. 2.1) to compute the
minimizers of (8). The only novel point is the way we detect the presence of the
local-nonglobal minimisers, which we proceed to show to be valid.

If the TRS is in the hard case, then the algorithm should only return global min-
imiser(s). Indeed, this is the case as

1. If zg1 = 0, then the algorithm terminates at line 16, according to the remarks of the
paragraph “Dealing with the hard case” of Sect. 2.1.

2. If zg1 �= 0, then there must exist another eigenvector associated with μg besides
[zg1; zg2 ]. This is because μg = −λ1 thus according to Proposition 2 of Sect. 2.3
there exists a vector u ∈ N (P − λ1 I ) that is orthogonal to q which makes
(μg, [0; u]) an eigenpair of M due to (4).
Thus μg = μl , which implies that μl is not simple. As a result the algorithm will
only return a global minimizer using (5) at line 11.

If the TRS is not in the hard case, then we must have zg1 �= 0 (see remarks of
paragraph “Dealing with the hard case” of Sect. 2). Thus the algorithm will return
either in lines 9 or 11, detecting correctly the presence of the local-nonglobalminimiser
according to Theorem 2.

Finally, we emphasize that in the hard case the TRS can have an infinite number of
solutions, but only one or two of them are returned by Algorithm 1.
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Algorithm1:Calculation of global and local-nonglobalminimizers of the equality
constrained trust-region subproblem (8)
1 Given the problem data P ∈ S

n , q ∈ R
n , r ∈ R+, A ∈ R

m×n where A is full row rank with
m < n − 1 and Π : Cn �→ C

n , a projector into the nullspace of A;
2 Shift P by a multiple of identity so that it becomes negative definite;
3 Run an Arnoldi method on

Π

([−P qqT /r2

I −P

] [
z1
z2

])
= μ

[
z1
z2

]
,

where Π

([
x1
x2

])
:=

[
Π(x1)
Π(x2)

]
for any x1, x2 ∈ C

n , starting from an initial point Π(z) ∈ C
2n , to

calculate a rightmost eigenvalue/vector pair (μg, zg);

4 if zg1 �= 0 then

5 xg ← −sign(qT zg2 )r
zg1∥∥∥zg1

∥∥∥
2

;

6 Resume the projected Arnoldi method to compute a second-rightmost eigenvalue/vector (μ�, z�);

7 if μ� is real and simple then

8 x� ← −sign(qT z�2)r
z�1∥∥∥z�1

∥∥∥
2

;

9 Return xg and x� as the unique global and local-nonglobal minimizers;
10 else
11 Return xg as a global minimizer and state that no second-order sufficient local-nonglobal

minimizer exists.;
12 end
13 else
14 Compute the minimum length solution xmin of

(P + μg I )x + q = 0

Ax = 0

via projected MINRES-QLP or projected CG [1, Theorem 4.3];

15 Solve a quadratic equation to find α1, α2 such that
∥∥∥xmin + α1/2z

g
2

∥∥∥
2

= r ;

16 Return xmin + α1z
g
2 , xmin + α2z

g
2 as global solutions, state that no local-nonglobal minimizer

exists;
17 end

2.3 Proof of Theorem 2

In this subsection we provide a proof of our main theoretical result, Theorem 2, which
shows that (T) has a second-order sufficient local-nonglobal minimizer if and only if
it does not belong to the hard case and the second-rightmost eigenvalue of the matrix

M :=
[−P qqT /r2

I −P

]
,

with counted algebraic multiplicities, is real and simple. Furthermore, we show that if
such a minimizer exists, its Lagrange multiplier μ� is equal to this second-rightmost
eigenvalue.
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The proof is based on the following Lemma, which follows from [25]:

Lemma 3 A KKT point x� of (T) with Lagrange multiplier μ� is a second-order
sufficient local-nonglobal minimizer iff q �⊥ w1, μ� ∈ (−λ1,−λ2) and s′(μ�) > 0.

Proof See [25, Theorem 3.1]. �	
Before we use Lemma 3 we will need the following two ancillary results:

Lemma 4 For any complex number a+ bi ∈ C where a, b are real numbers such that
a is in the domain of s and b �= 0, we have:

Re (s(a + bi)) < s(a). (18)

Proof Recall the definition of s:

s(a + bi) =
n∑
j=1

(wT
j q)2

(λ j + a + bi)2
− r2

and define, for convenience, κ j = wT
j q, j = 1, . . . , n. Thus

s(a + bi) = −r2 +
n∑
j=1

κ2
j

(λ j + a + bi)2

= −r2 +
n∑
j=1

κ2
j

(λ j + a)2 − b2

((λ j + a)2 + b2)2
− κ2

j
2(λ j + a)b

((λ j + a)2 + b2)2
i,

hence

Re(s(a + bi)) = −r2 +
n∑
j=1

κ2
j

(λ j + a)2 − b2

((λ j + a)2 + b2)2

< −r2 +
n∑
j=1

κ2
j

(λ j + a)2

((λ j + a)2)2
,

or, equivalently, Re(s(a + bi)) < s(a). �	
Lemma 5 If s(x) < 0 for some real x in the domain of s : C �→ C then s has an equal
number of poles and zeros with real parts in [x,∞).

Proof We will prove this result with the argument principle. We propose encircling
the half-space

S(x):={c ∈ C|c = a + bi, where a ≥ x, b ∈ R}

with the contour of Fig. 2 and show that it maps to a contour that lies strictly in the
left half plane. The suggested closed contour C intersects the real axis at x and at ∞.
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Fig. 2 Suggested closed contour
for encircling S(x)

It consists of two segments: C1 = {ω + βi | β ∈ R}, i.e. a segment that is parallel to
the imaginary axis, and C2, a half-circle with infinite radius.

By the argument principle [2] we have 1
2π i

∫
C

s′(z)
s(z) dz = Z − P , where Z , P are

the number of roots and poles of s in the domain enclosed by C . It follows that the
number of poles in S is equal to the number of zeros in S if

∫
C

s′(z)
s(z) dz = 0, which

holds if there are no poles or zeros of s on C and s(C) does not enclose the origin.
By examining (3) we conclude that s has only real, finite poles. Thus, the contour C
does not intersect any pole of s. It remains to show that there exist no zeros of s on
C and s(C) does not enclose the origin. We show both by proving that every point in
s(C) = s(C1) ∪ s(C2) has negative real part. For s(C2), it is easy to see that, since
s(C2) = {−r2} as lim|w|→∞ s(w) = −r2. Regarding s(C1) note that s(x) < 0, and
thus Lemma 4 gives Re(s(x + βi)) ≤ s(x) < 0 ∀β ∈ R, i.e., any point in s(C1) has
negative real part. �	
We will now connect the second-rightmost root of the secular equation s with the
results of Lemma 3. Note that, due to Lemma 4, if s has a real root μ then it cannot
also have an unreal root with real part μ and vice versa. Thus, the concept of “the
second-rightmost root of s” is well defined as long as we assume (or are prepared to
check) that this root is real.

Lemma 6 (i) Suppose that q �⊥ w1 and μ ∈ (−λ2,−λ1) is a simple root of s with
s′(μ) > 0. Then, μ is the second-rightmost root of s in C.

(ii) Suppose that q �⊥ w1, w2, λ1 �= λ2, μ ∈ R is the second-rightmost root of s in C

and μ is simple. Then, μ ≥ −λ2.

Proof Note that in both cases q �⊥ w1, thus (T) does not belong to the hard case [1].
Hence s has a real root in (−λ1,∞) (Theorem 1) which we denote by μg . Moreover,
μg is simple because s′(μg) = −2

∑n
j=1(w

T
j q)2/(λ j + μg)3 is negative since μg >

−λ1 > · · · > −λn .
In the subsequent analysis, we will frequently refer to the poles of s which are

{−λi |i = 1, . . . , n such that qTwi �= 0},
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and have double multiplicity, and the following parametric set

S(x):={c ∈ C|c = a + bi, where a ≥ x, b ∈ R}

defined for any x ∈ R.
We will begin with claim (i). Since μ < −λ1 < μg we conclude that μ is not the

rightmost root of s. In order to show that it is the second rightmost, it suffices to show
that there are at most two roots of s in S(μ).

Since s(μ) = 0 and s′(μ) > 0, we have s(μ − ε) < 0 for a sufficiently small
ε > 0. According to Lemma 5, s has equal number of zeros and poles in S(μ− ε). By
assumption q �⊥ w1 andμ > −λ2, thus−λ1 is the only (double) pole of s in S(μ−ε).
Hence, the number of zeros in S(μ − ε) ⊃ S(μ) must be two. This concludes the
proof of claim (i).

We will now prove claim (ii). Assume the contrary, i.e. that μ < −λ2. Consider
first the case where s′(μ) > 0. Since s(μ) = 0 we can choose a sufficiently small
ε > 0 such that s(μ−ε) < 0. Thus s has equal number of zeros and poles in S(μ−ε)

(Lemma 5). By assumption μ < −λ2 and q �⊥ w1, w2, and thus the double poles −λ1
and −λ2 are in S(μ − ε). Thus s has (at least) four zeros in S(μ − ε), and since ε can
be arbitrarily small, the same holds for S(μ).

We conclude that there should be extra roots for s in S(μ), besides the simple roots
μg and μ. Moreover, these extra roots cannot have real part equal to μ as according
to Lemma 4 Re(s(μ + bi)) < s(μ) = 0 for any real b �= 0. Thus their real parts
must be in (μ,∞). This means that μ is not the second-rightmost root of s, which is
a contradiction.

Finally, if s′(μ) < 0, then, using the same arguments as before, we conclude that
there exist four roots in S(μ+ε) for any sufficiently small ε > 0. Thus, there exist extra
roots (besides the simple root μg) with real part in (μ,∞), which, again, contradicts
the assumption that μ is the second-rightmost root of s. �	
Lemma6, in combinationwithLemma3, provides an “almost” iff relationship between
the second-rightmost root of s and the local-nonglobal minimizer of (T). However,
the quantity of primary interest is the second-rightmost eigenvalue of M instead of
the second-rightmost root of s. The following result characterizes the spectrum of M
and its tight connection with the roots of s:

Proposition 2 The spectrum of M consists of:

– the roots of s with matched algebraic multiplicity; and
– all of the eigenvalues −λi of−P that are non-simple for−P or havewi (the i−th
eigenvector of P) orthogonal to q.

Furthermore, every −λi that is in the spectrum of M is non-simple for M.

Proof We will prove the result by deriving a closed form expression for the charac-
teristic polynomial of M . Since −I and P + μI commute, we have [31, Theorem
3]:

det(μI − M) = det

([
P + μI −qqT /r2

−I P + μI

])
= det((P + μI )2 − qqT /r2)
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or, using the matrix determinant lemma,

det(μI − M) = −r−2
(
qT (P + μI )−2q − r2

)
det((P + μI )2)

for all μ �= −λ1, · · · − λn . Thus, recalling (2)–(3) we have

det(μI − M) = −r−2

(
n∑

i=1

(wT
i q)2

(λi + μ)2
− r2

)
n∏

i=1

(λi + μ)2 (19)

= −r−2
n∑

i=1

(wT
i q)2

∏
j �=i

(λ j + μ)2 +
n∏

i=1

(λi + μ)2, (20)

for allμ �= −λ1, · · ·−λn . Thus, (20) and the characteristic polynomial of M coincide
in all C except perhaps on 2n points. It follows from continuity arguments that (20)
is in fact the characteristic polynomial of M .

By examining (19) (2nd leftmost) and (20), we conclude that the eigenvalues of M
include all the roots of swithmatched algebraicmultiplicity. The secular equation s has
2n roots whenever the eigenvalues of P are distinct andwT

i q �= 0 for all i = 1, . . . , n.
Otherwise, i.e. for every i with λi non-simple or wT

i q = 0, M ∈ R
2n×2n has extra

non-simple eigenvalues at these −λi , which constitute the only differences between
the spectrum of M and the roots of s. �	
The following result follows directly from the above Proposition and will be useful
for the rest of this section.

Corollary 1 No simple eigenvalue of M is in the spectrum of −P.

We are now ready to prove themain result of this section, Theorem 2. The proof will
occupy the rest of this subsection. Note, again, that, due to Lemma 4 and Proposition
2, if M has a real eigenvalue μ then it cannot also have an unreal eigenvalue with real
part μ and vice versa. Thus, the concept of “the second-rightmost eigenvalue of M”
is well defined as long as we assume (or are prepared to check) that this eigenvalue is
real.

“only-if” In this case we know that μ� is the Lagrange multiplier of a second-order
sufficient local-nonglobal minimizer and we have to show that

(i) (T) is not in the hard case.
(ii) μ� is a simple eigenvalue of M .
(iii) μ� is the second-rightmost eigenvalue of M .

Points (i), and (ii) follow directly from Lemma 3 and Proposition 2 (note that q �⊥ w1
implies that (T) is not in the hard case [1]). In order to prove (iii) we will first show that
the spectrum (counted with algebraic multiplicities) of M with real part larger than
−λ2 coincides with the roots of s in the same region. This follows from Proposition
2, because λ1 is simple (due to μ� ∈ (−λ2,−λ1)) and qTw1 �= 0. Point (iii) then
follows from Lemma 6(i) which shows that μ� is the second-rightmost root of s, and
thus the second-rightmost eigenvalue of M .
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“if” In this case, we know that (T) is not in the hard case and that μ� is the second-
rightmost eigenvalue of M which is real and simple, and we want to show that μ� is
the Lagrange multiplier of the second-order sufficient local-nonglobal minimizer of
(T).

Note that, by assumption, μ� is in the spectrum of M but, due to Corollary 1, not
in that of −P . Thus μ� is a root of s due to Proposition 2. As a result, it suffices to
show that μ� is in (−λ2,−λ1) and s′(μ�) > 0 (Lemma 3).

We will first show that μ� ∈ (−λ2,−λ1). Since we are not in the hard case, M has
a real eigenvalue in (−λ1,∞) (Theorem 1) which is simple and unique in (−λ1,∞)

due to Proposition 2 and the fact that s′(μ) = −2
∑n

j=1(w
T
j q)2/(λ j +μ)3 is negative

in that region. Thus, −λ1 is not in the spectrum of M as otherwise it would be its
second-rightmost eigenvalue (which by assumption is real) and it would imply thatμ�

is in the spectrum of −P , which we have already excluded. Thus, μ� ∈ (−∞,−λ1),
and μ� �= −λ2.

It remains to show thatμ� ≥ −λ2. If qTw2 = 0 then, (−λ2, [0;w2]) is an eigenpair
ofM , thus wemust haveμ� > −λ2 so as to avoidμ� (the second-rightmost eigenvalue
of M) being in the spectrum of −P . Consider now the case where qTw2 �= 0. Note
that λ1 �= λ2 and q �⊥ w1 as otherwise −λ1 is in the spectrum of M (Proposition
2), which, according to the paragraph above is a contradiction. Thus, λ1 �= λ2 and
q �⊥ w1, w2 resulting in μ� ≥ −λ2 due to Lemma 6(ii).

Finallywe show that s′(μ�) > 0, thereby concluding the proof.Note that s′(μ�) �= 0
since by assumption μ� is a simple root of s. Assume the contrary, i.e. s′(μ�) < 0.
Since s is convex in (−λ2,−λ1) [25, (3.12)] and limμ→−λ1 s(μ) = ∞ we conclude
that there must exist another root of s in (μ�,−λ1). This contradicts the assumption
that μ� is the second-rightmost root of s.

3 An active-set algorithm for (P)

We are now in a position to present the main contribution of this paper, an active-
set algorithm for solving (P). We will first present an algorithm for the special that
rmin = rmax:=r and then describe how to generalize for any rmin, rmax.

3.1 Solving (P) when rmin = rmax:=r

In this section we introduce a primal active-set approach for the optimization of (P)
when rmin = rmax:=r . It will be useful in the subsequent analysis to recall the Karush-
Kuhn-Tucker (KKT) conditions of (P), which are

∇ f (x) + AT κ + μx = 0 (21)

κ ≥ 0 (22)

κi (a
T
i x − bi ) = 0, i = 1, . . . ,m (23)

Ax ≤ b, xT x = r2. (24)

123



464 N. Rontsis et al.

As is typical from a primal active-set approach, our algorithm starts from a given
feasible point of (P) and generates iterates that remain feasible for (P) and have non-
increasing objective values. At every iteration we treat a subset of the inequality
constraints Ax ≤ b as equalities. We refer to this subset as the working set Wk and
define

Āk = [ai ]i∈Wk , b̄k = [bi ]i∈Wk ,

where [·] denotes vertical (row-wise) concatenation. To simplify the analysis, we will
assume that one of the simplest and most common constraint qualification holds for
every iterate of the algorithm:

Assumption 1 Linear Independence Constraint Qualification [LICQ]

The LICQ holds for every iterate of the suggested Algorithm, i.e.

[
Āk

x̄ Tk

]
is full row

rank.

We will first give a brief, schematic description of our algorithm. At every iteration
k of our active-set based minimization procedure, we use Algorithm 1 to compute
minimizers of the subproblem

minimize 1
2 x

T Px + qT x
subject to ‖x‖2 = r

Āk x = b̄k .
(SP)

We then attempt tomove towards thoseminimizers in that hope that we either (i) “hit” a
new constraint or (ii) set xk+1 to a (potentially local) minimizer of (SP). Unfortunately
due to the nonconvexity of the problem, wemight achieve neither (i) nor (ii) by simply
moving towards the minimizer of (SP), as the objective of (P) is not guaranteed to be
non-increasing along these moves. In that case, which we will show can happen only
when (SP) has a unique minimizer, we perform a projected gradient descent followed
(if necessary) by a move towards the global minimizer of (SP) that is guaranteed to
achieve either (i) or (ii)6. Finally, at the end of each iteration, we check for termination
and update the working set.

Our overall active-set procedure is shown in Algorithm 2. We now proceed in the
following subsections that describe in detail each of the Algorithm’s steps. For the rest
of this section, we will say that a point is “feasible” when it is in the feasible region
of (P). Also, given a point x we will call the projection of ∇ f (x) to the nullspace of

constraint normals of (SP),

[
Āk

xT

]
, as “projected gradient of f (·) at x”.

3.1.1 Move towards the minimizers of (SP)

Notice that Algorithm 1 always returns a global minimizer xg of (SP) and possibly a
second minimizer x∗.

6 Technically, in this case xk+1 will be a second order necessary stationary point of (SP).
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Algorithm 2: Active Set method for solving (P) when rmin = rmax:=r
1 Assume a feasible starting point x0
2 Set W0 to be a subset of the active constraints in x0
3 for k = 0, 1, 2, . . . do
4 Solve (SP) with Algorithm 1;
5 if Algorithm 1 returned two distinct minimizers then
6 xk+1 ← solution of the 2D subproblem defined by xk and the two returned minimizers.
7 else
8 xk+1 ← solution of the 2D subproblem defined by xk , the returned (global) minimizer and

the projected gradient of f at xk .
9 end

10 if xk+1 is not a minimizer of (SP) and no new constraint was “hit” then
11 Run projected gradient descent starting from xk+1 until a new constraint is “hit” or until

convergence, and store the resulting point in xk+1;
12 if PGD converged to a feasible xk+1 of indefinite projected Hessian then
13 Compute a suitable limiting direction d along which xk+1 is a local maximum;
14 xk+1 ← solution of the 2D subproblem on the plane defined by xk+1, a global

minimizer of (SP) and d;
15 if a new constraint was “hit” then
16 Obtain Wk+1 by adding one of the blocking constraints to Wk ;
17 else
18 Wk+1 ← check_multipliers(xk+1,Wk );
19 end
20 end

21 Function check_multipliers(x,W)
22 Compute the Lagrange multipliers (κ, μ) at x that satisfy (21)-(24) with A = [ai ]i∈W ;
23 if κ ≥ 0 then
24 Terminate Algorithm with x as the returned solution
25 else
26 j ← argmin j∈W κ;
27 W ← W \ { j};
28 end

Let us consider first the case where two distinct minimizers are returned which is
treated in lines 5-6 of Algorithm 2. In this case it is always possible to either set xk+1
to a minimizer of (SP) or “hit” a new constraint as follows. Consider the circle defined
by the intersection of the sphere ‖x‖2 = r and the plane defined by xk and the two
returned minimizers. When (SP) is constrained in this circle, then it can be reduced to
a two-dimensional TRS. As such, we will show that it has at most 2 maximizers and
2 minimizers, except perhaps when xk is a global minimizer of (SP) in which case we
can trivially set xk+1 = xk .

Proposition 3 A two dimensional TRS has at most 2 minimizers and 2 maximizers
except when its objective is constant across its feasible region.

Proof It suffices to show the result only for the minimizers, as a negation of the TRS’s
objective would show the same result for its maximizers. Suppose that the TRS does
not belong to the hard case. Then it has a unique globalminimizer and atmost one local-
nonglobal minimizer [25]. If it belongs to the hard case, then only global minimizers
can exist. These are intersections of the affine subspace (6) and the sphere (7). Note
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that this intersection is either a distinct point, two points or a circle. In the latter case,
every feasible point of (T) is a global minimizer. This completes the proof. �	
We can identify the two minimizers of this two-dimensional TRS as xg and x∗. It
follows that at least in one of the circular arcs connecting xk with xg and x∗ the
objective value is always less than f (xk). Thus, by moving into that circular arc one
will either end up with xg or x∗ or “hit” a new constraint.

On the other hand, if a single global minimizer xg was returned, which corresponds
to lines 7-8 ofAlgorithm2, thenwe consider the circle defined by the intersection of the
sphere‖x‖2 = r and the plane definedby xk , xg and the projected gradient of f (·) at xk .
Obviously, if xg is feasible for (P) then we choose xk+1 = xg , but otherwise we are not
guaranteed to “hit” a new constraint. This is because the associated two-dimensional
TRS might possess a second minimizer, which is not necessarily a stationary point of
(SP), but might be the best feasible solution on this circle.

3.1.2 Perform projected gradient descent (if necessary)

This subsection concerns the case where the procedure described in the previous
subsection could neither set xk+1 to a minimizer of SP nor “hit” a new constraint. In
this case (lines 10-14 of Algorithm 2), we proceed by performing projected gradient
descent (PGD) on (SP) starting from the current iterate of the active-set algorithm.
This is guaranteed to converge to a KKT point xs with f (xs) ≤ f (xk) [4, Theorem
4.5]. Suppose that xs is not feasible for (P). Since the feasible region is a closed set,
PGD exits the feasible region in finitelymany steps. By stopping the projected gradient
descent just before it exits the feasible region, we can find a point xk+1 with a newly
“hit” constraint.

Consider now the case where xs is feasible for (P). If the minimum eigenvalue λmin
of the projected Hessian of f (·) at xs is nonnegative (lines 12-14 of Algorithm 2), then
we set xk+1 = xs andweproceed to the steps outlined in the next subsection.Otherwise
λmin < 0, and there exists a feasible sequence {zk} (w.r.t. to (SP)) converging to xs

with an appropriate limiting direction d

d:= lim
k→∞

zk − xs

‖zk − xs‖2 , (25)

such that

f (zk) = f (xs) + 1

2
λmin

∥∥zk − xs
∥∥2 + O

(∥∥zk − xs
∥∥2) . (26)

In practice, we can choose d equal to some projected eigenvector associated with
λmin < 0. Consider now the circle defined by the intersection of the sphere ‖x‖2 = r
and the plane defined by xs, xg and the limiting direction d. As before, this can be
reduced to a two-dimensional TRS that possesses atmost 2minimizers and 2maximiz-
ers (Proposition 3). We can identify two of them: xg which is a global minimum and
xs which, according to (26), is a local maximum. It follows that in at least one of the
two circular arcs connecting xs with xg the objective value is always less than f (xs).
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Thus, bymoving into that circular arc, and since xs is feasible for (P) and xg infeasible,
we can identify a suitable feasible point xk+1 such that f (xg) ≤ f (xk+1) ≤ f (xs)
for which a new constraint, not in the current working set, becomes active.

3.1.3 Update the working set and check for termination

If a new constraint was identified in the steps above, then we update the working set
and proceed to the next iteration (lines 15-16 of Algorithm 2). Otherwise, xk+1 was
set to a second-order necessary stationary point of (SP) and we proceed as follows
(lines 17-18 of Algorithm 2). Stationarity of xk+1 gives

∇ f (xk+1) + μxk+1 +
∑
i∈Wk

aiκi = 0

for some Lagrange multipliers μ and κi ∀i ∈ Wk . Thus, (xk+1, μ, κ) satisfy the first
KKT condition (21) if we define κi = 0 ∀ /∈ Wk . It follows from feasibility of xk+1
and the definition of κ that the third and fourth KKT conditions (23)-(24) also hold.
If we also have that κi ≥ 0 ∀i ∈ Wk , then (xk+1, μ, κ) is a KKT pair for (P) and we
terminate the algorithm (lines 23-24 of Algorithm 2). If, on the other hand, κi < 0 for
some i ∈ Wk (lines 25-27 of Algorithm 2), then (22) is not satisfied and xk+1 is not a
local minimizer for (P). In fact, the objective f (·) may be decreased by dropping one
of the constraints corresponding to a negative Lagrange multiplier [27, Section 12.3].

3.1.4 Finite termination

We will show that Algorithm 2 terminates in finitely many outer iterations, assuming
that xk+1 �= xk for every k = 1, 2. . . . . Indeed at every iteration the algorithm either

– Moves to a stationary point of the current TRS subproblem; or
– Activates a new constraint.

Since there can be at most m constraints in the working set it follows that xk visits a
stationary point of the k−th TRS subproblem periodically (at least every m iterations).
Furthermore, note that every TRS subproblem, resulting from a particular working
set, has at most 2n sets of stationary points of the same objective value [9, Theorem
4.1 and subsequent comments]. Since there are a finite number of different working
set configurations, it follows that there exist finitely many such sets. On the other
hand, every constraint that is deleted from the working set has an associated negative
Lagrange multiplier, thus every iterate xk is not a stationary point of the next iteration.
Furthermore, note that if xk is not a stationary point for the k + 1 subproblem then
our algorithm generates xk+1 with f (xk+1) < f (xk) unless xk = xk+1 which is
excluded by assumption. This means that once the algorithm visits one of these sets
of stationary points with equal objective value, it can never visit it again. Hence, the
algorithm terminates after finitely many iterations.

We believe that it is not possible to bound the number of iterations by a polynomial
in m, n. Indeed, even finding an initial feasible point is NP-complete, as we show in
Sect. 3.2.1.
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3.1.5 Further remarks

Similarly to active-set algorithms for quadratic programs, we can always update the
working set such that Āk is full row rank. However, LICQmight still fail to be satisfied
when the gradient of the spherical constraint lies onR( ĀT

k ). In these caseswe terminate
the algorithm without guarantees about local optimality.

3.2 Solving (P) for any rmin, rmax

We are now ready to present an active-set algorithm that solves (P) for any rmin and
rmax. At every iteration of the suggested active-set algorithm, the spherical inequality
constraint will either be in the working set or not. If it is, then we iterate as described
in Algorithm 2; otherwise we proceed with a generic (nonconvex) quadratic program-
ming active-set algorithm [27, §16.8] [12,18]. We switch between the two algorithms
when an iterate of the QP algorithm hits the spherical boundary or when the Lagrange
Multiplier μ of the norm constraint in Algorithm 2 is negative and less than any other
Lagrange Multiplier κi .

In the special the case where rmin = 0, the norm constraint reduces to ‖x‖2 ≤ rmax.
In this case, when a switch from Algorithm 2 to the QP Algorithm happens, the
projected Hessian of the Lagrangian of f (·) at xk is positive semidefinite, i.e.

QT (P + μI )Q � 0 (27)

where Q:=[Q1 q2] is defined by the “thin” QR decomposition of [ ĀT
k xk] and q2 is an

appropriate vector. Recall that for a switch to happen, we need μ < 0; hence QT PQ
is positive definite. Thus, QT

1 PQ1, i.e. the projected Hessian of the next iteration that
is to be handled by the generic QP algorithm, has at most one nonpositive eigenvalue
[29, Corollary 4.1]. This means that even the popular, but less flexible, class of “inertia
controlling” QP algorithms can be used as part of the suggested active-set algorithm
for solving (P) when rmin = 0.

3.2.1 Finding an initial point

Algorithm 2 is a primal active-set algorithm and, as such, it requires an initial feasible
point. Unfortunately, finding such a point is, in general, NP-complete as we formally
establish at the end of this subsection. Nevertheless, we can find a feasible point for
(P) with standard tools, albeit in exponential worst-case complexity, as we proceed to
show. Indeed, define the following problems:

maximize xT x
subject to Ax ≤ b

‖x‖∞ ≤ rmin

minimize xT x
subject to Ax ≤ b

i.e. a convex minimization and a convex maximization problem. Denote with x∗
min and

x∗
max the solutions to the convex minimization and maximization problems respec-
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tively. Then, (P) is feasible iff
∥∥x∗

min

∥∥
2 ≤ rmax and

∥∥x∗
max

∥∥
2 ≥ rmin, in which case a

feasible point for (P) can be found by interpolating between x∗
min and x∗

max.
The convexminimization problem above can be solved in polynomial timewith e.g.

interior point or first order [32] methods. On the other hand, the convex maximization
problem can have exponential worst-case complexity, but it can be solved to local or
even global optimality with standard commercial solvers e.g. with IBM CPLEX.

Finally, we formally show that determining if (P) is feasible is NP-complete:

Proposition 4 Determining if there is a solution to

find x
subject to Ax ≤ b

rmin ≤ ‖x‖2 ≤ rmax

(F)

is NP-complete.

Proof Determining if (F) has a solution is NP since we can easily check whether
a candidate point x is feasible for (F). Furthermore, it can be decomposed into the
following two independent problems: (i) “is there a point in the polytope Ax ≤ b
such that ‖x‖2 ≤ rmax?” and (ii) “is there a point in the polytope Ax ≤ b such that
‖x‖2 ≥ rmin?” Problem (i) can be answered in polynomial time with e.g. interior point
methods. Thus determining if (F) has a solution is reducible to problem (ii) which is
known to be NP-complete [26, Problem 3]. �	

4 Applications and experiments

In this section we present numerical results of the suggested active-set algorithms on a
range of numerical optimization problems.AJulia implementation of the algorithm,
along with code for the generation of the results of this section is available at:

https://github.com/oxfordcontrol/QPnorm.jl
As described in the previous sections, the algorithm is based on a TRS solver,

and a general (nonconvex) Quadratic Programming solver. We implemented these
dependencies as separate packages that we also release publicly as listed below.

– TRS.jl: A Julia package for the computation of global and local-nonglobal
minimizers of

minimize 1
2 x

T Px + qT x
subject to ‖x‖ = r or ‖x‖ ≤ r

Ax = b,
(P)

essentially implementing in Julia the theoretical results of Sect. 2 and [1]. Avail-
able at:
https://github.com/oxfordcontrol/TRS.jl

– GeneralQP.jl: A Julia implementation of [13], i.e. an “inertia control-
ling” active-set solver for nonconvex, dense quadratic problems, with efficient
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and numerically stable routines for updating QR decompositions of the working
set and LDLt factorizations of the projected Hessian. Available at:
https://github.com/oxfordcontrol/GeneralQP.jl
This solver is useful as a part of the suggested algorithm for solving (P) according
to the remarks of Sect. 3.2.

For simplicity our implementations of the active-set algorithms are based on dense
linear algebra that uses a QR factorization to compute/update a nullspace basis for
every working set. Thus the presented results are limited to dense problems, except
for Sect. 4.3 where the special structure of the constraints of (32) results in trivial,
sparse QR factorizations of the nullspace bases.

Before presenting the results we will discuss some practical considerations regard-
ing the suggested active-set algorithm. The eigenproblems (4) associated with the
trust-region subproblems of each working set are solved with ARPACK [24]. In the
occasional cases where ARPACK fails, a direct eigensolver is used. Finally, before
solving the subproblem (SP) of every iteration, we perform a few projected gradient
steps with the hope to quickly activate a new constraint.

We now proceed with the results, starting with the simplest case of dense random
problems.

4.1 Random dense constant normQPs

We compared the performance of our algorithm against the state-of-the-art non-linear
solver Ipopt [33]with its default parameters.We use theJulia interface of Ipopt,
Ipopt.jl, which exhibits negligible interface overhead times due to the excellent
interfacing capabilities of Julia with C++.

We consider a set of these randomly generated problems with varying number of
variables n. A feasible point for each problem instance is calculated for our Algorithm
as described in Sect. 3.2.1. The time required to compute the initial feasible points is
included in the subsequent results.

Figure 3 (left) shows the execution times. We observe that our algorithm is sig-
nificantly faster than Ipopt by a factor of up to 50. Both of the solvers achieve
practically identical objectives (relative difference less than 10−9) in all of the prob-
lem instances, except in two cases where there is a considerable difference due to
the fact that the solvers ended up converging in different local minimizers. Finally,
Fig. 3 (right) shows the infeasibility of the returned solution, where we observe that
our solver returns solutions of significantly smaller (i.e. better) infeasibility.

4.2 Computing search directions for sequential quadratic programming

Sequential Quadratic Programming (SQP) is a powerful and popular algorithm that
aims to solve the problem

minimize g(x)
subject to h(x) ≤ 0,

(28)
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Fig. 3 Timing results (left) and maximum feasibility violation (right) of the solution of random problems
with varying size n generated with the following parameters P = Symmetric(randn(n, n)), q = randn(n),
A = randn(1.5n, n), b = randn(n) and r = 100. Hardware used: Intel E5-2640v3, 64GB memory. The

maximum feasibility violation is defined as max((Ax∗ − b)1, . . . , (Ax
∗ − b)m , | ∥∥x∗∥∥2

2 − r2|, 0) for a
solution x∗

where g : Rn �→ R and h : Rn �→ R
m are general (nonlinear) functions. At every

iteration, SQP minimizes the nonlinear objective over some search directions. These
search directions can, for example, be obtained by the optimization of a quadratic
approximation of the original objective subject to some linear approximation of the
original constraints. It is common to introduce a norm constraint ‖δx‖2 ≤ r that
ensures that the solution will be inside a confidence or trust region of this approx-
imation thus resulting in a problem of the form (P). This is particularly useful at
points where the Hessian of the nonlinear objective is singular or indefinite as the
search directions computed by the respective QPs might be unrealistically large or
unbounded.

Typically, SQP algorithms solve problems simpler than (P) by e.g. not including the
inequality constraints (P) in explicit form for the calculation of the search directions
[27, §18.2]. We will show, however, that our solver is capable of computing search
directions from (P) directly, without the need for these simplifications.

We demonstrate this on all the problems of the CUTEst collection [17] that have
linear constraints and number of variables less than 2000. For each of these problems
we consider the quadratic approximation

minimize f (δx):= 1
2δx

T∇2g(x0)δx + δxT∇g(x0) + c
subject to ‖δx‖22 ≤ 1

∇h(x0)δx + h(x0) ≤ 0
(29)

***where x0 is the closest feasible point (in the 2-norm) to the initial point suggested
by CUTEst, which we compute with GUROBI [19], and δx :=x − x0. We discard
problems where GUROBI fails to calculate an initial feasible point. Furthermore, we
do not consider problems for which (29) is convex, since these problems can be
solved to global optimality in polynomial time with standard solvers such as MOSEK
or COSMO.jl [11]. Finally, some problems in the CUTEst collection are parametric;
if the default parameters lead to a problem with more than 2000 variables then we
choose a parameter that, if possible, leads to a number of variables close to, but not
exceeding, 2000. Table 4 list all the 63 problems considered, along with any non-
default parameters.
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Fig. 4 Performance graph of the
suggested algorithm against
Ipopt on calculating SQP
search directions on all 63
problems of the CUTEst library
listed in Table 4. Matrices are
passed to Ipopt in a sparse
format. Hardware used: Intel
E5-2640v3, 64GB memory

We compare the performance of our algorithm against Ipopt with its default
options. For some problems, Ipopt terminates without indication of failure but
returns a low quality solution. We consider a problem as “solved” using the same
criteria as [8]. That is, we require that the overall error of the KKT conditions is less
than 10−4, defined as

error:=max(εprimal inf, εdual inf, εstationarity, εcompl) (30)

with

εprimal inf:=max
(
0, δxT∇h(x0) + h(x0), ‖δx‖2 − 1

)
εdual inf:= − min(0, κ1, . . . , κm, μ)

εstationarity:=
∥∥∥∇2g(x0)δx + ∇g(x0) + κT∇h(x0) + 2μδx

∥∥∥∞
εcompl:=max({min(κi , ‖∇h(x0)δx + h(x0)‖i )},min(μ, | ‖δx‖22 − 1|)),

and κ, μ are the Lagrange multipliers corresponding to the linear inequality and norm
constraints of (29). Figure 4 shows the performance profile for the problems consid-
ered. The performance profile suggests that our algorithm significantly outperforms
Ipopt on this set of problems especially in reliability, in the sense that we consis-
tently obtain high quality solutions. Note that unlike the dense implementation of our
solver, Ipopt can exploit the sparsity of the problems efficiently. Further speedups
can be brought to our algorithm with a sparse implementation which might allow its
use in large scale sparse problems. Moreover, as an active-set solver, our algorithm
can efficiently exploit warm starting, which might be highly desirable in SQP where
repeated solution of problems of the form (29) is required as part of the SQP procedure
for minimizing (28). This is in contrast to Ipopt whose Interior Point nature makes
warm starting very difficult to exploit.
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4.3 Sparse principal component analysis

Principal Component Analysis (PCA) is a standard, widely used dimensionality reduc-
tion algorithm. It has applications in numerous fields, including statistics, machine
learning, bioinformatics, genetics, meteorology and others. Given a k × n data matrix
D that consists of k points of n variables, PCA suggests a few linear combinations of
these variables, which we call principal vectors, that explain as much variance of the
data as possible. Standard PCA amounts to the following problem

maximize xTΣx
subject to ‖x‖2 ≤ 1

whereΣ is the covariancematrix of the data.Wewill assume for the rest of this section
that the data matrix D is “centered”, i.e. that it has column-wise zero mean. We can
then consider Σ to be the empirical covariance matrix Σ := DT D

k−1 ∈ S
n+. The above

problem is essentially an eigenvalue problem on Σ or a singular value problem on D
and, as such, can be solved with standard linear algebra tools.

In general, each principal vector is a linear combination of all the variables, i.e.
typically all components of the principal vectors are non-zero. This can pose an issue
of interpretability of the reduced dimensions, as it is often desirable to express the
principal vector as a combination of a few variables, especially when the variables are
associated with a user interpretable meaning. To alleviate this problem, sparsity has to
be enforced in the original PCA problem, resulting in a new optimization problem that
aims to identify a small set of variables the linear combination of which will hopefully
still be able to explain a significant proportion of the variance of the data.

Unfortunately, enforcing sparsity in PCA results in a combinatorial optimization
problem. Various remarkably efficient and scalable heuristics have been suggested to
avoid this intractability [23,34]. We will focus on one of the most popular heuristics
that is based on a lasso type constraint originally introduced by [22], resulting in the
following optimization problem:

minimize f (x):= − xTΣx
subject to ‖x‖2 ≤ 1

‖x‖1 ≤ γ,

(31)

where x ∈ R
n is the decision variable and γ ≥ 1 is a parameter that controls the

sparsity of the solution.
We will now show how Problem (31) can be solved with our algorithm. Note that

(31) is not in the standard norm-constrained form (P) that we address. However, we
show in the “Appendix” that it is equivalent to

minimize g(w):= − (w1 − w2)
TΣ(w1 − w2)

subject to ‖w‖22 ≤ 1
1Tw ≤ γ

w ≥ 0,

(32)
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where [wT
1 wT

2 ]:=wT ∈ R
2n , in the sense that (31) and (32) have the same optimal

value and every minimizer of (32) w̄ defines a minimizer x̄ = w̄1 − w̄2 for (31). Also,
the optimal w̄ has the same cardinality as the respective optimal x̄ = w̄1 − w̄2.

The reader might think that solving (32) with an active-set method requires a solve
time that is polynomial in the number of variables, thus limiting its scalability as
compared to simpler gradient based methods that are scalable but might have inferior
accuracy and, potentially, weaker convergence guarantees. This is not true however,
since our algorithm takes advantage of the sparsity of the iterates. Indeed, excluding
the lasso constraint, the working set Wk of Algorithm 2 applied in Problem (32) can
be interpreted as the set of variables wi that are fixed to zero. Thus every subproblem
can be trivially reduced to k dimensions, where k is the number of variableswi that are
not included in the current working set. This property is particularly attractive when
the user is interested in a very sparse solution and has been recognized in the literature
on �1-penalized active-set algorithms [3, §6].

We will demonstrate the scalability and flexibility of our algorithm by applying
it in a large “bag of words” dataset from articles of the New York Times newspaper
obtained by the University of California, Irvine (UCI)Machine Learning Repository7.
In this dataset, every row of the associated data matrix D corresponds to a word used in
any of the documents and every column to a document. The entries of thematrix are the
number of occurrences of a word in a document. The dataset contains m ≈ 300,000
articles that consist of n ≈ 102,660 words (or keywords) with ≈ 70 million non-
zeros in the dataset matrix D. We seek to calculate a few sparse principal vectors,
each of which will hopefully correspond to a user-interpretable category, like politics,
economics, the arts etc.

The usefulness of Sparse PCA on this dataset has been already demonstrated in the
literature. Both [28,35] have generated a set of five sparse principal vectors, each of
which is a linear combination of fivewords. The results of [28] are listed in Table 1. The
five resulting principal vectors have distinct, user interpretable associated meanings
that correspond to sports, economics, politics, education, and US foreign policy. The
resulting words can be used to create user interpretable categories of the documents
[35]. However, this interpretability is in general lost when we increase the cardinality
of the sparse principal vectors, i.e. when we require more representative words for
each category. For example, the result of applying TPower [34] (a state-of-the art
algorithm for Sparse PCA) in the NYtimes dataset to generate a sparse principal
vector that consists of 30 words, listed in Table 2, does not have a distinct associated
meaning. For reference, TPower runs in 4.91 s on a standard Laptop with an Intel
i7-5557U CPU and 8 GB of memory and has a resulting variance of 58.79. Another
popular algorithm, �1−GPower, runs in 355.86 s and results in a variance of 56.66.
The results of our active-set algorithm are better than �1−GPower8 and comparable
(slightly inferior) to TPower: our algorithm runs in 5.22 s and has a resulting variance
equal to 58.23. However, our algorithm is more general, in the sense that it can solve

7 Available at http://archive.ics.uci.edu/ml/datasets/Bag+of+Words.
8 Note that �1 penalized algorithms (such as our algorithm and �1−GPower) do not allow for the specifi-
cation of the desired sparsity directly. Instead, their sparsity is controlled by a penalty parameter. We find a
penalty parameter that results in 30 nonzeros via means of a binary search, while exploiting warm starting
of the solvers.

123



An active-set algorithm for norm constrained quadratic… 475

Table 1 Results of [28] on applying sparse PCA on the NYtimes dataset

Vector #1 Vector #2 Vector #3 Vector #4 Vector #5

game companies campaign children attack

play company president program government

player million zzz_al_gore school official

season percent zzz_bush student zzz_u_s

team stock zzz_george_bush teacher zzz_united_states

Each column lists words that correspond to nonzero entries in the respective principal vectors. The resulting
principal vectors have clear associated meanings that correspond to sports, economics, elections, education,
and the US

Table 2 Results of applying sparse PCA on the NYtimes dataset with TPower, allowing weights with
mixed signs

Words Weights Words (continued) Weights (continued)

teamed − 0.45197 hitch − 0.083649

gameday − 0.3698 playland − 0.081834

seasonable − 0.34698 leaguer − 0.07607

playful − 0.28105 nightcap − 0.072675

playa − 0.24374 percentage 0.27263

gamesmanship − 0.20957 companywide 0.23443

coachable − 0.13991 companion 0.14581

pointe − 0.13315 stockade 0.12727

runaround − 0.11266 marketability 0.12368

win95 − 0.1104 millionaire 0.11005

yardage − 0.10503 governmental 0.092267

guzzle − 0.093052 billionaire 0.090433

player − 0.089249 businesses 0.076009

wonder − 0.086247 zzz_bush_administration 0.072731

ballad − 0.085514 fundacion 0.070655

Each column lists words that correspond to nonzero entries in the generated principal vector. Note that
increasing the cardinality of the sparse principal vector has severely affected the interpretability of the
principal vector as compared to the results of Table 1 that have clear associated meaning

any problem of the form (P) which, as we proceed to show, allows for variants of (31)
that can generate principal vectors with more meaningful interpretation.

Indeed, improving interpretability of the results of Sparse PCA can be achieved
by the incorporation of additional constraints in the underlying optimization problem.
Unfortunately, most of the algorithms that are specific for sparse PCA do not allow
for the presence of extra constraints. An exception is perhaps GPower of [23], which
is a generic framework for minimizing a concave function f over a compact subset
F . The iterates of GPower are generated as

xk+1 = argmin xT f ′(xk)
subject to x ∈ F (33)
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Table 3 Results of applying non-negative sparse PCA on the NYtimes dataset with the suggested active-set
algorithm

Vector #1 Vector #2 Vector #3 Vector #4 Vector #5

team percent zzz_al_gore official school

game company zzz_bush government student

season million zzz_george_bush attack children

player companies campaign zzz_u_s program

play stock president zzz_united_states teacher

games market election zzz_bush parent

point billion political military high

coach business zzz_white_house zzz_american percent

run fund republican palestinian public

win analyst voter zzz_taliban education

yard money vote zzz_afghanistan kid

guy zzz_enron presidential terrorist district

won firm democratic war test

played investor tax leader family

hit sales zzz_republican zzz_israel college

ball industry administration group home

playing plan zzz_clinton bin child

league cost ballot laden class

left investment votes country group

home quarter plan administration job

fan deal democrat security boy

shot financial zzz_washington forces money

field customer zzz_congress zzz_israeli help

playoff economy poll zzz_pakistan mother

night chief support american system

goal price candidate zzz_washington friend

final executive zzz_florida nation girl

start growth candidates terrorism private

quarterback earning governor weapon voucher

football share vice foreign grade

Each column lists words that correspond to nonzero entries in the respective principal vectors. The words
are sorted in decreasing magnitude of the respective weights. Given a set of computed principal vectors
{xi }, the next principal vector is computed on the deflated data matrix D − ∑

(Dxi )x
T
i . The algorithm is

initialized with the 30 most positive, or most negative, entries (depending on which one leads to higher
explained variance) of the first singular vector of the respective matrix. Furthermore we perform a standard
post-processing polishing step at each resulting principal vector, as described in [23, §4.2]. Note that, unlike
Table 2 our algorithm results in principal vectors that have clear, user interpretable associated meanings
that corresponds to sports, economics, politics, education, and US foreign policy. These words could be
used for document classification [35]
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where f ′(·) is a subgradient of f (·). [23] showed that for the case of Sparse PCA of
(31) the above optimization problem reduces to twomatrix multiplications with D and
DT . However, in the presence of general linear inequality constraints, solving (33) can
be at least as hard as solving a linear program (LP), which is obviously considerably
more computationally demanding than two matrix multiplications.

In contrast, due to the generality of our approach, imposing any linear constraint
is straightforward for our algorithm. To demonstrate this, we impose a non-negativity
constraint on the elements of the principal vector to avoid cases where the principal
vectors consist of elements that have opposing meanings which happens, for example,
in the results of TPower listed in Table 2. Table 3 lists five sparse principal vectors
obtained with this approach which take 24.37 s to compute on a standard Laptop with
an Intel i7-5557U CPU and 8GB of memory. Note that, unlike the results of Table 2,
the principal vectors of Table 3 have a clear associated meaning that can be labeled as
sports, economics, politics, US foreign policy and education. These words could for
example be used for organizing the documents in a user interpretable way [35].

5 Conclusion

This paper introduced an active-set algorithm for the solution of quadratic functions
subject to linear constraints and a single norm constraint. The suggested algorithm is
based on repeated solutions of the TRS, for which we derived novel theoretical results
regarding its local-nonglobal minimizer. The usefulness of the suggested algorithm
was demonstrated in a range of real world experiments.

Appendix

In this Sectionwe show that the suggested active-set algorithm of Sect. 3.2 can perform
�1 sparse PCA, that is, to solve the problem

minimize f (x):= − xTΣx
subject to ‖x‖2 ≤ 1

‖x‖1 ≤ γ.

Theorem 3 Problems (31) and (32) have the same optimal value and every (local)
minimizer w̄ of (32) defines a (local) minimizer x̄ = w̄1 − w̄2 for (31).

Proof First note that both Problems (31) and (32) have a minimizer as their objective
is smooth and their feasible set compact. For any feasible x of (31), the choice

w1 = x+ and w2 = −x−,

where x+ and x− are defined element-wise as follows

x+:=max(x, 0) and x−:=min(x, 0),
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is feasible for (32) since ‖w1‖22+‖w2‖22 = ‖x‖22 = 1 and 1Tw1+1Tw2 = ‖x‖1 ≤ γ ,
while f (x) = g([w1; w2]) since

−(w1 − w2)
TΣ(w1 − w2) = −xTΣx .

Thus the optimal value of (32) is less than that of (31).
Moreover, for any minimizer (w̄1, w̄2) of (32), choosing x̄ = w̄1 − w̄2 gives

f (x̄) = g([w̄1; w̄2])with x̄ feasible for (31) as we proceed to show. Indeed, note that
w̄T
1 w̄2 ≥ 0 and ‖w̄1‖22 + ‖w̄2‖22 = 1 thus

‖x̄‖22 = ‖w̄1‖22 + ‖w̄2‖22 − 2w̄T
1 w̄2 ≤ ‖w̄1‖22 + ‖w̄2‖22 = 1 (34)

and

‖x̄‖1 = ‖w̄1 − w̄2‖1 ≤ ‖w̄1‖1 + ‖w̄2‖1 ≤ γ. (35)

Assume that x̄ is not a minimizer for (31). Then, there exists an x̃ with ‖x̃ − x̄‖∞
arbitrarily small such that f (x̄) > f (x̃). Thus (w̃1, w̃2):=(x̃+,−x̃−) is feasible for
(32) with g([w̃1; w̃2]) = f (x̃) < f (w̄) = g([w̄1; w̄2])) and

∥∥∥∥
[
w̃1 − w̄1
w̃2 − w̄2

]∥∥∥∥∞
=

∥∥∥∥
[

x̃+ − x̄+
−(x̃− − x̄−)

]∥∥∥∥∞
≤ ‖x̃ − x̄‖∞ (36)

i.e. (w̃1, w̃2) is arbitrarily close to (w̄1, w̄2). This contradicts the assumption that
(w̄1, w̄2) is a local minimizer for (32).

Finally, since the optimal value of (32) is less than the one of (31) and the global
optimum (w̄1, w̄2) of (32) defines a feasible x̄ for (31) with g([w̄1; w̄2]) = f (x̄) we
conclude that the optimal values of (31) and (32) coincide. �	
Furthermore, the following complementarity condition holds which implies that the
sparsity of a solution w̄ of (32) is equal to the sparsity of the solution x̄ = w̄1 − w̄2
for Problem (31).

Lemma 7 Every (local) minimizer w̄ of (32) has w̄T
1 w̄2 = 0.

Proof Assume the contrary, i.e. that w̄T
1 w̄2 �= 0. Due to feasibility of w̄ = [w̄1; w̄2]

we have w̄ ≥ 0. Thus, there exists an i ∈ {1, . . . , n} such that w̄(i), w̄(i+n) > 0. Define
w̃ element-wise as

w̃(k) =
{

w̄(k) − ε, k = i, i + n

w̄(k), otherwise
(37)

for ε > 0 sufficiently small so that w̃ > 0. We will show that for a sufficiently small,
positive α the point (1+ α)w̃ is feasible and of smaller objective value than the local
minimizer w̄ while ‖w̄ − (1 + α)w̃‖ can become arbitrarily small for an appropriate
choice of α and ε. This will be a contradiction of (local) optimality of w̄.
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Indeed, note that 1T w̃ < 1T w̄ ≤ γ and ‖w̃‖2 < ‖w̄‖2 ≤ 1, thus (1+α)w̃ is feasible
for any α > 0 sufficiently small. Moreover, g(w̃) = g(w̄) giving g((1 + α)w̃) =
(1 + α)2g(w̄) < g(w̄), since g(w̄) < 0 as otherwise w̄ would be a global maximizer
of (32). �	

Finally, we present detailed comparison results of our algorithm against Ipopt on
the problems described in Sect. 4.2.
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