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Abstract
The problem of minimizing a (nonconvex) quadratic form over the unit simplex,
referred to as a standard quadratic program, admits an exact convex conic formulation
over the computationally intractable cone of completely positive matrices. Replacing
the intractable cone in this formulation by the larger but tractable cone of doubly
nonnegative matrices, i.e., the cone of positive semidefinite and componentwise non-
negative matrices, one obtains the so-called doubly nonnegative relaxation, whose
optimal value yields a lower bound on that of the original problem. We present a full
algebraic characterization of the set of instances of standard quadratic programs that
admit an exact doubly nonnegative relaxation. This characterization yields an algo-
rithmic recipe for constructing such an instance. In addition, we explicitly identify
three families of instances for which the doubly nonnegative relaxation is exact. We
establish several relations between the so-called convexity graph of an instance and
the tightness of the doubly nonnegative relaxation. We also provide an algebraic char-
acterization of the set of instances for which the doubly nonnegative relaxation has a
positive gap and show how to construct such an instance using this characterization.
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1 Introduction

A standard quadratic program, which involves minimizing a (nonconvex) quadratic
form (i.e., a homogeneous quadratic function) over the unit simplex, can be expressed
as

(StQP) ν(Q)
def= min

{
xT Qx : x ∈ Δn

}
,

where Q ∈ Sn and Sn denotes the space of n × n real symmetric matrices, and Δn

denotes the unit simplex in the n-dimensional Euclidean space Rn , i.e.,

Δn
def= {x ∈ R

n : eT x = 1, x ≥ 0}, (1)

where e ∈ R
n is the vector of all ones.

The standard quadratic program was singled out by Bomze [3], who also described
several properties of the problem. It has many application areas such as portfolio opti-
mization [25], population genetics [21], evolutionary game theory [4], and maximum
(weighted) clique problem [14,27]. Since (StQP) contains the maximum (weighted)
clique problem as a special case, the problem is, in general, NP-hard.

A standard quadratic programadmits an exact reformulation as a linear optimization
problem over the convex cone of completely positivematrices [6] (see Sect. 2.2). Since
the cone of completely positive matrices is computationally intractable [13], replacing
this conic constraint by a larger but computationally tractable convex cone immediately
gives rise to a relaxation, whose optimal value yields a lower bound on that of (StQP).

In this paper, we focus on the so-called doubly nonnegative relaxation of (StQP),
which arises from replacing the cone of completely positive matrices in the afore-
mentioned reformulation by the larger cone of doubly nonnegative matrices, i.e., the
cone of positive semidefinite and componentwise nonnegative matrices. In contrast
with the cone of completely positive matrices, a linear optimization problem over the
cone of doubly nonnegative matrices can be solved to an arbitrary accuracy in poly-
nomial time. For a given optimization problem, a relaxation is said to be exact if the
lower bound arising from that relaxation agrees with the optimal value of the original
problem. Our main objective is to provide a characterization of the set of instances of
(StQP) that admit an exact doubly nonnegative relaxation as well as a characterization
of the set of instances for which the relaxation has a positive gap. Note that such char-
acterizations shed light on instances of (StQP) that can be solved in polynomial time.
Furthermore, they are helpful for identifying supporting hyperplanes of the feasible
region of the convex conic reformulation of (StQP) that are common with those of the
feasible region of the doubly nonnegative relaxation.

Our contributions in this paper are as follows.

1. We present a full characterization of the set of instances of (StQP) that admit an
exact doubly nonnegative relaxation (see Sect. 3).

2. Based on this characterization, we propose a simple algorithmic recipe for gener-
ating an instance with an exact doubly nonnegative relaxation (see Sect. 3).
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3. We explicitly identify three families of instances of (StQP) with exact doubly
nonnegative relaxations (see Sect. 4).

4. We establish several relations between themaximal cliques of the so-called convex-
ity graph of an instance and the tightness of the corresponding doubly nonnegative
relaxation (see Sect. 5).

5. We present an algebraic characterization of the set of instances of (StQP) for which
the doubly nonnegative relaxation has a positive gap (see Sect. 6).

6. By using this characterization, we propose a procedure for generating an instance
of (StQP) with a positive relaxation gap (see Sect. 6).

This paper is organized as follows. We briefly review the related literature in
Sect. 1.1 and define our notation in Sect. 1.2. In Sect. 2, we review several known
results and present the convex conic reformulation as well as the doubly nonnegative
relaxation. Section 3 is devoted to the characterization of instances of (StQP) with
an exact doubly nonnegative relaxation. Using this characterization, we also describe
a procedure for generating an instance with an exact relaxation. In Sect. 4, we iden-
tify three families of instances of (StQP) that admit an exact relaxation by relying on
the characterization in Sect. 3. We define the convexity graph and establish several
relations between the maximal cliques of this graph and the exactness of the doubly
nonnegative relaxation in Sect. 5. In particular, we identify a sufficient condition that
can be used to find an instance of (StQP) with an exact relaxation that is not covered by
any of the three families in Sect. 4. Section 6 presents an algebraic characterization of
the instances of (StQP) with a positive relaxation gap and a procedure for generating
such an instance. Finally, we conclude the paper in Sect. 7.

1.1 Literature review

We briefly review the related literature. A standard quadratic program can be equiv-
alently formulated as a linear optimization problem over the cone of completely
positive matrices, i.e., a copositive program [6]. Despite the fact that solving this conic
reformulation remains NP-hard, it offers a fresh perspective for developing tractable
approximations of (StQP) by instead focusing on tractable approximations of the
cone of completely positive matrices. Relying on sum-of-squares decomposition, Par-
rilo [29] proposed an approximation hierarchy, i.e., a sequence of nested convex cones
that provide increasingly better inner approximations of the dual cone of copositive
matrices, which, by duality, yields a sequence of increasingly better outer approxima-
tions of the cone of completely positive matrices. Since each of these cones can be
represented by linear matrix inequalities, a linear optimization over each cone can be
cast as a semidefinite program and can therefore be solved in polynomial time. In fact,
the dual of the first cone in this hierarchy is precisely the cone of doubly nonnegative
matrices. By exploiting weaker conditions, de Klerk and Pasechnik [10] proposed a
sequence of polyhedral cones that yield increasingly better outer approximations of
the cone of completely positive matrices. For other inner and outer approximations,
we refer the reader to [7,15,22,30,36].

By combining the approximations of (StQP) arising from the polyhedral approxima-
tion hierarchy of [10] with a simple search on a finite grid on the unit simplex, Bomze
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and de Klerk [5] established a polynomial-time approximation scheme for (StQP).
In [36], the second author of this paper proposed an inner polyhedral approximation
hierarchy for the cone of completely positive matrices and tightened the error bound
of [5], which was used to establish the polynomial-time approximation scheme. The
resulting error bound also translates directly into an error bound on the gap between the
optimal value of (StQP) and that of the doubly nonnegative relaxation since the hier-
archy of Parrilo [29] is stronger than that of [10]. Sağol and Yıldırım [32] studied the
behavior of inner and outer polyhedral approximation hierarchies of [10] and [36] on
standard quadratic programs. They presented algebraic characterizations of instances
of (StQP) with exact inner and/or outer approximations at each level of these hier-
archies and established several properties of such instances. In this paper, we aim to
establish similar characterizations and properties of the set of instances of (StQP) that
admit exact doubly nonnegative relaxations as well as those with a positive relaxation
gap. Therefore, our focus in this paper is similar to that of [32].

Very recently, Kim et al. [20] studied the doubly nonnegative relaxations of general
copositive programs. Under the assumption that the correlative and sparsity patterns
of the data matrices form a block-clique graph, they established the exactness of
the doubly nonnegative relaxations. In particular, their results imply that the doubly
nonnegative relaxation of any convex quadratically constrained quadratic program is
exact. We note that the correlative and sparsity patterns of the data matrices of the
copositive formulation of (StQP) form a complete graph, which is, indeed, a block-
clique graph. On the other hand, the exactness of the doubly nonnegative relaxation
in [20] is established under the additional assumption that the size of each clique is at
most four, which is only satisfied for the doubly nonnegative relaxation of instances
of (StQP) with n ≤ 4. However, for such instances, it is already known that the doubly
nonnegative relaxation is exact (see Sect. 2). Therefore, our results in this paper are
not implied by the results in [20].

1.2 Notation

We use Rn,Rn+,Rn++, Rm×n , and Sn to denote the n-dimensional Euclidean space,
the nonnegative orthant, the positive orthant, the set of m × n real matrices, and the
space of n × n real symmetric matrices, respectively. The unit simplex in R

n , given
by (1), is denoted by Δn . We reserve e and e j for the vector of all ones and the j th

unit vector, respectively. The matrix of all ones is denoted by E
def= eeT and I denotes

the identity matrix. The dimensions of e, e j , E , and I will always be clear from the
context. We use 0 to denote the real number zero, the vector of all zeroes, as well as
the matrix of all zeroes. We use calligraphic letters to denote the subsets of Sn . We use
uppercase boldface Roman or uppercase Greek letters to denote the subsets ofRn . We
use uppercase letters both for matrices and index sets, and lower case letters to denote
vectors, dimensions, and indices of vectors and matrices. Scalars will be denoted by
lowercase Greek letters, with the exception of �(Q) that denotes the lower bound
arising from the doubly nonnegative relaxation. For an index set A ⊆ {1, . . . , n},
we denote by |A| the cardinality of A. For x ∈ R

n , Q ∈ Sn , A ⊆ {1, . . . , n}, and
B ⊆ {1, . . . , n}, we denote by xA ∈ R

|A| the subvector of x restricted to the indices
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in A and by QAB the submatrix of Q whose rows and columns are indexed by A
and B, respectively. Therefore, QAA denotes a principal submatrix of Q. We use the
simplified notations x j and Qi j for singleton index sets. For v ∈ R

n , v⊥ denotes the
orthogonal complement of v. For any U ∈ R

m×n and V ∈ R
m×n , the trace inner

product is denoted by

〈U , V 〉 def=
m∑
i=1

n∑
j=1

Ui j Vi j .

For an instance of (StQP) with Q ∈ Sn , we denote by ν(Q) the optimal value, and
the set of optimal solutions is denoted by

Ω(Q)
def= {x ∈ Δn : xT Qx = ν(Q)}.

For a given x ∈ Δn , we define the following index sets corresponding to the positive
and zero entries of x , respectively:

A(x)
def= {

j ∈ {1, . . . , n} : x j > 0
}
, (2)

Z(x)
def= {

j ∈ {1, . . . , n} : x j = 0
}
. (3)

2 Preliminaries

In this section, we review several known results from the literature and present the
copositive formulation of a standard quadratic program as well as the doubly nonneg-
ative relaxation.

2.1 Convex cones

We define the following cones in Sn :

N n def= {
M ∈ Sn : Mi j ≥ 0, i = 1, . . . , n; j = 1, . . . , n

}
,

PSDn def=
{
M ∈ Sn : uT Mu ≥ 0, for all u ∈ R

n
}

,

COPn def=
{
M ∈ Sn : uT Mu ≥ 0, for all u ∈ R

n+
}

,

CPn def=
{
M ∈ Sn : M =

r∑
k=1

bk(bk)T , for some bk ∈ R
n+, k = 1, . . . , r

}
,

DN n def= PSDn ∩ N n,

SPN n def= {
M ∈ Sn : M = M1 + M2, for some M1 ∈ PSDn, M2 ∈ N n} ,

namely, N n is the cone of componentwise nonnegative matrices, PSDn is the cone
of positive semidefinite matrices, COPn is the cone of copositive matrices, CPn is
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the cone of completely positive matrices, DN n is the cone of doubly nonnegative
matrices, and SPN n is the cone of SPNmatrices, i.e., the cone of matrices that can be
decomposed into the sum of a positive semidefinite and a componentwise nonnegative
matrix. Each of these cones is closed, convex, full-dimensional, and pointed, and the
following set of inclusion relations is satisfied:

CPn ⊆ DN n ⊆
{ N n

PSDn

}
⊆ SPN n ⊆ COPn . (4)

By [11],

CPn = DN n, and SPN n = COPn if and only if n ≤ 4. (5)

For n ≥ 5, checking membership is NP-hard for both CPn [13] and COPn [28]. Each
of the remaining four cones is tractable in the sense that they admit polynomial-time
membership oracles.

The following lemma collects several known results that will be useful throughout
the paper. The proofs follow directly from the definitions of the cones and are therefore
omitted.

Lemma 1 Let Kn ∈ {CPn,DN n,N n,PSDn,SPN n, COPn}. Then, the following
relations are satisfied:

(i) If U ∈ Kn, then Ukk ≥ 0, k = 1, . . . , n.
(ii) U ∈ Kn if and only if J TU J ∈ Kn, where J ∈ R

n×n is a permutation matrix.
(iii) U ∈ Kn if and only if DUD ∈ Kn, where D ∈ Sn is a diagonal matrix with

positive diagonal entries.
(iv) If U ∈ Kn, then every principal r × r submatrix of U is in Kr , r = 1, . . . , n.
(v) If U1 ∈ Kn and U2 ∈ Km, then

U1 ⊕U2
def=

[
U1 0
0 U2

]
∈ Kn+m .

In particular, U2 = 0 can be chosen.

2.2 Copositive formulation and doubly nonnegative relaxation

(StQP) can be formulated as a copositive program [6], i.e., a linear optimization prob-
lem over an affine subset of the convex cone of completely positive matrices:

(CP) ν(Q) = min{〈Q, X〉 : 〈E, X〉 = 1, X ∈ CPn},

where X ∈ Sn is the decision variable.
By (4), we can replace the intractable conic constraint X ∈ CPn by X ∈ DN n and

obtain a relaxation of (CP), or, equivalently, a relaxation of (StQP):

(DN-P) �(Q)
def= min

{〈Q, X〉 : 〈E, X〉 = 1, X ∈ DN n} .
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(DN-P) is referred to as the doubly nonnegative relaxation of (StQP). The Lagrangian
dual problem of (DN-P) is given by

(DN-D) �(Q) = max
{
σ : σ E + S = Q, S ∈ SPN n} ,

where σ ∈ R and S ∈ Sn are the decision variables. It is well-known that both (DN-P)
and (DN-D) satisfy the Slater’s condition, which implies that strong duality is satisfied,
and that optimal solutions are attained in both (DN-P) and (DN-D).

For all Q ∈ Sn , we have
�(Q) ≤ ν(Q), (6)

since CPn ⊆ DN n . For n ≤ 4, we have �(Q) = ν(Q) by (5). For n ≥ 5, we are
interested in the characterization of instances of (StQP) for which �(Q) = ν(Q) as
well as those with �(Q) < ν(Q).

The following lemma presents a simple shift invariance property that will be useful
throughout the remainder of the paper.

Lemma 2 For any Q ∈ Sn and any λ ∈ R,

ν(Q + λE) = ν(Q) + λ, (7)

�(Q + λE) = �(Q) + λ. (8)

Furthermore, Ω(Q) = Ω(Q + λE).

Proof The relations (7) and (8) immediately follow from the formulations (CP) and
(DN-P), respectively, since 〈Q + λE, X〉 = 〈Q, X〉 + λ〈E, X〉 = 〈Q, X〉 + λ for any
X ∈ Sn such that 〈E, X〉 = 1. The last assertion directly follows from the observation
that

xT (Q + λE)x = xT Qx + λxT Ex = xT Qx + λ(eT x)2 = xT Qx + λ

for any λ ∈ R and x ∈ Δn . ��
By Lemma 2, if �(Q) = ν(Q) for a given Q ∈ Sn , note that �(Q + λE) =

ν(Q + λE) for any λ ∈ R. We will repeatedly use this observation in the remainder
of the manuscript.

2.3 Local optimality conditions

In this section, we review the local optimality conditions of (StQP).
Given an instance of (StQP), x ∈ R

n is a local minimizer if and only if there exists
s ∈ R

n such that the following conditions are satisfied (see, e.g., [19,24]):

Qx −
(
xT Qx

)
e − s = 0, (9)

eT x = 1, (10)

x ∈ R
n+, (11)
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s ∈ R
n+, (12)

x j s j = 0, j = 1, . . . , n, (13)

dT Qd ≥ 0, for all d ∈ D(x), (14)

where D(x) consists of all feasible directions at x that are orthogonal to the gradient
of the objective function at x , and is given by

D(x)
def=

{
d ∈ R

n : eT d = 0, dT Qx = 0, d j ≥ 0, for all j ∈ Z(x)
}

,

and Z(x) is given by (3). We remark that the Lagrange multipliers μ ∈ R and s ∈ R
n

corresponding to the constraints eT x = 1 and x ≥ 0, respectively, are both scaled by
1/2 and the former is replaced by xT Qx in (9) by using (10) and (13).

Note that (9) – (13) are the KKT conditions and any x ∈ Δn that satisfies these
conditions is said to be a KKT point. For any KKT point x ∈ R

n , (14) captures the
second order optimality conditions. Note that

D(x) ⊆
{
d ∈ R

n : eT d = 0
}

. (15)

2.4 Global optimality conditions

First, we note that the membership problem in COPn can be cast in the form of (StQP)
since Q ∈ COPn if and only if ν(Q) ≥ 0. The following theorem establishes that
checking the global optimality condition in (StQP) conversely reduces to amembership
problem in COPn . We include a short proof for the sake of completeness.

Theorem 1 (Bomze 1992) Let Q ∈ Sn and let x∗ ∈ Δn. Then,

x∗ ∈ Ω(Q) if and only if Q −
(
(x∗)T Qx∗) E ∈ COPn .

Proof Let x∗ ∈ Ω(Q). Consider Q′ def= Q− (
(x∗)T Qx∗) E ∈ Sn . Then, by Lemma 2,

ν(Q′) = ν
(
Q −

(
(x∗)T Qx∗) E

)
= ν(Q) −

(
(x∗)T Qx∗) = ν(Q) − ν(Q) = 0,

which implies that Q′ ∈ COPn .
Conversely, suppose that Q′ = Q−(

(x∗)T Qx∗) E ∈ COPn . Then, for any x ∈ Δn ,
by using xT Ex = (eT x)2 = 1, we obtain

xT Q′x = xT
(
Q −

(
(x∗)T Qx∗) E

)
x = xT Qx − (x∗)T Qx∗ ≥ 0,

which implies that ν(Q) = (x∗)T Qx∗, i.e., x∗ ∈ Ω(Q). ��
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3 Standard quadratic programs with exact doubly nonnegative
relaxations

In this section, we focus on the set of instances of (StQP) which admit an exact doubly
nonnegative relaxation. To that end, let us define

Qn def= {
Q ∈ Sn : �(Q) = ν(Q)

}
. (16)

We will present alternative characterizations ofQn . These characterizations will sub-
sequently be used for identifying several sufficient conditions for membership inQn .

First, given x ∈ Δn , we denote by Sx the set that consists of all matrices Q ∈ Sn

for which x ∈ Δn is an optimal solution of the corresponding (StQP) instance, i.e.,

Sx
def= {

Q ∈ Sn : x ∈ Ω(Q)
} =

{
Q ∈ Sn : Q −

(
xT Qx

)
E ∈ COPn

}
. (17)

Note that the second equality in (17) is a consequence of Theorem 1.
Let us define the following line in Sn , which will frequently arise in the remainder

of the paper:
L def= {λE : λ ∈ R} . (18)

For each x ∈ Δn , it is easy to verify that Sx is a closed and convex cone in Sn and

L ⊆ Sx , for all x ∈ Δn .

Furthermore, ⋃
x∈Δn

Sx = Sn . (19)

Next, we focus on the characterization of the set of matrices in Sx that admit an
exact doubly nonnegative relaxation, i.e.,

Qx
def=Sx ∩ Qn = {

Q ∈ Sn : x ∈ Ω(Q), �(Q) = ν(Q)
}
. (20)

The following lemma presents a complete characterization of Qx .

Lemma 3 For any x ∈ Δn,

Qx =
{
Q ∈ Sn : Q −

(
xT Qx

)
E ∈ SPN n

}
. (21)

Proof We prove the relation (21) by showing that each set is a subset of the other one.
Let x ∈ Δn and let Q ∈ Qx . By (20), Q ∈ Sx and Q ∈ Qn , i.e., �(Q) = ν(Q) =
xT Qx . Then, since optimal solutions are attained in (DN-D), there exists S∗ ∈ SPN n

such that ν(Q)E + S∗ = Q, which implies that Q − ν(Q)E = Q − (
xT Qx

)
E ∈

SPN n .
Conversely, for a given x ∈ Δn , if Q − (

xT Qx
)
E ∈ SPN n , then Q ∈ Sx by (4)

and (17), and ν(Q) = xT Qx . Furthermore, let σ
def= xT Qx and S

def= Q − σ E . Then,
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(σ, S) is a feasible solution of (DN-D), which implies that �(Q) ≥ xT Qx = ν(Q)

since (DN-D) is a maximization problem. Combining this inequality with (6), we
obtain �(Q) = ν(Q), i.e., Q ∈ Qn . We therefore obtain Q ∈ Qx . ��

By Lemma 3, for any x ∈ Δn and Q ∈ Sn , one can check if Q ∈ Qx in polynomial
time by solving a semidefinite program. Similar to Sx , it is easy to verify thatQx is a
closed convex cone and

L ⊆ Qx , for all x ∈ Δn, (22)

where L is given by (18).
Next, for a given x ∈ Δn , we aim to present an alternative and more useful charac-

terization of Qx that would enable us to construct a matrix Q ∈ Qx . To that end, for
each x ∈ Δn , we identify the following subsets, which will be the building blocks for
the set Qx :

Px
def=

{
P ∈ PSDn : xT Px = 0

}
= {

P ∈ PSDn : Px = 0
}
, (23)

Nx
def=

{
N ∈ N n : xT Nx = 0

}
= {

N ∈ N n : Ni j = 0, {i, j} ⊆ A(x)
}
, (24)

where A(x) is defined as in (2).
For each x ∈ Δn , note that Px is a face of PSDn and Nx is a polyhedral cone in

N n . Furthermore, for each P ∈ Px and for each N ∈ Nx , we have P − (xT Px)E =
P ∈ SPN n and N − (xT Nx)E = N ∈ SPN n by (4). By Lemma 3, we therefore
obtain

Px + Nx ⊆ Qx ⊆ Sx , for all x ∈ Δn . (25)

The next proposition presents a complete characterization of Qx by establishing a
useful relation between Qx and the sets Nx and Px .

Proposition 1 For each x ∈ Δn,

Qx = Px + Nx + L, (26)

wherePx ,Nx , andL are defined as in (23), (24), and (18), respectively. Furthermore,
for any decomposition of Q ∈ Qx given by Q = P + N + λE, where P ∈ Px ,
N ∈ Nx , and λ ∈ R, we have λ = xT Qx = �(Q) = ν(Q).

Proof Let x ∈ Δn and Q ∈ Qx . Then, by Lemma 3,

Q −
(
xT Qx

)
E = P + N ,

where P ∈ PSDn and N ∈ N n . Therefore, using xT Ex = (eT x)2 = 1, we get

0 = xT Qx −
(
xT Qx

) (
xT Ex

)
= xT Px + xT Nx,
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which implies that xT Px = xT Nx = 0 since both terms are nonnegative. Therefore,
we obtain

Q = P + N +
(
xT Qx

)
E,

where P ∈ Px and N ∈ Nx . It follows that Q ∈ Px + Nx + L.
Conversely, since Px + Nx ⊆ Qx by (25), L ⊆ Qx by (22), and Qx is a convex

cone, it follows that Px + Nx + L ⊆ Qx , which establishes (26).
For the last assertion, let Q ∈ Qx be decomposed as Q = P + N + λE , where

P ∈ Px , N ∈ Nx , and λ ∈ R. Then, xT Qx = xT Px + xT Nx +λ, which implies that
xT Qx = λ. Since Q ∈ Qn and Qx ⊆ Sx , we obtain λ = xT Qx = �(Q) = ν(Q). ��

We remark that Proposition 1 gives a complete characterization of Qx for each
x ∈ Δn . In addition, it gives a recipe to construct a matrix in Qx . Indeed, for any
x ∈ Δn , one simply needs to generate two matrices P ∈ Px , N ∈ Nx , a real number
λ, and define Q

def= P + N + λE . By Proposition 1, this is necessary and sufficient to
ensure that Q ∈ Qx with �(Q) = ν(Q) = λ.

Note that a matrix P ∈ Px can easily be generated by choosing a matrix B ∈
R
n×(n−1) whose columns form a basis for x⊥, and defining P = BV BT , where

V ∈ PSDn−1. Alternatively, the following discussion illustrates that there is an even
simpler procedure to generate such a matrix P ∈ Px , without having to compute a
basis for x⊥. To that end, we present a technical result first.

Lemma 4 For any two vectors u ∈ R
n and v ∈ R

n such that uT v = 1, we have

R(I − uvT ) = v⊥, (27)

where R(·) denotes the range space.
Proof Let w ∈ R(I − uvT ). Then, there exists z ∈ R

n such that w = (I − uvT )z =
z − (vT z)u. Therefore, vTw = vT z − (vT z)(vT u) = vT z − vT z = 0, which implies
that w ∈ v⊥.

Conversely, if w ∈ v⊥, then (I − uvT )w = w − (vTw)u = w, which implies that
w ∈ R(I − uvT ), establishing (27). ��

Using Lemma 4, we can present a simpler characterization of Px .

Lemma 5 For each x ∈ Δn, the following identity holds:

Px =
{
P ∈ Sn : P =

(
I − exT

)
K

(
I − xeT

)
for some K ∈ PSDn

}
,

where Px is given by (23).

Proof Suppose that P ∈ Px . Then, P ∈ PSDn and xT Px = 0. Since P ∈ PSDn ,
there exists a matrix L ∈ R

n×n such that P = LLT . It follows that LT x = 0,
which implies that each column of L belongs to x⊥. Since eT x = 1, it follows
from Lemma 4 that there exists a matrix W ∈ R

n×n such that L = (
I − exT

)
W .
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Therefore, P = LLT = (
I − exT

)
WWT

(
I − xeT

) = (
I − exT

)
K

(
I − xeT

)
,

where K = WWT ∈ PSDn .
Conversely, if P = (

I − exT
)
K

(
I − xeT

)
for some K ∈ PSDn , then we clearly

have P ∈ PSDn and xT Px = 0, which implies that P ∈ Px . ��
By Lemma 5, for a given x ∈ Δn , in order to ensure that P ∈ Px , it is necessary and

sufficient to generate a matrix K ∈ PSDn and define P
def= (

I − exT
)
K

(
I − xeT

)
.

The following corollary is an immediate consequence of Proposition 1, (20), and
(19).

Corollary 1 The following relation is satisfied:

Qn =
⋃
x∈Δn

Qx =
⋃
x∈Δn

(Px + Nx + L) ,

where Qx , Px , Nx , and L are given by (20), (23), (24), and (18), respectively.

By Lemma 3, for any positive integer n, any x ∈ Δn , and any Q ∈ Sn , one can
check if Q ∈ Qx in polynomial time. Recall, by (4) and (5), that SPN n ⊆ COPn for
each n, and COPn = SPN n if and only if n ≤ 4. By (17) and Lemma 3, we obtain

Sx = Qx , for all n ≤ 4, for all x ∈ Δn .

It follows that, for each n ≤ 4 and each x ∈ Δn , the membership problem for Sx can
be solved in polynomial time. In contrast, checking if Q ∈ Sx is, in general, NP-hard
for n ≥ 5. Furthermore, a complete characterization of the matrices in Sx\Qx requires
a full understanding of the set COPn\SPN n for n ≥ 5. While the set of extreme rays
of COPn\SPN n has recently been completely characterized for n = 5 in [18] and
n = 6 in [1], the problem still remains open in higher dimensions.

In the remainder of this section, we focus on the case n ≥ 5. We identify several
conditions on x ∈ Δn such that the set Sx admits a simple characterization.

To that end, we first recall that the boundary of COPn is given by

bd COPn =
{
M ∈ COPn : ∃ u ∈ Δn s.t. u

T Mu = 0
}

, (28)

where bd denotes the boundary of a set.
For a copositive matrix M ∈ bd COPn , the set of zeros of M is given by

VM def=
{
u ∈ Δn : uT Mu = 0

}
. (29)

We start with the following simple lemma. We remark that these results can be
found in, e.g., [2,11,12]. For the sake of completeness, we present alternate proofs by
relying on the optimality conditions of (StQP).

Lemma 6 Let Q ∈ Sn and let x∗ ∈ Ω(Q). Let M
def= Q − (

(x∗)T Qx∗) E ∈ Sn,

A
def= A(x∗) and Z

def= Z(x∗), where A(·) and Z(·) are defined as in (2) and (3), respec-
tively. Then,
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(i) M ∈ bd COPn;
(ii) MAA x∗

A = 0;
(iii) MZA x∗

A ≥ 0;
(iv) MAA ∈ PSD|A|.

Proof Let Q ∈ Sn , x∗ ∈ Ω(Q), and M = Q − (
(x∗)T Qx∗) E . By Theorem 1,

M ∈ COPn . Furthermore, (x∗)T Mx∗ = (x∗)T Qx∗ − (x∗)T Qx∗ = 0, which implies
that M ∈ bd COPn by (28), which establishes (i).

Consider the (StQP) instance corresponding to M . Since M ∈ COPn , we obtain

xT Mx ≥ (x∗)T Mx∗ = 0 = ν(M), for all x ∈ Δn .

By combining ν(M) = (x∗)T Mx∗ = 0 with the KKT conditions (9), (12), and (13),
we obtain MAA x∗

A = 0 and MZA x∗
A ≥ 0, establishing (ii) and (iii).

Finally, for any d ∈ R
|A| and any α ∈ R, we have

(x∗
A + αd)T MAA(x∗

A + αd) = (x∗
A)T MAAx

∗
A + 2αdT MAAx

∗
A + α2dT MAAd,

= α2dT MAAd,

where we used (x∗)T Mx∗ = (x∗
A)T MAAx∗

A = 0 and (ii) in the second equality. If
there exists d ∈ R

|A| such that dT MAAd < 0, then, since x∗
A > 0, for sufficiently

small α > 0, we obtain x∗
A + αd > 0 and (x∗

A + αd)T MAA(x∗
A + αd) < 0, which

implies thatMAA /∈ COP |A|, contradictingLemma1(iv). Therefore,MAA ∈ PSD|A|,
establishing (iv). ��

For n ≥ 5, we are now in a position to identify some conditions on x ∈ Δn such
that the set Sx given by (17) has a simple description.

Lemma 7 For any n ≥ 5 and any x ∈ Δn such that |A(x)| ≥ n − 1, where A(x) is
given by (2), we have

Sx = Qx ,

where Sx and Qx are given by (17) and (20), respectively.

Proof Let x ∈ Δn be such that |A(x)| ≥ n − 1. Note that we already have Qx ⊆ Sx

by (20). Therefore, it suffices to establish the reverse inclusion.
Let Q ∈ Sx and let M

def= Q − (
xT Qx

)
E ∈ Sn . By Lemma 6(i), we have M ∈

bd COPn . Let A
def= A(x). If |A| = n, then MAA = M ∈ PSDn by Lemma 6(iv),

which implies that M ∈ SPN n by (4) and Q ∈ Qx by Lemma 3. If, on the other
hand, |A| = n − 1, then MAA ∈ PSDn−1 by Lemma 6(iv). By [34, Lemma 3.1], it
follows that M ∈ SPN n and we similarly obtain Q ∈ Qx . ��

Our final result specifically focuses on the case n = 5.

123



378 Y. G. Gökmen, E. A. Yıldırım

Lemma 8 Let n = 5. Then, for x ∈ {e j : 1 ≤ j ≤ 5}, we have

Sx = Qx ,

where Sx and Qx are given by (17) and (20), respectively.

Proof Let Q ∈ Sx , where x ∈ {e j : 1 ≤ j ≤ 5}, and let M
def= Q − (

xT Qx
)
E ∈ S5.

Then, |A(x)| = |A| = 1. By Lemma 6(ii) and (iii), there exists a permutation matrix
J ∈ R

n×n such that

J T M J = M̂ =
[
0 bT

b B

]
,

where b ∈ R
4+ and B ∈ S4. Since M ∈ COP5, we have B ∈ COP4 by Lemma 1(ii)

and (iv). By (5), B ∈ SPN 4. Since b ≥ 0, it follows from [34, Lemma 3.3] that
M̂ ∈ SPN 5, which implies that M ∈ SPN 5 by Lemma 1(ii) and that Q ∈ Qx by
Lemma 3. ��

For any x ∈ Δn that satisfies the conditions of Lemma 7 or Lemma 8, it follows
that the doubly nonnegative relaxation is exact for all instances of (StQP) for which x
is an optimal solution. We also remark that the proof of Lemma 8 cannot be extended
to the case n ≥ 6. In fact, for any n ≥ 6, we will illustrate in Sect. 6 how to construct
an instance of (StQP) with {e1, e2, . . . , en} ⊆ Ω(Q) such that the doubly nonnegative
relaxation has a positive gap.

We close this section by recalling that, for each x ∈ Δn , themembership problem in
Qx is polynomial-time solvable. On the other hand, for a given Q ∈ Sn , it follows from
Corollary 1 that checking if Q ∈ Qn is equivalent to checking if there exists x ∈ Δn

such that Q ∈ Qx . Since this latter problem may not necessarily be polynomial-time
solvable, we instead focus on explicitly identifying several classes of matrices that
belong to Qn in the next section.

4 Three families of standard quadratic programs with exact doubly
nonnegative relaxations

In this section, by relying on the characterizations presented in Sect. 3, we identify
three families of matrices that admit exact doubly nonnegative relaxations.

4.1 Minimum entry on the diagonal

In this section, we show that any matrix Q ∈ Sn whose minimum entry lies on the
diagonal belongs to Qn . Let us denote the set of such matrices by Qn

1, i.e.,

Qn
1

def=
{
Q ∈ Sn : min

1≤i≤ j≤n
Qi j = min

k=1,...,n
Qkk

}
. (30)
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Note that Qn
1 is given by the union of a finite number of polyhedral cones, i.e.,

Qn
1 =

n⋃
k=1

{
Q ∈ Sn : Qi j ≥ Qkk, 1 ≤ i ≤ j ≤ n

}
.

Proposition 2 The following relation holds:

Qn
1 ⊆ Qn, (31)

where Qn
1 and Qn are given by (30) and (16), respectively.

Proof Let Q ∈ Qn
1. Let us define λ

def= min1≤i≤ j≤n Qi j = mink=1,...,n Qkk = Q�� and

N
def= Q − λE ∈ N n . Therefore, Q = 0 + N + λE . Then, it is easy to verify that

N ∈ Nx , where x = e� ∈ R
n and Nx is given by (24). By Proposition 1, Q ∈ Qx ,

where Qx is given by (20). The inclusion (31) follows. ��
4.1.1 Standard quadratic programs with a concave objective function over1n

In this section, we explicitly identify a subset of matrices contained inQn
1, whereQn

1
is given by (30).

By the proof of Proposition 2,

Ω(Q) ∩ {e1, . . . , en} �= ∅, for all Q ∈ Qn
1 . (32)

Based on this observation, it is worth focusing on the set of instances of (StQP) with
a concave objective function over Δn since the set of optimal solutions necessarily
contains one of the vertices of the unit simplex. The next lemma gives a complete
characterization of such instances.

Lemma 9 The set of instances of (StQP) with a concave objective function over Δn is
given by those instances in which Q is negative semidefinite on e⊥, i.e.,

Qn
concave

def=
{
Q ∈ Sn : dT Qd ≤ 0, for all d ∈ R

n such that eT d = 0
}

. (33)

Proof Let Q ∈ Sn . For any x ∈ Δn , y ∈ Δn , and λ ∈ [0, 1], let us define d def= y − x .
Note that eT d = eT y − eT x = 0. Therefore,

((1 − λ)x + λy)T Q((1 − λ)x + λy) = (1 − λ)xT Qx + λyT Qy +
λ(1 − λ)

(
2xT Qy − xT Qx − yT Qy

)
,

= (1 − λ)xT Qx + λyT Qy − λ(1 − λ)dT Qd,

where we used y = x+d in the third term on the right-hand side of the first expression
to derive the second expression. Since λ ∈ [0, 1] and eT d = 0, we immediately obtain
that the function xT Qx is concave over Δn if and only if dT Qd ≤ 0, i.e., if and only
if Q ∈ Qn

concave. ��
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The following inclusion can easily be verified.

−PSDn + L ⊆ Qn
concave,

where L is given by (18).
First, we present a useful property of Qn

concave.

Lemma 10 For any Q ∈ Qn
concave,

−
(
I − exT

)
Q

(
I − xeT

)
∈ PSDn, for all x ∈ Δn .

Proof Since eT x = 1 for all x ∈ Δn , it follows from Lemma 4 that
(
I − xeT

)
z ∈ e⊥

for any z ∈ R
n and x ∈ Δn . The assertion follows directly from (33). ��

We next show that every matrix Q ∈ Qn
concave necessarily has a minimum entry

along the diagonal.

Proposition 3 The following relation holds:

Qn
concave ⊆ Qn

1, (34)

where Qn
concave and Qn

1 are given by (33) and (30), respectively. Therefore,

Qn
concave ⊆ Qn . (35)

Proof Suppose, for a contradiction, that (34) does not hold. Then, there exists Q ∈
Qn

concave such that Q /∈ Qn
1, i.e., there exists a tuple (k, l) such that 1 ≤ k < l ≤ n and

min
1≤i≤ j≤n

Qi j = Qkl < min
k=1,...,n

Qkk . (36)

Now, let us define

Y
def= − (I − (1/n)E) Q (I − (1/n)E) . (37)

By Lemma 10, Y ∈ PSDn , which implies that

Ykk + Yll ≥ 2Ykl . (38)

By (37),

Ykk = −Qkk + 2

n
eT Qek − 1

n2
eT Qe,

Yll = −Qll + 2

n
eT Qel − 1

n2
eT Qe,

Ykl = −Qkl + 1

n
eT Qel + 1

n
eT Qek − 1

n2
eT Qe,
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which, together with (38), implies that

Qkk + Qll ≤ 2Qkl ,

contradicting (36). The relation (34) follows. The inclusion (35) is an immediate
consequence of Proposition 2. ��

Weclose this sectionbymaking twoobservations. First,we remark that the inclusion
(34) can be strict. For instance, we have

Q =
[
0 0
0 1

]
∈ Q2

1\Q2
concave

since, for d = [−1, 1]T , we have eT d = 0 but dT Qd > 0.
Second, we illustrate, by an example, that the set of matrices that satisfy the relation

(32) is strictly larger than Qn
1. For instance,

Q =
⎡
⎣
0 0 0
0 2 −1
0 −1 2

⎤
⎦ /∈ Q3

1,

whereas Ω(Q) = {e1}. On the other hand, for n = 5, recall that the condition (32) is
sufficient to ensure that Q ∈ Qn by Lemma 8.

4.2 Standard quadratic programs with a convex objective function over1n

In this section, we focus on instances of (StQP) whose objective function is convex
over Δn . Note that xT Qx is convex over Δn if and only if −xT Qx is concave over
Δn . By Lemma 9, such instances are precisely characterized by matrices Q ∈ Sn that
are positive semidefinite on e⊥, i.e.,

Qn
2

def= − Qn
concave =

{
Q ∈ Sn : dT Qd ≥ 0, for all d ∈ R

n such that eT d = 0
}

.

(39)
Clearly, we have

PSDn + L ⊆ Qn
2,

whereL is given by (18). For any Q ∈ Qn
2, consider the corresponding (StQP) instance.

It follows from (39), (15), and (9)–(14) that any KKT point is a local minimizer. By
the convexity of the objective function over the feasible region, any KKT point is, in
fact, a global minimizer.

In this section, we aim to establish that Qn
2 ⊆ Qn . First, we present a technical

result that is similar to Lemma 10, which would be useful to prove this inclusion.
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Lemma 11 For any Q ∈ Qn
2 ,

(
I − exT

)
Q

(
I − xeT

)
∈ PSDn, for all x ∈ Δn .

Proof SinceQn
2 = −Qn

concave by (39), the assertion follows directly from Lemma 10.
��

Next, we present our main result in this section.

Proposition 4 The following relation holds:

Qn
2 ⊆ Qn,

where Qn
2 and Qn are given by (39) and (16), respectively.

Proof If Q ∈ PSDn , then Q ∈ Qn by [20, Lemma 2.7]. Otherwise, let Q ∈ Qn
2

and x ∈ Ω(Q). It suffices to show that Q ∈ Qx , where Qx is given by (20). By
Proposition 1, we need to construct a decomposition

Q = P + N +
(
xT Qx

)
E,

where P ∈ Px , N ∈ Nx , and Px and Nx are given by (23) and (24), respectively.
Let us define

P
def=

(
I − exT

)
Q

(
I − xeT

)
. (40)

Observe that Px = 0 and, by Lemma 11, P ∈ PSDn . Therefore, P ∈ Px . Now we
rewrite (40) as follows:

P = Q − QxeT − exT Q +
(
xT Qx

)
E,

or equivalently,

Q −
(
xT Qx

)
E = P +

(
QxeT + exT Q − 2

(
xT Qx

)
E
)

.

Let us accordingly define

N
def= QxeT + exT Q − 2

(
xT Qx

)
E .

It suffices to show that N ∈ Nx . Since x ∈ Ω(Q), x is a KKT point, i.e., there exists
s ∈ R

n such that the conditions (9) – (13) are satisfied. By (9),

Qx −
(
xT Qx

)
e − s = 0,
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which implies that

QxeT −
(
xT Qx

)
E − seT = 0,

exT Q −
(
xT Qx

)
E − esT = 0.

It follows from these two equations and the definition of N that

N = QxeT + exT Q − 2
(
xT Qx

)
E,

= seT + esT .

Finally, note that N ∈ Nx since N ∈ N n and xT Nx = 0 by (10), (12), and (13). It
follows from Proposition 1 that Q ∈ Qx . ��

Note that the proof of Proposition 4 is based on an explicit construction of the
decomposition of a matrix Q ∈ Qn

2 given by Proposition 1.
We close this section by the following observation. By Proposition 4, we haveQn

2 ⊆
Qn , whereQn

2 andQn are given by (39) and (16), respectively. SinceQn
2 = −Qn

concave
by (39), for each Q ∈ Qn

2\{0}, it follows from Propositions 3 and 4 that each of the
two hyperplanes

H1 = {
Y ∈ Sn : 〈Q,Y 〉 = �(Q) = ν(Q)

}
,

H2 = {
Y ∈ Sn : 〈−Q,Y 〉 = �(−Q) = ν(−Q)

}
,

is a supporting hyperplane of both of the feasible regions of (DN-P) and (CP).

4.3 Maximumweighted cliques on perfect graphs

In this section, we identify another family of instances of (StQP) that admit an exact
doubly nonnegative relaxation.

First, we briefly review the maximumweighted clique problem. LetG = (VG , EG)

be a simple, undirected graph with VG = {1, . . . , n} and let w ∈ R
n++, where wk

denotes the weight of vertex k, k = 1, . . . , n. A set C ⊆ VG is a clique if all pairs
of vertices in C are connected by an edge. The weight of a clique C ⊆ VG , denoted
by w(C), is given by w(C)

def= ∑
j∈C w j . The maximum weighted clique problem is

concerned with finding a clique with the maximum weight, and its weight is denoted
by ω(G, w). Note that the maximum weighted clique problem is equivalent to the
maximum clique problem if all the weights are identical.

For a given graph G = (VG , EG) and a set V ⊆ VG , the subgraph of G induced by
V is the graph whose vertices are given by V and whose edges are given by the edges
in EG with both endpoints in V . The maximum weighted clique problem is therefore
concernedwith finding an induced complete subgraph inG with themaximumweight.
The complement ofG, denoted byG, is the graph on VG obtained by deleting all edges
in EG and connecting each pair of nonadjacent vertices inG. Recall thatG is a perfect
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graph if neither G nor its complement G contains an odd cycle of length at least five
as an induced subgraph [9].

We next discuss the connection between the maximum weighted clique problem
and (StQP). Let G = (VG , EG) be a graph with VG = {1, . . . , n} and let w ∈ R

n++,
where wk denotes the weight of vertex k, k = 1, . . . , n. Let us define the following
class of matrices:

M(G, w)
def=

⎧⎨
⎩B ∈ Sn :

Bkk = 1/wk, k = 1, . . . , n,

Bi j = 0, (i, j) ∈ EG,

2Bi j ≥ Bii + Bj j , (i, j) ∈ EG

⎫⎬
⎭ . (41)

The following theorem establishes the aforementioned connection.

Theorem 2 (Gibbons et al., 1997)Let G = (VG , EG)be a graphwith VG = {1, . . . , n}
and let w ∈ R

n++, where wk denotes the weight of vertex k, k = 1, . . . , n. Then, for
any Q ∈ M(G, w),

ν(Q) = min{xT Qx : x ∈ Δn} = 1

ω(G, w)
.

Theorem 2 is a generalization of the well-knownMotzkin-Straus Theorem [27] that
establishes the first connection between the (unweighted) maximum clique problem
and a particular instance of (StQP) associated with the underlying graph.

We next discuss the weighted Lovász theta number. Let G = (VG , EG) be a graph
with VG = {1, . . . , n} and let w ∈ R

n++, where wk denotes the weight of vertex
k, k = 1, . . . , n. The weighted Lovász theta number [16,23] corresponding to the
complement graph G is given by

ϑ(G, w)
def= max

{〈W , X〉 : 〈I , X〉 = 1, Xi j = 0, (i, j) ∈ EG, X ∈ PSDn} ,

where W ∈ Sn is given by

Wi j
def= √

wiw j , 1 ≤ i ≤ j ≤ n. (42)

The weighted Lovász theta number satisfies ω(G, w) ≤ ϑ(G, w) [23]. Further-
more, by [16],

ω(G, w) = ϑ(G, w) if G is a perfect graph. (43)

The weighted Lovász theta number can be strengthened by replacing the constraint
X ∈ PSDn by X ∈ DN n [33], henceforth referred to as the Lovász-Schrijver bound:

ϑ ′(G, w)
def= max

{〈W , X〉 : 〈I , X〉 = 1, Xi j = 0, (i, j) ∈ EG, X ∈ DN n} ,

(44)
The Lovász-Schrijver bound satisfies the following relations:

ω(G, w) ≤ ϑ ′(G, w) ≤ ϑ(G, w). (45)
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By (43) and (45),

ω(G, w) = ϑ ′(G, w) if G is a perfect graph. (46)

For any w ∈ R
n++ and any G = (VG , EG), where VG = {1, . . . , n}, we next

establish that theLovász-Schrijver bound given by (44) coincideswith the reciprocal of
the lower bound arising from the doubly nonnegative relaxation of the (StQP) instance
corresponding to any Q ∈ M(G, w), i.e., for any w ∈ R

n++ and any Q ∈ M(G, w),

�(Q) = min
{〈Q, X〉 : 〈E, X〉 = 1, X ∈ DN n} = 1

ϑ ′(G, w)
.

First, we prove a useful property of the doubly nonnegative relaxation.

Lemma 12 Let G = (VG, EG) be a simple, undirected graph with VG = {1, . . . , n}.
For any w ∈ R

n++ and any Q ∈ M(G, w), where M(G, w) is given by (41), there
exists an optimal solution X∗ ∈ Sn of (DN-P) such that

X∗
i j = 0, for all (i, j) ∈ EG .

Proof Let Q ∈ M(G, w) and X∗ ∈ DN n be an optimal solution of (DN-P). Suppose
that X∗

i j > 0 for some (i, j) ∈ EG . Let us define

X(α)
def= X∗ + α(ei − e j )(ei − e j )

T .

Observe that X(α) ∈ DN n for any 0 ≤ α ≤ X∗
i j . Furthermore,

〈Q, X(α)〉 = 〈Q, X∗〉 + α (Qii + Q j j − 2Qi j )︸ ︷︷ ︸
≤0

≤ 〈Q, X∗〉,

where the inequality follows from (41). By setting α = X∗
i j and repeating this proce-

dure for any other edges in EG if necessary, we obtain an optimal solution with the
desired property. ��

We are now in a position to establish the aforementioned relation.

Proposition 5 Let G = (VG , EG) be simple, undirected graph with VG = {1, . . . , n}.
For any w ∈ R

n++ and any Q ∈ M(G, w), where M(G, w) is given by (41),

�(Q) = 1

ϑ ′(G, w)
, (47)

where ϑ ′(G, w) is given by (44).
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Proof Let w ∈ R
n++ and let Q ∈ M(G, w).

First, we will show that �(Q) ≤ 1/ϑ ′(G, w). Note that an optimal solution X∗
LS ∈

DN n of (44) exists since the feasible region is nonempty and compact. Furthermore,
ϑ ′(G, w) = 〈W , X∗

LS〉 > 0 sinceW has strictly positive components and 〈I , X∗
LS〉 =

1. Let us define X̂ LS
def= DLSX∗

LSDLS , where DLS ∈ Sn is a diagonal matrix given by

DLS
def= 1√

ϑ ′(G, w)

⎡
⎢⎣

√
w1

. . . √
wn

⎤
⎥⎦ .

By Lemma 1(iii), X̂ LS ∈ DN n . Furthermore,

ϑ ′(G, w) = 〈W , X∗
LS〉 = 〈D−1

LSW D−1
LS , X̂ LS〉 = ϑ ′(G, w)〈E, X̂ LS〉,

where we used (42) to derive the third equality. Therefore, 〈E, X̂ LS〉 = 1, i.e., X̂ LS is
a feasible solution of (DN-P). By (41), for any Q ∈ M(G, w),

DLSQDLS = 1

ϑ ′(G, w)
(I + NLS) ,

where NLS ∈ N n , (NLS)kk = 0 for each k = 1, . . . , n, and (NLS)i j = Qi j = 0 for
each (i, j) ∈ EG . Therefore,

〈Q, X̂ LS〉 = 〈DLSQDLS, D
−1
LS X̂LSD

−1
LS 〉,

= 〈DLSQDLS, X
∗
LS〉,

= 1

ϑ ′(G, w)
〈I + NLS, X

∗
LS〉,

= 1

ϑ ′(G, w)

(
1 + 〈NLS, X

∗
LS〉

)
,

whereweused 〈I , X∗
LS〉 = 1 in the last line. SinceQi j = (NLS)i j = 0 for each (i, j) ∈

EG , (X∗
LS)i j = 0 for each (i, j) ∈ EG , and all the diagonal entries of NLS are equal

to 0, it follows that 〈NLS, X∗
LS〉 = 0, which implies that 〈Q, X̂ LS〉 = 1/ϑ ′(G, w).

Therefore, �(Q) ≤ 1/ϑ ′(G, w) since X̂ LS is a feasible solution of (DN-P).
Conversely, let X∗

DN ∈ DN n be an optimal solution of (DN-P). Then, 〈E, X∗
DN 〉 =

1 and �(Q) = 〈Q, X∗
DN 〉 > 0 since Q ∈ N n with strictly positive diagonal entries.

By Lemma 12, we can assume that (X∗
DN )i j = 0 for each (i, j) ∈ EG . Let us define

another diagonal matrix DDN ∈ Sn given by

DDN
def= 1√

�(Q)

⎡
⎢⎢⎣

1√
w1

. . .
1√
wn

⎤
⎥⎥⎦ .
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Let X̂ DN
def= DDN X∗

DN DDN . Once again, by Lemma 1(iii), X̂ DN ∈ DN n . Similarly,
by (41), for any Q ∈ M(G, w),

D−1
DN QD−1

DN = �(Q) (I + NDN ) ,

where NDN ∈ N n , (NDN )kk = 0 for each k = 1, . . . , n, and (NDN )i j = Qi j = 0
for each (i, j) ∈ EG . Therefore,

�(Q) = 〈Q, X∗
DN 〉 = 〈D−1

DN QD−1
DN , X̂ DN 〉 = �(Q)

(
〈I , X̂ DN 〉 + 〈NDN , X̂ DN 〉

)
.

Note that 〈NDN , X̂ DN 〉 = 0 since (NDN )i j = Qi j = 0 for each (i, j) ∈ EG ,
(X̂ DN )i j = (X∗

DN )i j = 0 for each (i, j) ∈ EG , and all the diagonal entries of NDN

are equal to 0. It follows that 〈I , X̂ DN 〉 = 1, which, combined with the previous
observation, implies that X̂ DN is feasible for (44).

Finally, we have

〈W , X̂ DN 〉 = 〈DDNWDDN , X∗
DN 〉 = 1

�(Q)
〈E, X∗

DN 〉 = 1

�(Q)
,

which implies that ϑ ′(G, w) ≥ 1/�(Q), establishing the reverse inequality. The rela-
tion (47) follows. ��

For a given graphG = (VG , EG), consider the unweighted case, i.e., letw
def= e ∈ R

n

and let Q
def= I + AG ∈ M(G, e), where AG ∈ Sn is the vertex adjacency matrix of

G. We remark that the identity �(Q) = 1/ϑ ′(G, e) is a consequence of Corollary 2.4
and Lemma 5.2 in [10]. It follows that Proposition 5 generalizes this identity to the
weighted case and to any Q ∈ M(G, w).

We now have all the ingredients to establish our main result in this section. Let us
first introduce the set of all perfect graphs on the set of vertices {1, 2, . . . , n}, i.e.,

G
def= {G = (VG , EG) : VG = {1, 2, . . . , n}, G is a perfect graph} .

We next define the following set that consists of all symmetric matrices Q ∈
M(G, w) for each w ∈ R

n++, where G ∈ G and M(G, w) is given by (41):

M def=
⋃
G∈G

⋃
w∈Rn++

M(G, w). (48)

For each perfect graphG = (VG , EG) ∈ G and eachw ∈ R
n++, note thatM(G, w)

is a polyhedral set. Therefore, M is given by the union of an infinite number of
polyhedral sets.

Finally, we define
Qn

3
def=M + L, (49)

where M and L are given by (48) and (18), respectively. We next present our main
result.
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Proposition 6 The following relation holds:

Qn
3 ⊆ Qn, (50)

where Qn
3 and Qn are defined as in (49) and (16), respectively.

Proof Let Q ∈ Qn
3. Then, there exist a perfect graph G = (VG , EG) ∈ G and

w ∈ R
n++ such that Q = Q̂ + λE for some Q̂ ∈ M(G, w) and λ ∈ R. Since G is a

perfect graph and Q̂ ∈ M(G, w), it follows from Theorem 2, the relation (46), and
Proposition 5 that �(Q̂) = ν(Q̂), i.e., Q̂ ∈ Qn . The inclusion (50) directly follows
from Lemma 2. ��

We close this section by noting that the membership problem in Qn
3 can, in the-

ory, be solved in polynomial time. Given Q ∈ Sn , let GQ = (VQ, EQ), where

VQ
def= {1, . . . , n} and

EQ
def= {

(i, j) : 1 ≤ i < j ≤ n, 2Qi j < Qii + Q j j
}
. (51)

The graph GQ = (VQ, EQ) is referred to as the convexity graph of Q, which will be
revisited in Sect. 5.

There are two cases. If EQ = ∅, then let γ
def= min1≤i≤ j≤n Qi j − 1, and define

Q̂
def= Q − γ E ∈ N n . Then, Q̂ has strictly positive entries and 2Q̂i j ≥ Q̂ii + Q̂ j j for

each 1 ≤ i < j ≤ n by (51). By defining w ∈ R
n++ with wk = 1/Q̂kk > 0, k =

1, . . . , n, it follows that Q̂ ∈ M(GQ, w) and GQ and G is clearly perfect since it
contains no edges. Therefore, Q = Q̂ + γ E ∈ Qn

3. It is worth noticing that any such
matrix Q also belongs to Qn

1, where Qn
1 is given by (30).

Suppose, on the other hand, that EQ �= ∅. We first observe that, by (49), a necessary
condition for Q ∈ Qn

3 is given by Qi j = α for each (i, j) ∈ EQ , where α ∈ R.

Therefore, let κ1
def= min(i, j)∈EQ Qi j and κ2

def= max(i, j)∈EQ Qi j . If κ1 < κ2, then Q /∈
Qn

3 by the previous necessary condition. Otherwise, let κ
def= κ1 = κ2 and Q̂

def= Q−κE ,
Note that Q̂i j = 0 for each (i, j) ∈ EQ and Q̂i j ≥ Q̂ii + Q̂ j j for each (i, j) /∈ EQ .
If Q̂ has strictly positive diagonal entries, then we can ensure that Q̂ ∈ M(GQ, w)

by similarly defining w ∈ R
n++ with wk = 1/Q̂kk > 0, k = 1, . . . , n. Then, one can

check in polynomial time if GQ = (VQ, EQ) is a perfect graph [8] and accordingly
decide if Q ∈ Qn

3. Finally, if Q̂ = Q − κE does not have strictly positive diagonal
entries, then Q /∈ Qn

3. In the latter case, note, however, that Q ∈ Qn
1, and therefore

Q ∈ Qn by Proposition 2.
Conversely, for any perfect graph G = (VG , EG) and any w ∈ R

n++, choosing any
matrix Q̂ ∈ M(G, w) and any λ ∈ R, and defining Q

def= Q̂ + λE , we ensure that
Q ∈ Qn by Proposition 6.

4.4 Relations among three families

In Sects. 4.1, 4.2, and 4.3, we have explicitly identified three families of instances of
(StQP) that admit exact doubly nonnegative relaxations. In this section, we present
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numerical examples illustrating that neither of these subsets is contained in any of the
other two subsets. We also present an example that shows the existence of an instance
that belongs to Qn but is not contained in any of the three families.

Example 1 Let

Q =

⎡
⎢⎢⎢⎢⎣

0 1 3 2 0
1 3 1 3 2
3 1 2 1 3
2 3 1 1 0
0 2 3 0 1

⎤
⎥⎥⎥⎥⎦

.

Observe that min1≤i≤ j≤n Qi j = Q11 = 0, which implies that Q ∈ Q5
1 by (30) and

Q ∈ Q5 by Proposition 2. Indeed, we have Ω(Q) = {e1} and ν(Q) = �(Q) = 0.
Let d = [4,−1,−1,−1,−1]T ∈ R

5. Note that eT d = 0. However, dT Qd =
−21 < 0, which implies that Q /∈ Q5

2 by (39).
Finally, by (51),

EQ = {(1, 2), (1, 5), (2, 3), (3, 4), (4, 5)} .

Since EQ �= ∅, we have κ1 = min(i, j)∈EQ Qi j = Q15 = 0 < κ2 =
max(i, j)∈EQ Qi j = Q12 = 1, which implies that Q /∈ Q5

3 by the discussion at the end
of Sect. 4.3. It follows that Q ∈ Q5

1\
(Q5

2 ∪ Q5
3

)
.

Example 2 Let

Q =

⎡
⎢⎢⎢⎢⎣

2 0 0 0 0
0 2 1 0 0
0 1 1 0 0
0 0 0 1 1
0 0 0 1 1

⎤
⎥⎥⎥⎥⎦

.

Note that Q ∈ PSD5, which implies that Q ∈ Q5
2 by (39) and Q ∈ Q5 by

Proposition 4. An optimal solution is given by x∗ = [0.2, 0, 0.4, 0.4, 0]T and
�(Q) = ν(Q) = 0.4.

Observe that min1≤i≤ j≤n Qi j = Q12 = 0 < mink=1,...,n Qkk = Q33 = 1, which
implies that Q /∈ Q5

1 by (30).
Finally, by (51),

EQ = {(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5)} .

Since EQ �= ∅, we have κ1 = min(i, j)∈EQ Qi j = Q12 = 0 < κ2 =
max(i, j)∈EQ Qi j = Q23 = 1, which implies that Q /∈ Q5

3 by the discussion at the end
of Sect. 4.3. It follows that Q ∈ Q5

2\
(Q5

1 ∪ Q5
3

)
.
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Example 3 Let

Q =

⎡
⎢⎢⎢⎢⎣

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 0
1 1 1 0 1

⎤
⎥⎥⎥⎥⎦

.

By (51),

EQ = {(4, 5)} .

Since EQ �= ∅, we have κ1 = min(i, j)∈EQ Qi j = Q45 = 0 = κ2 =
max(i, j)∈EQ Qi j = Q45 = 0 = κ . Following the discussion at the end of Sect. 4.3,

let Q̂
def= Q − κE = Q. Clearly, the diagonal entries of Q are all equal to 1. There-

fore, we define w
def= e ∈ R

5. It follows that Q ∈ M(G, w), where G = (VQ, EQ)

and VQ = {1, 2, 3, 4, 5}. Note that neither G nor G contains an odd cycle of
length at least five as an induced subgraph. It follows that G is a perfect graph,
which implies that Q ∈ Q5

3 by (49). By Theorem 2, the relation (46) and Propo-
sition 5, we obtain �(Q) = ν(Q) = 1/2 and the unique optimal solution is given by
x∗ = [0, 0, 0, 0.5, 0.5]T .

Observe that min1≤i≤ j≤n Qi j = Q45 = 0 < mink=1,...,n Qkk = Q11 = 1, which
implies that Q /∈ Q5

1 by (30).
Finally, let d = [4,−1,−1,−1,−1]T ∈ R

5. Note that eT d = 0. How-
ever, dT Qd = −2 < 0, which implies that Q /∈ Q5

2 by (39). It follows that
Q ∈ Q5

3\
(Q5

1 ∪ Q5
2

)
.

As illustrated by Examples 1, 2, and 3, each of the three sets Q1, Q2, and Q3
may contain an element that does not belong to the other two. The final example in
this section illustrates that there exist matrices for which the corresponding (StQP)
instance admits an exact doubly nonnegative relaxation but they do not belong to any
of the three sets Qn

1, Qn
2, and Qn

3.

Example 4 Let

Q =

⎡
⎢⎢⎢⎢⎣

2 2 2 2 2
2 2 2 2 2
2 2 2 1 2
2 2 1 2 0
2 2 2 0 2

⎤
⎥⎥⎥⎥⎦

.

Note that min1≤i≤ j≤n Qi j = Q45 = 0 < mink=1,...,n Qkk = Q11 = 2, which implies
that Q /∈ Q5

1 by (30).
Let d = [4,−1,−1,−1,−1]T ∈ R

5. Note that eT d = 0. However, dT Qd =
−6 < 0, which implies that Q /∈ Q5

2 by (39).
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By (51),

EQ = {(3, 4), (4, 5)} .

Since EQ �= ∅, we have κ1 = min(i, j)∈EQ Qi j = Q45 = 0 < κ2 =
max(i, j)∈EQ Qi j = Q34 = 1, which implies that Q /∈ Q5

3 by the discussion at the end
of Sect. 4.3. It follows that Q /∈ (Q5

1 ∪ Q5
2 ∪ Q5

3

)
.

On the other hand, an optimal solution of the corresponding instance of (StQP) is
given by x∗ = [0, 0, 0, 0.5, 0.5]T , and ν(Q) = 1. Finally,

Q −
(
(x∗)T Qx∗) E =

⎡
⎢⎢⎢⎢⎣

1 1 1 1 1
1 1 1 1 1
1 1 1 0 1
1 1 0 1 −1
1 1 1 −1 1

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 −1
0 0 0 −1 1

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
P

+

⎡
⎢⎢⎢⎢⎣

0 1 1 1 1
1 0 1 1 1
1 1 0 0 1
1 1 0 0 0
1 1 1 0 0

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
N

,

which implies that Q − (
(x∗)T Qx∗) E ∈ SPN 5 since P ∈ PSD5 and N ∈ N 5.

Therefore, by Lemma 3, it follows that Q ∈ Qx∗ , i.e., �(Q) = ν(Q) = 1, which
implies that Q ∈ Q5. We conclude that Q ∈ Q5\ (Q5

1 ∪ Q5
2 ∪ Q5

3

)
.

5 Relations withmaximal cliques of the convexity graph

In this section, we establish several relations between the tightness of the doubly non-
negative relaxation of an instance of (StQP) and the maximal cliques of the convexity
graph associated with the matrix Q ∈ Sn .

5.1 Convexity graph

For a given Q ∈ Sn , recall that the convexity graph of Q is given byGQ = (VQ, EQ),
where the set of vertices is given by VQ = {1, . . . , n} and the set of edges EQ is given
by (51). It is easy to verify the following shift invariance property of the convexity
graph.

GQ+λE = GQ, for all Q ∈ Sn, for all λ ∈ R.

Recall that a clique in a simple undirected graph is a set of mutually adjacent
vertices. For a given Q ∈ Sn , the next result provides a useful connection between
the cliques of the convexity graph GQ and the index set A(x) of an optimal solution
x ∈ Ω(Q) of the corresponding instance of (StQP), where A(·) is given by (2).

Theorem 3 (Scozzari and Tardella, 2008) Given Q ∈ Sn, there exists an optimal
solution x∗ ∈ Ω(Q) of the corresponding instance of (StQP) such that the vertices
corresponding to A(x∗) form a clique in the convexity graph GQ = (VQ, EQ), where
VQ = {1, . . . , n}, and A(·) and EQ are given by (2) and (51), respectively.
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Let w ∈ R
n++ and let G = (VG, EG) be a graph with VG = {1, . . . , n}. Note that,

for any Q ∈ M(G, w), where M(G, w) is given by (41), the convexity graph of Q
is given by GQ = G. Therefore, by Theorem 3, the corresponding (StQP) instance
has an optimal solution x∗ ∈ Ω(Q) such that A(x∗) induces a clique in G. Indeed,
for any maximum weight clique C ⊆ VQ , an optimal solution of the corresponding
(StQP) presented in Theorem 2 is given by (see, e.g., [14])

x∗
j =

{
w j

w(C)
, if j ∈ C,

0 otherwise,

where w(C) = ∑
j∈C w j . Note that A(x∗) = C , which is a clique in GQ .

5.2 Maximal cliques of the convexity graph

For a given simple undirected graph G = (V , E), a clique C ⊆ V is said to be
maximal if it is not a proper subset of a larger clique in G. For a given Q ∈ Sn , the
following lemma establishes useful relations between �(Q), ν(Q), and the maximal
cliques of the convexity graph.

Lemma 13 For a given Q ∈ Sn, let GQ = (VQ, EQ) denote the convexity graph of
Q and let C denote the collection of all maximal cliques of GQ. Then,

�(Q) ≤ minC∈C �(QCC ) ≤ minC∈C ν(QCC ) = ν(Q). (52)

Furthermore, each of the two inequalities is satisfied as an equality if and only if
Q ∈ Qn, where Qn is given by (16).

Proof Consider the first inequality in (52). For any maximal clique C ∈ C, consider
any optimal solution X∗ ∈ DN |C| of (DN-P) corresponding to QCC ∈ S |C|. By
Lemma 1(ii) and (v), X∗ can be extended to a solution X̂ ∈ Sn by defining X̂CC = X∗
and X̂i j = 0 if i /∈ C or j /∈ C . It follows that X̂ ∈ DN n is a feasible solution of
(DN-P) corresponding to Q and

�(Q) ≤ 〈Q, X̂〉 = 〈QCC , X∗〉 = �(QCC ),

which establishes the first inequality in (52).
The second inequality in (52) immediately follows from (6).
Consider now the last equality in (52). For any maximal clique C ∈ C, we have

ν(QCC ) = min
w∈Δ|C |

wT QCC w = min
x∈Δn

{
xT Qx : x j = 0, j /∈ C

}
≥ ν(Q),

which implies that ν(Q) ≤ minC∈C ν(QCC ).
By Theorem 3, there exists an x∗ ∈ Ω(Q) such that the subgraph ofGQ induced by

A(x∗) is a clique. Let Ĉ ∈ C denote anymaximal clique ofG(Q) such that A(x∗) ⊆ Ĉ .
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Since eT x∗ = eT
Ĉ
x ∗̂
C

= 1, it follows that

ν(Q) = (x∗)T Qx∗ =
(
x ∗̂
C

)T
QĈĈ

(
x ∗̂
C

)
≥ ν(QĈĈ ) ≥ minC∈C ν(QCC ),

which establishes the reverse inequality. Therefore, ν(Q) = minC∈C ν(QCC ).
The last assertion immediately follows from (16). ��
Next, we present two examples illustrating that each of the two inequalities in (52)

can be strict.

Example 5 Let

Q =

⎡
⎢⎢⎢⎢⎣

1 0 0.9 0.9 0
0 1 0 0.9 0.9
0.9 0 1 0 0.9
0.9 0.9 0 1 0
0 0.9 0.9 0 1

⎤
⎥⎥⎥⎥⎦

.

The convexity graph GQ = (VQ, EQ) is given by

4 3

2

1

5

Since GQ is a complete graph, the only maximal clique in GQ is C1 = {1, 2, 3, 4, 5},
i.e., C = {C1}. In this example,

0.4472 ≈ �(Q) = min
C∈C �(QCC ) = �(QC1C1)

< min
C∈C ν(QCC ) = ν(QC1C1) = ν(Q) ≈ 0.4872,

which implies that the first inequality in (52) is satisfied with equality, whereas the
second inequality is strict.

Example 6 Let

Q =

⎡
⎢⎢⎢⎢⎣

1 0 0.9 1 0
0 1 0 1 1
0.9 0 1 0 1
1 1 0 1 0
0 1 1 0 1

⎤
⎥⎥⎥⎥⎦

.

The convexity graph GQ = (VQ, EQ) is given by
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4 3

2

1

5

Therefore, C = {C1,C2,C3,C4,C5}, where

C1 = {1, 2, 3}, C2 = {1, 5}, C3 = {3, 4}, C4 = {4, 5}.

In this example,

0.4472 ≈ �(Q)

< min
C∈C �(QCC ) = �(QC1C1) = min

C∈C ν(QCC )

= ν(QC1C1) = ν(Q) ≈ 0.4872,

which implies that the first inequality in (52) is strict, whereas the second inequality
is satisfied with equality.

By Lemma 13, unlessGQ is a complete graph, an instance of (StQP) can be decom-
posed into smaller instances of (StQP) each of which corresponds to a maximal clique
of the convexity graphGQ (see Example 6). In particular, ifGQ has several connected
components, then the problem naturally decomposes into subproblems corresponding
to each connected component. Furthermore, the lower bound �(Q) can be improved
if one focuses instead on the principal submatrices of Q corresponding to maximal
cliques of the convexity graph GQ (see Example 6). We remark that, in the worst
case, a graph with n vertices may have as many as 3n/3 of maximal cliques [26]. On
the other hand, several classes of graphs, including planar and chordal graphs, have
a polynomial number of maximal cliques (see, e.g., [31] and the references therein).
Therefore, on instances of (StQP) with such a convexity graph, Lemma 13 implies
that the original problem can be decomposed into a polynomial number of smaller
problems and that the lower bound can potentially be improved by focusing only on
the doubly nonnegative relaxations of the smaller problems corresponding to maximal
cliques of GQ .

The next result characterizes the set of instances of (StQP) for which the second
inequality in (52) is satisfied with equality.

Lemma 14 For a given Q ∈ Sn, let GQ = (VQ, EQ) denote the convexity graph of
Q and let C denote the collection of all maximal cliques of GQ. Then,

min
C∈C �(QCC ) = ν(Q) (53)

if and only if there exists C∗ ∈ C such that

QC∗C∗ ∈ Q|C∗|, and min
C∈C �(QCC ) = �(QC∗C∗), (54)
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where Qn is given by (16).

Proof Suppose that (53) holds. By Lemma 13,

min
C∈C �(QCC ) = min

C∈C ν(QCC ) = ν(Q).

Then, by (6), there exists C∗ ∈ C such that minC∈C �(QCC ) = �(QC∗C∗) =
ν(QC∗C∗) = ν(Q), which implies that (54) is satisfied.

Conversely, if (54) holds, it follows from Lemma 13 that

min
C∈C �(QCC ) = �(QC∗C∗) = ν(QC∗C∗) ≤ min

C∈C ν(QCC ) = ν(Q) ≤ ν(QC∗C∗),

which implies that (53) holds. ��
For instance, for each C ∈ C in Example 6, since |C | ≤ 4, we have QCC ∈ Q|C|

by (5), which implies the existence of a maximal clique (i.e., C1) that satisfies (54),
and therefore (53) by Lemma 14. On the other hand, since there is only one maximal
clique C1 in Example 5 and QC1 = Q /∈ Q5, Lemma 14 implies that the second
inequality in (52) is strict.

5.3 Matrix completion and SPN completable graphs

Lemma 14 establishes the equivalence of the conditions (53) and (54). However, as
illustrated by Example 6, neither of these conditions implies that Q ∈ Qn , where Qn

is given by (16).
In this section, we identify an additional condition under which either of the con-

ditions (53) and (54) implies that Q ∈ Qn .
First, we define the matrix completion problem. We mostly follow the discussion

in [35]. Let V = {1, . . . , n} and let F ⊆ V ×V be a set with the following properties.

(i, i) ∈ F, for all i ∈ V , and (i, j) ∈ F ⇐⇒ ( j, i) ∈ F, 1 ≤ i < j ≤ n.

(55)
For a given set F ⊆ V × V that satisfies (55), a partial matrix B ∈ Sn is a matrix

whose entries Bi j are specified if and only if (i, j) ∈ F . For a given set K ⊆ Sn , the
matrix completion problem is concerned with finding a matrix B̂ ∈ K such that

B̂i j = Bi j , for all (i, j) ∈ F, and B̂ ∈ K. (56)

The SPN completion problem is concerned with whether a partial matrix B ∈ Sn is
SPNcompletable, i.e.,whether there exists B̂ ∈ K that satisfies (56),withK = SPN n .
By Lemma 1(iv), if a partial matrix B is SPN completable, then each of its fully
specified r × r principal submatrices should belong to SPN r , where r = 1, . . . , n. A
partial matrix B that satisfies this necessary condition is called a partial SPN matrix.

For a given simple undirected graph G = (VG , EG), where VG = {1, . . . , n}, one
can associate an SPN completion problem, where Bi j = Bji is specified if and only
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if (i, j) ∈ EG or i = j . Such a matrix B is called a G-partial matrix. A graph G is
said to be SPN completable if every G-partial SPN matrix is SPN completable.

The following result in [35] presents a full characterization of SPN completable
graphs.

Theorem 4 (Shaked-Monderer et al., 2016) Let G = (VG, EG) be a graph, where
VG = {1, . . . , n}. G is SPN completable if and only if every odd cycle in G induces a
complete subgraph of G.

Recall that each of the two inequalities in (52) is satisfied with equality if and only
if Q ∈ Qn by Lemma 13. Furthermore, Lemma 14 gives a full characterization of
instances for which the latter inequality in (52) is satisfied with equality. Example 6
illustrates that there exists a matrix Q ∈ S5 that satisfies the conditions of Lemma 14
but Q /∈ Q5. In the next result, for a given Q ∈ Sn , under the additional assumption
that the convexity graph GQ = (VQ, EQ) is SPN completable, we show that the
exactness of the second inequality in (52) implies the exactness of the first inequality,
thereby establishing Q ∈ Qn .

Proposition 7 Let Q ∈ Sn be a matrix such that its convexity graph GQ = (VQ, EQ)

is SPN completable. Then, Q ∈ Qn, where Qn is given by (16), if and only if (53) is
satisfied.

Proof Let Q ∈ Sn be a matrix such that its convexity graph GQ = (VQ, EQ) is SPN
completable. By Lemma 13, if Q ∈ Qn , then the condition (53) is satisfied.

Conversely, suppose that (53) is satisfied. Then,

min
C∈C �(QCC ) = ν(Q),

where C is the collection of all maximal cliques of GQ . For each C ∈ C, we have
QCC − �(QCC )E ∈ SPN |C| by (DN-D) corresponding to QCC . Since �(QCC ) ≥
ν(Q), it follows that

QCC−ν(Q)E = QCC−�(QCC )E+(�(QCC )−ν(Q))E ∈ SPN |C|, for allC ∈ C.

(57)
Consider the following GQ-partial matrix B ∈ Sn :

Bi j = Qi j − ν(Q), (i, j) ∈ EQ; Bii = Qii − ν(Q), i = 1, . . . , n.

Note that every fully specified principal submatrix of B corresponds to a maximal
clique C ∈ C. By (57), it follows that B is a GQ-partial SPN matrix. Since GQ is
an SPN completable graph by the hypothesis, there exists a matrix B̂ ∈ Sn such that
B̂ ∈ SPN n and

B̂i j = Bi j , (i, j) ∈ EQ, B̂ii = Bii , i = 1, . . . , n.

Therefore, there exist P̂ ∈ PSDn and N̂ ∈ N n such that B̂ = P̂ + N̂ . Without loss of
generality, we may assume that N̂ii = 0 for each i = 1, . . . , n by simply increasing
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all the diagonal elements of P̂ accordingly if necessary. Therefore,

P̂ii = B̂ii − N̂ii = B̂ii = Qii − ν(Q), i = 1, . . . , n, (58)

P̂i j = B̂i j − N̂i j ≤ B̂i j = Qi j − ν(Q), (i, j) ∈ EQ . (59)

Let us fix (i, j) such that i �= j and (i, j) /∈ EQ . By the definition of EQ in (51), we
have 2Qi j ≥ Qii + Qi j . Therefore, for any such (i, j), since P̂ ∈ PSDn ,

P̂i j ≤ 1

2

(
P̂ii + P̂j j

) = 1

2

(
Qii + Q j j

) − ν(Q) ≤ Qi j − ν(Q) (60)

by (58). Finally, combining (58), (59), and (60), we conclude that there exists a matrix
N̂ ∈ N n such that N̂ii = 0 for each i = 1, . . . , n and

Q − ν(Q)E = P̂ + N̂ ,

which implies that Q − ν(Q)E ∈ SPN n . Therefore, by (DN-D), we obtain �(Q) ≥
ν(Q), which, together with (6), implies that �(Q) = ν(Q), or equivalently, that Q ∈
Qn . ��
Example 7 Consider Example 4. Note that Q ∈ Q5\ (Q5

1 ∪ Q5
2 ∪ Q5

3

)
. The convexity

graph GQ = (VQ, EQ) is given by VQ = {1, 2, 3, 4, 5} and

EQ = {(3, 4), (4, 5)} .

Clearly, GQ is SPN completable since it does not contain any odd cycle. The set of
maximal cliques ofGQ is given by C = {C1,C2}, whereC1 = {3, 4} andC2 = {4, 5}.
Since |C1| = |C2| = 2 ≤ 4, it follows that �(QC1C1) = ν(QC1C1) = 1.5 and
�(QC2C2) = ν(QC2C2) = 1, which implies that the condition (54), and equivalently
(53), will be satisfied. Therefore, by (53), minC∈C �(QCC ) = minC∈C ν(QCC ) =
ν(Q) = 1. Since GQ is SPN completable, it follows from Proposition 7 that Q ∈ Q5.

As illustrated by Example 7, Proposition 7 may be helpful for identifying a matrix
Q ∈ Qn\ (Qn

1 ∪ Qn
2 ∪ Qn

3

)
. An interesting question is whether every matrix Q ∈

Qn\ (Qn
1 ∪ Qn

2 ∪ Qn
3

)
satisfies the conditions of Proposition 7. We close this section

with the following counterexample.

Example 8 Let

Q =

⎡
⎢⎢⎢⎢⎣

2 0 0 2 1
0 2 0 2 2
0 0 2 0 2
2 2 0 2 0
1 2 2 0 2

⎤
⎥⎥⎥⎥⎦

.

The convexity graph GQ = (VQ, EQ) is given by
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4 3

2

1

5

Therefore, C = {C1,C2,C3,C4,C5}, where

C1 = {1, 2, 3}, C2 = {1, 5}, C3 = {3, 4}, C4 = {4, 5}.

In this example, an optimal solution is given by x∗ = [1/3, 1/3, 1/3, 0, 0]T and
ν(Q) = ν(QC1C1) = �(QC1C1) = minC∈C �(QCC ) = 2/3. One can numerically
verify that �(Q) = ν(Q) = 2/3, which implies that Q ∈ Q5.

On the other hand, it is easy to verify that Q /∈ Q5
1. For d = [−1,−1,−1, 2, 1]T ∈

e⊥, we have dT Qd = −10 < 0, which implies that Q /∈ Q5
2. By a similar argument

at the end of Sect. 4.3, we obtain Q /∈ Q5
3. Finally, since the subgraph induced by the

odd cycle consisting of the vertices {1, 2, 3, 4, 5} is not a complete graph, GQ is not
SPN completable by Theorem 4. It follows that Q does not satisfy the conditions of
Proposition 7.

6 Standard quadratic programs with positive gaps

In this section, we focus on the set of instances of (StQP) for which there is a positive
gap between the lower bound arising from the doubly nonnegative relaxation and the
optimal value of (StQP), i.e.,

Sn\Qn = {
Q ∈ Sn : �(Q) < ν(Q)

}
.

We first present an algebraic characterization of such instances. Based on this
characterization, we then propose a procedure for generating such an instance.

6.1 An algebraic characterization

The next result gives a complete algebraic characterization of the set Sn\Qn .

Proposition 8 Let Q ∈ Sn. Then Q ∈ Sn\Qn if and only if there exist λ ∈ R and
M ∈ bd COPn\SPN n such that

Q = λE + M . (61)

Furthermore, for any decomposition given by (61), we have λ = ν(Q) and Ω(Q) =
VM, where VM is given by (29).

Proof Let Q ∈ Sn be such that Q ∈ Sn\Qn . Let x∗ ∈ Ω(Q) be any optimal solution.
Let us defineM

def= Q−(
(x∗)T Qx∗) E . ByLemma 6,M ∈ bd COPn , wherebd COPn
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is given by (28). Since Q /∈ Qn , it follows that Q /∈ Qx∗ , whereQx∗ is given by (20).
By Lemma 3, M /∈ SPN n . It follows that Q = λE + M , where λ = (x∗)T Qx∗ and
M ∈ bd COPn\SPN n .

Conversely, suppose that Q = λE +M , where λ ∈ R and M ∈ bd COPn\SPN n .
For any x ∈ Δn , since M ∈ COPn ,

xT Qx = λ + xT Mx ≥ λ,

which implies that ν(Q) ≥ λ. Since M ∈ bd COPn , it follows that VM �= ∅, where
VM is given by (29). Then, for any x∗ ∈ VM , we have (x∗)T Qx∗ = λ+ (x∗)T Mx∗ =
λ,which implies that ν(Q) = λ and x∗ ∈ Ω(Q). Suppose, for a contradiction, that Q ∈
Qn . Then, Q ∈ Qx∗ by (20). By Lemma 3, Q− ((x∗)T Qx∗)E = Q−ν(Q)E = Q−
λE = M ∈ SPN n , which contradicts the hypothesis that M ∈ bd COPn\SPN n .
Therefore, Q ∈ Sn\Qn .

For the last assertion, the argument in the previous paragraph already establishes
that ν(Q) = λ and VM ⊆ Ω(Q). Conversely, since M ∈ COPn , we have xT Qx =
λ + xT Mx > λ for any x ∈ Δn\VM , which implies that Ω(Q) ⊆ VM , thereby
establishing Ω(Q) = VM . ��

6.2 Generating standard quadratic programs with a positive gap

Note that Proposition 8 presents a complete algebraic characterization of the set of
instances of (StQP) with a positive gap. For a given Q ∈ Sn , checking if a decompo-
sition given by (61) exists is equivalent to solving the corresponding (StQP) instance,
which is clearly an intractable problem. On the other hand, by relying on this charac-
terization, we propose a procedure to generate an instance of (StQP) with a positive
gap.

By Proposition 8, the main ingredient is a matrix M ∈ bd COPn\SPN n . Recall
thatCOPn = SPN n for eachn ≤ 4 by (5). Therefore, n = 5 is the smallest dimension
for which COPn\SPN n �= ∅. To that end, recall the well-known Horn matrix (see,
e.g., [17]) given by

H
def=

⎡
⎢⎢⎢⎢⎣

1 −1 1 1 −1
−1 1 −1 1 1
1 −1 1 −1 1
1 1 −1 1 −1

−1 1 1 −1 1

⎤
⎥⎥⎥⎥⎦

∈ bd COP5\SPN 5,

and

{
1

2

(
ei + e j

) ∈ R
5 : (i, j) ∈ {(1, 2), (2, 3), (3, 4), (4, 5), (5, 1)}

}
⊆ VH ,

where VH is given by (29). Note that H ∈ S5\Q5 by Proposition 8. Indeed, we have
�(H) ≈ −0.1056, whereas ν(H) = 0.
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For any n ≥ 5, let B ∈ Sn−5 and let C ∈ R
(n−5)×5 be two matrices such that

B ∈ COPn−5 and each entry of C is nonnegative. Note, in particular, that one may
choose B ∈ SPN n−5 (or even B ∈ N n−5) and C = 0. Let us define

M̂
def=

[
B C
CT H

]
∈ Sn . (62)

By [34, Lemma 3.4 (a)], it follows that M̂ ∈ COPn . Finally, let J ∈ R
n×n be an

arbitrary permutation matrix and let D ∈ Sn be an arbitrary diagonal matrix with
strictly positive entries. Let us define

M
def= J DM̂DJT , (63)

where M̂ is given by (62). By Lemma 1(ii) and (iii), M ∈ COPn since M̂ ∈ COPn .
Furthermore, M /∈ SPN n since, otherwise, this would imply that H ∈ SPN 5 by
Lemma 1(ii), (iii), and (iv). Finally, we claim that M ∈ bd COPn . To see this, let
u ∈ VH , and let us define û

def= [0T , uT ]T ∈ Δn , which implies that ûT M̂û = 0, i.e.,
M̂ ∈ bd COPn . Therefore, we obtain vT Mv = 0, where v

def= J D−1û ∈ R
n+\{0}.

Therefore, defining w
def= (1/(eT v))v ∈ Δn , we have w ∈ VM , where VM is defined

as in (29). It follows that M ∈ bd COPn\SPN n .
Finally, by picking an arbitrary real number λ ∈ R and defining Q

def= λE + M , we
ensure that Q ∈ Sn\Qn , ν(Q) = λ, and Ω(Q) = VM by Proposition 8.

We close this section by making two observations. First, suppose that n ≥ 6. By
choosing B = 0 in (62) and J = D = I in (63), we can guarantee that any x ∈ Δn of
the form x = [x̂ T , 0T ]T , where x̂ ∈ Δn−5 satisfies x ∈ VM . Then, by Proposition 8,
any such x ∈ Δn would be an optimal solution of the (StQP) instance corresponding
to Q = λE + M for any λ ∈ R. Therefore, for n ≥ 6 and for any x ∈ Δn such that
|A(x)| ≤ n − 5, where A(x) is given by (2), one can construct a matrix Q ∈ Sx\Qx ,
where Sx and Qx are given by (17) and (20), respectively. Second, we note that the
Horn matrix H in the definition (62) can be replaced by any extreme ray of COP5

that does not belong to SPN 5, which was fully characterized in [18, Theorem 3.1].
Similarly, for n ≥ 6, one can use any extreme ray of COP6\SPN 6, which has recently
been characterized in [1]. However, such characterizations are not currently known
for n ≥ 7.

7 Concluding remarks

In this paper, we studied the doubly nonnegative relaxations of standard quadratic
programs. We presented characterizations of instances of (StQP) that admit an exact
relaxation as well as those with a positive gap. Both of our characterizations can be
used as algorithmic procedures to construct an instance of (StQP) with a prespecified
optimal solution, for which the doubly nonnegative relaxation is either exact or has a
positive gap. In addition, we explicitly identified three families of instances with exact
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relaxations. We also established several properties between the maximal cliques of the
convexity graph and the tightness of the relaxation.

For a given Q ∈ Sn , consider an exact optimal solution of (DN-D), which satisfies
Q = �(Q)E + P + N , where P ∈ PSDn and N ∈ N n . We can check if there
exists x ∈ Δn such that Q ∈ Qx , whereQx is given by (20), by solving the following
feasibility problem:

Px = 0, xT Nx = 0, x ∈ Δn .

This problem can easily be cast as the following mixed integer linear feasibility prob-
lem:

Px = 0,
eT x = 1,
x j ≤ y j , j = 1, . . . , n,

x j = 0, j ∈ {1, . . . , n} s.t. N j j > 0,
yi + y j ≤ 1, 1 ≤ i < j ≤ n s.t. Ni j > 0,

x ≥ 0,
y j ∈ {0, 1}, j = 1, . . . , n.

However, this procedure requires an exact solution of the dual problem (DN-D) and
does not shed light on the existence of a polynomial-time algorithm for themembership
problem in Qn , which we leave as a future research direction.

Another interesting research direction is the investigation of the topological prop-
erties of Qn as well as the set Sn\Qn . We intend to study these problems in the near
future.
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