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Abstract
In a Stackelberg Pricing Game a distinguished player, the leader, chooses prices for
a set of items, and the other players, the followers, each seek to buy a minimum cost
feasible subset of the items. The goal of the leader is to maximize her revenue, which
is determined by the sold items and their prices. Most previously studied cases of
such games can be captured by a combinatorial model where we have a base set of
items, some with fixed prices, some priceable, and constraints on the subsets that
are feasible for each follower. In this combinatorial setting, Briest et al. and Balcan
et al. independently showed that the maximum revenue can be approximated to a
factor of Hk ∼ log k, where k is the number of priceable items. Our results are
twofold. First, we strongly generalize the model by letting the follower minimize any
continuous function plus a linear term over any compact subset ofRn≥0; the coefficients
(or prices) in the linear term are chosen by the leader and determine her revenue. In
particular, this includes the fundamental case of linear programs.We give a tight lower
bound on the revenue of the leader, generalizing the results of Briest et al. and Balcan
et al. Besides, we prove that it is strongly NP-hard to decide whether the optimum
revenue exceeds the lower bound by an arbitrarily small factor. Second, we study
the parameterized complexity of computing the optimal revenue with respect to the
number k of priceable items. In the combinatorial setting, given an efficient algorithm
for optimal follower solutions, the maximum revenue can be found by enumerating
the 2k subsets of priceable items and computing optimal prices via a result of Briest et
al., giving time O(2k |I |c) where |I | is the input size. Our main result here is a W[1]-
hardness proof for the case where the followers minimize a linear program, ruling
out running time f (k)|I |c unless FPT = W[1] and ruling out time |I |o(k) under the
Exponential-Time Hypothesis.
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1 Introduction

Pricing problems are fundamental in both economics and mathematical optimization.
In this paper we study such pricing problems formulated as games, which are usually
called Stackelberg Pricing Games [23]. In our setting, in order to maximize her rev-
enue one player chooses prices for a number of items and one or several other players
are interested in buying these items. Following the standard terminology, the player
to choose the prices is called the leader while the other players are called followers.
Depending on the follower’s preferences, computing optimal prices can be a computa-
tional non-trivial problem. In a setting where followers have valuations over individual
items only, the problem is simple. If, however, valuations become more complex, e.g.,
over whole subsets of items, pricing problems become much harder–also in a formal
sense.

Largely the literature has focused on what we call the combinatorial setting: there
is a set Y of items and one follower seeks to buy a feasible subset. Some of the items
have fixed costs, the others have prices that are chosen by the leader. If the follower
buys a feasible subset S ⊆ Y of the items, he has to pay the sum of the fixed costs
of the elements of S, plus the leader’s prices of the bought elements. The leader’s
revenue is the sum of the prices of the priceable items in S. This can also be captured
by defining a solution space X containing 0/1-vectors corresponding to the feasible
subsets S of Y . The goal of the follower is then to minimize a given additive function
f : X → R that depends on both fixed and leader-chosen prices.
So-called Stackelberg Network Pricing Games became popular when Labbé et

al. [20] used them to model road toll setting problems. In this game, the leader
chooses prices for a subset of priceable edges in a network graph while the remain-
ing edges have fixed costs. Each follower has a pair of vertices (s, t) and wants to
buy a minimum cost path from s to t , taking into account both the fixed costs and
the prices chosen by the leader. The work of Labbé et al. led to a series of studies
of the Stackelberg Shortest Path Game. Roche et al. [21] showed that the problem
is NP-hard, even if there is only one follower, and it has later been shown to be
APX-hard [8,19]. More recently, other combinatorial optimization problems were
studied in their Stackelberg pricing version. For example, Cardinal et al. [12,13] stud-
ied the StackelbergMinimumSpanningTreeGame, provingAPX-hardness and giving
some approximation results. Moreover, a special case of the Stackelberg Vertex Cover
Game in bipartite graphs has been shown to be polynomially solvable by Briest et al.
[10].

To get more familiar with the setting, we briefly discuss an example of the Stackel-
berg Minimum Spanning Tree Game. The left hand side of Fig. 1 depicts an instance
of the problem. Here the leader can choose the prices p1, p2 and p3 for the dashed
edges, while the solid edges have fixed costs as displayed. To motivate the problem,
think of the vertices as hubs in a network and of the edges as data connections. In this
scenario, the followers are Internet Service Providers and want to connect all the hubs
at minimum cost, thus want to compute a minimum spanning tree. The leader owns the
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Fig. 1 An instance of the Stackelberg minimum spanning tree game

dashed connections and wants to set prices, that yield a large revenue. Furthermore,
there are competitors who own the solid connections and it is known how much they
charge for their usage.

On the right hand side, an optimal pricing (p1 = p2 = 5 and p3 = 4) and a cor-
responding minimum spanning tree are depicted. Thus the leader’s revenue amounts
to 9, which can be verified to be maximum. Observe that we can compute a min-
imum spanning tree without any priceable edges; otherwise the leader’s revenue is
unbounded. In this example, the total cost of such a minimum spanning tree is 17. In
contrast, if we set all prices to 0 and let the follower compute a minimum spanning
tree, it has a total cost of 8. The difference of these two values, 17−8 = 9, is an upper
bound on the revenue of the leader, as explained later. This upper bound, which we
denote by R, is sometimes called the optimal social welfare and will be important for
our approximation result.

An important contribution to the study of Stackelberg Games was the discovery by
Briest et al. [10]. They show that the optimal revenue can be approximated surprisingly
well using a single-price strategy. For a single-price strategy the leader sets the same
price for all of her priceable items. Basically, their result says the following: In any
Network Pricing Game with k priceable items, there is some λ ∈ R≥0 such that, when
assigning the price of λ to all priceable items at once, the obtained revenue is only a
factor of Hk away from the optimal revenue. Here, Hk = ∑k

i=1 1/i denotes the k-th
harmonic number which behaves like log(k). Hence, the maximum revenue can be
approximated to a factor logarithmic in k.

This discovery has been made independently, in a slightly different model, by
Balcan et al. [3]. Actually, in both papers [3,10] a stronger fact is proven: The single-
price strategy yields a revenue that is at least R/Hk , where R is a natural upper bound
on the optimal revenue. The definition of R was sketched in the example above, and
is formally laid out later.

Our resultsOurwork focuses on pushing the knowledge on Stackelberg PricingGames
beyond the well-studied combinatorial setting, in order to capture more complex prob-
lems of the leader. This is motivated by the simple fact that the combinatorial setting
is too limited to even model, e.g., a follower that has a minimum cost flow problem—
a crucial problem in both, combinatorial optimization and algorithmic game theory.
More generally, we might want to be able to give bounds and algorithms in the case
when the follower has an arbitrary linear or even convex program. For example, the
follower might have a production problem in which he needs to buy certain materials
from the leader, but such pricing problems haven’t been discussed in the literature so
far.
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We prove an approximation result that applies even to a setting generalizing linear
and convex programs. In our model, the follower minimizes a continuous function f
over a compact set of feasible solutions x ∈ X ⊆ R

n≥0. For some of the variables,
say x1 up to xk , the leader can choose a price vector p ∈ R

k . Now the follower
chooses a vector x ∈ X that minimizes his objective function f (x) + ∑k

i=1 pi xi . We
remark that if X is a set containing 0/1-vectors only, then we are back to the classical
combinatorial setting. The result of Briest et al. can be transferred to the case when f
is non-additive, in view of their original proof. Moreover if X is a polytope and f is
additive, the follower minimizes a linear program, which is an important special case.

In Sect. 2, we formally introduce this more general model and prove the following
results.

– The maximum revenue obtainable by the leader can be approximated to a loga-
rithmic factor using a single-price strategy. This generalizes the above mentioned
result of Briest et al. [10] not only to linear programs but to any kind of follower
that is captured by our model.

– The analysis of point (i) is tight. There is a family of instances for which the
single-price strategy yields maximum revenue. And this revenue meets the bound
of point (i).

– It is strongly NP-hard to decide whether one can achieve a revenue that is only
slightly larger than the one guaranteed by the single-price strategy. This holds true
even in a very restricted combinatorial setting.

The second part of the paper dealswith the parameterized complexity of Stackelberg
Pricing Games (Sect. 3). To the best of our knowledge, the only result in this direction
is an XP-algorithm by Cardinal et al. [13] for the Stackelberg Minimum Spanning
Tree Game in graphs of bounded treewidth.

In contrast to structural parameters like the treewidth of the input graph, we con-
sider the complexity of the pricing problem when parameterized by the number of
priceable variables (or items in the combinatorial setting). Our main result in this part
is a W[1]-hardness proof for the case that the optimization problem of the follower is
a linear program, which is arguably one of the most interesting cases that does not
fit into the combinatorial setting. This rules out algorithms of running time f (k)|I |c
unless FPT = W[1] for any function f and polynomial |I |c of the input size; it also
rules out running time |I |o(k) under the Exponential-Time Hypothesis of Impagliazzo
et al. [18]. This intractability result is complemented by a fairly simple FPT-algorithm
with running time O(2k |I |c) for any Stackelberg Game that fits into the combinatorial
model, when provided with an efficient algorithm for finding optimal follower solu-
tions. The algorithm enumerates all subsets of priceable items and applies a separation
argument of Briest et al. [10] to compute optimal leader prices and revenue.

Related workMost important for our work are the approximation results due to Briest
et al. [10] and Balcan et al. [3], which were discussed above.

A larger body of work focuses on specific network problems in their Stackelberg
Game version. Briest et al. [10] give a polynomial time algorithm for a special case of
the Stackelberg Bipartite Vertex Cover Game. An algorithm with improved running
time was later given by Baïou and Barahona [2]. As mentioned, Labbé et al. [20] use
the Stackelberg Shortest PathGame tomodel road toll setting problems. They establish
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NP-hardness and use LP bilevel formulations to solve small instances. A combinatorial
approximation algorithm with the same logarithmic approximation guarantee as the
single-price strategy was given by Roch et al. [21]. Moreover, a lower bound on the
approximability is due to Briest et al. [8]: they show that the Stackelberg Shortest Path
Game is NP-hard to approximate within a factor of less than 2. This is an improvement
over previous results by Joret [19] showing APX-hardness. Further research on the
Stackelberg Shortest Path Game can be found in a survey by van Hoesel [22]. A
similar problem, the Stackelberg Shortest Path Tree Game, is studied by Bilo et al.
[6]. They give an NP-hardness proof and develop an efficient algorithm assuming that
the number of priceable edges is constant. Later their algorithm was improved by
Cabello [11].

Cardinal et al. [12] proved several positive approximation results for the Stackelberg
Minimum Spanning Tree Game. In the same paper, they proved that the revenue
maximization for this game is APX-hard and strongly NP-hard. We make use of their
reduction in the proof of Theorem 3. Furthermore, Cardinal et al. [13] prove that
this game remains NP-hard if the instances are planar graphs. However, the problem
becomes polynomial-time solvable on graphs of bounded treewidth. Bilo et al. [5]
consider the Stackelberg Minimum Spanning Tree Game for complete graphs.

Briest et al. [9] consider StackelbergGameswhere the follower’s optimization prob-
lem cannot be solved to optimality. Instead the follower uses a known approximation
algorithm. They show that the Stackelberg Knapsack Game is NP-hard if the follower
uses a greedy 2-approximate algorithm, and derive a 2 + ε approximation algorithm.
Furthermore, the revenuemaximization problem can be solved efficiently in the Stack-
elberg Vertex Cover Game if the follower implements a primal-dual approximation.

When there is more than one follower in the game, the so-called limited supply
scenario naturally arises. In this scenario the additional assumption is made that the
followers come in an order, and that an item can only be sold once and thus subsequent
followers have a smaller supply of items to buy from. Balcan et al. [3] analyze the
single-price strategy also in this setting and show that it yields a revenue of at least
R/α, where α = 2O(

√
log k log log k). The issue with the single-price strategy is that

the same single-price is chosen for every follower, and this is difficult to control in
the limited supply setting. Chakraborty et. al. [14] introduce a dynamic single-pricing
strategy where a possibly different single-price is chosen for every follower. They
are able to show that this modified strategy yields revenue of at least R/β, where
β = O(log2 k).

Guruswami et al. [15] and Aggarwal et al. [1] consider envy-free pricings to maxi-
mize revenue.An envy-free pricing ensures a stable allocation of items to the followers.
They show that computing an envy-free pricing to maximize revenue is APX-hard for
(i) limited supplywhen there are unit demand followers and (ii) unlimited supplywhen
there are single-minded followers. Unit demand followers buy no more than one item
and single-minded followers are interested in only one subset of items. Guruswami et
al. then give logarithmic approximation algorithms for both problems using a single-
price strategy in the unlimited supply case.
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A generalization of envy-pricing problems and Stackelberg matroid problems is
studied in the context of assortment optimization by Berbeglia and Joret [4]. They use
single price strategies to establish logarithmic approximation ratios.

2 Approximability of Stackelberg Pricing Games

In this section we first introduce the model in its full generality. Then we give a
tight approximation result on the maximum revenue using a single-price strategy. We
complement this with a hardness proof by showing that deciding whether one can
achieve a revenue that is only slightly larger than the one guaranteed by the single-
price strategy is strongly NP-hard.

OurmodelLet k and n be some natural numbers with k ≤ n. The optimization problem
of the follower is the following: He minimizes a continuous function f : Rn → R

over his set of feasible solutions X ⊆ R
k≥0 × R

n−k
≥0 . The only restriction we put on X

is that we require it to be a compact set, i.e., bounded and closed under limits.
The first move of the Stackelberg Pricing Game is made by the leader: She chooses

a price vector p ∈ R
k . Now the second move is made by the follower: He chooses an

optimal solution (x∗, y∗) of the program

min pT x + f (x, y)

s.t. (x, y) ∈ X .

The revenue of the leader is then given by the value pT x∗. This value is her objective
function and it is to be maximized.We remark that this problem has a bilevel structure.

To avoid technicalities, we make the following optimistic assumption: If the fol-
lower has several optimal solutions in X , we assume that the solution which is most
profitable for the leader is chosen. That is the solution, which maximizes the value
pT x∗. Moreover, we assume that there is a point (x, y) ∈ X with x being the k-
dimensional all-zeroes vector. This simply means that the follower has a solution that
does not give any revenue to the leader. Otherwise the revenue maximization problem
would be unbounded which is obviously not an interesting case.

Before we can state our results for the new model, we need to introduce a number
of technical notions. Given a feasible solution (x, y) ∈ X of the follower, we call the
value 1T x = ∑k

i=1 xi themass of (x, y). A single-price is a price vector p of the form
p = λ1 where λ is some real number. Slightly abusing notation, we sometimes call λ
the single-price. Note that when the leader uses a single-price the revenue is simply
the mass of the follower’s solution times the single-price.

Let M be the maximum mass the follower buys if the leader sets all her prices to
0. Formally,

M := max 1T x

s.t. ∃y ∈ R
n−k : (x, y) = argmin{ f (x ′, y′) : (x ′, y′) ∈ X}.

This value M exists since X is a compact set.
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Consider, for example, the case where the follower seeks to buy a shortest s-t-path
in a network. ThenM is the maximum number of priceable edges of a shortest s-t-path
in the network, when the priceable edges all have a price of 0 and thus can be bought
for free by the follower.

Since X is a compact set, there exists a largest single-price at which the follower
buys a non-zero mass from the leader. Let μ be the maximum mass the follower buys
at this price. Consider again the case where the follower searches for a shortest s-t-
path in a network. Then μ is the maximum number of priceable edges contained in
a shortest s-t-path, under the largest single-price for which a shortest path exists that
contains a priceable edge.

For all m ∈ [0, M], let Δ(m) be the minimum price the follower has to pay if he
buys a mass of at most m from the leader. More formally

Δ(m) := min f (x, y)

s.t. 1t x ≤ m

(x, y) ∈ X ,

where 1t x is the mass bought by the follower. This minimum price Δ(m) exists,
because X with the additional constraint of 1t x ≤ m is again a compact set.

As observed by several authors (cf. [3,8]), an upper bound on the optimum revenue
is R := Δ(0) − Δ(M). To see this, let r∗ be the maximum revenue, and let (x∗, y∗)
be the corresponding follower’s solution. We have

r∗ + Δ(M) ≤ r∗ + Δ(1T x∗) ≤ r∗ + f (x∗, y∗) ≤ Δ(0),

because Δ(0) is an upper bound on the objective value of the follower and Δ is non-
increasing. We remark that R is indeed a tight upper bound, in the sense that there
are examples of games where the maximum revenue equals R, e.g., the minimum
spanning tree pricing problem described in the introduction.

As our first result shows, the maximum revenue of the leader is always reasonably
close to R, unless the ratio M/μ is large. This is true even if the leader uses a single-
price strategy.

Theorem 1 There is a single-price for the Stackelberg Pricing Game over X whose
revenue is at least

R

1 + ln
(
M
μ

) .

This result extends previous work of Briest et al. [10] and Balcan et al. [3], who
proved the above theorem in the combinatorial setting, i.e., for X ⊆ {0, 1}n .
Proof We start with some mathematical background needed throughout the proof. Let
F : [a, b] → R be a continuous function. The lower left Dini derivative of F , denoted
D−F , is defined, for all x ∈ (a, b], by
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D−F(x) = lim inf
h→0−

F(x) − F(x + h)

h
.

Later we need to recover F from its lower left Dini derivative. For this, we need some
more concepts.

The following discussion, including Theorem 2, follows the exposition of Hagood
and Thomson [17]. A covering relation β is a set of pairs (x, [s, t]) with s < t and
x ∈ [s, t]. Moreover, β is called a left full cover of an interval [a, b] if for each
x ∈ [a, b] there is a positive number ρ(x) such that all of the following assertions
hold.

(a) Every pair (a, [a, t]) for which a < t < a + ρ(a) belongs to β.
(b) Every pair (b, [s, b]) for which b − ρ(b) < s < b belongs to β.
(c) For each x ∈ (a, b) and t satisfying x − ρ(x) < t < x there exists a positive

number η(x, t) such that (x, [s, t]) belongs to β whenever x ≤ s ≤ x + η(x, t).

Let G : [a, b] → R be a function. We define the lower left Dini integral of G over
[a, b] by

(LD)
∫ b

a
G(x) = sup

β

inf
π⊆β

S(G, π),

where β runs through all left full covers β of [a, b], π runs through all partitions of
[a, b] contained in β, and S(G, π) is a Riemann sum. Here, a partition of [a, b] is a
subset of β of the form π = {(xi , [ti , ti+1])} for all i = 1, . . . , k, where a = t0 <

t1 < · · · < tk = b.

Theorem 2 (Cf. Hagood and Thomson [17]) If F is a continuous function that has a
finite lower left Dini derivative D−F(x) at every point x ∈ [a, b], where a, b ∈ R,
then

(LD)
∫ b

a
D−F(x) dx = F(b) − F(a).

For each m ∈ (0, M], let P(m) be the supremum of all single-prices for which the
follower has an optimal solution with a mass of at least m from the leader. As the next
claim shows, this supremum is indeed a maximum.

Claim 1 At the single-price of P(m), the follower has an optimal solution of a mass
of at least m.

Proof For each n ∈ N, let pn = P(m) · (1 − 1/n) and let zn ∈ X be an optimum
solution of the follower under the single-price pn . By choice of pn , we may choose
zn such that the mass among the priceable variables is at least m.

Consider the sequence (zn)n∈N. Since X is compact, there is a convergent subse-
quence (zn)n∈S where S is some infinite subset of N. Again by compactness, the limit
point z of the sequence (zn)n∈M is in X . Obviously, z contains a mass of at least m
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among the priceable variables. Moreover, since the objective function of the follower
is continuous, z is an optimal solution under the single-price P(m). This completes
the proof. �

Let T ⊆ (0, M] be the set of values t for which the follower does not have an
optimal solution, at a single-price P(t), with a mass more than t . The set T plays a
key role in the remainder of this proof.

Claim 2 It holds that μ ∈ T , M ∈ T and μ = min T . For all m ∈ (0, M] it holds that
maxt∈T∩[m,M] P(t) exists and P(m) equals this value.

Proof The first part of the claim follows directly from the definition of μ and M
respectively. Pick any m ∈ (0, M]. Let m′ be the maximum mass which the follower
will buy at single-price P(m). This maximum exists since X is closed. We have
P(m′) = P(m), and m′ ∈ T . �

Recall thatΔ(m) is defined as the price the follower has to pay for the non-priceable
variables if he buys a mass of at most m from the leader. Similar to the proof of Briest
et al. [10] for the combinatorial setting, we next show that the functions P and Δ are
closely related. In our case, however, we have to deal with several difficulties that arise
because we allow for non-discrete optimization problems.

Consider the lower convex hull H of the point set {(m,Δ(m)) : 0 ≤ m ≤ M}.
Let ∂H be the lower border of H , and let Δ̂ : [0, M] → R be the function for
which (m, Δ̂(m)) ∈ ∂H for all m ∈ [0, M]. We remark that, since Δ̂ is convex and
decreasing,

D−Δ̂(m) = sup
�<m

Δ̂(m) − Δ̂(�)

m − �
, for each m ∈ (0, M]. (1)

Claim 3 Let t ∈ T . Then (t,Δ(t)) ∈ ∂H and the point (t,Δ(t)) is not the convex
combination of any two other points in ∂H.

Proof If t = M , the statement is clear. So, we proceed to the case that t �= M . Note
that at a fixed single-price p and fixed mass m the follower buys a solution of costs
Δ(m)+m p. Furthermore, at a single-price of P(t) the follower buys a mass of value
exactly t . Hence, it must be the case that

Δ(t) + t P(t) ≤ Δ(�) + � P(t) for all 0 < � < t

and

Δ(t) + t P(t) < Δ(r) + r P(t) for all t < r ≤ M .

Consequently,

Δ(r) − Δ(t)

r − t
<

Δ(t) − Δ(�)

t − �
for all 0 < � < t < r ≤ M .
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Hence, (t,Δ(t)) ∈ ∂H . In fact, the point (t,Δ(t)) is not the convex combination of
any two other points in ∂H . �

Nowweknow that the elements of T yield points of the convex hull ∂H .We proceed
by showing that these points are exactly the points of the convex hull.

Claim 4 Fix m ∈ (0, M). If for all r ∈ (m, M] it holds that

D−Δ̂(m) <
Δ̂(r) − Δ̂(m)

r − m
,

then m ∈ T , and D−Δ̂(m) = −P(m).

Proof Since D−Δ̂(m) < (Δ̂(r) − Δ̂(m))/(r − m) for all r ∈ (m, M], the point
(m,Δ(m)) lies in ∂H . Hence, Δ(m) = Δ̂(m). For the ease of notation, let p =
−D−Δ̂(m). By (1), for each � ∈ (0,m) we have

Δ(m) − Δ(�)

m − �
≤ Δ̂(m) − Δ̂(�)

m − �
≤ −p.

It follows thatΔ(m)+m p ≤ Δ(�)+� p. Thus at the single-price p a solution contains
no less than a mass ofm. Moreover, by assumption, for each r ∈ (m, M]we have that

−p <
Δ̂(r) − Δ̂(m)

r − m
≤ Δ(r) − Δ(m)

r − m
.

It follows that Δ(m) +m p < Δ(r) + r p, and thus the solution at the single-price p
has a mass of exactly m. In particular, m ∈ T and p = P(m). �
Claim 5 It holds that D−Δ̂(M) = −P(M).

Proof Like in the proof of Claim 4, at a single-price of−D−Δ̂(M) a solution contains
no less than a mass of M . Since M is the maximum mass a follower will ever buy,
−D−Δ̂(M) = P(M). �
Claim 6 Except for a set of measure 0, it holds for all m ∈ (0, M) that D−Δ̂(m) =
−P(m).

Proof Let m ∈ (0, M). If m satisfies the assumptions of Claim 4, we are done. Other-
wise if for all � ∈ (0,m) and for some r ∈ (m, M]

Δ̂(m) − Δ̂(�)

m − �
< D−Δ̂(m) = Δ̂(r) − Δ̂(m)

r − m
, (2)

then we consider m as an exception. Such an exception is illustrated in Fig. 2. Note
that there is no other exception in the interval [m, r) since the segment right of m is
a straight line: For any m′ ∈ (m, r),(2) cannot hold for all � ∈ (0,m′). We can now
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Fig. 2 The plot shows an exception as defined in (2) at the point m. The segment to the right of m is a
straight line and the Dini derivative is continuous at m

associate an exception with its interval. Since each such interval contains a rational
number, the set of exceptions is countable and therefore has a measure of 0.

Now we assume there are � ∈ (0,m) and r ∈ (m, M] for which

Δ̂(m) − Δ̂(l)

m − l
= D−Δ̂(m) = Δ̂(r) − Δ̂(m)

r − m
.

Then for all r ′ ∈ (m, r ] it holds that

D−Δ̂(m) = Δ̂(r ′) − Δ̂(m)

r ′ − m
. (3)

Let I ⊆ (m, M] be the set of values that satisfy (3). Then I is a half-open interval of
the form I = (m,m′]. Note that r ≤ m′.

Observe that the segment {(x, Δ̂(x)) : x ∈ [m,m′]} is a straight line. Hence,

D−Δ̂(m′) = lim inf
h→0−

Δ̂(m′) − Δ̂(m′ + h)

h
= Δ̂(m′) − Δ̂(m)

m′ − m
(3)= D−Δ̂(m). (4)

Assuming that m′ < M , we have

D−Δ̂(m′) = D−Δ̂(m) <
Δ̂(r ′) − Δ̂(m)

r ′ − m
≤ Δ̂(r ′) − Δ̂(m′)

r ′ − m′ for all r ′ ∈ (m′, M].

The latter inequality holds because Δ̂ is a convex function. By Claim 4, m′ ∈ T and
D−Δ̂(m′) = −P(m′). Since every point of the form (x, Δ̂(x)) is a convex combination
of the two points (�, Δ̂(�)) and (m′, Δ̂(m′)), for all x ∈ [m,m′), Claim 3 implies
T ∩ [m,m′) = ∅. Hence,

D−Δ̂(m)
(4)= D−Δ̂(m′) = −P(m′) = −P(m),

by Claim 2.
If m′ = M , then Claim 2 implies that M ∈ T , and Claim 5 implies D−Δ̂(m′) =

−P(m′). Like above, Claim 2, Claim 3 and (4) yield the desired statement. �
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Now we are ready to give the calculation that finishes the proof. Using the fact that
Δ̂ is continuous in combination with Theorem 2, we see that

R = Δ(0) − Δ(M) = Δ̂(0) − Δ̂(M) = lim
ε→0+ Δ̂(ε) − Δ̂(M)

= lim
ε→0+ (LD)

∫ M

ε

− D−Δ̂(m) dm.

Due to Claim 6, the integral

lim
ε→0+ (LD)

∫ M

ε

P(m) dm

is well defined and equals

lim
ε→0+ (LD)

∫ M

ε

− D−Δ̂(m) dm.

Recall that, by Claim 2, μ = min T and so P(m) = P(μ) for all m ∈ (0, μ]. Hence,

lim
ε→0+ (LD)

∫ M

ε

P(m) dm = lim
ε→0+ (LD)

∫ μ

ε

P(m) dm + (LD)
∫ M

μ

P(m) dm

= μ · P(μ) + (LD)
∫ M

μ

P(m) dm.

Let r be the maximum revenue achieved by the single-price strategy. Note that r is at
least the revenue at the single-price P(m), for each m ∈ (0, M], which is in turn at
least m · P(m). We thus have

μ · P(μ) + (LD)
∫ M

μ

P(m) dm = μ · P(μ) + (LD)
∫ M

μ

m · P(m)

m
dm

≤ r + (LD)
∫ M

μ

r

m
dm

= r + r · (ln(M) − ln(μ))

= r

(

1 + ln

(
M

μ

))

.

This shows that R ≤ r(1 + ln(M/μ)), as desired. �
Balcan et al. [3] and Briest et al. [10] also formulate an logarithmic approximation

algorithm assuming that R is known. With this assumption and the assumption that M
is known or computable, their approaches can be adapted to your setting. Define the
single-prices ql = R

2l−1 for l ∈ {1, . . . , �log(2M)�}. Balcan et al. show that picking
one price ql uniformly at random yields an revenue with the logarithmic guarantee in
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expectation. Briest et al. formulate an algorithm that involves computing the revenue
for all prices ql and selecting the single-price which yields the most revenue.

Moreover, Balcan et al. and Briest et al. extend their result to the situation when
there are several followers.1 The same approach works in our generalized model.

Assume there are � followers and each follower has its own optimization problem.
Formally, the i-th follower minimizes his objective function pT xi + fi (xi , yi ) where
(xi , yi ) belongs to the set Xi ⊆ R

k≥0 × R
n−k
≥0 of his feasible solutions, i = 1, . . . , �.

The pricing vector p appears in the objective function of every follower and is again
set by the leader in order to maximize her revenue

∑�
i=1 p

T xi . The difficulty here is
that, while each follower has an individual optimization problem, the leader can set
only one price vector for all followers at once. There is, however, a canonical way of
reducing the pricing game to the case of a single follower. To this end, we consider the
pricing game with respect to follower i only, and let μi (resp. Mi ) be the minimum
non-zero mass (resp. the maximum mass) bought by follower i . Moreover, let Ri be
the upper bound on the revenue with respect to follower i .

Corollary 1 There is a single-price for the Stackelberg Pricing Game with � followers
whose revenue is at least

∑�
i=1 Ri

1 + ln

( ∑�
i=1 Mi

min�
i=1 μi

) .

To see this, consider a single follower with the feasible subset X = X1 × X2 ×
· · ·× X�. It is easy to see that we have M = ∑�

i=1 Mi and R = ∑�
i=1 Ri in this game.

Moreover, the smallest non-zero mass μ bought by the newly defined single follower
is at least the minimum smallest non-zero mass bought by one of the � followers, that
is min�

i=1 μi . Now applying Theorem 1 to the single follower yields Corollary 1.
Theorem 1 is tight in the following sense.

Proposition 1 There are Stackelberg Pricing Games of arbitrarily large R and M in
which the optimum revenue equals

(1 + o(1)) · R

1 + ln
(
M
μ

) .

This holds true even for games in which the follower minimizes a linear objective
function of the form pT x + cT y over a uniform matroid.

Proof Let k ∈ N, let X = {x1, . . . , xk}, and let Y = {y1, . . . , yk}. Moreover, let U be
the k-uniform matroid over the ground set X ∪ Y . Finally, let ci = k/i be the cost of
yi for each i = 1, . . . , k.

Consider the Stackelberg Pricing Game where the set X is the set of priceable
elements, and the follower seeks for a minimum cost basis of U . Let us say pi is the
price of the variable xi to be set by the leader.

1 In this paper we consider the case of unlimited supply, meaning that the followers buy their favorite
solution independently of each other.
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Let p∗
1, . . . , p

∗
k be optimal prices for the leader, where without loss of generality it

holds that p∗
1 ≤ · · · ≤ p∗

k . Let r be such that, under these prices, the follower buys
exactly r priceable elements. Of course, r > 0.

Then it must hold that p∗
1 ≤ · · · ≤ p∗

r ≤ cr = k/r , and the revenue of the leader
equals

r∗ =
r∑

i=1

p∗
i ≤ k.

On the other hand, setting all prices to k/r does also result in a solution where the
follower buys r priceable elements. Hence, we have r∗ = k.

It is clear that M = k. Also, we have μ = 1, since a single-price of k results in
exactly one priceable element being bought by the follower. Moreover, we have

R = Δ(0) − Δ(M) =
k∑

i=1

ci − 0 = k · Hk,

where Hk is the k-th harmonic number. Hence,

lim
k→∞

r∗
R

1+ln
(
M
μ

)
= lim

k→∞
1 + ln k

Hk
= 1,

as desired. �
Note that, in the above statement, every possible pricing is considered and not just

single-price strategies. In other words, the lower bound in Theorem 1 is tight not only
for single-price strategies, but for arbitrary pricings. So far, it was known that there
are combinatorial pricing games where the optimum revenue is in O(R/ log k), where
k is the number of priceable elements (cf. [8]). The merit of Proposition 1 is that it
shows tightness of Theorem 1 up to a factor of 1 + o(1), which is best possible. This
fact, and the construction given in the proof of Proposition 1, enable us to prove the
following hardness result.

Theorem 3 Fix a sufficiently small rational number ε > 0, and consider a Stackelberg
Pricing Game where the follower minimizes an objective function of the form pT x +
cT y over a matroid. It is strongly NP-hard to decide whether there is some pricing of
revenue at least

(1 + ε) · R

1 + ln
(
M
μ

) .

Proof Our reduction uses two ingredients: the hardness reduction of Cardinal et al.
[12] for the Stackelberg Pricing Game on graphic matroids, and the uniform matroid
discussed in Proposition 1.
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Fig. 3 A set cover instance is depicted on the left hand side with the corresponding Stackelberg Minimum
Spanning Tree Game instance according to the reduction. The dashed edges are priceable. The dotted and
straight edges have fixed cost of 1 and 2 respectively

Let us first recall the few details we need of the hardness reduction of Cardi-
nal et al. [12]. For this, let (S, f ) be an instance of the set cover problem, that
is, S = {S1, . . . , Sm} is a finite family of finite sets and f is a number. Let⋃

S∈S S = {u1, . . . , un} =: U and assume that S is disjoint fromU . The well-known
set cover problem is the problem of deciding whether there is a subfamily S ′ ⊆ S
with both |S ′| ≤ f and

⋃
S∈S ′ S = U .

By introducing a dummy element, if necessary, wemay assume that un is contained
in every set of S. In the reduction, a graphG onm+n vertices is computed as follows.
The vertex set of G is U ∪ S, and every u ∈ U is adjacent to some S ∈ S if and only
if u is contained in S. These edges are priceable, except for the edge unS1 which has
a fixed cost of 2. For each i ∈ {1, . . . ,m − 1}, the edge Si Si+1 is contained in G, and
all of these edges have a cost of 2 each. Moreover, for each j ∈ {1, . . . , n − 1}, the
edge u ju j+1 is contained in G and has a cost of 1. The reduction is also illustrated in
Fig. 3.

Consider now the problem of pricing the priceable edges of G such that the rev-
enue is maximized, where the follower computes a minimum spanning tree of G. As
observed by Cardinal et al. [12], (S, f ) is a yes-instance of the set cover problem
if and only if there is a pricing achieving a revenue of at least 2m + n − f − 1. In
particular, the Stackelberg Minimum Spanning Tree Game is strongly NP-hard.

Our hardness reduction is again from the set cover problem, and the first step in our
reduction is to perform exactly the same reduction as Cardinal et al. [12] described
above. We may restrict our attention to the case of m and n being sufficiently large in
a sense we define below, and we may also assume that f ≤ m. Moreover, we may
assume that the graph induced by the priceable edges is connected, which is equivalent
to the fact that S1 has a non-empty intersection with one of the sets S2, . . . , Sm . Let G
be the graphical matroid2 of G, where the elements corresponding to fixed-cost edges
of G carry the same cost in G.

Like in proof of Proposition 1, let k ∈ N, let X = {x1, . . . , xk}, and let Y =
{y1, . . . , yk}.Moreover, letU be the k-uniformmatroid over the ground set E = X∪Y .
Finally, let ci = k/i be the costs of yi for each i = 1, . . . , k.

Let M = U ⊕ G be the direct sum of U and G. That is, M is the unique matroid
on the ground set that is the union of the ground sets of U and G and whose bases are
exactly the Cartesian products of the bases of U and G.

2 Recall that the bases of a graphical matroid of a graph H are the minimum spanning forests of H .
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Fix any ε with 0 < ε < 1. Consider the Stackelberg Pricing Game where the leader
sets prices and the follower optimizes over M. Denote the optimal revenue of the
leader by r∗

M. We will now show that if k is chosen appropriately,

r∗ ≥ (1 + ε) · RM
1 + ln

(
MM
μM

) holds if and only if(S, f ) is a yes-instance (5)

for the set cover problem. In (5), RM, MM and μM refer to the pricing problem
over M. In order to achieve a polynomial running time of the overall procedure, we
need to choose k such that it can be computed in polynomial time and its value is
polynomially large in the value n + m.

In order to prove (5), let us first compute the actual value of RM/(1 +
ln(MM/μM)). It is clear that RM is the sum of the respective upper bound RG
for the minimum spanning tree pricing problem and the respective upper bound RU
for the pricing problem over the uniform matroid. From the discussion in the last
section we already know that RU = k · Hk .

To compute RG , recall that the subgraph induced by the priceable edges in G is
connected, and this subgraph is spanning inG. Hence, there is a solution of the follower
that only contains priceable edges, which in turn implies ΔG(MG) = 0. Furthermore,
by construction of G the solution of the follower avoiding all priceable edges uses
exactly the non-priceable edges, which yields ΔG(0) = 2m + n − 1 in view of the
fixed costs. Thus, RG = 2m + n − 1 and so

RM = RU + RG = k · Hk + 2m + n − 1.

To compute MM, we observe that at a single-price of 0 the follower buysm+n−1
many priceable edges in G. Similarly, at a single-price of 0 the follower buys k many
priceable elements in U . Together, we obtain

MM = MU + MG = k + m + n − 1.

Finally, to compute μM, note that, in G, the follower does not buy any edge of the
leader if the single-price is above 2. Moreover, the follower buys exactly one edge at
a single-price of k in the pricing game over U . As we will see below, k > 2, and so
we have

μM = μU = 1.

Summing up, we have

RM
1 + ln

(
MM
μM

) = k · Hk + 2m + n − 1

1 + ln(k + m + n − 1)
. (6)
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We now want to choose k such that

k + 2m + n − f − 1 ≥ (1 + ε) · RM
1 + ln

(
MM
μM

) > k + 2m + n − f − 2. (7)

For a moment, let us assume that (7) holds for k. Consider the optimal revenue r∗
M of

the pricing game overM. SinceM is the direct sum ofU andG, we have r∗
M = k+r∗

G ,
where r∗

G is the optimal revenue of the pricing game over G. Recall that (S, f ) is a yes-
instance for the set cover problem if and only if r∗

G ≥ 2m + n − f − 1. Consequently,
(S, f ) is a yes-instance if and only if r∗

M ≥ k + 2m + n − f − 1. Since r∗
G and thus

also r∗
M are both integers, (7) implies that

r∗
M ≥ k + 2m + n − f − 1 if and only if r∗

M ≥ (1 + ε) · RM
1 + ln

(
MM
μM

) .

In turn, (5) holds, and gives the desired hardness result.
We now show that k can be chosen, and efficiently computed, such that (7) holds.

Note that, assuming k = Ω(m + n),

1

k
· k · Hk + 2m + n − 1

1 + ln(k + m + n − 1)
= Hk + O(1)

ln(k) + O(1)
m+n→∞−−−−−→ 1.

In other words, assuming k = Ω(m + n),

k · Hk + 2m + n − 1

1 + ln(k + m + n − 1)
= (1 + o(1)) · k when m + n grows. (8)

Now let us put k′ = �4(2m + n − f − 1)/ε� and k′′ = �(2m + n − f − 2)/(4ε)�.
Then k′ + 2m + n − f − 1 ≤ (1 + ε/2)k′ and k′′ + 2m + n − f − 2 ≥ (1 + 2ε)k′′,
assuming m + n is large enough. Hence, by applying (8) with respect to k′,

k′ + 2m + n − f − 1 ≤ (1 + ε/2)k′ (8)< (1 + ε) · k′ · Hk′ + 2m + n − 1

1 + ln(k′ + m + n − 1)
(9)

if m + n is large enough. Similarly,

k′′ + 2m + n − f − 2 ≥ (1 + 2ε)k′′ (8)> (1 + ε) · k′′ · Hk′′ + 2m + n − 1

1 + ln(k′′ + m + n − 1)
(10)

if m + n is large enough. From now on we assume m + n to be large enough for all
above inequalities to hold.

We now show that we can choose k ∈ [k′′, k′] such that (7) holds. To see this, fix
δ > 0 such that δ+ε < 1. Note that, since k ∈ [k′′, k′], we have k = Ω(m+n). By (6)
and (8), an increase of k by 1 leads to an increase of (1+ε) · RM/(1+ ln(MM/μM))

by at most 1+ε+δ, providedm+n is large enough. Consequently, an increase of k by
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1 leads to an increase of (1+ ε) · RM/(1+ ln(MM/μM)) − k by at most ε + δ < 1,
where we assume that m + n is large enough. This, together with (9) and (10), shows
that there is some k ∈ [k′′, k′] as desired.

Moreover, it is possible to find such a k in polynomial time. This is due to the
fact that ε is a rational constant, f ≤ m by assumption, k′, k′′ = O(m + n), and
that a polynomial number of first digits of the natural logarithm can be computed in
polynomial time (cf. [7]). This completes the proof. �

In the statement of the above theorem, we assume that the matroid is given by
its ground set and a membership oracle. Thus, μ, M , and R can be computed in
polynomial time. Moreover, it will be clear from the proof that the natural logarithm
can be computed in polynomial time with the precision needed to decide the problem.

Let us remark that the assumption of ε being sufficiently small is merely technical,
and can be dropped by giving a more careful hardness reduction. The message of
the above theorem is, however, that there is a sharp contrast between the revenue
guaranteed by the simple single-price strategy given in Theorem 1 and anything more
than that.

3 Parameterized complexity of Stackelberg Pricing Games with few
priceable objects

In this section we study the parameterized complexity of Stackelberg Pricing Games
when parameterized by the number of priceable objects. Intuitively, this addresses the
question of whether there are improved algorithms for the case that only few objects
are priceable. We give a general positive result for the combinatorial model. Our main
result in this part, however, is a hardness proof for the linear programming case; we
begin with the latter.

In the lp- pricing problem there is a linear program over which the follower mini-
mizes. The leader may choose the price, i.e. target function coefficient, of k specified
variables. Her revenue is determined by the corresponding (weighted) sum over these
variables.

lp- pricing
Input: A linear program with k priceable variables and λ ∈ Q.
Question: Is there a price vector whose revenue is at least λ?

We prove that this problem is at least as hard to solve as the parameterized k-clique
problem. The hardness proof creates linear programs with only non-negative variables
and non-negative target function over which the follower seeks to minimize. As such it
proves hardness also for ourmore generalmodel parameterized by number of priceable
variables.

Theorem 4 lp- pricing isW[1]-hardwhenparameterized by the number k of priceable
variables.

The theorem is proven by a reduction from thewell-known (parameterized)Multi-
colored Clique problem. Therein,we are given a k-partite graphG (or, equivalently,
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a properly k-colored graph) andhave to determinewhetherG contains a clique on k ver-
tices; the problem isW[1]-hard with respect to parameter k. Thus, unless FPT = W[1],
there is no algorithm running in time f (k)nc for instances of size n. Moreover, under
the Exponential-Time Hypothesis [18] the reduction implies that there is no O(no(k))
time algorithm for lp- pricing. In instances created by the reduction the leader can
effectively enforce the choice of the k clique vertices by setting appropriate prices for
k variables; the remaining variables are used to verify the choice and a certain revenue
threshold can only be attained if there is indeed a k-clique. The behavior of these k
priceable variables is quite similar to integer variables, as they can be shown to only
take specific values from a finite set in solutions meeting the threshold (one value cor-
responding to each vertex of G). This arguably gives our parameterized lp pricing
problem some similarity to themixed ilp feasibility problem parameterized by the
number of integer variables. Interestingly, the latter problem is FPT due to a classic
result of Lenstra [16].

Proof We give a parameterized reduction from theW[1]-hardmulticolored clique
(k) problem. Therein, we are given a k-partite graph and have to determine whether it
contains a clique of size k, i.e., a clique containing exactly one vertex from each partite
set. The reduction will be polynomial-time computable and increases the parameter
value by exactly one, proving W[1]-hardness of lp- pricing.

Construction. Let (G, k) an instance of multicolored clique (k) where G =
(V1, . . . , Vk, E). Without loss of generality assume that each set Vi contains the same
number n of vertices, and that Vi = {(i, 1), . . . , (i, n)}. Similarly, we may assume
that n ≥ 12. We now describe the construction of a linear program, beginning with
the used variables:

– Variables x0, x1, . . . , xk which are priceable. The corresponding base costs in the
LP are zero, but the leader may specify additional prices d0, d1, . . . , dk . All further
variables are not priceable and only have a base cost.

– Variables y0, y1, . . . , yk . The base cost for y0 is c0; for y1, . . . , yk it is cy = 2.
Together with x1, . . . , xk the latter k variables correspond to choosing the vertices
of a (possible) k-clique. Variables x0 and y0 provide slack for the clique constraints
that we give later, and full leader payoff can only be attained when no slack is
needed.

– Variables wi,1, . . . , wi,n for each i ∈ [k]. These are used to ensure that the leader
cannot make profit more than 1 with any variable xi , i.e., that di xi ≤ 1. This is
nontrivial to achieve since the profit with xi depends on the (variable) price di
whereas we need to have fixed prices for the wi,� (to be detailed later).

– Variables zi,1, . . . , zi,n for each i ∈ [k]. These play the role of indicator variables,
with the caveat of being fractional. They all have the same cost cz = 1

n .

A central part of the construction is to effectively allow the leader to choose the
value of xi and yi in optimal solutions for the follower by specifying an appropriate
price di for xi . At high level, there will be a set of linear constraints on xi and yi that are
defined by convex set of points (so the feasible points for xi and yi are above a piece-
wise linear convex function spanned by the points). The points (in two dimensions)
are (p1, q1), . . . , (pn+1, qn+1) where

123



672 T. Böhnlein et al.

p j = 2− j q j =
j−1∑

�=0

δ� δ j = n

2n + 4 j
. (11)

Note that q0 = 0 and q j+1 = q j + δ j . Similarly, we have p1 = 1
2 and p j+1 =

p j − 2− j−1 = 2− j−1. Note that point (pn+1, qn+1) is only needed for technical
reasons (e.g., defining a constraint) and is not intended as a choice for (xi , yi ). The
intended price for (xi , yi ) = (p j , q j ) for j ∈ {1, . . . , n} will be

r j = 2 j . (12)

Quite a bit of this proof will go towards showing that using di ∈ {r1, . . . , rn} is the
only way for the leader to achieve the target payoff of at least k + c0.

Wewill continuewith establishing (strict) convexity of thepoint sequence (p1, q1), . . . ,
(pn+1, qn+1).

Claim 7 The point sequence (p1, q1), . . . , (pn+1, qn+1) is strictly convex.

Proof Consider the sequence of slopes

p2 − p1
q2 − q1

,
p3 − p2
q3 − q2

, . . . ,
pn − pn−1

qn − qn−1
,
pn+1 − pn
qn+1 − qn

.

It suffices to show that
p j+1−p j
q j+1−q j

<
p j+2−p j+1
q j+2−q j+1

for all j ∈ {1, . . . , n − 1}, i.e., that the
slopes between consecutive points are strictly increasing. We have

p j+1 − p j

q j+1 − q j
<

p j+2−p j+1
q j+2−q j+1

⇔ −2− j−1

δ j
< −2− j−2

δ j+1

⇔ 2− j−1

δ j
> 2− j−2

δ j+1

⇔ 2δ j+1 > δ j

⇔ 2n

2n + 4( j + 1)
> n

2n+4 j

⇔ 2n · (2n + 4 j) > n · (2n + 4 j + 4)
⇔ 4n2 + 8nj > 2n2 + 4nj + 4n
⇔ 2n2 + 4nj − 4n > 0
⇔ 2n2 + 4n( j − 1) > 0.

We use that δ j , δ j+1 > 0, that n ≥ 1, and that j ≥ 1, where the latter two imply
that the final inequality holds, proving (by equivalence) the claimed strict increase in
slopes. This completes the proof of the claim. �

We will now give a set of line equations on variables x and y, indexed by
j ∈ {1, . . . , n}, such that equation j captures exactly the line through points
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(x, y) = (p j , q j ) and (x, y) = (p j+1, q j+1). These will later be the basis for the
core constraints on pairs xi and yi of variables (for i ∈ [k]). Consider the following
line equation.

x + p j+1
1

δ j
y = p j + p j+1

1

δ j
q j (13)

Clearly, (x, y) = (p j , q j ) fulfills the equation. For (x, y) = (p j+1, q j+1) consider
that

x + p j+1
1

δ j
y = p j+1 + p j+1

1

δ j
q j+1

= p j+1 + p j+1
1

δ j
(δ j + q j )

= p j+1 + p j+1 + p j+1
1

δ j
q j

= p j + p j+1
1

δ j
q j ,

using p j+1 + p j+1 = 2 · 2− j−1 = 2− j = p j . Thus, the two claimed points fulfill
(13).

Consider now the constraint obtained from (13):

x + p j+1
1

δ j
y ≥ p j + p j+1

1

δ j
q j (14)

It is fulfilled to equality for (x, y) ∈ {(p j , q j ), (p j+1, q j+1)}. Since the points
(p1, q1), . . . , (pn+1, qn+1) are in strictly convex position (as a function x = x(y)
with (x, y) ∈ {(p1, q1), . . . , (pn+1, qn+1)}) the constraint is fulfilled to > for any
(x, y) ∈ {(p1, q1), . . . , (p j−1, q j−1), (p j+2, q j+2), . . . , (pn+1, qn+1)}. For ease of
reference we will make this an explicit (and just established) claim.

Claim 8 Let (x, y) ∈ {(p1, q1), . . . , (pn, qn)}. Then (x, y) fulfills (14) for every
j ∈ {1, . . . , n − 1} and it is fulfilled to equality if and only if (x, y) ∈
{(p j , q j ), (p j+1, q j+1)}.

In addition to adding constraints (14) for all pairs (xi , yi ), with some small mod-
ifications, we will also require yi ≥ 0 and xi ≥ 0. Together with constraints of type
(14) this gives the following extremal points in two dimensions (considering only
xi and yi ), each defined by two tight constraints: (p1, q1) = (p1, 0), (p2, q2), …,
(pn, qn), and (0, qn + 2δn) = (0, qn+1 + δn). In other words, we could also have used
(0, qn +2δn) to define (14) for j = n as this is the intersection point of the supporting
line with the line x = 0. It is somewhat more intuitive to use (0, qn + 2δn) rather than
(pn+1, qn+1), which is not defined by two tight constraints, but that would always
warrant a special treatment.
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Let us recall the high level idea of forcing the follower to use (xi , yi ) = (p j , q j )

whendi = r j ; thiswill create a leader payoff of exactly 1 for xi , sincedi xi = r j p j = 1.
Unfortunately, the problem setting does not allow for us to specify a set of permissible
leader prices and, modulo further constraints that we did not specify yet, we do not
know yet that the follower will react in the desired way. It turns out that part of the
issues can be resolved if we can ensure that the leader can have profit at most 1 per
variable xi . (E.g. this will ensure that a valid solution to the pricing problem will have
to make another minuscule amount of profit on x0, rather than making this amount on
some xi ’s.)

The basic idea for limiting profit at xi is to create an additional variable, say wi ,
(not priceable) with fixed price and putting in each constraint xi + wi instead of xi .3

Accordingly, if the leader price exceeds the price of wi then the follower would set
xi = 0 and instead increasewi . Note, however, that we do not have a single price level
in mind for xi , so this simple idea will not work.

Instead, we use n different variables wi,1, . . . , wi,n and let the price of wi,� be r�,
i.e., the intended price for xi = p�. Now of course we still need to be careful since
e.g. wi,1 costs only r1 = 2 whereas xi will typically be more expensive. Intuitively,
since the constraints (14) for different values of j effectively correspond to particular
point (p j , q j ), which have intended prices r j , we can introduce those variables wi,�

whose intended prices r� exceed r j , i.e., those with � ≥ j . Without further ado, we
get the following core constraints for j ∈ [n]:

xi +
n∑

�= j

wi,� + p j+1
1

δ j
yi ≥ p j + p j+1

1

δ j
q j (15)

The remaining constraints are comparatively simple. (We remark, nevertheless, that
the choice of (p1, q1), . . . , (pn, qn) depends in part on these constraints since they
incur further costs, which the follower will balance against the amount paid to the
leader.) For the (effective) indicator variables zi, j we ensure that

zi, j ≥ |yi − q j |, (16)

i.e., that they are at least equal to the absolute value of the difference between yi and
q j , by adding constraints

zi, j ≥ yi − q j , zi, j ≥ q j − yi . (17)

Note that a variable zi, j can only take value 0 if yi = q j . In that (limited) sense they are
indicator variables for whether yi = q j . Using these variables we set up clique-testing
constraints

zi,u + z j,v + εy0 ≥ ε, (18)

3 Variable xi will occur only positively and on the left hand side of ≥ constraints.
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for all (i, u) ∈ Vi and ( j, v) ∈ Vj with {(i, u), ( j, v) /∈ E}, i.e., to prevent that both
(i, u) and ( j, v) are chosen for the clique. We let ε = δn = 1

6 , but any sufficiently
small value will do. (We do have to ensure that the constraint holds if yi �= qu or
y j �= qv .) In intended solutions variable y0 will take value 0, but the proof will make
several replacement arguments where increasing y0 to 1 ensures that we do not violate
these constraints.

The final constraint is

x0 + y0 = 1, (19)

which may seem a bit useless at first glance but it allows some important arguments
about the leader profit. Recall that x0 has base cost 0 and is priceable with price d0,
whereas y0 has only a base cost of c0, which is a small constant to be chosen later.
Since x0 appears nowhere else, the follower will set it to 0 if d0 > c0 as increasing
y0 to 1 will not violate any constraint. If there is a solution that fulfills the clique
constraints with y0 = 0 then the leader can gain profit of up to c0 by setting d0 = c0.

This completes the LP. We have constraints of types (15), (17), (18), and (19). All
variables are constrained to non-negative values. The target leader payoff is set to

k + c0,

with the intention of gaining exactly 1 per xi with i ∈ [k] and c0 for x0.
Clearly, the LP can be generated in polynomial time.We have k+1 leader variables,

so the new parameter value is indeed bounded by a function of the old one. (In fact
this is tight enough to also inherit running time lower bounds from multicolored
clique (k) under ETH.) It remains to prove correctness.

(i) Existence of a k-clique implies solution with high leader payoff. To prove cor-
rectness, let us first assume that the input instance of multicolored clique (k)
is yes, and let {(1, v1), . . . , (k, vk)} be the vertices of a k-clique in G (with exactly
one vertex vi per partite set Vi ). Define prices and a proposed solution for the linear
program as follows:

– Let d0 = c0 and let di = rvi for all i ∈ [k].
– Let x0 = 1 and y0 = 0.
– Let (xi , yi ) = (pvi , qvi ) for all i ∈ [k].
– Let zi, j = |yi − q j | for all i ∈ [k] and j ∈ [n].
– Let wi, j = 0 for all i ∈ [k] and j ∈ [n].

Clearly, for the given leader prices, this solution attains a leader payoff of exactly
dT x = k + c0. It remains to verify feasibility and optimality of this solution for the
follower.

(i.1) Feasibility.By construction of the core constraints (15) all of them are fulfilled
by letting (xi , yi ) = (pvi , qvi ). Clearly, the indicator constraints (17) are fulfilled by
zi, j = |yi − q j |. Obviously, x0 = 1 and y0 = 0 fulfills x0 + y0 = 1, and all variables
are non-negative. Let us consider the clique-testing constraints (18):

zi,u + z j,v + εy0 ≥ ε
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If vi �= u then yi = qvi �= qu . This implies that zi,u = |qvi − qu | ≥ δn ≥ ε since any
two q j values are at least δn apart. This already fulfills the constraint, and the analogue
works if v j �= v. If vi = u and v j = v then, as {(1, v1), . . . , (k, vk)} is a clique in G,
there must be an edge {(i, vi ), ( j, v j )}. Hence, there is no such constraint with vi = u
and v j = v. This completes feasibility of our proposed solution.

(i.2) Optimality. It remains to prove that the proposed solution attains the minimum
possible follower cost, given the chosen prices d0, d1, . . . , dk . Let us first spell out the
target function including the leader prices, skipping terms corresponding to variables
with base cost 0:

T = d0x0 + c0y0 +
k∑

i=1

di xi +
k∑

i=1

cy yi +
k∑

i=1

n∑

j=1

czzi, j +
k∑

i=1

n∑

j=1

r jwi, j (20)

Plugging in the chosen prices and values for our proposed solution we directly obtain
its cost for the follower:

C = c0 + k +
k∑

i=1

2qvi +
k∑

i=1

n∑

j=1

1

n
|qvi − q j | (21)

Now, let us return to the target function (20) and start deriving the lower bound. We
will make a few simplifications and then, for readability, focus on the contribution for
fixed i ∈ [k]. We begin with plugging in the known prices and using x0 + y0 = 1.

T = d0x0 + c0y0 +
k∑

i=1

di xi +
k∑

i=1

cy yi +
k∑

i=1

n∑

j=1

czzi, j +
k∑

i=1

n∑

j=1

r jwi, j

= c0 +
k∑

i=1

rvi xi +
k∑

i=1

2yi + 1

n

k∑

i=1

n∑

j=1

zi, j +
k∑

i=1

n∑

j=1

r jwi, j (22)

Let us now focus on the contribution of variables xi , yi , zi,·, and wi,· to the target
function, denoting this with T (i) such that T = c0 + ∑k

i=1 T (i), i.e.,

T (i) = rvi xi + 2yi + 1

n

n∑

j=1

zi, j +
n∑

j=1

r jwi, j (23)

As a first step, let us derive a lower bound for
∑n

j=1 r jwi, j . With the goal of later
applying constraint (15) for j = vi we seek to remove wi, j with j < vi and to get a
uniform coefficient:
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n∑

j=1

r jwi, j =
vi−1∑

j=1

r jwi, j +
n∑

j=vi

r jwi, j

≥ 0 +
n∑

j=vi

rviwi, j

= rvi

n∑

j=vi

wi, j (24)

We use that r j ≥ rvi for j ≥ vi and that r j ≥ 0 and wi, j ≥ 0. We now insert this into
(23) and get

T (i) ≥ rvi xi + 2yi + 1

n

n∑

j=1

zi, j + rvi
∑

j=vi

wi, j

= rvi

⎛

⎝xi +
n∑

j=vi

wi, j

⎞

⎠ + 2yi + 1

n

n∑

j=1

zi, j (25)

We will now use constraint (15) for j = vi and first slightly transform it into a
lower bound for xi + ∑n

j=vi
wi, j :

xi +
n∑

�=vi

wi,� + pvi+1
1

δvi

yi ≥ pvi + pvi+1
1

δvi

qvi (15)

⇔ xi +
n∑

�=vi

wi,� ≥ pvi + pvi+1
1

δvi

(qvi − yi ) (26)

Inserting (26) into (25) yields

T (i) ≥ rvi

(

pvi + pvi+1
1

δvi

(qvi − yi )

)

+ 2yi + 1

n

n∑

j=1

zi, j (27)

= rvi pvi + rvi pvi+1
1

δvi

(qvi − yi ) + 2yi + 1

n

n∑

j=1

zi, j

= 1 + 1

2δvi

(qvi − yi ) + 2yi + 1

n

n∑

j=1

zi, j (28)

Now we turn our interest to the term
∑n

j=1 zi, j and we derive the following lower
bound using the indicator constraints (17).
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n∑

j=1

zi, j =
vi∑

j=1

zi, j +
n∑

j=vi+1

zi, j

≥
vi∑

j=1

(yi − q j ) +
n∑

j=vi+1

(q j − yi )

=
vi∑

j=1

yi +
n∑

j=vi+1

(−yi ) +
vi∑

j=1

(−q j ) +
n∑

j=vi+1

q j

= vi yi + (n − vi )(−yi ) +
vi∑

j=1

(−q j ) +
n∑

j=vi+1

q j

= (2vi − n)yi +
vi∑

j=1

(−q j ) +
n∑

j=vi+1

q j (29)

Inserting (29) into (28) yields

T (i) ≥ 1 + 1

2δvi

(qvi − yi ) + 2yi + 1

n

⎛

⎝(2vi − n)yi +
vi∑

j=1

(−q j ) +
n∑

j=vi+1

q j

⎞

⎠

= 1 + 1

2δvi

qvi − 1

2δvi

yi + 2yi + 1

n
(2vi − n)yi + 1

n

vi∑

j=1

(−q j ) + 1

n

n∑

j=vi+1

q j

(30)

Let us check that the terms involving yi actually cancel out:

− 1

2δvi

yi + 2yi + 1

n
(2vi − n)yi =

(

−n + 2vi
n

+ 2n

n
+ 2vi − n

n

)

· yi

= −n − 2vi + 2n + 2vi − n

n
· yi

= 0 (31)

Inserting this fact into (30) yields

T (i) ≥ 1 + 1

2δvi

qvi + 1

n

vi∑

j=1

(−q j ) + 1

n

n∑

j=vi+1

q j (32)

A few simple transformations bring us to the same terms as in the follower cost C for
our proposed solution; see (21). First, let us bring 1

2δvi
qvi into a more useful form:

1

2δvi

qvi = n + 2vi
n

qvi = 2qvi + 1

n

(
vi qvi + (vi − n)qvi

)
(33)
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Combining (32) and (33) we get

T (i) ≥ 1 + 2qvi + 1

n

(
vi qvi + (vi − n)qvi

) + 1

n

vi∑

j=1

(−q j ) + 1

n

n∑

j=vi+1

q j

= 1 + 2qvi + 1

n

⎛

⎝vi qvi +
vi∑

j=1

(−q j )

⎞

⎠ + 1

n

⎛

⎝(vi − n)qvi +
n∑

j=vi+1

q j

⎞

⎠

= 1 + 2qvi + 1

n

vi∑

j=1

(qvi − q j ) + 1

n

n∑

j=vi+1

(q j − qvi )

= 1 + 2qvi + 1

n

vi∑

j=1

|qvi − q j | + 1

n

n∑

j=vi+1

|q j − qvi |

= 1 + 2qvi + 1

n

n∑

j=1

|qvi − q j | (34)

Thus, combining the parts T (i) back into T we obtain

T = c0 +
k∑

i=1

T (i)

≥ c0 +
k∑

i=1

⎛

⎝1 + 2qvi + 1

n

n∑

j=1

|qvi − q j |
⎞

⎠

= c0 + k +
k∑

i=1

2qvi +
k∑

i=1

n∑

j=1

1

n
|qvi − q j |

= C . (35)

Thus, given the prices d0, . . . , dk , the target function of the LP is lower bounded byC ,
the cost of our proposed solution. Thus, the solution is indeed of minimum follower
cost and we already showed it to be feasible and to have a leader payoff of k + c0.

(ii) Solution with high leader payoff implies existence of a k-clique. Assume now
that there are leader prices d0, d1, . . . , dk such that at least one optimal solution for
the follower (i.e., an optimal solution to the LP) gives a leader payoff of at least k+c0.
We need to show that this implies the existence of a k-clique in the given instance
(G, k) of multicolored clique (k).

Let (w, x, y, z) an optimal solution for the follower, i.e., of minimum total cost
taking into account the given leader prices, and among such solution achieves the
maximum leader payoff. We, thus have dT x ≥ k + c0. (Optimality of leader payoff
will save us one argument later.) Our proof strategy is as follows:

1. Prove that di xi ≤ 1 for all i ∈ [k], i.e., that the leader payoff per variable xi is at
most 1. This will imply that we have d0x0 = c0 and di xi = 1 for all i ∈ [k].
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2. Prove that xi ∈ {p1, . . . , pn}. It can then be concluded that (xi , yi ) ∈
{(p1, q1), . . . , (pn, qn)}. (This then also implies that all variables wi,� are equal
to 0 by optimality, but we will not need it.)

3. At this point, using d0x0 = c0 yields y0 = 0 and effectively makes all clique-
testing constraints active. The indicator variables zi, j work as intended, since
yi ∈ {q1, . . . , qn}, and since the cost for increasing them beyond |yi −q j | is larger
than that for increasing y0 to “fix” clique constraints. This yields the claimed
k-clique.

Steps 1 and 2 are the main work, but fortunately they come down to similar indi-
rect proofs that rule out bad cases by rather technical replacement arguments that
would yield a solution with lower total cost. To facilitate this we give the replacement
argument in the following technical claim before pursuing the above plan.

Claim 9 If ps ≥ xi > ps+1 and di xi ≥ 1 then di ≤ rs .

The proof of this claim is rather extensive and the reader is encouraged to skip ahead
at first reading and check that the claim indeed leads to a reasonably fast conclusion
of the main proof.

Proof of Claim 9 Assume for contradiction that di > rs , and let t ∈ {s, . . . , n} with
rt < di ≤ rt+1. We will show that replacing (xi , yi ) by (pt+1, qt+1), including further
necessary updates to variables, yields a strictly cheaper follower solution, contradicting
optimality of follower cost. (Recall that our assumed solution has minimum follower
cost and, among such solutions, has maximum leader payoff.)

First, let us observe that we must have yi < qs+1: Indeed, if this was not the
case then xi > ps+1 and yi ≥ qs+1. This, however, would contradict optimality
of the follower cost since we can safely lower the value of xi to ps+1 as the point
(xi , yi ) = (ps+1, qs+1) fulfills all constraints of type (15) as well as xi ≥ 0 and
yi ≥ 0 and having yi > ps+1 does not harm this. Since this would lower the follower
cost, it cannot happen that yi ≥ qs+1, as claimed. (This may be a good point to recall
that the followers task/goal is only to get the minimum total cost, not to give a certain
leader payoff; optimizing leader payoff is only a tiebreaker.)

Consider the variables wi,�: If � ≥ t + 2 then the cost of wi,� is r� ≥ rt+2 >

rt+1 > di . Thus, if wi,� > 0 then we could replace by w′
i,� = 0 and x ′

i = xi + wi,�,
changing the cost by (di − r�)wi,� < 0. Since wi,� only appears together with xi and
with same coefficient, this would preserve feasibility. Since the replacement would
contradict optimality of follower cost, it follows that wi,� = 0 for � ≥ t + 2. The
same argument works also for wi,t+1 if di < rt+1. If, however, di = rt+1 then we
can appeal to optimality of the leader payoff: Indeed, if di = rt+1 then making the
analogous replacement would not affect the follower cost but it would increase the
leader payoff, contradicting optimality of the latter among solutions with minimum
follower cost. Thus, overall we get that

wi,� = 0 for � ≥ t + 1. (36)

The situation is the opposite for wi,t : This variable has cost rt < di and replacing
w′
i,t = wi,t + λ and x ′

i = xi − λ for any λ > 0 would change the total cost by

123



Revenue maximization in Stackelberg Pricing Games: beyond… 681

λ(rt − di ) < 0. This would lower the follower cost and contradict optimality of the
follower cost. Thus, there is no λ > 0 such that the replacement is feasible, implying
that some constraint containing xi but not wi,t is already tight. Here it is crucial that
xi and wi,t appear only positively and with same coefficient of 1 on the left hand side
of≥ constraints; see (15) and xi ≥ 0. Note that the later being tight would give xi = 0
and contradict xi > ps+1 thus it must be a constraint of type (15) for j = u ≥ t + 1
namely

xi +
n∑

�=u

wi,� + pu+1
1

δu
yi = pu + pu+1

1

δu
qu

⇔ xi + pu+1
1

δu
yi = pu + pu+1

1

δu
qu, (37)

where the simplification uses the fact that wi,� = 0 for � ≥ t + 1, so in particular
for � ≥ u ≥ t + 1. For j = t we get a similar simplification since only wi,t is not
necessarily equal to 0 (and the constraint is not necessarily tight):

xi +
n∑

�=t

wi,� + pt+1
1

δt
yi ≥ pt + pt+1

1

δt
qt

⇔ xi + wi,t + pt+1
1

δt
yi ≥ pt + pt+1

1

δt
qt , (38)

Before using (37) and (38) for our replacement argument we would like to argue that
in fact u = t + 1, which reduces the number of different constants that we need to
handle.

Assume for contradiction that u ≥ t + 2. It follows that u − 1 ≥ t + 1 and
hence that constraint j = u − 1 of type (15) is also fulfilled with all wi,� variables
therein equal to 0. It follows that we can discuss the constraints for u and u − 1 as
constraints only on xi and yi . First of all, (37) implies that (xi , yi must lie on the line
defined by (pu, qu) and (pu+1, qu+1). Since the points (p1, q1), . . . , (pn+1, qn+1) are
in strictly convex position, it follows that the points on the line that have yi coordinate
strictly smaller than qu are not feasible for the preceding constraint, which is defined
by (pu−1, qu−1) and (pu, qu). Thus, we get yi ≥ qu , which is a contradiction since
qu ≥ qt+1 ≥ qs+1 > yi . Thus, we must indeed have u = t + 1, as claimed.

Let us recall the two constraints (37) and (38), with the latter updated to u = t + 1,
that we will use for the main replacement argument:

xi + wi,t + pt+1
1

δt
yi ≥ pt + pt+1

1

δt
qt (38)

xi + pt+2
1

δt+1
yi = pt+1 + pt+2

1

δt+1
qt+1 (39)

We know that yi < qs+1 so, using t ≥ s, we also have yi < qt+1. The remainder of
the proof of the claim will focus on proving that updating to (xi , yi ) = (ps+1, qs+1)
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will strictly lower the follower cost. Thus, the assumption that di > ps must be
wrong. There are two different cases for this, distinguished intuitively by whether yi
is already close to qt+1 or whether it is far (there is a clean cut-off). In the former case
this yields a better lower bound for di than di > rt , which implies that the move saves
enough cost due to lowering xi to ps+1. In the latter case we cannot rule out that di
is arbitrarily close to rt (giving not enough savings) but we incur enough savings by
carefully considering the cost change for indicator variables zi, j .

Without further ado let us discuss the replacement step: The proposed replacement
is x ′

i = ps+1, y′
i = qs+1, setting all w′

i,� to 0, and letting z′i, j = |y′
i − q j |. Finally,

since this might lead to a violation of clique constraints for z′i,t+1 = 0, we increase
y0 sufficiently to compensate (and update x0 to maintain x0 + y0 = 1). Clearly, the
replacement is feasible for (15) constraints since we use (xi , yi ) = (ps+1, qs+1).
Similarly, constraints (17) are clearly fulfilled. Finally, the clique constraints (18)
are fulfilled by increasing y0 if necessary and x0 + y0 = 1 is handled by updating
x ′
0 = 1− y′

0; we will postpone the discussion about the new values x ′
0 and y′

0 till later,
but clearly x ′

0 = 0 and y′
0 = 1 always work.

It remains to consider the change in total cost that is incurred by this replacement;
we denote this byΔ. Using that x ′

0−x0 = (1− y′
0)−(1− y0) = y0− y′

0 = −(y′
0− y0),

and plugging in known values for x ′
i , y

′
i , w

′
i, j , and some base prices we get

Δ = d0(x
′
0 − x0) + c0(y

′
0 − y0) + di (x

′
i − xi ) + cy(y

′
i − yi )

+ cz

n∑

j=1

(z′i, j − zi, j ) +
n∑

j=1

r j (w
′
i, j − wi, j )

≤ (c0 − d0)(y
′
0 − y0) + di (pt+1 − xi ) + 2(qt+1 − yi )

+ 1

n

n∑

j=1

(z′i, j − zi, j ) −
n∑

j=1

r jwi, j . (40)

We can also use the following simple lower bound

n∑

j=1

r jwi, j ≥ rtwi,t ,

whose application should make intuitive sense since wi,t appears in (38) and wi, j for
j ≥ t + 1 are 0. Plugging this into (40) yields the following upper bound for the cost.

Δ ≤ (c0 − d0)(y
′
0 − y0) + di (pt+1 − xi ) + 2(qt+1 − yi )

+ 1

n

n∑

j=1

(z′i, j − zi, j ) − rtwi,t (41)

Considering that di > rt , we have in (41) a contribution of−rt (xi+wi,t−ps+1), which
corresponds to cost savings incurred by the replacement. From (38) we can derive the
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following (where the first part replicates the argument for (pt+1, qt+1) fulfilling this
constraint):

xi + wi,t + pt+1
1

δt
yi ≥ pt + pt+1

1

δt
qt (38)

= pt+1 + pt+1 + pt+1
1

δt
qt

= pt+1 + pt+1
1

δt
(δt + qt )

= pt+1 + pt+1
1

δt
qt+1

⇔ xi + wi,t − pt+1 ≥ pt+1
1

δt
(qt+1 − yi )

⇔ −rt (xi + wi,t − pt+1) ≤ −rt

(

pt+1
1

δt
(qt+1 − yi )

)

= − 1

2δt
(qt+1 − yi ) (42)

Plugging (42) into (41) we obtain

Δ ≤ (c0 − d0)(y
′
0 − y0) + (di − rt )(pt+1 − xi ) + 2(qt+1 − yi )

+ 1

n

n∑

j=1

(z′i, j − zi, j ) − 1

2δt
(qt+1 − yi )

= (c0 − d0)(y
′
0 − y0) + (di − rt )(pt+1 − xi )

+
(

2 − 1

2δt

)

(qt+1 − yi ) + 1

n

n∑

j=1

(z′i, j − zi, j ). (43)

Using

2 − 1

2δt
= 2 − 2n + 4t

2n
= 4n − (2n + 4t)

2n
= n − 2t

n

and plugging this into (43) we obtain

Δ ≤ (c0 − d0)(y
′
0 − y0) + (di − rt )(pt+1 − xi ) +

(
n − 2t

n

)

(qt+1 − yi )

+ 1

n

n∑

j=1

(z′i, j − zi, j ). (44)

As a next step we will need to branch into two cases, depending on the value of
(qt+1−yi ), i.e., on the amount bywhich yi is changed; recall that yi < qt+1. Intuitively,
the two cases behave as follows:
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1. yi is close to qt+1: The indicator variables zi, j change by an absolute value of
(qt+1 − yi ), with those for q j < yi increasing and those for q j > yi decreasing;
this affects the fourth term in (44). Including the factor of 1

n we will see that this
effectively cancels out with the third term in (44). We then use the tight constraint
(39) to find that xi is “far” from pt , which, using that di xi ≥ 1, implies that di is
“much larger” than rt . This allows us to cancel out the first two terms in (44), as
(di − rt ) will be sufficiently large.

2. yi is far from qt+1: In this case it is possible that di is arbitrarily close to rt , which
gives us a vanishing amount of savings from the term (di − rt )(pt+1 − xi ) in
(44). Fortunately, if yi is sufficiently far from qt+1 then the indicator variables,
accounted for in the fourth term of (44), give additional savings.

We should note that the actual cutoff point chosen to distinguish the two cases is
somewhat arbitrary. The first case gets progressively better as yi “gets closer to” qt+1;
doing the analysis in this way works roughly for yi equal to qt−1 and larger. The
second case gets better as yi gets smaller, and thus further away from qt+1; savings for
the indicator variables start at yi < qt . We choose a point roughly half way between
qt−1 and qt as the cutoff.

Case 1, yi ≥ qt − 1
2δt : We use the tight constraint for j = t + 1, i.e., Eq. (39), to get

an upper bound for xi :

xi + pt+2
1

δt+1
yi = pt+1 + pt+2

1

δt+1
qt+1 (39)

⇔ xi = pt+1 + pt+2
1

δt+1
(qt+1 − yi )

≤ pt+1 + pt+2
1

δt+1

(

qt+1 − qt + 1

2
δt

)

= pt+1 + pt+2
1

δt+1

(

δt + 1

2
δt

)

= pt+1 + pt+2
1

δt+1

3

2
δt

= pt+1 + 3

2

δt

δt+1
pt+2

= 1

2
pt + 3

8

δt

δt+1
pt

≤ 15

16
pt (45)

In the last step we use

1

2
+ 3

8

δt

δt+1
= 1

2
+ 3

8
· n/(4n + 4t)

n/(4n + 4(t + 1))
= 1

2
+ 3

8
· n + 2t + 2

n + 2t

= 1

2
+ 3

8
·
(

1 + 2

n + 2t

)
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≤ 1

2
+ 3

8
·
(

1 + 2

n

)

= 1

2
+ 3

8
· n + 2

n
= 1

2
+ 3n + 6

8n

= 7n + 6

8n
≤ 15

16
;

where the final inequality uses n ≥ 12 (rather than appealing to the fact that asymptot-
ically we would get 7

8 ). Note that xi ≤ 15
16 pt is a much stronger bound than what could

be derived from the arrangement of (15) constraints; there we would need yi > qt
to get even just xi < pt . The point is that due to the presence of slack variables, in
particular wi,t , the point (xi , yi ) can lie “far” below the piecewise linear curve given
by these constraints, as captured by the tight constraint (39) that we applied (including
the knowledge about particular slack variables being zero).

Using di xi ≥ 1 it immediately follows that

di ≥ 1

xi
≥ 16

15
· 1

pt
= 16

15
rt . (46)

Now, we can return to Eq. (44); we begin by upper-bounding
∑n

j=1(z
′
i, j − zi, j ):

n∑

j=1

(z′i, j − zi, j ) =
t∑

j=1

(z′i, j − zi, j ) +
n∑

j=t+1

(z′i, j − zi, j )

We plug in exact values for z′i, j = |y′
i −q j | using y′

i = qt+1 and plug in lower bounds
for zi, j obtained from constraints (17).

n∑

j=1

(z′i, j − zi, j ) ≤
t∑

j=1

((qt+1 − q j ) − (yi − q j )) +
n∑

j=t+1

((q j − qt+1) − (q j − yi ))

=
t∑

j=1

(qt+1 − yi ) +
n∑

j=t+1

(yi − qt+1)

= t · (qt+1 − yi ) + (n − t) · (yi − qt+1)

= (2t − n) · (qt+1 − yi ) (47)

Now, plugging (47) into (44) we can upper bound Δ by

Δ ≤ (c0 − d0)(y
′
0 − y0) + (di − rt )(pt+1 − xi ) (44)

+
(
n − 2t

n

)

(qt+1 − yi ) + 1

n

n∑

j=1

(z′i, j − zi, j )
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≤ (c0 − d0)(y
′
0 − y0) + (di − rt )(pt+1 − xi )

+
(
n − 2t

n

)

(qt+1 − yi ) + 1

n
(2t − n) · (qt+1 − yi )

= (c0 − d0)(y
′
0 − y0) + (di − rt )(pt+1 − xi ). (48)

Plugging in the lower bound (46) for di , and noting that xi > ps+1 ≥ pt+1 implies
pt+1 − xi < 0, we obtain

Δ ≤ (c0 − d0)(y
′
0 − y0) +

(
16

15
rt − rt

)

(pt+1 − xi )

= (c0 − d0)(y
′
0 − y0) + 1

15
rt (pt+1 − xi ) (49)

Now, for the final step we need to upper bound the cost that is incurred in (c0 −
d0)(y′

0 − y0) such that it is less than the absolute value of 1
15rt (pt+1 − xi ). Note that

the latter term vanishes for xi close to pt+1 but, fortunately, this corresponds also to
only a tiny movement of yi , which in turn requires (at most) a tiny increase in y0.

Let us consider the increase of y0 that is necessary and sufficient whenmoving yi to
pt+1; this is captured by the value y′

0 − y0. All new indicator values z′i, j for j �= t + 1
are larger than ε since z′i, j was set to |y′

i −q j | = |qt+1−q j | and the difference between
different q j values is at least δn ≥ ε. Indicators for i ′ ∈ [k] \ {i} are not affected, so we
only need to consider z′i,t+1 and zi,t+1. We know that z′i,t+1 = |y′

i − qt+1| = 0, so all
clique testing constraints (18) have their left hand side reduced by zi,t+1 − z′i,t+1 =
zi,t+1. Since they were satisfied before, it suffices to increase y0 by 1

ε
zi,t+1, noting

the coefficient of ε that y0 has in such constraints. (We will of course not increase it
above 1, noting that y0 = 1 yields εy0 = ε satisfying all clique-testing constraints.)
Thus,

(y′
0 − y0) ≤ 1

ε
zi,t+1. (50)

We may assume that zi,t+1 = |yi − qt+1|: Indeed, if it is larger then some clique-
testing constraint (18) must be tight, as constraints (17) are clearly not tight if zi,t+1 >

|yi −qt+1|. It follows that zi,t+1 > 0 and hence that y0 < 1. Then, however, we could
decrease zi,t+1 by some λ > 0 and increase y0 by 1

ε
λ, which overall changes the cost

by (c0 · 1
ε
− cz)λ < 0; a contradiction to optimality. (Here we assumed c0 < ε

n .) Thus,
we can rewrite (50) to

(y′
0 − y0) ≤ 1

ε
zi,t+1 = 1

ε
|yi − qt+1| = 1

ε
(qt+1 − yi ), (51)

as yi < qt+1. This in turn can be plugged into (49) to get

Δ ≤(c0 − d0)
1

ε
(qt+1 − yi ) + 1

15
rt (pt+1 − xi ) (52)
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Now, we can apply constraint (39) again to express (qt+1− yi ) in terms of (pt+1−xi ):

xi + pt+2
1

δt+1
yi = pt+1 + pt+2

1

δt+1
qt+1 (39)

⇔ pt+2
1

δt+1
(qt+1 − yi ) = xi − pt+1

⇔ qt+1 − yi = 1

pt+2
δt+1(xi − pt+1)

⇔ qt+1 − yi = rt+2δt+1(xi − pt+1) (53)

Plugging (53) into (52) yields

Δ ≤ (pt+1 − xi ) ·
(

1

15
rt − (c0 − d0)

1

ε
rt+2δt+1

)

. (54)

Since pt+1 − xi < 0 and ( 1
15rt − (c0 − d0)

1
ε
rt+2δt+1) > 0 as c0 is sufficiently small,

we get that

Δ < 0,

which contradicts the assumed optimality of (w, x, y, z) regarding total cost for the
follower. A straightforward calculation shows that c0 < ε

30 suffices. It remains to
consider the case that yi < qt − 1

2δt .
Case 2, yi < qt − 1

2δt : As pointed out earlier, in this case we cannot (as far as we know)
rule out that di is arbitrarily close to rt . Thus, we cannot follow the same arguments as
in the previous case, as the term (di−rt )(pt+1−xi ) in (48) could yield only a vanishing
amount of savings that may not suffice to compensate for (c0 − d0)(y′

0 − y0). Instead,
wewill revisit

∑n
j=1(z

′
i, j −zi, j ) and give a better upper bound using yi < qt − 1

2δt ; we
first replicate the analysis performed earlier, but leaving out the summand for j = t .

n∑

j=1

(z′i, j − zi, j ) =
t−1∑

j=1

(z′i, j − zi, j ) + (z′i,t − zi,t ) +
n∑

j=t+1

(z′i, j − zi, j )

≤
t−1∑

j=1

((qt+1 − q j ) − (yi − q j )) + (z′i,t − zi,t )

+
n∑

j=t+1

((q j − qt+1) − (q j − yi ))

=
t−1∑

j=1

(qt+1 − yi ) + (z′i,t − zi,t ) +
n∑

j=t+1

(yi − qt+1)

= (t − 1)(qt+1 − yi ) + (z′i,t − zi,t ) + (n − t)(yi − qt+1)
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= (2t − n − 1)(qt+1 − yi ) + (z′i,t − zi,t ) (55)

For (z′i,t − zi,t ) the point is that yi is initially smaller than qt by at least 1
2δt , causing

zi,t to be at least 1
2δt . Intuitively, as yi is increased towards y′

i = qt+1 the value of
zi,t first decreases to 0 (when reaching qt ) and then increases again; in particular, the
difference between z′i, j will be strictly less than (qt+1 − yi ). Formally we get

(z′i,t − zi,t ) ≤ (qt+1 − qt ) − (qt − yi )

= qt+1 − 2qt + yi
< qt+1 − 2yi − δt + yi
= qt+1 − yi − δt , (56)

using −qt < −yi − 1
2δt to replace −2qt in the second line. Plugging (56) into (55)

we get

n∑

j=1

(z′i, j − zi, j ) < (2t − n − 1)(qt+1 − yi ) + qt+1 − yi − δt

= (2t − n)(qt+1 − yi ) − δt . (57)

Plugging (57) into (44) we get almost the same cancellation as for yi ≥ qt − 1
2δt

except for getting extra savings of −δt :

Δ ≤(c0 − d0)(y
′
0 − y0) + (di − rt )(pt+1 − xi ) +

(
n − 2t

n

)

(qt+1 − yi ) (44)

+ 1

n

n∑

j=1

(z′i, j − zi, j )

< (c0 − d0)(y
′
0 − y0) + (di − rt )(pt+1 − xi )

+
(
n − 2t

n

)

(qt+1 − yi ) + 1

n
((2t − n)(qt+1 − yi ) − δt )

= (c0 − d0)(y
′
0 − y0) + (di − rt )(pt+1 − xi ) − 1

n
δt (58)

We are now almost done (with both the second case and the claim). We can upper
bound (c0 − d0)(y′

0 − y0) by c0 since d0 ≥ 0, y′
0 ≤ 1, and y0 ≥ 0. Since c0 is

sufficiently small, this is strictly less than 1
n δt . It suffices to choose c0 ≤ 1

7n here, since
δt ≥ 1

6 . Similarly, we know that (di −rt )(pt+1− xi ) < 0 since di > rt and xi > pt+1.
Thus, plugging in these inequalities yields

Δ < 0,
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which, again, contradicts optimality of the solution (w, x, y, z) regarding the follower
cost. It follows that both cases for yi are impossible, which means that the initial
assumption of di > rs must be wrong. This implies di ≤ rs and proves the claim. �

After this piece of work we now have a powerful claim to wield in order to handle
the two main steps for reasoning about optimal follower solutions with leader payoff
at least k + c0. To recall, we know that if di xi ≥ 1 and ps ≥ xi > ps+1 then di ≤ rs .

1. Assume that for some i ∈ [k] we have di xi > 1 and that ps ≥ xi > ps+1 for
some s ∈ [n]. (The special cases of xi > p1 and pn+1 ≥ xi will be handled later.)
It follows from Claim 9 that di ≤ rs , giving a direct contradiction. Thus, we have
di xi ≤ 1 for all i ∈ [k].
If xi > p1 then the solution cannot be optimal: Indeed, we have yi ≥ 0 so lowering
xi to x ′

i = p1 will, by construction, fulfill all constraints (15) even if all variables
wi,� are equal to 0. Thiswould incur a cost change of di (x ′

i−xi ) < 0 and contradict
optimality of follower cost.
If pn+1 ≥ xi then di > 1

xi
≥ 1

pn+1
= rn+1 > rn . If lowering xi by some λ > 0 and

increasing wi,n by the same amount would be feasible then this would change the
total cost by (rn − di )λ < 0 since wi,n has cost rn . It follows that there must be a
constraint containing xi but not wi,n that is already tight (recalling that both occur
only on the left hand side of≥ constraints and always with coefficient 1). The only
such constraint is xi ≥ 0, but this being tight means that xi = 0, contradicting
the assumption that di xi ≥ 1. Thus, neither xi > p1 nor xi ≤ pn are possible if
di xi ≥ 1.
Recall that we have x0 + y0 = 1 with cost c0 for y0 and leader cost d0 (but no
base cost) for x0. Since only y0 appears in other constraints, and only on the left
hand side of ≥ constraints, increasing it while decreasing x0 does not violate any
constraints (that is, so long as x0 ≥ 0 and y0 = 1− x0 ≤ 1). Thus, if d0 > c0 then
optimal follower solutions have x0 = 0 and hence d0x0 = 0. Since we already
know that di xi ≤ 1 for i ∈ [k] it follows that d0x0 ≥ c0. Since x0 ≤ 1, due to
x0 + y0 = 1 and y0 ≥ 0, it follows that

d0x0 = c0 di xi = 1 for i ∈ [k],

including that x0 = 1 and y0 = 0 since otherwise the total leader profit would be
strictly less than k + c0. (We now have that it is exactly k + c0.)

2. Assume now that ps > xi > ps+1 for some i ∈ [k], i.e., that some xi does not take
one of the n intended values {p1, . . . , pn}. Using di xi = 1 we get di = 1

xi
> 1

ps
=

rs . This, however, contradicts Claim 9 which, for di xi ≥ 1 and ps ≥ xi > ps+1
implies di ≤ rs . Thus, we must have xi ∈ {p1, . . . , pn} for all i ∈ [k].
Pick any i ∈ [k] and let s ∈ [n] with xi = ps and di = rs , and consider variables
wi,� with � ≥ s: If � > s then having wi,� > 0 would allow to decrease it
by some λ > 0 and increase xi by λ without breaking feasibility, but changing
the follower cost by (di − r�)λ < 0, as wi,� has cost r� > rs = di . Similarly,
if � = s then wi,� = 0 would allow the same modification; in this case, the
follower cost would remain the same as r� = rs = di but the leader payoff would
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increase, contradicting its optimality among solutions of minimum follower cost.
This implies (by feasibility) that

xi + ps+1
1

δs
yi ≥ ps + ps+1

1

δs
qs,

by taking constraint (15) for j = s and using that wi,� = 0 for � ≥ s. Plugging
in x = ps we directly get that yi ≥ qs . If indeed yi > qs then by construction
of (15) constraints the point (xi , yi ) is strictly fulfilling all of them, and xi could
be lowered by some λ > 0 without breaking feasibility, but lowering the follower
cost and causing a contradiction. Thus, yi = qs , as planned in the proof strategy.

3. We know now that for each i ∈ [k] the solution fulfills (xi , yi ) ∈ {(p1, q1), . . . ,
(pn, qn)} and di xi = 1. To check that the yi variables indeed correspond to a
k-clique, let us recall the simple argument giving zi, j = |yi − q j | that we used
when proving Claim 9: If zi, j > |yi − q j | then there is λ > 0 such that lowering
zi, j by λ will preserve zi, j ≥ |yi − q j | and lower the cost. The only constraints
that could now be violated would be clique-testing constraints (18) that involve
zi, j . These however can be fixed by increasing y′

0 by
1
ε
λ (or possibly only to 1),

which in total yields a decrease in cost, as 1
ε
c0 < cz ; a contradiction. It follows

that zi, j = 0 if yi = q j .
Let v1, . . . , vk ∈ [n] such that yi = qvi . We claim that {(1, v1), . . . , (k, vk)}
is a k-clique in G. Consider any two vertices (i, vi ) and ( j, v j ) for i �= j . If
{(i, vi ), ( j, v j )}was not an edge of G then there would be a corresponding clique-
testing constraint of type (18):

zi,vi + z j,v j + εy0 ≥ ε

By the above discussion we know that zi,vi = z j,v j = 0 and we previously
determined that y0 = 0. This, however, would imply that the constraint is violated,
contradicting feasibility. Thus, for all i �= j , the vertices (i, vi ) and ( j, v j ) are
adjacent in G and, accordingly {(1, v1), . . . , (k, vk)} is a k-clique in G as claimed.
This completes the correctness proof.

We have given a polynomial-time reduction from the W[1]-hard multicolored
clique (k) problem that only increases the parameter value by 1. This implies W[1]-
hardness of lp- pricing, completing the proof. �

Theorem 4 is in sharp contrast to the combinatorial setting, where under mild
assumptions one can see the problem to be fixed-parameter tractable. Here we assume
that X ⊆ {0, 1}n but put no further restriction on the follower’s objective function
f : X → R. In particular, this model covers the classical setting where each item has
a fixed cost and if the follower buys a set S of items, he has to pay the sum of the fixed
costs of the elements of S, plus the leader’s price of the bought elements.

Theorem 5 Assume that X ⊆ {0, 1}n, and that we are given a polynomial-time algo-
rithm to compute an optimal solution of the follower for given leader prices p ∈ R

k .
Then the computation of optimal prices and optimal leader revenue is fixed-parameter
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tractable, with running timeO(2knc), when parameterized by the number of priceable
items.

In the above statement we make the natural assumption that the input size is at least
n + size( f ), where size( f ) denotes the maximum length of the binary encoding of
any value f can take.

Proof We need the following proposition due to Briest et al. [10]. It says that if the
leader wants to force the follower to pick a certain solution, she can compute suitable
prices in polynomial time. We state their result in a slightly more general fashion than
in the original paper. Indeed, Briest et al. were only concerned with the case when f
is additive4 but the proof did not make use of the additivity of f at all. We refrain from
restating the proof in order to avoid redundancy.

Proposition 2 (Briest et al. [10]) Given a vector z ∈ X, one can compute an optimal
price vector p such that z is an optimal solution of the follower with respect to p, or
decide that such a price vector does not exist, in polynomial time.

Our algorithm works as follows. For each vector x ∈ {0, 1}k we compute a price
vector px , if exists, such that

(a) there is some y ∈ {0, 1}n−k such that the vector (x, y) is an optimal solution of
the follower with respect to the price vector px ,

(b) subject to (a) the revenue pTx x is maximum.

When this procedure is finished we choose the vector x̂ ∈ {0, 1}k with maximum
value of px̂

T x̂ , and output the price vector px̂ . (Note that the algorithm does indeed
output something since, at the very least, the vector p0 exists, due to our global
assumption that there is a follower’s solutionwithout support of the priceable variables.
Here, 0 denotes the k-dimensional all-zeroes vector.) As the next claim shows, this
price vector is the optimum solution.

Claim 10 The output px̂ is an optimal price vector for the leader.

Proof To this end, let r∗ be the maximum revenue achievable by the leader and let
p∗ be the corresponding price vector. Moreover, let (x∗, y∗) be an optimal solution of
the follower under the price vector p∗ with p∗T x∗ = r∗. By definition, the vector px∗
is computed in the course of our algorithm and, by property (b), px∗T x∗ ≥ p∗T x∗.
Since px̂ was the output price vector we have px̂

T x ≥ px∗T x∗, and so

px̂
T x̂ ≥ px∗T x∗ ≥ p∗T x∗ = r∗,

as desired. �
In the remainder of the proof we show how to compute px for a fixed candidate

vector x ∈ {0, 1}k . First we aim to find a vector yx ∈ {0, 1}n−k such that (x, yx ) ∈ X

4 Recall that f is additive if and only if for each x ∈ X the following holds: if x = ∑n
i=1 λi · ei , where ei

denotes the i-th unit vector, then
∑n

i=1 λi · f (ei ).
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and, subject to this, f (x, yx ) is minimum. Note that possibly such a vector yx does
not exist. To find a vector yx , or decide that none exists, we define a price vector p by
setting

pi =
{

−M if xi = 1,

M if xi = 0,

for all i ∈ [k]. Here, M is a number that is large enough to ensure that

for all (x ′, y′), (x ′′, y′′) ∈ X , it holds that f (x ′, y′) − f (x ′′, y′′) < M . (59)

As both values | f (x ′, y′)| and | f (x ′′, y′′)| are bounded by 2size( f ), we may simply put
M = 2size( f )+1 + 1.

Nowwe compute an optimal solution of the follower with respect to the price vector
p, say (x∗, y∗), using the assumed polynomial-time algorithm.

Claim 11 If for some y ∈ {0, 1}n−k it holds that (x, y) ∈ X, then x∗ = x.

Proof To see Claim 11, suppose it is false. So, there is some vector y ∈ {0, 1}n−k with
(x, y) ∈ X , but x∗ �= x . By the choice of p, we know that

pT x∗ ≥ pT x + M, (60)

and thus

pT x∗ + f (x∗, y∗)
(60)≥ pT x + M + f (x∗, y∗)

(59)
> pT x + f (x, y),

a contradiction to the optimality of (x∗, y∗). This proves Claim 11. �
If x∗ �= x , Claim 11 implies that there is no price vector satisfying (a). Thus, we

may safely abort the process and go over to the next candidate vector x . Otherwise if
x∗ = x , we put yx = y∗.

Claim 12 f (x, yx ) ≤ f (x, y) holds for all y ∈ {0, 1}n−k with (x, y) ∈ X.

Proof If Claim 12 was wrong, (x∗, y∗) would not have been the optimal solution of
the follower under the price vector p, which is a contradiction. Hence, Claim 12 is
valid. �

Next, we use Proposition 2 to compute a price vector px such that the vector (x, yx )
is optimal for the follower and, subject to that, px T x is maximum. Note that this price
vector does exist since, e.g., the vector p is a feasible price vector. By construction,
px has the property (a). So far, we only know that px T x is maximum subject to the
condition that under the price vector px the vector (x, yx ) is an optimal solution of
the follower.

Claim 13 Subject to (a), the revenue pTx x is maximum.
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Proof To this end, let p′ be any price vector for the leader such that (a) holds. That is,
there is an optimal solution (x, y′) of the follower for some suitable y′ under the price
vector p′.

Recall that, by Claim 12, f (x, yx ) ≤ f (x, y′), and so

p′T x + f (x, yx ) ≤ p′T x + f (x, y′).

This means that (x, yx ) is also an optimal solution of the follower under the price
vector p′. Hence, due to the choice of px , we know that p′T x ≤ pTx x . This implies
(b) and the correctness of the algorithm. �

As the running time of the whole algorithm is O(2k · (n + size( f ))O(1)), the proof
is complete. �

4 Conclusion and future work

The basis for the first part of this paper were the results of Briest et al. [10] and Balcan
et al. [3] who gave a lower bound on the optimal revenue in Stackelberg Network
Pricing Games.We proved that this bound carries over to a much more general setting,
where, basically, the follower minimizes a continuous function over a compact set of
points. This model captures important settings that are not covered by the classical
combinatorial model. For example, the case when the follower is minimizing a linear
program, e.g., a minimum cost flow problem.

The proven lower bound also holds if a single-price strategy is applied, and it is
tight up to a factor of (1 + o(1)). Moreover, we used this tightness example to show
that it is strongly NP-hard to decide whether the revenue of an optimal pricing exceeds
the lower bound by an arbitrarily small linear factor.

In the second part of the paper we studied the parameterized complexity of the
revenue maximization problem. It turned out that in the combinatorial setting (i.e.,
when the follower only has 0/1-valued solutions) there is an elegant FPT algorithm.
Once we leave this regime, however, things become more difficult. Indeed, if the
follower has an optimization problem in the form of a linear program, the revenue
maximization problem becomes W[1]-hard and is thus most likely not FPT.

Several central questions remain. Most importantly, one should consider multiple-
follower scenarios. An intriguingmodel is when the particular resources have a limited
supply. In the combinatorial setting, a limited supply means that every item to be sold
is available only a limited number of times. Now the followers come one by one, in a
certain order, and buy according to their preferences and the prices set by the leader.
Balcan et al. [3] prove a tight lower bound on the revenue obtained by the single-price
strategy. In the non-combinatorial model, the limited supply might be translated to a
constraint of the form (x, y) ≤ s, where s ∈ R

n≥0 is a fixed vector that is added to the
usual constraint (x, y) ∈ X in the optimization problem of the followers.
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