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Abstract
In this paper we provide an algorithm, similar to the simplex algorithm, which deter-
mines a rational cp-factorization of a given matrix, whenever the matrix allows such
a factorization. This algorithm can be used to show that every integral completely
positive 2 × 2 matrix has an integral cp-factorization.

Keywords Copositive programming · Complete positivity · Matrix factorization ·
Copositive minimum

Mathematics Subject Classification 90C20 · 11H50 · 11H55

1 Introduction

Copositive programming gives a common framework to formulate many difficult opti-
mization problems as convex conic ones. In fact, many NP-hard problems are known
to have such reformulations (see for example the surveys [4,11]). All the difficulty of
these problems appears to be “converted” into the difficulty of understanding the cone
of copositive matrices COPn which consists of all symmetric n × n matrices B ∈ Sn

with xT Bx ≥ 0 for all x ∈ R
n≥0. Its dual cone is the cone
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CPn = cone{xxT : x ∈ R
n≥0}

=
{

m∑
i=1

αi xi x
T
i : m ∈ N, αi ∈ R≥0, xi ∈ R

n≥0, i = 1, . . . ,m

}

of completely positive n×n matrices. Therefore, it seems no surprise that many basic
questions about this cone are still open and appear to be very difficult.

One important problem is to find an algorithmic test deciding whether or not a
given symmetric matrix A is completely positive. If possible one would like to obtain
a certificate for either A ∈ CPn or A /∈ CPn . Dickinson and Gijben [8] showed that
this (strong) membership problem is NP-hard.

In terms of the definitions the most natural certificate for A ∈ CPn is giving a
cp-factorization

A =
m∑
i=1

αi xi x
T
i with m ∈ N, αi ∈ R≥0, xi ∈ R

n≥0, i = 1, . . . ,m. (1)

For A /∈ CPn it is natural to give a separating hyperplane defined by a matrix B ∈
COPn so that the inner product of A and B satisfies 〈B, A〉 < 0.

From the algorithmic side, different ideas have been proposed. One can divide the
relevant literature according to two complementary approaches:

(1) Numerical methods which are practical but “only” can find approximate cp-
factorizations. The papers by Jarre and Schmallowsky [20], Nie [25], Sponsel
and Dür [30], Elser [13], Groetzner and Dür [16] fall into this category.

(2) Theoretical methods which can compute exact cp-factorizations in finitely many
algorithmic steps. The factorization method of Anstreicher, Burer, and Dickinson
[7, Section 3.3] uses the ellipsoid method and works for all matrices which have
a rational cp-factorization and lie in the interior of the cone CPn . Berman and
Rothblum [1] use quantifier elimination for first order formulae over the reals to
compute the CP-rank of a givenmatrix, that is, the minimum numberm of vectors
used in a cp-factorization (1).

In this paper, in Sect. 3, we describe a new procedure that is based on pivoting like
the simplex algorithm. To define the pivoting we apply the notion of the copositive
minimum which we introduce in Sect. 2. Our algorithm (Algorithm 1) works for all
matrices in the rational cone

C̃Pn = coneQ{xxT : x ∈ Q
n≥0}

=
{

m∑
i=1

αi xi x
T
i : m ∈ N, αi ∈ Q≥0, xi ∈ Q

n≥0, i = 1, . . . ,m

}
.

Moreover,we conjecture that a variant of our algorithm (Procedure 3) always computes
separating hyperplanes, if the input matrix is not completely positive. Overall, our
procedure works for matrices with coefficients in any computable subfield F of the
real numbers, in that case the coefficients αi of the formula above belong to F≥0 and
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A simplex algorithm for rational cp-factorization 27

the whole algorithmic procedure works similarly as the rational case that we consider
in this paper.

Our algorithmuses rational numbers only if the inputmatrix is rational and so allows
in principle exact computations. As a consequence, to the best of our knowledge, our
algorithm is currently the only one that can find a rational cp-factorization whenever it
exists. In [7] a similar result was obtained, but restricted to matrices in the interior of
CPn . A related question is if every rational completely positive matrix has a rational
cp-factorization, see the survey [29]. Generally we do not know but from the results
in [7] and [10] it follows that this is true for matrices in the interior of CPn .

If the input matrix A is integral, one can also ask if it admits an integral cp-
factorization, i.e. a cp-factorization of the form A = ∑m

i=1 xi x
T
i with xi ∈ Z

n≥0
for all i = 1, . . . ,m. For n ≥ 3 it is known that there are integral matrices A ∈ CPn

which do not have an integral cp-factorization, see [2, Theorem 6.4]. For n = 2 it was
conjectured by Berman and Shaked-Monderer [2, Conjecture 6.13] that every integral
matrix A ∈ CP2 possesses an integral cp-factorization. This conjecture was recently
proved by Laffey and Šimgoc [22]. In Sect. 4 we show that our simplex algorithm can
be used to give a short, alternative proof of this result.

In Sect. 5 we describe how an implementation of our algorithm performs on some
examples.

2 The copositive minimum and copositive perfect matrices

2.1 Copositive minimum

By Sn we denote the Euclidean vector space of symmetric n × n matrices with inner
product 〈A, B〉 = Trace(AB) = ∑n

i, j=1 Ai j Bi j . With respect to this inner product
we have the following duality relations between the cone of copositive matrices and
the cone of completely positive matrices

COPn = (CPn)∗ = {B ∈ Sn : 〈A, B〉 ≥ 0 for all A ∈ CPn},
and

CPn = (COPn)∗.

So, in order to show that a given symmetric matrix A is not completely positive,
it suffices to find a copositive matrix B ∈ COPn with 〈B, A〉 < 0. We call B a
separating witness for A /∈ CPn in this case, because the linear hyperplane orthogonal
to B separates A and CPn .

Using the notation B[x] for xT Bx = 〈B, xxT 〉, we obtain
COPn = {B ∈ Sn : B[x] ≥ 0 for all x ∈ R

n≥0}.
Obviously, the cone of positive semidefinite matrices Sn≥0, whose interior is the open
cone of positive definite matrices Sn

>0, lies between the completely positive cone and
the copositive cone: CPn ⊆ Sn≥0 ⊆ COPn .
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28 M. D. Sikirić et al.

Definition 2.1 For a symmetric matrix B ∈ Sn we define the copositive minimum as

minCOP (B) = inf
{
B[v] : v ∈ Z

n≥0\{0}
}
,

and we denote the set of vectors attaining it by

MinCOP (B) = {
v ∈ Z

n≥0 : B[v] = minCOP (B)
}
.

The following proposition shows that matrices in the interior of the cone of copos-
itive matrices attain their copositive minimum.

Lemma 2.2 Let B be a matrix in the interior of the cone of copositive matrices. Then
the copositive minimum of B is strictly positive and it is attained by only finitely many
vectors.

Proof Since B is copositive, we have the inequality minCOP (B) ≥ 0. Suppose that
minCOP (B) = 0. Then there is a sequence vi ∈ Z

n≥0\{0} of pairwise distinct lattice
vectors such that B[vi ] tends to zero when i tends to infinity. From the sequence vi we
construct a new sequence ui of vectors on the unit sphere Sn−1 by setting vi = ‖vi‖ui .
The sequence ui belongs to the compact setRn≥0∩Sn−1. Thus, by taking a subsequence
if necessary,wemay assume that ui converges to a point u ∈ R

n≥0∩Sn−1. The sequence
of norms ‖vi‖ tends to infinity since the set of lattice vectors of bounded norm is finite.
Thus we get

0 = lim
i→∞ B[vi ] = lim

i→∞ ‖vi‖2B[ui ],

which implies that B[u] = 0, contradicting our assumption B ∈ int(COPn). Hence,
minCOP (B) > 0.

By the same argument one can show that MinCOP (B) only contains finitely many
vectors. �


2.2 A locally finite polyhedron

In our previous paper [10] and in this paper the set

R = {B ∈ Sn : B[v] ≥ 1 for all v ∈ Z
n≥0\{0}}

plays a central role.1 The set R is a locally finite polyhedron, meaning that every
intersection ofR with a polytope is a polytope itself. In [10, Lemma 2.3] we showed
that R is contained in the interior of the cone of copositive matrices. Thus, we can
rewriteR as

R = {B ∈ Sn : minCOP (B) ≥ 1}. (2)

1 We use the letter R here because Ryshkov used a similar construction in the study of lattice sphere
packings, see for example [28, Chapter 3].
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A simplex algorithm for rational cp-factorization 29

Note also that [10, Lemma 2.3] together with Lemma 2.2 implies

coneR \ {0} = int COPn (3)

The following theorem gives a tight outer approximation of the cone of completely
positive matrices in terms of the boundary structure (its 1-skeleton to be precise) of the
convex set R. Similarly, Yıldırım [32] discusses uniform polyhedral approximations
of the the cone of copositive matrices.

Theorem 2.3 We have

CPn = {Q ∈ Sn : 〈Q, B〉 ≥ 0 for all vertices and for all generators

of extreme rays B ofR}. (4)

Proof We have

CPn = (COPn)∗ = (int(COPn))∗ = (coneR)∗,

where the identity K ∗ = (int(K ))∗ is generally true for full dimensional convex cones
and the last identity is (3). Since R is a locally finite polyhedron, (coneR)∗ is equal
to the right hand side of (4). �


2.3 A linear program for finding a rational cp-factorization

In [10, Lemma 2.4] we showed that for A ∈ int(CPn) and all sufficiently large λ > 0
the set

P(A, λ) = {B ∈ R : 〈A, B〉 ≤ λ}

is a full-dimensional polytope.
In principle (cf. [10, Proof of Theorem 1.1]), this gives a way to compute a cp-

factorization for a given matrix A ∈ int(CPn) by solving the linear program

min {〈A, B〉 : B ∈ P(A, λ)} : (5)

This is because the minimum is attained at a vertex B∗ of P(A, λ). Hence, due to the
minimality of 〈A, B∗〉, the matrix A is contained in the (inner) normal cone

V(B∗) = cone
{
vvT : v ∈ MinCOP B∗} (6)

ofR at B∗. For a rational matrix A ∈ int(CPn) we obtain a rational cp-factorization
in this way, that is, a decomposition of the form

A =
m∑
i=1

αiviv
T
i with αi ∈ Q≥0 and vi ∈ Z

n≥0, for i = 1, . . . ,m. (7)
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30 M. D. Sikirić et al.

To find this factorization, we apply Carathéodory’s theorem (see for example [27,
Corollary 7.1i]) and choose a subset v1, . . . , vm ∈ MinCOP B∗ such that viv

T
i are

linearly independent and A ∈ cone{vivTi : i = 1, . . . ,m}. So we can find unique
non-negative rational coefficients α1, . . . , αm giving the rational cp-factorization (7).

However, for solving the linear program (5) one needs an explicit finite algorith-
mic description of the set P(A, λ), for example by a finite list of linear inequalities.
The proof of the polyhedrality of P(A, λ) in [10, Lemma 2.4] relies on an indirect
compactness argument (similar to the one in the proof of Lemma 2.2) which does not
yield such an explicit algorithmic description. In the remainder of this paper we are
therefore concerned with finding a finite list of linear inequalities.

2.4 Copositive perfect matrices

In the next step we characterize the vertices of R. The following definitions and the
algorithm in the following section are inspired by Voronoi’s classical algorithm for the
classification of perfect positive definite quadratic forms. These can for instance be
used to classify all locally densest lattice sphere packings (see for example [23] or [28]).
In (6) we use the letter V to denote the normal cone of a vertex, as it is a generalization
of theVoronoi cone used in the classical setting. In fact, our generalization of Voronoi’s
work can be viewed as an example of a broader framework described by Opgenorth
[26]. In analogy with Voronoi’s theory for positive definite quadratic forms we define
the notion of perfectness for copositive matrices:

Definition 2.4 A copositive matrix B ∈ int(COPn) is called COP-perfect if it is
uniquely determined by its copositive minimum minCOP B and the set MinCOP B
attaining it.

In other words, B ∈ int(COPn) is COP-perfect if and only if it is the unique
solution X of the system of linear equations

〈X , vvT 〉 = minCOP B, for all v ∈ MinCOP B.

Hence, COP-perfect matrices are, up to scaling, exactly the vertices ofR.

Lemma 2.5 COP-perfect matrices exist in all dimensions (dimension n = 1 being
trivial): For dimension n ≥ 2 the following matrix

QAn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 . . . 0

−1 2
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . 2 −1
0 . . . 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(8)

is COP-perfect; 1
2QAn is a vertex ofR.
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A simplex algorithm for rational cp-factorization 31

The matrix QAn is also known as a Gram matrix of the root lattice An , a very
important lattice, for instance in the theory of sphere packings (see for example [5]).

Proof The matrix QAn is positive definite since

QAn [x] = x21 +
n−1∑
i=1

(xi − xi+1)
2 + x2n

is a sum of squares and QAn [x] = 0 if and only if x = 0. Thus QAn lies in the interior
of the copositive cone. Furthermore,

minCOP QAn = 2 with MinCOP QAn =
⎧⎨
⎩

k∑
i= j

ei : 1 ≤ j ≤ k ≤ n

⎫⎬
⎭ ,

where ei is the i-th standard unit basis vector of R
n . Thus, the

(n+1
2

)
vectors attaining

the copositive minimum have a continued sequence of 1s in their coordinates and 0s
otherwise. Now it is easy to see that the rank-1-matrices

⎛
⎝ k∑

i= j

ei

⎞
⎠
⎛
⎝ k∑

i= j

ei

⎞
⎠

T

, where 1 ≤ j ≤ k ≤ n,

are linearly independent and span the space of symmetric matrices which shows that
QAn is COP-perfect. �


3 Algorithms

In this section we show how one can solve the linear program (5). Our algorithm is
similar to the simplex algorithm for linear programming. It walks along a path of
subsequently constructed COP-perfect matrices, which are vertices of the polyhedral
setR that are connected by edges of R.

We start with a simple version assuming that the input matrix lies in C̃Pn
.

Of course, this assumption can usually not been easily checked beforehand and
the rational cp-factorization is only given as the output of the algorithm. In this
sense, the algorithm gets the promise that the input matrix possesses a rational cp-
factorization. In theoretical computer science promise problems are common; for
practical purposes we propose an extended procedure at the end of this section, see
Procedure 3.
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32 M. D. Sikirić et al.

Input: A ∈ C̃Pn

Output: Rational cp-factorization of A.

1. Choose an initial COP-perfect matrix P ∈ R; initialize V(P).
2. while A /∈ V(P)

(a) Determine a generator R of an extreme ray of (V(P))∗ with 〈A, R〉 < 0.
(b) Use Algorithm 2 to determine the contiguous COP-perfect matrix

N ← P + λR with λ > 0 and minCOP (N ) = 1. Compute V(N ).
(c) P ← N
3. Determine α1, . . . , αm ∈ Q≥0 with A = ∑m

i=1 αiviv
T
i and output this rational cp-factorization.

Algorithm 1. Algorithm to find a rational cp-factorization

3.1 Description and analysis of the algorithm

In the following we describe the steps of Algorithm 1 in more detail:
In Step 1, we can choose for instance the initial vertex P = 1

2QAn of R with QAn
as in (8). Then the algorithm subsequently constructs vertices ofR.

In Step 2 we determine whether A lies in the polyhedral cone V(P). For this we
consider all v ∈ MinCOP (P) giving generators vvT of the polyhedral cone V(P),
respectively defining linear inequalities of the dual cone (V(P))∗. Testing A ∈ V(P)

can then be done by solving an auxiliary linear program

min
{〈A, Q〉 : Q ∈ (V(P))∗

}
. (9)

The minimum equals 0 if and only if A lies in V(P). If A ∈ V(P), then we can find
non-negative coefficients λv , with v ∈ MinCOP (P), to get a cp-factorization

A =
∑

v∈MinCOP (P)

λvvvT .

Using (an algorithmic version of) Carathéodory’s theorem we can choose in Step 3
a subset {v1, . . . , vm} ⊆ MinCOP (P) so that we get a rational cp-factorization A =∑m

i=1 αiviv
T
i with non-negative rational numbers αi ; see Sect. 2.3.

If the minimum of the auxiliary linear program (9) is negative we can find in
Step 2(a) a generator R of an extreme ray of (V(P))∗ with 〈A, R〉 < 0. Here, several
choices of R with 〈A, R〉 < 0 may be possible and the performance depends on the
choices made in this “pivot step”. A good heuristic for a “pivot rule” seems to be the
choice of R with 〈A, R/‖R‖〉 minimal, where ‖R‖2 = 〈R, R〉. Also a random choice
of R among the extreme rays of (V(P))∗ with 〈A, R〉 < 0 seems to perform quite
well. When choosing the right pivots R in Step 2(a) Algorithm 1 always terminates,
as shown by Theorem 3.1 below.

In Step 2(b) Algorithm 2 (see Sect. 3.2 is used to determine a new contiguous
COP-perfect matrix N of P in direction of R /∈ COPn , that is, a contiguous vertex
of P on R, connected via an edge in direction R. Note that such a vertex exists (and
R is not unbounded in the direction of R) under the assumption R /∈ COPn , because
R ⊆ int(COPn), see [10, Lemma 2.3]. We can exclude R ∈ COPn here, since
together with 〈A, R〉 < 0 it would contradict the promise A ∈ C̃Pn

on the input. Note
also that as a byproduct of Algorithm 2 we compute generators of the cone V(N ).
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A simplex algorithm for rational cp-factorization 33

Finally, we observe that since 〈A, R〉 < 0, we have 〈A, N 〉 < 〈A, P〉 in each
iteration (Step 2) of the algorithm.

The following theorem shows that we can set up an algorithm for the promise
problem.

Theorem 3.1 For A ∈ C̃Pn
, Algorithm 1 with suitable choices in Step 2(a) ends after

finitely many iterations giving a rational cp-factorization of A.
In particular, with breadth-first-search added to Algorithm 1 we can guarantee

finite termination (but this of course would be far less efficient).

Proof For A ∈ int(CPn) ∩ C̃Pn
the assertion follows from Lemma 2.4 in [10].

So let us assume A ∈ bd CPn ∩ C̃Pn
. Note that C̃Pn

is tessellated into cones V(P)

of COP-perfect matrices P . In fact, the convex hull of D = {xxT : x ∈ Z
n≥0, x �= 0}

is a locally finite polyhedral set whose facets are in one-to-one correspondence with
the COP-perfect matrices (see [26]). For any A ∈ C̃Pn

, the ray {λA : λ ≥ 0} meets
(at least) one facet of conv D and A is in V(P) of the corresponding COP-perfect
matrix P .

Let {R1, R2, . . .} be a possible sequence of generators of rays constructed in
Step 2(a) of Algorithm 1. For all of these generators, the inequality 〈A, Ri 〉 < 0
holds. For k such generators, the conditions 〈Q, Ri 〉 < 0 for i = 1, . . . , k are not
only satisfied for Q = A, but also for all Q in an ε-neighborhood of A (with a
suitable ε depending on k). For any k, this neighborhood also contains points of
int(V(P)) ⊆ int(CPn). For these interior points Q, however, Algorithm 1 finishes
after at most finitely many steps (when checking for Q ∈ V(P) in Step 2). Thus, for
some finite number of suitable choices in Step 2(a), the algorithm also ends for A. �


3.2 Computing contiguous COP-perfect matrices

Our algorithm for computing contiguous COP-perfect matrices is inspired by a cor-
responding algorithm for computing contiguous perfect positive definite quadratic
forms which is a subroutine in Voronoi’s classical algorithm. The following algorithm
is similar to [9, Section 6, Erratum to algorithm of Section 2.3] and [31].

Computationally themost involved parts ofAlgorithm2 are checking if amatrix lies
in the interior of the cone of copositive matrices, and if so, computing its copositive
minimum minCOP and all vectors MinCOP attaining it. We discuss these tasks in
Sects. 3.3 and 3.4.

In the while loop (Step 2) of Algorithm 2, lower and upper bounds l and u for the
desired value λ are computed, such that P + l R and P + uR are lying in int(COPn)

satisfying

minCOP (P + l R) = minCOP (P) > minCOP (P + uR).

In other words, P + l R lies on the edge [P, N ] ⊆ R, but P + uR lies outside of R.
The set S in Step 3 contains all vectors v ∈ Z

n≥0 defining a separating hyperplane
{X ∈ Sn : 〈X , vvT 〉 = 1}, separating R and P + uR.
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34 M. D. Sikirić et al.

Input: COP-perfect matrix P ∈ R, generator R /∈ COPn of extreme ray of the polyhedral cone (V(P))∗
Output: Contiguous vertex N of P onR, connected via an edge in direction R, i.e.

N = P + λR with λ > 0, minCOP (N ) = 1, MinCOP (N ) � MinCOP (P).

1. (l, u) ← (0, 1)
2. while P + uR /∈ int(COPn) or minCOP (P + uR) = 1 do

if P + uR /∈ int(COPn) then u ← (l + u)/2

else (l, u) ← (u, 2u)

3. S ←
{
v ∈ Z

n≥0 : (P + uR)[v] < 1
}

4. λ ← min {(1 − P[v])/R[v] : v ∈ S} , N ← P + λR

Algorithm 2 Determination of a contiguous COP-perfect matrix.

If v ∈ S, then R[v] < 0 and

(P + λR)[v] = P[v] + min
w∈S

(
1 − P[w]
R[w]

)
R[v] ≥ 1.

If v /∈ S and R[v] ≥ 0, then clearly (P + λR)[v] ≥ 1, since λ ≥ 0. Finally, if v /∈ S
and R[v] < 0, then since λ ≤ u, we have

(P + λR)[v] ≥ (P + uR)[v] ≥ 1.

Therefore, the choice of λ in Step 4 guarantees that P + λR is the contiguous
COP-perfect matrix of P . We have minCOP (P + λR) = 1 but MinCOP (P + λR) �

MinCOP (P).
In practice the set S in Step 3 is maybe too big for a complete enumeration. In this

case partial enumerations may help to pick successively smaller u’s first, which are
not necessarily equal to the desired λ; see [31].

3.3 Checking copositivity

From a complexity point of view, checking whether or not a given symmetric matrix
is copositive is known to be co-NP-complete by a result of Murty and Kabadi [24].

Nevertheless, in our algorithms we need to check whether or not a given symmetric
matrix lies in the cone of copositivematrices (Step 2(c) of Procedure 3) or in its interior
(Step 2 of Algorithm 2). This can be checked by the following recursive characteri-
zation of Gaddum [15, Theorem 3.1 and 3.2], which of course is not computable in
polynomial time: By

� =
{
x ∈ R

n : x ≥ 0,
n∑

i=1

xi = 1

}
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A simplex algorithm for rational cp-factorization 35

we denote the (n−1)-dimensional standard simplex in dimension n. A matrix B ∈ Sn

lies in COPn (in int(COPn)) if and only if every of its principal minors of size
(n − 1) × (n − 1) lies in COPn (in int(COPn−1)) and the value

v = max
x∈�

min
y∈�

xT By = min
y∈�

max
x∈�

xT By. (10)

of the two-player game with payoff matrix B is non-negative (strictly positive).
One can compute the value of v in (10) by a linear program:

v = max{λ : λ ∈ R, y ∈ �, By ≥ λe},

where e = (1, . . . , 1)T is the all-ones vector.

3.4 Computing the copositive minimum

Once we know that a given symmetric matrix B lies in the interior of the copositive
cone (i.e. after Step 2 ofAlgorithm2)we apply the idea of simplex partitioning initially
developed by Bundfuss and Dür [3] to compute its copositive minimum minCOP (B)

and all vectors MinCOP (B) attaining it. Again we note that this is not a polynomial
time algorithm.

First we recall some facts and results from [3]. A family P = {�1, . . . , �m} of
simplices is called a simplicial partitioning of the standard simplex � if

� =
m⋃
i=1

�i with int(�i ) ∩ int(� j ) = ∅ whenever i �= j .

Let vk1, . . . , v
k
n be the vertices of simplex �k . It is easy to verify that if a symmetric

matrix B ∈ Sn satisfies the strict inequalities

(vki )
T Bvkj > 0 for all i, j = 1, . . . , n, and k = 1, . . . ,m, (11)

then it lies in int(COPn). Bundfuss and Dür [3, Theorem 2] proved the following
converse: Suppose B ∈ int(COPn), then there exists an ε > 0 so that for all finite
simplex partitions P = {�1, . . . ,�m} of �, where the diameter of every simplex
�k is at most ε, strict inequalities (11) hold. Here, the diameter of �k is defined as
max{‖vki − vkj‖ : i, j = 1, . . . , n}.

We assume now that B ∈ int(COPn) and that we have a finite simplex par-
tition P so that (11) holds. We furthermore assume that all the vertices vki have
rational coordinates. Such a simplex partition exists as shown by Bundfuss and Dür
[3, Algorithm 2].

Each simplex�k = conv{vk1, . . . , vkn}defines a simplicial conebycone{vk1, . . . , vkn}.
From now on we only work with the simplicial cones and not with the simplices any
more, so we may scale the rational vki ’s to have integral coordinates.
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36 M. D. Sikirić et al.

The goal is now to find all integer vectors v in �k which minimize B[v]. To do
this we adapt the algorithm of Fincke and Pohst [14], which solves the shortest lattice
vector problem. It is the corresponding problem for positive semidefinitematrices. The
adapted algorithmwill solve the following problem: Given amatrix B ∈ int(CPn) and
a simplicial cone, which is generated by integer vectors v1, . . . , vn so that vTi Bv j ≥ 0
holds, and given a positive constant M , find all integer vectors v in the cone so that
B[v] ≤ M holds. Then by reducing M successively to B[v], whenever such a non-
trivial integer vector v is found, we can find the copositive minimum of B in the
simplicial cone, as well as all integer vectors attaining it.

Thefirst step of the algorithm is to compute theHermite normal formof thematrixV
which contains the the vectors v1, . . . , vn as it columns. (see for example Kannan and
Bachem [21] or Schrijver [27], where it is shown that computing the Hermite normal
form can be done in polynomial time). We find a unimodular matrixU ∈ GLn(Z) such
thatUV = W holds, whereW is an upper triangular matrix with columnsw1, . . . , wn

and coefficients Wi, j . Note that the diagonal coefficients of W are not zero since W
has full rank. Moreover, denoting the matrix (U−1)T BU−1 by B ′ we have for all i, j

0 ≤ vTi Bv j = wT
i (U−1)T BU−1w j = wi B

′w j , (12)

where the inequality is strict for whenever i = j .
We want to find all vectors v ∈ cone{v1, . . . , vn} ∩ Z

n so that B[v] ≤ M . In other
words, the goal is to find all rational coefficients α1, . . . , αn satisfying the following
three properties:

(i) α1, . . . , αn ≥ 0,
(ii)

∑n
i=1 αivi ∈ Z

n ,
(iii) B

[∑n
i=1 αivi

] ≤ M .

Since matrixU lies in GLn(Z), a vector
∑n

i=1 αivi is integral if and only if
∑n

i=1 αiwi

is integral. Looking at the last vector componentwise we have

n∑
i=1

αiwi =
⎛
⎝ n∑

j=1

α jW1, j ,

n∑
j=2

α jW2, j , . . . , αn−1Wn−1,n−1 + αnWn−1,n, αnWn,n

⎞
⎠ .

We first consider the possible values of the last coefficient αn , and then continue to
other coefficients αn−1, . . . , α1, one by one via a backtracking search. Conditions (i)
and (ii) imply that

αn ∈ {k/Wn,n : k = 0, 1, 2, . . .}.

Condition (iii) gives an upper bound for αn : Write α = (α1, . . . , αn)
T , then

M ≥ (Vα)T BVα = αT WT B ′Wα = B ′
[

n∑
i=1

αiwi

]
≥ B ′[αnwn] = α2

n B
′[wn],
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where the last inequality follows from (12). Hence, αn ≤ √
M/B ′[wn] and so

αn ∈
{
k/Wn,n : k = 0, 1, . . . ,

⌊√
M/B ′[wn]

⌋
Wn,n

}
.

Now suppose αn is fixed. We want to compute all possible values of the coeffi-
cient αn−1. Then the second but last coefficient αn−1Wn−1,n−1 +αnWn−1,n should be
integral and αn−1 should be non-negative. Thus,

αn−1 ∈ {
(k − αnWn−1,n)/Wn−1,n−1 : k = �αnWn−1,n�, �αnWn−1,n� + 1, . . .

}
.

Again we use condition (iii) to get an upper bound for αn−1:

M ≥ B ′
[

n∑
i=1

αiwi

]
≥ B ′[αn−1wn−1 + αnwn]

= α2
n−1B

′[wn−1] + 2αn−1αnw
T
n−1B

′wn + α2
n B

′[wn],
and solving the corresponding quadratic equation gives the desired upper bound.

Now suppose αn and αn−1 are fixed. We want to compute all possible values of the
coefficient αn−2 and we can proceed inductively.

3.5 Modifying the algorithm for general input

In this section we discuss an adaption of Algorithm 1 for general symmetric matrices
A as input. If A is not in CPn then the procedure ends with a separating witness
matrix W if it terminates. However, we currently do not know if our Procedure 3
always terminates in this case (cf. Conjecture 3.2).

Input: Rational symmetric matrix A
Output: If the procedure terminates: If A ∈ C̃Pn , then a rational cp-factorization of A. If A /∈ CPn then a
matrix W ∈ COPn with 〈W , A〉 < 0.

1. Choose an initial COP-perfect matrix P ∈ R; initialize V(P).
2. while A /∈ V(P)

(a) if 〈P, A〉 < 0 then output A /∈ CPn (with witness W = P)
(b) Determine a generator R of an extreme ray of (V(P))∗ with 〈A, R〉 < 0.
(c) if R ∈ COPn then output A /∈ CPn (with witness W = R)
(d) Use Algorithm 2 to determine the contiguous COP-perfect matrix

N ← P + λR with λ > 0 and minCOP (N ) = 1. Compute V(N ).
(e) P ← N
3. Determine α1, . . . , αm ∈ Q≥0 with A = ∑m

i=1 αiviv
T
i and output this rational cp-factorization.

Procedure 3. Procedure for general input

The difference between Algorithm 1 and Procedure 3 is in the new steps 2(a) and
2(c). Here it is tested, whether or not we can already certify that the input matrix A is
not in CPn .
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In Step 2(a) we check whether or not the current COP-perfect matrix P is already
a separating witness. By this, the algorithm subsequently constructs an outer approx-
imation of the CPn cone:

CPn ⊆ {Q ∈ Sn : 〈Q, B〉 ≥ 0 for all constructed vertices B of R}

This procedure gives a tighter and tighter outer approximation of the completely
positive cone (cf. Theorem 2.3).

In Step 2(c) it is checked whether or not R is a separating witness for A, that is,
if not only 〈A, R〉 < 0 but also R ∈ COPn holds. The copositivity test of R can be
realized as explained in Sect. 3.3.

For the case of A /∈ CPn , we do not know if it is possible that Procedure 3 does
not provide a separating witness W after finitely many iterations. With a suitably
chosen rule in Step 2(b), however, we conjecture that the computation finishes with a
certificate:

Conjecture 3.2 For A /∈ CPn, Procedure 3 with a suitable “pivot rule” in Step 2(b)
ends after finitely many iterations with a separating witness W.

We close this subsection with a few observations that can be made in the remaining
“non-rational boundary cases”, that is, for A ∈ bd CPn\C̃Pn

. In this case, Procedure 3
may not terminate after finitely many steps, as shown in a 2-dimensional example in
the following section. Assuming there is an infinite sequence of vertices P(i) of R
constructed in Procedure 3, we know however at least the following:

(i) The COP-perfect matrix P(i) is in {B ∈ COPn : 〈P(i−1), A〉 > 〈B, A〉 ≥ 0}.
(ii) The norms ‖P(i)‖ are unbounded. Otherwise—following the arguments in the

proof of Lemma 2.4 in [10]—we could construct a convergent subsequence with
limit P ∈ R, for which we could then find a u ∈ R

n≥0 of norm ‖u‖ = 1 with
P[u] = 0 (contradicting P ∈ int(COPn)).

(iii) P(i)/‖P(i)‖ contains a convergent subsequence with limit P ∈ {X ∈ Sn :
〈X , A〉 = 0}. It can be shown that this P is in bd COPn . Infinite sequences
of vertices P(i) ofR with such a limit P exist. For n = 2 we give an example in
Sect. 4, in which A is from the “irrational boundary part” (bd CPn)\C̃Pn

.

4 A 2-dimensional example

In this section we demonstrate how Algorithm 1 respectively Procedure 3 works for
n = 2. Thereby, we discover a relation to beautiful classical results in elementary
number theory. In particular, we consider the case when the input matrix A lies on the
boundary of CP2, see Fig. 1.
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1, 1
2, 3

1, 2

1, 3

0, 11 , 0

3, 1

2, 1

3, 2

Fig. 1 Subdivision of CP2 by Voronoi cones V(P). Matrices A = (ai j ) are drawn with 2-dimensional

coordinates (x, y) = 1
a11+a22

(a11 − a22, a12). Integers α, β indicate that the shown point is on a ray

spanned by the rank-1 matrix A = vvT with v = (α, β)T

4.1 Input on the boundary

The boundary of CP2 splits into a part of diagonal matrices

A =
(

α 0
0 β

)
with α, β ≥ 0

and into rank-1 matrices A = xxT . In the first case, Procedure 3 finishes already in
its first iteration, if we use QA2 as a starting perfect matrix,2 where

QA2 =
(

2 −1
−1 2

)
and MinCOP (QA2) =

{(
1
0

)
,

(
0
1

)
,

(
1
1

)}
. (13)

Let us consider the other boundary cases for n = 2, where A = xxT is a rank-1
matrix. Without loss of generality we can assume that x = (α, 1)T . As we explain in
the following, Procedure 3 will terminate after finitely many iterations with a COP-
perfect matrix P satisfying x ∈ MinCOP P when α is rational. For irrational α the
procedure will not terminate.

The first observation is that Procedure 3 subsequently replaces a COP-perfect
matrix P by a contiguous COP-perfect matrix N in a way that one of the three vectors
in MinCOP (P) is replaced by the sum of the remaining two. Let P be a copositive
matrix with

MinCOP P =
{(

a
b

)
,

(
c
d

)
,

(
e
f

)}
. (14)

2 Strictly speaking we should use 1
2 QA2 here. If we use QA2 instead, then the algorithm produces integral

matrices and vertices of 2R.
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It is known (see for example [17, Section “Determinants Determine Edges”]) that
det

( a c
b d

) = ±1 and we get a contiguous COP-perfect matrix N with

MinCOP N =
{(

a
b

)
,

(
c
d

)
,

(
a + c
b + d

)}
�= MinCOP P

by

N = P + 4

(
bd − 1

2 (ad + bc)
− 1

2 (ad + bc) ac

)
.

For instance, starting with P = QA2 as in (13)

(
1
0

)
is replaced by

(
1
2

)
if α < 1 yielding N =

(
6 −3

−3 2

)
,

or

(
0
1

)
is replaced by

(
2
1

)
if α > 1 yielding N =

(
2 −3

−3 6

)
.

Note that for α = 1, Algorithm 1 also finishes already in the first iteration. The way
these vectors are constructed corresponds to the way the famous Farey sequence is
obtained. This relation between the Farey diagram/sequence and quadratic forms was
first investigated in a classical paper of Adolf Hurwitz [19] in 1894 inspired by a
lecture of Felix Klein; see also the book by Hatcher [17], which contains the proofs.

For concreteness, let us choose α = √
2. ThenMinCOP (P) is changed by replacing

a suitable vector subsequently with

(
2
1

)
,

(
3
2

)
,

(
4
3

)
,

(
7
5

)
,

(
10
7

)
,

(
17
12

)
,

(
24
17

)
,

(
41
29

)
,

(
58
41

)
,

(
99
70

)
, . . .

Note that there is always a unique choice in Step 2(b) of Procedure 3 in case A is a
2×2 rank-1 matrix. Note also that the vectors represent fractions that converge to

√
2.

Every second vector corresponds to a convergent of the continued fraction expansion
of

√
2: We have

√
2 = 1 + 1

2 + 1

2 + 1

2 + 1

2 + 1

2 + . . .
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and

3/2 = 1 + 1

2
, 7/5 = 1 + 1

2 + 1

2

, . . . , 99/70 = 1 + 1

2 + 1

2 + 1

2 + 1

2 + 1

2

, . . .

The COP-perfect matrix after ten iterations of the algorithm is

P(10) =
(

4756 −6726
−6726 9512

)
.

It can be shown that the matrices P(i) converge to a multiple of

B =
(

1 −√
2

−√
2 2

)
satisfying 〈A, B〉 = 0 and 〈X , B〉 ≥ 0 for all X ∈ CP2.

However, every one of the infinitely many perfect matrices P(i) satisfies

〈X , P(i)〉 > 0 for all X ∈ CP2.

4.2 Input outside

In case the input matrix A = (ai j ) is outside of CP2 we distinguish two cases using
the starting COP-perfect matrix QA2 : If a12 = a21 < 0 then Procedure 3 finishes
already in its first iteration (in Step 2(c)) with a separating witness

W = R =
(
0 1
1 0

)
.

If a12 = a21 ≥ 0, Procedure 3 terminates after finitely many iterations (in Step 2(a))
with a separating COP-perfect witness matrix W = P .

We additionally note that it is a special feature of the n = 2 case that we can
conclude that the input matrix A is outside of CP2 if we have a choice between two
possible R with 〈A, R〉 < 0 in Step 2(b) of Procedure 3.

4.3 Integral input

Laffey and Šimgoc [22] showed that every integral matrix A ∈ CP2 possesses an
integral cp-factorization. This can also be seen as follows: If P is a copositive matrix
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with MinCOP P as in (14) then the matrices

(
a
b

)(
a
b

)T

,

(
c
d

)(
c
d

)T

,

(
e
f

)(
e
f

)T

form a Hilbert basis of the convex cone which they generate. This means that every
integral matrix in this cone is an integral combination of the three matrices above. To
show this, one immediately verifies this fact in the special case of P = QA2 . Then all
the other cones are equivalent by conjugating with a matrix in GL2(Z).

5 Computational experiments

We implemented our algorithm. The source code, written in C++, is available on
GitHub [18]. In this section we report on the performance on several examples, most
of them previously discussed in the literature. Generally, the running time of the proce-
dure is hard to predict. The number of necessary iterations in Algorithm 1 respectively
Procedure 3 drastically varies in the considered examples. Most of the computational
time is taken by the computation of the copositive minimum as described in Sect. 3.4.

5.1 Matrices in the interior

For matrices in the interior of the completely positive cone, our algorithm terminates
with a certificate in form of a cp-factorization. Note that in [12] and in [6] charac-
terizations of matrices in the interior of the completely positive cone are given. For
example, we have that A ∈ int(CPn) if and only if A has a factorization A = BBT

with B > 0 and rank B = n.
The matrix

⎛
⎜⎜⎜⎜⎜⎜⎝

6 7 8 9 10 11
7 9 10 11 12 13
8 10 12 13 14 15
9 11 13 15 16 17
10 12 14 16 18 19
11 13 15 17 19 21

⎞
⎟⎟⎟⎟⎟⎟⎠

for example lies in the interior of CP6, as it has a cp-factorization with vectors
(1, 1, 1, 1, 1, 1), (1, 1, 1, 1, 1, 2), (1, 1, 1, 1, 2, 2), (1, 1, 1, 2, 2, 2), (1, 1, 2, 2, 2, 2)
and (1, 2, 2, 2, 2, 2). It is found after 8 iterations of our algorithm.

5.2 Matrices on the boundary

For matrices in C̃Pn
there exists a cp-factorization by definition. However, on the

boundary of the cone these are often difficult to find.
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The following example is from [16] and lies in the boundary of C̃P5
:

⎛
⎜⎜⎜⎜⎝
8 5 1 1 5
5 8 5 1 1
1 5 8 5 1
1 1 5 8 5
5 1 1 5 8

⎞
⎟⎟⎟⎟⎠

Starting from QA5 our algorithm needs 5 iterations to find the cp-factorization with
the ten vectors (0, 0, 0, 1, 1), (0, 0, 1, 1, 0), (0, 0, 1, 2, 1), (0, 1, 1, 0, 0), (0, 1, 2, 1, 0),
(1, 0, 0, 0, 1), (1, 0, 0, 1, 2), (1, 1, 0, 0, 0), (1, 2, 1, 0, 0) and (2, 1, 0, 0, 1).

While the above example can be solved within seconds on a standard computer, the
matrix

A =

⎛
⎜⎜⎜⎜⎝
41 43 80 56 50
43 62 89 78 51
80 89 162 120 93
56 78 120 104 62
50 51 93 62 65

⎞
⎟⎟⎟⎟⎠

from Example 7.2 in [16] took roughly 10 days and 70 iterations to find a factorization
with only three vectors (3, 5, 8, 8, 2), (4, 1, 7, 2, 5) and (4, 6, 7, 6, 6). The second
algorithm suggested in [16] found the following approximate cp-factorization in 0.018
seconds

A = B̃ B̃T , with B̃ =

⎛
⎜⎜⎜⎜⎝
0.0000 3.3148 4.3615 3.3150 0.0000
0.0000 0.7261 4.3485 6.5241 0.0000
0.0000 4.5242 9.9675 6.4947 0.0000
0.0000 0.1361 7.4192 6.9955 0.0000
0.0000 5.3301 3.8960 4.6272 0.0000

⎞
⎟⎟⎟⎟⎠ .

We also considered the following family of completely positive (n+m)× (n+m)

matrices, generalizing the family of examples considered in [20]: The matrices

(
n Idm Jm,n

Jn,m m Idn

)
,

with J·,· denoting an all-ones matrix of suitable size, are known to have cp-rank
nm, that is, they have a cp-factorization with nm vectors, but not with less. These
factorizations are found by our algorithm with starting COP-perfect matrix QAm+n

for all n,m ≤ 3 in less than 6 iterations.

5.3 Matrices that are not completely positive

For matrices that are not completely positive, our algorithm can find a certificate in
form of a witness matrix that is copositive.
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The following example is taken from [25, Example 6.2].

A =

⎛
⎜⎜⎜⎜⎝
1 1 0 0 1
1 2 1 0 0
0 1 2 1 0
0 0 1 2 1
1 0 0 1 6

⎞
⎟⎟⎟⎟⎠

is positive semidefinite, but not completely positive. Starting from QA5 our algorithm
needs 18 iterations to find the copositive witness matrix

B =

⎛
⎜⎜⎜⎜⎝

363/5 −2126/35 2879/70 608/21 −4519/210
−2126/35 1787/35 −347/10 1025/42 253/14
2879/70 −347/10 829/35 −1748/105 371/30
608/21 1025/42 −1748/105 1237/105 −601/70

−4519/210 253/14 371/30 −601/70 671/105

⎞
⎟⎟⎟⎟⎠

with 〈A, B〉 = −2/5, verifying A /∈ CP5.
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