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Abstract Adjustable robust optimization (ARO) generally produces betterworst-case
solutions than static robust optimization (RO). However, ARO is computationally
more difficult than RO. In this paper, we provide conditions under which the worst-
case objective values of ARO and RO problems are equal. We prove that when the
uncertainty is constraint-wise, the problem is convex with respect to the adjustable
variables and concavewith respect to the uncertain parameters, the adjustable variables
lie in a convex and compact set and the uncertainty set is convex and compact, then
robust solutions are also optimal for the corresponding ARO problem. Furthermore,
we prove that if some of the uncertain parameters are constraint-wise and the rest
are not, then under a similar set of assumptions there is an optimal decision rule for
the ARO problem that does not depend on the constraint-wise uncertain parameters.
Also, we show for a class of problems that using affine decision rules that depend
on all of the uncertain parameters yields the same optimal objective value as when
the rules depend solely on the non-constraint-wise uncertain parameters. Finally, we
illustrate the usefulness of these results by applying them to convex quadratic and
conic quadratic problems.
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1 Introduction

Many real-life optimization problems have parameters that are not exact. One way
to deal with parameter uncertainty is robust optimization (RO), which enforces the
constraints to hold for all uncertain parameter values in a user-specified uncertainty
region. In RO, all decision variables represent “here and now” decisions, which means
they should obtain specific numerical values as a result of the problem being solved
before the actual uncertain parameter values “reveal themselves”.

An extension to RO is adjustable robust optimization (ARO) introduced in [4]. In
ARO, some of the decision variables are “here and now”, while others represent “wait
and see” decisions, which are assigned numerical values once some of the uncertain
parameters have become known.

The advantage of using ARO lies in the fact that its worst-case objective value is no
worse, and indeed usually better, than the corresponding static RO. In [6] the authors
prove for linear problems with linear uncertainty and convex uncertainty set that if the
uncertainty is constraint-wise, and under a few more assumptions, RO and ARO have
the same optimal objective value. It is shown in [10] that the same result holds even
for specific non-constraint-wise uncertainty. The conservativeness of the RO solution
for the ARO problem is studied for some classes of problems in [9] and [10].

Solving an ARO problem can be NP-hard even for linear cases [12]. There are
accordingly many methods in use for finding a good approximation for an ARO prob-
lem.Using affine decision rules, [4], for “wait and see” variables appears to be effective
for many ARO problems. For linear ARO problems with fixed recourse, using affine
decision rules leads to a robust linear problem that is computationally tractable for
many types of uncertainty sets. This is not the case for problems with non-fixed
recourse.

An important line of research in ARO is finding classes of problems for which the
affine decision rules are optimal. In [8], the authors prove that affine decision rules
are optimal for linear ARO problems with right-hand side uncertainty and simplex
uncertainty sets. A similar result is proven in [11] for ARO problems with a specific
objective function that is convex in the uncertain parameters and adjustable variables,
box constraints for the variables and a box uncertainty set. Also, in [16], the optimality
of the affine decision rules is proven for unconstrained multi-stage ARO problems
under some structural assumptions on the uncertainty set and objective function.

In [7], a bound is derived for the gap between the objective value of the problem
that results from using affine decision rules and that of the ARO problem.

Although substituting “wait and see” decision variables with affine functions would
appear to be highly effective, the method needs introducing many new variables.
This is because for a problem with n adjustable variables and l uncertain parameters,
applying affine decision rules means substituting n adjustable variables with n(l + 1)
non-adjustable variables.
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When are static and adjustable robust optimization… 557

The contribution of this paper is twofold:

1. We prove for convex problems with concave uncertainty, which also satisfy a set
of other conditions, that the objective values of the corresponding RO and ARO
problems are equal. This is an extension of the result in [6, Proposition 2.1], which
is only for problems that are linear in the variables and uncertain parameters.

2. We study uncertain nonlinear problems in which some of the uncertain parameters
are constraint-wise and the rest are not. In particular, we prove that for an ARO
problem, under a set of conditions similar to the pure constraint-wise cases, there
is an optimal decision rule that depends only on the non-constraint-wise uncertain
parameters. Moreover, we show that for a specific class of problems, there is an
affine decision rule that is only a function of the non-constraint-wise uncertain
parameters and that yields the same objective value as using an affine decision
rule that is a function of all uncertain parameters.

The first contribution means that for this class of problems, there is no need to
solve ARO ones. This has two outstanding merits: first, solving an RO problem is
computationally much easier than solving an ARO one; and second, since ARO is an
online approach, parts of the solution for a problem can only be implemented once
the values of the uncertain parameters are known. The RO approach is an offline one,
however, so all preparations for implementing the solution can start immediately upon
solving the RO problem (for further discussion about online and offline approaches
see [19]).

The merit of the second contribution is that it reduces the number of variables in
the problem by using affine decision rules, since we know beforehand that there is
an optimal solution for ARO where the coefficients of the constraint-wise uncertain
parameters are zero.

In the last part of the paper, we apply our theoretical results to an important class of
problems. We show that our contributions are applicable to convex quadratic and/or
conic quadratic problems, which can arise in multi-stage portfolio optimization, for
example.

We emphasize that the results obtained in this paper concern the worst-case objec-
tive value of an ARO problem. We provide conditions under which the optimal RO
solutions are also optimal for the ARO problem. However, in such cases, another ARO
optimal solution may yield a better average-case objective value [17].

The rest of the paper is organized as follows: Sect. 2 presents our main results. We
provide a set of conditions under which constraint-wise RO and ARO problems have
the same optimal objective values. Moreover, for problems in which just some of the
uncertain parameters are constraint-wise and not all, we show that under a similar set
of conditions, there is an optimal decision rule that is independent of the constraint-
wise uncertain parameters. In Sect. 3, we apply our results to convex quadratic and
conic quadratic problems.

2 Main results

In this section, we derive the main results presented in the paper. The section starts by
introducing some definitions and preliminaries in Sect. 2.1. In Sect. 2.2, we provide a
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set of conditions for problemswith constraint-wise uncertainty under which adjustable
and static robust optimization produces the same optimal values. In Sect. 2.3 we study
problems in which only some of the uncertain parameters are constraint-wise and the
rest are not.

2.1 Preliminaries

Consider the following uncertain nonlinear optimization problem

inf
x∈X

inf
y∈Y(x)

f (ζ, x, y)

s.t. gi (ζ, x, y) ≤ 0, i = 1, . . . , m,
(1)

where ζ ∈ Z ⊆ R
l is an uncertain parameter andZ is a nonempty uncertainty set, x ∈

X ⊆ R
r is a non-adjustable variable, and X is a nonempty set defined by constraints

that depend only on x , y ∈ Y(x) ⊆ R
n is an adjustable variable and Y(x) is defined

by constraints independent of ζ . Also, we assume that f (ζ, x, y) and gi (ζ, x, y), i =
1, . . . , m, are continuous.

We can define static and adjustable robust optimization problems corresponding to
uncertain problem (1).

Definition 1 (Static robust optimization) For problem (1), the static robust counterpart
(RC) is defined by

(RC) inf
x∈X

inf
y∈Y(x), t

t

s.t. f (ζ, x, y) ≤ t ∀ζ ∈ Z,

gi (ζ, x, y) ≤ 0, ∀ζ ∈ Z,i = 1, . . . , m.

Definition 2 (Adjustable robust optimization) For problem (1), there are two different
definitions for the adjustable robust counterpart (ARC):

inf

{
t ∃x ∈ X ∀ζ ∈ Z ∃y ∈ Y(x) : f (ζ, x, y) ≤ t,

gi (ζ, x, y) ≤ 0, i = 1, . . . , m,

}
(2)

and

(ARC) inf
x∈X

sup
ζ∈Z

inf
y(ζ ) ∈ Y(x)

t (ζ )

t (ζ )

s.t. f (ζ, x, y(ζ )) ≤ t (ζ )

gi (ζ, x, y(ζ )) ≤ 0, i = 1, . . . , m.

The equivalence of problems (2) and (ARC) is proved in [20].We denote the objective
values of problems (RC) and (ARC) by Opt (RC) and Opt (ARC), respectively.

We extend the definition of (ARC) with fixed recourse for a linear problem with
linear uncertainty in [4] to the nonlinear case (nonlinear problemwith nonlinear uncer-
tainty) in the following definition.
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Definition 3 (Fixed recourse problem) (ARC) has fixed recourse when there are
continuous functions f̃ , g̃i : Rn+r → R, f̄ , ḡi : Rl+r → R, for i = 1, . . . , m, such
that for all ζ ∈ Z ⊂ R

l , x ∈ X ⊂ R
r , and y ∈ Y(x) ⊂ R

n ,

f (ζ, x, y) = f̃ (x, y) + f̄ (ζ, x),

gi (ζ, x, y) = g̃i (x, y) + ḡi (ζ, x), i = 1, . . . , m.

In this paper, we work primarily with constraint-wise uncertainty, which is defined as
follows.

Definition 4 (Constraint-wise uncertainty [4]) For problem (1), the uncertainty is
constraint-wise when each uncertain parameter ζ can be split into blocks ζ =
[ζ0, . . . , ζm] ∈ R

l such that the data of the objective depends only on ζ0 ∈ R
l0 ,

the data of the i-th constraint depends solely on ζi ∈ R
li , and the uncertainty set

Z = Z0 × Z1 × . . . × Zm , where Zi ⊆ R
li is the uncertainty region for ζi , for some

integers li , i = 0, . . . , m.

Constraint-wise uncertainty appears in Markov decision process, for example, where
it is called rectangularity [18,21].

Notice that problem (1) does not contain any equality constraint that depends on
ζ . The usual way of dealing with such uncertain equalities in (ARC) is to eliminate
adjustable variables [14, Section 7]. This means that we are implicitly forcing the
adjustable variables that are eliminated to obey specific decision rules. This is not
allowed in (RC). We illustrate this in Example 4 of Supplementary Material Section
D.

We will now outline the assumptions used in this paper to express conditions under
which Opt (RC) = Opt (ARC).

Assumption 1 All the assumptions are with respect to problem (1). Throughout this
paper, we assume that

i. There is no equality constraint in problem (1) that depends on ζ .
ii. The uncertainty set Z is compact.
iii. The uncertainty set Z ⊂ R

l is convex.
iv. Y(x) is a convex set for each x ∈ X .
v. Y(x) is a compact set for each x ∈ X .
vi. f (., x, y) and gi (., x, y) are concave for each x ∈ X , y ∈ Y(x), and i =

1, . . . , m.
vii. f (ζ0, x, .) and gi (ζi , x, .) are convex for each x ∈ X , ζ ∈ Z = Z0 × . . . ×Zm ,

and i = 1, . . . , m.

Assumptions i, iii, iv, vi, and vii are essentially the framework of static robust
convex optimization considered in [5].

2.2 Constraint-wise uncertainty

In this subsection, we study problems with constraint-wise uncertainty and provide a
set of conditions, under which Opt (RC) and Opt (ARC) are equal.
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560 A. Marandi, D. den Hertog

Theorem 1 If problem (1) has constraint-wise uncertainty and Assumptions i–vii
hold, then Opt (RC) = Opt (ARC).

Proof The line of reasoning is the same as in [4, Theorem 2.1].

Case I: Suppose that (ARC) does not have a non-adjustable variable. First, we
assume that (RC) is feasible. So, it is sufficient to show that when-
ever t̄ ≥ Opt (ARC), then t̄ ≥ Opt (RC) (feasibility of (RC) implies
Opt (ARC) < ∞). According to the definitions, we have:

Opt (ARC) =
inf

{
t ∀ζ ∈ Z = Z0 × . . . × Zm ∃y ∈ Y : f (ζ0, y) ≤ t,

gi (ζi , y) ≤ 0, i = 1, . . . , m

}

(3)

and,

Opt (RC)

= inf

{
t ∃y ∈ Y ∀ζ ∈Z=Z0×. . .×Zm : f (ζ0, y) ≤ t,

gi (ζi , y) ≤ 0, i = 1, . . . , m

}
.

(4)

If Y = ∅, it is clear that Opt (ARC) = Opt (RC) = +∞. Now, assume
that Y �= ∅. By contradiction, suppose that there is a scalar t̄ such that t̄ ≥
Opt (ARC) and t̄ < Opt (RC). Because of the constraint-wise uncertainty,
by setting β = (1, 0, 0, . . . , 0)T , G0(ζ0, y) = f (ζ0, y), and Gi (ζi , y) =
gi (ζi , y), for i = 1, . . . , m, and by (4), it follows that

∀y ∈ Y ∃ζ y ∈ Z ∃iy ∈ {0, . . . , m} : Giy (ζ
y
iy

, y) − βiy t̄ > 0.

Also, continuity implies

∀y ∈ Y ∃ε y > 0 ∃Uy ∀z ∈ Uy : Giy (ζ
y
iy

, z) − βiy t̄ > ε y, (5)

where Uy is the intersection of a 2-norm open ball with a strictly positive
radius centered at y with Y . Since Y is compact, there are yk ∈ Y , k =
1, . . . , N , such that Y = ∪N

k=1Uyk . So,

∀k = 1, . . . , N , ∀z ∈ Y max
k

Giyk (ζ
yk

iyk
, z) − βiyk t̄ > ε, (6)

where ε = mink ε yk
. As a simplification, we set ζ k = ζ

yk

iyk
, ik = iyk and

fk(z) = Gik (ζ
k, z) − βik t̄ ∀z ∈ Y .
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When are static and adjustable robust optimization… 561

Since Y is convex and all fk(z) are convex and continuous on Y due to
Assumption vii, and because maxk fk(z) ≥ ε for each z ∈ Y , there are
nonnegative weights λk with

∑
k λk = 1 such that

f (z) :=
∑

k

λk fk(z) ≥ ε ∀z ∈ Y . (7)

We define

wi =
∑

k:ik=i

λk i = 0, . . . , m

ζ̄i =
{ ∑

k:ik=i
λk
wi

ζ k, wi �= 0
an arbitrary point in Zi , wi = 0

ζ̄ = [
ζ̄0, . . . , ζ̄m

]
. (8)

It is clear by convexity ofZ that ζ̄ ∈ Z . Additionally, due to t̄ ≥ Opt (ARC),
we have

∃t ≤ t̄ : ∀ζ ∈ Z ∃y ∈ Y,
f (ζ0, y) ≤ t,

gi (ζi , y) ≤ 0, i = 1, . . . , m,
(9)

which means

∃ȳ ∈ Y : Gi (ζ̄i , ȳ) − βi t̄ ≤ 0, i = 0, . . . , m. (10)

Also, we know that for each i = 0, . . . , m, the functions Gi (ζi , ȳ) are con-
cave in ζi due to Assumption vi. Hence, for all i = 0, . . . , m, and wi > 0

Gi (ζ̄i , ȳ) − βi t̄ = Gi

⎛
⎝ ∑

k:ik=i

λk

wi
ζ k, ȳ

⎞
⎠ − βi t̄

≥
∑

k:ik=i

λk

wi
Gi (ζ

k, ȳ) − βi t̄ =
∑

k:ik=i

λk

wi
fk(ȳ).

Summing over the indices results in

m∑
i=1

wi �=0

wi
(
Gi (ζ̄i , ȳ) − βi t̄

) ≥
N∑

k=1

λk fk(ȳ). (11)

By applying (7) and (10), the above inequality contradicts ε > 0.
Now we consider the case where (RC) is not feasible, which means
Opt (RC) = +∞. To prove equality of (RC) and (ARC) with respect to
the worst-case objective value, it is sufficient to show that there is no t̄ ∈ R
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such that t̄ ≥ Opt (ARC). So, the same argument used in the previous part
implies that Opt (ARC) = +∞.

Case II: Now, we consider a general case, where (ARC) contains the non-adjustable
variable x . As proved in Case I, for any x ∈ X ,

supζ∈Z inf y(ζ )∈Y(x) f (ζ, x, y(ζ ))

s.t. gi (ζ, x, y(ζ )) ≤ 0, i = 1, . . . , m,
(12)

and

inf y∈Y(x) supζ∈Z f (ζ0, x, y)

s.t. gi (ζi , x, y(ζ0, . . . , ζm)) ≤ 0, ∀ζi ∈ Zi , i = 1, . . . , m,
(13)

have the same optimal value. Therefore, taking the infimum over all x ∈ X
results in Opt (RC) = Opt (ARC). ��

Theorem 1 extends the results for linear problems, [6, Proposition 2.1], to nonlinear
ones. In Supplementary Material Section B, we replace Assumption v in Theorem 1
with two other assumptions in order to provide another set of conditions under which
Opt (RC) = Opt (ARC).

Remark 1 For a problemwith fixed recourse and constraint-wise uncertainty,Assump-
tion ii implies equality of the objective values of (RC) and (ARC). The complete
proof can be found in Supplementary Material Section A. Even though in this case
the resulting (RC) is N P-hard in general, there are cases for which (RC) is tractable,
for instance see [3, Section 1.4].

2.3 Non-constraint-wise uncertainty

Section 2.2 focuses on constraint-wise uncertainty. The question is what can be con-
cluded for a problem in which some, but not all, of the uncertain parameters are
constraint-wise. Consider the following problem:

(H RC) inf
x∈X

inf
y∈Y(x), t

t

s.t. f (ζ0, α, x, y) ≤ t ∀α ∈ A, ζ0 ∈ Z0,

gi (ζi , α, x, y) ≤ 0, i = 1, . . . , m, ∀α ∈ A, ζi ∈ Zi ,

where ζ = (ζ0, . . . , ζm) ∈ Z = Z0 × . . . × Zm and α ∈ A ⊆ R
d are uncertain

parameters (ζ is constraint-wise and α is non-constraint-wise). This problem has a
hybrid uncertainty, so we cannot use the results in Section 2.2 to deduce equality of the
optimal values of the hybrid robust counterpart (H RC) and the corresponding hybrid
adjustable robust counterpart (H ARC). However, the following corollary states that
if in such a case the same set of conditions as in Theorem 1 hold with respect to the
constraint-wise uncertain parameters, then there exists an optimal decision rule that is
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When are static and adjustable robust optimization… 563

a function of only the non-constraint-wise uncertain parameters. In other words, the
two problems

(H ARC) inf
x∈X

sup
ζ∈Z
α∈A

inf
y(ζ, α) ∈ Y(x)

t (ζ, α)

t (ζ, α)

s.t. f (ζ0, α, x, y(ζ, α)) ≤ t (ζ, α),

gi (ζi , α, x, y(ζ, α)) ≤ 0, i = 1, . . . , m

and

(H ARCα) inf
x∈X

sup
α∈A

inf
y(α) ∈ Y(x)

t (α)

t (α)

s.t. f (ζ0, α, x, y(α)) ≤ t (α) ∀ζ0 ∈ Z0,

gi (ζi , α, x, y(α)) ≤ 0, i = 1, . . . , m, ∀ζi ∈ Zi

have the same optimal objective values. We denote the optimal objective values of
(H ARC) and (H ARCα) by Opt (H ARC) and Opt (H ARCα), respectively.

Corollary 1 Suppose that for all α ∈ A, the assumptions of Theorem 1 hold with
respect to ζ, x, y. Then, Opt (H ARC) = Opt (H ARCα).

Proof By fixing α ∈ A and x ∈ X and applying Theorem 1, the optimal objective
value of

sup
ζ∈Z

inf
y(ζ, α) ∈ Y(x)

t (ζ, α)

t (ζ, α)

s.t. f (ζ0, α, x, y(ζ, α)) ≤ t (ζ, α),

gi (ζi , α, x, y(ζ, α)) ≤ 0, i = 1, . . . , m

and

inf
y(α) ∈ Y(x)

t (α)

t (α)

s.t. f (ζ0, α, x, y(α)) ≤ t (α) ∀ζ0 ∈ Z0,

gi (ζi , α, x, y(α)) ≤ 0, i = 1, . . . , m, ∀ζi ∈ Zi

are equal. The result follows from taking the supremum over α ∈ A and infimum over
x ∈ X . ��

Corollary 1 can be used to reduce the complexity of solving adjustable robust
optimization problems. This is because in order to solve (H ARC), one needs to find
an optimal decision rule with respect to both α and ζ , but, we can ensure the existence
of an optimal decision rule that only depends on α by applying this corollary.

123



564 A. Marandi, D. den Hertog

It is important to note that if we restrict ourselves to one class of decision rules, e.g.,
affine decision rules, as is customary, then Corollary 1 does not necessarily guarantee
the existence of an optimal affine decision rule that only depends on α. The following
corollary, however, states that if the problem has fixed recourse with respect to the
constraint-wise uncertain parameter ζ and we use a specific class of decision rules
that are separable with respect to ζ and α, then there exists an optimal decision rule
that depends only on α.

Let us denote by ȳω(α): Rd → R a function of α that belongs to a specific class
parametrized by ω. One of the examples for ȳω (α) is a polynomial. In this case, ω

could be the vector of coefficients for the monomials.

Corollary 2 Assume that in (H ARC),

gi (ζi , α, x, y) = g̃i (ζi , x) + ḡi (α, x, y), i = 0, . . . , m, (14)

where g0(ζ0, α, x, y) = f (ζ0, α, x, y) and g̃i (ζi , x) and ḡi (α, x, y) are continuous
for i = 0, . . . , m. Also, assume that we restrict the decision rules to be in the form of
y (ζ ) + ȳω (α) , where y(.) : Rl −→ R

n. Then the optimal objective value of (H RC)
when using this decision rule is equal to that of using decision rule y + ȳω (α).

Proof Consider the following problem:

inf
x∈X ,ω

sup
ζ∈Z

inf
y(ζ ), t(ζ )

t (ζ ) (15)

s.t.g̃0 (ζ0, x) + ḡ0 (α, x, y (ζ ) + ȳω (α)) ≤ t (ζ ) ,∀α ∈ A,

g̃i (ζi , x) + ḡi (α, x, y (ζ ) + ȳω (α)) ≤ 0,∀α ∈ A, i = 1, . . . , m,

y (ζ ) + ȳω (α) ∈ Y (x) ,∀α ∈ A.

By defining Ȳ (x, ω) = ∩α∈A [Y (x) − ȳω (α)] and

ĝi (x, ω, y (ζ )) = sup
α∈A

ḡi (α, x, y (ζ ) + ȳω (α)) , i = 0, . . . , m,

accordingly, we obtain an optimal objective value for (15) that is equal to the optimal
objective value of

inf
x∈X ,ω

sup
ζ∈Z

inf
y(ζ )∈Ȳ(x,ω),

t(ζ )

t (ζ )

s.t. g̃0 (ζ0, x) + ĝ0 (x, ω, y (ζ )) ≤ t (ζ ) ,

g̃i (ζi , x) + ĝi (x, ω, y (ζ )) ≤ 0, i = 1, . . . , m,

(16)
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which is the adjustable robust counterpart related to the following robust problem:

inf
x∈X ,ω

inf
y∈Ȳ(x,ω), t

t

s.t. g̃0 (ζ0, x) + ĝ0 (x, ω, y) ≤ t, ∀ζ0 ∈ Z0,

g̃i (ζi , x) + ĝi (x, ω, y) ≤ 0, ∀ζi ∈ Zi , i = 1, . . . , m.

(17)

In accordance with Remark 1, (16) and (17) have the same optimal objective value.
Using the definitions of Ȳ (x, ω) and ĝi (x, ω, y), i = 0, . . . , m, we can easily see that
the optimal objective value of (17) is equal to the optimal objective value of

inf
x∈X ,ω

inf
y, t

t (18)

s.t. g̃0 (ζ0, x) + ḡ0 (α, x, y + ȳω (α)) ≤ t, ∀α ∈ A, ∀ζ0 ∈ Z0,

g̃i (ζi , x) + ḡi (α, x, y + ȳω (α)) ≤ 0, ∀α∈A,∀ζi ∈Zi , i =1, . . . , m,

y + ȳω (α) ∈ Y (x) , ∀α ∈ A.

So, we have proved that the optimal objective value of (15) and (18) are the same.
This means that the use of y (ζ ) + ȳω (α) and y + ȳω (α) as decision rules yields the
same approximation of the optimal objective values. ��

In Corollary 2, y(ζ ) is a general function. For instance, if we assume that ȳω (α)

lies in the class of affine functions, even for a general y(ζ ), the optimal objective value
is independent from ζ . The other example is when both y(ζ ) and ȳω (α) are affine,
whichmeans that the decision rule is affine.We consider this case in the next corollary.

Corollary 3 Suppose that in (H ARC) the constraints and objective functions satisfy
(14). Then, using an affine decision rule, y(α) = u +Wα or y(ζ, α) = u + V ζ +Wα,
where u ∈ R

n, V ∈ R
n×l , and W ∈ R

n×d , yields the same approximate optimal value.

Corollary 3 mentions two different problems for approximating (H ARC): one
considers y(α) = u + Wα as the form of decision rule and the other y(ζ, α) =
u+V ζ +Wα.We denote the optimal objective values of the former affinely adjustable
robust counterparts by Opt (AARCα) and Opt (AARCζ,α), respectively. Then, in
general, for problem (H RC), we have

Opt (H ARC) ≤ Opt (AARCζ,α) ≤ Opt (AARCα) ≤ Opt (H RC). (19)

In this section, we discussed conditions that turn inequalities in (19) into equalities.
Theorem 1 provides a set of conditions under which all of the inequalities can be
replaced by equalities. In addition, under a similar set of conditions as in that theorem,
Corollary 3 ensures us that the middle inequality in (19) turns into an equality. Other
sets of conditions for which Opt (H ARC) = Opt (AARCζ,α) are proposed in [8,11,
16]. In Supplementary Material Section D, we provide some examples to show that
these inequalities can be strict.
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3 Application

One application of the results derived in Sect. 2 is for the following problem:

inf
x∈X

inf
y∈Y(x)

f (x, y)

s.t.g j (α, x, y) ≤ 0, ∀α ∈ A, j = 1, . . . , m,

hi (ζi , x, y) ≤ 0, ∀ζi ∈ Zi , i = 1, . . . , I,

pk(θk, x, y) ≤ 0, θk ∈ Tk, k = 1, . . . , K ,

where g j (α, x, y), j = 1, . . . , m, is a continuous function, the convex quadratic
function hi is defined as

hi (ζi , x, y) = (x
y
)T

Ai (ζi )
(x

y
) + bi (ζi )

T (x
y
) + ci (ζi ),

and the conic quadratic function pk is defined as

pk(θk, x, y) =
√(x

y
)T

Bk(θk)
(x

y
) + dk(θk)

T (x
y
) + ek(θk),

where α ∈ Rl , ζi ∈ Rli , and θk ∈ RlI+k are the uncertain parameters for some integers
l, li , lI+k , i = 1, . . . , I , k = 1, . . . , K , and x and y are non-adjustable and adjustable
variables, respectively. We assume that the matrices Ai (ζi ) and Bk(θk) are positive
semi-definite for all ζi ∈ Zi and θk ∈ Tk , i = 1, . . . , I , k = 1, . . . , K . Also, we
assume that Ai (ζi ), bi (ζi ), ci (ζi ), Bk(θk), dk(θk), and ek(θk) are affine in ζi and θk ,
i = 1, . . . , I , k = 1, . . . , K , respectively.

This type of problem arises, for example, when a part of the problem is related to
multi-stage mean-variance portfolio optimization [15], in which the asset return mean
and covariance matrix are uncertain and these uncertainties only occur in the objective
function (hence the problem has constraint-wise uncertainty).

If the uncertainty over α is constraint-wise and g j (α, x, y) is concave in α and
convex in y, j = 1, . . . , m; A, Zi and Tk are convex, i = 1, . . . , I , k = 1, . . . , K ;
and Y(x) is compact and convex for all x ∈ X , then by Theorem 1, the optimal values
of the corresponding static and adjustable robust problems are equal, because hi and
pk are convex in y and concave in ζi and θk , i = 1, . . . , I , k = 1, . . . , K , respectively.
Moreover, if the uncertainty over α is not constraint-wise, then by Corollary 1, an
optimal y exists for the corresponding adjustable robust counterpart that is independent
of ζi and θk , i = 1, . . . , I , k = 1, . . . , K .

4 Conclusion

In this paper, we show that for a class of constraint-wise uncertain convex optimization
problems, the static robust optimal solution is also optimal for adjustable robust prob-
lems. This class consists of problems that are convex with respect to the adjustable
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variables and concave with respect to the uncertain parameters, and that have a convex
compact uncertainty set and adjustable variables that lie in a convex compact set.

This result does not hold for problems where just some of the uncertain parameters
are constraint-wise. We prove that under a set of assumptions similar to the pure
constraint-wise case, there exists an optimal decision rule that does not depend on the
constraint-wise uncertain parameters. Also, we show that for one class of problems,
restricting decision rules to be affine and independent of the constraint-wise uncertain
parameters yields the same optimal objective value as in cases where the decision
rules are affine and dependent on both the constraint-wise and non-constraint-wise
uncertain parameters.

Lastly, we prove that for adjustable robust optimization problems with convex
quadratic and/or conic quadratic constraints, if the uncertainty in the quadratic con-
straints is constraint-wise, then optimal adjustable variables exist that are independent
of the constraint-wise uncertain parameters.
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