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Abstract We show that minimizing the average job completion time on unrelated
machines isAPX -hard if preemption of jobs is allowed. This provides one of the last
missing pieces in the complexity classification of machine scheduling with (weighted)
sum of completion times objective. The proof is based on a mixed integer linear
program. This means that verification of the reduction is partly done by an ILP-
solver. This gives a concise proof which is easy to verify. In addition, we give a
deterministic 1.698-approximation algorithm for the weighted version of the problem.
The improvement is made by modifying and combining known algorithms and by the
use of new lower bounds. These results improve on the known NP-hardness and
2-approximability.

Keywords Scheduling · APX -hardness · Approximation algorithms · Average
completion time · Quadratic programming
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1 Introduction

In the last two decades extensive research has been done on approximation algorithms
for machine scheduling problems with the objective of minimizing the average (or
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136 R. Sitters

total) job completion time. For many of the studied problems, the complexity of find-
ing close to optimal solutions is well-understood by now. We say that a minimization
problem can be approximated within a factor α ≥ 1 if there is a polynomial time algo-
rithmwhich computes for any instance a feasible solution whose (expected) value is at
most α times the value of an optimal solution. Such an algorithm is called a (random-
ized) α-approximation algorithm. A paper by Schuurman andWoeginger [18] of 1999
gives an interesting (and still accurate) overview of scheduling problems for which the
approximability is unknown. Arguably, the most interesting are the ones with prece-
dence constraints. The area is still wide open here (see also [14]). The approximability
of classical machine scheduling problems without precedence constraints is much
better understood and this holds especially for the objective of minimizing average
completion time. Almost all problems have been shown to be either polynomial time
solvable, or to have a polynomial time approximation scheme (PTAS), which means
that it is possible to approximate it within any arbitrarily small factor 1 + ε. A few
were proven to be APX -hard. The first polynomial time approximation scheme in
this class of problems was given by Skutella and Woeginger [21] for the problem of
minimizing total weighted completion time on identical machines. Soon after, this
was extended to many other problems [1,4]. See also [2] for an extensive overview.

In this paper, we consider the problem of minimizing total (weighted) completion
time on unrelated machines where preemption of jobs is allowed. In the standard 3-
field notation introduced by Graham et al. [8] this is denoted by R|pmtn|∑C j and,
for the weighted case, by R|pmtn|∑w jC j . Formally, an instance of our problem
is given by numbers m and n and numbers w j ∈ Q+ for all j ∈ {1, 2 . . . , n} and
pi j ∈ Q+ ∪ {∞} for all i ∈ {1, 2 . . . ,m} and j ∈ {1, 2 . . . , n}. Job j requires pi j
processing time if it is completely scheduled on machine i . If pi j = ∞ then job j
cannot be processed by machine i (we shall use process time in stead of processing
time for the duration that a job is processed in a given schedule). If job j is processed
for a duration δ onmachine i then the processed fractionwill be δ/pi j . A schedule is an
assignment of jobs to machines over time such that all jobs are completely processed.
We do not allow a machine to work on more than one job at a time or two machines to
work on the same job simultaneously. For a given schedule we denote the completion
time of job j by C j and the objective value is the sum of the weighted completion
times, i.e.,

∑n
j=1 w jC j . We distinguish between the problem with unit job weights,

R|pmtn|∑C j , and the more general problem with arbitrary job weights, denoted by
R|pmtn|∑w jC j .

For our problem, the paper [1] gives aPTASassuming that the number ofmachines is
constant, andHoogeveen et al. [10] showAPX-hardness of the non-preemptive variant.
But for our problem as described above, no such result was known. Techniques for
designing polynomial time approximation schemes have failed so far. In this paper we
prove that already the unweighted version isAPX -hard.Hence, it cannot be efficiently
approximated within an arbitrarily small constant, unless P = NP . Additionally, we
give a 1.698-approximation algorithm. So far, the smallest approximation ratio was 2
(see [15,17,22]).

The APX -hardness reduction was given without proof of correctness in the con-
ference version [19]. That paper also gives a 1.81-approximation algorithm and hints
at the possible improvement that we present here.
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Approximability of average completion time scheduling... 137

APX -hardness The complexity result is interesting for at least three reasons.
Firstly, this provides one of the last missing pieces in the complexity classification
of machine scheduling with (weighted) sum of completion times objective [2]. The
only remaining open problems are those with precedence constraints.

Secondly, the problem R|pmtn|∑C j has the peculiar property that the preemptive
version is much harder to solve than the non-preemptive version which, for this prob-
lem, was shown to be solvable by any weighted bipartite matching algorithm almost
forty years ago [3,11]. Intuitively, preemption should make problems easier, just as
LP’s are in general easier than ILP’s. Indeed, for almost all scheduling problems the
non-preemptive version is at least as hard to solve as its preemptive counterpart. In
fact, R|pmtn|∑C j appears the only scheduling problem for which the preemptive
version isAPX -hard and the non-preemptive version is solvable in polynomial time.

A third interesting aspect is the proof itself, which is partly written in the form
of a mixed integer program. That means, we claim the optimal value of the mixed
ILP but do not prove it. We leave it for the reader to check the optimal solution by
an ILP-solver. Writing down a complete proof would make it unnecessarily long and
basically boils down to solving the mixed ILP by hand. Since ILP solvers are widely
available and any solver can handle our simple mixed ILP problem, this short form is
a much cleaner, more reliable proof than the much longer alternative.1 Although, ILP
solvers may give incorrect solutions, this not a real issue here since the mixed ILP has
only two binary variables and can thus be reduced to four LP’s (see the discussion at
the end of the proof of Lemma 4).

Of course, not every complex reduction may be simplified using such a mathemat-
ical programming approach, but if possible, then such an approach may be preferred.
Arguably, the answer given by an ILP solver for a relatively easy mixed ILP is more
reliable than the answer given by one or two people having checked a case analysis of
many pages.

Algorithm The second contribution of this paper is a significant improvement over
the best known approximation ratio for the problem. This applies even to the weighted
version of the problem. Several 2-approximations are known. Skutella [22] gave a 2-
approximation algorithm using a convex quadratic program. Schulz and Skutella [17]
and Queyranne and Sviridenko [15] gave (2 + ε)-approximations using interval-
indexed linear programs. One difficulty of improving on the constant 2 is finding
good lower bounds on the optimal solution. Here, we give two new lower bounds and
show how a modification of the convex program used in [22] reduces the approxima-
tion ratio to 1.81. In [17], Schulz and Skutella raised the question whether a stronger
LP-formulation could improve on the factor 2. We show that a similar modification
leads to the same improved ratio. Further, we show that if we apply both our new
algorithm and the algorithm by Queyranne and Sviridenko [15] and take the best of
the two solution then this yields a 1.698-approximate solution.

Both improved approximation factors follow from new lower bounds on the optimal
solution. The proofs for these two lower bounds are quite technical and probably not

1 An unpublished earlier version of the proof contains a case-analysis of roughly five pages instead of the
one-page program that we give here.
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the most interesting parts of the paper and are therefore placed at the end of the
corresponding sections. What does make this result interesting is that given these new
bounds, the improved ratios follow easily from known algorithms.

2 Inapproximability

The problem R|pmtn|∑C j is known to beNP-hard [20]. Here, we give a reduction
which shows that the problem is evenAPX -hard. The reduction itself is simpler than
the one used in [20]. The simplification is essential to obtain an approximation pre-
serving reduction. However, this simplification also makes the reduction very fragile
and proving correctness of the reduction becomes non-trivial. Especially the preemp-
tive setting makes it hard to prove correctness. Fortunately, an ILP solver is a perfect
remedy for this step.

The reduction We reduce from the maximum bounded 3-dimensional matching prob-
lem which was proven to be APX -hard by Kann [12].

Maximum bounded 3-dimensional matching (3DM-B):
An instance is given by pairwise disjoint sets A = {a1, . . . , am}, B = {b1, . . . , bm},

and C = {c1, . . . , cm} and a set T ⊆ A × B × C of cardinality n ≥ m such that each
element of A, B and C appears in at most three triples from T . A solution is a set
S ⊆ T of pairwise disjoint triples. The goal is to maximize |S|.
Lemma 1 For any instance of 3DM- B, we have m ≤ n ≤ 3m and the optimal value
is at least n/7.

Proof By assumptionm ≤ n. Since each element appears in at most three triples there
are at most 3m triples. Further, each triple has a non-empty intersection with at most
six other triples. Therefore, any maximal set S of pairwise independent triples has size
at least n/(6 + 1). �	

For our reduction we assume that n = 3m. This is without loss of generality since
if the instance has n′ triples with n′ < 3m then we can take any triple t j from T and
add 3m − n′ copies of t j . This does not change the optimal value. Now, elements may
appear in more than three triples but we shall not use that property anymore. From
now we may assume that

n = 3m and Opt ≥ n′/7 ≥ m/7 = n/21. (1)

To simplify notation we denote triples of T by t j = (x j , y j , z j ) ∈ {1, . . . , n}3
instead of t j = (ax j , by j , cz j ).

Given any instance IM of 3DM- B we construct an instance IR of the scheduling
problem with 3m + n machines and (15/λ + 1)n + 2m jobs, where λ = 1/4. In fact,
any λ ≤ 1/4 with 1/λ integer will do and we prefer to keep λ in the notation as it is
more insightful to think of 1/λ as a large integer.
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Approximability of average completion time scheduling... 139

Machines:
Themachines areA1, · · · ,Am ,B1, · · · ,Bm , C1, · · · , Cm , and T1, . . . , Tn . The first

3m correspond to the elements of A, B andC and the last n correspond to the triples T .
B-jobs:

For each machine Bi we define one job with processing time 6 on that machine and
which cannot be processed on any other machine.

C-jobs:
For each machine Ci we define one job with processing time 11 on that machine

and which cannot be processed on any other machine.

T -jobs:
For each machine Ti we define 15/λ jobs with processing time 16 on that specific

machine and which cannot be processed on any other machine.

Triple-jobs:
For each triple t j = (x j , y j , z j ) we define one triple-job j with processing times

18, 15, and 12 on, respectively, machine Ax j ,By j , and Cz j . The processing time on
machine T j is λ and it cannot be processed on any of the other 3m + n − 4 machines.

Correctness of the reduction Let us first consider the instance without the triples jobs,
i.e., only with theB-,C-, and T -jobs. An optimal schedule is easily found since each of
these jobs fits on only one machine: The B-jobs on the B-machines complete at time 6
and the C-jobs on the C-machines complete at time 11. Their total completion time is
6m+11m. The total completion time of the T -jobs is n(16+2 ·16+· · ·+15/λ ·16).
We denote this schedule by σBCT and its total completion time by CBCT . We do
not need to know its exact value but do note that CBCT = cλn for some constant cλ

(depending on λ).
For each triple t j = (x j , y j , z j ) we define a schedule that we call the optimal

schedule of triple-job j : Job j is processed on machineAx j between time 0 and 6 and
on machine By j between time 6 and 11, and on machine Cz j between time 11 and 15
(the fractions done on theseA-, B- and C-machines are, respectively, 6/18, 5/15, and
4/12, which equals 1/3 in either case). Note that we can add any triple-job j to σBCT
and complete it at time 15 without changing σBCT . The following lemma is obvious.

Lemma 2 Instance IM has a matching of size k if and only if there exists a schedule
for IR in which exactly k triple-jobs get their optimal schedule.

If a triple job is scheduled completely at the beginning of its triple machine then it
completes at time λ. However, this will delay all other 15/λ jobs on the machine by λ.
One could say that, in this case, the contribution of the job in the total completion time
is λ+(15/λ)λ = 15+λ. Themeaning of contribution ismade precise later andwewill
show (see Claim 1) that if a triple job contributes less than 15+ λ, then not only must
it complete before time 15 + λ but also, its schedule must have a substantial overlap
with its optimal schedule. We prove this by using a mixed ILP to compute a lower
bound on the contribution of a triple job for all possible schedules. For this, it clearly
suffices to restrict the analysis to schedules of the triple job on the interval [0, 15+λ].
For the easy of analysis, however, we shall consider the slightly larger interval [0, 16].
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C-jobs
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Fig. 1 An optimal schedule for the given instance. The maximum matching has cardinality k = 2 (in this
example, m = 3 and n = 4 but in the proof we assume that n = 3m)

We say that the schedule of a triple job j is nearly optimal if it is scheduled on
machine Ax j for strictly more than 3 time units between 0 and 6, on machine By j for
strictlymore than 2.5 units between 6 and 11, and on Cz j for strictlymore than 2.5 units
between 11 and 16. Then, k triple-jobs can get their optimal schedules simultaneously
if and only if they can get nearly optimal schedules simultaneously. We can strengthen
Lemma 2 as follows.

Lemma 3 Instance IM has a matching of size k if and only if there exists a schedule
for IR in which exactly k triple-jobs get a nearly optimal schedule.

APX -hardness follows almost directly from the followingLemma,whichwe prove
by solving a mixed ILP. Note that λ and cλ are constants and CBCT = cλn and
k = Ω(n).

Lemma 4 Opt(IM ) = k ⇔ Opt(IR) = CBCT + (15 + λ)n − λk.

Proof Assume that Opt(IM ) = k. First we give a schedule with value CBCT + (15+
λ)n − λk and then we prove that no better schedule exists. Since we have equality on
both sides it is enough to prove one direction only.

We construct a feasible schedule for IR as follows. We schedule the B- and C-jobs
as σBCT . We give k triple-jobs their optimal schedule and place any other triple-job j
at the beginning of machine T j . The T -jobs are scheduled subsequently and as early as
possible in the obvious way (see Fig. 1). The completion time of a triple-job j which
does not get its optimal schedule isλ. Then, allT -jobs on themachineT j are delayed by
λ which gives a total extra cost for these T -jobs of λ15/λ = 15. The total completion
time of the schedule isCBCT +15k+λ(n−k)+15(n−k) = CBCT +(15+λ)n−λk.

Next we prove that no better schedule exists. Consider an optimal schedule σ for
instance IR . We define for every triple-job j its contribution C ′

j in the total completion
time of σ as follows. It is the completion time of job j plus a lower bound on the total
time that it shifts B-, C-, and T -jobs ahead in time compared with schedule σBCT .
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Approximability of average completion time scheduling... 141

Precisely, it is the completion time C j plus the time it is processed on machine By j
between time 0 and 6, plus the time it is processed on machine Cz j between time 0 and
11, plus 15/λ times the time it is processed on machine T j between 0 and 16. Notice
that the value C ′

j is defined by the schedule of job j only. The total completion time
of σ is at least

Opt(IR) ≥ CBCT +
n∑

j=1

C ′
j . (2)

Claim 1 (i) C ′
j ≥ 15, for any j ∈ {1, . . . , n}.

(ii) C ′
j ≥ 15 + λ (with λ = 1/4) if the schedule of j is not nearly optimal.

We shall prove this claim below. First we show that the proof of the lemma follows
directly from Claim 1. If Opt(IM ) = k then by Lemma 3 at most k jobs can get their
nearly optimal schedule. From (2) and Claim 1 we obtain

Opt(IR) ≥ CBCT +
n∑

j=1

C ′
j

≥ CBCT + 15k + (15 + λ)(n − k)

= CBCT + (15 + λ)n − kλ.

Proof of Claim 1 We formulate a mixed integer linear program that computes a lower
bound on C ′

j in case (i) and (ii). Both properties hold for any λ ≤ 1/4 but we assume
λ = 1/4 here.

SinceC ′
j depends on the schedule of job j only, it is enough to consider one specific

triple-job j with its machines Ax j , By j , Cz j and T j . Thus, in the sequel we consider
only four machines and one job. We ignore all other machines and jobs and remove
the index j from the notation. We refer to the machines as the A-, B-, C-, and T -
machine and refer to job j simply as the job.

Let C and C ′ be, respectively, the completion time and contribution of the job for
our fixed schedule σ . If the job does not complete before time 16 then C ′ ≥ C ≥ 16
in which case (i) and (ii) hold. So assume from now that it completes before time
16. We label the time interval from 0 to 6, from 6 to 11, and from 11 to 16 by,
respectively, interval 1,2, and 3. For i = 1, 2, 3, the variables ai ,bi ,ci are defined as
the time that the job is scheduled on, respectively, the A-, B-, and C-machine within
interval i . Let τ be the time that the job is scheduled on the T -machine. Note that
C′ = C + b1 + c1 + c2 + 15/λ · τ , with λ = 1/4. The objective is to minimize C ′.

min C′ = C + b1 + c1 + c2 + 60τ. (3)

Let us define variables for the row sums and column sums, i.e.,

a = a1 + a2 + a3

b = b1 + b2 + b3

c = c1 + c2 + c3
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I1 = a1 + b1 + c1

I2 = a2 + b2 + c2

I3 = a3 + b3 + c3 (4)

A lower bound on C is the total time that the job is processed. Hence,

C ≥ a + b + c + τ. (5)

Another constraint is that the fractions should add up to 1. Hence,

a/18 + b/15 + c/12 + τ/(1/4) = 1.

Multiplying everything by 180 gets rid of the fractions:

10a + 12b + 15c + 720τ = 180. (6)

In the first interval we can schedule at most 6 units and in the second and third both
at most 5. This gives

I1 ≤ 6, I2 ≤ 5 and I3 ≤ 5. (7)

If the job completes before time 6 then I2 = I3 = 0. If it completes after time 6
then C ≥ 6+ I2 + I3. Let binary variable B1 be 0 if the job completes before time 6
and B1 = 1 otherwise. Then the following bounds are valid [The coefficient 10 herein
is just a large enough number: see Eq. (7)]

C ≥ 6B1 + I2 + I3 and I2 + I3 ≤ 10B1, (8)

Similarly, let binary variable B2 = 0 if the job completes before time 11 and let
B2 = 1 otherwise. Then the following bounds are valid (the coefficient 5 herein is just
a large enough number: see Eq. (7)).

C ≥ 11B2 + I3 and I3 ≤ 5B2. (9)

All variables are non-negative:

B1,B2 ∈ {0, 1} and all variables ≥ 0. (10)

If one solves2 the mixed ILP given by (3)–(10) by any correct mixed ILP-solver
then one finds that the optimal solution corresponds with the optimal schedule of the
job. Hence, the optimal value is exactly 15.

2 We used the free solver lp_solve.
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If the job is not scheduled nearly optimal then at least one of the following con-
straints holds:

a1 ≤ 3, b2 ≤ 2.5, c3 ≤ 2.5.

If we add any of the three constraints above then the optimal value is 15.25. The
corresponding solution given by the solver is to put the job completely on the T -
machine, i.e., τ = 0.25 and B1 = B2 = 0. We conclude that if the job is not scheduled
nearly optimal then the optimum is exactly 15 + λ with λ = 1/4.

Note that in general, the arithmetic in ILP solvers is not exact rational arithmetic but
floating-point arithmetic. As a side-effect the results come without any formal guar-
antee. Note that our program has only two binary variables and can thus be translated
into four LP’s. LP solvers with precise arithmetics can be used to verify the optimal
solutions. Further, one may even formulate the duals of the LP’s and check (by hand)
feasibility of corresponding dual solutions. �	

Lemma 4 gives the gap that proves APX -hardness. This follows directly from
the fact that λ and cλ are constants and CBCT = cλn and k = Ω(n). Let us prove
this formally. We show that any polynomial time approximation scheme (PTAS) for
the scheduling problem implies a polynomial time approximation scheme for the
3DM- Bproblem.

Assume that Opt(IM ) = k and assume that we have a (1 + ε)-approximation for
instance IR for some ε > 0. From (1), we may assume that k ≥ n/21 and we argued
before that CBCT = cλn for some constant cλ. Hence,

CBCT + (15 + λ)n = cλn + (15 + λ)n

= (cλ + 15 + λ)n

≤ (cλ + 15 + λ)21k

= dλk, (11)

where dλ = 21(cλ +15+λ). By Lemma 4 (⇒) and Eq. (11), the approximate solution
has value at most

(1 + ε) (CBCT + (15 + λ)n − λk)

= CBCT + (15 + λ)n − λk + ε (CBCT + (15 + λ)n − λk)

≤ CBCT + (15 + λ)n − λk + ε(dλk − λk)

= CBCT + (15 + λ)n − λk(1 − εdλ/λ + ε)

Lemma 4 implies that there is a matching of size at least k(1− εdλ/λ + ε). Hence,
this approximates Opt(IM ) within a multiplicative factor (1 − εdλ/λ + ε). The ratio
goes to 1 if ε goes to zero. We conclude that any polynomial time approximation
scheme (PTAS) for computing the optimal value of the scheduling problem implies a
PTAS for computing the maximum 3-dimensional matching.

Theorem 1 The problem R|pmtn|∑ j C j is APX -hard.

123



144 R. Sitters

Some remarks on the numbers in the reduction. The numbers in the reduction are
balanced carefully but there is some slack. For the T jobs, any constant of at least
15+λ satisfies. We only need that a triple job which completes before time 15+λ and
which is (partially) scheduled on a triple machine, delays all T jobs on that machine.
Further, we do need the processing times of a triple job on its A-, B-, and C-machine
(18,15, and 12) to be decreasing. Reducing the differences between these processing
times gives a smaller gap for the inapproximability. On the other hand, the differences
cannot be too large. For example if the C-machine is much faster than theA-machine,
then scheduling a triple job completely at the beginning of its C-machine becomes
beneficial. The processing times of the B- and C-jobs are chosen such that the optimal
schedule of a triple job divides the job in three equal fractions. Although we do not
need these to be exactly 1/3, the largest gap for the inapproximability is obtained
when the three fractions are roughly the same. Replacing the triple 18, 15, 12 by, for
example, 6, 5, 4, or by 7, 6, 5 would still yield a valid reduction but then, adjusting
other (processing) times accordingly leads to more fractional numbers than are used
now. One could say that we selected nice numbers within a certain range.

So far, we provedAPX -hardness only for the model in which pi j may be infinite,
i.e., job j cannot be processed onmachine i . It is easy to show that we can replace each
infinite processing time in the reduction by a large polynomially bounded processing
time P such that the reduction is still valid. In fact, we conjecture that by a slight mod-
ification of the reduction one can show that the problem is APX -hard even when we
restrict to instances with allmn processing times in {1, 2, . . . , P} for some constant P .

3 Approximability

In this section we present two approximation algorithms for the weighted version:
R|pmtn|∑ j w jC j . The first has an approximation ratio less than 1.81 and is based
on the 2-approximation given by Skutella [22]. The second has a ratio less than 1.698
which is obtained by applying the first algorithm and an algorithm by Queyranne and
Sviridenko [15] and then taking the best of the two solutions. The presented algorithms
are randomized but derandomization is easy.

Preliminaries The speed of machine i for job j is si j = 1/pi j and we say that j is
processed with speed si j at time t if it is processed at time t on machine i . Given a
preemptive schedule σ we define f σ

j (t) as the speed at which job j is processed at
time t and call f σ

j the speed function of job j in σ . The mean busy time Mσ
j of job

j (introduced in [5]) is defined as the average time at which it is processed. More
precisely,

Mσ
j :=

∫ T

0
f σ
j (t)t dt, (12)

where T is any upper bound on the completion time of j . An equivalent formulation
is the following. For α ∈ (0, 1] let Cσ

j (α) be the moment in time when an α-fraction
of j is completed; α-points were first used in the context of approximation in [9].
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Approximability of average completion time scheduling... 145

Mσ
j :=

∫ 1

0
Cσ

j (α) dα,

Lawler and Labetoulle (Theorem 2 in [13]) showed that there is always an optimal
schedule with O(m2n) preemptions. We may therefore restrict our analysis to sched-
ules with a polynomially bounded number of preemptions and Cσ

j (α) is well-defined
in that case. Further, we define for given σ the process time Pσ

j as the total time that
job j is processed.

New lower bound One difficulty in improving on the approximation ratio of 2 is to
find new lower bounds. If all machines are identical then Mσ

j + Pσ
j /2 is a lower bound

on the completion time Cσ
j of a job j . This bound no longer holds in the unrelated

machine model (for example, take m = n = 2 and let w1 = z, p11 = 1, p21 = z,
w2 = 1, p12 = 1/z, and p22 = z, where z is a large number. Then it is optimal to
schedule job 1 on machine 1 in the interval [0, 1] and job 2 starts on machine 2 and
continues on machine 1 from time 1. If z → ∞, then Cσ

2 , Mσ
2 , Pσ

2 → 1). The ratio’s
in [15,17] and [22] are based on theweaker boundCσ

j ≥ Mσ
j and the boundC

σ
j ≥ Pσ

j .
The next theorem gives a new relation between the three concepts: completion time,
mean busy time and process time. The proof is given in Sect. 3.1.1

Theorem 2 For any instance I of R|pmtn|∑w jC j and feasible preemptive schedule
σ for I there exists a feasible preemptive schedule σ ′ for I such that Mσ ′

j + Pσ ′
j <

1.81Cσ
j for any job j .

The intuition behind this theorem is as follows. In the extreme case thatMσ
j +Pσ

j ≈
2Cσ

j , as is true for j = 2 in the example above, we have Mσ
j ≈ Cσ

j and Pσ
j ≈ Cσ

j .
But then, a small fraction of the job is accountable for most of the processing time. By
stretching thewhole schedule by a factor slightlymore than 1we can remove that small
fraction from the schedule. The processing time is reduced significantly while there
is only little increase in completion and mean busy time. The technique of stretching
and rescheduling part of the jobs has been used before. See for example [16].

Corollary 1 (First lower bound) Let OptI be the optimal value for instance I of
R|pmtn|∑w jC j . Then

min
σ

⎛

⎝
∑

j

w j (P
σ
j + Mσ

j )

⎞

⎠ < 1.81OptI . (13)

3.1 The first algorithm

The algorithm in this section is based on the 2-approximation by Skutella [22]: First,
a convex quadratic program is solved and then the solution is rounded randomly.
The only real difference with the algorithm in [22] is the objective function. It will
become obvious that the same result can be obtained by using the interval-indexed
LP-formulation by Schulz and Skutella [17]. However, if we had presented our proof
based on [17] then it is not that obvious that the formulation of [22] gives the same
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results. Another reason to use [22] is that it has a nice compact formulation and the
rounding is slightly easier. Of course, quadratic programs cannot necessarily be solved
exactly in polynomial time but for our analysis it is enough to know that they can be
solved up to an arbitrary small additive number ε > 0.

Next, we give a concise description of the algorithm,we show that the new objective
function remains convex, and we show how Corollary 1 leads to the improved ratio.

To simplify notation we introduce for each machine i a total order ≺i on the set of
jobs by setting j ≺i k ifw j/pi j > wk/pik or ifw j/pi j = wk/pik and j < k. Consider
the following quadratic program (QP). Here xi j , corresponds with the fraction of job
j processed on machine i .

(QP) minimize
n∑

j=1

w j

(
PQP
j + MQP

j

)

subject to PQP
j =

m∑

i=1

xi j pi j for all j, (14)

MQP
j =

m∑

i=1

xi j

⎛

⎝
∑

k≺i j

xik pik + xi j pi j/2

⎞

⎠ for all j,

m∑

i=1

xi j = 1 for all j,

xi j ≥ 0 for all i, j. (15)

Lemma 5 Let OptQP be the optimal value of program QP for some given instance
I . Then, for any feasible schedule σ for I ,

OptQP ≤
∑

j

w j (P
σ
j + Mσ

j ).

Proof Given σ , let xi j be the fraction of j that is processed on machine i in σ .

Then for any j , PQP
j is exactly the process time of job j in σ . Next we show that

∑n
j=1 w j M

QP
j ≤ ∑n

j=1 w j Mσ
j . Given the values xi j , the total weighted mean busy

time on machine i is minimized by placing jobs in order of non-increasingw j/pi j [6].
Thus,

∑n
j=1 w j Mσ

j is at least the total weighted mean busy time of this pseudo sched-
ule σ̂ (we call σ̂ a pseudo schedule since a job is possibly processed simultaneously
on several machines). Let s = ∑

k≺i j xik pik be the starting time of job j in σ̂ . Then,
by (12), the contribution of machine i to the mean busy time of j is

∫ s+xi j pi j

s
1/pi j t dt = 1

2pi j

[
t2
]s+xi j pi j

s

= sxi j + x2i j pi j/2 = xi j

⎛

⎝
∑

k≺i j

xik pik + xi j pi j/2

⎞

⎠ .

Taking the sum over all jobs andmachines shows that the total weighted completion
time of σ̂ is exactly

∑n
j=1 w j M

QP
j . �	

123



Approximability of average completion time scheduling... 147

We rewrite (QP) in matrix notation and adopt the notation from [22]. Define ci j =
w j pi j and, for any i ∈ {1, 2, . . . ,m}, let i1, i2, . . . , in be the indices of the jobs
according to≺i . Let c, x ∈ Rmn be, respectively, the vector of all ci j ’s and xi j ’s ordered
by increasing i and then, for each i , in the order≺i . Themn×mnmatrix A is given by

A =

⎛

⎜
⎜
⎜
⎝

A1 0 0 0
0 A2 0 0
...

...
. . .

...

0 0 · · · Am

⎞

⎟
⎟
⎟
⎠

, where Ai =

⎛

⎜
⎜
⎜
⎝

wi1 pi1 wi2 pi1 · · · win pi1
wi2 pi1 wi2 pi2 · · · win pi2

...
...

. . .
...

win pi1 win pi2 · · · win pin

⎞

⎟
⎟
⎟
⎠

.

Precisely, the entry ( j, k) of submatrix Ai is wimax{ j,k} pimin{ j,k} . Now we can rewrite
(QP) as

minimize cT x + 1

2
xT Ax

subject to
m∑

i=1

xi j = 1, for all j,

x ≥ 0. (16)

The quadratic program used in [22] has objective function 1
2c

T x + 1
2 x

T Ax and this
is the only difference. It was shown in that paper that matrix A is positive semidefinite.

Lemma 6 (Skutella [22])Matrix A is positive semidefinite.

The quadratic program (QP) is not a proper relaxation of R|pmtn|∑ j w jC j in
the sense that the optimal value may be strictly larger than the optimal value of the
scheduling problem. However, the advantage of this objective function is that we do
not lose anything in the next step of the algorithm: randomized rounding.

Randomized rounding

Given a solution for (QP) with values xi j , (i ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . , n}), we
assign each job j independently at random to one of the machines, where job j is
assigned to machine i with probability xi j . On each machine i we place the assigned
jobs in the order ≺i . The obtained schedule is non-preemptive and the expected com-
pletion time E[C j ] of job j is easily expressed in the values xi j as follows.

E[C j ] =
m∑

i=1

xi j (
∑

k≺i j

xik pik + pi j )

=
m∑

i=1

xi j pi j +
m∑

i=1

xi j
∑

k≺i j

xik pik

< PQP
j + MQP

j .

Corollary 2 Algorithm 1 is a randomized 1.81-approximation algorithm.
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Algorithm 1: A randomized 1.81-approximation algorithm
Solve (QP)→ values xi j ;1

Assign job j to machine i with probability xi j . On each machine i place jobs in order ≺i .2

Proof From Corollary 1 and Lemma 5 we have that for any instance I

OptQP
< 1.81min

σ

∑

j

w jC
σ
j .

On the other hand, randomized rounding gives

E

⎡

⎣
∑

j

w jC j

⎤

⎦ =
∑

j

w jE[C j ] <
∑

j

w j

(
PQP
j + MQP

j

)
= OptQP

.

�	
The following corollary follows immediately from the non-preemptiveness of the

constructed schedule.

Corollary 3 For any instance of R|pmtn|∑w jC j , the value of the optimal non-
preemptive schedule is no more than 1.81 times the value of the optimal preemptive
schedule.

The algorithm can be derandomized using the method of conditional probabilities.
All we need to show is that we can bound the expected completion times on the
condition that some jobs are already assigned to machines. In that case, the matrix A
in (16) is adjusted by removing the rows and columns of the already assigned jobs and
therefore it remains positive semidefinite. The changes in the vector c are slightlymore
involved but have no effect on the convexity of the adjusted program. The procedure
is exactly the same as in [22] and we refer to that paper for more details.

Instead of using the quadratic program QP one may just as well use the interval-
indexed LP-formulation and randomized rounding technique given by Schulz and
Skutella [17]. ThisLPuses variables yi j t indicating the fraction of interval t onmachine
i used by job j . Given an LP-solution, a job is assigned to interval t on machine i
with probability yi j tδt/pi j , where δt is the length of interval t . Given the assignment,
a feasible schedule is obtained by processing on each machine the jobs as early as
possible in the order of the intervals assigned to the jobs. We refer to [17] for a precise
formulation. It is shown that any solution to the LP can be rounded such that the
expected completion time of any job is at most PLP

j + MLP
j , where PLP

j and MLP
j

are the process time and mean busy time of the job in the (pseudo) schedule defined
by the LP-solution. On the other hand, for any feasible schedule σ with corresponding
values yi j t we have PLP

j = Pσ
j and MLP

j ≤ (1+ ε)Mσ
j , where ε depends on the size

of the intervals. To turn the (2 + ε)-approximation into a 1.81-approximation, all we
need to do is to change the objective function to PLP

j + MLP
j .
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3.1.1 Proof of Theorem 2.

The proof is constructive. Note that the construction is not part of the algorithm. Given
any value β > 1 and schedule σ we can construct a new schedule σ ′ by removing
a 1 − 1/β fraction of every job and stretching the remaining schedule by a factor β.
Then, the fraction of any job in the new schedule will be exactly 1/β ·β = 1. Note that
we can decide for each job independently what parts to remove. The optimal choice
for β that follows from our analysis below is β = 1.089. It would be enough to do
the analysis just for this value but the analysis is easier to read by keeping β variable.
Moreover, we will do a similar analysis in Sect. 3.2.3 with a different value of β.

We now describe how σ ′ is constructed. For each job j we keep that 1/β fraction
that has smallest process time in σ . We say that this is the good part of job j (this part
may not be unique but we fix one arbitrarily). Then we stretch the whole schedule by
a factor β.

We shall only analyze one arbitrary job j in one arbitrary schedule σ and this
enables us to simplify the notation. We remove the index j and σ from the notation
and refer to job j simply as the job (as was done in the APX -hardness proof). For
example, M , and P are the mean busy time and process time of the job ( j) in the
schedule (σ ) and f (t) is its speed function. Since there is only one job we assume
w.l.o.g. that the completion time of the job is 1. Let T ⊂ [0, 1] be the (set of) time
interval(s) in which the good part of the job is processed. Denote the total length of T
by τ = |T |, for some τ < 1. Note that

0 < τ ≤ 1/β < 1

since we picked the fastest 1/β fraction and assumed C = 1. By stretching σ by a
factor β, the set T is mapped onto a set T ′ of size |T ′| = βτ . In the new schedule,
the job is processed completely during T ′.

Let MT be the contribution of the good part of the job in the mean busy time, i.e.,

MT :=
∫

t∈T
f (t)t dt,

Claim 2 Let P ′ and M ′ be, respectively, the total process time and mean busy time of
the job in σ ′. Then,

P ′ = βτ and M ′ = β2MT ≤ β − (β2 − β)τ 2

2(1 − τ)
.

Proof The process time of the good part of the job in σ is τ . After stretching it has
length βτ . To see the second equality, note that there is a factor β increase in time and
a factor β increase in the fraction considered (from 1/β to 1). More precisely,

M ′ =
∫

y∈T ′
f (y/β)y dy =

∫

t∈T
f (t)βt d(βt) = β2MT .
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To prove the inequality of the claim we maximize MT over all speed functions
g for which the length of the good part is τ . In other words, we solve the following
problem: Given β > 1 and 0 < τ ≤ 1/β find (an upper bound for)

Ωβ,τ := sup
g

∫

t∈Tg

g(t) t dt,

where g is non-negative and is defined on [0, 1] and ∫ t=1
t=0 g(t) dt = 1 and the good

part is Tg with |Tg| = τ . Clearly, we may restrict to speed functions g that are non-
decreasing. Consequently, Tg = [1−τ, 1] and we can rephrase our problem as finding
(an upper bound for)

Ωβ,τ := sup
g

1∫

t=1−τ

g(t) t dt (17)

such that

(i)

t=1−τ∫

t=0

g(t) dt = 1 − 1/β and (i i)

1∫

t=1−τ

g(t) dt = 1/β.

Firstwefix some constant s ≥ 0 and add to (i) and (i i) the restriction that g(1−τ) =
s. The value s is bounded by the monotonicity of g. Constraints (i) and (ii) imply

1 − 1/β

1 − τ
≤ s ≤ 1/β

τ
. (18)

Since we assumed that the function is non-decreasing, the supremum follows from
the extreme situation where the speed is s everywhere on [1− τ, 1] and the remaining
fraction 1/β − sτ is done instantly at time 1. The supremum in that case is

sτ · (1 − τ/2) + (1/β − sτ) · 1 = 1/β − sτ 2/2. (19)

Expression (19) is maximized for minimum value of s. We substitute the lower
bound from (18) and get

MT ≤ Ωβ,τ = 1/β − (1 − 1/β)τ 2

2(1 − τ)
.

�	
From Claim 2 we see that for given value β > 1 we have

P ′ + M ′ ≤ max
τ∈(0,1/β] Fβ(τ ), where Fβ(τ ) =

[

βτ + β − (β2 − β)τ 2

2(1 − τ)

]

. (20)
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We shall prove that for fixed β > 1 the function Fβ(τ ) is maximized for

τ ∗(β) = 1 −√
(β − 1)/(β + 1). (21)

Before proving (21), let us see how this completes the proof of Theorem 2. Mini-
mizing Fβ(τ ∗(β)) over β one finds that the minimum is attained for β̂ ≈ 1.089. Note
that we do not need to prove here that this is the minimum. It suffices to verify that
F1.089(τ ∗(1.089)) < 1.81, which completes the proof of Theorem 2.

Now we prove (21). The function is continues and differentiable for τ < 1 and
goes to −∞ for τ → −∞ or τ ↑ 1.

∂Fβ(τ )

∂τ
= β − (β2 − β)

τ − τ 2/2

(1 − τ)2
. (22)

Setting this to zero gives

0 = β(1 − τ)2 − (β2 − β)(τ − τ 2/2)

= β − (β2 + β)τ + (β2/2 + β/2)τ 2.

This is a quadratic function of τ . Let us write u = β2 + β. Then

τ = (−b ±
√
b2 − 4ac)/2a, where a = u/2, b = −u, and c = β.

τ = (u ±
√

u2 − 2uβ)/u = 1 ±√
1 − 2β/u = 1 ±√

(β − 1)/(β + 1).

Since τ < 1 we conclude that τ ∗(β) = 1 − √
(β − 1)/(β + 1).

3.2 A second algorithm: take the best of two solutions

The (2+ ε)-approximation algorithm by Queyranne and Sviridenko [15] can be used
to improve on the constant of 1.81. Remember that Cσ

j (α) is defined as the moment
in time when an α-fraction of j is completed.
Algorithm QS: Find a (1+ε)-approximation σ for minimizing

∑
j w j M j by solving

an LP. Then, take 1/γ at random from (0, 1]with distribution function f (x) = 2x and
for each job j remove all that is scheduled after time Cσ

j (1/γ ). Stretch the remaining
schedule by a factor γ .

It turns out that algorithm QS performs quite well for the instance where Algorithm
1 attains itsworst case ratio.Hence, it is interesting to consider the following algorithm.

Algorithm 2: A randomized 1.698-approximation algorithm
Apply Algorithm 1 and Algorithm QS and take the best solution.1
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Analysis of Algorithm QS

The sum of weighted mean busy times can be minimized approximately by solving
a linear program and then turning it into a feasible schedule by using the polynomial
time algorithm of Gonzalez and Sahni [7] for the preemptive open shop problem. Let
us denote for any integer t ≥ 1, the time interval [t − 1, t] as slot t . In the LP below,
the variable xi j t represents the fraction of job j processed on machine i within slot
t .

(LP) minimize
n∑

j=1

(

w j

m∑

i=1

T∑

t=1

xi j t · t
)

m∑

i=1

T∑

t=1

xi j t = 1 for all j,

m∑

i=1

xi j t pi j ≤ 1 for all j, t,

n∑

j=1

xi j t pi j ≤ 1 for all i, t,

xi j t ≥ 0 for all i, j, t. (23)

The first constraint ensures that each job is completely processed, the second
constraint ensures that each job spends at most one time unit in each slot and
the third constraints implies that in each slot the total processing time is at most
one on each machine. If the values xi j t are taken from a feasible schedule, then
Mj ≥ ∑m

i=1
∑T

t=1 xi j t (t − 1) for any j since each fraction xi j t is processed in the
interval [t − 1, t]. Now, assume w.l.o.g. that pi j ≥ 2/ε for all i, j . Then, for any job
j

m∑

i=1

T∑

t=1

xi j t t = 1 +
m∑

i=1

T∑

t=1

xi j t (t − 1) ≤ 1 + Mj ≤ (1 + ε)Mj .

Hence, the optimal LP-value is at most 1 + ε times the minimum total weighted
mean busy time. For each slot t , the values xi j t define an instance of the open shop
problem O|pmtn|Cmax, and the classical algorithm of Gonzalez and Sahni [7] can
be used to find a feasible preemptive schedule in each slot. The resulting schedule
has a total weighted mean busy time of at most the LP-value and, hence, is a 1 + ε-
approximation for minimizing total weighted mean busy time. We assumed here that
processing times are polynomially bounded but this assumption can be avoided by
using intervals of geometrically increasing length instead of intervals of length 1.
See [15] for more details.

The next step of the QS-algorithm is to apply algorithm Slow-Motion of Schulz and
Skutella [16] to the optimal LP-schedule σ . That means, the LP-schedule is converted
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by stretching it by a random factor γ and processing each job within its new time slots
as early as possible. Let Cγ

j be the completion time of j in the final schedule given

the value of γ . Then Cγ

j = γ ·Cσ
j (1/γ ). Now, if 1/γ is chosen at random from (0, 1]

with distribution f (x) = 2x then

E[C j ] =
1∫

x=0

C1/x
j f (x)dx =

1∫

x=0

1

x
Cσ

j (x) f (x)dx = 2

1∫

x=0

Cσ
j (x)dx = 2Mσ

j .

Let ρ be an optimal schedule for minimizing the total weighted completion time.
Then, the expected sum of weighted completion times given by this algorithm is

∑

j

w jE[C j ] = 2
∑

j

w j M
σ
j ≤ 2(1 + ε)

∑

j

w j M
ρ
j . (24)

The proof follows now from Mρ
j < Cρ

j . Derandomization is easy by enumerating
over γ .

3.2.1 Comparing the two algorithms

In this paragraph we give some intuition for why Algorithm 2 performs strictly better
than Algorithm 1. Consider an optimal schedule ρ w.r.t. minimizing the total weighted
completion time for some instance I . Let λI ≤ 1 be such that

∑

j

w j M
ρ
j = λI

∑

j

w jC
ρ
j . (25)

From (24) it follows that the approximation ratio of the QS algorithm for this
instance is at most 2(1 + ε)λI . Hence, it performs good for small values of λI . On
the other hand, Algorithm 1 performs good if λI is close to 1. We shall give a short
(hand-waving) explanation for this. In the analysis of Algorithm 1 we defined ρ′ from
ρ by keeping the good part of jobs and removing the rest and stretching the schedule
by a factor β̂. If λI ≈ 1 then, for an average job j we have Mρ

j ≈ Cρ
j which means

that almost the whole job j is processed in a small interval. This implies Mρ′
j ≈ β̂Mρ

j

and Pρ′
j ≈ 0. Then, Mρ′

j + Pρ′
j ≈ β̂Mρ

j < β̂Cρ
j and the approximation factor for the

average job j is approximately β̂ ≈ 1.089.

3.2.2 A second lower bound

Theorem 3 For any instance I and feasible preemptive schedule σ for I there exists
a feasible preemptive schedule σ ′ for I such that Pσ ′

j + Mσ ′
j < 2γCσ

j − 2Mσ
j for any

job j , where γ = 1.698.

A proof is given in Sect. 3.2.3. Now let σ be an optimal schedule for minimizing
the total weighted completion time of I and let OptI be its value and let σ ′ be as
defined by Theorem 3. Then, taking the weighted sum over all jobs gives
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∑

j

w j P
σ ′
j +

∑

j

w j M
σ ′
j < 2γOptI − 2

∑

j

w j M
σ
j .

This leads to the following lower bound on the optimal value.

Corollary 4 (second lower bound) Let OptI be the optimal value for instance I of
R|pmtn|∑w jC j . Then

2min
σ

∑

j

w j M
σ
j + min

σ ′

∑

j

w j

(
Pσ ′
j + Mσ ′

j

)
< 2γOptI ,

where the minima are taken over all feasible schedules σ and σ ′.
The left minimum is an upper bound on the value given by Algorithm QS, up to a

factor 1 + ε [see (24)], and the right minimum is an upper bound on the value given
by Algorithm 1. By choosing ε small enough we get the the next corollary.

Corollary 5 Algorithm 2 gives a γ -approximation for R|pmtn|∑w jC j , were γ =
1.698.

3.2.3 Proof of Theorem 3.

The proof is similar to that of Theorem 2 but the optimization is more tedious. The
schedule σ ′ is defined exactly the same. That means that σ ′ is defined from σ by
keeping only the good part of jobs and stretching the remaining schedule by a factor
β > 1. The value of β that results from the analysis is now β = 1.29. The optimization
over β is omitted here. It is enough to verify the equations starting from (31) where
we plug in the value of β.

Again, we consider one arbitrary job j and drop the index j and σ in the sequel.
We assume that the completion time of the job is C = 1. Also, T is defined as before
as the (set of) time interval(s) in which the good part of the job is processed. Again,
τ = |T | and we define MT , M ′ and P ′ as before. We will show that for β = 1.29 we
have

2M + (M ′ + P ′) < 2 · 1.698. (26)

We have P ′ = βτ , M = ∫ 1
t=0 f (t) · t dt . To show an upper bound on the left

side of (26) we may assume that the speed function f is non-decreasing. Then, M ′ =
β2
∫ 1
t=1−τ

f (t) · t dt and the problem becomes to find an (upper bound) for the value

Ψβ,τ := sup
g

⎛

⎝2

1−τ∫

t=0

g(t) · t dt + (2 + β2)

1∫

t=1−τ

g(t) · t dt
⎞

⎠+ βτ, (27)

where g is a speed function that satisfies

(i)

t=1−τ∫

t=0

g(t) dt = 1 − 1/β and (i i)

1∫

t=1−τ

g(t) dt = 1/β.
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Let s > 0 be a constant. First we find the supremum under the restriction that
g(1 − τ) = s. The constraints (i) and (i i) are the same as in the proof of Theorem 2
and imply again (18):

sL ≤ s ≤ sU , where sL = 1 − 1/β

1 − τ
and sU = 1

βτ
.

The second integral in this objective (27) is exactly the objective function that we
had in the proof of Theorem 2. From (19) we see that the second integral satisfies

(2 + β2)

1∫

t=1−τ

g(t) · t dt ≤ (2 + β2)(1/β − sτ 2/2). (28)

The first integral in (27) is maximized in the case where the speed is 0 in the
interval [0, t∗] and s in [t∗, 1− τ ] where t∗ is such that the complete fraction 1− 1/β
is processed between 0 and 1− τ . Hence, t∗ = 1− τ − (1− 1/β)/s (note that s ≥ sL
implies t∗ ∈ [0, 1 − τ)). The value of the first integral in (27) in that case is

2(1 − 1/β)(t∗ + 1 − τ)/2

= 2(1 − 1/β)(1 − τ − (1 − 1/β)/s + 1 − τ)/2

= 2(1 − 1/β)(1 − τ − (1 − 1/β)/(2s)).

We add this bound to (28) and to βτ and denote this by

Gβ,τ (s) :=
(
2 + β2

)( 1

β
− sτ 2

2

)

+ 2

(

1 − 1

β

)(

1 − τ − 1 − 1/β

2s

)

+ βτ.

Then,

Ψβ,τ ≤ max{Gβ,τ (s) | sL ≤ s ≤ sU }.

We simplify notation and write Gβ,τ (s) = a1 + a2τ + a3τ 2s + a4/s, where

a1 = 2 + β, a2 = β + 2/β − 2, a3 = −1 − β2/2, and a4 = −(1 − 1/β)2.

Note that function Gβ,τ (s) is strictly increasing for 0 < s ≤ s′ :=
√

a4
a3

/τ and

strictly decreasing for s ≥ s′. Hence,

Ψβ,τ ≤
⎧
⎨

⎩

Gβ,τ (sL) if s′ ≤ sL
Gβ,τ (s′) if sL ≤ s′ ≤ sU
Gβ,τ (sU ) if sU ≤ s′.

(29)

123



156 R. Sitters

We can exclude the third case since

s′ ≥ sU ⇒
√
a4
a3

≥ 1/β ⇒ β2|a4| ≥ |a3| ⇒ (β − 1)2 ≥ 1 + β2/2 ⇒ β ≥ 4.

Hence, for β = 1.29 the inequality s′ ≤ sU is always true. Further,

sL ≤ s′ ⇔ 1 − 1/β

1 − τ
≤
√
a4
a3

/τ ⇔ τ

1 − τ
≤
√
a4
a3

/(1 − 1/β).

The righthand side equals 1/
√−a3. Hence,

sL ≤ s′ ⇔ τ

1 − τ
≤ 1√−a3

⇔ τ ≤ τ ∗ := 1√−a3 + 1
.

Now (29) becomes

Ψβ,τ ≤
{
Gβ,τ (sL) if τ ≥ τ ∗
Gβ,τ (s′) if τ ≤ τ ∗. (30)

At this point we removed the parameter s from the optimization and we continue
with maximizing the righthand side of (30) over τ . We start with the second bound
of (30). Substituting s′ gives

Gβ,τ (s
′) = a1 + (a2 + 2

√
a3a4)τ.

For β = 1.29 we have

a1 = 3.29, a2 ≈ 0.8403, a3 ≈ −1.8320, a4 ≈ −0.05053, τ ∗ = 0.4248 (31)

This gives

Gβ,τ (s
′) ≈ 3.29 + 0.2317τ

For τ ≤ τ ∗ the maximum is attained for τ = τ ∗.

Gβ,τ∗(s′) ≈ 3.29 + 0.2317 · 0.4248 < 3.39.

Now we maximize the first bound of (30) over τ . This value will be slightly larger
and hence determines the approximation ratio. Substituting sL = (1 − 1/β)/(1 − τ)

gives

Gβ,τ (sL) = a1 + a2τ + a3(1 − 1/β)
τ 2

1 − τ
+ a4

1 − 1/β
(1 − τ)
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We rewrite this in a form that is easy to maximize.

Gβ,τ (sL) = a1 + a2τ + a3(1 − 1/β)

(
1

1 − τ
+ 1 − τ

)

+ a4
1 − 1/β

(1 − τ)

=
(

a3(1 − 1/β) + a4
1 − 1/β

− a2

)

(1 − τ) + a3(1 − 1/β)
1

1 − τ
+ Cβ

= a(1 − τ) + b

1 − τ
+ Cβ,

where a ≈ −1.4769 and b ≈ −0.4118 and Cβ is independent of τ . Now it is easy to
see that it is maximized for 1 − τ ′ = √

b/a ≈ 0.5280, i.e., τ ′ ≈ 0.4720. Note that
τ ′ ∈ [τ ∗, 1/β]. Hence,

max
τ∈[τ∗,1/β]Gβ,τ (sL) = Gβ,τ ′(sL) < 3.396 = 2 · 1.698. (32)

This completes the proof of Theorem 3.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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