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Hanasusanto et al. [HKW] has pointed out an error in the original publication of the
article. To be precise, the error occurs in the first formula on page 429. We gratefully
acknowledge their careful reading of our paper. We have rectified the error and the
corrected Sect. 3.2 is given below.We have done this so that the correction can be read
almost independently of the rest of the paper and to take the opportunity to improve
the exposition.

3.2 Continuous distributions

For two-stage stochastic programming problems with continuously distributed para-
meters, �P-hardness of obtaining the optimal solution can be established under even
the mildest conditions on the distributions. For the proof, we use a reduction from the
problem of computing the volume of a knapsack polytope, proved �P-hard in [3].

Let Z+ denote the nonnegative integers and Q+ the rational numbers.

The online version of the original article can be found under doi:10.1007/s10107-005-0597-0.
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Definition 3.2 Let P = {w ∈ [0, 1]n | ∑n
j=1α jw j ≤ β} be the knapsack poly-

tope, where α j ∈ Z+ ( j = 1, . . . , n) and β ∈ Q+. We consider the following two
computational problems.

(i) Counting knapsack solutions. Compute N (P) = |{0, 1}n ∩ P|.
(ii) Volume of knapsack polytope. Compute Vol(P), the volume of P .

These problems are �P-hard. In [3], Volume of knapsack polytope was proved
�P-hard by reduction from the known �P-hard problem Counting knapsack solu-
tions.

Claim 1 Counting knapsack solutions remains �P-hard if αn = �β� + 1.

Proof If αn = �β� + 1, let P ′ = {wn−1 ∈ [0, 1]n−1 | ∑n−1
j=1α jw j ≤ �β�}|. Then

N (P ′) = N (P), since α j ∈ Z+ ( j = 1, . . . , n − 1), and w ∈ {0, 1}n ∩ P implies
wn = 0. Clearly, computing N (P ′) is �P-hard. Hence computing N (P) is �P-hard
when αn = �β� + 1. �	
Claim 2 Volume of knapsack polytope remains �P-hard if αn > β.

Proof For P as in Claim 1, let Pi = {w ∈ {0, 1}n | ∑n
j=1α jw j ≤ �β� + i/n}, where

(0 ≤ i < n). So N (Pi ) = N (P) for all 0 ≤ i < n, since α j ∈ Z+ ( j = 1, . . . , n),
and �β� ≤ �β� + i/n < �β� + 1. Thus computing N (Pi ) is �P-hard.

The reduction on p.970 of [3] implies that, if computing N (P) is �P-hard, then
computing Vol(Pk) is �P-hard, for some 0 ≤ k < n. It follows that computing Vol(P)

is �P-hard if β = �β� + k/n < �β� + 1 = αn . �	
Theorem 3.2 Determining the optimal solution of a two-stage stochastic program-
ming problem with continuously distributed parameters is �P-hard, even if all the
stochastic parameters have the uniform [0, 1] distribution.
Proof Define i.i.d. random variables q1, . . . , qn−1, each uniformly distributed on
[0, 1], andwriteqn−1 = (q1, . . . , qn−1). Now, given an instance of computing the vol-
ume of a knapsack polytope as in Claim 2, consider the following two-stage stochastic
programming problem with continuously distributed parameters:

max{−cx + Q(x) | 0 ≤ x ≤ 1},

where

Q(x) = Eqn−1

[

max

{

βy −
n−1∑

i=1

q j y j | 0 ≤ y ≤ x, y j ≥ α j y ( j = 1, . . . , n)

}]

.

For any realisation qn−1 of qn−1, the optimal solution of the second-stage problem is
y j = α j y ≥ 0, ( j = 1, . . . , n − 1), so

Q(x) = Eqn−1

[

max

{

(β −
n−1∑

i=1

q jα j )y | 0 ≤ y ≤ x

}]

.

Thus y = x if
∑n−1

j=1 q jα j ≤ β, and y = 0 if
∑n−1

j=1 q jα j > β.
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Notice that, since αn > β, the constraint wn ≤ 1 is redundant in P in Claim 2.
Define ϕ(wn−1) = (β − ∑n−1

j=1α jw j )/β. Thus ϕ(wn−1) ≤ 1 in P ′ as defined in the

proof of Claim 1. In P this implies that αnwn/β ≤ ϕ(wn−1).
Now the solution value of the two-stage problem can be written as

max
{(

β� − c
)
x | 0 ≤ x ≤ 1

}
, where � = Eqn−1

[
max(ϕ(qn−1), 0)

]
.

Thus x = 1, with optimal objective value β�−c, if� > c/β, and x = 0, with optimal
objective value 0, otherwise. Therefore computing the optimal solution to the stochas-
tic program requires determining whether or not � = Eqn−1

[
max(ϕ(qn−1), 0)

]
>

c/β.

Claim 3 Computing � is �P-hard.

Proof Since, from Claim 2 above, computing Vol(P) is �P-hard, this claim follows
from

� = Eqn−1
[
max(ϕ(qn−1), 0)

]=
∫

P ′
ϕ(wn−1) dwn−1 , since 0≤ϕ(wn−1)≤1 in P ′,

=
∫

P ′

∫ ϕ(wn−1)

0
1 d(αnwn/β) dwn−1 ,

= (αn/β)

∫

P
1 dwn dw

n−1 , since 0 ≤ αnwn/β ≤ ϕ(wn−1) in P,

= (αn/β)Vol(P).

�	
Now, from [3], it follows that Vol(P) is a rational number with known denominator,
when P is a knapsack polytope. Hence we can compute Vol(P) exactly if we can
compute it to a close enough approximation. Hence there must exist values of c for
which deciding� > c/β is �P-hard. Otherwisewe could use bisection to compute the
�P-hard quantity Vol(P) exactly, in a polynomial number of iterations, a contradiction.

�	
Showing that this problem is in P�P would require additional conditions on the input
distributions. We note that a result of Lawrence [9] implies that exact computation
may not even be in pspace.
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