Skip to main content

Advertisement

Log in

Low-energy LED red light inhibits the NF-κB pathway and promotes hPDLSCs proliferation and osteogenesis in a TNF-α environment in vitro

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

There are few studies on the effect of low-energy LED red light on periodontal tissue regeneration in an inflammatory environment. In this study, Cell Counting Kit-8 (CCK-8) assays were used to detect the effects of TNF-α at three different concentrations (0, 10 ng/ml, and 20 ng/ml) on the proliferation of human periodontal ligament stem cells (hPDLSCs), and 10 ng/ml was selected as the subsequent experimental stimulation concentration. CCK-8 assays were used to detect the effect of LED red light with energy density of 1 J/ cm2, 3 J/ cm2, and 5 J/cm2 on the proliferation of hPDLSCs. The promotion effect of energy density of 5 J/cm2 on the proliferation of hPDLSCS was the most obvious (p < 0.05). Set CON group, ODM group, ODM + 10 ng/ml TNF-α group, and ODM + 10 ng/ml TNF-α + 5 J/ cm2 LED red light group. Alkaline phosphatase staining and activity detection, alizarin red staining and calcium nodules quantitative detection of osteoblast differentiation products, real-time fluorescence quantitative PCR detection of osteoblast gene expression (Runx2, Col-I, OPN, OCN). The results showed that ODM showed the strongest osteoblast ability, followed by ODM + 10 ng/ml TNF-α + 5 J/ cm2 LED red light group. The osteoblast ability of ODM + 10 ng/ml TNF-α was decreased, but was not found in CON group. Western blot was used to detect the expression of NF-κB pathway protein and osteoblast-related proteins (Runx2, Col-I, OPN, OCN) after addition of PDTC inhibitor. The results showed that the expression of p-IκBα was increased and the expression of IκBα was decreased (p < 0.05). The expression of osteoblast protein increased after the addition of inhibitor (p < 0.05). Therefore, in an inflammatory environment constructed by 10 ng/ml TNF-α, 5 J/cm2 LED red light can upregulate the proliferation and osteogenesis of hPDLSCs by inhibiting NF-κB signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author Yao Wang, upon reasonable request.

References

  1. Martignago CCS, Tim CR, Assis L et al (2020) Effects of red and near-infrared LED light therapy on full-thickness skin graft in rats. Lasers Med Sci 35(1):157–164. https://doi.org/10.1007/s10103-019-02812-6

    Article  PubMed  Google Scholar 

  2. Ren C, McGrath C, Gu M et al (2020) Low-level laser-aided orthodontic treatment of periodontally compromised patients: a randomised controlled trial. Lasers Med Sci 35(3):729–739. https://doi.org/10.1007/s10103-019-02923-0

    Article  PubMed  Google Scholar 

  3. Lee KD, Chiang MH, Chen PH et al (2019) The effect of low-level laser irradiation on hyperglycemia-induced inflammation in human gingival fibroblasts. Lasers Med Sci 34(5):913–920. https://doi.org/10.1007/s10103-018-2675-6

    Article  PubMed  Google Scholar 

  4. Zhu T, Wu Y, Zhou X, Yang Y, Wang Y (2019) Irradiation by blue light-emitting diode enhances osteogenic differentiation in gingival mesenchymal stem cells in vitro. Lasers Med Sci 34(7):1473–1481. https://doi.org/10.1007/s10103-019-02750-3

    Article  PubMed  Google Scholar 

  5. Yang Y, Zhu T, Wu Y et al (2020) Irradiation with blue light-emitting diode enhances osteogenic differentiation of stem cells from the apical papilla. Lasers Med Sci 35(9):1981–1988. https://doi.org/10.1007/s10103-020-02995-3

    Article  PubMed  Google Scholar 

  6. Liu N, Lu W, Qu X, Zhu C (2022) LLLI promotes BMSC proliferation through circRNA_0001052/miR-124-3p. Lasers Med Sci 37(2):849–856. https://doi.org/10.1007/s10103-021-03322-0

    Article  PubMed  Google Scholar 

  7. Sabino VG, Ginani F, da Silva TN et al (2020) Laser therapy increases the proliferation of preosteoblastic MC3T3-E1 cells cultured on poly(lactic acid) films. J Tissue Eng Regen Med 14(12):1792–1803. https://doi.org/10.1002/term.3134

    Article  CAS  PubMed  Google Scholar 

  8. Barolet D, Roberge CJ, Auger FA et al (2009) Regulation of skin collagen metabolism in vitro using a pulsed 660 nm LED light source: clinical correlation with a single-blinded study. J Invest Dermatol 129(12):2751–2759. https://doi.org/10.1038/jid.2009.186

    Article  CAS  PubMed  Google Scholar 

  9. Sacono NT, Costa CA, Bagnato VS et al (2008) Light-emitting diode therapy in chemotherapy-induced mucositis. Lasers Surg Med 40(9):625–633. https://doi.org/10.1002/lsm.20677

    Article  PubMed  Google Scholar 

  10. Sakamoto FH, Izikson L, Tannous Z et al (2012) Surgical scar remodelling after photodynamic therapy using aminolaevulinic acid or its methylester: a retrospective, blinded study of patients with field cancerization. Br J Dermatol 166(2):413–416. https://doi.org/10.1111/j.1365-2133.2011.10576.x

    Article  CAS  PubMed  Google Scholar 

  11. Kömerik N, Nakanishi H, MacRobert AJ et al (2003) In vivo killing of Porphyromonas gingivalis by toluidine blue-mediated photosensitization in an animal model. Antimicrob Agents Chemother 47(3):932–940. https://doi.org/10.1128/AAC.47.3.932-940.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wu Y, Zhu T, Yang Y et al (2021) Irradiation with red light-emitting diode enhances proliferation and osteogenic differentiation of periodontal ligament stem cells. Lasers Med Sci 36(7):1535–1543. https://doi.org/10.1007/s10103-021-03278-1

    Article  PubMed  Google Scholar 

  13. Hamblin MR (2017) Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophys 4(3):337–361. https://doi.org/10.3934/biophy.2017.3.337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Feng F, Akiyama K, Liu Y et al (2010) Utility of PDL progenitors for in vivo tissue regeneration: a report of 3 cases. Oral Dis 16(1):20–28. https://doi.org/10.1111/j.1601-0825.2009.01593.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tan J, Zhou L, Xue P et al (2016) Tumor Necrosis Factor-α Attenuates the Osteogenic Differentiation Capacity of Periodontal Ligament Stem Cells by Activating PERK Signaling. J Periodontol 87(8):e159–e171. https://doi.org/10.1902/jop.2016.150718

    Article  CAS  PubMed  Google Scholar 

  16. Li X, Chen D, Jing X et al (2020) DKK1 and TNF-alpha influence osteogenic differentiation of adBMP9-infected-rDFCs. Oral Dis 26(2):360–369. https://doi.org/10.1111/odi.13235

    Article  PubMed  Google Scholar 

  17. Zhu W, Qiu Q, Luo H et al (2020) High Glucose Exacerbates TNF-α-Induced Proliferative Inhibition in Human Periodontal Ligament Stem Cells through Upregulation and Activation of TNF Receptor 1. Stem Cells Int 2020:4910767. https://doi.org/10.1155/2020/4910767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang J, Li ZG, Si YM et al (2014) The difference on the osteogenic differentiation between periodontal ligament stem cells and bone marrow mesenchymal stem cells under inflammatory microenviroments. Differentiation 88(4–5):97–105. https://doi.org/10.1016/j.diff.2014.10.001

    Article  CAS  PubMed  Google Scholar 

  19. Zhu W, Tan Y, Qiu Q et al (2013) Comparison of the properties of human CD146+ and CD146- periodontal ligament cells in response to stimulation with tumour necrosis factor α. Arch Oral Biol 58(12):1791–1803. https://doi.org/10.1016/j.archoralbio.2013.09.012

    Article  CAS  PubMed  Google Scholar 

  20. Kong X, Liu Y, Ye R et al (2013) GSK3β is a checkpoint for TNF-α-mediated impaired osteogenic differentiation of mesenchymal stem cells in inflammatory microenvironments. Biochim Biophys Acta 1830(11):5119–5129. https://doi.org/10.1016/j.bbagen.2013.07.027

    Article  CAS  PubMed  Google Scholar 

  21. Varfolomeev E, Vucic D (2018) Intracellular regulation of TNF activity in health and disease. Cytokine 101:26–32. https://doi.org/10.1016/j.cyto.2016.08.035

    Article  CAS  PubMed  Google Scholar 

  22. Shu C, Hou L, Chen Q et al (2022) Irradiation with a red light-emitting diode enhances the proliferation of stem cells of apical papilla via the ERK5 signalling pathway. Lasers Med Sci 37(4):2259–2268. https://doi.org/10.1007/s10103-021-03492-x

    Article  PubMed  Google Scholar 

  23. Hu C, Li L (2018) Preconditioning influences mesenchymal stem cell properties in vitro and in vivo. J Cell Mol Med 22(3):1428–1442. https://doi.org/10.1111/jcmm.13492

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yan W, Cao Y, Yang H et al (2019) CB1 enhanced the osteo/dentinogenic differentiation ability of periodontal ligament stem cells via p38 MAPK and JNK in an inflammatory environment. Cell Prolif 52(6):e12691. https://doi.org/10.1111/cpr.12691

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ma Yu, Li S-H, Ding X-X et al (2018) Effects of tumor necrosis factor-α on osteogenic differentiation and Notch signaling pathway in human periodontal ligament stem cells. Hua Xi Kou Qiang Yi Xue Za Zhi 36(2):184–189. https://doi.org/10.7518/hxkq.2018.02.013

    Article  PubMed  Google Scholar 

  26. Si D, Su B, Zhang J et al (2022) Low-level laser therapy with different irradiation methods modulated the response of bone marrow mesenchymal stem cells in vitro. Lasers Med Sci 37(9):3509–3516. https://doi.org/10.1007/s10103-022-03624-x

    Article  PubMed  Google Scholar 

  27. Lesniewski A, Estrin N, Romanos GE (2022) Comparing the Use of Diode Lasers to Light-Emitting Diode Phototherapy in Oral Soft and Hard Tissue Procedures: A Literature Review. Photobiomodul Photomed Laser Surg 40(8):522–531. https://doi.org/10.1089/photob.2021.0171

    Article  PubMed  Google Scholar 

  28. Rahmati A, Abbasi R, Najafi R et al (2022) Effect of diode low level laser and red light emitting diode irradiation on cell proliferation and osteogenic/odontogenic differentiation of stem cells from the apical papilla. BMC Oral Health 22(1):543. https://doi.org/10.1186/s12903-022-02574-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Silveira PC, Ferreira KB, da Rocha FR et al (2016) Effect of Low-Power Laser (LPL) and Light-Emitting Diode (LED) on Inflammatory Response in Burn Wound Healing. Inflammation 39(4):1395–1404. https://doi.org/10.1007/s10753-016-0371-x

    Article  CAS  PubMed  Google Scholar 

  30. Guimaraes DM, Ota TMN, Da Silva DAC et al (2021) Low-level laser or LED photobiomodulation on oral mucositis in pediatric patients under high doses of methotrexate: prospective, randomized, controlled trial. Support Care Cancer 29(11):6441–6447. https://doi.org/10.1007/s00520-021-06206-9

    Article  PubMed  Google Scholar 

  31. DE Oliveira MF, Johnson DS, Demchak T et al (2022) Low-intensity LASER and LED (photobiomodulation therapy) for pain control of the most common musculoskeletal conditions. Eur J Phys Rehabil Med 58(2):282–289. https://doi.org/10.23736/S1973-9087.21.07236-1

    Article  PubMed  Google Scholar 

  32. Rosa CB, Habib FA, de Araújo TM et al (2014) Effect of the laser and light-emitting diode (LED) phototherapy on midpalatal suture bone formation after rapid maxilla expansion: a Raman spectroscopy analysis. Lasers Med Sci 29(3):859–867. https://doi.org/10.1007/s10103-013-1284-7

    Article  PubMed  Google Scholar 

  33. Wang L, Liu C, Song Y et al (2022) The effect of low-level laser irradiation on the proliferation, osteogenesis, inflammatory reaction, and oxidative stress of human periodontal ligament stem cells under inflammatory conditions. Lasers Med Sci 37(9):3591–3599. https://doi.org/10.1007/s10103-022-03638-5

    Article  PubMed  Google Scholar 

  34. Meng T, Zhou Y, Li J et al (2018) Azithromycin Promotes the Osteogenic Differentiation of Human Periodontal Ligament Stem Cells after Stimulation with TNF-α. Stem Cells Int 2018:7961962. https://doi.org/10.1155/2018/7961962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huang TY, Shahrousvand M, Hsu YT et al (2021) Polycaprolactone/Polyethylene Glycol Blended with Dipsacus asper Wall Extract Nanofibers Promote Osteogenic Differentiation of Periodontal Ligament Stem Cells. Polymers (Basel) 13(14):2245. https://doi.org/10.3390/polym13142245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang M, Li J, Ye Y et al (2020) SHED-derived conditioned exosomes enhance the osteogenic differentiation of PDLSCs via Wnt and BMP signaling in vitro. Differentiation 111:1–11. https://doi.org/10.1016/j.diff.2019.10.003

    Article  CAS  PubMed  Google Scholar 

  37. Barnabei L, Laplantine E, Mbongo W et al (2021) NF-κB: At the Borders of Autoimmunity and Inflammation. Front Immunol 12:716469. https://doi.org/10.3389/fimmu.2021.716469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen F, Castranova V (2007) Nuclear factor-kappaB, an unappreciated tumor suppressor. Cancer Res 67(23):11093–11098. https://doi.org/10.1158/0008-5472.CAN-07-1576

    Article  CAS  PubMed  Google Scholar 

  39. Agnihotri P, Deka H, Chakraborty D, et al. (2023) Anti-inflammatory potential of selective small compounds by targeting TNF-α & NF-kB signaling: a comprehensive molecular docking and simulation study. J Biomol Struct Dyn 1–14.  https://doi.org/10.1080/07391102.2023.2196692

  40. Zein R, Selting W, Hamblin MR (2018) Review of light parameters and photobiomodulation efficacy: dive into complexity. J Biomed Opt 23(12):1–17. https://doi.org/10.1117/1.JBO.23.12.120901

    Article  PubMed  Google Scholar 

  41. Ferino A, Rapozzi V, Xodo LE (2020) The ROS-KRAS-Nrf2 axis in the control of the redox homeostasis and the intersection with survival-apoptosis pathways: Implications for photodynamic therapy. J Photochem Photobiol B 202:111672. https://doi.org/10.1016/j.jphotobiol.2019.111672

    Article  CAS  PubMed  Google Scholar 

  42. Song S, Xiao X, Guo D et al (2017) Protective effects of Paeoniflorin against AOPP-induced oxidative injury in HUVECs by blocking the ROS-HIF-1α/VEGF pathway. Phytomedicine 34:115–126. https://doi.org/10.1016/j.phymed.2017.08.010

    Article  CAS  PubMed  Google Scholar 

  43. Hamblin MR (2018) Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 94(2):199–212. https://doi.org/10.1111/php.12864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li Y, Qiao Y, Wang H et al (2021) Intraperitoneal injection of PDTC on the NF-kB signaling pathway and osteogenesis indexes of young adult rats with anterior palatal suture expansion model. PLoS One 16(7):e0243108. https://doi.org/10.1371/journal.pone.0243108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Sichuan science and technology plan joint innovation special task project(2022YFS0634); Sichuan Province Medical Research Project (S21015) and University-level scientific research project of Southwest Medical University (2021ZKMS013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Wang.

Ethics declarations

Ethical approval

All procedures performed in the study were in accordance with the Ethics Committee of the Affiliated Hospital of Stomatology Southwest Medical University Certificate (contract grant 20211119003) and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Consent to participate

Informed consent was obtained from legal guardians.

Consent for publication

Patients signed informed consent regarding publishing their data.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Yang, J., Jiang, B. et al. Low-energy LED red light inhibits the NF-κB pathway and promotes hPDLSCs proliferation and osteogenesis in a TNF-α environment in vitro. Lasers Med Sci 38, 240 (2023). https://doi.org/10.1007/s10103-023-03880-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10103-023-03880-5

Keywords

Navigation