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Abstract
This study aimed to identify the differences presented in the Raman spectrum of blood serum from normal subjects compared 
to leukemic and non-leukemic subjects and the differences between the leukemics and non-leukemics, correlating the spectral 
differences with the biomolecules. Serum samples from children and adolescents were subjected to Raman spectroscopy 
(830 nm, laser power 350 mW; n = 566 spectra, being 72 controls, 269 leukemics, and 225 non-leukemics). Exploratory 
analysis based on principal component analysis (PCA) of the serum sample’s spectra was performed. Classification models 
based on partial least squares discriminant analysis (PLS-DA) were developed to classify the spectra into normal, leukemic, 
and non-leukemic, as well as to discriminate spectra of leukemic from non-leukemic. The exploratory analysis showed 
principal components with peaks related to amino acids, proteins, lipids, and carotenoids. The spectral differences between 
normal, leukemic, and non-leukemic showed features assigned to proteins (serum features), amino acids, and carotenoids. 
The PLS-DA model classified the spectra of the normal group versus leukemic and non-leukemic groups with accuracy of 
66%, sensitivity of 99%, and specificity of 57%. The PLS-DA discriminated the spectra of the leukemic and non-leukemic 
groups with accuracy of 67%, sensitivity of 72%, and specificity of 60%. The study showed that Raman spectroscopy is a 
technique that may be used for the biochemical differentiation of leukemias and other types of cancer in serum samples of 
children and adolescents. Nevertheless, building an extensive data library of Raman spectra from serum samples of controls, 
leukemics, and non-leukemics of different age groups is necessary to understand the findings better.

Keywords Raman spectroscopy · Leukemia · Pediatrics · Serum blood · Multivariate statistics · Principal component 
analysis

Introduction

Cancer arises from a disordered multiplication of altered 
cells that form a tumor and is constituted by a set of hetero-
geneous genetic instabilities united by common alterations 
in multiple cell signaling pathways [1, 2]. Cancer is a major 
public health problem in the world, like hypertension and 
diabetes [3], and is already among the four leading causes of 
premature death (before 70 years of age) in most countries 
[2, 4]. Cancer is the second most common cause of death 
among children aged 1 to 14 years in the United States. In 
2021, the American Cancer Society estimated that 10,500 
children (aged birth to 14 years) and 5,090 adolescents (aged 
15–19 years) will be diagnosed with cancer [4]. According 
to the Brazilian National Cancer Institute, the prevision of 
cancer incidence in Brazil for the triennium 2020–2022 indi-
cates the occurrence of approximately 625,000 new cases of 
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cancer [2]. Cancer types and their distribution in adolescents 
differ from those in children; there are almost twice as many 
cases of Hodgkin as non-Hodgkin lymphoma among adoles-
cents, whereas it is the reverse among children. Leukemia is 
the most common childhood cancer, accounting for 28% of 
cases, followed by brain and other nervous system tumors 
(27%) [4].

Cancer in children and adolescents is difficult to detect 
and presents various signs or symptoms, many of which are 
confused with common childhood illnesses [5, 6]. Cancer 
represents an important barrier to increasing life expectancy 
in the world [4]. The impact of the coronavirus disease 2019 
(COVID-19) pandemic, as well as its extent in different parts 
of the world, is still unknown, but it is assumed that delays 
in diagnosis and treatment, associated with the concerns 
of individuals and the closure of systems health care, with 
reduced care assistance, cause a short-term decline in cancer 
incidence, followed by increases in late-stage diagnoses and 
cancer mortality in some settings [4].

Childhood cancers are rare, and there are no widely rec-
ommended screening tests to diagnose cancer in children. 
Early diagnosis is usually based on symptoms, clinical his-
tory, laboratory tests, and imaging (radiographs, tomog-
raphy, and magnetic resonance). Confirmation is made by 
excisional biopsy following anatomopathology [2, 4, 7]. 
In the case of leukemias and lymphomas, a bone marrow 
aspirate is collected in addition to tissue histopathological 
analysis (biopsy). Bone marrow aspirate allows detailed cell 
morphology examination and blast percentage assessment. 
Bone marrow biopsy allows bone marrow cellularity and 
architecture to be determined [4, 8–10].

In recent years, optical spectroscopy techniques such as 
fluorescence, elastic scattering, and Raman spectroscopy 
were proposed for rapid and non-invasive medical diagno-
sis [10–17]. Such techniques can provide information on the 
metabolites present in tissues (fluorescence of blood plasma 
aiming detection of porphyrins for diagnosis of colorectal 
cancer) [15], detecting blood (hemoglobin) content in tissues 
(elastic scattering of sentinel lymph nodes for breast cancer 
diagnosis) [16] and molecular composition of biological 
tissues and fluids (Raman spectroscopy of skin cancer and 
its biochemicals aiming diagnosis) [17], with Raman spec-
troscopy being a feasible technique for providing a detailed 
biochemical composition of cells, tissues, and fluids even 
in vivo aiming at diagnosis [10–14, 17, 18].

Raman spectroscopy is based on the inelastic scattering 
of incident laser light by the molecules, and studies dem-
onstrated the possibilities of the technique to determine the 
biochemical composition of biological tissues and fluids for 
qualitative (differentiation in the biochemical composition) 
and quantitative (differences in the concentration of selected 
biochemicals) analyses [10, 11, 17, 19, 20]. It can be used 
for cancer diagnosis [17, 19, 21–25] and cancer prognosis 

[13, 26, 27], being considered promising for showing the dif-
ferences and using them to discriminate between benign and 
malignant tissues in different pathologies, including prostate 
[21, 22], stomach [23, 24], breast cancer [25], and skin [14, 
19, 26], among others [11, 13, 17, 20, 27] in both in vivo 
and ex vivo. Raman technique does not require complicated 
sample preparation; it is non-invasive and non-destructive 
and provides information on the vibrational energy modes of 
molecules in real-time, allowing in situ analysis of biologi-
cal tissues with high precision [18, 20, 21] without tissue 
removal [11, 12, 17, 19, 28, 29]. Near-infrared excitation 
(between 785 and 830 nm) for Raman spectroscopy studies 
in biological tissues has the advantage of low fluorescence 
emission due to the low absorption [11, 30].

Studies with Raman spectroscopy for blood-related inves-
tigations began in the 1970s when Goheent et al. [31] com-
pared Raman spectra (514.5 nm excitation) of intact eryth-
rocyte membranes with spectra of membranes from which 
essentially, all peripheral proteins were extracted. Atkins 
et al. [32] used Raman spectroscopy for the biochemical 
characterization of blood and its components. In a study 
with blood serum samples, González-Solís et al. [20] used 
Raman and principal component analysis (PCA) to differen-
tiate serum from normal and leukemic patients and identify 
the different types of leukemia based on the biochemical 
composition of the serum. Silva et al. [27] used whole blood 
and plasma samples from healthy and leukemic subjects 
based on Raman and PCA to differentiate leukemic and 
non-leukemic patients according to biochemical changes. 
González-Solís et al. [20] and Silva et al. [27] showed an 
increase in the concentration of plasma carotenoids in the 
normal group and associated this compound with a protec-
tive role against neoplasms. Martínez-Espinosa et al. [33] 
collected Raman spectra from serum samples from leukemia 
patients and healthy volunteers to discriminate them and 
used PCA in the Raman spectra to be able to differentiate the 
samples. Bai et al. [34] used Raman spectroscopy to analyze 
the characteristics of blood plasma from patients with diffuse 
large B-cell lymphoma (DLBCL) and chronic lymphocytic 
leukemia (CLL) compared to plasma from healthy patients. 
Using orthogonal partial least squares discriminant analysis 
(OPLS-DA), they obtained good discrimination among the 
DLBCL, CLL, and healthy volunteers (control) groups; the 
authors also found Raman bands specific for patients with 
DLBCL and CLL. Therefore, the Raman spectral charac-
teristics of the blood serum combined with the multivariate 
discriminant analysis of spectral data using PCA can show 
the differences between groups (normal and leukemic, for 
instance) and can be used in the diagnosis through Raman 
spectroscopy.

This study aimed to use Raman spectroscopy (830 nm 
excitation) to identify spectral differences in the blood serum 
of healthy (normal group), leukemic (leukemic group), and 
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non-leukemic (non-leukemic group) children and adoles-
cents. The spectral differences related to the biochemical 
components presented in each group were statistically evalu-
ated by the ANOVA test, and then these peaks were assigned 
to their corresponding chemical compositions already 
described in the scientific literature. The spectral dataset was 
subjected to exploratory analysis based on PCA, and then a 
classification model was developed employing partial least 
squares discriminant analysis (PLS-DA) for the spectral dif-
ferentiation of normal, leukemic, and non-leukemic samples. 
The present study highlights the differentiation of Raman 
spectral data obtained in blood serum samples from healthy 
children and adolescents and from ones with leukemia and 
with other oncological pathologies.

Materials and methods

Ethics committee

The protocol used in this study was approved by the Research 
Ethics Committee of University Anhembi Morumbi—UAM 
(Process CAAE No. 23457019.9.0000.5492) following the 
Brazilian guidelines for research in humans. All patients 
submitted to the research signed a Free and Informed Con-
sent Term (FICT), which informed the entire procedure to be 
performed and the risks and benefits of the research.

Patient selection

Blood serum samples from children and adolescents were 
selected from the Group of Attention to Children with Can-
cer (GACC) clinical analysis laboratory in São José dos 
Campos, SP. The study included children and adolescents 
between 0 and 19 years of age (9.8 ± 6.2 years of age) among 
the patients who underwent surgical treatment for oncologi-
cal and non-oncological pathologies treated at GACC and 
patients who were submitted to elective surgeries. Patients 
with oncological pathologies were diagnosed with acute leu-
kemias or other non-leukemic oncological pathologies (sar-
comas, blastomas, carcinomas, and lymphomas) in different 
stages of treatment. The patients submitted to elective sur-
geries were considered healthy from a hematological point 
of view. Patients who refused to participate in the research, 
patients who did not have blood material in adequate condi-
tions for analysis, and patients in the normal group who had 
associated infectious diseases were excluded from the study.

Blood samples were collected from peripheral veins 
of subjects by a vacuum-closed method in tubes without 
anticoagulant and with clot activator-containing gel (model 
Vacuette®, Greiner Bio-One Brasil Ltda., SP, Brazil). Five 
mL of peripheral blood was collected and then centrifuged 
at 3.000 rpm for 15 min to separate the serum from the cells. 

The tubes with centrifuged samples were stored in a freezer 
(temperature from − 25 to − 18 °C) to minimize alterations 
in the biochemical constitution of serum.

Serum samples from the patients were divided into three 
groups: normal group (healthy patients from elective sur-
geries without an established infectious or inflammatory 
process), leukemic group (patients diagnosed with acute 
lymphoblastic leukemia (ALL) and acute myeloid leukemia 
(AML)), and non-leukemic group (patients diagnosed with 
sarcoma, blastoma, carcinoma, and lymphoma), according to 
the anatomopathological diagnoses extracted from medical 
records. A total of 186 samples of serum were evaluated: 21 
samples from the normal group, 90 samples from the leu-
kemic group, and 75 samples from the non-leukemic group 
(Table 1). On the day of acquisition of the Raman spectra, 
samples were thawed at room temperature, and analyses 
were performed in 80 µL of serum.

Raman spectrometer and data acquisition

The Raman spectrometer used in the study (model Dimen-
sion P1, Lambda Solutions Inc., MA, USA) has excitation 
wavelength of 830 nm, power adjustable up to 450 mW, and 
working temperature of − 75 °C (thermoelectric cooling). 
The spectrometer has a diffraction grating of 1,200 lines/
mm that promotes the dispersion of scattered light onto the 
back-thinned, deep-depletion CCD (charge-coupled device) 
detector (1,340 × 100 pixels) with a resolution of 2.5  cm−1 
in the spectral range between 400 and 1800  cm−1. The spec-
trometer uses a Raman probe (model Vector Probe, Lambda 
Solutions Inc.) for sample excitation and signal acquisition, 
allowing repeatable excitation-collection geometry. The use 
of near-infrared excitation (830 nm) minimizes the emission 
(fluorescence) due to the presence of absorbers in biological 
samples. The power used in the probe’s output was adjusted 
to 350 mW.

The Raman shift calibration was verified at the beginning 
of the experiment by taking the naphthalene spectrum. The 
spectrometer’s spectral response and probe were corrected 

Table 1  Number of samples and number of Raman spectra in each 
histopathological group and the type of cancer diagnosed in the group 
non-leukemic

Histopathological 
classification

Number of samples Number 
of Raman 
spectra

Normal 21 samples 72 spectra
Leukemic ALL—78 samples

AML—12 samples
269 spectra

Non-leukemic Sarcoma—27 samples
Blastoma—27 samples
Carcinoma—12 samples
Lymphoma—9 samples

225 spectra
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using an intensity calibrated tungsten lamp (a description 
can be found in Silveira et al. [13]).

Raman spectra were obtained from blood serum samples 
without any preparation. 80 μL of the serum stored in the 
test tube was pipetted in a clean aluminum sample holder 
with holes using a disposable tip (model P200, Bio-Rad 
Laboratorios Brasil Ltda., SP, Brazil). The exposure time 
for obtaining each spectrum was 3 s with 10 accumulations 
(30-s total exposure time). The spectrum of each sample was 
taken in three (samples from the normal, leukemic, and non-
leukemic groups) to six (samples from the normal group) 
replicates for statistical purposes by moving the sample 
holder laterally at different points.

The collected Raman spectra were subjected to pre-
processing to remove the Raman background (mainly fluo-
rescence) by fitting and subtracting a sixth-order polyno-
mial over the entire spectral range of 400 to 1800  cm−1, 
to each spectrum in a routine implemented in MATLAB 
7.01 software (version 2007a, The MathWorks Inc., MA, 

USA). Cosmic rays spikes were removed manually, and then 
the spectra were normalized by the area under the curve 
(1-norm) [35]. The pre-processing is an important step 
to reduce interferences that may occur during the spectra 
acquisition, such as cosmic rays, background fluorescence, 
and eventual changes in laser power. After processing, one 
spectrum from the leukemic group was excluded due to low 
signal-to-noise ratio. The final dataset corresponded to 566 
Raman spectra from 186 serum samples (Table 1).

The most intense peaks in the mean Raman spectra of 
normal, leukemic, and non-leukemic groups were marked 
and attributed to the biochemical elements of the blood 
serum, according to the published literature [20, 27, 33, 34, 
36–38] (peaks described in Table 2). Statistical analysis was 
performed to assess which peaks presented significant dif-
ferences between the groups. First, Levine’s test checked the 
Gaussian (normal) distribution. Then, the one-way analy-
sis of variance (ANOVA) with Tukey–Kramer post-test or 
Kruskal–Wallis’s test with Dunn’s test was applied to the 

Table 2  Peak positions of the prominent Raman bands of blood serum, assignment according to the published literature, and statistical signifi-
cances (p value) of peak intensities among normal, leukemic, and non-leukemic groups

DNA, deoxyribonucleic acid; NS, not statistically significant
Symbols for vibrations: ν, stretching; t, twisting; δ deformation; γ wagging; β bending; asym, asymmetric
Symbols: *Gaussian distribution (ANOVA test). **Non-Gaussian distribution (Kruskal-Wallis test)

Peak posi-
tions  (cm−1)

Assignments References Significance levels

508 Tryptophan/tyrosine (aromatic ring); cysteine/methionine [ν (S − S)] [20, 27, 38] NS**
622 Phenylalanine [t (C–C)] [33, 34] p < 0.05**
643 Tyrosine [δ (aromatic ring)] [20, 38] p < 0.05*
717 Polysaccharides (C–H); DNA—adenine [δ (aromatic ring)] [20, 26] p < 0.05*
758 Tryptophan [δ (aromatic rings)], [δ (skeleton)] [20, 27, 38] p < 0.05*
829 Tryptophan/tyrosine (aromatic ring); glutathione [γ  (CmH)] [20, 27] p < 0.001*
852 Proline [ν (C − C)], proteins (collagen) [20, 34] NS*
901 Tryptophan/tyrosine (aromatic ring); glutathione [ν (C − C)]; DNA [δ (aromatic ring)] [27, 38] NS*
943 Lipid [ν (C − C)] [27, 36] NS*
1004 Phenylalanine (ring breathing); beta-carotene [ν45  (Cβ − vinyl stretching)] [20, 37] p < 0.0001**
1033 Phenylalanine [γ  (Cβ − methyl)]; tryptophan/tyrosine (aromatic ring) [20] NS*
1085 Phospholipids [ν (C − C)]; DNA (O − P − O) [20, 38] p < 0.0001*
1106 Phenylalanine (ring breathing, ν45); tryptophan/tyrosine (aromatic ring) [20] NS*
1128 Proteins (C–C stretch); phospholipids [20, 27, 38] NS*
1159 beta-carotene [δ (C − C − H)] [20, 34, 38] p < 0.0001**
1178 Tyrosine (aromatic ring); phenylalanine (ring breathing), [ν (pyrrole half-ring)asym] [20, 37] p < 0.0001*
1209 Tryptophan/tyrosine (aromatic ring); phenylalanine (ring breathing); methionine [t  (CH2)] [20, 27] p < 0.0001**
1274 Amide III [δ (NH)]; protein [ν (C − N)] [20, 27, 34] p < 0.05*
1320 Tryptophan (aromatic ring); lipids (phospholipids) [t (C − H)] [20, 34] p < 0.0001*
1343 Collagen; lipids:  CH3/CH2 [20, 27, 34] p < 0.001**
1452 Protein [δ  (CH2)]; phospholipids [t  (CH2/CH3)]; amino acids [δ (C − N − H)] [20, 27, 38] p < 0.0113*
1526 Beta-carotene [ν (C − N)] [34, 38] p < 0.0022**
1555 Tryptophan (aromatic ring); amide II [ν (C − N)], [β (N − H)] [20, 38] p < 0.0001*
1659 Collagen (proteins): –alpha-helix [δ (rings)], amide I [ν (C = O)] [20, 34, 38] p < 0.0001*
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peaks with Gaussian distribution and non-Gaussian distribu-
tion, respectively. Differences were considered significant 
when p value < 0.05.

Exploratory analysis by PCA

PCA is a statistical method that reduces the data dimension-
ality and preserves as much variability as possible within 
the dataset; it is ideal for working with large, multivariate 
data. PCA finds new variables based on the variance of the 
dataset, being linear functions of the original data that suc-
cessively maximize the variance (one variable is not cor-
related with the other). The new variables depend on the 
dataset rather than being predefined functions and therefore 
are adaptive in the broad sense [39, 40]. The first princi-
pal component corresponds to the direction along which 
the samples show the highest spectral variance; the second 
principal component is the direction uncorrelated with the 
first component along which the samples point to the second 
highest variance [39, 40] and so on. PCA generates two new 
variables: principal component scores (SCs), which resem-
ble a Raman spectrum, and loadings (PCs), which indicate 
the intensity of each score present in the original data. From 
the analysis of these two variables, the differences and simi-
larities between the studied groups can be identified [27, 35, 
39, 40]. In this study, the exploratory analysis was performed 
with the PCA to identify which scores (score 1 to score 8) 
presented spectral differences between the normal, leuke-
mic, and non-leukemic groups and which loadings (PCs) 
presented statistically significant differences in their intensi-
ties between the groups. Chemoface software (version 1.65, 
UFLA, MG, Brazil, www. ufla. br/ chemo face/) [41] was used 
to perform the PCA.

The PCs were also evaluated for statistical pur-
poses. Gaussian distribution was checked, and ANOVA 
(Tukey–Kramer) or Kruskal–Wallis (Dunn’s) test was 
used; differences were considered significant when the p 
value < 0.05. The p value was used to accept (p value > 0.05) 
or reject (p value < 0.05) the null hypothesis, i.e., the equal-
ity in the intensity of the PCs of normal, leukemic, and non-
leukemic groups.

Discriminant analysis by partial least squares (PLS)

Partial least squares discriminant analysis (PLS-DA) is a 
statistical tool widely used for linear discriminant classi-
fication due to its ability to operate with many correlated 
variables [42–44]. The PLS-DA creates a model in which 
any correlation between the predicted (groups: normal, leu-
kemic, and non-leukemic) and predictor (Raman spectral 
intensities) variables in the spectral dataset is estimated and 
maximized by the covariance between the predictor and pre-
dicted, and therefore, the model is used to predict the output 

(classes: normal, leukemic, and non-leukemic) of a new 
sample, determining which class this sample belongs to. It 
means that “within groups” variations are distinguished from 
“between groups” variations, and discrimination is achieved 
by focusing on “between groups” variations [45].

Chemoface software was used to build the discrimination 
models with “leave-one-spectrum-out” cross-validation [41]. 
Two models were used to classify the Raman data: a model 
in which all the spectra were classified in normal, leuke-
mic, or non-leukemic groups and another model in which 
spectra were classified in leukemic or non-leukemic groups. 
With the results obtained from the discrimination models, 
sensitivity, specificity, and accuracy were calculated for the 
groups normal, leukemic, and non-leukemic.

Results and discussion

Raman spectroscopy

Human blood serum is an overly complex body fluid com-
prising a dynamic range of biomolecules such as water, 
proteins (mainly albumin and alpha- and beta-globulins), 
amino acids, lipoproteins, hormones, vitamins, glucose, and 
inorganic salts [33, 46]. It is known that molecular analysis 
of blood serum can provide information about the metabolic 
processes that occur in the body, and there is growing inter-
est in using Raman spectroscopy to develop serum-specific 
sensors for biomolecules for diagnosis and monitoring [32].

Figure 1 shows the mean Raman spectra of the serum of 
the normal, leukemic, and non-leukemic groups. The spec-
tra of serum are dominated by features of the main blood 
serum proteins: albumin and globulins [29, 33], making 
it difficult to visualize the spectral characteristics of less 
abundant compounds and small molecules that can function 
as biomarkers. The peaks of albumin are at the following 
positions: 828 and 850  cm−1 (tyrosine doublet), 950  cm−1 
(C–C stretching mode), and 1002  cm−1 (phenylalanine—δ 
(=  CβH2)4); tryptophan may make a small contribution to the 
intensity of this band: 1350  cm−1  (CH2 deformation mode), 
1450  cm−1  (CH2 deformation mode), and 1650  cm−1 (amide 
I, alpha-helix conformation). The positions of the Raman 
peaks of globulins are similar to albumin [29, 36, 47].

Figure 1 also shows the difference spectra between the 
normal and leukemic groups and between the normal and 
non-leukemic groups. In the difference spectrum of nor-
mal and leukemic groups, the most intense peaks at 622, 
1002, 1004, and 1443  cm−1 presented statistically signifi-
cant differences between groups (ANOVA, p < 0.05). The 
peak at 645   cm−1 showed statistically significant differ-
ences between groups (Kruskal–Wallis, p < 0.05). In the 
difference spectrum, the peaks at 622 and 1004  cm−1 were 
more intense in the normal group, and the peaks at 1002 and 

http://www.ufla.br/chemoface/
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1443  cm−1 were more intense in the leukemic group. In the 
difference spectrum of normal and non-leukemic groups, 
the most intense peaks at 619, 640, 645, 755, 1165, 1215, 
and 1446  cm−1 showed statistically significant differences 
between groups (ANOVA, p < 0.05). The peaks at 622, 1000, 
1006, and 1227  cm−1 showed statistically significant differ-
ences between groups (Kruskal–Wallis, p < 0.05). The peaks 
at 622, 645, 1006, 1165, and 1215  cm−1 were more intense 
in the normal group, and the peaks at 619, 640, 755, 1000, 
1227, and 1446  cm−1 were more intense in the non-leukemic 
group.

Table 2 presents the positions of the main Raman peaks 
of serum, the biochemical constitution, and the assign-
ments from published literature [20, 27, 33, 34, 36–38], as 
well as the statistical significance (p value) of the peak’s 
intensities between normal, leukemic, and non-leukemic 
groups. Significant differences were observed at the fol-
lowing peaks: 643  cm−1 (tyrosine), 717  cm−1 (adenine), 
758  cm−1 (tryptophan), 829  cm−1 (tryptophan/tyrosine, glu-
tathione), 1085  cm−1 (tyrosine, phenylalanine), 1178  cm−1 
(tyrosine, phenylalanine), 1274  cm−1 (amide III, protein), 
1320  cm−1 (tryptophan, phospholipids), 1452  cm−1 (pro-
teins, phospholipids, amino acids), 1557  cm−1 (tryptophan, 
amide II), and 1659  cm−1 (proteins, alpha-helix, collagen, 
amide I) (ANOVA test, p < 0.05) and at the peaks: 622  cm−1 
(phenylalanine), 1004  cm−1 (phenylalanine, beta-carotene), 
1159  cm−1 (beta-carotene), 1209  cm−1 (tryptophan, pheny-
lalanine, adenine, guanine), and 1526  cm−1 (beta-carotene) 
(Kruskal–Wallis test, p < 0.05); all these peaks in the spec-
trum of the normal group are more intense when compared 
to the leukemic and non-leukemic groups. The peaks at 

1159  cm−1 (beta-carotene), 1178  cm−1 (tyrosine and pheny-
lalanine), 1209  cm−1 (amide III, tryptophan, phenylalanine, 
adenine, and thymine), and 1659  cm−1 (phenylalanine) were 
more intense in the normal group and less intense in the 
non-leukemic group. The peaks at 1320  cm−1 (tryptophan 
and phospholipids), 1343  cm−1 (tryptophan, phospholip-
ids, adenine, and guanine), and 1555  cm−1 (tryptophan and 
amide II) presented higher intensity in the group normal and 
can differentiate the group normal from the non-leukemic. 
The peak at 1555  cm−1 was the only one that presented sta-
tistical significance between the leukemic and non-leukemic 
groups (ANOVA test, p < 0.05). The peaks at 852, 901, 943, 
1033, 1106, and 1128  cm−1 (ANOVA test, p > 0.05) and the 
peak 508  cm−1 (Kruskal–Wallis test, p > 0.05) did not show 
statistically significant differences between the three groups, 
suggesting that they are not significant for differentiating 
these groups.

In a study with blood serum samples from healthy and 
leukemic individuals, González-Solís et al. [20] found that 
the Raman peaks at 1338  cm−1 (tryptophan, alpha-helix, 
phospholipids), 1447  cm−1 (lipid), 1523  cm−1 (beta-caro-
tene), 1556  cm−1 (tryptophan), 1587  cm−1 (protein, tyros-
ine), 1603  cm−1 (tyrosine, phenylalanine), and 1654  cm−1 
(proteins— amide I, alpha-helix, phospholipids) were less 
intense in the spectra of leukemics compared to controls. 
Minor differences between the leukemic and control groups 
occurred at 661  cm−1 (glutathione), 890  cm−1 (glutathione), 
1126   cm−1 (protein, phospholipid—C–C stretching), 
1160  cm−1 (beta-carotene), 1174  cm−1 (tryptophan, phenyla-
lanine), 1208  cm−1 (tryptophan), 1246  cm−1 (amide III), and 
1404  cm−1 (glutathione). Increased intensity in the peaks at 

Fig. 1  Mean Raman spectra of serum from normal, leukemic, and 
non-leukemic groups and difference spectra of normal: leukemic and 
normal: non-leukemic. The spectra were offset for better visualiza-

tion. The non-leukemic group includes other cancers such as sarco-
mas, blastomas, carcinomas, and lymphomas
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973  cm−1 (glucosamine) and 1380  cm−1 (glucosamine) was 
observed in the leukemic group. The leukemic group also 
showed a peak at 917  cm−1 (glutathione) that was absent in 
the control group. The peaks at 1160, 1174, and 1208  cm−1 
correspond to the ones in the present study at 1159, 1178, 
and 1209  cm−1, showing statistically significant increased 
intensity in the control group.

Silva et al. [27] applied Raman spectroscopy on whole 
blood and plasma samples to identify spectral differences 
among healthy subjects and acute leukemic patients based 
on their biochemical composition (proteins, amino acids, 
carbohydrates, lipids, and carotenoids). Statistical differ-
ences were observed in the peaks at 510  cm−1 (tryptophan), 
721  cm−1 (polysaccharides), 760  cm−1 (tyrosine), 837  cm−1 
and 947  cm−1 (tyrosine, tryptophan, glutathione), 1004  cm−1 
(phenylalanine), 1132  cm−1 (proteins), 1160  cm−1 (beta-
carotene), 1210  cm−1 (tryptophan, phenylalanine, tyrosine, 
amide III), 1269   cm−1 (protein—amide III), 1334   cm−1 
(tryptophan), 1344  cm−1 (proteins, tryptophan), 1407  cm−1 
(glutathione), 1448  cm−1 (protein), 1455  cm−1 (protein), 
1525  cm−1 (beta-carotene), 1630  cm−1 (tyrosine, trypto-
phan), 1659  cm−1 (phospholipids), and 1666  cm−1 (phos-
pholipids); all peaks in the spectrum of the healthy group 
were more intense compared to the leukemic group. These 
peaks were similar to those found in the present study and 
are attributed to proteins, amino acids, and beta-carotene and 
are also more intense in the normal (healthy) group com-
pared to the leukemic and non-leukemic groups.

Exploratory analysis

The PCA technique was used to identify the spectral features 
that presented differences between normal, leukemic, and 
non-leukemic groups. The PCA extracts the most relevant 
information (based on the variance) from an original dataset, 
generating two new principal component variables: SCs and 
PCs. The SCs represent the axes of spectral variance and 
resemble Raman spectra, and the PCs indicate the intensities 
of each loading present in the original data. Such differences 
may be correlated to the biochemical alterations in blood 
serum samples from patients with leukemias and other neo-
plasms (non-leukemic group) compared to normal. The first 
eight PCA variables are presented in Fig. 2. These variables 
account for about 98.8% of the total variance observed in the 
spectral data (96.8%, 0.7%, 0.5%, 0.3%, 0.2%, 0.1%, 0.1%, 
and 0.05% for SC1 to SC8, respectively).

Figure  2 shows the plot of PCs and SCs of serum 
samples; some PCs showed statistically significant dif-
ferences between normal, leukemic, and non-leukemic 
groups. The PC1, PC2, PC3, PC6, and PC7 showed sta-
tistically significant differences (ANOVA test, p < 0.05 or 
Kruskal–Wallis test, p < 0.05), while the PC4, PC5, and PC8 
did not show statistically significant differences (ANOVA 

or Kruskal–Wallis, p > 0.05). According to the literature, 
the Raman features presented in the first eight SCs were 
associated with the biochemical compounds of sera. Positive 
peaks in the SCs with positive PCs suggest that the specific 
biochemical has a high concentration in that group. Positive 
peaks with negative PCs suggest that the specific biochemi-
cal is with a low concentration in that group.

The SC1 (Fig. 2) showed positive peaks characteristic 
of serum albumin (852, 1452, and 1659   cm−1) [48, 49]; 
the PC1 suggested that the serum of normal samples had 
a higher amount of albumin compared to the serum of leu-
kemic and non-leukemic samples (Dunn’s post-test, nor-
mal versus leukemic, p < 0.01; normal versus other types 
of cancers, p < 0.001). There was no statistically significant 
difference in the PC1 of the leukemic group versus the non-
leukemic group (Dunn’s post-test, normal versus leukemic, 
p > 0.05), suggesting that such component is not relevant 
for differentiating the cancer groups. Albumin is the most 
abundant high molecular weight fraction serum protein in 
the human body and is synthesized in the liver [49]. The pri-
mary physiologic function of albumin is to maintain colloid 
osmotic pressure, but many other functions have been rec-
ognized in the past few years; these include ligand binding 
and transport of various molecules, in addition to antioxidant 
and anti-inflammatory actions [29, 50, 51]. Several studies 
demonstrated that the functions of albumin, such as ligand 
binding and transport of various molecules, can be applied 
to the treatment of cirrhotic patients (that can progress to 
cancer) and patients suffering from other end-stage liver 
diseases [29]. Individuals with cancer present impairment 
of defense systems associated with inflammatory processes 
installed in the body, which culminates in the reduction 
of plasma albumin [52]. Researchers have shown that low 
serum albumin levels adversely affect prognosis in cancer 
[34, 49]. A normal albumin concentration in bodily fluids is 
considered a sign of good health [29]. The present study cor-
roborates these findings since PC1 suggests that the normal 
group samples have higher albumin than the leukemic and 
non-leukemic groups.

In SC2, the “blue shift” (band shift towards high vibra-
tional energy) of the peaks at 1002  cm−1 (inverted peaks at 
1002 and 1006  cm−1), 1032  cm−1 (inverted peaks at 1029 
and 1034  cm−1), and at 619 and 640  cm−1 (inverted peaks 
at 619/625 and 640/646  cm−1) was identified in samples 
from the leukemic and non-leukemic groups compared to 
normal. In PC2, there is a statistically significant difference 
between the normal and non-leukemic groups (Dunn’s post-
test, p < 0.001) and between the normal and leukemic groups 
(Dunn’s post-test, p < 0.01), with the data presented by the 
leukemic group being close to zero. The peaks at 625, 848, 
and 1002  cm−1 are assigned to phenylalanine [38, 50], an 
aromatic amino acid with pronounced signature peaks in a 
Raman spectrum due to the vibration of the benzene ring. 
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Fig. 2  Plots of the principal 
component variables PCs 
and SCs of the Raman serum 
dataset for exploratory analysis. 
Superscript letters a, b, and c 
in the PCs indicate statistical 
significance (ANOVA test for 
PC4 and PC6 and Kruskal–Wal-
lis test for PC1, PC2, PC3, 
PC5, PC7, and PC8 (p < 0.05)) 
between normal, leukemic, and 
non-leukemic groups, respec-
tively. NS: not statistically 
significant
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The “blue shift” may be due to the conformational alteration 
of the phenylalanine close to the aromatic ring. The frequen-
cies of the Raman bands belonging to the side chains of the 
amino acid residues are often blue-shifted concerning the 
corresponding bands of the free amino acids, especially in 
the case of the aromatic amino acids [38, 53]. This result 
suggests that both the variety of protein species and the 
conformation of proteins changed in serum samples of both 
leukemic and non-leukemic groups.

SC3 (Fig. 2) showed a negative peak at 1635  cm−1 in 
the normal group, attributed to amino acids; the positive 
peaks at 942, 1002, 1308, and 1450  cm−1 are present in the 
non-leukemic group and are assigned to proteins and amino 
acids. In PC3, there was a statistically significant difference 
between the normal and non-leukemic groups (Dunn’s post-
test, p < 0.01) and between the leukemic and non-leukemic 
groups (Dunn’s post-test, p < 0.05); when comparing the 
normal and leukemic groups, there was no statistically 
significant difference (Dunn’s post-test, p > 0.05), with the 
intensity close to zero at the leukemic group. These results 
may indicate that the conformation and the species variety 
of proteins are altered in serum samples from cancer patients 
(non-leukemic group) [53–55]. The increase in amino acid 
levels can be explained by the alteration in the energy metab-
olism of cancer patients, leading to the synthesis of skeletal 
muscle and tissue proteins (hepatic gluconeogenesis) and 
consequent release of amino acids into the blood serum 
as observed in the samples from the non-leukemic group; 
this may predispose cancer patients to develop cachexia, 
compromising their prognosis and quality of life for these 
patients [55].

The spectral information presented in SC4 (Fig. 2): posi-
tive peaks at 624, 645, 1004, 1034, 1134, and 1453  cm−1 
and negative peaks at 617, 640, 1002, 1030, and 1650  cm−1 
(inverted “blue shift”); SC5: positive peaks at 508, 571, 
677, 755, 945, 1004, 1030, 1226, 1341, 1402, 1566, and 
1622  cm−1 and negative peaks at 843 and 1440  cm−1, and 
SC8: positive peaks at 1360, 1504, and 1608  cm−1 and nega-
tive peaks at 697, 1004, 1157, 1223, 1435, and 1523  cm−1 
are assigned to proteins and amino acids in the samples; 
although present in different amounts in the serum of the 
three groups analyzed, these peaks did not show signifi-
cant differences in the intensities of PC4, PC5, and PC8 
(ANOVA test, p = 0.7849; Kruskal–Wallis test, p = 0.0600; 
Kruskal–Wallis test, p = 0.6082, respectively); therefore, 
such peaks are not relevant for the differentiation of the 
groups, but evidencing the heterogeneous and complex 
nature of the biochemical changes found in the sera of all 
groups.

The SC6 (Fig. 2) shows positive peaks at 756, 1226, 
1304, and 1440  cm−1 and negative peaks at 1003, 1157, 
1523, and 1655  cm−1 with a statistically significant differ-
ence in the PC6 (ANOVA test, p < 0.05). The positive peaks 

were assigned to amino acids and proteins and are higher in 
the non-leukemic group when compared to the normal group 
(PC6, Tukey–Kramer post-test, p < 0.001); the negative 
peaks were assigned to carotenoids [20, 33, 56], suggesting 
that these compounds are higher in the normal group when 
compared to the non-leukemic group (PC6, Tukey–Kramer 
post-test, p < 0.001). The group leukemic is close to zero. 
Higher levels of carotenoids in the blood (serum/plasma) 
are associated with a decreased risk of cardiovascular dis-
ease, heart disease, cancer, and other causes of mortality, as 
described in other studies [20, 27, 29]. González-Solís et al. 
[20] used Raman spectroscopy to differentiate normal and 
leukemic blood serum and to identify the different types of 
leukemia based on the biochemical compounds of serum. 
In the normal group (healthy subjects) spectrum, higher 
amounts of carotenoids were observed (peaks at 1003, 1157, 
and 1523  cm−1). In a study with blood plasma samples to 
differentiate between leukemic and healthy subjects, Silva 
et al. [27] found peak characteristic of carotenoids with sig-
nificantly higher concentrations in the normal group (1004, 
1159/1160, and 1520/1525  cm−1) in the principal component 
variables SC2/PC2 and SC4/PC4. Such findings agree with 
those found in the present study.

The SC7 (Fig. 2) showed positive peaks at 502, 619, 
640, 1002, 1245, 1412, 1502, and 1683  cm−1 in the normal 
group and is assigned to proteins and amino acids; the nega-
tive peaks at 753, 1006, 1059, 1302, 1453, and 1622  cm−1 
are present in the non-leukemic group and are assigned to 
proteins and amino acids. PC7 showed statistically signifi-
cant differences between the normal and leukemic groups 
(Dunn’s post-test, p < 0.001) and between leukemic and 
non-leukemic groups (Dunn’s post-test, p < 0.001). The posi-
tive peaks of proteins (serum albumin—502, 619, 640, and 
1002  cm−1) and amino acids present in SC7 are more intense 
in the normal group, suggesting that these compounds are 
more frequent in healthy individuals than in cancer individu-
als (leukemic and non-leukemic groups), corroborating the 
findings in SC1/PC1.

Discriminant analysis by partial least squares 
(PLS‑DA)

Discriminant analysis using PLS (PLS-DA) was applied to 
the normalized spectra of the blood serum samples in the 
normal, leukemic, and non-leukemic groups. PLS-DA mod-
els applied to Raman spectral data have been used to classify 
samples into healthy or neoplastic tissues [27–29, 57, 58].

The results of the discrimination models were tabulated 
in the confusion tables (Table 3), and accuracy, sensitiv-
ity, and specificity were calculated. In the PLS-DA dis-
criminating normal, leukemic, and non-leukemic groups 
(Table 3), maximum accuracy (classification success) of 
66% was obtained with six latent variables, with sensitivity 



 Lasers in Medical Science (2023) 38:22

1 3

22 Page 10 of 13

of 99% and specificity of 57%. For the discrimination 
between leukemic and non-leukemic groups (Table 3), the 
maximum accuracy of 67% was obtained with five latent 
variables, with sensitivity of 72% and specificity of 60%.

When applying a diagnostic test, there is a possibility 
of incorrectly classifying individuals, for instance, alleged 
sick people who are healthy (false positives) and alleged 
healthy people who are sick (false negatives) [59]. In the 
proposed study, a sensitivity of 99% was obtained in the 
differentiation between the normal group (healthy individ-
uals) and leukemic and non-leukemic groups (individuals 
with cancer) (Table 3). The obtained specificity was 57% 
(Table 3), which indicates a high rate of false positives. 
However, diagnostic tests should always be associated 
with the evaluation of the patient’s clinical history, inves-
tigation of the semiology (signs and symptoms present in 
the physical examination), and results of complementary 
exams (laboratory, procedural, or imaging) to determine 
the presence or absence of disease.

The literature available to date is still scarce in comparing 
patients with different types of neoplasms versus healthy 
ones through Raman spectroscopy and discriminant analysis 
in serum, plasma, and blood. Silva et al. [27] used Raman 
spectroscopy in the blood plasma of healthy and leukemic 
individuals and obtained, through PLS-DA, accuracy of 
97.1%, sensitivity of 95.7%, and specificity of 98%. The 
cited results are superior to that found in this study. How-
ever, the samples used in the present study are more het-
erogeneous, and the groupings were performed between 
healthy patients, patients with leukemias (ALL and AML), 
and patients with other types of cancer, categorized accord-
ing to the tissue that originated the neoplasia (histology) in 
sarcoma, blastoma, carcinoma, and lymphoma.

Bai et al. [34] studied the characteristics of blood plasma 
in patients with diffuse large B-cell lymphoma and chronic 
lymphocytic leukemia (CLL) by Raman spectroscopy to 
develop a simple blood test for the non-invasive detection 
of DLBCL and CLL. The partial orthogonal least squares 
discriminant analysis (OPLS-DA) was used for discrimina-
tion, which can construct two clusters with almost no over-
lap between DLBCL/CLL and normal. For the LLC model, 
the sensitivity was 92.9%, and the specificity was 100%, 
while for the DLBCL model, the sensitivity was 80.0%, and 
the specificity was 92.3%. Despite using similar statistical 
analysis to the present study, the models did not group can-
cer types for discriminant analysis.

Some studies with blood or blood fragments use PCA-DA 
[20, 32, 33, 38, 60] instead of PLS-DA as a discriminant 
analysis of the Raman data. However, the PLS-DA stands 
out for providing information on the differences between 
groups and recognizing the variances obtained between the 
groups; therefore, the PLS-DA may lead to better perfor-
mance in the classification of samples when compared to 
the PCA-DA [44].

When comparing the Raman spectroscopy with the con-
ventional and currently available techniques for cancer diag-
nosis, the assessment is performed non-invasively or mini-
mally invasively, without sample preparation, with no need 
for reagents, and using only a small amount of blood serum 
[19, 20, 27]. According to studies already available, Raman 
spectroscopy in blood samples is a promising technique for 
diagnosis and therapeutic follow-up [19, 20, 27, 33, 57].

The present work reinforces the usefulness of Raman 
spectroscopy and opens new perspectives for its use to 
obtain information on biomolecular changes that occur in the 
human body due to cancer from a blood serum perspective. 

Table 3  Table of confusion with 
the results of discriminating 
models based on PLS (PLS-DA) 
applied to Raman spectra of 
serum. First, the PLS-DA model 
classified the data into normal, 
leukemic, and non-leukemic 
groups, and then the model 
classified it into leukemic and 
non-leukemic groups. The 
number of latent variables that 
provided the highest accuracy 
was also presented

Symbol: *sensitivity and specificity values were calculated based on the classification of normal versus 
cancer (leukemic and non-leukemic groups joined together)

Diagnosis (conventional method) Raman-based diagnostics (PLS-DA) with 6 latent variables

Normal Leukemic Non-leukemic

Normal (n = 72) 41 14 17
Leukemic (n = 269) 3 199 67
Non-leukemic (n = 225) 2 87 136
Sensitivity* 99%
Specificity* 57%
Accuracy 66%
Diagnosis (conventional method) Raman-based diagnostics (PLS-DA) with 5 latent variables

Leukemic Non-leukemic
Leukemic (n = 269) 195 74
Non-leukemic (n = 225) 90 135
Sensitivity 72%
Specificity 60%
Accuracy 67%
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However, more research is still needed with a larger number 
of samples, particularly from healthy individuals, to build 
a spectral database large enough to minimize misclassifica-
tion, making the data provided by Raman spectroscopy more 
robust for use in clinical practice. Obtaining more samples 
will help to investigate the aspects related to the high clas-
sification errors that may be due to the heterogeneous nature 
of biochemical changes in patients with cancer.

Conclusions

In this study, Raman spectroscopy has been applied to blood 
serum samples from children and adolescents to identify 
the spectral differences presented in the normal (healthy), 
leukemic (ALL and AML), and non-leukemic (sarcoma, 
blastoma, carcinoma, and lymphoma) groups. The mean 
Raman spectra of the groups showed that the peaks of albu-
min, proteins, amino acids, and beta-carotene were more 
intense in the normal group.

Exploratory analysis by PCA applied to the spectra 
revealed that in SC1, there were characteristic peaks of 
serum albumin (510, 622, 643, 852, 941, 1003, 1343, 1452, 
and 1659  cm−1), and PC1 was significantly more intense 
in the normal group compared to leukemic and non-leu-
kemic groups (Kruskal–Wallis test, p < 0.05); in SC2, a 
“blue shift” was observed in the peaks at 622 and 643  cm−1 
(619/625  cm−1 and 640/646  cm−1), 1003  cm−1 (1002 and 
1006  cm−1), and 1032  cm−1 (1029/1034  cm−1) for the serum 
samples from the leukemic and non-leukemic groups com-
pared to the normal group (Kruskal–Wallis test, p < 0.05); 
in SC3, positive peaks at 942, 1002, 1308, and 1450  cm−1 
(proteins and amino acids) are higher in the non-leukemic 
group (Kruskal–Wallis test, p < 0.05); in SC6, carotenoids 
peaks (1003, 1157, and 1523  cm−1) were significantly higher 
in the normal group compared to the leukemic and non-
leukemic groups (ANOVA test, p < 0.05); in SC7, positive 
peaks at 502, 619, 640, and 1002  cm−1, assigned to serum 
albumin, were higher in the normal group than in cancer 
groups (Kruskal–Wallis test, p < 0.05).

The PLS-DA model applied to serum spectra classified 
normal, leukemic, and non-leukemic groups with accuracy 
of 66%, sensitivity of 99%, and specificity of 57%. The PLS-
DA discriminated leukemic and non-leukemic groups with 
accuracy of 67%, sensitivity of 72%, and specificity of 60%; 
the high classification errors may be due to the heterogene-
ous nature of biochemical changes in patients with cancer 
and the low number of subjects in the normal group com-
pared to the cancer groups. Raman spectroscopy has shown 
potential for diagnosing cancer (leukemias and other types 
of cancer such as sarcomas, lymphomas, blastomas, and car-
cinomas) through blood serum samples.
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