Skip to main content
Log in

Effect of 660/850 nm LED on the microcirculation of the foot: neurovascular biphasic reflex

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Phototherapy (LED) can be used to stimulate the healing of chronic ulcers of the lower limb, as it affects healing cells and neurons. In this way, this study has sought to know if the heat stimulus of the 660-/850-nm contact LED is sufficient to trigger the response in the peripheral sympathetic nervous system of normal volunteers. The LED was applied on the right foot of forty-two normal volunteers followed by serial infrared images. After the stimulus, a biphasic hyperthermia curve was observed synchronously in both feet, in the right and left halluxes, while hyperthermia was attributed to the redistribution of postural blood flow in the plantar region, which may indicate independent neurovascular mechanisms. Thus, periodic thermographic analysis can be used in the evolution of the LED treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Graph 1
Graph 2
Graph 3

Similar content being viewed by others

References

  1. Karu T (1999) Primary and secondary mechanisms of action of visible to near-IR radiation on cells. Journal of photochemistry and photobiology. B, Biology 49(1):1–17. https://doi.org/10.1016/S1011-1344(98)00219-X

    Article  CAS  PubMed  Google Scholar 

  2. Calderhead RG (2007) The photobiological basics behind light-emitting diode (LED) phototherapy. Laser Therapy, 16.(2),97-108

  3. Byrnes KR, Waynant RW, Ilev IK, Wu X, Barna L, Smith K, Heckert R, Gerst H, Anders JJ (2005) Light promotes regeneration and functional recovery and alters the immune response after spinal cord injury. Lasers Surg Med 36(3):171–185. https://doi.org/10.1002/lsm.20143

    Article  PubMed  Google Scholar 

  4. Kim WS, Calderhead RG (2011) Is light-emitting diode phototherapy (LED-LLLT) really effective? Laser therapy 20(3):205–215. https://doi.org/10.5978/islsm.20.205

    Article  PubMed  PubMed Central  Google Scholar 

  5. Huang YY, Sharma SK, Carroll J, Hamblin MR (2011) Biphasic dose response in low level light therapy - an update. Dose-response: a publication of International Hormesis Society 9(4):602–618. https://doi.org/10.2203/dose-response.11-009.Hamblin

    Article  CAS  Google Scholar 

  6. Lamaro-Cardoso A, Bachion MM, Morais JM, Fantinati MS, Milhomem AC, Almeida VL, Vinaud MC, Lino-Júnior RS (2019) Photobiomodulation associated to cellular therapy improve wound healing of experimental full thickness burn wounds in rats. Journal of photochemistry and photobiology. B, Biology 194:174–182. https://doi.org/10.1016/j.jphotobiol.2019.04.003

    Article  CAS  PubMed  Google Scholar 

  7. Góralczyk K, Szymańska J, Szot K, Fisz J, Rość D (2016) Low-level laser irradiation effect on endothelial cells under conditions of hyperglycemia. Lasers Med Sci 31(5):825–831. https://doi.org/10.1007/s10103-016-1880-4

    Article  PubMed  PubMed Central  Google Scholar 

  8. Salvi M, Rimini D, Molinari F, Bestente G, Bruno A (2017) Effect of low-level light therapy on diabetic foot ulcers: a near-infrared spectroscopy study. J Biomed Opt 22(3):38001. https://doi.org/10.1117/1.JBO.22.3.038001

    Article  PubMed  Google Scholar 

  9. Frangez I, Cankar K, Ban Frangez H, Smrke DM (2017) The effect of LED on blood microcirculation during chronic wound healing in diabetic and non-diabetic patients-a prospective, double-blind randomized study. Lasers Med Sci 2017;32(4):887–894. doi:https://doi.org/10.1007/s10103-017-2189-7

  10. Maegawa Y, Itoh T, Hosokawa T, Yaegashi K, Nishi M (2000) Effects of near-infrared low-level laser irradiation on microcirculation. Lasers Surg Med 27(5):427–437. https://doi.org/10.1002/1096-9101(2000)27:5<427::AID-LSM1004>3.0.CO;2-A

    Article  CAS  PubMed  Google Scholar 

  11. Brioschi ML, Macedo JF, Macedo RAC (2003) Termometria cutânea: novos conceitos. J Vasc Br 2003:2(2):151–160

  12. Ring F (2010) Thermal imaging today and its relevance to diabetes. J Diabetes Sci Technol 4(4):857–862. https://doi.org/10.1177/193229681000400414

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kambiz S, van Neck JW, Cosgun SG, van Velzen MH, Janssen JA, Avazverdi N, Hovius SE, Walbeehm ET (2015) An early diagnostic tool for diabetic peripheral neuropathy in rats. PLoS One 10(5):e0126892. https://doi.org/10.1371/journal.pone.0126892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Balbinot LF, Canani LH, Robinson CC, Achaval M, Zaro MA (2012) Plantar thermography is useful in the early diagnosis of diabetic neuropathy. Clinics (Sao Paulo, Brazil) 67(12):1419–1425. https://doi.org/10.6061/clinics/2012(12)12

    Article  Google Scholar 

  15. Suami H, Taylor GI, Pan WR (2003) Angiosome territories of the nerves of the lower limbs. Plast Reconstr Surg 112(7):1790–1798. https://doi.org/10.1097/01.PRS.0000091161.95599.D8

    Article  PubMed  Google Scholar 

  16. Nagase T, Sanada H, Takehara K, Oe M, Iizaka S, Ohashi Y, Oba M, Kadowaki T, Nakagami G (2011) Variations of plantar thermographic patterns in normal controls and non-ulcer diabetic patients: novel classification using angiosome concept. Journal of plastic, reconstructive & aesthetic surgery: JPRAS 64(7):860–866. https://doi.org/10.1016/j.bjps.2010.12.003

    Article  Google Scholar 

  17. Sá Guimarães CMD, Balbinot LF, Brioschi ML (2108) Imagens infravermelhas na avaliação do pé diabético Surg Cosm Dermatol vol. 10, núm. 2. DOI: https://doi.org/10.5935/scd1984-8773.20181021154

  18. Sá Guimarães CMD, Brioschi ML, Neves EB, Balbinot LF (2018) Imagem infravermelha no diagnóstico das doenças dos pés Pan Am J Med Thermol 4:7–17

  19. Tardivo JP, Baptista MS, Correa JA, Adami F, Pinhal MA (2015) Development of the Tardivo algorithm to predict amputation risk of diabetic foot. PLoS One 10(8):e0135707. https://doi.org/10.1371/journal.pone.0135707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tardivo JP, Adami F, Correa JA, Pinhal MA, Baptista MS (2014) A clinical trial testing the efficacy of PDT in preventing amputation in diabetic patients. Photodiagn Photodyn Ther 11(3):342–350. https://doi.org/10.1016/j.pdpdt.2014.04.007

    Article  Google Scholar 

  21. Gagliardi ART (2003) Neuropatia diabética periférica. J Vasc Br 2003:1,67–1,74

    Google Scholar 

  22. Cruz-Vega I, Hernandez-Contreras D, Peregrina-Barreto H, Rangel-Magdaleno JJ, Ramirez-Cortes JM (2020) Deep learning classification for diabetic foot thermograms. Sensors (Basel, Switzerland), 20(6), 1762. https://doi.org/10.3390/s20061762,

  23. Petrova NL, Whittam A, MacDonald A, Ainarkar S, Donaldson AN, Bevans J, Allen J, Plassmann P, Kluwe B, Ring F, Rogers L, Simpson R, Machin G, Edmonds ME (2018) Reliability of a novel thermal imaging system for temperature assessment of healthy feet. Journal of foot and ankle research 11:22. https://doi.org/10.1186/s13047-018-0266-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hodges GJ, Kosiba WA, Zhao K, Johnson JM (2009) The involvement of heating rate and vasoconstrictor nerves in the cutaneous vasodilator response to skin warming. American journal of physiology. Heart and circulatory physiology 296(1):H51–H56. https://doi.org/10.1152/ajpheart.00919.2008

    Article  CAS  PubMed  Google Scholar 

  25. Kamijo Y, Lee K, Mack GW (2005) Active cutaneous vasodilation in resting humans during mild heat stress. Journal of applied physiology (Bethesda, Md.: 1985), 98(3), 829–837. https://doi.org/10.1152/japplphysiol.00235.2004

  26. Shilco P, Roitblat Y, Buchris N, Hanai J, Cohensedgh S, Frig-Levinson E, Burger J, Shterenshis M (2019) Normative surface skin temperature changes due to blood redistribution: a prospective study. J Therm Biol 80:82–88. https://doi.org/10.1016/j.jtherbio.2019.01.009

    Article  PubMed  Google Scholar 

  27. van Netten JJ, van Baal JG, Liu C, van der Heijden F, Bus SA (2013) Infrared thermal imaging for automated detection of diabetic foot complications. J Diabetes Sci Technol 7(5):1122–1129. https://doi.org/10.1177/193229681300700504

    Article  PubMed  PubMed Central  Google Scholar 

  28. Macdonald A, Petrova N, Ainarkar S, Allen J, Plassmann P, Whittam A, Bevans J, Ring F, Kluwe B, Simpson R, Rogers L, Machin G, Edmonds M (2017) Thermal symmetry of healthy feet: a precursor to a thermal study of diabetic feet prior to skin breakdown. Physiol Meas 38(1):33–44. https://doi.org/10.1088/1361-6579/38/1/33

    Article  PubMed  Google Scholar 

  29. Zeger SL, Liang KY (1986) Longitudinal data analysis for discrete and continuous outcomes. Biometrics 42(1):121–130

    Article  CAS  Google Scholar 

  30. McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. Chapman. & Hall, London

    Book  Google Scholar 

  31. Charkoudian N, Eisenach JH, Atkinson JL, Fealey RD, Joyner MJ (2002) Effects of chronic sympathectomy on locally mediated cutaneous vasodilation in humans. Journal of applied physiology (Bethesda, Md.: 1985), 92(2), 685–690. https://doi.org/10.1152/japplphysiol.00758.200130

  32. Minson CT, Berry LT, Joyner MJ (2001) Nitric oxide and neurally mediated regulation of skin blood flow during local heating. Journal of applied physiology (Bethesda, Md.: 1985), 91(4), 1619–1626. https://doi.org/10.1152/jappl.2001.91.4.1619

  33. Blumberg H, Wallin BG (1987) Direct evidence of neurally mediated vasodilatation in hairy skin of the human foot. J Physiol 382:105–121. https://doi.org/10.1113/jphysiol.1987.sp016358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tansey EA, Roe SM, Johnson CJ (2014) The sympathetic release test: a test used to assess thermoregulation and autonomic control of blood flow. Adv Physiol Educ 38(1):87–92. https://doi.org/10.1152/advan.00095.2013

    Article  CAS  PubMed  Google Scholar 

  35. Del Pozzi AT, Miller JT, Hodges GJ (2016) The effect of heating rate on the cutaneous vasomotion responses of forearm and leg skin in humans. Microvasc Res 105:77–84. https://doi.org/10.1016/j.mvr.2016.01.004

    Article  PubMed  Google Scholar 

  36. Smith CJ, Johnson JM (2016) Responses to hyperthermia. Optimizing heat dissipation by convection and evaporation: Neural control of skin blood flow and sweating in humans. Autonomic neuroscience: basic & clinical 196:25–36. https://doi.org/10.1016/j.autneu.2016.01.002

    Article  Google Scholar 

  37. Harris KF, Matthews KA (2004) Interactions between autonomic nervous system activity and endothelial function: a model for the development of cardiovascular disease. Psychosom Med 66(2):153–164. https://doi.org/10.1097/01.psy.0000116719.95524.e2

    Article  PubMed  Google Scholar 

  38. Tattersall GJ (2016) Infrared thermography: a non-invasive window into thermal physiology. Comparative biochemistry and physiology. Part A, Molecular & integrative physiology 202:78–98. https://doi.org/10.1016/j.cbpa.2016.02.022

    Article  CAS  Google Scholar 

  39. Quesada JIP, Kunzler MR, Carpes FP (2017) Methodological aspects of infrared thermography in human assessment in application of infrared thermography in sports science, Biological and Medical Physics, Biomedical Engineering, Springer

  40. Bagavathiappan S, Saravanan T, Philip J, Jayakumar T, Raj B, Karunanithi R, Panicker TM, Korath MP, Jagadeesan K (2009) Infrared thermal imaging for detection of peripheral vascular disorders. Journal of medical physics 34(1):43–47. https://doi.org/10.4103/0971-6203.48720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Katz LM, Nauriyal V, Nagaraj S, Finch A, Pearlstein K, Szymanowski A, Sproule C, Rich PB, Guenther BD, Pearlstein RD (2008) Infrared imaging of trauma patients for detection of acute compartment syndrome of the leg. Crit Care Med 36(6):1756–1761. https://doi.org/10.1097/CCM.0b013e318174d800

  42. Grandinétti VS, Miranda EF, Johnson DS et al (2015) The thermal impact of phototherapy with concurrent super-pulsed lasers and red and infrared LEDs on human skin. Lasers Med Sci 30:1575–1581. https://doi.org/10.1007/s10103-015-1755-0

  43. Joensen J, Demmink JH, Johnson MI, Iversen VV, Lopes-Martins RÁ, Bjordal JM (2011) The thermal effects of therapeutic lasers with 810 and 904 nm wavelengths on human skin. Photomed Laser Surg 29(3):145–153. https://doi.org/10.1089/pho.2010.2793

  44. Huang CL, Wu YW, Hwang CL, Jong YS, Chao CL, Chen WJ, Wu YT, Yang WS (2011) The application of infrared thermography in evaluation of patients at high risk for lower extremity peripheral arterial disease. J Vasc Surg 54(4):1074–1080. https://doi.org/10.1016/j.jvs.2011.03.287

    Article  PubMed  Google Scholar 

  45. Ko EJ, No YA, Park KY, Li K, Seo SJ, Hong CK (2016) The clinical significance of infrared thermography for the prediction of postherpetic neuralgia in acute herpes zoster patients. Skin research and technology: official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging (ISSI) 22(1):108–114. https://doi.org/10.1111/srt.12237

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Ethical approval

Procedures performed in this study with human participants were in accordance with the ethical standards of the Ethics and Research Committee on Human Studies of the Ministry of Health, Brazil (CAAE 19104919.0.0000.5646).

Conflict of interest

The author has received research grants from Every Eletroeletronica Importação e exportação.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Sá, C.M.D. Effect of 660/850 nm LED on the microcirculation of the foot: neurovascular biphasic reflex. Lasers Med Sci 36, 1883–1889 (2021). https://doi.org/10.1007/s10103-020-03235-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-020-03235-4

Keywords

Navigation