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Abstract The aim of this controlled animal study was to
investigate the effect of low-level laser therapy (LLLT)
administered 30 min after injury to the Achilles tendon. The
study animals comprised 16 Sprague Dawley male rats
divided in two groups. The right Achilles tendons were
injured by blunt trauma using a mini guillotine, and were
treated with LLLT or placebo LLLT 30 min later. The injury
and LLLT procedures were then repeated 15 hours later on
the same tendon. One group received active LLLT (1=

904 nm, 60 mW mean output power, 0.158 W/cm2 for 50 s,
energy 3 J) and the other group received placebo LLLT 23
hours after LLLT. Ultrasonographic images were taken to
measure the thickness of the right and left Achilles tendons.
Animals were then killed, and all Achilles tendons were
tested for ultimate tensile strength (UTS). All analyses were
performed by blinded observers. There was a significant
increase in tendon thickness in the active LLLT group when
compared with the placebo group (p<0.05) and there were
no significant differences between the placebo and unin-
jured left tendons. There were no significant differences in
UTS between laser-treated, placebo-treated and uninjured
tendons. Laser irradiation of the Achilles tendon at
0.158 W/cm2 for 50 s (3 J) administered within the first
30 min after blunt trauma, and repeated after 15 h, appears
to lead to edema of the tendon measured 23 hours after
LLLT. The guillotine blunt trauma model seems suitable for
inflicting tendon injury and measuring the effects of
treatment on edema by ultrasonography and UTS. More
studies are needed to further refine this model.

Keywords LLLT. Acute injury . Rat Achilles .

Ultrasonographic imaging . Edema . Ultimate tensile
strength

Introduction

Animal models are commonly used in tendon disorder
research. They have the advantages of incorporating
invasive evaluation techniques, and the possibility for
detailed tissue examination and analysis of biochemical
substances. These models may be useful in reproducing
some aspects of human tendon disorders because in animal
models it is easier to control single factors.
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In experimental studies on animal tendons, partial or
total surgical tenotomy is the most commonly used method
for inducing injury [1–8]. Another, nonsurgical, method of
injury induction has been introduced in a few studies of
tendons in small rodents [9–11]. In this model, an external
blunt trauma is inflicted by a mini guillotine where a block
falls down from a fixed height and crushes the tendon.
After such an injury in a mini guillotine, significant
histological changes have been found when compared to
healthy tendons [9–11]. However, other relevant outcome
measures such as edema and the tendon’s ability to
withstand load, have not yet been investigated.

The primary purpose of tendons is to transmit tensile
load from muscles to bone insertions. Their biomechanical
properties can be measured by their ultimate tensile strength
(UTS). UTS is an outcome measure of a the tendon's ability
to tolerate tensile load and elongation [12]. In two studies
on rat tendons where UTS was used as an outcome
measure, healthy rat Achilles tendon had UTS values of
42.5±5.5 N (mean±SD) [13] and 48±11.0 N [14].

Low-level laser therapy (LLLT) is considered to act in a
biomodulatory manner through light absorption by photo-
receptors, which stimulates cells and modulates inflamma-
tory processes [15–19]. Studies performed in a variety of
different pathological conditions including injured animal
tendons are frequent in the LLLT literature. In most of these
LLLT studies, tendons were treated daily for 3 to 21 days
[1–5, 9, 11]. Observed histopathological changes in tendons
receiving LLLT include increased collagen production [1],
improved collagen bundle organization [2–4, 11], and an
increased number of small blood vessels [9]. Some studies
have investigated the effect of LLLT within the first 24 h
after an acute inflammation. After induction of inflamma-
tion followed by three or four LLLT sessions, tissue
receiving LLLT exhibited reduced concentrations of in-
flammatory markers and cells compared to no-treatment
controls [20, 21].

In the clinical setting tendon disorders are common.
Tendon loading seems to be a risk factor for developing
tendon disorders, particularly in the upper extremities
among manual workers [22] and in the lower extremities
among athletes [23]. Acute tendinitis may occur after
unfamiliar repetitive movement, friction and pressure
during tendon loading, and is often seen in the Achilles
tendons of military recruits after long marches [24].
Chronic tendinopathies have a more complex etiology and
manifestation, and development of chronic tendinopathies
may be gradual and less clearly associated with tendon
loading episodes. Age seems to be of importance, and
partial or complete tendon ruptures are strongly correlated
with age [25]. Developing experimental animal models
which accurately mimic the clinical situation in chronic
tendinopathies is a challenge, and the ultimate experimental

model has yet to be found [26]. Soslowsky et al. [27]
developed a rat model of repetitive loading of the supra-
spinatus in treadmill running, but some aspects including
genetics and the influence of pre-experimental structural
tendon defects, have not been catered for. Another, as yet
unused, possibility for mimicking tendinopathies is to
repeat infliction of injury by blunt trauma.

During the last two decades, ultrasonographic imaging
(US) has become a popular diagnostic tool for assessment
of musculoskeletal disorders [28]. US is reported to have
high accuracy in diagnosing disorders in superficial human
tendons [28–30].

The aim of this study was to investigate the effects of
LLLT administered 30 min after an Achilles tendon injury
inflicted by a mini guillotine. The outcome was measured
as tendon edema on US and tendon tensile strength.

Method

Animals

The study animals comprised 16 male rats (Sprague Dawley
SD M; Taconic Europe, Denmark) weighing 250–300 g,
which were divided in two groups. The rats were housed four
and four in individually ventilated cages under a light cycle of
12 hours light/12 hours dark, in an atmosphere of humidity
55% and a temperature range of 20–22°C, and with water and
food ad libitum.

Instruments

Mini guillotine The mini guillotine comprised a block
weight of 200 g with a blunt edge 2 mm wide that was
dropped from 20 cm guided by supports (Fig. 1).

Laser The laser emitted radiation at a wavelength 904 nm
(Irradia, Sweden) and was operated in pulsed mode. The
peak power was 20 W, the pulse width 200 ns and the
frequency 700 Hz. The mean output power was 60 mW, the
spot size 0.38 cm2 and the power density 60 mW/0.38 cm2

(=0.158 W/cm2). Two identical single diode laser probes
were use, one with active laser and the other an inactive/
placebo probe. Irradiation was applied for 50 s. Thus 3 J
was delivered from the active laser.

Ultrasonography The US instrument was a GE Logiq e
(GE Healthcare, Minneapolis, MN) with a 12 MHz linear
probe.

Material test system A servohydraulic testing machine (MTS
810; MTS,Minneapolis, MN) equipped with a calibrated load
cell of 500 N and a position transducer of 100 mm was used.
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The deformation rate was 0.25 mm/s. The load and
deformation data were sampled continuously during the test.

Experimental procedure

One investigator (J.M.B.) labeled one laser probe with blue
tape and the other with yellow tape. The code for active and
placebo probes were not disclosed until the statistical
analysis was done. The laser probe output was then
measured to determine which probe had been the active
one. The main outcome measures were tendon thickness
(including the peritendon) as measured on ultrasonographic
images and UTS. The study was approved by the local
animal laboratory committee at the University of Bergen
(application no. 20102676).

The experimental procedure (Fig. 2) was carried out in
six steps:

1. The animal was anesthetized with isoflurane (Isoba)
using an Isotec vaporizer. Under anesthesia, the
animal’s right ankle was positioned in full dorsal
flexion in the mini guillotine such that the edge of the

block hit just proximal to the insertion on the calcaneus
(Fig. 1). This procedure was carried out by J.J. After
injury, the animal’s tail was marked to distinguish it
from others in the cage, and was put back into the cage.
All animals in each group were subjected to this
procedure.

2. Half an hour after injury, the animal was again
anesthetized and the injured area was treated for 50 s
with either active (3 J) or placebo LLLT delivered to
one single point (performed by J.J.). A new mark was
put on the tail. This treatment procedure was repeated
in all eight animals in each group.

3. The next day, 15 h after the first injury, the same area of
the right Achilles tendon was again injured using the
guillotine according to the procedure in step 1 and half
an hour after later the area was treated for 50 s with
LLLT according to the procedure in step 2. This
procedure was performed by J.J.

4. On day three, 23 h after the second injury, US was
performed bilaterally on the right and left Achilles
tendon (carried out by S.H.). The imaging depth was
set to 2 cm, with three focus areas around the first
centimeter (Fig. 3). The animal was anesthetized and
the Achilles tendon area was scanned in both the
longitudinal and transverse planes, two images in both
planes. The longitudinal plane was scanned with the
whole length of the Achilles tendon in the image.
Tendon thickness (including peritendon) in the longi-
tudinal plane images was measured from the os
calcaneus up to the deeper layer of the skin (Fig. 3).
When scanning the Achilles tendon and the adjacent
structures in the transverse plane the probe was moved
distally from the knee until it met the os Calcaneus, and
images were acquired in this position. The thickness in
the transverse plane was measured as the vertical distance
within the anterior and posterior border of the peritendon.
In the statistical analyses the averages of the measure-
ments from two US images were used. Each animal’s tail
was marked after the US scan was complete.

5. The animals were anesthetized 2 h later and given
0.4 ml intraperitoneal anesthetic (Mebumal 50 mg/ml;
1 ml contains 54.9 mg pentobarbital sodium, 400 g
propylene glycol, 150 mg strong alcohol and distilled
water to 1 ml). The animals were killed by injection of
1 ml saturated potassium chloride solution to cause
cardiac arrest. The skin overlying the right gastrocne-
mius muscle was released from the calcaneus to the
proximal part of the triceps surae muscle. The Achilles
tendon was then released with scissors, and the muscle
fibers were removed from the tendons with a scalpel.
Water containing 9% sodium chloride was sprayed over
the tendon. The tendon was put into a small plastic bag,
labeled and stored in a refrigerator at 4°C. The same

A)         B) 

Fig. 1 a Mini guillotine with rat positioned for Achilles injury. b
(insert) Close-up of the tendon crush location
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procedure was used for the left Achilles, and on all
animals. This was carried out by J.J.

6. The tendons were subjected to UTS testing 3 h after
release. The proximal end of the Achilles tendon was
sprinkled with 250 μm alumina powder before it was
gripped in a clamp to prevent sliding. A special conically
designed grip for the distal end of Achilles tendon was
used. In this grip the os calcaneus was used as a plug to
obtain the optimal tendon grip [31, 32] (Fig. 4). The
maximal load for each tendon at failure was recorded.
The procedure was performed by OJ.L. and N.R.G.

Statistical analysis

Differences between injured right Achilles and healthy left
Achilles tendons were analyzed using a paired t-test, and

differences between groups were analyzed using the t-test
in SPSS (version 18) from Microsoft.

Results

The thickness of the injured right and the healthy left
Achilles tendons in the longitudinal US images were
significantly different (p<0.05) in the active LLLT group
(Table 1), but were not significantly different in the placebo
LLLT group (p=0.35; Table 1). The mean thickness of the
injured right Achilles tendon was 0.93±0.03 mm in the
active LLLT group and 0.73±0.07 mm in the placebo LLLT
group, and the mean thickness of the healthy left Achilles
tendon (including the peritendon) was 0.69±0.07 mm and
0.70±0.10 mm, respectively.

In the transverse US images the difference between the
injured right and the healthy left Achilles tendon was

Fig. 2 The experiment time schedule

Fig. 3 Longitudinal US images
with tendon thickness
measurements. Active LLLT
group 2) left and right Achilles
tendon (rat 5), 0.70 mm and
0.93 mm, respectively

106 Lasers Med Sci (2012) 27:103–111



significant (p<0.05) in the active LLLT group (Table 1),
but was not significant the placebo LLLT group (p=0.16;
Table 1). The mean transverse thickness of the injured right
Achilles tendon was 0.70±0.10 mm in the active LLLT
group and 0.63±0.14 mm in the placebo LLLT group. The
mean thickness of the healthy left Achilles tendon in the
two groups was 0.51±0.07 mm and 0.57±0.07 mm,
respectively.

There were no significant differences in UTS between
the injured right and healthy left Achilles tendon in the
active LLLT group or in the placebo LLLT group (Table 1).
The mean UTS in the injured right Achilles tendon was
51.11±9.77 N in the active LLLT group and 57.64±7.80 N
in the placebo LLLT group. The mean UTS in the healthy
left Achilles tendon was 53.94±9.80 N in the active LLLT
group and 59.66±11.86 N in the placebo LLLT group.

Discussion

Biomechanical test methods are commonly used in the
evaluation of surgically induced tendon injuries [31–33].
The UTS values are fairly low during the first 2 weeks after
tenotomy and previous studies have avoided UTS testing in
models where tendons are not seriously weakened by sharp
trauma. Measuring UTS after tendon injury induced by a
mini guillotine has to our knowledge not previously been
reported in the literature. After a standardized injury in a
mini guillotine, rat tendons show histopathological changes
[9–11]. However, we found no differences in the biome-
chanical properties as revealed by UTS between injured and
healthy rat Achilles tendons 1–2 days after injury. Similar
UTS values have been found in rat Achilles tendons
subjected to carrageenan injection [34].

A major technical challenge in UTS testing of healthy rat
Achilles tendons is to obtain a reliable, nonsliding grip of
the proximal end of the tendon. We have found only two
studies investigating UTS of healthy rat Achilles tendons,
possibly because grip slippage before the tendon ruptures.
In this study we succeeded in developing a grip with a
combination of rolling the tendon around conical anchors,
and the application of alumina powder to enhance friction.
Thus, grip-induced rupture was avoided, and most tendons
ruptured a few millimeters from the distal grip with forces
up to 75.2 N.

The standard deviation of the UTS of healthy rat
Achilles tendons is ±10 N (present results, and references
[14] and [34]) and the difference between healthy and
injured tendons is typically 2–3 N. Thus, in future studies
with the mini guillotine and UTS, the injury procedure will
have to be refined in order to weaken the tendon
sufficiently to obtain significant decreases in UTS values
after injury.

An irradiation dose of 3 J is commonly used in clinical
practice in human inflammatory conditions and was taken
from the dose recommendations of the World Association
for Laser Therapy (WALT) [35]. In retrospect, this may

Fig. 4 A rat Achilles tendon at the moment of rupture during UTS
testing

Table 1 Thickness (means±SD) of the injured and healthy Achilles tendons and mean differences in thickness as measured by US and UTS (n=8)

Group View Tendon thickness (mm) 95% CI p value

Right (injured) Left (healthy) Difference (injured−healthy)

US Placebo LLLT Longitudinal 0.73±0.03 0.70±0.10 0.03±0.09 −0.04 to 0.11 0.35

Transverse 0.63±0.14 0.57±0.07 0.07±0.12 −0.03 to 0.17 0.16

Active LLLT Longitudinal 0.93±0.03 0.69±0.07 0.24±0.07 0.18 to 0.30 0.00*

Transverse 0.70±0.10 0.51±0.07 0.19±0.10 0.10 to 0.27 0.00*

UTS Placebo LLLT 57.64±7.80 59.66±11.86 −2.02±15.09 −14.64 to 10.60 0.72

Active LLLT 51.11±9.77 53.94±9.80 −2.83±10.76 −11.82 to 6.16 0.48

*p≤0.05.
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have been too high for rat Achilles tendon pathology.
Optimal irradiation doses from 904-nm lasers in rat muscles
seem to be closer to 1 J. In a new study with LLLT, doses
of 0.1, 0.3, 1.0 and 3.0 J were used to prevent skeletal
muscle fatigue and possible muscle damage. All irradiated
groups except the group irradiated at a dose of 3.0 J had
significantly lower post-exercise creatine kinase activity
than the control group immediately after the contraction
tests [36]. If these doses translate to rat Achilles tendons, it
could explain the nonsignificant differences, but not the
increased edema observed in the active LLLT group.

In the current study there was an interval of 15 h between
the two LLLT irradiations. There are very few studies in
which there was an interval of less than 24 h between
irradiations. Thus, we cannot rule out the possibility that an
interval of 15 h was too short and resulted in negative effects
of LLLT. This is clearly an area where more research is
needed. A more likely explanation for the increased edema in
the active LLLT group could be an indirect consequence of
symptomatic pain reduction from LLLT leading to increased
activity causing more edema [37, 38]. Reduced pain
sensation from the injured tissue could promote physical
activity, and this may result in a temporary increase in edema
at the site of injury during the 23 h between the LLLT
irradiation session and the US examination [39].

The timing of LLLT irradiation in the acute phase of
inflammation is seldom discussed in the literature, but it can
be crucial for achieving positive effects. In some animal
studies, LLLT treatment has been found to reduce edema,
and is typically been measured 4 hours after injury [40–42].
Thus, we did not expect to find an increase in edema after a
single LLLT treatment 30 min after injury. We speculate
that the unexpected differences between the results may be
explained by differences in study design. Scrutiny of the
design of other similar LLLT studies showed that LLLT has
mainly been administered later than 30 min after injury [42]
and/or that the treatment procedure included more than a
single LLLT session [2, 3, 9, 21, 40, 41].

It is known that LLLT energy acts on biological
processes [43]. We therefore considered the cascade of
responses in the acute phase of inflammation, and in
particular which processes are dominant in the first half
hour. The immediate response in the innate immunity after
an injury is activation of signal transduction mechanisms.
Immediate genes activated within the first half hour of
inflammation are mainly transcription factors [44, 45].
Among these expressed cytokine gene is mitogen-activated
protein kinase (MAPK) [46]. Three well-characterized
subfamilies of MAPK are stress-activated protein kinases/
c-Jun N-terminal kinase (JNK), p38 mitogen-activated
protein kinase (p38) and extracellular regulated protein
kinases (ERK) [44, 47, 48]. Peak times for kinases have
been established for JNK, p38 and ERK in tendon cells,

smooth muscle cells, endothelial cells and cardiac fibro-
blasts. JNK, p38 and ERK increase rapidly, and they reach
a maximum within 10 to 30 min [49–52]. The impact of
JNK, p38 and ERK on edema has been investigated in
rodent paw models and brain injury models using inhibitors
for JNK, p38 and ERK, respectively. Tested selectively, all
these inhibitors reduce the development of edema, and
consequently JNK, p38 and ERK may increase edema
development [53–56].

The effect from LLLT (632.8 nm, 4.5 mW) on JNK, p38
and ERK has been investigated in skeletal muscle cells.
LLLT does not increase JNK and p38 activation or protein
expression, but LLLT induces protein translation through
ERK pathways [57, 58]. Perhaps the unexpected increase in
edema development in the LLLT group in our study can be
explained through a stimulation of the ERK pathway. But
this is speculative as we did not measure any of the
outcomes needed to confirm or refute this theory.

We also explored studies with LLLT irradiation within
the first half hour after injury (injection or surgery) with
regard to edema development. In a previous study by
members of our research group [40], different timing
protocols for LLLT (650 nm) were used. Carrageenan was
injected into rat paws and edema was measured 1 to 4 h
later. The main conclusion was that LLLT has an antiin-
flammatory effect in most cases, but one group treated with
LLLT had developed increased edema 10 min after
injection compared to controls.

Some clinical studies in dentistry have evaluated the
effect of LLLT on edema development immediately after
surgery [59–64]. The timing of LLLT administration was
not explicitly reported, but in two studies report the
duration of surgery was 19 min [63, 64]. In one study,
LLLT given immediately after surgery was found to have
increased edema at 3 days, but not at 7 days [62]. Two
studies with adequate doses found reduced edema [63, 64].
In three studies LLLT doses did not meet the WALT dose
recommendations for LLLT. One study used a scanning
mode for application of the laser beam [61], and the other
two used doses that were too low (<1 J) [59, 60].

Even though the results regarding edema development in
studies in which LLLT was used within the first half hour
after injury are arbitrary, it is not unlikely that LLLT
irradiation within the first half hour after an injury will
temporarily increase edema. This finding has important
clinical implications, as it has been an open question as to
when is the earliest time-point for effective LLLT admin-
istration. Interestingly, in some studies LLLT has been
administered before muscle damage or the onset of
inflammatory process with good results on other outcome
measures [36, 65]. This indicates that the negative effect on
edema development is restricted to inflamed tissue and the
first half hour after the onset of inflammation.
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Our decision to use the mini guillotine model was an
attempt to mimic a tendon disorder with inflammatory
components. Signs of inflammation are present in acute and
mild tendinopathies [66, 67]. In previous studies using the
mini guillotine injury method in rodents, the injured
tendons have shown inflammatory reactions [9–11]. The
significant increase in thickness of the injured tendons
supports the suitability of the mini guillotine model for
causing Achilles tendinopathy in the rat. The mini
guillotine model has the advantage of being easier to use
than overuse models such as the treadmill running model of
Soslowsky et al. [68]. None of these models involves
penetration of the skin and therefore they avoid the risk of
infection during the injury procedure. The surgical proce-
dure of tenotomy does introduce a risk for infection, and it
may also be questioned as to how relevant this model for
investigation of tendinopathies.

The use of animal models in research on human
tendinopathies has its limitations. There are obvious
anatomical differences between bipeds and quadrupeds.
This affects the validity of using animal models to study
tendinopathies, and limits extrapolation of the findings in
animal studies to human tendinopathies. Whether effec-
tive laser parameters in small rodent models can be
extrapolated to humans remains uncertain and additional
clinical studies in humans to verify or repute the findings
are called for.

Conclusion

Laser irradiation at 0.158 W/cm2 for 50 s (3 J) administered
within the first half hour after two blunt trauma injuries15 h
apart appeared to increase edema in the rat Achilles tendon
measured at 23 h after LLLT.

The UTS of the rat Achilles tendon was not decreased
significantly after two blunt traumas inflicted by a mini
guillotine. This experimental model appears useful for
investigating the optimal timing and effect of therapies in
acute tendon injuries. In this model, edema can be
reliably measured by US, and tendon UTS can be
reliably tested in both healthy and weakened rat Achilles
tendons. There is a need to further refine the experimen-
tal procedure to achieve a weakening of the rat Achilles
tendon. Further studies with this model should include
variations in the intervals between traumas, the timing of
treatment, the number of LLLT sessions and the power
densities.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.
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