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Abstract
The Production Routing Problem under demand uncertainty is an integrated prob-
lem containing production, inventory, and distribution decisions. At the planning 
level, the aim is to meet retailers demand, when only the demand distribution is 
known in advance, while minimizing the corresponding costs. In this study, a two-
stage formulation is presented in which the routing can be adjusted at short notice. 
In the first stage, only production decisions are made, while delivery and inventory 
quantities and retailer visit schedules are determined in the second stage. To han-
dle a large number of scenarios, two solution methods based on Sample Average 
Approximation are introduced. Furthermore, the impact of the routing quality is 
explored by applying a simple heuristic and an effective metaheuristic on the routing 
part. It is shown that, on average, the simple heuristic within an adjustable Sample 
Average Approximation approach provides better objective function values than the 
metaheuristic within a non-adjustable approach. Also all solution approaches out-
perform an expected value based approach in terms of runtime and objective func-
tion value.

Keywords Production routing problem · Integrated planning · Stochastic 
programming · Sample average approximation · Demand uncertainty · Heuristic

1 Introduction

Integrated planning systems can be used to better coordinate processes and bet-
ter align decisions within supply chains. A system that integrates the three key 
processes production, inventory and distribution can be represented and solved by 
the Production Routing Problem (PRP) (Adulyasak et al. 2015b). The PRP arises, 
for example, in the context of Vendor Managed Inventory. Typically, production 
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and setup decisions at a vendor, replenishment decisions for multiple retailers, 
and transportation and routing decisions for vehicles are determined simultane-
ously. Accordingly, the PRP is a generalization of the Inventory Routing Problem 
(IRP) extended by production decisions (Qiu et  al. 2018). As the IRP includes 
the Vehicle Routing Problem (VRP), and the PRP is an extension of the IRP, the 
solution of the PRP can be very challenging for realistic real-world problems. 
Therefore, solution approaches in the literature are usually based on metaheuris-
tics or multistage heuristics and there is only a little focus on exact solution meth-
ods (Díaz-Madroñero et al. 2015; Adulyasak et al. 2015b). Nevertheless, the lit-
erature starts to address uncertainties within the PRP. Within the field of PRP, 
Adulyasak et  al. (2015a) are the first to address demand uncertainty. They pre-
sent a stochastic PRP (SPRP) within a two-stage decision process and a rolling 
horizon framework for the multistage SPRP. Agra et  al. (2018a, 2018b) tackle 
the SPRP allowing backlog and solve a similar two-stage decision process using 
different Sample Average Approximation (SAA) methods and extend the general 
SAA with several heuristic approaches. Wang et al. (2019) solve the SPRP with 
uncertain traveltimes by robust optimization while respecting the risk preferences 
of the decision maker using a memetic algorithm. Ghasemkhani et al. (2021) and 
Liu et al. (2021) introduce the SPRP in the context of perishable goods. Ghasem-
khani et al. (2021) deal with the demand uncertainty using a fuzzy chance-con-
strained programming model, whereas Liu et  al. (2021) neglect the setup deci-
sions and use a heuristic-based robust optimization approach. Wang et al. (2021) 
extend the demand uncertainty, which is mainly considered, by cost uncertainty. 
As additional uncertainty makes the problem even more difficult, the provided 
solution approach considers the uncertainty only as an expected value problem.

Since demand is a critical information for decision making and is only known 
approximately in most cases, demand uncertainty should be taken into account 
(Gupta and Maranas 2003). The general PRP solely considering demand uncer-
tainty has only been addressed three times so far. In the very first article, Adulyasak 
et al. (2015a) address the SPRP in a two-stage decision process. On the first stage, 
setup and routing decisions are made before the realization of demand. The second 
stage adjusts the production and delivery quantity decisions when demand becomes 
known. The inventory and unmet demand quantities can be derived at the end of 
every period. They further develop a multistage SPRP in which demand becomes 
known in each period and demand of future periods remains unknown. As in the 
two-stage SPRP, first setup and routing decisions are made for all periods. Accord-
ing to the revealing demand, quantities get adjusted on the subsequent stages respec-
tively. Exact solution approaches based on Benders’ Decomposition are proposed, 
separating the decisions of the first and second or subsequent stages into master and 
subproblems. The reformulations can be improved by lower-bound lifting inequali-
ties, aggregate Benders cuts using scenario group cuts, and pareto-optimal cuts. For 
the multistage SPRP, the two-stage SPRP can be used as a warm start to generate an 
initial set of cuts providing a valid lower bound for the multistage SPRP and speed 
up the algorithm. To further improve the algorithm, the Benders reformulation can 
be solved in a Branch-and-Cut framework, where cuts are added to the master prob-
lem only at the root node and when an incumbent solution to the problem is found.
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Similar to Adulyasak et al. (2015a), Agra et al. (2018b) also model the SPRP as a 
two-stage decision process assuming a single vehicle and therefore including a TSP 
for the routing part. Here, all production decisions including setup and production 
quantity, and routing decisions including fixed vehicle and variable travel costs are 
made before demand is known. Delivery and inventory quantities are derived from 
scenarios. They also allow backlogging. The two-stage SPRP formulation can be 
tightened with several lot sizing, demand and rounding inequalities. To tackle the 
developed two-stage SPRP, Agra et al. (2018b) use a SAA approach with a hybrid 
heuristic of four dependent steps to determine the solution with the minimum aver-
age cost. Based on the SAA according to Verweij et al. (2003), the general idea is 
to determine the expected objective function of the SPRP using average estimates 
derived from random samples. For this purpose, the problem is solved for several 
small random samples and evaluated on the entire sample set. Here, small samples 
of about 0.5 % of the total scenario set are generated first and solved with a time 
limit of 300 s. Therefore, routing-related binary variables are relaxed, while the vari-
ables representing a visit to the retailer are kept binary. Second, weights are assigned 
to the determined solutions. If the sum of the weighted visit variables is greater 
than a previously defined threshold value, a given minimum percentage of the visit 
related variables is fixed. With these variables fixed, and the routing variables still 
relaxed, the two-stage SPRP is solved again for larger scenario sets of up to 5 % of 
the total scenario set in the third step. All retailer visit-related variables are fixed to 
their optimal values. Next, the routing variables are determined by solving a TSP for 
each period. As a last step, the first stage variables are fixed and the objective func-
tion value of the entire sample is computed by solving a pure linear programming 
model.

The authors also develop a new SAA algorithm for the two-stage SPRP includ-
ing a VRP for a given number of vehicles in Agra et al. (2018a), called the Adjust-
able Sample Average Approximation (ASAA). The mathematical formulation 
is tightened by valid inequalities and the goal is to minimize the production and 
routing costs plus the expected cost of both the inventory and the penalty costs for 
backlogged demand. Also the ASAA is quite similar to the algorithm introduced 
in Agra et al. (2018b). First, a two-stage SPRP is solved for equally small scenario 
samples with a given time limit. Then, the visit variables, which are similar for a 
given number of solved samples are fixed according to their associated weights and 
a given threshold value. Next, a two-stage SPRP is solved again for bigger scenario 
sample sets considering the promising variables as fixed. Using the optimal solu-
tion obtained, the visit variables not fixed yet can be fixed to their optimal values 
for each candidate solution. With all the visit variables fixed, a two-stage SPRP is 
solved for very large scenario sample sets. The value of the recourse variables is 
computed for each scenario given in the SAA scenario set. Consequently, the objec-
tive function value of each candidate solution is computed and the solution with the 
lowest average cost is chosen.

Within these three articles, setup and routing decisions are made on the first 
stage and quantity decisions can be adjusted after demand realization. This might 
be applicable for some practical applications where recurring distribution patterns 
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occur (e.g. supermarkets (Gaur and Fisher 2004).) Otherwise, this might lead to 
retailer visits, where retailers have little or no demand and unnecessary costs may 
occur. In other industries, such as the furniture or petrochemical industry (Miranda 
et  al. 2018; Schenekemberg et  al. 2021), for example, a more flexible decision 
sequence, regarding the routing decisions, might be more appropriate. Therefore, a 
new assumption is made here - routes can be adjusted at short notice in the second 
stage. The routing decisions might be adjustable in order to avoid inefficient tours, 
due to uncertain demand and therefore flexibility on routing is increased. Neverthe-
less, this assumption may lead to high computational costs as a VRP needs to be 
solved in every period for every scenario. Therefore, a heursitic approach based on 
a SAA is provided here, where the SPRP is solved iteratively, by solving the pro-
duction planning and routing subproblems in sequence. In this work, the SPRP is 
considered, with a single product distributed from a production plant to multiple 
retailers using capacitated vehicles in a discrete and finite time horizon. The demand 
uncertainty is represented by scenarios and the distribution is assumed to be known. 
Production planning is assumed to be made on the first-stage before the demand 
realization. The routing and therefore the decisions, which retailers need to be vis-
ited in each time period, the quantities to deliver to each retailer in each time period 
as well as the inventory levels are adapted to the scenario in the second stage. This 
should be done for short planning horizons, as these decisions depend on the actual 
outcomes of the uncertain demand parameters.

In this paper, an extended version of the formulation for the two-stage SPRP pre-
sented in Adulyasak et al. (2015a) is introduced with respect to the routing decision 
in the second stage. A general approach that explores the SAA in order to handle 
satisfactory sized instances of the SPRP is presented. For this purpose, the two-
phase heuristic according to Absi et al. (2015) is adapted to the stochastic case. In 
the first phase, a two-stage stochastic program for production and distribution deci-
sions is solved. In the second phase, the scenario-dependent routing decisions are 
made. Contrary to multiple TSPs, VRP-solution approaches are applied. Two differ-
ent solution procedures for the routing subproblem are evaluated with regard to their 
effect on the solution quality. And another ASAA approach, based on Agra et  al. 
(2018b) is proposed, where fixing binary variables on the second stage is also taken 
into account.

The rest of the paper is organized as followed. In Sect. 2, a formulation of the 
two-stage SPRP is presented. The SAA and ASAA based heuristic is then described 
in Sect.  3 in detail, followed by the discussion of computational experiments in 
Sect. 4, and by the conclusions in Sect. 5.

2  Notation and mathematical formulation

In this section, the notation used throughout the paper is introduced followed 
by the two-stage formulation of the SPRP. The production plan is considered as 
the first-stage decisons. Inventory levels, delivery quantities and the penalized 
ammount of unsatisfied demand per period are adjusted to the scenario. The pen-
alty can be viewed either as an opportunity cost related to lost sales or as the 
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cost of outsourcing the production and delivery of the product, as suggested in 
Adulyasak et al. (2015a). Here, the goal is to minimize the total costs, including 
setup and production costs, plus the expected costs of the inventory, lost sales as 
a penalty for unmet demand, and the routing.

2.1  Notation

The SPRP can be defined on a complete undirected graph G = (N0,A) , where 
N0 = {0,… , n} is the set of nodes and A = (i ∶ j)||i, j ∈ N0, i ≠ j is the set of arcs 
linking node i to j. Node 0 represents the vendor and N = N0⧵{0} the set of retail-
ers. Let Ω denote to the finite set of demand scenarios, and let �� be the prob-
ability of scenario � ∈ Ω . The planning horizon is a finite set of time periods 
T = {1,… , |T|} and a set of identical and capacitated vehicles V = {1,… , |V|} is 
defined. The notations for parameters, data and decision variables can be found in 
Table 1.

Table 1  Notations for the SPRP

Data & Parameter

u Unit production cost
f Fixed production setup cost
hi Unit inventory holding cost at node i
�i Unit penalty cost for retailer i
cij Travel cost from node i to j per vehicle
dit� Demand at retailer i in period t in scenario �
Kpro Production capacity
Kvec Vehicle capacity
Kinv
i

Inventory capacity at node i
Ii0� Initial inventory available at retailer i, equal in every scenario �
Mt min

�
Kpro, max�{

∑N

i=1

∑T

l=t
dil�}

�

M̂it𝜔 min
�
Kvec,Kinv

i
,
∑T

l=t
dil�

�

Decision variables
pt Production quantity in period t
Iit� Inventory at node i at the end of period t in scenario �
eit� Amount of unmet demand at retailer i in period t in scenario �
qitv� Shipment quantity to retailer i in period t by vehicle v in scenario �
witv� Vehicle load before making a delivery to retailer i or returning to the

vendor in period t by vehicle v in scenario �
yt Equal to 1 if there is a production setup in period t, 0 otherwise
zitv� Equal to 1 if node i is visited in period t by vehicle v in scenario �,

0 otherwise
xijtv� Equal to 1 if vehicle v travels directly from node i to node j in

period t in scenario � , 0 otherwise
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2.2  Two‑stage SPRP formulation

Based on the deterministic problems studied by Archetti et al. (2011) and Adulya-
sak et al. (2015b) the SPRP is modified for the stochastic case by Adulyasak et al. 
(2015a). Here, the SPRP formulation is altered in the objective function and some 
routing related constraints. Decisions on the production quantity are made in the 
first stage, acknowledging long lead times in manufacturing (Hopp and Spearman 
2008). The routing related decisions are made in the second stage, as the required 
work force or equipment and materials at the retailers might play a minor role within 
VMI. In addition, the subtour elimination constraints are refined in the form of 
the Miller-Tucker-Zemlin inequalities (Miller et al. 1960) and the vehicle capacity 
constraints are eliminated by incorporating M̂it𝜔 . These modifications collectively 
enhance the SPRP formulation in terms of more flexible decision making. The new 
extended two-stage SPRP can be formulated as follows.

(1)
min

∑

t∈T

[
fyt + upt +

∑

�∈Ω

��

(∑

i∈N0

hiIit� +
∑

i∈N

�ieit� +
∑

(i, j) ∈ A

v ∈ V

cijxijtv�

)]

(2)
I0(t−1)� + pt −

∑

i ∈ N

v ∈ V

qitv� − I0t� = 0 ∀t ∈ T ,� ∈ Ω

(3)Ii(t−1)� +
∑

v∈V

qitv� + eit� − Iit� = dit� ∀i ∈ N, t ∈ T ,� ∈ Ω

(4)I0t� ≤ Kinv
0

∀t ∈ T ,� ∈ Ω

(5)Ii(t−1)� +
∑

v∈V

qitv� ≤ Kinv
i

∀i ∈ N, t ∈ T ,� ∈ Ω

(6)pt −Mtyt ≤ 0 ∀t ∈ T

(7)qitv𝜔 − M̂it𝜔zitv𝜔 ≤ 0 ∀i ∈ N, t ∈ T , v ∈ V ,𝜔 ∈ Ω

(8)
∑

v∈V

zitv� ≤ 1 ∀i ∈ N, t ∈ T ,� ∈ Ω

(9)
∑

v∈V

z0tv� ≤ |V| ∀t ∈ T ,� ∈ Ω
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The objective function (1) minimizes the cost of the first-stage decisions and the 
expected cost of the second-stage decisions. Inventory flow Iit� at the vendor and 
retailers is balanced by constraints (2) and (3). Constraints (4) and (5) impose the 
maximum inventory level and are based on the maximum level policy defined by 
Archetti et al. (2011). Production pt and setup yt are linked by constraint (6). The 
setup variable is forced to be one if production takes place in a given period. The 
production quantity is bounded by the minimum value of the production capacity 
and the maximum total demand in the remaining periods. Shipment quantity qitv� 
and retailer visits zitv� are linked by constraint (7). The quantity shipped is limited 
by the minimum value variable of the vehicle capacity, the inventory capacity at 
the retailer and the remaining demand. Each retailer can be visited at most once 
per period (8). The number of used vehicles is limited by the number of available 
vehicles (9). Constraint (10) requires a visited retailer to have two incident edges to 
maintain flow conservation. The subtour elimination constraints and vehicle loading 
restrictions are combined by constraint (11). Subtours are eliminated by forcing the 
vehicle load witv� to be higher before visiting the next retailer. After the visit, the 
vehicle load needs to be lower, due to the delivered shipping quantity. Constraint 
(12) represents the vehicle-load capacity restriction and (13) limits the unsatisfied 
demand eit� to the demand of a given period under a certain scenario. (14) to (18) 
specify the bound for the remaining variables, respectively.

This basic two-stage SPRP formulation contains a large number of binary and con-
tinuous variables and may not be solved efficiently using general optimization software. 

(10)

∑

i ∈ N0

i ≠ j

xijtv� +
∑

l ∈ N0

l ≠ j

xjltv� = 2zjtv� ∀j ∈ N0, t ∈ T , v ∈ V ,� ∈ Ω

(11)
witv𝜔 − wjtv𝜔 − qitv𝜔 + M̂it𝜔

(
1 − xijtv𝜔

)
≥ 0 ∀(i, j) ∈ A, t ∈ T , v ∈ V ,𝜔 ∈ Ω

(12)0 ≤ witv� ≤ Kveczitv� ∀i ∈ N,∀t ∈ T ,∀v ∈ V ,∀� ∈ Ω

(13)0 ≤ eit� ≤ dit� ∀i ∈ N,∀t ∈ T ,∀� ∈ Ω

(14)0 ≤
∑

i∈N

qitv� ≤ Kvec ∀t ∈ T ,∀v ∈ V ,∀� ∈ Ω

(15)pt, Iit� ≥ 0 ∀i ∈ N0, t ∈ T ,� ∈ Ω

(16)yt ∈ {0, 1} ∀t ∈ T

(17)xijtv� ∈ {0, 1} ∀(i, j) ∈ A,∀t ∈ T ,∀v ∈ V ,∀� ∈ Ω

(18)zitv� ∈ {0, 1} ∀i ∈ N0, t ∈ T , v ∈ V ,� ∈ Ω
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Even by strengthening the routing part by adding the following valid vehicle-symmetry 
breaking constraints (19) and (20) based on Adulyasak et al. (2014a), the formulation 
stays impractical for large size instances.

 Adulyasak et  al. (2014a) already mention this issue regarding the deterministic 
PRP. Since for the SPRP the scenario-dependent constraints expand by a factor of 
|Ω| , this problem is also present here as well (see Table 6 in the Appendix). Even 
small scenario sizes of |Ω| = 5 cannot be solved to optimality with a common com-
mercial solver in a reasonable runtime and push commercial solvers to their limits. 
Therefore, a SAA based heuristic approach is introduced in Sect.  3. The problem 
formulation (1)–(20) will be referred to as the 2sSPRP in the following.

3  Solution framework

In this section, two different main-approaches to solve the 2sSPRP are discussed and 
tested in Sect. 4. Both approaches are based on the SAA method described in Verweij 
et al. (2003).

Given the difficulty of the 2sSPRP, solving the problem with the general SAA may 
not be practical, even for a very small number of less than 5 scenarios. Therefore, both 
approaches are supported by a two-phase iterative heuristic, to obtain good or near-opti-
mal solutions for the SPRP in reasonable runtime. Beyond that, the second approach is 
modified to enlarge the number of scenarios obtained or candidate solutions explored, 
similar to Agra et al. (2018b).

3.1  Two‑phase iterative heuristic

The two-phase iterative heuristic is based on Absi et al. (2015). Here, the 2sSPRP is 
devided into a two-stage production and distribution problem (2sPrDP) in the first 
phase and a VRP in the second phase. For a given set of scenarios, the solution of the 
2sPrDP determines the setup and production decisions in the first stage. The inventory, 
delivery, unmet demand quantity and decisions related to retailer visits are assigned to 
the second stage. The delivery quantity and retailer visits from the first phase are sub-
mitted to the second phase, where a VRP is solved in every period for each scenario. To 
obtain zitv� , the routing costs are considered approximately. The initial approximated 
costs to visit a retailer in a period are determined by

(19)z0tv� − z0t(v+1)� ≥ 0 ∀t ∈ T , 1 ≤ v ≤ |V| − 1,� ∈ Ω

(20)

j∑

i=1

2(j−i)zitv� −

j∑

i=1

2(j−i)zit(v+1)� ≥ 0 ∀j ∈ N, t ∈ T , 1 ≤ v ≤ |V| − 1,� ∈ Ω

�it = min
{
2c0i, min

j,l∈N0

j≠i≠l,j≠l

{0.5(cji + cil)}
}
.
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According to Qiu et al. (2018) this approximation of �it might be closer to the real 
routing costs than the proposed approximation of Adulyasak et al. (2014b), where

In Adulyasak et al. (2014b), �̂�it might overestimate the routing cost, since the cost 
of travel on arc (j, i) or (i, l) is assigned to both retailer i and retailer j and retailer l, 
respectively. The approximation presented by Absi et al. (2015) might also be a weak 
representation of the real routing costs. They may overestimate the real costs consid-
ering only direct delivery or a random variation of it. The results of preliminary 
computations (see Appendix, Table 7) show that, on average, the approach accord-
ing to Qiu et al. (2018) only differs by about 1 % in terms of the objective value. 
However, considering runtime, the approach provides better results for long-term 
planning horizons of 4 or more periods and is therefore used for further processing.

In some scenarios and periods, the demand of certain retailers could be satis-
fied by the inventory. Therefore, the initial �it might not represent the real expected 
cost values for the retailer visits. To receive a better estimation, the solution of the 
second phase can be used to update the costs and pass the better approximations of 
�it to the next iteration of the first phase. This process can be repeated until a given 
number of iterations is reached or no more changes in �it are observed.

3.1.1  Production distribution phase

In the first phase, the 2sPrDP is solved for a set of scenarios Ω . Here, the decision 
when and how much to produce is made before the demand realization. The deci-
sions when to visit retailers and how much to deliver are made after the demand 
realization, similar to the 2sSPRP. The objective is to minimize production and 
inventory costs and costs related to inserting retailers into vehicle routes. According 
to the 2sSPRP, the 2sPrDP can be stated as:

Except the actual routing, all decisions linked to a vehicle are made in the 2sPrDP. 
The vehicle loads do not exceed their capacity and a valid solution for the second 
phase is guaranteed. As �it connect the first and second phase, their values and the 
quality of their approximation play a crucial role in determining the first decision 
set. The initial approximation considers the minimum partial connection of two 
nodes and therefore may underestimate the real values. Thus, the initial values of �it 

�̂�it = min
{
2c0i, min

j,l∈N0

j≠i≠l,j≠l

{(cji + cil)}
}
.

(21)
min

∑

t∈T

[
fyt + upt +

∑

�∈Ω

��

(∑

i∈N0

hiIit� +
∑

i∈N

�ieit� +
∑

i ∈ N

v ∈ V

�itzitv�

)]

(22)

∑

i∈N

qitv� ≤ Kvec ∀t ∈ T ,∀v ∈ V ,∀� ∈ Ω

and (2) − (9), (13) − (16), (18) − (20).
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need to be updated in subsequent iterations using the information provided by the 
second phase.

3.1.2  Routing phase

This section describes the second phase, where the actual routing takes place. For 
each scenario and period, a VRP needs to be solved. Any known solution method for 
the VRP could be used to determine the actual costs of the vehicle routes identified. 
Here, two different methods from the literature are adapted to investigate the impact 
of the routing decision on the 2sSPRP. The results will be shown in Sect. 4.

Due to the information gained in the first phase, retailers are already allocated to 
vehicles and a route for each vehicle can be computed. In order to keep this informa-
tion, a heuristic for the VRP, the Distance-based Sweep Nearest (DSN) algorithm 
(Peya et  al. 2019), is used. The assignment of the retailers to be visited in each 
period and scenario is known for each vehicle. Therefore, for each vehicle used, the 
Euclidean distance of each assigned retailer from the vendor can be computed and 
sorted according to the descending order of their distances. Then the farthest retailer 
from the vendor is chosen and a Nearest Neighbor Heuristic (NNH) is executed 
for the remaining retailers assigned to the vehcile, but not yet to the corresponding 
route. Preliminary testing has shown that the DSN performs slightly better when 
the retailers are sorted according to the descending order compared to the ascend-
ing order (see Appendix, Table 8). The DSN can be seen as a single-iteration NNH 
here, choosing the farthest retailer from the vendor as a starting point. This approach 
is chosen to obtain a fast and reasonable solution for the VRP, assuming that the 
impact of the VRP solution on the underlying 2sSPRP might be low.

To check the contrary assumption, a second, more powerful VRP-solution 
approach is adopted. According to Laporte et  al. (2014), the Greedy Rand-
omized Adaptive Search Procedure hybridized with an Evolutionary Local Search 
(GRASPxELS) by Prins (2009) is a good trade off between computation time and 
solution quality and is chosen as the second routing approach. As the GRASPxELS 
is designed for large-scale VRPs with up to 483 customers, the approach is imple-
mented with a reduced Local Search method. Also a more simple Split procedure 
and other minor modifications are made due to the limited number of available vehi-
cles and the comparatively small number of retailers considered. In each phase (np), 
a randomized NNH is executed to generate a giant tour T as starting solution. This 
giant tour is split into a VRP solution S̄ by the Split method, containing a feasible 
number of subtours, which is improved by Local Search (LS) and merged back into a 
giant tour T̄  by Concat. T̄  and S̄ are then used to improve the VRP solution perform-
ing ni iterations for the ELS. In each iteration, nc copies of T̄  are mutated to generate 
child-tours T̂  , which are split and then improved by LS. If S̄ is improved by a child-
solution Ŝ , S̄ and T̄  are updated for the next ELS iteration. The best solution found 
after np phases remains the global best solution S∗ and T∗ respectively. The used 
operations for the LS and the general form for the used GRASPxELS can be found 
in the Appendix, Algorithm 2 and 3.The proposed two-phase iterative heuristic is 
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integrated into a common SAA framework and an adjustable SAA framework in the 
following.

3.2  General SAA

SAA is commonly used in stochastic programming to reduce the scenario set to a 
manageable size. Agra et al. (2018a) show, that relying on the power of comercial 
solvers only may be impractical and using heuristics within a SAA approach can 
help to obtain good solutions. As in Kleywegt et al. (2002) and Verweij et al. (2003), 
the true expected objective function value is determined by an approximation of the 
average value for a very large scenario sample set Ω� . For the approximation, |M| 
separate smaller samples Ωk , with k ∈ M = {1,… , |M|} , are solved, using the heu-
ristic presented in Sect. 3.1, to obtain a candidate solution. For each candidate solu-
tion, the first-stage decision is fixed and evaluated on Ω� . By this, a deterministic 
PrDP with fixed setup and production quantity is computed for each scenario � ∈ Ω� 
and thus the remaining distribution decisions are made and the routing is conducted. 
The solution that estimates the minimum expected total cost by calculating the aver-
age is chosen, respectively.

The general framework used can be seen in Fig. 1. For each candidate solution 
or replication k, the formerly introduced two-phase iterative heuristic needs to be 
solved in a stochastic environment. Here, the 2sPrDP needs to be solved multiple 
times to update the expected routing costs �̄�it to improve the initial expected costs 
for retailer visits. To speed up the algorithm, the prior calculated 2sPrDP solution 
can be used as a warm start within the approach. ŷt and p̂t refer to the fixed first-
stage decisions of the 2sSPRP and are passed onto the sample evalution within the 
SAA. Nevertheless, a VRP needs to be calculated for each scenario and period and 
therefore, only a moderate number of scenarios can be considered. An adjustable 
approach is presented in Sect. 3.3 to overcome this problem.

Fig. 1  Integrated two-phase iterative heursitic within a general SAA framework
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3.3  Adjustable SAA

According to Agra et  al. (2018a), the SAA method can be adjusted to generate 
partial solutions from promising variables of the |M| replications. Within the 
ASAA, variable values, which are identical in (almost) all replicate-solutions, are 
identified. As these variable values are likely to appear in the optimal solution, 
they are fixed to generate a simplified problem and a new larger sample can be 
computed. Here, the idea is to use the ASAA framework to generate high qual-
ity solutions by expanding the scenario space without increasing the algorithms 
runtime too much.

To identify promising variables, weights wk are assigned to each partial solution 
according to their objective function value. In Agra et al. (2018a), only the retailer-
visit related variables ( zit ), refering to the first stage, are chosen. As these variables 
zitv� refer to the second stage now, two different approaches will be considered. First, 
setup-decision variables yt are examined, as they are the only remaining binary first-
stage variables. And since zitv� are presumed to be responsible for slowing down the 
2sPrDP, retailer-visit variables are observed secondly. For both approaches, wk are 
computed according to Agra et al. (2018a) and the ASAA proceeds in similar steps, 
but has to be adjusted for fixing the second-stage variables.

ASAA1st - Fixing the first-stage variables yt:

• Obtain partial solutions. For each replication k, generate a small scenario sample 
set Ω̌ with |Ω̌| ≪ |Ω| . Solve Ω̌ using the general SAA approach from Sect. 3.2.

• Fix promising first-stage variables. Assign wk to each of the k replications and 
fix some of the variables yt according to Agra et al. (2018a).

• Solve and evaluate the simplified model using Ω and Ω� . Solve |M| replications 
for the bigger sample set Ωk and the former fixed variables yt . Evaluate the solu-
tions acoording to Ω�.

ASAA2nd - Fixing the second-stage variables zitv�:

• Obtain partial solutions. For M̌ with |M̌| ≪ |M| , generate small scenario sample 
sets Ωk . Solve Ω using the general SAA approach from Sect. 3.2 for each replica-
tion k ∈ M̌.

• Fix promising second-stage variables. Assign wk to each of the k replications and 
fix some of the variables zitv� according to Agra et al. (2018a).

4  Computational experiments

In this section, the performance and solution quality of the previously described 
solution approaches are carried out by computational experiments. All approaches 
are implemented in C# using Gurobi 9.5.0 for solving the mathematical models. All 
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tests run on an Intel(R) Core(TM) i5-7500 CPU machine at 3.4 GHz with 8 GB of 
RAM.

4.1  Data generation and experimental design

The instances used to conduct the experiments are based on Adulyasak et al. (2015a) 
and Agra et al. (2018a). Four test sets are considered, depending on the number of 
retailers. Test sets S1 to S4 contain n = 5, 10, 15 and 20 retailers, 3 to 5 periods and 
2 available trucks respectively, to keep runtimes manageable. Since 15 instances are 
created for each retailer-period combination, the test sets contain 45 instances each, 
resulting in a total number of 180 instances examined. Symmetric travel costs are 
associated referring to the Euclidean distance of a 500 by 500 square grid. Scenar-
ios are generated by a Monte Carlo simulation in which the demand varies between 
±30 % from the nominal case d̄it ∈ [5, 25] , which is the same in every period. The 
demands are assumed to be discrete and uniformly distributed. It is assumed, that 
the production units pt can be distributed by all available vehicles in a period and 
since a different range of periods is observed Kinv

i
 is slightly modified, compared 

to Adulyasak et al. (2015a). Kvec is chosen depending on Kpro . It is ensured that the 
production volume can be transported with the available vehicles at full capacity 
utilization. Initial inventory is considered for retailers only.

Two different experimental settings are considered to examine the impact of the 
VRP-solution quality and of the two different SAA frameworks. To evaluate the 
impact of the VRP, the general SAA is taken into account. The assumed low and 
high impact VRP-solution methods outlined in Sect. 3.1.2 are used. SAAD will be 
refered to as the SAA framework using DSN in the routing part, wheares SAAGE 
will be referred to when the GRASPxELS is used in the routing part. As in Agra 
et al. (2018b), the sample size of Ω� is set to 1000 and the number of replications 
executed is 10 within a replication, |Ω| = 10 . However, due to the high number of 
binary variables zitv� , the 2sPrDP usually cannot be solved to optimality within a 
reasonable amount of time. Thus, the 2sPrDP is solved using a satisfactory optimal-
ity gap. After �̄�it is fixed in the last iteration for the two-phase iterative heuristic, the 
2sPrDP is solved one last time to refine the production decisions, given a runtime 
limit. Here, the number of iterations is set to 3, due to the preliminary testing con-
ducted (see Appendix, Table 8). The optimality gap and the runtime limit are set 
to 3.75 % and 5 minutes, respectively. The procedure is presented in Algorithm 1. 
With respect to the overall runtime, when comparing the SAA and the ASAA, only 
the low impact VRP-solution method is used for the ASAA by applying only the 
DSN to the two adjustable approaches studied. Within the ASAA the two different 
approaches are used as follows. The number of scenarios for Ω̌ and Ω is set to 5 and 
10 running ASAA1st . Sample size of Ω� and the number of replications remain the 
same as for the SAA. Running ASAA2nd , Ω� and Ω are the same as in the SAA and 
the number of replications for M̌ and M is set to 5 and 10.
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Algorithm 1  Two-phase iterative heuristic

All approaches will be compared to the monolithic mixed-integer formulation 
using the expected-value approach to cope with the uncertainty (EVP). Even replac-
ing the uncertain demand by its expected value the EVP might not be solved to opti-
mality in reasonable runtime for larger instances. Therfore, a time limit of 6 hours is 
set to find a solution. The production and setup decisions obtained are used as first-
stage decisions and evaluated on scenario set Ω� . The evaluated EVP will be stated 
as eEVP in the following.

4.2  VRP Impact ‑ SAA
D

 vs. SAA
GE

The impact of the VRP-solution quality is studied, comparing DSN and GRASPx-
ELS within the general SAA approach. Results can be seen in Table 2. Information 
is gathered regarding the average value for each retailer, period and vehicle combi-
nation, unless otherwise stated.

The results in Table 2 show much better results according to the objective value, 
using the GRASPxELS over the DSN solution approach. The objective value can be 
improved up to 7.74 % for 5 retailers and up to 63.62 % for 20 retailers. This tremende-
ous increase in Δ over a larger number of retailers can also be observed using DSN. 
On the one hand, this might be caused by the higher number of retailers and the asso-
ciated higher impact of a more elaborated routing approach. On the other hand, even 
the eEVP cannot be solved to optimality within the given runtime limit, for a higher 
number of retailers and periods. This could be due not only to the routing decisions, 
dependent on the number of retailers and time periods, as well as the linkage associ-
ated with setup decisions. Whereas the 2sPrDP can be solved to optimality for almost 
all instances the DSN based approach performs worse than eEVP for 5 retailers. This 
supports the assumption examined in the first experimental setting. The outcome of 
the underlying 2sSPRP depends on the quality of the VRP-solution. Comparing the 
objective values of SAAD and SAAGE strengthens the observation. For 95.6 % of all 
instances, SAAGE provides a better objective value than SAAD . Looking more closely 
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at the production decisions, this is also evident for instances considering a small num-
ber of retailers. Table 3 describes the production deviation Δprod in percentage points, 
comparing the total production quantity of eEVP with SAAD and SAAGE . The produc-
tion volumes differ only slightly. This further supports the assumption, that the impact 
of the solution quality of the routing problem might play a major role while solving 
the 2sSPRP. This can also be justified by the setup decision, as for the SAAD and the 
SAAGE , the setup decisions follow the same patterns for 80 % of all instances. This can 
be seen from the relative shares, which show the average number of setups performed 
in a given time period, in Table 3. However, using a more powerful solution approach 
to obtain the routing decisions, as well as extending the number of periods, leads to 
a runtime increase. Compared to the eEVP, the increased runtime is still acceptable. 
Compared to the SAAD the runtime increase of SAAGE might also be acceptable, since 
the average improvement in Δ is about 7.91 % for SAAGE.

Table 2  SAAD compared to SAAGE

Note: Average improvement of objective values and computation times in minutes obtained by the gen-
eral SAA. Δ represents the relative improvement compared to the eEVP with respect to the objective 
value. win represents the number of instances an approach provides a better solution. rt indicates the 
runtime in minutes

r t ΔSAAD ΔSAAGE winSAAD
winSAAGE

rtSAAD
rtSAAGE

rteEVP

5 3 −5.48 1.76 2 13 3.25 7.04 2.55
4 −2.46 7.74 0 15 7.42 15.40 9.48
5 −7.25 1.49 1 14 32.71 37.59 99.87

10 3 36.22 44.38 1 14 15.08 29.88 373.77
4 41.51 48.88 2 13 38.45 53.84 366.23
5 37.07 46.28 0 15 45.93 67.79 365.85

15 3 49.47 56.52 0 15 18.93 63.81 362.51
4 50.55 57.56 1 14 49.50 88.12 363.90
5 50.72 57.58 0 15 54.70 105.36 364.90

20 3 54.73 63.62 1 14 32.09 111.62 361.80
4 54.81 62.34 0 15 52.21 151.22 361.67
5 55.22 61.91 0 15 57.87 171.21 363.15

Table 3  Comparison of production and setup decisions for the SAAD and SAAGE , considering 5 retailers

relative share for SAAD relative share for SAAGE

t Δprod y1 y2 y3 y4 y5 y1 y2 y3 y4 y5

3 4.98 1.00 0.53 0.00 − − 1.00 0.47 0.00 − −

4 2.26 1.00 0.80 0.20 0.00 − 1.00 0.80 0.20 0.00 −

5 3.39 1.00 0.20 0.87 0.07 0.00 1.00 0.13 1.00 0.07 0.00
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4.3  Fixing first‑ vs. fixing second‑stage variables within the ASAA framework

As the solution space obtained within the general SAA might be too small according 
to the chosen scenario set, a new adjustable SAA regarding to Agra et al. (2018a) is 
tested with two different settings. In the first setting ASAA1st , promising first-stage 
variables can be fixed, wheares in the second setting ASAA2nd , promising second-
stage variables can be fixed. Comparing these two different ASAA settings, Table 4 
shows high improvements using the first approach over the second approach, on 
average. The objective value can be improved by up to 9.22 % for small instances, by 
partially fixing the setup variables instead of the routing variables. Thus, more flex-
ibility within the scenarios is created. However, higher flexibility affects the runtime 
and therefore using ASAA1st results in a higher runtime compared to ASAA2nd . As 
the number of retailers increases, the solution quality of ASAA2nd decreases in com-
parison to ASAA1st . Looking at the number of win, ASAA2nd is not able to provide 
the best solutions here. Therefore, the increase in runtime for using ASAA1st seems 
reasonable.

4.4  General vs. adjustable SAA

Comparing the general SAA with the ASAA framework, the respective best 
approaches SAAGE and ASAA1st differ between −0.68 and 7.45 percentage points 
in favor of ASAA1st considering all instances. However, comparing ASAA2nd with 
SAAGE , the general SAA approach prevails. Considering all instances, SAAGE 
provides the best solution in 32.78 %, whereas ASAA1st and ASAA2nd provide 

Table 4  ASAA1st vs. ASAA2nd

Note: Average improvement of objective values and computation times in minutes obtained by the 
ASAA. Δ represents the relative improvement compared to the eEVP with respect to the objective value. 
win represents the number of instances an approach provides a better solution. rt indicates the runtime in 
minutes

r t ΔASAA1st ΔASAA2nd winASAA1st
winASAA2nd

rtASAA1st
rtASAA2nd

rteEVP

5 3 9.22 4.75 9 6 30.33 8.43 2.55
4 8.24 5.35 5 10 39.87 9.87 9.48
5 6.08 3.37 6 9 77.81 101.51 99.87

10 3 48.19 40.12 15 0 51.23 52.23 373.77
4 52.44 43.20 15 0 99.67 98.63 366.23
5 48.27 41.16 15 0 150.85 75.48 365.85

15 3 58.27 49.64 15 0 129.77 52.75 362.51
4 59.60 51.86 15 0 105.97 130.65 363.90
5 59.23 52.19 15 0 173.05 109.36 364.90

20 3 62.93 55.27 15 0 102.38 64.23 361.80
4 63.59 55.32 15 0 139.57 118.88 361.67
5 63.14 56.60 15 0 227.53 147.00 363.15
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the best solution in 60.55 % and 6.67 % respectively. As for SAAGE , good quality 
routing solutions are obtained and no variables get fixed, this approach provides 
good results in terms of the objective value and runtime. Figure 2 shows the aver-
age runtime of the different retailer-period combinations for all approaches. For 
almost all instances, except for the 5 retailer case, the eEVP reaches the runt-
ime limit. Therefore, the eEVP is not considered further, regarding runtime. A 
comparison of the SAA approaches shows that using SAAGE on average doubles 
the runtime, compared to SAAD . This is also evident when comparing SAAGE to 
ASAA1st and comparing the ASAA approaches. If a doubling or even a quadru-
pling of the runtime, compared to SAAD , is accepted, the objective values can 
be clearly improved on average, compared to the eEVP. Within the approaches 
tested, the results do not seem to differ too much in terms of average objective 
values. However, if the lower bound (LB) of the unevaluated EVP is assumed 
to be the best solution possible, even for the stochastic case, a different picture 
emerges. Table 5 shows the relative improvement of the four different approaches 
examined, compared to EVPLB . The use of ΔLB is intended to highlight the dif-
ferences between the proposed approaches. Therefore, the value for the actual 
improvement, when solving the EVP to optimality in all cases, will therefore be 
between ΔLB and the Δ-values provided in Tables 2 and 4. Compared to EVPLB , 
SAAD provides the worst results. SAAGE performs better and ASAA1st performs 
best. ASAA1st still improves the objective value compared the unevaluated EVPLB 
up to 6.1 % on average. Whereas, SAAGE does not improve the objective value for 
all instances compared to the unevaluated EVPLB , but still improves it by 2.4 % 
on average.

Fixing second-stage variables seems to be appropriate to reduce runtime and 
compared to the SAAD better solutions can be obtained with respect to the objec-
tive values. However, relying on better solution approaches to estimate routing 

Fig. 2  Runtime development of the four approaches in minutes. Note: Periods 3–5 are shown for each 
retailer section
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costs seems to be more powerful than fixing second-stage variables. In terms of 
potential improvements, ASAA1st provides the best objective values on average. 
When runtime is also taken into account, SAAGE performs well and seems to be a 
valid approach.

5  Conclusions

The 2sSPRP presented in this work is an integrated problem considering produc-
tion, inventory and distribution decisions while demand is uncertain. In the litera-
ture, two-stage formulations containing the routing decisions in the first stage are 
considered and therefore routing cannot be adjusted at short notice. As noted in 
Sect. 1 this might only apply to some industries with certain distribution patterns. 
For other industries, more flexibility in the routing decision might be appropriate. 
Here, a new structure within the 2sSPRP is examined, where the routing decisions 
are made in the second stage, and different solution approaches are discussed. To 
examine the impact of the VRP-solution quality, two different solution approaches 
are compared within a SAA approach. Results show an improvement regarding total 
cost, when using GRASPxELS over DSN for the routing part. Thus, the chosen 
two-phase heuristic within the SAA approach is highly dependent on the approxi-
mated routing costs and thus on the chosen VRP-solution approach. The assump-
tion made in Section 3.2.1 regarding the potentially low impact of VRP-solutions 
can therefore be negated. Another examination of an adjustable SAA approach is 
whether to fix promising variables at the first or the second stage, thus consider-
ing more scenarios or more replications. When fixing variables on the first stage, 
more flexibility to adapt to the scenarios is given. Therefore, the results are better 
in terms of total costs. However, fixing variables in the second stage is less flexible 
and results in higher total costs. Nevertheless, it reduces the runtime. In addition, 
fixing second-stage variables is preferable to the SAA approach in terms of solution 

Table 5  Average relative 
improvement compared to the 
LB of the EVP

r t ΔLB SAAD ΔLB SAAGE ΔLB ASAA1st ΔLB ASAA2nd

5 3 −5.48 1.76 9.22 4.75
4 −2.46 7.74 8.24 5.35
5 −8.22 0.56 5.22 2.47

10 3 −13.19 1.45 8.10 −6.19
4 −13.61 0.88 7.19 −10.21
5 −18.27 −1.48 2.32 −10.74

15 3 −14.05 1.93 5.75 −13.71
4 −15.98 0.21 4.96 −12.94
5 −16.24 −0.61 3.48 −12.74

20 3 −12.46 9.75 7.93 −11.13
4 −15.09 5.84 7.31 −13.79
5 −17.22 0.26 3.45 −13.60
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quality – assuming that the same VRP-solution approaches are applied. This might 
be achieved by the extension of the scenario space within the adjustable approach.
The eEVP confirms that stochastic optimization based on expected values does not 
always lead to good results. In general, scenarios should be considered within an 
SAA or ASAA based approach for the 2sSPRP studied. Nevertheless, the proposed 
approaches do have their drawbacks. Within the (A)SAA approaches, the number of 
scenarios considered might be too small in order to provide an appropriate represen-
tation of reality. However, these assumptions and the assumption of the distribution 
of demand have been adopted from the literature (Agra et al. 2018a), and a larger 
set of scenarios would have exceeded an acceptable runtime limit. To overcome this 
issue, descriptive sampling could be used (Saliby 1990) in order to examine a larger 
number of scenarios and to better represent uncertainty. Exploring differences and 
enhancements from a modeling perspective is alreaedy examined in Geiger (2024). 
However, whether the routing decisions should be made in the first stage (Adulya-
sak et al. 2015a) or in the second stage taking into account the possible discrepancy 
between theory and actual implementations in pracitice, should be studied in more 
detail. And since it seems reasonable to adjust production and routing decisions 
simultaneously over time, multistage stochastic programming for the SPRP could be 
an interesting area of research. To put this into practice, a rolling horizon approach 
might be worth considering.

Appendix A

Solving the 2sSPRP using gurobi 9.5.0

To study the mathematical model formulation of the 2sSPRP proposed in Sect. 2, 
15 small instances with 10 retailers are solved, using a scenario size of Ω = 5 and a 
runtime limit of 30 minutes. As can be seen in Table 6 in the Appendix, Gurobi is 
pushed to its limit by the mathematical model even for this small scenario set, as the 
relative MIP gap [%] is still 1.73 % to 2.86 % on average.

Preliminary test on approximated routing costs

The preliminary test examines the effect of different approaches to estimating initial 
routing costs on the solution for the SAA. The instance set of 5 retailers and 3–5 
periods is used. For each retailer-period combination, 15 instances are considered. 
The results in Table  7 show the average objective function values ( ∅obj) and the 
average runtime ( ∅rt) in minutes.

Preliminary test of ascending or descending order for the DSN

The first preliminary test is conducted to determine a reasonable number of itera-
tions for the two-phase iterative heuristic. The second preliminary test is performed 
to analyze the impact of sorting the retailers in ascending (A) or descending(D) 
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order for the DSN. The preliminary test is performed on instance sets considering 
5 and 10 retailers with 15 instances each. Table 8 summarizes the results, starting 
with 2 iterations and ending with at most 5 iterations for the two-phase iterative 
heuristic. yiter

t
 represents the number of setup decisions similar to the best solution 

found. This parameter is used as a reference to determine the number of iterations, 
since yt has the greatest impact on the first stage, regarding total cost. Since the rela-
tive proportion of the number of setup decisions similar to the best solution found 
decreases after 3 iterations, the number of iterations is set to 3 for all other tests. The 
columns winObj states the total number of instances with the best objVal for a given 
retailer-period combination, whereas win states the total number of instances, where 
the algorithm was superior regarding the objective value obtained and runtime [sec.] 
for all of the 30 instances tested.

Table 6  Results solving the 
2sSPRP

ID Periods objVal Lower bound rel. MIP gap

1 3 26636.70 26022.40 2.31
2 3 20997.80 20490.78 2.41
3 3 21829.83 21628.83 0.92
4 3 23368.31 22936.69 1.58
5 3 23226.18 22951.43 1.18
6 4 35198.50 34500.30 1.98
7 4 28367.49 27939.03 1.51
8 4 46220.41 43641.05 5.56
9 4 28350.72 27735.95 2.17
10 4 30002.66 29593.30 1.36
11 5 40925.36 39592.52 3.26
12 5 42065.82 40824.58 2.95
13 5 45144.06 43576.78 3.47
14 5 36891.51 35584.96 3.54
15 5 36041.99 35648.96 1.09

Table 7  Preliminary test of the different approximation approaches for the initial routing costs from the 
literature

per  Qiu et al. (2018)  Adulyasak et al. 
(2014b)

 Absi et al. (2015)

∅obj ∅rt ∅obj ∅rt ∅objdir ∅rtdir ∅objrnd ∅rtrnd

3 19979.05 3.25 20633.08 3.91 20877.86 2.88 20877.86 2.86
4 23999.70 7.43 23852.05 9.81 23470.04 6.69 23456.54 6.76
5 32169.09 32.71 31994.92 33.36 31084.04 33.89 31025.21 33.79
∑

25382.61 14.46 25493.35 15.69 25143.98 14.49 25119.41 14.47
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The test shows a moderate improvement in performance for the descending order, 
if the runtime and the objective function value are considered. The total number 
of best objective values might be a bit lower regarding the descending order, but 
comparing the relative difference (Δobj) between ascending and descendin order, 
the ascending order is 0.5 % worse in total. Furthermore, the number of instances 
won by the descending order are slightly superior considering both objective func-
tion value and runtime. Also runtime (Δrt) is about 19 sec. worse on average for all 
instances, regarding the ascending order. For this reason, the descending order is 
used.

Algorithms

Algorithm 2  Local Search.

Table 8  Preliminary test for ordering the retailers within the DSN

ret per y2
t

y3
t

y4
t

y5
t

winObjA winObjD winA winD Δobj Δrt

5 3 5 5 5 5 3 2 1 2 −1.8 −14.0
4 4 5 5 5 2 3 2 1 2.4 −0.1
5 4 5 5 4 1 4 1 3 0.5 44.6

10 3 5 3 2 3 2 3 2 2 0.7 −1.7
4 3 4 5 5 4 1 1 1 −2.3 20.1
5 5 4 3 3 4 1 2 1 3.9 65.1

avg. 86.7 86.7 83.3 83.3 53.3 46.7 30.0 33.3 0.5 19.0
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Algorithm 3  GRASPxELS based on Prins (2009).
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