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Abstract
As the environmental aspects become increasingly important, the disassembly prob-
lems have become the researcher’s focus. Multiple criteria do not enable finding a 
general optimization method for the topic, but some heuristics and classical formu-
lations provide effective solutions. By highlighting that disassembly problems are 
not the straight inverses of assembly problems and the conditions are not standard, 
disassembly optimization solutions require human control and supervision. Con-
sidering that Reinforcement learning (RL) methods can successfully solve complex 
optimization problems, we developed an RL-based solution for a fully formalized 
disassembly problem. There were known successful implementations of RL-based 
optimizers. But we integrated a novel heuristic to target a dynamically pre-filtered 
action space for the RL agent (dlOptRL algorithm) and hence significantly raise the 
efficiency of the learning path. Our algorithm belongs to the Heuristically Acceler-
ated Reinforcement Learning (HARL) method class. We demonstrated its applica-
bility in two use cases, but our approach can also be easily adapted for other prob-
lem types. Our article gives a detailed overview of disassembly problems and their 
formulation, the general RL framework and especially Q-learning techniques, and a 
perfect example of extending RL learning with a built-in heuristic.
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1 Introduction

The increasing environmental pressures caused by human activities drive govern-
ments and organizations to limit or decrease their footprints. As an outcome, the 
European Commission declared this a strategic goal. A new Circular Economy 
Action Plan for a cleaner and more competitive Europe has been announced to sus-
tainably transform the economy and society. There is a wide range of recommenda-
tions and proposals on how these kinds of issues should be handled, and the key 
point is to reduce consumption and increase the recycling rate. The efforts led to the 
creation of the concept of circular economy, which is more complex than just a man-
ufacturing optimization because it also covers the supply chain, disassembly, and 
recycling optimization steps (Loiseau et  al. 2016; Camacho-Otero et  al. 2018). A 
process flow overview diagram of the circular economy is shown in Fig. 1 (Kalmyk-
ova et al. 2018).

Every step in the circular process has practices and methods to optimize the 
operation. Still, the primary goal of the circular economy is to optimize the 
whole supply chain up to recycling. The classical problem of manufacturing sup-
ply chain optimization is a deeply researched topic (Beamon 1999; de Koster 
et  al. 2007; Hervani et  al. 2005). The circular economy optimization goal also 
covers the recollection and recycling processes that can be a bit more complex 
because these are more stochastic and less controlled processes. Disassembly line 
design and balancing problems describe the methodological background of the 
relevant segment of the whole circle (Jovane et al. 1993; Duflou et al. 2008; Sasi-
kumar and Kannan 2008). The most basic models assumed deterministic inputs 
but the advanced models started to handle the uncertainty observed in real prob-
lems. Among others, the source materials and their distributions are described 

Fig. 1  Schematic flow of circular economy Kalmykova et al. (2018)
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by stochastic variables. Similarly, the disassembly tasks, their required process 
times, and the demand values of recycling steps can also be stochastic attributes 
in some models.

The supply chain optimization and assembly line balancing topics have been 
intensively studied issues since the 1950s years, while the focused analysis of dis-
assembly lines started almost 40 years later (Gupta and McLean 1996). A detailed 
historical overview of disassembly methods (Kim et al. 2007) delivered a summary 
table of the different solutions, which was extended by using a comprehensive clas-
sification (Chand and Ravi 2023) in Table  1. It shows a wide range of machine-
learning methods for solving the disassembly line balancing problem. There are 
already successful RL-based solutions with attractive learning performance, but it 
needs to be explained in detail how to construct an effective implementation for a 
given problem.

The above-collected facts strengthened our motivation to prepare an effec-
tive self-learning RL-based solution that is easy to adapt to different disassembly 
problems. We present a general guide on how to define the reward function from 
problem parameters. Furthermore, we highlight the importance of customizing the 
action-taking method, which will be relevant whenever a general RL framework is 
parameterized. According to the current outlook, the number of disassembly lines 
and their optimization requirements will increase significantly, and such a self-learn-
ing solution will explain this adequately.

Our first experiences with an RL-based solution show that the most basic ver-
sion of training an RL agent is not obviously efficient: after declaring the state- and 
action spaces the central task is to define the reward function. Most of the RL frame-
works support this approach without the option of customizing the action-taking 
method. But a huge portion of infeasible state-action pairs should not be learned. 
For disassembly line balancing problems, it is an obvious option to dynamically fil-
ter for the possible uncompleted actions by considering the precedence graph. We 
found that integrating such an efficient state-dependent action-restriction method 
can radically reduce the learning path. The same conclusion has been found (Woo 
and Sung 2020). The major idea was to apply the identical constraints that were set 
up in mixed-integer quadratic problem (MIQP) formulation, and hence to deliver 
a systematic method to define an appropriate restriction for action-selection step. 
The key result of our article is to present a Q-learning solution with an integrated 
heuristic for dynamic state-dependent action restriction. The dlOptRL algorithm is 
described and explained in detail. From a higher aspect, our algorithm belongs to 
the class of Heuristically Accelerated Reinforcement Learning (HARL) methods, 
which is highlighted by an appropriate formulation as well.

Our article stands for the following major parts:

• First, in Sect. 2.1, we will give a problem formulation of disassembly line opti-
mization problems. We will summarize the notations, declare the objective func-
tion components, and present an MIQP formulation with fewer decision vari-
ables. It enables solving larger-size problems with the widely used solvers by 
keeping the limitations of decision variables.
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• Sect. 3 will present the general framework of Reinforcement Learning solutions. 
We will describe the Q-learning method in detail that was applied in our devel-
opment. We will also summarize all the necessary steps that should be prepared 
for an RL solution to the previously defined disassembly problem.

• Then, in Sect. 3.2, we will describe a novel algorithm called dlOptRL. It con-
tains a built-in heuristic to minimize applicable action space and speed up the 
learning of an RL agent. Our algorithm highlights how RL methods can be com-
bined with problem-specific heuristics to get an efficient self-learning solution. 
We will also point out that our algorithm belongs to the Heuristically Acceler-
ated Reinforcement Learning class.

• Sect. 4 will describe two commonly used use cases for which we will summarize 
a MIQP solution as a reference and the results of our dlOptRL learning path. We 
will show that our solution approximates the optimal solution effectively without 
any prior preparations.

• Finally, in Sect. 5, we will take an overview of our results and summarize some 
potential directions for further research.

2  Optimization of disassembly line balancing

In this section, we will summarise the general notations of disassembly problems. 
Then we will overview the solution methods, including the problem formulation as a 
linear programming task.

2.1  Problem formulation

We consider a disassembly line balancing model for a single product with a finite 
supply. There are Nc elementary components in each product to remove. The task 
of eliminating component i is specified by its processing time Trm

i
 , while a boolean 

flag of hi indicates its hazardousness. The general problem is to assign every task 
to workstations of the disassembly line to optimize the objective function. We will 
make the following additional assumptions:

• There are Nws
a

 available workstations that are preliminarily prepared.
• All workstations are identical, and they are capable of performing any compo-

nent removal tasks.
• The cycle time is denoted by Tc . Each workstation should finish its allocated 

removal tasks on the current product in the disassembly line. The cycle time is 
preliminarily defined.

• A precedence graph describes the logical dependencies of component removal 
tasks. The vertices represent the components to be removed. The edges are 
directed, and there are two types of edges: AND type and OR type edges. The 
removal process of a component i can be started, only if all the components from 
which a directed AND-type path goes to the vertex of i are already removed, and 
at least one of the components from which a directed OR-type path goes to the 
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vertex of i is removed. Typically the precedence graph is used in its transitive 
reduced form.

• A solution is described by a sequence of the component removal tasks, where Ck 
denotes the kth component in the disassembly sequence.

• A workstation will perform a continuous range of component removal tasks.
• The total time for workstation j to perform all of its assigned tasks is denoted by Tws

j
.

• Nws
u  denotes the number of workstations used.

The major attributes of the disassembly line balancing problem are summarised in 
Table 2.

2.2  Objective function

There are several ways to measure how well is a disassembly line balanced. Based 
on the different disassembly optimization solutions collected in Table 1, there are 
two major approaches for the objective: one is cost-benefit-based, and the other one 
is based on the processed quantities. By following the mixed objective approach 
(Tuncel et al. 2014), we used a combination of three components in our analysis.

• F1 = min{
∑Nws

u

j=1
(Tc − Tws

j
)2} minimizes the total idle time of workstations used,

• F2 = min{
∑Nc

k=1
(k ⋅ hCk

)} forces to remove hazardous components as early as it 
can,

• F3 = min{
∑Nc

k=1
(k ⋅ dCk

)} supports removing components with higher demand 
earlier.

The preliminary defined circle time and the total sum of components’ removal 
times and the number of used workstations determine the total idle time: 
Nws
u

⋅ Tc −
∑Nc

i=1
Trm
i

 . The shorter idle time results a higher processed quantity. The 
objective function F1 amplifies the imbalance and contains the corresponding items 
in a quadratic term. Hence it supports not only minimizing the idle times but also 
decreasing the imbalance. Objective functions F2 and F3 depend on the component 
property and disassembly sequence. The component’s hazardousness requires addi-
tional care or causes extra risk, which motivates removal as early as possible. A 

Table 2  Notations of 
disassembly line balancing 
problems

Nc Number of disassembly tasks
Nws
a

Number of available workstations
Nws
u

Number of used workstations
Trm
i

Part removal time of component i
Tc Cycle time
Tws
j

Total time for workstation j to perform all assigned tasks
Ck kth components in disassembly sequence
hi boolean flag indicates the hazardousness of component i
di demand of of the component i
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binary boolean indicator describes the Hazardousness property. F2 prefers to remove 
hazardous components earlier than non-hazardous ones. F3 is similar to F2 construc-
tion except that demand values are not binary but non-negative figures, and they 
represent the disassembled components’ importance in remanufacturing due to the 
benefit values. It was reviewed and shown (Laili et al. 2020) that using the multi-
objective approach for disassembly optimization problems is quite general. Further 
aspects can also be taken into account by adding other components to the objective 
for minimizing the disassembly cost, maximizing the profit obtained from disassem-
bly, or minimizing environmental pollution.

In our article, according to the analyzed use cases, we will use a linear combina-
tion of the three selected objectives: w1F1 + w2F2 + w3F3 . In this context, weights 
of w1 , w2 , and w3 have double roles. These should compensate for the scaling dis-
crepancies of the objectives, and the weights can determine the relative importance 
of the objectives based on external preferences. The first role could be substituted by 
normalizing or standardizing the objectives. However the second aspect cannot be 
replaced with an autonomous solution, although the relative importance constantly 
changes in real-world problems. A dynamic weighting optimization that reflects the 
external conditions is out of the scope of our article. Hence we assume that weights 
of w1 , w2 , and w3 are preliminarily defined as external parameters.

2.3  Linear programming problem formulation

There are already described formulations of the disassembly problem in the litera-
ture (Kalaycilar et al. 2016), but we will present a new formulation with a decreased 
size of decision variables. It stands for six significant types of decision variables:

• Type 1 decision variables describe which of the removable component is 
assigned to a disassembly sequence order number: 

• Type 2 decision variables determine the process times of every step in the disas-
sembly sequence: 

• Type 3 decision variables describe the workstation on which the component will 
be removed: 

• Type 4 decision variables determine whether a workstation will be in use or not: 

(1)x
Type1

i,j
=

⎧
⎪⎨⎪⎩

1
if component i will be removed

as jth task in the removal sequence

0 otherwise

(2)x
Type2

j
= Trm

Ck
.

(3)x
Type3

i,k
=

{
1 if component i will be removed on workstation k

0 otherwise
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• Type 5 decision variables determine the total idle time of each workstation if it is 
in use: 

• Type 6 decision variables describe the workstation assignments in the disassem-
bly sequence order: 

Then we need to set up constraints to satisfy all the requirements collected in 
Sect. 2.1:

• Constraints guarantee that each component is listed exactly once in the removal 
sequence: 

• The workstation’s process time should not exceed the cycle time limit: 

Before declaring the constraints of the precedence graph, we need to declare the two 
types of predecessor relations:

• Predecessor AND relation ( PAND(i) ) declares a set of predecessor tasks that all 
need to be finished before starting task i.

• Predecessor OR relation ( POR(i) ) declares a set of predecessor tasks of which at 
least one needs to be finished before starting task i.

Figure 2 shows examples of predecessor AND and OR relations.
In this context, we can continue to define the required constraints:

• All the predecessor tasks with AND relation should be assigned earlier in the 
sequence than the particular one: 

(4)x
Type4

k
=

{
1 if workstation k will be in use

0 otherwise

(5)x
Type5

k
= Tcx

Type4

k

∑
i

x
Type3

i,k
Ci.

(6)xType6j =

⎧

⎪

⎨

⎪

⎩

k if workstation k will be assigned the jth component in the disassembly sequence

0 otherwise

(7)
Nws∑
j=1

x
Type1

i,j
= 1 ∀i ∈ {1,… ,Nc}

(8)
Nc∑
i=1

Trm
i

⋅ x
Type3

i,k
≤ Tc ∀k ∈ {1,… ,Nws}

(9)
Nc∑
j=1

j ⋅ x
Type1

l,j
≤

Nc∑
j=1

j ⋅ x
Type1

i,j
∀i ∈ {1,… ,Nc};∀l ∈ PAND(i)
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• At least one of the predecessor tasks with OR relation should be assigned earlier 
in the sequence than the particular one: 

• Assuring that a disassembly task is assigned to exactly one workstation: 

• The workstation assignments should be in a monotone sequence: 

• Integer and non-negative properties: 

By solving the MIQP problem, we can conduct an optimal solution, but in prac-
tice, it can be a heavily resource-intensive process for mid and large-scale problems. 
A former analysis of a profit-oriented linear objective shows that an exact MILP 
solution cannot be reached in a reasonable time limit for disassembly problems over 
60 components (Kalaycilar et al. 2016). In this formulation, the number of decision 
variables was quadratic to the number of components. We used a modified formula-
tion with 2(Nc)2 + 4Nc decision variables for an Nc-component disassembly prob-
lem. Moreover, our weighted objective leads to a quadratic optimization problem. 

(10)x
Type1

i,j
≤

j∑
h=1

∑
l∈POR(i)

j ⋅ x
Type1

l,h
∀i ∈ {1,… ,Nc};∀j ∈ {1,… ,Nc}

(11)
Nws∑
k=1

x
Type3

i,k
= 1 ∀i ∈ {1,… ,Nc}

(12)0 ≤ x
Type6

j
− x

Type6

j−1
≤ 1 ∀j ∈ {2,… ,Nc}

(13)

x
Type1

i,j
∈ {0, 1} ∀i, j ∈ {1,… ,Nc}

0 ≤ x
Type2

j
≤ Tc ∀j ∈ {1,… ,Nc}

x
Type3

i,k
∈ {0, 1} ∀i ∈ {1,… ,Nc}

∀k ∈ {1,… ,Nws}

0 ≤ x
Type4

k
≤ Tc ∀k ∈ {1,… ,Nws}

x
Type5

k
∈ {0, 1} ∀k ∈ {1,… ,Nws}

x
Type6

j
∈ {1,… ,Nws} ∀j ∈ {1,… ,Nc}

Fig. 2  Predecessor relation types
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We used a Gurobi-based solver from Matlab, and experienced the same issue: no 
solution was found within the same time limit.1 This fact may bring alternative solu-
tions to the fore, especially reinforcement learning methods.

3  Formulation of the disassembly line balancing problem 
as an RL‑based optimization task

Reinforcement learning (RL) refers to learning problems. An agent takes observa-
tions of the environment, and based on that, it executes an action ( At ). As a result of 
the action in the environment, the agent will get a reward ( Rt ), and it can take a new 
observation ( Ot ) from the environment, and the cycle is repeated. The problem is to let 
the agent learn to maximize the total reward. Figure 3 shows the general reinforcement 
learning framework.

Reinforcement learning is based on the reward hypothesis which states that all 
goals can be described by the maximization of expected cumulative rewards.

Formally the history is the sequence of observations, actions, and rewards: 
Ht = O1, T1,A1,… ,At−1,Ot,Rt . The state is the information used to determine 
what happens next. Formally, state is a function of the history: St = f (Ht) . A state 
is Markov if and only if ℙ[St+1 ∣ St] = ℙ[St+1 ∣ S1,… , St] . Markov property is fun-
damental to the theoretical basis of RL methods. Gt denotes the total discounted 
reward from time-step t: Gt = Rt+1 + �Rt+2 +⋯ =

∑∞

k=0
�kRt+k+1.

The state value function v(s) gives the expected total discounted return if start-
ing from state s: v(s) = �[Gt ∣ St = s] . The Bellman Equation practically states that 
the state value function (VF) can be decomposed into two parts: immediate reward 
( Rt+1 ) and the discounted value of successors states �v(St+1).

The policy covers the agent’s behavior in all possible cases, so it is essentially a 
map from states to actions. There are two major categories in it: deterministic policy 
( a = �(s) ) and stochastic policy ( �(a ∣ s) = ℙ[At = a ∣ St = s]).

We will focus on using an action-value function to determine the current optimal 
action. However, for large state- and/or action spaces it can be a very slow process to 
keep the value function updated (and hence optimal).

There are several situations when the learning process is not based on just own 
experience. Formally this means that action-value function q�(s;a) is determined by 
observing results of an external behavior policy �(a|s).

A possible way to handle the difference between target and behavior policy is to 
modify the value-function update logic as Q-learning does (Sutton and Barto 

Fig. 3  Reinforcement learning 
framework

1 Similarly to (Kalaycilar et al. 2016), we applied 3.600 sec. the time limit for executions.
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2018, Section 6.5). Assume that in state St the very next action is derived by using 
behavior policy: At+1 ∼ �(⋅|St) . By taking action At+1 immediate reward Rt+1 and the 
next state St+1 will be determined. But for value-function update let’s consider an 
alternative successor action based on target policy: A� ∼ �(⋅|St) . Then the Q-learn-
ing value-function update will look like: Q(St;At) ← Q(St;At)+
Q(St;At) ← Q(St;At) + �

(
Rt+1 + �Q(St+1;A

�) − Q(St;At)
)
.

In a special case if target policy � is chosen as a pure greedy policy and behavior 
policy � follows �-greedy policy then so-called SARSAMAX update can be defined 
as follows: Q(S;A) ← Q(S;A) + �

(
R + � maxa� Q(S

�;a�) − Q(S;A)
)
 . Last, but not 

least it was proven that Q-learning control converges to the optimal action-value 
function: Q(s;a) → q∗(s;a).

3.1  Design of reinforcement learning solution

In this section, we will present a reinforcement learning-based solution design.

• State space: A state needs to contain all the relevant information from the past 
and be identical for equivalent situations. Hence, the current state should con-
tain the set of removed and remaining components as well as the utilization of 
the active workstation. So we can declare the state vector in a similar way to the 
multi-type decision variable in the MIQP formulation:

– the performed removal steps and the remaining ones: 

– the current utilization of the active workstation: 

• Action space: The next action is determined by considering both the current 
status and the constraints defined by the precedence graph. Formally, it will be 
described by the component’s identifier which one needs to be removed next. It 
is essential to highlight that a built-in heuristic to limit the potential actions to 
the feasible ones can significantly speed up the solution.

• Reward: Reward function is defined as the reciprocal of the weighted sum of 
objective components: 

• Reinforcement Learning method: Considering that both state- and action 
spaces are discrete, we decided to use the Q-learning method. Triplets of the 
single state vector, the next action, and cumulative discounted rewards will 
determine Q-table rows (practically Q-table structure).

(14)x̂
Type1

i
=

{
1 if component i has been removed

0 otherwise

(15)x̂Type2 = total assigned removal time of last active workstation.

(16)
1

w1F1 + w2F2 + w3F3

.
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• Q-table growth: Some approaches suggest declaring the Q-table structure ini-
tially, and during the learning phase its rows need to be updated. By having a 
precedence graph determining the total number of feasible states is not trivial. 
Hence, we applied a dynamic Q-table growth mechanism (Viharos and Jakab 
2021): the learning phase starts with an empty Q-table, and whenever a new 
state-action pair is observed, it should be inserted into the Q-table. Therefore, 
the Q-table contains only visited rows.

• Knowledge transition: Whenever the RL agent experiences a better reward from 
a visited state than the former best one, the Q-table needs to be updated accord-
ingly. The learning process can be sped up by using the knowledge transition 
process. In this case, the Q-table updates are made backward from the latter vis-
ited states of the episode to the former ones. The key idea is to update not only 
the visited state-action pairs of the episode but all further state-action pairs that 
lead to the visited route. In other words, the rewards of those state-action pairs, 
which partially overlap with the visited episode, can also be updated.

• If the agent should make the optimal action and not a random one, but it is not 
known (not listed in Q-table yet) because the current state has never been vis-
ited before, then a random decision will be made as a fallback action.

• A disabling discount factor can simplify the Q-learning method. The reason 
is that the state defines how many actions are required to finish the episode, 
so the discount factor value could be easily calculated from the state. On the 
other hand, its ability to differentiate between potential routes by considering 
their lengths also breaks off.

• Q-learning method works with �-Greedy decisions: the RL agent takes a ran-
dom action with � probability or the best-known action based on the Q-table 
with (1 − � ) probability. There are different �-strategies, from which we tested 
the following four: 

1. Pure �-Greedy approach: during the whole simulation, the value of � is con-
stant in all the episodes.

2. Two-step �-Greedy approach: in the first phase of the simulation � has a value 
of 100% , and hence the RL agent takes only random actions, while in the 
second phase of the simulation � switches to a lower reasonable constant.

3. Linearly decreasing � approach: the value of � starts from 100% at the beginning 
and linearly decreases to 0% proportionally to the progress of the simulation.

4. Sigmoid-shape � approach: � value goes from 100% to 0% , but in contrast to 
the linear version, it follows a sigmoid-shape curve.

   Figure 4 shows the tested �-functions by the progress of the simulation (in 
proportion of scheduled episodes).

3.2  Disassembly optimization algorithm with reinforcement learning

This section will describe a reinforcement learning-based method for disassembly 
optimization with a built-in heuristic to determine the following action.
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Algorithm  1  Procedure for disassembly line optimization with reinforcement 
learning
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Generally, in reinforcement learning applications, all the feedback arrives in the 
reward, which means that the agent takes a sequence of actions and will experience 
whether it works fine or not. In this approach, the agent is not restricted to preserv-
ing itself from an easily foreseeable bad action. Instead, it will realize the badness 
of the actions only afterward by getting the low reward values. Our algorithm imple-
mented a heuristic within the action-choosing process to significantly decrease 
the potential action space’s size. The principal idea was that all the restrictions we 
declared in the MIQP formulation could be used to pre-filter possible actions before 
the agent chooses the final one. Such an approach helps the agent discover only the 
feasible part of the action space and not waste time exploring irrelevant paths, which 
significantly speeds up the learning phase.

dlOptRL algorithm requires the following inputs:

• PAND is an n × n matrix representing the predecessor AND relations of the disas-
sembly problem’s precedence graph, where n = |P| is the total number of parts 
to remove. According to the edge types of a precedence graph, the matrix ele-
ments have a binary applicable value set. The value of P(i,  j) is defined by the 
type of e(vi, vj) as follows: 0 means no direct predecessor AND dependencies 
between part i and j (represented by vi and vj in the precedence graph) during the 
disassembly process; 1 describes an existing predecessor AND relation between 
part i and j.

• POR is an n × n matrix representing the predecessor OR relations of the disas-
sembly problem’s precedence graph similar to PAND construction.

• t is an n-length vector that describes part removal times
• h is an n-length binary vector that indicates hazardousness of each component
• d is an n-length vector that determines the demand values of parts
• c is a constant that describes cycle-time
• o is a 3-length vector that contains the objective components’ weights

After entering into an outer loop that iterates the episodes, we should initialize some 
technical variables (counters and pointers), and an inner loop is started that repre-
sents a single episode. We should first determine the applicable steps by considering 
the current disassembly status. Then a decision should be made about how will be 
determined the next action. The agent will try to follow the known best option that 
will be successful in the case of a double condition will be met, namely:

• we are on a known track, and hence at least one applicable step is known, and
• the generated standard uniform random number is over the uniformly decreasing 

threshold

If both the conditions above are satisfied, we will exploit our cumulative knowledge 
and the optimal action will be chosen that will result in the highest reward for it. 
Otherwise, the next action will be chosen randomly out of the applicable actions. 
The chosen action will be registered into the short-term episode history.

After the episode ends, we will retrieve the reward. Then, we need to check 
whether the visited state-action pairs are already registered in the long-term Q-table. 
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If an appropriate row is available in the Q-table, then the discounted reward value 
will be compared to the one stored in the Q-table. If we realize that the newly 
experienced path provides a greater reward than the known best one, it needs to be 
updated. This is also a minor modification to the original Q-learning method, where 
the Q-table rows contain the average reward values. For a deterministic disassembly 
problem, we can use a MAX aggregation function and let the agent immediately 
learn whenever a new best route is visited. Finally, if the observed state-action pair 
is not listed yet in the Q-table, then we should add it to the table.

3.3  Formulating dlOptRL algorithm as a HARL method

Since finding an optimal solution by using RL methods can be very time-consum-
ing, in recent years many researchers made efforts to speed up the learning process 
by improving the action selection method (Bianchi et  al. 2012). There are suc-
cessful references for extracting domain knowledge by integrating special heuris-
tics into an RL method (Cheng et al. 2021). It was shown (Bianchi et al. 2015) that 
the value function can be mathematically combined with a heuristic function if [
Ft(st, at) ⋈ �Ht(st, at)

�
]
 , where F ∶ S ×A → ℝ is an estimate of a value function, 

while H ∶ S ×A → ℝ is the heuristic function. It can be easily seen that a suffi-
ciently large negative � value can practically avoid selecting inappropriate actions. 
Regarding dlOptRL algorithm, the heuristic function can be defined as 0 when the 
component is disassembled according to the precedence graph and −Ω otherwise, 
where Ω is larger than the theoretical maximum objective value of the concrete dis-
assembly problem.

Fig. 4  � functions tested in � strategies
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4  Application examples

There are several benchmark problems analyzed in the literature. In this section, 
we will present two of them and summarise the performance of our reinforcement 
learning-based solution by comparing them to classical methods. Then we will high-
light the main advantages of RL-based optimizations on further problems.

4.1  Small scale benchmark problem–personal computer disassembly

There is a small-scale problem in the literature (Tuncel et  al. 2014; Lambert and 
Gupta 2004) regarding disassembling personal computers. There are identified 8 sal-
vageable components of a PC. The parts themselves, their removal times, demand 
values, and hazardousness indicators are collected in Table 3.

A precedence graph describes the logical dependencies of the disassembly task’s 
order in Fig. 5.

By choosing a combined objective function of F =
1

w1F1+w2F2+w3F3
 , where the 

components are the same as defined in Sect. 2.2, the optimal global solution can be 
determined by using a MIQP solver. We want to highlight that the weights allow for 
prioritizing the objective components to align with the user’s needs. Therefore, the 
concrete weighting values are less important from a scientific perspective, and hence 
the researchers often set them equally. Although there are multiple reasons not to 
follow this, to let the results compare, we also applied equal weights in this use case. 
The published global optimum to remove the components is presented in Table 4.

First, by solving the MIQP problem, we found that the optimal objective value is 
Fopt = (32 + 22 + 42 + 22) + 7 + 19025 = 19065 . Now we can evaluate the result of 
dlOptRL by comparing it to the known optimal objective as a reference value.

As a first approach, we implemented a simple Q-learning-based algorithm con-
trolled purely by the reward function and has only a single restriction to choosing 
the upcoming part for removal. Every component needs to be selected exactly once 
in the disassembly sequence. We realized that this approach practically results in 
very low efficiency, like testing a random permutation of the parts whether it meets 
the criterion of the precedence graph or not.

This kind of experience motivated us to integrate the constraints (that were col-
lected at MIQP formulation) into the next action determination step by restricting 
the set of potential actions only to the applicable ones, which is practically the inter-
section of three sets:

• parts that are not removed yet,
• parts of which all AND type predecessor parts are already removed,
• parts of which at least one OR type predecessor part is removed.

Such a limitation of action space indicates a significant change in the learning speed: 
the agent found the optimal solution after very few steps in our small-scale use case.
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4.2  Mid scale benchmark problem–cell phone disassembly

Another case study problem is about disassembling cell phones. There are identi-
fied 25 salvageable components of a cell phone. The parts themselves, their removal 
times, the demand values, and hazardousness indicators are collected in Table 5.

A precedence graph describes the logical dependencies of the disassembly order 
in Fig. 6. This drives to a less trivial solution than in the previous use case (Tuncel 
et al. 2014). This led us to highlight our new formulation that works with signifi-
cantly smaller decision variable vector size as it was described in Sect. 2.3.

The degraded MIQP problem solution is presented in Table 6. In this case, the 
optimal objective value is: Fopt = 15 + 75 + 815 = 905 . The pure Q-learning algo-
rithm could not deliver a feasible solution without limiting the action space to the 
applicable actions. In contrast, the dlOptRL algorithm provides a feasible solution 
from the very first episode. Of course, this fact does not mean that the early solu-
tions are efficient enough. By performing multiple simulations, we found that the 

Table 3  Personal computer disassembly tasks and parameters

Task no Disassembly task Removal time Demand Hazardousness

1 PC top cover 14 360 No
2 Floppy drive 10 500 No
3 Hard drive 12 620 No
4 Backplane 18 480 No
5 PCI cards 23 540 No
6 RAM modules (2) 16 750 No
7 Power supply 20 295 Yes
8 Motherboard 36 720 No

Fig. 5  Precedence graph of 
personal computer disassembly 
problem

Table 4  Optimal solution for 
personal computer disassembly 
problem

Sequence order 1 2 3 4 5 6 7 8

Component to remove 1 5 3 6 2 8 7 4
Part removal time 14 23 12 16 10 36 20 18
Assigned workstation 1 1 2 2 2 3 4 4
Workstation idle time [s] 3 2 4 2
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dlOptRL algorithm could find a reasonably good approximation for the optimal 
solution. As we described in Sect. 3.1, we tested four different static �-strategies for 
the RL agent’s decision. Figure 7 shows the learning performance results by follow-
ing the different approaches.

For easier interpretation, the weighted total objective values are plotted instead 
of the cumulative rewards. Although the continuous �-Greedy approach presents the 
best performance with the lowest objective values in the first phase of the simula-
tion, it reaches the worst solution at the end of the simulation. The other methods 
start with a high �-value to discover the search space more intensively. The linearly 
decreasing � approach gets the best overall objective value, and hence we will use 
that one further. Another advantage is that it does not need a custom parameter for 
its operation, which simplifies the dlOptRL algorithm.

In contrast to the small-scale use case presented in Sect.  4.1, the dlOptRL 
algorithm does not reach the global optimal solution of the mid-scale benchmark 

Table 5  Cell phone disassembly tasks and parameters

Task no Disassembly task Removal time Demand Hazardousness

1 Antenna 3 4 Yes
2 Battery 2 7 Yes
3 Antenna guide 3 1 No
4 Bolt (type 1) a 10 1 No
5 Bolt (type 1) b 10 1 No
6 Bolt (type 2) 1 15 1 No
7 Bolt (type 2) 2 15 1 No
8 Bolt (type 2) 3 15 1 No
9 Bolt (type 2) 4 15 1 No
10 Clip 2 2 No
11 Rubber seal 2 1 No
12 Speaker 2 4 Yes
13 White cable 2 1 No
14 Red/blue cable 2 1 No
15 Orange cable 2 1 No
16 Metal top 2 1 No
17 Front cover 2 2 No
18 Back cover 3 2 No
19 Circuit board 18 8 Yes
20 Plastic screen 5 1 No
21 Keyboard 1 4 No
22 Liquid crystal display 15 6 No
23 Sub-keyboard 15 7 Yes
24 Internal circuit 2 1 No
25 Microphone 2 4 Yes
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problem. We executed 100 identically parameterized simulations to provide cross-
validated results. Figure 8 shows the empirical results by presenting:

• the range of the observed objectives,
• 50-episode moving averages of median objectives,
• 50-episode moving averages of upper/lower quartiles of objectives,
• best objective of learned routes by episodes.

Although the global optimum was not found, all the simulations show a stable conver-
gence in objective values. The median value of the objectives is 985, which is 8.8% 
worse than the global optimum. The best solution of dlOptRL method has an objective 
of 917, and it is presented in Table 7 in detail. A widely used indicator comparing two 
sequences is the concordance ratio. It is calculated by counting all of the item pairs that 
are in the same order in both sequences and dividing by the total number of item pairs. 

Out of the 
(
25

2

)
= 300 different item pairs 293 have concordant orders and 7 have 

discordant orders, and hence the concordance ratio is 97.67%. So the RL solution deliv-
ered a strongly similar solution to the optimal one. As the multiple steps of the best 
objective curve show, the learning process is continuous. There is a significant differ-
ence between the moving average values and the known best reward value, which high-
lights the “cost-of-learning”: if we decide to explore an unknown path instead of the 
known best one, it will cause some loss in the overall performance, but it leaves open 
the chance to find a better path than the current best one.

4.3  Comparison of RL‑based solution to the mixed‑integer solution and further 
research directions

In this section, we will summarize the major experiences of the two described 
solution methods for disassembly line balancing problems, and further research 

Fig. 6  Precedence graph of cell phone disassembly problem
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directions, which can have significant potential to improve the solution’s robustness 
and adaptivity.

As the disassembly line balancing problem is NP-hard (Chand and Ravi 2023), it 
cannot be guaranteed, that an optimal solution will be found in polynomial calcula-
tion time. In our formulation, the number of decision variables in the MIQP prob-
lem is quadratic to the number of components. We validated the formulation on the 
small-size PC disassembly problem, and the MIQP solver provided the optimal solu-
tion within a second. However, for the mid-size cell phone disassembly problem the 
MIQP solver processed 983,557 branches in 3,600 s. The first feasible solution was 
found after 539,992 iterations. In contrast, the RL-based solution reached a com-
plete Q-table in 2  s for the small size problem. Furthermore, it performed 10,000 

Fig. 7  Learning performance of the tested �-strategies

Fig. 8  Objective values (reciprocal reward values) by iterations
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episodes of the mid-size problem in 382 s, and it grew a Q-table with 8,845 rows. 
Table 8 summarizes the key performance measures of the simulations.

The difference between the two solutions is that the MIQP solver requires a pre-
liminary training process, while the RL-based solution learns online. As our MIQP 
formulation shows the component removal times, the hazardous indicators, the 
demands, the cycle time and the objective component weights are all necessary to 
start the MIQP solver. In practice, it is often easier to set up an empirical reward 
function by measuring idle times and component removal orders and then letting the 
RL agent start learning. Furthermore, it is a complex task to implement an efficient 
MIQP solver, and costly to buy one, while our RL solution is easy to implement. 
In case of having multiple identical disassembly lines or if there is a virtual twin of 
it, the RL learning process is easy to parallel. Our results show that the RL agent 
reliably converges to the optimal solution. The dlOptRL algorithm delivers feasible 
solutions from the beginning and finds a competitive disassembly setup within a rea-
sonable training time limit.

We identified further research directions, which can have significant potential to 
improve the solution’s robustness and adaptivity.

• The dlOptRL algorithm can be extended to a multi-agent approach for parallel-
izing the learning process by updating a central Q-table.

• A new indicator for measuring the proportion of undiscovered routes (actions) 
would be worth introducing, and an adaptive episode length determination pro-
cess could help to approach better the global optimum.

• Disassembly components’ removal times have higher uncertainty than assembly 
process times because the condition of a used product is more heterogeneous 
than a uniform new one. This implies applying stochastic removal times instead 
of deterministic ones.

• Using a moving time window or resetting the Q-table periodically can raise the 
adaptivity of the RL solution.

• The RL-based solution is less sensitive to measurement inconsistencies and one-
time issues. Therefore, even if these observations are involved in the Q-value 
aggregations, their effects will be marginal in the long term.

Table 8  Summary of use case solutions

a Terminated because of the execution time limit
b Median objective of 100 simulations

Solution type PC problem CP problem

MIQP RL MIQP RL

Execution time (s) <1 2 3,600 182
Final objective 19,065 19,065 1269a 917b

Gap to global optimum 0 0 331 12
Relative gap to global optimum (%) 0% 0% 40.22% 1.33%
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• By measuring the rewards directly, the cumulative measurement errors can 
decrease compared to an MIQP formulation, where the errors will be accumu-
lated.

We want to analyze the RL-based solution’s behavior in the above contexts in the 
next phase of our ongoing research to verify them. We also recommend such analy-
sis for other researchers in the disassembly domain.

5  Summary and conclusions

Disassembly line optimization problems become more important, leading research-
ers to pay more attention to developing dedicated solutions. The optimization chal-
lenges have many problem formulations, objectives, and restrictions, and a wide 
range of problem sizes. We presented a compact formulation for the disassembly 
optimization problem that requires fewer decision variables to solve larger problems 
with the same solver limitations.

We showed that the standard approach of reinforcement learning application 
when only the reward function must be declared, has a low convergence rate in the 
learning path. We described a Q-learning-based solution with an integrated heuristic 
named dlOptRL algorithm that lets the reinforcement learning agent learn the solu-
tion very effectively. We demonstrated the learning capability of our algorithm in 
two selected use cases that proved the real-life applicability of our approach.

We believe that the presented solution shows a possible way to fine-tune rein-
forcement learning algorithms to increase their learning performance for disassem-
bly problems and other fields.

Furthermore, we have shown that our algorithm formally belongs to the Heuristi-
cally Accelerated Reinforcement Learning class. It delivers a working example of 
translating an MIQP problem into a heuristic function.

Our algorithm has further potential for adapting to slowly changing disassem-
bly environments or completely stochastic problems. The presented method can be 
used for other problem classes that need ordering complex actions into a sequence, 
such as the Travelling Salesman Problem (TSP), network/map discovery, or Vehicle 
Routing Problem (VRP), especially in stochastic cases when the state space is mixed 
continuous-discrete.
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