
Vol.:(0123456789)

Central European Journal of Operations Research
https://doi.org/10.1007/s10100-023-00902-z

1 3

MILP models of a patient transportation problem

Martin Tóth1 · Tamás Hajba2   · Adrián Horváth2

Accepted: 21 December 2023 
© The Author(s) 2024

Abstract
With ageing societies and increasing number of patients, there is a growing need for 
quality services that help transporting non-urgent patients to hospitals. In logistics, 
patient transportation problems are usually modeled as a dial-a-ride problem. In a 
Dial-a-Ride problem, a fleet of vehicles is providing the delivery services between 
the loading points and the delivery destinations. The demands are known in advance. 
In most cases the total travel distance of the vehicles is to be minimized. In this 
paper, we consider a specific dial-a-ride problem, where a single vehicle is used to 
transport patients to the same hospital. In determining the optimal route, the multi-
ple and different travel needs of patients, such as their maximum travel time, are also 
taken into consideration. We introduce 4 different mixed integer linear programming 
models of the routing problem. Finally, the efficiency of the four models was com-
pared using some real-life problems by solving them with a commercial solver.
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1  Introduction

Due to continuously developing technological solutions, transportation compa-
nies can offer more personalized services. Passengers have the opportunity to 
determine their pickup time and location, and if they share their journey with 
others, they can also save on travel costs. However, route planning is still solved 
by classical methods in the transportation sector, mostly managed by a dispatcher. 
Thus, avoidable costs can occur due to this old type of route planning. Ride-shar-
ing services, such as Uber, have been trying to maximize the capacity utilization 
of the vehicles, while reducing the total distance traveled by the vehicles and the 
size of the vehicle fleet. Still, there are areas where modernization of existing ser-
vices is necessary, such as at patient transportation.

There is an aging society in Hungary, which has resulted in a growing number 
sick people. As a consequence the number of visits to various healthcare centers 
is also high. However, there is no convenient and cheap service that would guar-
antee the transportation of these people at particular healthcare points. The cur-
rent patient transportation services focus on only one patient, providing door-to-
door services. These vehicles are equipped with the necessary medical equipment 
and nurses are also on board. These services represent a high level of quality, 
but they are very expensive. Patients that do not require special travel conditions, 
usually do not choose this service.

Currently, the most used transportation service for patients, who want to go to 
hospital, is the public transport service. This is due to the fact that it is considered 
to be one of the cheapest personal transportation services. Due to the ample num-
ber bus stops, everybody can easily reach them. Despite the condition of the exist-
ing fleet and low number of direct routes to the healthcare centers, this mode of 
traveling is most often used. Taxi services also provide home-to-home services, 
but due to their expensive costs, they are used less by patients. Another oppor-
tunity is to use personal vehicles, but not all patients are in a condition to drive. 
Relatives and acquaintances cannot always help. Furthermore, parking places at 
healthcare centers are often overcrowded, which can cause further inconvenience. 
It can be stated that patients need such a service that combines the advantages of 
taxi services and public transportation and help them to get to the hospitals.

The healthcare system in Hungary is divided into districts, which means that 
patients from the same zone typically have to go to the same healthcare center. 
Furthermore, during the route planning of non-urgent patients, we do not have 
to use dynamic routing systems, because people usually know their transport 
needs at least one day in advance, while emergency cases are generally served by 
ambulances.

The Dial-a-Ride Problem (DARP) is a transportation optimization problem in 
which a fleet of vehicles serves a set of request. Each request has a pickup point, a 
delivery point and a number of passengers (or a quantity of some goods). The prob-
lem may involve some other constraints, such as time windows or maximum riding 
time as well. The vehicles have to transport the passengers from their pickup points 
to their destination while satisfying other side constraints. The goal of the problem 
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is to find the optimal routes for the vehicles in which the total distance travelled by 
the vehicles is minimized. DARP is an NP-hard problem hence for large-scale sys-
tems the optimal solution cannot be determined in a reasonable amount of time.

DARP system is usually used to optimize the efficiency of transportation systems, 
which can lead to cost savings and improved service. Furthermore it can be used to 
model a wide range of transportation systems, from public transportation to parcel 
delivery, because of the possibility of building more and more difficult and specific 
system.

In this article we are focusing only on the non-urgent patients, of which there are 
2 types. Based on the previously discussed points, in this article a logistics system 
in which the customers are served by a small bus is studied. This bus can trans-
port multiple patients at the same time and people in wheelchairs can travel more 
comfortably. Due to ridesharing and home-to-home delivery, we can offer lower 
rates than taxi companies, and a more comfortable service than public transporta-
tion. Furthermore, patients have the ability to determine the earliest pick up time, 
the latest arrival time at the hospital and the maximum travel time. We also take into 
account the interests of the operating company by minimizing the distance traveled 
by the vehicle.

In the article, we present 4 mixed-integer linear programming models of the prob-
lem. One can determine the optimal solution of the problem by solving the models 
with the appropriate software (CPLEX, GUROBI). Due to the difficulty of the prob-
lem, it cannot be expected to solve large-scale problems using this approach, but due 
to the rapid increase in performance of softwares and computers, it can be expected 
that larger and larger problems could be solved in this way. We have compared the 
effectiveness of the models on real-life problems.

2 � Literature overview

Scientists have been working on DARP for a long time. Several methods, including 
branch and bound algorithms, complex heuristic and meth-heuristic methods have 
been developed to solve the problem. A summary of the different variants and solu-
tion approaches to the problem can be found in Ho et al. (2018).

Beside patient transportation, DARP can arise in other fields, such as parcel 
delivery and inventory routing as well. Madankumar and Rajendran (2019) studied 
a parcel delivery problem with heterogeneous fleet of vehicles and time windows, 
in which the courier not only delivers a package at a given point, but also receives 
a package. The authors introduced a MILP model of the problem that was tested on 
some test problems.

Agra et  al. (2022) examined a single vehicle inventory routing problem. The 
problem requires the transportation of a commodity from pickup points to delivery 
points, while preserving the inventory at each location between given limits. The 
locations can be visited multiple times during the period, and the vehicle can visit 
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them in any order. Two mathematical models and two branching algorithms were 
presented by the authors to solve large-scale instances.

In the beginning, the main aspect of research related to patient transport was the 
solution of the transportation problem with soft time windows (clients requests for 
pickup and delivery time were known in advance). Melachrinoudis et  al. (2007) 
studied one such problem. Parragh (2011) examined factors, such as the capacities 
of the vehicles; furthermore, this research already took into account space require-
ments of staff and wheelchairs users, and even paid attention to the possibility of 
using a stretcher. In this system several vehicles were used to deliver different types 
of patients. For this standard DARP, a Branch and Cut algorithm was presented. Qu 
and Bard (2015) investigated the different types of needs, not with vehicles with 
multiple characteristics, but rather with vehicles with configurable decks. In recent 
years, the problem of patient transportation has received more and more attention 
and more realistic variants of the problem have appeared.

In the Hong-Kong healthcare system, there is usually a nurse in the vehicle in 
case of a problem. Furthermore, the patients have the possibility to determine their 
arriving time. Several vehicles satisfy the requests, which makes the system more 
complicated. Lim et al. (2017) proposed a metaheuristic for this problem that uses a 
variable neighborhood search and 2 years later this system was expanded to consider 
the lunch break of the staff. Luo et al. (2019) solved this new problem using a two-
phase branch-and-price-and-cut algorithm.

Chane-Haï et al. (2020) studied a patient transportation problem in which each 
patient has two requests, one request to get to the hospital and one request to get 
from the hospital to home. In this article, the demands are selected to home delivery 
next to arriving at hospital, in the interest of getting 2 smaller single DARP instead 
of 1 complex DARP. In a similar problem, Büsing et al. (2021) proposed two tech-
niques for managing both requests. The first approach involves identifying and creat-
ing mini-clusters of outbound requests, which are then connected by solving a trave-
ling salesman problem and creating routes using a splitting procedure. The second 
approach uses a rolling horizon approach to match vehicles with requests by solving 
bipartite matching problems.

Several countries use two different fleets of vehicles to meet patients’ transporta-
tion needs, one for the non-urgent patients and one for the urgent patients. Unlike the 
classical dial-a-ride problem, where multiple passengers can be transported simulta-
neously and all requests are pre-known, den Berg and van Essen  (2019) investigated 
a problem in which vehicles can transport only one patient at any given time and 
new requests arise throughout the day. To address this problem, an online model was 
proposed to handle these requests in real-time with the purpose of managing these 
demands without buying more vehicles.

Souza et al. (2022) studied a similar problem, in which a heterogeneous fleet of 
vehicles is used to serve static and dynamic requests of patients was examined. The 
non-urgent patients were included using a static system that was solved using a large 
local neighborhood search and the transportation of urgent patients was determined 
using an insertion heuristic in a dynamic system. This article also shows that the 
growing number of patients makes the problem more complex hence time windows 
cannot be always respected.
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During Covid-19 a lot of emphasis was placed on the separate transport of 
patients. Molenbruch et  al. (2017) proposed a model that could manage separate 
delivery with a fleet of vehicles. The routes of the vehicles were determined by a 
multi-directional local search algorithm. Gkiotsalitis (2022) investigated a similar 
problem in which the focus was to avoid crowded vehicles. To achieve this goal, the 
capacity of small buses was limited in order to guarantee a safe distance between 
passengers, and a MILP model of the problem was introduced.

In an Austrian research, Armbrust et  al. (2022) studied a patient transportation 
problem. In this problem patients were in different regions and each region had its 
own hospital (delivery point). A heterogeneous fleet of vehicles was used to deliver 
the patients and disabled patients, while taking into account the capacity of the vehi-
cles, the rest periods of the drivers, and requests of pick up and delivery time. A 
MILP formulation of the problem was established and a Large Neighborhood Search 
method was used to solve the problem.

Recently, the P-graph method, developed by Friedler et al. (1992) for the inves-
tigation and optimization of chemical processes, was also successfully applied to 
solve routing tasks. Frits and Bertok (2021) studied the field service operation prob-
lem in which tasks at different locations had to be completed by service groups. The 
conditions of the tasks, such as the time required for completion, the deadline for 
completing tasks, the tools, and the quality of the service groups required for com-
pletion of the tasks, are known. The service groups visit the locations by vehicles 
(e.g., car) from the company’s depot. The goal is to minimize the total costs neces-
sary to complete all tasks, including the wages of service groups and travel costs. 
The authors developed a 2-phase algorithm to solve the problem. In the first phase, 
the tasks are assigned to time intervals, while in the second phase, the routes of the 
service groups and the schedule for the execution of the tasks are determined using 
the P-graph approach.

Nagy et al. (2019) studied the bus transportation problem using a periodic timeta-
ble. The authors developed a procedure based on the P-graph method, which deter-
mines the optimal timetable by considering several conditions, including the mini-
mum and maximum working hours of the bus drivers, rest time of the drivers, and 
frequency of bus departures within each period. The method was later successfully 
applied by the authors (Ercsey et al. 2021) to problems in which the bus departures 
were arbitrary (i.e., there was no periodic timetable). A survey of graph based meth-
ods for routing problems can be found in Wang et al. (2019).

In recent years, machine learning has been applied to solve routing problems. 
Dornemann (2023) presented two deep learning methods for the Capacitated Vehi-
cle Routine Problem with Time Window in which vehicles have predetermined 
capacities and nodes have time windows. The first method is a combination of deep 
learning and tree search, while the second approach solves the problem’s quadratic 
integer programming model using deep learning.

As it will be shown later, the problem investigated in this article can be trans-
formed to a Traveling Salesman Problem (TSP) with special conditions. TSP 
can be considered as a route planning task in which one vehicle has to visit a 
set of customers at different locations. The goal is to find the optimal route that 
minimizes the total distance run by the vehicle. Due to the practical importance 
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of the problem, it has been studied intensively. MILP models of the TSP have 
been introduced in Öncan et  al. (2009), Matai et  al. (2010), Roberti and Toth 
(2012) and Cacchiani et  al. (2020). Exact methods, such as branch and bound, 
and branch and cut, have been proposed in Fischetti et  al. (2003, 2007) and 
Ascheuer et al. (2001). In addition to exact procedures, many heuristics, such as 
tabu search (Gupta 2013), genetic algorithms (Razali and Geraghty 2011; Hus-
sain et  al. 2017; Juneja et  al. 2019), ant colony algorithms (Yang et  al. 2008; 
Gan et  al. 2010), bacterial algorithms (Kóczy et  al. 2018), and metaheuristics 
(Erdogan et al. 2012; Antosiewicz et al. 2013; Fogarasi et al. 2022) were devel-
oped to solve the problem. A survey on the variants and solution methods of 
the TSP can be found in Chauhan et  al. (2012) and Cheikhrouhou and Khoufi 
(2021).

Despite the fact that the problem of transporting patients to the same hospital 
has had a growing importance in this topic, not much attention has been paid to 
it so far. In this article we studied a single vehicle patient transportation problem 
in which the vehicle had multiple capacity, patients at the pick-up points had dif-
ferent requirements (maximum traveling time, earliest pickup time, latest arrival 
time), but the endpoint of all pick-up points was the same. Although this prob-
lem can be connected to the many-to-many DARP, we determine that the solu-
tion obtained by solving a many-to-many DARP was not necessarily a feasible 
solution to the original problem. Therefore, many-to-many DARP models cannot 
be applied to one-to-one in our task. In this article, we present 4 MILP models 
that have been compared through several real-world test cases.

3 � Problem description

Let G be a directed graph with N + 2 vertices where N denotes the number of 
the pickup locations. The vertices of G are numbered from 0 to N + 1 . The ver-
tex 0 represents the depot, vertex N + 1 represents the hospital while the other 
vertices represent the pickup points. Each arc (i, j) of the graph has two weights 
representing the traveling time from i to j and the traveling distance between the 
points i and j. A single vehicle transports the passengers to the hospital. The 
vehicle starts its tour from the depot and ends its tour at the depot. The depot has 
opening hours; the vehicle can start and end its route in this time interval. The 
vehicle has two capacities: one for the patients and one for the disabled patients. 
For each pickup point i the following pieces of information are known:

•	 The number of patients at point i.
•	 The number of disabled patients at point i.
•	 The earliest pickup time of the passengers at point i.
•	 The maximum riding time of passengers at point i.
•	 The latest arrival time of the passengers at point i at the hospital.
•	 The time it takes that all passengers at point i to get on the vehicle.
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We assume that at each point neither the number of patients nor the number of 
disabled patients exceeds the capacity of the vehicle. Furthermore, if a vehicle 
arrives at a pickup point, then all passengers at that point have to get on the 
vehicle, which implies that each pickup point is visited by the vehicle exactly 
once. Finally, it is assumed that if the vehicle arrives at the hospital, then all 
passengers transported by the vehicle get off the vehicle. The goal is to find the 
optimal route of the vehicle that minimizes the total distance traveled by the 
vehicle.

4 � Mathematical models

In the first model, the route of the vehicle is broken down to rounds. In the first 
round, the vehicle leaves the depot and after visiting some pickup points it arrives 
at the hospital. In the last round the vehicle directly travels from the hospital to the 
depot. In the remaining rounds the vehicle starts from the hospital then visits some 
pickup points and travels back to the hospital.

4.1 � Notations of model 1

Parameters:
   N Number of pickup locations
   K Number of rounds
   Dij The traveling distance between points i and j; 0 ≤ i, j ≤ N + 1

   Tij Traveling time from point i to j; 0 ≤ i, j ≤ N + 1

   C1 Maximum capacity of the vehicle for patients
   C2 Maximum capacity of the vehicle for disabled patients
   pi Number of patients at point i; 1 ≤ i ≤ N

   dpi Number of disabled patients at point i; 1 ≤ i ≤ N

   Ii Maximum traveling time for patients at point i; ≤ i ≤ N

   ai Boarding time of the patients at point i; 1 ≤ i ≤ N

   tri Earliest pickup time for patients at point i; 1 ≤ i ≤ N

   tai The latest arrival time at the hospital for patients at point i;
    1 ≤ i ≤ N

   A0 Opening time of the depot
   B0 Closing time of the depot
Continuous variables:
   sk Starting time of vehicle in the k-th round; 1 ≤ k ≤ K

   ek Finishing time of the vehicle in the k-th round; 1 ≤ k ≤ K

   pni Number of patients in the vehicle after visiting point i; 0 ≤ i ≤ N + 1

   dpni Number of disabled patients in the vehicle after visiting point i;
    0 ≤ i ≤ N + 1

   wi Traveling time of the passengers at point i; 1 ≤ i ≤ N

   mi Arrival time of the vehicle at point i; 1 ≤ i ≤ N

Binary variables:
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xk
ij
 Equals 1, if in the k-th round, the vehicle travels from point i to j;

    0 ≤ i, k ≤ N + 1, 1 ≤ k ≤ K

4.2 � Constraints of model 1

The mathematical model of the problem contains the following constraints:

•	 Each pickup point is visited by the vehicle in exactly one round. 

•	 The vehicle enters a point in some round iff the vehicle leaves that point in the 
same round. 

•	 The vehicle starts from the depot and arrives at the hospital in the first round. 

•	 Except for the first round, the vehicle does not leave the depot. 

•	 Except for the last round, the vehicle does not enter the depot. 

(1)
N+1
∑

i=0

K
∑

k=1

xk
ij
= 1 1 ≤ j ≤ N

(2)

N+1
∑

j=0

xk
ij
=

N+1
∑

j=0

xk
ji

1 ≤ i ≤ N; 1 ≤ k ≤ K

(3)
N
∑

i=1

x1
0i
=1

(4)x1
i0
=0 1 ≤ i ≤ N + 1

(5)
N
∑

i=1

x1
i,N+1

=1

(6)x1
N+1,i

=0 0 ≤ i ≤ N

(7)
N+1
∑

i=1

xk
0,i

= 0 2 ≤ k ≤ K

(8)
N+1
∑

i=1

xk
i0
= 0 1 ≤ k ≤ K − 1
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•	 Except for the first and last rounds, if the vehicle leaves the hospital then the 
vehicle enters the hospital in the same round. 

•	 From round 2 on, the vehicle leaves the hospital at most once. 

•	 In the last round, the vehicle travels from the hospital directly to the depot. 

•	 The number of the patients/disabled patients on the vehicle after leaving the 
depot or the hospital is 0. 

•	 If in any round the vehicle travels from point i to a pick up point j, then the 
number of patients/disabled patients on the vehicle after leaving j is at least 
the sum of the number of the patients/disabled patients on the vehicle after 
leaving point i and the number of patients/disabled patients at the pickup point 
j. 

•	 The number patients/disabled patients in the vehicle can not exceed the capacity 
of the vehicle, 

(9)
N
∑

i=0

xk
N+1,i

=

N
∑

i=0

xk
i,N+1

2 ≤ k ≤ K − 1

(10)
N
∑

i=0

xk
N+1,i

≤ 1 2 ≤ k ≤ K

(11)xK
N+1;0

= 1

(12)pn0 = 0

(13)pnN+1 = 0

(14)dpn0 = 0

(15)dpnN+1 = 0

(16)
pni + pj +M(1 − xk

ij
) ≤pnj

0 ≤ i ≤ N + 1, 1 ≤ j ≤ N, 1 ≤ k ≤ K

(17)
dpni + dpj +M(1 − xk

ij
) ≤dpnj

0 ≤ i ≤ N + 1, 1 ≤ j ≤ N, 1 ≤ k ≤ K

(18)dpi ≤C1 1 ≤ i ≤ N

(19)dpni ≤C2 1 ≤ i ≤ N
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•	 If the vehicle travels from point i to point j in some round, then the arriving time 
of the vehicle at point j is at least the sum of the arriving time of the vehicle at 
point i the traveling time from i to j and the boarding time of the passengers at 
point i (if i is a pickup point). 

•	 The vehicle has to arrive at a pickup point after the prescribed earliest pickup 
time at that point. 

•	 The vehicle has to leave and enter the depot in the depot’s opening time. 

•	 The ending time of a round cannot be less than the starting time of the same 
round. 

•	 A vehicle can start a round after it finishes the previous round. 

•	 If in any round the vehicle travels from a pickup point i to the hospital, then the 
traveling time of the passengers at point i is the boarding time at point i plus the 
traveling time from point i to the hospital. 

(20)s1 + T0,j +M(1 − x1
0,j
) ≤mj 1 ≤ j ≤ N

(21)
sk + TN+1,j +M(1 − xk

N+1,j
) ≤mj

1 ≤ j ≤ N, 2 ≤ k ≤ K − 1

(22)
mi + Ti,j +M(1 − xk

i,j
) ≤mj

1 ≤ i, j ≤ N, 1 ≤ k ≤ K − 1

(23)
m

i
+ T

i,N+1 +M(1 − x
k

i,N+1
) ≤ek

1 ≤ i ≤ N, 1 ≤ k ≤ K − 1

(24)sK + TN+1,0 =e
K

(25)tri ≤ mi 1 ≤ i ≤ N

(26)A0 ≤s
1

(27)eK ≤B0

(28)sk ≤ ek 1 ≤ k ≤ K

(29)ek ≤ sk+1 1 ≤ k ≤ K − 1

(30)ai + Ti,N+1 −M ⋅

(

1 −

K−1
∑

k=1

xk
i,N+1

)

≤ wi 1 ≤ i ≤ N
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•	 If in any round the vehicle travels from a pickup point i to pickup point j, then 
the traveling time of the passengers at point i is at least the sum of the traveling 
time of the passengers at point j and difference between the arrival time of the 
vehicle at point i and point j. 

•	 The traveling time of the patients at any point i cannot exceed the prescribed 
maximum traveling time at that point. 

•	 Each passenger has to arrive at the hospital in time. 

•	 The goal is to minimize the total distance traveled by the vehicle. 

 The first MILP model of the problem is defined by constraints (1-33) and objec-
tive function (34).

4.3 � Model 2

To formulate the second MILP model of the problem, first the original model is 
transformed to a special traveling salesman problem (TSP) with pickup and 
delivery points. Let G′ be a directed graph with 2N + 1 vertices. Vertex 0 repre-
sents the depot, the vertices 1, 2,…N represent the pickup points and the vertices 
N + 1,N + 2,… 2N represent the hospital. The patients at point i have to be trans-
ported to the hospital point i + N , so each request has a pickup point and a delivery 
point. Since the vertices N + 1,N + 2,… 2N are all hospital points, hence the trave-
ling time and the traveling distance between two such points is 0. Furthermore, for 
each pickup point i, the traveling time (traveling distance) from i to a hospital point 
is the same for all hospital points. Then the optimal solution of the original problem 
can be found by solving a TSP on this new graph with the following constraints:

•	 The capacities (patients, disabled patients) of the vehicle are not violated.
•	 The special requests of the passengers (earliest pickup time, maximum traveling 

time, latest arrival time) are satisfied.
•	 Every pickup point is visited by the vehicle earlier than its requested point, i.e., 

pickup point i precedes delivery point i + N in the tour of the vehicle.
•	 If the vehicle arrives at a hospital point, then every passenger on the vehicle gets 

off the vehicle. This means that if the vehicle visits pickup points i1, i2,… , ij 
before arriving at a hospital point then the vehicle must arrive at one of the hos-

(31)mj − mi + wj −M ⋅

(

1 −

K−1
∑

k=1

xk
i,j

)

≤ wi 1 ≤ i, j ≤ N

(32)wi ≤ Ii 1 ≤ i ≤ N

(33)mi + wi ≤ tai 1 ≤ i ≤ N

(34)
N+1
∑

i=0

N+1
∑

j=0

K
∑

k=1

xk
ij
⋅ Dij → min
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pital points i1+N , i2+N ,… , ij+N and then the route of the vehicle has to be followed 
by visiting the other hospital points of the points i1+N , i2+N ,… , ij+N.

It is important to mention that without the last constraint a feasible solution of the 
transformed problem may not be a feasible solution of the original problem. For 
example if we have 3 pickup points, then in the transformed problem the pickup 
points are numbered 1, 2, 3, the hospital points are numbered by 4,5,6 and the depot 
is denoted by 0. The feasible tour 0–2–3–5–1–4–6–0 of the transformed problem is 
not a feasible tour of the original problem since the vehicle picks up the passengers 
at pickup points 2 and 3 but after arriving at the hospital (at hospital point 5, which 
is the delivery point of pickup point 2) the patients of pickup point 3 do not get off 
the vehicle (the tour is not followed by the hospital point 6).

Our second model is based on the MTZ formulation of the traveling salesman 
problem (Miller et  al. 1960). Model 2 contains the same parameters as Model 1. 
Model 2 contains the following variables:

Continuous variables:
pni Number of patients in the vehicle after visiting point i; 0 ≤ i ≤ 2N

dpni Number of disabled patients in the vehicle after visiting point i;
0 ≤ i ≤ 2N

mi Arrival time of the vehicle at point i; 1 ≤ i ≤ N

Integer variables:
ui 0 ≤ i ≤ 2N

Binary variables:
xij Equals 1, if the vehicle travels from point i to j; 0 ≤ i, j ≤ 2N

Model 2 contains the following constraints:

•	 The vehicle enters and leaves each point exactly once. 

•	 Subtour elimination constraints of the classical MTZ model: 

(35)
2N
∑

i=0

xij = 1 0 ≤ j ≤ 2N

(36)
2N
∑

j=0

xij = 1 0 ≤ i ≤ 2N

(37)u0 =1

(38)2 ≤u
i

1 ≤ i ≤ 2N

(39)ui ≤2N + 1 1 ≤ i ≤ 2N

(40)ui + 1 ≤uj + 2N ⋅ (1 − xi,j) 1 ≤ i, j ≤ 2N
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•	 Vehicle has to visit a pickup point before it travels to the corresponding hospital 
point. 

•	 The vehicle travels from pickup point i to pickup point j iff the vehicle travels 
from hospital point i + N (which corresponds to pickup point i) to hospital point 
j + N (which corresponds to pickup point j). 

•	 The number of the patients/disabled patients on the vehicle after leaving the 
depot or a hospital point is 0. 

•	 If the vehicle travels from point i to a pick up point j, then the number of patients/
disabled patients on the vehicle after leaving j is at least the sum of the number 
of the patients/disabled patients on the vehicle after leaving point i and the num-
ber of patients/disabled patients at the pickup point j. 

•	 The number patients/disabled patients in the vehicle can not exceed the capacity 
of the vehicle, 

•	 If the vehicle travels from point i to point j, then the arriving time of the vehicle 
at point j is at least the sum of the arriving time of the vehicle at point i the trave-
ling time from i to j and the boarding time of the passengers at point i (if i is a 
pickup point). 

(41)ui + 1 ≤ ui+N 1 ≤ i ≤ N

(42)xij = xi+N,j+N 1 ≤ i, j ≤ N

(43)pn0 = 0

(44)pni = 0 N + 1 ≤ i ≤ 2N

(45)dpn0 = 0

(46)dpni = 0 N + 1 ≤ i ≤ 2N

(47)
pni + pj +M(1 − xij) ≤pnj

0 ≤ i ≤ 2N, 1 ≤ j ≤ N

(48)
dpni + dpj +M(1 − xij) ≤dpnj

0 ≤ i ≤ 2N, 1 ≤ j ≤ N

(49)dpi ≤C1 1 ≤ i ≤ N

(50)dpni ≤C2 1 ≤ i ≤ N

(51)m0 + T0,j +M(1 − x0,j) ≤mj 1 ≤ j ≤ 2N
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•	 The vehicle has to arrive at a pickup point after the prescribed earliest pickup 
time at that point. 

•	 The traveling time of the patients at any point i cannot exceed the prescribed 
maximum traveling time at that point. 

•	 Each passenger has to arrive at the hospital in time. 

•	 The vehicle has to leave and enter the depot within the depot’s opening time. 

•	 The goal is to minimize the total distance traveled by the vehicle. 

Constraints (51) and (52) together imply that if the vehicle visits some pickup points 
before traveling to a hospital point, the vehicle visits the corresponding hospital 
points in the same order, which implies that all passengers will get off of the vehicle 
at the hospital.

Our second MILP model consists of constraints (35–58) and objective function 
(59).

4.4 � Complexity of models 1 and 2

Table  1 contains the number of continuous, integer and binary variables, and the 
number of the constraints of Models 1 and 2 depending on the number of pickup 
points (N). In model 1 the number of rounds (K) was set to N + 1.

It can be seen from Table  1 that Model 2 contains less continuous variables 
than Model 1 and it can be easily calculated that Model 2 contains less binary 
variables and constraints than Model 1 if N ≥ 4.

(52)
mi + ai + Ti,j +M(1 − xi,j) ≤mj

1 ≤ i ≤ N, 1 ≤ j ≤ 2N

(53)
mi + Ti,j +M(1 − xi,j) ≤mj

N + 1 ≤ i ≤ 2N, 1 ≤ j ≤ 2N

(54)tri ≤ mi 1 ≤ i ≤ N

(55)mi+N − mi ≤ Ii 1 ≤ i ≤ N

(56)mi+N ≤ tai 1 ≤ i ≤ N

(57)A0 ≤m0

(58)mi+N + Ti+N,0 ≤B0 1 ≤ i ≤ N

(59)
2N
∑

i=0

2N
∑

j=0

xij ⋅ Dij → min
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4.5 � Strengthening the MILP models

If the latest arrival time of the patients at pickup point i at the hospital is less than 
or equal to the earliest pickup time of patients at pickup point j, then in any feasible 
solution the vehicle cannot travel from i to j, or from j to i. Furthermore, the vehicle 
has to visit j in a later round than i. Hence, the following valid inequalities can be 
added to Model 1:

So the strengthened version of Model 1, called Model 1 S contains the constraints 
(1-33,60,61) and objective function (34).

Constraint (60) is a valid inequality for Model 2, too. Furthermore, if the latest 
arrival time of the patients at pickup point i at the hospital is less than or equal to 
the earliest pick up time of patients at pickup point j, then after leaving pickup point 
i, the vehicle has to visit at least one more point before visiting pickup point j. So 
Model 2 can be extended by the following valid inequality:

Model 2  S, which is the strengthened version of Model 2, consists of constraints 
(35–58,60,62) and objective function (59).

4.6 � Numerical results

To compare the models, 5 test problems were created. The location of the depot, the 
hospital, and the pickup points were chosen from streets in the town of Sopron while 
the distances and traveling times between the points were determined by using a 
route planning program. Sopron is a small town on the border of west Hungary with 

(60)
xk
ij
= 0 and xk

ji
=0

1 ≤ i, j ≤ N, 1 ≤ k ≤ K, tai ≤ trj

(61)

N
∑

l=0

xk
li
+

N
∑

l=0

x
k1
lj
≤1

1 ≤ i, j ≤ N, 1 ≤ k1 ≤ k ≤ K, tai ≤ trj

(62)
ui + 2 ≤ uj

1 ≤ i, j ≤ N, tai ≤ trj

Table 1   Complexity of models 
1 and 2

Model 1 Model 2

Continuous vari-
ables

6N + 2 4N

Integer variables 0 2N
Binary variables N

3
+ N

2 4N2
+ 2N

Constraints 3N3
+ 7N2

+ 10N + 3 13N2
+ 15N + 3



	 M. Tóth et al.

1 3

an area of 169 square kilometer and an official population of 69,000. It has moun-
tainous features. The hospital can be reached by car even from the furthest point in 
15 min.

The number of patients, patients with reduced mobility and the requested time of 
arrival at the hospital were randomly determined for the pickup points. The earli-
est admission time was set to 1 h before the requested arrival time at the hospital. 
Each patient who was not limited in mobility was assigned a 1-minute boarding time 
while each patient with limited mobility was assigned a 2-minute boarding time. To 
determine the maximum travel time of passengers at point i, we first added up the 
travelling time from point i to the hospital and the boarding time of the passengers, 
and then an extra 30 min was added to this value. The main properties of the 5 prob-
lems, including the number of the pickup points and the total number of patients and 
disabled patients, are summarized in Table 2.

The corresponding MILP models of the problems were formulated and solved 
using IBM Ilog Cplex Optimization Studio on an Intel(R) Core(TM) i7-7700HQ 
personal computer equipped with 8 GB RAM and 256 GB SSD. The time limit was 
set to 1 h. Except for the variable selection the default settings of CPLEX were used. 
In the case of variable selection the strong branching option of CPLEX was applied.

Table 3 contains the results of the numerical tests, including the time required by 
the models to find the optimal solution and the objective values of the best solutions.

Table 2   Main characteristics of 
the test problems

Instance Number of 
pickup points

Total number of 
patients

Total number of 
disabled patients

1 10 20 4
2 15 30 5
3 20 40 11
4 25 50 9
5 30 60 9

Table 3   Comparison of the 
MILP models

1 h running time; *: the optimal solution was not found; ◦ : no feasi-
ble solution was found

 Instance Running time (in s) Best solution (in km)

Model Model

1 2 1 S 2 S 1 2 1 S 2 S

1 8 4 2 2 31.1 31.1 31.1 31.1
2 829 * 835 5 63.7 ◦ 63.7 63.7
3 * * * 7 84.5 ◦ 84.5 84.5
4 * * * 42 103 ◦ 103 103
5 * * * 50 ◦ ◦ 103.95 103.95
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Comparing the basic models (Model 1 and Model 2), it can be established that 
Model 1 worked better on the test problems than Model 2. Both models found the 
optimal solution in the smallest problem in a few seconds. For problems with at least 
15 pickup points, Model 2 did not even find a feasible solution in the 1 h running 
time. Model 1 provided an optimal solution for the second problem and it found a 
feasible solution for problems 3 and 4. For the largest problem Model 1 also did not 
find a feasible solution.

Comparing a basic model with its strengthened version it can be also observed 
that the strengthened version of a basic model provided better solutions than the 
original model. Model 1 and its strengthened version, Model 1 S found the optimal 
solution of problems 1 and 2 in about the same time. For problems 3 and 4, both 
models found a feasible solution with the same objective value. Actually, it can be 
seen from Table 3 that these solutions are optimal solutions (as Model 2 S did find 
the optimal solution in these cases), but CPLEX was not able to prove it in the 1 h 
running time. In the case of the largest problem, Model 1 did not find a feasible 
solution, while the strengthened version found a feasible solution (which, again, is 
the optimal solution, but CPLEX could not prove it in the 1 h running time). There 
were bigger differences between the second and the fourth models. Model 2 found 
the optimal solution in the smallest example but it did not even find a feasible solu-
tion to the other problems. In contrast, the strengthened version found the optimal 
solution in every test problem in less than 1 min.

Comparing all of the 4 models it can be said that Model 2 S performed the best 
on the test problems as it found the optimal solution to every problem. Model 1 S 
was the second best model providing the optimal solution to the first two problems 
and a feasible solution for the remaining problems. The third model was Model 1, 
while Model 2 was the worst, because it provided a solution only for the first test, 
but in the other tests it was not able to find a feasible solution.

5 � Conclusion

The patient transportation services in Hungary (as well as in many other countries) 
use outdated routing methods, mainly focusing on one patient at a time. The ser-
vice itself is of high quality, as well-equipped vehicles ensure the patients’ arrival at 
various health points, but it is extremely costly and less utilized. Patients who do not 
require emergency intervention opt for alternative methods of travel. These trans-
portation possibilities can be taxi services, public transportation or even personal 
vehicle travel. However, none of these solutions fully cover the area of passenger 
transportation.

In this article we investigated a single vehicle DARP problem arising from 
patient transportation. In this problem a vehicle with multiple capacity transports 
the patients to the same hospital. We introduced 2 MILP models of the problem 
(Model 1 and 2). To improve the efficiency of these models they were strengthened 
by adding valid inequalities to them. The strengthened versions are called Model 
1 S and 2 S. To compare the models 5 test examples were created. The tests showed 
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that model 2 S was the best as it found the optimal solution for each test problem in 
less than 1 min. The logistical applicability of this model could be done in the future 
by running the program on the requests received up to the day before the delivery. 
Based on real-life experience, many logistics companies (mainly parcel delivery 
companies) operate on a similar principle. European regulations stipulate customers 
must be notified in time about next-day logistics delivery services. The running time 
would be a maximum of 1 h based on the testing tasks, after that the company would 
have time for the subsequent additional organizational and management tasks. In 
this way, all customers would be notified about the delivery in a timely manner.

In the future, we would like to further expand the models by taking into account 
additional aspects. We would increase the number of vehicles, in order to be able 
to solve systems with a larger number of patients, so that the needs of the patients 
are not harmed. Furthermore, we intend to increase the number of possible delivery 
locations in order to be able to use the model in larger cities as well. Based on what 
we have experienced after Covid 19, we would also like to take into account the pos-
sibility of passenger conflicts of interest. For example, if an infectious patient needs 
to be transported to the hospital, this patient should be transported separately. Fur-
thermore, a cleaning period of the vehicle may also be required when the vehicle is 
disinfected after transporting infectious patients.

The definition of these conditions and the expansion of the MILP models require 
further research. Also, by increasing the complexity of MILP models, the time 
required for solving the models will increase. Therefore, for large scale problems, 
beside the MILP models we would like to investigate heuristic approaches as well.
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