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Abstract
Fairness is crucial in transportation systems to ensure that all drivers are treated 
equally and have the same opportunities. Fair payment policies, equal access to 
work opportunities, and fair scheduling are some of the policies delivery companies 
implement to ensure fairness between drivers. In this paper, we study a fair schedul-
ing mixed-integer programming problem where we consider a bi-objective function 
that aims to maximize profit and improve fairness between drivers by minimizing 
the maximum deviation from the average driving time. To solve this problem, we 
employ the weighted comprehensive criterion method and propose an iterative pop-
ulation-based heuristic. The results show that the relative gap between the heuristic 
and exact approach is acceptable. We also report the fairness price which is the rela-
tive difference between total profit with and without incorporating fairness. We find 
out that improving fairness between drivers does not always lead to a significant 
reduction in total profit. When the reduction in total profit is important, we recom-
mend formulating the scheduling problem differently where instead of minimizing 
the maximum deviation from the average driving time, drivers are rewarded when 
their driving times are longer than the average. We explore incorporating the cost of 
rewarding these drivers in the objective function.

Keywords Fairness · Transportation · Sustainability · Scheduling · Bi-objective 
optimization

1 Introduction

In 2021, the US experienced a shortage of 80,000 truck drivers, and according to 
projections by the American Trucking Associations, this shortfall could double 
to 160,000 by 2030. This has put a spotlight on the working conditions of truck 
drivers, who often face uncertainty due to the lack of compensation for overtime 
or waiting time. Additionally, many drivers have to cover their own fuel costs and 
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are not provided with health care benefits (Sheidlower 2023). The industry needs 
to find ways to make the job of a truck driver more attractive and socially sustain-
able, and ensuring fair treatment of drivers can be a key part of this effort.

Fairness is important and required between drivers in transportation systems, 
to ensure that all drivers are treated equitably and have equal opportunities to 
earn fares or perform their duties (Jütte et al. 2017; Ma et al. 2017). Profit maxi-
mizing scheduling can be unfair and can lead to situations where some drivers are 
overworked and others are under-worked, which can have negative consequences 
for both the drivers and the transportation system. Fair scheduling can help to 
improve driver satisfaction and reduce turnover rates. Additionally, fairness con-
siderations may be required by regulatory organizations or stakeholders who pri-
oritize equity and social sustainability in transportation.

Transportation systems can use different policies to prioritize fairness between 
drivers. For example, transportation systems can use fair payment policies to 
ensure that all drivers are paid fairly for their work, regardless of their background 
(Rodríguez et al. 2018; Kudo and Belzer 2019). Also, transportation systems can 
give equal access to work opportunities for all drivers without discriminating 
them based on their race, gender, or beliefs (French and Strachan 2009). Another 
example is the use of fair scheduling to ensure that all drivers have equal access 
to scheduling opportunities, such as breaks, vacations, high-demand periods or 
special events (e.g., for taxi drivers) (Mohri et al. 2020; Eikenbroek et al. 2022; 
Ma et al. 2017). This helps to ensure that drivers have an equal treatment regard-
ing their working time, wages, breaks, etc. In our paper, we study fair scheduling 
of truck drivers in transportation systems where we introduce fair driving times.

We study a sustainable transportation scheduling problem with an aim of 
balancing fairness and efficiency. We formulate a bi-objective multiple vehi-
cle transportation model. The first objective function aims to maximize profit, 
which is the difference between revenue and the total cost, including vehicle fixed 
cost, fuel cost, and driver wage; thus, ensuring efficiency in transportation. In 
this paper, efficiency refers to the trade-off between the different cost elements 
within the objective function and the revenue collected, where a company tends 
to improve its profit at the lowest possible cost. The study also aims to improve 
fairness between drivers by minimizing the maximum deviation from the aver-
age value of customer allocation and driving times, which represents the equity 
aspect. To solve the problem, the weighted comprehensive criterion method is 
employed, and an iterative population-based heuristic is proposed. We show that 
the heuristic approach gives comparable results to the exact approach. The fair-
ness price is also reported, which is the relative difference between total profit 
with and without the imposition of fairness. Thus, the main contributions of our 
work are:

• We propose a bi-objective sustainable transportation model that maximizes the 
total profit and minimizes the maximum deviation from the average time.

• We also explore a single objective formulation of our problem by including fair-
ness as a component of the total cost, where drivers are rewarded when their 
driving times are longer than the average.
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• We develop an iterative population-based heuristic that is capable of solving 
large-scale instances.

• We provide managerial insights into the trade-off between profit and fairness, the 
price of fairness, and the impact of fairness cost on profit.

Our case study results reveal that imposing fairness between drivers does not always 
lead to a significant reduction in total profit. We also show that increasing the fair-
ness cost increases the total fuel consumed in order to reduce the travel time and 
improve the fairness.

The remainder of this paper is as follows: Sect. 2 reviews the related literature. 
In Sect. 3, we present the problem formulation and describe the profit and fairness 
functions. Section 4 presents the solution approach and Sect. 5 shows the heuristic 
performance. Section 6 gives managerial insights, and Sect. 7 concludes the paper.

2  Literature review

Our work is related to two research streams: fairness in routing/scheduling problems 
and sustainable transportation. There is a lot of literature on research in the stream 
of fairness in routing/scheduling problems. This stream can be classified into two 
categories: problems with fairness as a constraint and problems with fairness incor-
porated in the objective function.

2.1  Fairness as a constraint

Mohri et al. (2020) studied the problem of routing-scheduling for transporting haz-
ardous materials. The authors proposed a bi-objective Stackelberg game model that 
incorporates fairness constraints into the optimization. They introduced a fairness 
index that measures the degree of equity in a given routing-scheduling plan, based 
on factors such as the distribution of hazmat routes and the impact on vulnerable 
populations. Fairbrother et al. (2020) studied the problem of scheduling time slots 
allocated to airlines for landing and taking off at airports. The authors proposed a 
slot-scheduling mechanism that takes into account efficiency, fairness, and airline 
preferences. The proposed mechanism involves a two-stage process where airlines 
first submit their slot requests, and then a slot-allocation algorithm is used to allo-
cate the slots in a way that maximizes airport capacity, satisfies fairness constraints, 
and accommodates airline preferences. Angelelli et  al. (2022) studied the use of 
demand-responsive transportation services and how collaboration between com-
panies offering shared taxi services can lead to reduced costs, increased revenues, 
and a reduced environmental impact. The authors proposed mixed integer program-
ming models for optimizing routes that incorporate constraints aimed at controlling 
the workload exchange between companies. An efficient heuristic algorithm is also 
presented to demonstrate the effectiveness of collaboration and the benefits of such 
a system. Eikenbroek and Still (Eikenbroek et  al. 2022) discussed traffic manage-
ment measures aimed at achieving the system optimum, which is the traffic state 
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with minimum total travel time. But some drivers do not comply with advice to 
take longer paths for the system’s benefit, and the optimal state is not achieved. The 
authors proposed a social routing strategy that considers fairness in the resulting 
state and asks travelers to take a limited detour to improve efficiency. They showed 
that the best possible paths can be found by solving a bilevel optimization problem, 
and they use a descent algorithm to solve this problem. Numerical experiments dem-
onstrate that the proposed routing strategy substantially improves the performance 
of the traffic system with only a small fraction of drivers taking a limited detour. 
(Xu et al. 2022) addressed the problem of truck routing and platooning considering 
drivers’ mandatory breaks, designated intermediate relays, and platoon size limit, 
to minimize fuel consumption while ensuring timely delivery of trucks. The prob-
lem is solved using a mixed-integer linear programming (MILP) model and a hybrid 
algorithm.

2.2  Fairness in the objective function

Ramos et al. (2014) aimed to provide a sustainable reverse logistics plan considering 
economic, environmental, and social objectives (promotion of equity among human 
resources). They propose a mathematical model for a multi-objective, multi-depot 
vehicle routing problem and provides a solution approach to obtain a balanced solu-
tion. The approach is validated with a real case study on recyclable waste collection 
systems. Jütte et al. (2017) presented a model for scheduling railway crew with the 
inclusion of fairness preferences. The proposed model incorporates fairness criteria, 
such as equal workload distribution, equal weekend work, and equal break times, 
into the optimization objective function. The model also includes constraints that 
ensure that each worker has a minimum number of rest days and maximum working 
hours per day and week. Ma et al. (2017) studied the issue of fairness in the sched-
uling of bus-crews. They proposed a model that takes into account the preferences 
of the bus-crew members in terms of work schedules and the fairness of the sched-
ules among the crew members. The fairness is represented by the cost of potentially 
unfair working time, which is incorporated in the objective function. Rabbani (2019) 
proposed a sustainable vehicle routing problem model that considers mixed close 
and open routes, multiple servicing depots, heterogeneous fleets, and different waste 
capacities. The objective is to optimize three functions simultaneously: minimizing 
the cost of waste collection, minimizing pollutants emitted by the vehicles, and mini-
mizing violation of servicing time limitations. Sühr et al. (2019) studied the problem 
of treatment of drivers in ride-hailing platforms such as Uber and Lyft. The authors 
argued that these platforms need to consider the fair distribution of income and 
power dynamics between the platform and drivers. They proposed a new framework 
for fairness in matching mechanisms, which distributes benefits to drivers over time 
based on their activity on the platform. Brar et al. (2020) investigated the problem of 
designing a taxi fleet management system that is fair for both drivers and passengers. 
The authors proposed an approach that ensures service fairness by assigning fares to 
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drivers based on a rotation schedule, rather than a first-come, first-served basis. The 
rotation schedule is designed to ensure that all drivers have an equal opportunity to 
earn fares, regardless of their seniority or the time of day. Mojtahedi (2021) intro-
duced a new framework that considers financial, environmental, and social consid-
erations for vehicle routing in coordinated solid waste management. The objective is 
to minimize fleet size, transportation cost, CO2 emissions, and fair load assignment 
in the transfer stations. Dukkanci et  al. (2022) studied a vehicle routing problem 
with the objectives of minimizing fuel consumption and maximizing driver and cus-
tomer welfare.

2.3  Fairness as a part of social sustainability

Our work is also related to the stream of research on sustainable transportation since 
fairness can be considered as part of social sustainability. Omidvar and Tavakkoli-
Moghaddam (2012) discussed sustainable vehicle routing for alternative fuel vehi-
cles, with the primary objective of minimizing energy and fuel consumption while 
reducing greenhouse gas emissions. Micale (2019) incorporates complex real-world 
constraints such as different types of vehicles with varying capacity, velocity, and 
emissions, asymmetric paths, vehicle-client constraints, and delivery time windows 
in a vehicle routing problem. Govindan et  al. (2019) proposed a distribution net-
work model that incorporates environmental and social impacts (variable and fixed 
job opportunities). Kumar and Anbanandam (2022) proposed an environmental and 
social sustainability framework to evaluate and enhance sustainability in the freight 
industry considering environmental dimension (internal and external management 
practices, freight distribution and fleet operations, etc), social dimension (internal 
human resources, external population, stakeholder and macro social performance). 
Prajapati (2022) proposed an optimisation model for a sustainable agro-food grains 
supply chain in urban and rural areas, considering economic, environmental, and 
social sustainability aspects (accidents).

2.4  Contributions

Our work extends the literature by proposing a bi-objective sustainable transpor-
tation model of profit and fairness. We use the weighted comprehensive criterion 
method that allows for the simultaneous optimization of multiple objectives (profit 
and fairness). This method enables the decision-maker to balance the trade-off 
between profit maximization and fairness considerations in a systematic and effi-
cient manner. Furthermore, we introduce an iterative population-based heuristic that 
is capable of solving large-scale instances of the problem. We demonstrate the effec-
tiveness of our approach by comparing its performance with the exact approach, and 
we show that the heuristic approach provides comparable results. We also consider 
another formulation of the problem where drivers are rewarded when their driving 
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time is greater than the average. Overall, our work contributes to the development of 
fair and efficient transportation systems by providing decision-makers with a tool to 
optimize profit while considering a fairness objective.

3  Problem description and formulation

We study the fairness problem between truck drivers in a delivery company. In a 
given service day, customers ( A ) are to be visited by at least one truck v. Each 
truck v will deliver from the company’s warehouse i0 to a set of customers part of 
their demand ( Qp ) of product p and will return any damaged units while respect-
ing the truck’s capacity ( Capv ) (see Fig. 1 for an illustrative example). The aver-
age speed of each truck from each location to the other is optimized and linked to 
fuel consumption. To keep the formulation linear, the speed is split into a set of 
discrete values ( Sr

i,j
 ) and the model identifies the optimal speed level value r ∈ R 

through the decision variable ( xv,r
i,j

 ). The total profit considers the revenue from 
delivering and returning units minus fixed cost for using trucks, fuel cost, drivers’ 
wages. Fairness between drivers is considered by balancing the traveling time. 
For each driver,the time deviation ( �v ) is calculated as the difference between the 
truck’s traveling time and the average time of all trucks. Thus, the fairness objec-
tive aims to minimize the maximum deviation. Consequently, the proposed model 
accounts for the three sustainability pillars, where economic aspects are consid-
ered in the profit maximization, social aspects are considered in the fairness part 

Fig. 1  An illustrative example that depicts the problem under study, featuring a single central warehouse, 
six customers, and a fleet of three vehicles
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and incorporating the fuel cost in the objective function allows for environmental 
consideration. In the following subsections, we list the notations, the economic 
objective and the fairness functions, and the routing constraints.

3.1  Sets and Parameters

• A : the set of depot and customers, indexed by i or j. |A| is the cardinality of A.
• P : the set of products to be delivered or collected, indexed by p. |P| is the 

cardinality of P.
• R : the set of speed levels, indexed by r. |R| is the cardinality of R.
• V : the set of available vehicles, indexed by v. |V| is the cardinality of V.
• Sr

i,j : the average speed value in [km/h] for the route between customer i and 
customer j using speed level r.

• i0 : the warehouse location of the delivery company.
• Capv : the maximum carrying capacity of vehicle v.
• Sourcep : the source location of product p.
• Destp : the destination location of product p.
• Qp : the maximum quantity available of product p.
• di,j : the direct traveling distance between customer i and customer j.
• �i : the service time (including material handling, documentation, etc.) at 

location i.
• �i,j : average road angle in degrees between i and j.
• a

v,r

i,j  : average acceleration of vehicle v from i to j using speed value r.
• M: a very large number.
• M1 : the weight of a vehicle when it is empty, M1 = 6350 kilogram.
• M2 : fuel-to-air mass ratio, M2 = 1.
• M3 : vehicle engine friction factor, M3 = 0.2 kilojoule/revolution/liter.
• M4 : vehicle average second-by-second engine speed, M4 = 33 revolution/sec-

ond.
• M5 : engine displacement of the vehicle,M5 = 5 liter.
• M6 : gravitational constant,M6 = 9.81 meter/square second.
• M7 : coefficient of aerodynamic drag of the vehicle, M7 = 0.7.
• M8 : air density, M8 = 1.2041 kilogram/cubic meter.
• M9 : frontal surface area of the vehicle, M9 = 3.912 square meter.
• M10 : coefficient of rolling resistance of the vehicle, M10 = 0.01.
• M11 : vehicle drive train efficiency, M11 = 0.4.
• M12 : diesel engine efficiency, M12 = 0.9.
• M13 : heating value of a typical diesel fuel, M13 = 44 kilojoule/gram.
• M14 : conversion factor from gram/second to liter/second, M14 = 747.
• Λ : a vehicle constant, calculated as M2

M13M14

.

• Γ : a vehicle constant, calculated as 1

103M11M12

.

• � : a vehicle-arc constant, calculated as 0.5M7M8M9.
• Cfuel : fuel price per liter, Cfuel =  £1.71/liter.
• Cdriver : driver wage, Cdriver = £14.5/hour.
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• Cv
Fixed : fixed cost for using vehicle v.

• Revp : revenue per unit for commodity p.

3.2  Decision variables

• x
v,r

i,j  : this binary decision variable indicates the route taken by the vehicle. It takes a 
value of 1 if customer j is directly visited from customer i using vehicle v and speed 
level r, and 0 otherwise.

• yv
i
 : this binary variable takes a value of 1 if customer i is visited using vehicle v, and 

0 otherwise.
• uv

i
 : this integer decision variable represents the sequence of visiting customer i 

using vehicle v. It is utilized in the MTZ sub-tour elimination constraint.
• F

p,v

i,j  : this continuous variable represents the quantity of product p carried using 
vehicle v on the route (i, j).

• � : this continuous variable represents the average driving time.
• �v : this continuous variable represents the difference between the total driving time 

of vehicle v and the average driving time �.
• � : this continuous variable captures the maximum deviation ( maxv �

v).

3.3  Economic function

The economic objective function aims to maximize the profit ( Z1 ). The total revenue 
( C1 ) is calculated considering the unit revenue and the quantity transported (Eq. (1)). 
The total cost ( C2 + C3 + C4 ) consists of the total vehicle fixed cost, total fuel cost and 
total driver wage. The total vehicle fixed cost ( C2 ) is used to cover part of the vehicle’s 
insurance and periodic maintenance costs. The total fuel cost ( C3 ) calculates the con-
sumed fuel and multiplies it by the fuel price as described in Demir et al. (2014). The 
total wage ( C4 ) is calculated by multiplying the hourly wage rate by the total traveling 
time.

Remark 1 Incorporating total fuel consumption into the objective function guaran-
tees minimization of the overall fuel expenses, accounting for the operational con-
straints and other elements of the function. Consequently, since emissions are pro-
portional to fuel usage, this approach also addresses environmental concerns.

(1)C1 =
∑

p∈P

∑

v∈V

∑

j∈A⧵{Sourcep}

Revp × F
p,v

Sourcep,j
,

(2)C2 =
∑

v∈V

Cv
Fixed

× yv
i0
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3.4  Fairness function

To improve fairness between drivers ( Z2 ), one possibility is to consider minimizing 
the maximum deviation. This reduces any deviations from the average value and 
improves fairness between drivers in terms of customer allocation and driving times. 
The model, in this case, is bi-objective.

subject to

Constraint(7) finds the maximum deviation and assigns it to � . Constraint(8) cal-
culates the deviation of vehicle’s v travelling time from the average. Constraint (9) 
calculates the average total travelling time.

Equations (7)–(9) are nonlinear and can be converted to linear as follows. First, 
Equation (9) requires knowing the number of used vehicles, which is a decision vari-
able. Introducing Bv as a binary decision variable that is equal to 1 to indicate that up 
to v vehicles are used by the model, 0 otherwise. We also use �v to store the average 

(3)

C3 = Cfuel ×
∑

i∈A

∑

j∈A

∑

v∈V

[∑

r∈R

[
M3M4M5Λ

(
di,j

Sr
i,j

)
x
v,r

i,j
+ �ΛΓdi,j(S

r
i,j
)2x

v,r

i,j

+

(
M6 sin

(
�i,j�

180

)
+M6M10 cos

(
�i,j�

180

)
+ a

v,r

i,j

)
×M1ΓΛdi,jx

v,r

i,j

]

+
∑

p∈P

(
M6 sin

(
�i,j�

180

)
+M6M10 cos

(
�i,j�

180

)
+ a

v,r

i,j

)
× ΛΓdi,jF

p,v

i,j

]

(4)C4 = Cdriver ×
∑

i∈A

∑

j∈A

∑

r∈R

∑

v∈V

di,j

Sr
i,j

x
v,r

i,j

(5)max Z1 = C1 − (C2 + C3 + C4)

(6)min Z2 = �

(7)� = max
v∈V

�v −M(1 − yv
i0
).

(8)�v =
|||� −

∑

r∈R

∑

i∈A

∑

j∈A

(
�i +

di,j

Sr
i,j

)
x
v,r

i,j

|||, ∀v ∈ V,

(9)� =

∑
v∈V

∑
r∈R

∑
i∈A

∑
j∈A

�
�i +

di,j

Sr
i,j

�
x
v,r

i,j

∑
v∈V y

v
i0

,
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travelling time based on each possible number of vehicle. Then the following con-
straints can be added:

Constraint (10) ensures that only one Bv will be one. Constraint (11) links Bv with 
the total number of used vehicles ( 

∑
v∈V y

v
i0
 ), such that Bv is only one when v corre-

sponds to the total number of used vehicles. If v is less than the used vehicles, the 
upper bound of the constraints forces Bv to be zero to activate |V|(1 − B

v) and if v is 
greater than the total number of used vehicles, the lower bound is bounded vBv 
forces Bv to be zero. Thus, Bv will only be one when v corresponds to 

∑
v∈V y

v
i0
.

Equation (9) can then be modified to

Constraints (12) and (13) convert the non-linear average constraint to linear. Equa-
tion (12) calculates the average value for each number of vehicle and Eq.  (13) 
assigns �v to � when Bv is equal to 1.

The absolute function in Eq. (8) can be replaced by the following inequalities.

Finally, the maximum function is replaced by an inequality subject to minimising � 
in the objective function, where the deviation of vehicle v is skipped if the vehicle is 
not used ( −M(1 − yv

1
)).

Another possibility is to award drivers with driving time more than the average. In 
this case, Eq.  (14) is eliminated, so that only positive differences are considered. 
Consequently, the objective function is given by

(10)
∑

v∈V

B
v = 1,

(11)vBv
≤
∑

v∈V

yv
i0
≤ vBv + |V|(1 − B

v), ∀v ∈ V,

(12)
�v =

∑
v∈V

∑
r∈R

∑
i∈A

∑
j∈A

�
�i +

di,j

Sr
i,j

�
x
v,r

i,j

v
, ∀v ∈ V,

(13)�v −M(1 − B
v) ≤ � ≤ �v +M(1 − B

v), ∀v ∈ V,

(14)�v ≥ � −
∑

r∈R

∑

i∈A

∑

j∈A

(
�i +

di,j

Sr
i,j

)
x
v,r

i,j
, ∀v ∈ V,

(15)�v ≥
∑

r∈R

∑

i∈A

∑

j∈A

(
�i +

di,j

Sr
i,j

)
x
v,r

i,j
− � , ∀v ∈ V,

(16)� ≥ �v −M(1 − yv
i0
), ∀v ∈ V,

(17)Z2 =
∑

v∈V

Cfairness�
v
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Since Eq. (17) is monetary. It can be included in the total cost objective function. 
Thus, in such case, the model becomes a single objective.

3.5  Routing model constraints

(18)
∑

r∈R

∑

i∈A∶i≠j

x
v,r

i,j
= yv

j
, ∀j ∈ A, v ∈ V,

(19)
∑

r∈R

∑

j∈A∶i≠j

x
v,r

i,j
= yv

i
, ∀i ∈ A, v ∈ V,

(20)
∑

v∈V

yv
i
≥ 1, ∀i ∈ A ⧵ {i0},

(21)

uv
i
− uv

j
+ (|A| − 1)

∑

r∈R

x
v,r

i,j
≤ |A| − 2, ∀i ∈ A ⧵ {i0}, j ∈ A ⧵ {i0}, v ∈ V,

(22)2 ≤ uv
i
≤ |A|, ∀i ∈ A ⧵ {i0}, v ∈ V,

(23)uv
i0
= 1, ∀v ∈ V,

(24)

∑

j∈A

F
p,v

i,j
=
∑

j∈A

F
p,v

j,i
,

∀i ∈ A, v ∈ V, p ∈ P, i ≠ Sourcep, i ≠ Destp,

(25)
∑

p∈P

F
p,v

i,j
≤ Capv

∑

r∈R

x
v,r

i,j
, ∀i ∈ A, j ∈ A, i ≠ j,

(26)
∑

j∈A∶j≠Sourcep

F
p,v

j,Sourcep
= 0, ∀v ∈ V, p ∈ P,

(27)
∑

j∈A∶j≠Destp

F
p,v

Destp,j
= 0, ∀v ∈ V, p ∈ P,

(28)
∑

v∈V

∑

j∈A∶j≠Sourcep

F
p,v

i,j
≤ Qp, ∀p ∈ P,
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Equations (18) and (19) ensure that if vehicle v goes to customer i ( yv
i
= 1 ), then it 

comes from one customer and leaves to one customer. Constraint (20) ensures that 
each customer is visited by at least one vehicle. Equations (21)–(23) are the classical 
MTZ subtour elimination constraints that prevent having multiple tours. Constraint 
(24) ensures flow conservation. Constraint (25) ensures that the total transported 
quantity by vehicle v does not exceed its capacity. Constraints (26) and (27) pre-
vent transporting commodity p to its source or from its destination. Constraint (28) 
ensures that for each commodity, the total transported quantity by all vehicles does 
not exceed the available quantity. Constraint (29) defines the variable types.

4  Solution approach

The model is a bi-objective in the case where the maximum deviation needs to be 
minimized and the profit is to be maximized. Since objective functions have different 
unit and different order of magnitude, we utilize the weighted comprehensive criterion 
method to solve it and provide decision makers with a particular solution that aligns 
with their interest (Hamdan et al. 2018; Cheaitou et al. 2021; Hamdan et al. 2017). This 
method normalizes the two objective functions by calculating their relative difference 
from their ideal values as follows.

where �1 is the importance weight of the profit objective function, Zideal
1

 is the ideal 
profit value resulting from solving the model while maximizing the profit objective 
function only and Zideal

2
 is the ideal maximum deviation resulting from solving the 

model while minimizing the maximum deviation. Note that �1 represents the deci-
sion maker’s preference.

We use the �-constraint method to handle the non-convex nature of the objective 
functions when generating the Pareto optimal set. In this method, one of the objectives 
is selected as the primary objective to be optimized, while the others are converted into 
constraints with a specified threshold, known as the � value. The mathematical formu-
lation of the model using the �-constraint method is as follows:

where Z1 represents the profit function to be maximized, Z2 represents the maxi-
mum deviation function to be minimized, and � is the allowable maximum deviation 
threshold. By systematically varying the value of � , different points on the Pareto 

(29)

F
p,v

i,j
≥ 0, ∀i ∈ A, j ∈ A, p ∈ P, v ∈ V,

x
v,r

i,j
≥ 0, ∀i ∈ A, j ∈ A, v ∈ V, r ∈ R,

yv
i
∈ {0, 1}, ∀i ∈ A, v ∈ V,

uv
i
∈ ℤ, ∀i ∈ A, v ∈ V.

(30)z = �1

Zideal
1

− Z1

Zideal
1

+ (1 − �1)
Z2 − Zideal

2

Zideal
2

(31)max Z1 subject toZ2 ≤ �,
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optimal set are identified. Each value of � leads to a different feasible solution space 
and, thus, a different optimal solution for the primary objective Z1(x) . The set of 
these optimal solutions constitutes the Pareto optimal set, providing a spectrum of 
trade-off solutions between profit maximization and deviation minimization. The 
Pareto optimal set generated by the �-constraint method gives decision-makers the 
flexibility to choose the most appropriate trade-off according to their preference or 
policy constraints.

The problem proposed in this work can be simplified to the well-known trave-
ling salesman problem by assuming a single vehicle, fixed speed, unlimited 
capacity, and that all customers are visited only once. Therefore, the problem is 
classified as NP-hard, as previously shown by Karp (1972). To solve large-sized 
instances, we propose an iterative population-based heuristic.

• � : the number of operations.
• Π : an integer multiplier for the number of individuals.
• Ψ : the number of individuals created by the algorithm, indexed by 

� = 1,… ,Ψ . Note that Ψ = Π × �.
• Veh� : the set of selected vehicles for individual �.
• Routev

� : the customers visited by vehicle v (and their visiting sequence) in 
individual �.

• Quant�v : the quantities transported to the customers in Route�v using vehicle 
v.

• SpeedLevel�v : the average driving speeds to visit the customers in Route�v.
• V� : the number of vehicles in individual � , which is equal to the cardinality of 

Veh�.
• nv

� : the number of customers included in the service of vehicle v in individual �.
• Δ : the maximum number of iterations, with � = 1,… ,Δ.
• randi(a,b): a function that generates a random integer between a and b.
• randperm(a,b): a function that returns a random permutation of a with b ele-

ments chosen.
• �max : the maximum number of iterations without a change in the best objective 

value.
• Ξ : the number of subgroups calculated as Ξ =

Ψ

Π�
 , with � = 1,… ,Ξ.

The heuristic in Algorithm  1 generates Ψ individuals that satisfy all constraints 
using Algorithm 2. It then evaluates each individual � by calculating its objective 
value ( Z1 , Z2 , or z). The individuals are randomly divided into Ξ subgroups, with 
each subgroup containing � individuals. The best individual in each subgroup � is 
selected and subjected to � operations, which are: 

 1. Route flip, which reverses the sequence of customers in a randomly selected 
vehicle.

 2. Route swap, which changes the sequence of two randomly chosen customers in 
a randomly selected vehicle.

 3. Route slide, which changes the position of a randomly selected customer in a 
randomly selected vehicle.
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 4. One speed change, which changes the speed on one randomly chosen arc in a 
randomly selected vehicle.

 5. Speed change, which changes the speed values on all arcs in a randomly selected 
vehicle.

 6. Quantity transfer, which selects two vehicles transporting to the same customer 
and swaps the smallest quantity between the customers.

 7. Vehicle change, which randomly selects a vehicle and changes its type from the 
available options.

 8. Swap customers, which selects two random vehicles and swaps unique custom-
ers between them without violating vehicle capacities.

 9. Remove a customer, which removes a randomly selected customer from the 
service.

 10. Add a customer, which adds a customer not currently in the service.
 11. Add an additional driver, which adds another vehicle to the service from the list 

of unused vehicles and assigns customers to it.
 12. Do nothing, which keeps the best individual in the � subgroup unchanged.

The heuristic performs a total of 15 operations by repeating Operations (1)–(3) on 
the SpeedLevelv

�
 chromosome. The resulting modified individuals replace the origi-

nal ones in an attempt to improve the solution quality. In each subsequent iteration, 
the new individuals are evaluated, and the best individual is retained while the pro-
cess is repeated. If the number of iterations without improvement in the best objec-
tive value reaches �max , completely new random individuals are created by calling 
Algorithm 2 to maximize diversity and escape local optima.
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Algorithm 1  Main algorithm

Require: Sets and parameters defined in the Section 3.1

ZG
1 ← −∞, ZG

2 ← ∞, zG ← ∞,ϕ ← 0, ϕmax ← 50, and ϕ ← 0
Call Algorithm (2)
for δ ← 1 to ∆ do

for ψ ← 1 to Ψ do
Calculate Z1 using Equation (5) and Z2 using Equation (6)

end for
Zmax
1 ← maxψ∈Ψ Z1

Zmin
2 ← minψ∈Ψ Z2

if Zmax
1 > ZG

1 then
ZG
1 ← Zmax

1
Store the best individual in Best1
ϕ ← 0

else
ϕ ← ϕ+ 1

end if
if Zmin

2 < ZG
2 then

ZG
2 ← Zmin

2
Store the best individual in Best2
ϕ ← 0

else
ϕ ← ϕ+ 1

end if
Calculate z using Equation (30), where Z ideal

1 = ZG
1 and Z ideal

2 = ZG
2

zmin ← maxψ∈Ψ z
if zmin < zG then

zG ← zmin

Store the best individual in Best3
ϕ ← 0

else
ϕ ← ϕ+ 1

end if
Divide the Ψ individuals into Ξ subgroups, each with µ individuals
for ξ ← 1 to Ξ do

Identify the best individual in the subgroup
Perform the following µ operations to produce new subgroup

end for
if ϕ ≥ ϕmax then

Call Algorithm (2)
else

Update the population with the new mutated one
end if

end for
return The best route, speed, quantities and arrival times
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Algorithm 2 performs various checks on the total quantity transported, vehicle 
load, and chromosome consistency. It takes as input the number of individuals to 
generate ( Ψ ), the set of vehicles ( V ), the set of locations ( A ), the demand at each 
location (Q), the starting location for each vehicle (S), and the capacity of each vehi-
cle ( Capv).

The algorithm first randomly selects a starting number of vehicles ( V� ) and cor-
responding vehicles for each individual (potential solution � ), and then generates 
a set of random routes ( Route�v ) for each vehicle v in the individual. The algo-
rithm then loads each vehicle with a random fraction of the demand of each location 
( Quant�v,Routev

� ) and checks the total quantity loaded on all vehicles for each solu-
tion against the demand of the location. If the quantity is not equal to the demand of 
the location, the algorithm adjusts the quantity until the demand is fulfilled. Next, 
the algorithm checks if the capacity constraint of each vehicle is violated. If the 
capacity of a vehicle is exceeded, the algorithm either selects another vehicle with 
available capacity or adds a new vehicle. It then assigns a random location to the 
new vehicle and transfers demand to the new vehicle until the capacity constraint is 
satisfied. Finally, the algorithm updates the route for each vehicle to include all loca-
tions in the quantity chromosome for each vehicle, and assigns a random speed level 
( SpeedLevelv

�
 ) to each vehicle and each route. This process is repeated Ψ times to 

generate a set of feasible solutions.
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Algorithm 2  Create feasible solutions

Require: Ψ, V, A, Q, S, Cap
1: for ψ = 1 to Ψ do
2: Vψ ← randi(1, |V|)
3: V ehψ ← randperm(V,Vψ)
4: for v = 1 to Vψ do
5: nv

ψ ← randi(1,|A|)
6: Routevψ ← randperm(A \ {1},nψ)

7: Quant
v,Routevψ
ψ ← rand(0, 1) × Q(Routevψ)

8: end for
9: TQ ←

∑
v∈Vψ

∑
i∈Routevψ

Quantv,iψ

10: while TQ �=
∑

i∈Routevψ
Q(i) do

11: if TQ>
∑

i∈Routevψ
Q(i) then

12: identify location L with excess Q
13: identify a vehicle v with location L
14: Quantv,Lψ ← Quantv,Lψ −min{TQ(L)−Q(L),Quantv,Lψ }
15: else
16: identify location L with shortage Q
17: identify a vehicle v with location L
18: Quantv,Lψ ← Quantv,Lψ + (Q(L)− TQ(L))
19: end if
20: TQ ←

∑
v∈Vψ

∑
i∈Routevψ

Quantv,iψ

21: end while
22: for v = 1toVψ do
23: while

∑
i∈Routevψ

Quantv,iψ >Capv do

24: find vehicle v′ with
∑

i∈Routev′
ψ
Quantv

′,i
ψ <Capv′

25: if v′ = φ then
26: add unused vehicle v′ from V
27: create Routev

′

ψ

28: end if
29: choose random location L on vehicle v
30: add location L to Routev

′

ψ

31: mQ ← min{
∑

i∈Routevψ
Quantv,iψ − Capv,Quantv,Lψ }

32: transport min{mQ, Capv′} to vehicle v′

33: update Quantv,Lψ

34: end while
35: end for
36: for v ∈ Vψ do
37: update Routevψ to match elements in Quantvψ
38: create SpeedLevelvψ ← randi(1, |R|)
39: end for
40: end for
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Remark 2 Operation 10 is ignored if the model requires visiting all customers (Con-
straint (20)) and that nv

�
 in Algorithm 2 is set to |A|.

5  Heuristic performance

We compare the proposed iterative heuristic and the exact approach to show the 
robustness of the proposed algorithm. We use the Instance Set A of the Pollution-
Routing Problem datasets proposed by Demir et al. (2012) in our numerical exper-
iments, since these datasets contain most of the parameters used in our problem, 
especially those of the fuel consumption. The dataset coding system is UK-X-Y, 
where X is the number of customers excluding the depot, signifying the instance 
size, and Y distinguishes between different instances of the same size X with vary-
ing parameters or conditions. X is considered to be 10, 15, 20, 25, 50, and 75. Three 
different instances for each size (X) are considered, labeled as Y = 1, 2, and 3. We 
conduct the analysis on a computer running Windows 11 with an Intel(R) Core(TM) 
i7-9750 H CPU @ 2.60GHz and 16-GB RAM.

We set a time limit of three hours for the CPLEX exact solver. In the heuristic, we 
vary the number of iterations ( Δ ) from 1000 to 15000 iterations with a step of 1000 
iterations. We use a multiplier for the number of individuals Π = 3 . The heuristic 
solution is repeated 5 times.

Table 1 shows the MIP gap provided by the solver upon termination and the rela-
tive gap between the exact and heuristic approaches, calculated as 
EZ1

= 100 ×
ZExact
1

−ZHeuristic
1

ZExact
1

 and EZ2
= 100 ×

ZHeuristic
2

−ZExact
2

ZExact
2

 for the profit maximization 
and the maximum deviation minimization problems, respectively. Instances “UK-
50-1” through “UK-75-3” could not be solved by CPLEX within the three-hour 
limit. Thus, their MIP values in the table are replaced by an asterisk (*). Table 1 
shows that the average relative gap is acceptable (i.e., less than 5%) and that for most 
instances, it is below 1%.

Table  2 gives the computation time of the exact approach in seconds and the 
time saving of the heuristic approach TS = 100 ×

TimeExact−TimeHeuristic

TimeExact
 in the case of 

large-sized instances that could not be solved, or that took significant computational 
time using the exact solver. Table 2 shows that the time saving (i.e., the percentage 
reduction in computational time) varies between 16% and 99% depending on the 
problem size and the objective function setting.

6  Insights

In this section, we evaluate the proposed model using three instances based on 
locations in the UK (P-5, P-6, and P-7). The distances between these locations are 
given in Table 3. Note that customer 6 is included in instances P-6 and P-7, and 
customer 7 is included in instance P-7 only. The characteristics of these instances 
are provided in Table 4. We analyze two problem formulations: the first considers 
a bi-objective approach that aims to maximize the total profit while minimizing 
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the maximum deviation, and the second employs a single objective formulation 
that incorporates fairness cost into profit maximization, as described in Sect. 3.4. 
We refer to the second formulation using the letter “R”, e.g. P-5-R.

6.1  Fairness price

We compare the total profit when fairness between drivers is not maximized (i.e., 
maximization of the total profit problem) and the case when fairness is fully max-
imized (i.e., minimization of the maximum deviation problem). We report the 
fairness price, which is the relative difference between the total profit when fair-
ness is not maximized and the total profit when fairness is fully maximized, cal-
culated as 100 × ZNo Fairness

1
−Zfairness

1

ZNo fairness
1

 (Hamdan et al. 2022). Figure 2 shows that the price 
of fairness varies between 3.74% and 39.64%. This means that for some instances, 
imposing fairness between drivers does not lead to a significant reduction in total 
profit, while in others it can result in a profit reduction of 39.64%. Thus, ensuring 
equal driving times might not be economically viable in some cases. In such 
instances, reward programs that provide incentives for drivers to accept driving, 
such as a higher pay rate for driving longer, might be more suitable.

Table 1  Relative gap between the exact and heuristic approaches at Δ = 15000 iterations

*Could not be solved using the exact approach within the time limit
**Not optimal due to the use of non optimal Z

2
 value in the normalization process

Instance MIPZ
1

MIPZ
2

MIPz EZ
1
± Std EZ

2
± Std Ez± Std

UK-10-1 0 0 0 0.02 ± 0.00 0.11 ± 0.08 0.10 ± 0.02
UK-10-2 0 0 0 0.01 ± 0.01 0.64 ± 0.43 1.09 ± 0.20
UK-10-3 0 0 0 0.01 ± 0.01 0.36 ± 0.02 1.94 ± 0.57
UK-15-1 0 0 0 0.02 ± 0.00 0.96 ± 0.23 0.30 ± 0.24
UK-15-2 0 0 0 0.02 ± 0.00 0.86 ± 0.19 1.45 ± 1.67
UK-15-3 0 0 0 0.02 ± 0.00 1.13 ± 0.66 2.59 ± 2.08
UK-20-1 0.01 100 0** 0.05 ± 0.01 − 38.41 ± 2.21 − 106.92 ± 1.52
UK-20-2 0.01 0 140.89 0.04 ± 0.00 1.78 ± 0.95 − 52.62 ± 3.18
UK-20-3 0 100 0** 0.03 ± 0.01 − 25.48 ± 1.79 − 45.01 ± 4.50
UK-25-1 0.01 100 103.65 0.02 ± 0.00 − 14.57 ± 1.18 − 66.38 ± 2.08
UK-25-2 0.02 100 101.31 0.02 ± 0.00 − 116.68 ± 3.75 − 87.41 ± 4.79
UK-25-3 0.01 100 101.96 0.01 ± 0.00 − 57.55 ± 2.05 − 130.31 ± 4.12
UK-50-1 * * * − 100.00 ± 0.00 − 100.00 ± 0.00 − 100.00 ± 0.00
UK-50-2 * * * − 100.00 ± 0.00 − 100.00 ± 0.00 − 100.00 ± 0.00
UK-50-3 * * * − 100.00 ± 0.00 − 100.00 ± 0.00 − 100.00 ± 0.00
UK-75-1 * * * − 100.00 ± 0.00 − 100.00 ± 0.00 − 100.00 ± 0.00
UK-75-2 * * * − 100.00 ± 0.00 − 100.00 ± 0.00 − 100.00 ± 0.00
UK-75-3 * * * − 100.00 ± 0.00 − 100.00 ± 0.00 − 100.00 ± 0.00
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Table 2  Exact computation time (seconds) and time saving when using the heuristic approach at Δ = 
15000 iterations

*No time savings. The heuristic approach took between 50 and 180 s

Instance Time
Exact

Z
1

Time
Exact

Z
2

Time
Exact

z
TSZ

1
± Std TSZ

2
± Std TSz± Std

UK-10-1 8.15 10.81 222.55 * * 35.90 ± 0.68
UK-10-2 8.06 35.84 27.50 * * *
UK-10-3 9.85 13.15 257.53 * * 60.69 ± 1.82
UK-15-1 322.75 46.87 590.44 86.18 ± 0.34 * 83.08 ± 0.25
UK-15-2 21.83 59.08 366.53 * 22.70 ± 3.85 73.06 ± 0.72
UK-15-3 52.85 27.46 152.25 16.19 ± 2.56 * 36.06 ± 2.18
UK-20-1 10800.00 10800.00 5462.69 99.42 ± 0.02 99.41 ± 0.02 97.16 ± 0.11
UK-20-2 1247.09 3172.78 10800.00 94.40 ± 0.21 98.00 ± 0.12 98.72 ± 0.02
UK-20-3 342.55 10800.00 8131.57 79.21 ± 0.19 99.32 ± 0.06 98.32 ± 0.07
UK-25-1 10800.00 10800.00 10800.00 99.38 ± 0.03 99.43 ± 0.03 99.19 ± 0.33
UK-25-2 10800.00 10800.00 10800.00 98.38 ± 0.76 99.27 ± 0.02 97.70 ± 0.09
UK-25-3 10800.00 10800.00 10800.00 99.29 ± 0.02 99.40 ± 0.02 99.38 ± 0.03
UK-50-1 10800.00 10800.00 10800.00 98.76 ± 0.02 98.77 ± 0.04 97.43 ± 0.04
UK-50-2 10800.00 10800.00 10800.00 97.47 ± 1.24 98.78 ± 0.03 96.54 ± 0.58
UK-50-3 10800.00 10800.00 10800.00 98.73 ± 0.05 98.78 ± 0.03 94.78 ± 0.33
UK-75-1 10800.00 10800.00 10800.00 98.21 ± 0.03 96.39 ± 0.46 95.10 ± 1.13
UK-75-2 10800.00 10800.00 10800.00 97.82 ±0.01 97.74 ± 0.02 95.90 ± 0.87
UK-75-3 10800.00 10800.00 10800.00 98.18 ± 0.03 98.16 ± 0.02 96.95 ± 0.13

Table 3  Distance in kilometers Depot W1 W2 W3 W4 W5 W6 W7

Depot 0 16.2 34.5 19 19.7 48.1 26.8 45.8
W1 16.2 0 16.2 16.4 6.8 32.3 11 30
W2 38.4 16.2 0 23.4 19.2 34.8 13.2 22.6
W3 19 16.4 24.6 0 27.5 46 24.7 43.7
W4 19.7 6.8 19.9 23 0 24.3 8 27
W5 48.1 32.8 29.6 46.6 23 0 16.9 20.3
W6 26.8 11 13.2 24.7 8 16.9 0 20.6
W7 45.6 30 22.6 42.6 26.7 20.1 20.3 0

Table 4  Instance details Instance name |A| |V| |P| |R|

P-5 6 3 7 10
P-6 7 3 11 10
P-7 8 5 14 10
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6.2  Impact of fairness cost on the profit

We are examining the problem setup as described in Sect. 3.4 with Eq. (17). By add-
ing Eq.  (17) to the total cost, the model becomes a single objective maximizing the 
total profit. In this context, drivers who have a longer travel time than the average 
are rewarded with 

∑
v∈V Cfairness × �v . The fairness cost, which is Cfairness + Cdriver of 

the regular driver wage, can be viewed as a bonus when the driving time exceeds the 
average. To analyze the impact of the fairness cost, we vary Cfairness [£/hour] as fol-
lows: 0, 10, 14.5, 20, 50.

Figure  3 shows the total deviation and total profit (excluding the total fairness 
cost) as a function of the fairness cost. Figure 4 displays the changes in the total fuel 
cost and total driver wage compared to the case with no fairness ( Cfairness = 0 ) 

Fig. 2  Price of fairness

Fig. 3  Total deviation (in hours) and total profit with the fairness cost
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calculated as 100 × C3−C
Cfairness=0

3

C
Cfairness=0

3

 . A positive cost change indicates an increase in cost 

compared to the case without a fairness cost.
When the fairness cost is less than or equal to the hourly driver wage Cdriver , spe-

cifically Cfairness = 10 or 14.5 , the total deviation decreases compared to the case 
when Cfairness = 0 . Concurrently, the total profit also decreases due to the increase in 
total fuel cost. This reduction in total deviation is associated with an increase in both 
total fuel consumption and the total driver wage, as illustrated in Fig.  4. In some 
scenarios, such as P-6-R and P-7-R at Cfairness = 10 , the increased fuel cost slightly 
reduces driving time, thereby affecting the total driver wage. Additionally, deploy-
ing an extra vehicle to reduce the deviation can lead to a sharp drop in profit, as 
observed in scenario P-6-R at Cfairness = 14.5 . Furthermore, driving at a speed below 
the optimal level can slightly increase fuel consumption and driving time. However, 
it may also contribute to reduced deviation and profit, as shown in scenario P-5-R 
at Cfairness = 10 , where the total fuel cost increased from 10.1 to 10.2, and the total 
driver wage increased from 1.8 to 5.4, as demonstrated in Fig. 4.

6.3  Profit and fairness trade‑offs

The Pareto optimal set is obtained as follows. In the first iteration, we set � to the 
maximum deviation that corresponds to the maximum profit (when solving Z1 only) 
minus one to obtain a new point in the Pareto set. In subsequent iterations, we set � 
to the most recently found maximum deviation minus one and continue this process 
until � equals the maximum deviation obtained from minimizing the maximum devi-
ation problem ( Z2 ). The Pareto optimal set provides decision-makers with valuable 
insights into the trade-offs between multiple objectives. Specifically, it illustrates 
how improvements in one objective may come at the expense of another.

Fig. 4  Changes in the total fuel cost and the total driver wage with respect to the case of no fairness cost
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Figure 5 depicts the Pareto optimal set, which showcases the trade-offs between 
the two objectives: the minimization of the maximum deviation and the maximiza-
tion of the total profit. Decision-makers can examine this Pareto optimal set to select 
the optimal trade-off point that aligns with their preferences and constraints. The 
results of the three case studies suggest that improving fairness by an average of 
31.87, 34.34 and 23.52% results in a 0.77, 0.29 and 2.98% reduction in total profit 
on average for the three instances, respectively. These trade-offs can be visualized on 
the Pareto optimal set, where a movement towards a more fair solution incurs a cost 
in terms of profitability. The trade-offs, expressed as percentages, are computed by 
taking the average of relative changes across all pairs of consecutive Pareto optimal 
points, with each relative change calculated between two such points. These percent-
ages depends on the cost and distance structure of the problem. The decision-maker 
can use this information to balance their objectives and select an optimal point on 
the Pareto optimal set that achieves the desired balance between maximum deviation 
and total profit.

7  Conclusions

Our study highlights the importance of fairness in transportation systems, 
particularly in drivers scheduling, to ensure equitable treatment and opportunities 
for all drivers. We propose a bi-objective optimization model that considers both 
profit maximization and fairness objectives and use a weighted comprehensive 
criterion method and an iterative population-based heuristic to solve the problem 
efficiently. Our approach enables decision-makers to balance the trade-off 
between profit and fairness in a systematic and effective manner. We demonstrate 
the effectiveness of our solution approach by comparing its performance with the 
exact approach and find that it provides comparable results. We also study another 
formulation of the problem where drivers are rewarded when their driving time is 

Fig. 5  Pareto optimal solutions
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greater than the average. Our work contributes to the development of fair and 
efficient transportation systems and provides a useful tool for decision-makers to 
optimize profit while considering fairness objectives.

We evaluate the price of fairness by comparing the maximum total profit with-
out and with a fairness objective function. We find out that in some cases, impos-
ing fairness between drivers does not lead to a significant total profit reduction, 
while in others it can result in a total profit reduction of 39.64%. In such cases, 
reward programs that provide incentives for drivers to accept longer driving times 
might be more suitable.

The proposed mathematical model and the associated heuristic can be inte-
grated into user-friendly software. This software could be beneficial for any com-
pany involved in delivery or collection activities. It facilitates the scheduling of 
transportation tours for various drivers, with a focus on both profit and fairness, 
catering to a broad segment of industries. Incorporating this model allows soft-
ware vendors to stand out in a saturated market. While many existing solutions 
prioritize profit and operational constraints like time constraints, our approach 
balances profit with fairness, offering a unique selling point for vendors.
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