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Abstract
By suitably adjusting the tropical algebra technique we compute the rainbow inde-
pendent domination numbers of several infinite families of graphs including Cartesian
products Cn�Pm and Cn�Cm for all n and m ≤ 5, and generalized Petersen graphs
P(n, 2) for n ≥ 3.
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1 Introduction

Ordinary domination is a problem that is among the most studied problems in graph
theory (Goddard and Henning 2013; Haynes et al. 1998). In this task one is keen to
determine the minimum number of places in which to keep resources such that every
place either has a resource or is close enough to the place in which the resource exists.
It is quite common that in practical applications some additional constraints or desires
are taken into account.

One of the very popular varieties, the k-rainbow domination problem, has been first
studied in Brešar et al. (2005), and later elaborated and applied in a number of works
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2 Physics and Mechanics, Institute of Mathematics, Jadranska 19, Ljubljana, Slovenia

3 FMF, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10100-023-00840-w&domain=pdf
http://orcid.org/0000-0002-8272-5392


B. Gabrovšek et al.

(Brešar and Šumenjak 2007; Chang et al. 2010; Gabrovšek et al. 2020, 2019; Gao
et al. 2019; Kraner Šumenjak et al. 2013, 2018; Shao et al. 2019a, b). Two similar but
different types of rainbowdominationwith suitably encoded independencies have been
studied: namely the independent rainbow domination numbers of graphs (Gabrovšek
et al. 2020; Shao et al. 2019a) and the rainbow independent domination numbers of
graphs (Kraner Šumenjak et al. 2018). From the practical applicability point of view
both of these dominations are reasonable and make sense. The differences between
the two concepts are nicely explained in Kraner Šumenjak et al. (2018). For more
details on practical motivations and examples on rainbow domination, independent
rainbow domination and rainbow independent domination we refer to Brešar et al.
(2005), Gabrovšek et al. (2020), Gao et al. (2019), Kraner Šumenjak et al. (2018) and
Shao et al. (2019a).

In Gabrovšek et al. (2020), independent rainbow domination numbers of gener-
alized Petersen graphs of P(n, 2) and P(n, 3) were established by adopting a well
known tropical path algebra technique for polygraphs. The method has been pre-
viously applied to domination problems (and other), see e.g. Klavžar and Žerovnik
(1996), Pavlič and Žerovnik (2013), Repolusk and Žerovnik (2018), Žerovnik (2006)
and Žerovnik (1999). In the current article we suitably adjust this technique so that
it works also in the case of rainbow independent domination. The main difference to
previous applications of the technique is that we define an auxiliary graph on arcs
between two consecutive monographs, not on single monographs as before. The rea-
son for the change is that it allows more efficient implementation for computation
of the invariant considered here. By doing this we obtain a general result describing
the t-rainbow independent domination number of a given polygraph as the minimum
weight of a closed walk of length n in a suitably defined graph (Theorem 3.1) and con-
sequently, as a minimum diagonal entry of the tropical product of length n of suitably
defined associated matrices (Theorem 3.2). We then apply these results to obtain the
exact values for 2-rainbow independent numbers of Cartesian products Cn�Pm and
Cn�Cm for all n and m ≤ 5, and also of generalized Petersen graphs P(n, 2). These
results were previously announced in the conference article (Gabrovšek et al. 2021)
without many details and proofs.

The article is organized in the following way. In Sect. 2 we present some basic defi-
nitions and known facts on rainbow independent domination, polygraphs and tropical
algebra. In Sect. 3 we provide the necessary theoretical framework and in Sect. 4 we
obtain the exact values for 2-rainbow independent numbers of polygraphs mentioned
above.

2 Preliminaries

2.1 Rainbow independent domination of graphs

A graph F is a combinatorial object, defined by two sets, an arbitrary set V = V (F)

of vertices and a set E(F) ⊆ V × V of edges. Usually, we set (u, v) = (v, u), and we
have undirected graphs. Otherwise, F is a directed graph or digraph. Let F be a graph,
S ⊆ V (F) and letw ∈ V (F). The open neighborhood ofw in S is denoted by NS(w),

123



On the 2-rainbow independent domination numbers of some…

i.e., NS(w) = {u | (u, w) ∈ E(F), u ∈ S}. Similarly, the closed neighborhood of w

in S is denoted by NS[w], i.e., NS[w] = {w}∪ NS(w). If S = V (F) and no confusion
can arise, we will write N (w) and N [w] instead of NS(w) and NS[w], respectively.
If T ⊆ V (F), then we define N (T ) = ∪x∈T N (x). A subset S of V (F) for which the
vertices are pairwise non-adjacent is called an independent set S of the graph F . As is
well known, the degree of a vertex w is the total number of edges incident to w. The
interval [i, j] of integers i ≤ j is defined by [i, j] = {k ∈ N | i ≤ k ≤ j}. Two graphs
F and H are called isomorphic if and only if there is a bijection ψ : V (F) → V (H)

such that ((u, v) ∈ E(F) ⇐⇒ (ψ(u), ψ(v)) ∈ E(H)). For basic definitions not given
here see Hammack et al. (2011).

In Kraner Šumenjak et al. (2018), the notion of t-rainbow independent domination
was introduced. For a function f : V (F) → {0, 1, 2, . . . , t} we denote by Vi the set
of vertices to which the value i is assigned by f , i.e., Vi = {v ∈ V (F) | f (v) = i}.
A function f : V (F) → {0, 1, . . . , t} is called a t-rainbow independent dominating
function (tRiDF for short) of F if the following two conditions hold:

(1) The set Vi is independent for each i = 1, . . . , t , and
(2) For every v ∈ V0 and for every i = 1, . . . , t we have N (v) ∩ Vi �= ∅.

The weight of tRiDF f of graph F is the value w( f ) = ∑t
i=1 |Vi |. The t-rainbow

independent domination number γrit(F) is the minimumweight over all tRiDFs of F .
If f is a tRiDF of F and H is a subgraph of F , then f , restricted to H , is called a

partial tRiDF (ptRiDF) for H . Note that the restriction of f , that is a ptRiDF of H ,
is not necessarily a tRiDF of H .

Note that a tRiDF f can alternatively be represented by an ordered partition
(V0, V1, . . . , Vt ), where (v ∈ Vi ⇐⇒ f (v) = i for i = 0, 1, 2, . . . , t) and the
set Vi is independent for each i = 1, 2, . . . , t . We sometimes simply write f =
(V0, V1, . . . , Vt ).

2.2 Polygraphs

Let G1, . . . ,Gn be arbitrary mutually disjoint graphs and denote by X1, . . . , Xn a
sequence of sets of edges such that an edge of Xi joins a vertex of V (Gi ) with
a vertex of V (Gi+1) (Xi ⊆ V (Gi ) × V (Gi+1) for i ∈ [1, n]). A polygraph
�n = �n(G1, . . . ,Gn; X1, . . . , Xn) over monographs G1, . . . ,Gn has a vertex set
V (�n) = V (G1) ∪ . . . ∪ V (Gn), and an edge set E(�n) = E(G1) ∪ X1 ∪ . . . ∪
E(Gn) ∪ Xn . For convenience, we set G0 = Gn and Gn+1 = G1. Thus, X0 = Xn ,
so we may write, for instance, X0 ⊆ V (G0) × V (G1) = V (Gn) × V (G1), and
Xn ⊆ V (Gn) × V (Gn+1) = V (Gn) × V (G1).

In the case when all graphs Gi are isomorphic to a fixed graph G (i.e., there exists
an isomorphism ψi : V (Gi ) −→ V (G) for i = 0, 1, . . . , n + 1, and ψ0 = ψn

and ψn+1 = ψ1) and all sets Xi are equal to a fixed set X ⊆ V (G) × V (G) (i.e.,

(u, v) ∈ X ⇐⇒
(
ψ−1
i (u), ψ−1

i+1(v)
)

∈ Xi for all i), we call such a graph rotagraph,

ωn(G; Y ). If a polygraph has the property that n−1 of its monographs are isomorphic
to a fixed graph G and consequently at most two consecutive sets Xi are not equal to
the fixed set of edges X , then we call it a nearly rotagraph.
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Polygraphs were first studied in mathematical chemistry (Babić et al. 1986) as a
model of polymer molecules. Furthermore, typical examples of polygraphs are Carte-
sian products of graphs and generalized Petersen graphs. The Cartesian productG�H
of graphs G and H is a graph with a vertex set V (G) × V (H), where two vertices are
adjacent if and only if they are equal in one coordinate and adjacent in the other. For
example G = Cn�Cm is a graph with V (G) = {vi, j | i ∈ [0, n − 1], j ∈ [0,m − 1]}
and E(G) = {ei, j | ei, j = (vi, j , vi+1, j ), i ∈ [0, n−1], j ∈ [0,m−1]}∪{e′

i, j | e′
i, j =

(vi, j , vi, j+1), i ∈ [0, n − 1], j ∈ [0,m − 1]}, where indices i and j are read modulo
n and m, respectively (see e.g. Hammack et al. 2011).

For positive integers n ≥ 3 and k, 1 ≤ k < n
2 , the generalized Petersen graph

P(n, k) is defined to be a graph with a vertex set {u1i , u2i | i ∈ [0, n − 1]} and an
edge set {u1i u2i , u1i u1i+k, u

2
i u

2
i+1 | i ∈ [0, n−1]}, in which the subscripts are computed

modulo n (see e.g. Gabrovšek et al. 2020; Shao et al. 2019a; Watkins 1969).

2.3 Tropical algebra

Tropical algebra or min-plus algebra is a semialgebra over the ordered, idempotent
semifield R ∪ {∞}, equipped with the operations of addition a ⊕ b = min(a, b) and
multiplication a � b = a + b. Here ∞ is the unit element for addition ⊕ and 0 is
the unit element for multiplication �. As in standard arithmetic the operations ⊕ and
� are associative and commutative, and � is distributive over ⊕. Matrix operations
are defined in analogy to linear algebra with tropical operations replacing the standard
ones. In particular, for matrices A, B ∈ (R∪{∞})n×n the tropical or min-plus product
AB is defined by

(AB)i j = min
k∈[1,n](Aik + Bkj )

for all i, j ∈ [1, n]. The mth tropical (or min-plus) power of A is denoted by Am . To
be more precise,

Am
i j = min

j1,..., jm−1∈[1,n](Ai j1 + A j1 j2 + · · · + A jm−1 j )

for all i, j ∈ [1, n]. For our purposes wewill in fact consider matrices over idempotent
subsemiring N ∪ {0} ∪ {∞} equipped with the min-plus operations (also known as
path algebra, see e.g. Gabrovšek et al. 2020; Klavžar and Žerovnik 1996; Pavlič and
Žerovnik 2013; Repolusk and Žerovnik 2018; Žerovnik 1999). The trace of matrix
A in min-plus algebra is defined as tr(A) = mini∈[1,n] Aii . For matrices A, B ∈
(R ∪ {∞})n×n it holds that (see e.g. Gabrovšek et al. 2020)

tr(AB) = tr(BA). (1)

The term tropical algebra is sometimes used for all semifields isomorphic to min-
plus algera. For more details we refer the interested reader to Bapat (1998), Butkovič
(2010), Kolokoltsov and Maslov (1997), Litvinov (2007), Müller and Peperko (2015)
and Rosenmann et al. (2019).
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3 Theoretical framework

In Gabrovšek et al. (2020) a path-algebra technique for computing the independent
rainbow domination numbers of generalized Petersen graphs is used. In this section
we use a similar idea, but somewhat modify it and apply it for the case of rainbow
independent domination.

We begin by defining a weighted digraph which we can associate to a given poly-
graph which, in turn, permits utilization of the algebraic approach. Intuitively, we
are going to define a digraph in which vertices correspond to restrictions of tRiDF
functions to pairs of consecutive monographs and arcs correspond to pairs of vertices
which are on the intersecting monograph restrictions of the same tRiDF.

Similarly to our study of the independent rainbow domination case in Gabrovšek
et al. (2020), the main reason for the introduction of a new construction lies in the
fact that in the case of t-rainbow domination, a vertex which has neighbors in both
neighboring monographs can be evaluated only when the colors of all neighbors are
known. It would be possible to handle this by considering bigger monographs. We
choose here a different approach by defining the associated digraph, which is based on
ordered pairs of monographs. The associated digraph that we define can be considered
as a line graph of the associated digraph from Klavžar and Žerovnik (1996), Pavlič
and Žerovnik (2013), Repolusk and Žerovnik (2018) and Žerovnik (1999, 2006).

For a given polygraph�n(G1,G2, . . . ,Gn; X1, X2, . . . , Xn), we define an associ-
ated digraph G in the following way. The vertices of G are ordered tuples of subsets of
vertices (B0, B1, B2, . . . , Bt ) such that B0∪B1∪B2∪· · ·∪Bt = V (Gi )∪V (Gi+1) for
some i ∈ [1, n] and there exists a ptRiDF f = (V0, V1, V2, . . . , Vt ), for the subgraph
induced on V (Gi ) ∪ V (Gi+1), defined (at least) on V (Gi−1) ∪ V (Gi ) ∪ V (Gi+1) ∪
V (Gi+2), such that B0 = V0∩(V (Gi )∪V (Gi+1)), B1 = V1∩(V (Gi )∪V (Gi+1)), . . .,
and Bt = Vt∩(V (Gi )∪V (Gi+1)).Weuse the notationV(G)i,i+1 for the set of vertices,
which are ptRiDF for V (Gi ) ∪ V (Gi+1). It is clear that V(G) = ∪n

i=1V(G)i,i+1.
As usual the weight of a vertex B = (B0, B1, B2, . . . , Bt ) is defined with formula

w(B) = 1

2
(|B1| + |B2| + · · · + |Bt |).

We introduce some more useful notations. A vertex of G is an ordered tuple of sets
that meet some monographs, so the restriction of B to monograph Gi is denoted by

Bi = B ∩ Gi .

Therefore Bi = (Bi
0, B

i
1, B

i
2, . . . , B

i
t ), where Bi

0 = B0 ∩ V (Gi ), Bi
1 = B1 ∩

V (Gi ), . . ., Bi
t = Bt ∩ V (Gi ). Two vertices of G are connected when they coincide

exactly on the common monograph.
To be more formal, an arc (v, u) connects vertices v and u of G if:

(1) For some i , v ∈ V(G)i−1,i , u ∈ V(G)i,i+1, and
(2) v and u coincide on V (Gi ). More precisely, vi0 = ui0, v

i
1 = ui1, . . ., v

i
t = uit .

In the terminology of ptRiDF’s, a tRiDF of Gi has to be defined on N (V (Gi )) ⊆
V (Gi−1) ∪ V (Gi ) ∪ V (Gi+1). It is clear that v ∪ u is a ptRiDF for Gi .
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Furthermore,wedenote the intersectionof (t+1)tuples byv∩u = (v0, v1, . . . , vt )∩
(u0, u1, . . . , ut ) = (v0 ∩ u0, v1 ∩ u1, . . . , vt ∩ ut ), and similarly for the union
v ∪ u. Observe that v ∩ u = Bi when v and u are restrictions of f = B =
(B0, B1, B2, . . . , Bt ).

The weight of the arc (v, u) is defined in a natural way as the sum of weights of v

and u, so

w(v, u) = w(v) + w(u).

Similarly as in Gabrovšek et al. (2020) it can be seen in a straighforward manner
that a walk which is defined by consecutive arcs (v1, v2), (v2, v3) . . . (v�−1, v�), has
the weight w(v1) + 2w(v2) + · · · + 2w(v�−1) + w(v�).

As we point out in the following result, the t-rainbow independent domination
number is closely related to certain walks in the associated digraph G. The result can
be proved in a very similar manner as (Gabrovšek et al. 2020, Theorem 3.1). To avoid
too much repetition of similar ideas we omit its proof.

Theorem 3.1 The t-rainbow independent domination number γrit(�n(G1,G2, . . . ,

Gn; X1, X2, . . . , Xn)) of the polygraph �n(G1,G2, . . . ,Gn; X1, X2, . . . , Xn) is
equal to the minimum weight of a closed walk of length n in G.

Let us consider four consecutive monographs Gk−1, Gk , Gk+1, and Gk+2, or
written equivalently, the elements of V(G)k−1,k , V(G)k,k+1 and V(G)k+1,k+2. Then
u ∈ V(G)k−1,k and v ∈ V(G)k,k+1 are connected by an arc (u, v) if they coincide on
Gk . Moreover, a path of lenght two connects u ∈ V(G)k−1,k and z ∈ V(G)k+1,k+2 if
there exists a v ∈ V(G)k,k+1 such that there are arcs (u, v) and (v, z) in G. We obtain
a path of minimal weight if we choose l ∈ V(G)k,k+1 such that w(u, l) + w(l, z) is
minimal.

The consideration can alternatively be written in the following matrix form. Let
E(G) be the set of edges of G and let A(k) be a matrix with elements a(k)

i j , for i ∈
V(G)k−1,k and j ∈ V(G)k,k+1, where the value of a

(k)
i j equals

a(k)
i j =

{
w(i ∩ j), if (i, j) ∈ E(G),

∞, otherwise.
(2)

The product P = A(k)A(k + 1) is a matrix with entries

Pi j = min{w(i ∩ l) + w(l ∩ j)} = min{a(k)
il + a(k+1)

l j },

where l runs over all elements of V(G)k,k+1 such that both (i, l) ∈ E(G) and (l, j) ∈
E(G). In a more describtive manner, the i j th entry of a product of matrices is the
minimal weight of a path of length two that starts at i ∈ V(G)k−1,k and ends at
j ∈ V(G)k+1,k+2.
Inductively, the minimum weight of a closed walk of length n on a polygraph with

n monographs is a diagonal element of the corresponding product of matrices. Note
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that some of the matrices A(k)may be rectangular, however the product A(1) · · · A(n)

is a square matrix. We formally state the conclusion in the following way:

Theorem 3.2 For k = 1, 2, . . . , n, let A(k) be the matrices defined by (2). Then the t-
rainbow independent domination number of polygraph �n(G1,G2, . . . ,Gn; X1, X2,

. . . , Xn) is equal to

γrit (�n(G1,G2, . . . ,Gn; X1, X2, . . . , Xn)) = tr(A(1)A(2) · · · A(n))

Let us consider a special case when the polygraph is a rotagraph. Note that in
this case the matrices A(k) are independent of k. We can therefore define a matrix
A = A(1) with entries ai j = w(i ∩ j), (i, j) ∈ E(G) and conclude:

Corollary 3.3 The t-rainbow independent domination number of rotagraph ωn(G; X)

is

γrit (ωn(G; X)) = tr(An).

Wewill also need a version of this result for the case when the polygraph is a nearly
rotagraph. Let us recall that a polygraph is a nearly rotagraph, if all monographs but
one are isomorphic:G2 � G3 � · · · � Gn . Therefore, also X1 and Xn can be different
from other Xi = X .

The following consequence follows from Theorem 3.2 and (1) (or by shifting the
indices of the monographs).

Corollary 3.4 Let a polygraph �n(G1,G2, . . . ,Gn; X1, X2, . . . , Xn) be a nearly
rotagraph, that is G2 = G3 = · · · = Gn = G and X2 = X3 = · · · = Xn−1 = X.
Then γrit(�n(G1,G, . . . ,G; X1, X , . . . , X , Xn)) is equal to

tr(A(1)A(2)An−3A(n)) = tr(A(n)A(1)A(2)An−3) = tr(Ak A(n)A(1)A(2)An−3−k)

for any k ∈ [1, n − 3], where A = A(3).

4 Results

We will compute 2-rainbow independent domination numbers of Cn�Pm for m =
1, 2, 3, 4, 5. An explicit proof will be given for m = 1.

For m = 2, 3, 4, 5 only the needed data is provided because the proofs are anal-
ogous. Similarly, for Cn�Pm , a detailed proof is provided only for m = 3 and brief
arguments are given for other m. For generalized Petersen graphs P(n, 2), we will
explicitly provide a proof for the case when n is odd, since, as we will see, P(n, 2) is
in this case a nearly rotagraph. In the case when n is even, the P(n, 2) is a rotagraph,
and the proof is analogous to previously elaborated cases (Cn�P1 and Cn�C3) and
therefore the details are omitted.

The source code of the C++ program for computing the matrices, products, and
traces, is available at Gabrovšek et al. (2022).
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Fig. 1 Visualization of matrix entries for Cn�P1

4.1 Computations for graphs Cn�Pm

The case Cn�P1. First note that Cn�P1 equals Cn (by trivial isomorphism) and that
γ2ik(Cn) = i(Cn�P2) is a special case of general identity γrik(G) = i(G�Kr ), as
proved in Kraner Šumenjak et al. (2018). Independent domination numbers i(Cn�P2)
are computed in Repolusk and Žerovnik (2018) and hence the formula for γ2ik(Cn)

is known. We use this case as the first example to explain our method. The associated
monograph is a vertex, Gi = P1 and the two monographs Gi ∪ Gi+1 form a path
P2�P1 = P2. We order the two vertices v1, v2 of Gi ∪Gi+1 and represent the partial
2RiDF by a tuple (c1, c2), such that f (v1) = c1 and f (v2) = c2.

Recall that a partial 2RiDF must be defined on N (Gi ∪ Gi+1), and observe that
there are exactly 6 possible restrictions of partial 2RiDFs to Gi ∪Gi+1: (1, 2), (2, 1),
(2, 0), (1, 0), (0, 2), and (0, 1) (note that (0, 0), (1, 1), and (2, 2) are not restrictions
of any partial 2RiDFs). For brevity, we will often say that (c1, c2) is a partial 2RiDF
if it is clear that there is an extension (�, c1, c2, �) that is a partial 2RiDF.

A matrix (2) is thus the following 6 × 6 matrix:

A =

(0, 1) (0, 2) (1, 0) (2, 0) (1, 2) (2, 1)
⎛

⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(0, 1) ∞ ∞ 1 ∞ 1 ∞
(0, 2) ∞ ∞ ∞ 1 ∞ 1
(1, 0) ∞ 0 ∞ ∞ ∞ ∞
(2, 0) 0 ∞ ∞ ∞ ∞ ∞
(1, 2) ∞ ∞ ∞ 1 ∞ 1
(2, 1) ∞ ∞ 1 ∞ 1 ∞

For clarity, we enumerate the rows and columns by tuples associated to the restrictions
of partial 2RiDFs (in lexicographical order).

It is clear that the entries A(c1,c2),(d1,d2) = ∞ when c2 �= d1, since the monographs
do not match, i.e., there is no edge in the auxiliary graph G.

Furthermore, A(1,2),(2,1) = 1 since the coloring (1, 2, 1) is clearly (a restriction
of) a partial 2RiDF of Gi ∪ Gi+1 ∪ Gi+2 = P3, and one color is used on the middle
graphGi+1 (see Fig. 1a). Similarly, A(2,0),(0,1) = 0 (see Fig. 1b), and A(1,0),(0,1) = ∞
since (1, 0, 1) is not a partial 2RiDF (see Fig. 1c). More examples are provided below,
where the computation of γri2(Cn�C5) is outlined.

Straightforward computation shows that

A9 = A5 + [2]6i, j=1,
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where [2]6i, j=1 is a 6 × 6 matrix with all entries equal to 2. It follows that

Ak+4 = Ak + [2]6i, j=1 for k ≥ 5. (3)

We also compute the following traces:

tr(A3) = 2, tr(A4) = 2, tr(A5) = 4, tr(A6) = 4, tr(A7) = 4, tr(A8) = 4,

tr(A9) = 6. (4)

Theorem 4.1 For n ≥ 3 it holds

γri2(Cn) =
⎧
⎨

⎩

⌈ n
2

⌉
, n ≡ 0, 3 mod 4

⌈ n
2

⌉ + 1, n ≡ 1, 2 mod 4
(5)

Proof It follows from construction and Corollary 3.3 that

γri2(Cn) = tr(An) for n ≥ 3.

Equation (3) converts to
γri2(Cn+4) = γri2(Cn) + 2. (6)

For n = 5, 6, 7, 8 the theorem holds. By induction, we assume that it holds for n
and will prove that it holds for n + 4.

If n ≡ 0 mod 4 or n ≡ 3 mod 4we have fromEq. (6) and the induction hypothesis:

γri2(Cn+4) = γri2(Cn) + 2 =
⌈n

2

⌉
+ 2 =

⌈n

2
+ 2

⌉
=

⌈
n + 4

2

⌉

.

Similarly, if n ≡ 1 mod 4 or n ≡ 2 mod 4, we have:

γri2(Cn+4) = γri2(Cn) + 2 =
⌈n

2

⌉
+ 3 =

⌈n

2
+ 2

⌉
+ 1 =

⌈
n + 4

2

⌉

+ 1.

Since (5) holds also for n = 3 and n = 4, the theorem holds for n ≥ 3. ��
The case Cn�P2. For m = 2, the method explained in the previous case gives a
26 × 26 matrix with the following properties:

tr(A3) = 4, tr(A4) = 4, tr(A5) = 5, tr(A6) = 6, tr(A7) = 7, tr(A8) = 8,
tr(A9) = 9, tr(A10) = 10, tr(A11) = 11, tr(A12) = 12.

and

tr(An+4) = tr(An) + [4]26i, j=1 for n ≥ 8.

Reasoning along the same lines as in the proof of Theorem 4.1 results in the next
theorem.
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Theorem 4.2 For n ≥ 4 it holds

γri2(Cn�P2) = n.

The case Cn�P3. For m = 3 we obtain a 112 × 112 matrix with the properties:

tr(A3) = 5 tr(A4) = 6 tr(A5) = 7 tr(A6) = 8 tr(A7) = 10 tr(A8) = 11
tr(A9) = 13 tr(A10) = 14 tr(A11) = 15 tr(A12) = 16 tr(A13) = 18 tr(A14) = 19
tr(A15) = 21 tr(A16) = 22 tr(A17) = 23 tr(A18) = 24 tr(A19) = 26 tr(A20) = 27

and tr(An+6) = tr(An) + [8] for n ≥ 14. Since γri2(Cn�P3) = tr(An), we have

Theorem 4.3 For n ≥ 3 it holds

γri2(Cn�P3) =
⎧
⎨

⎩

⌈ 4n
3

⌉
, n ≡ 0, 1, 2, 4, 5 mod 6

⌈ 4n
3

⌉ + 1, n ≡ 3 mod 6

The case Cn�P4. For m = 4 the matrix is a 490 × 490 matrix with the properties:

tr(A3) = 6 tr(A4) = 8 tr(A5) = 10 tr(A6) = 11 tr(A7) = 14 tr(A8) = 14
tr(A9) = 17 tr(A10) = 18 tr(A11) = 20 tr(A12) = 22 tr(A13) = 24 tr(A14) = 25
tr(A15) = 28 tr(A16) = 28 tr(A17) = 31 tr(A18) = 32 tr(A19) = 34 tr(A20) = 36
tr(A21) = 38 tr(A22) = 39 tr(A23) = 42 tr(A24) = 42 tr(A25) = 45 tr(A26) = 46
tr(A27) = 48 tr(A28) = 50 tr(A29) = 52 tr(A30) = 53 tr(A31) = 56

and tr(An+8) = tr(An) + [14]490i, j=1 for n ≥ 23. Since γri2(Cn�P4) = tr(An), we
have

Theorem 4.4 For n ≥ 3 it holds

γri2(Cn�P4) =
⎧
⎨

⎩

⌈ 7n
4

⌉
, n ≡ 0, 2, 3, 6 mod 8

⌈ 7n
4

⌉ + 1, n ≡ 1, 4, 5, 7 mod 8

The case Cn�P5. For m = 5 the obtained matrix is a 2148 × 2148 matrix with the
properties:

tr(A3) = 7 tr(A4) = 10 tr(A5) = 12 tr(A6) = 13 tr(A7) = 16 tr(A8) = 18
tr(A9) = 20 tr(A10) = 22 tr(A11) = 25 tr(A12) = 26 tr(A13) = 29 tr(A14) = 31
tr(A15) = 34 tr(A16) = 36 tr(A17) = 38 tr(A18) = 39 tr(A19) = 42 tr(A20) = 44
tr(A21) = 47 tr(A22) = 49 tr(A23) = 51 tr(A24) = 52 tr(A25) = 55 tr(A26) = 57
tr(A27) = 60 tr(A28) = 62 tr(A29) = 64 tr(A30) = 65 tr(A31) = 69 tr(A32) = 70
tr(A33) = 73 tr(A34) = 75 tr(A35) = 77 tr(A36) = 78 tr(A37) = 81 tr(A38) = 83
tr(A39) = 86 tr(A40) = 88 tr(A41) = 90 tr(A42) = 91 tr(A43) = 95 tr(A44) = 96
tr(A45) = 99

and tr(An+12) = tr(An) + [26]2148i, j=1 for n ≥ 33. Since γri2(Cn�P5) = tr(An), we
have
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Fig. 2 Visualization of matrix entries for Cn�C3

Theorem 4.5 For n ≥ 20 it holds

γri2(Cn�P5) =
⎧
⎨

⎩

⌈ 13n
6

⌉
, n ≡ 0, 1, 2, 6, 8 mod 12

⌈ 13n
6

⌉ + 1, n ≡ 3, 4, 5, 7, 9, 10, 11 mod 12

4.2 Computations for graphs Cn�Cm

The case Cn�C3. In this case, the graph Gi ∪Gi+1 = P2�C3 has 54 partial 2RiDFs,
which we again present as tuples: (0, 1, 0, 0, 0, 2), (0, 0, 1, 0, 2, 0), . . .. For example,
a 2RiDF for the graph Gi ∪ Gi+1 on Fig. 2a is encoded as a vector (0, 1, 0, 1, 0, 2),
whereas a 2RiDF for the graph Gi+1 ∪ Gi+2 is encoded by (1, 0, 2, 0, 1, 0).

We obtain a 54 × 54 matrix A as before. For example:
A(0,1,0,1,0,2),(1,0,2,0,1,0) = 2, since w(Gi+1) = 2 (see Fig. 2a), and on the other

hand, A(2,0,1,0,1,0),(0,1,0,2,0,0) = ∞, since (2, 0, 1, 0, 1, 0, 2, 0, 0) does not define a
partial 2RiDF on Gi ∪ Gi+1 ∪ Gi+2 = P3�C3 (see Fig. 2b).

The obtained 54 × 54 matrix has the following properties:

tr(A3) = 5 tr(A4) = 6 tr(A5) = 6 tr(A6) = 6 tr(A7) = 10 tr(A8) = 10
tr(A9) = 11 tr(A10) = 12 tr(A11) = 12

and tr(An+6) = tr(An) + [6]54i, j=1 for n ≥ 5. Since γri2(Cn�C3) = tr(An), we have

Theorem 4.6 For n ≥ 3 it holds

γri2(Cn�C3) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

n, n ≡ 0 mod 6

n + 1, n ≡ 5 mod 6

n + 2, n ≡ 2, 3, 4 mod 6

n + 3, n ≡ 1 mod 6

The case Cn�C4. For m = 4 we obtain a 470 × 470 matrix with the properties:

tr(A3) = 6 tr(A4) = 8 tr(A5) = 10 tr(A6) = 10 tr(A7) = 14 tr(A8) = 15
tr(A9) = 17 tr(A10) = 18 tr(A11) = 20 tr(A12) = 20 tr(A13) = 24 tr(A14) = 25
tr(A15) = 27 tr(A16) = 28 tr(A17) = 30 tr(A18) = 30 tr(A19) = 34 tr(A20) = 35
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Fig. 3 Petersen graphs as a rotagraph and a nearly rotagraph

and tr(An+6) = tr(An) + [10]470i, j=1 for n ≥ 14. Since γri2(Cn�C5) = tr(An), we
have

Theorem 4.7 For n ≥ 4 it holds

γri2(Cn�C4) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⌈
5n
3

⌉
, n ≡ 0 mod 6

⌈
5n
3

⌉
+ 1, n ≡ 2, 4, 5 mod 6

⌈
5n
3

⌉
+ 2, n ≡ 1, 3 mod 6

The case Cn�C5. For m = 5 we obtain a 1300 × 1300 matrix with the properties:

tr(A3) = 6 tr(A4) = 10 tr(A5) = 10 tr(A6) = 12 tr(A7) = 15 tr(A8) = 16
tr(A9) = 18 tr(A10) = 20 tr(A11) = 22 tr(A12) = 24 tr(A13) = 26 tr(A14) = 28
tr(A15) = 30 tr(A16) = 32 tr(A17) = 34 tr(A18) = 36 tr(A19) = 38 tr(A20) = 40
tr(A21) = 42 tr(A22) = 44 tr(A23) = 46 tr(A24) = 48

and tr(An+10) = tr(An) + [20]1300i, j=1 for n ≥ 14. Since γri2(Cn�C5) = tr(An), we
have

Theorem 4.8 For n ≥ 8 it holds

γri2(Cn�C5) = 2n.

4.3 Computations for graphs P(n, 2)

Generalized Petersen graph P(n, 2) is a rotagraph ω�(G; X) for n = 2� even and a
nearly rotagraph

�(G1,G, . . . ,G; X1, X , . . . , X , X�)

for n = 2� + 1 odd, as indicated on Fig. 3.
For n even, we proceed as in the cases Cn�Pm and Cn�Cm , since P(n, 2) is a

rotagraph. When n is odd, the argument is slightly more involved. In any case, we
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first need to construct the matrix that will allow computations regarding consecutive
monographs that are isomorphic.

The matrix A = A(3) is a 300 × 300 matrix with the properties:

tr(A) = 4 tr(A2) = 6 tr(A3) = 7 tr(A4) = 8 tr(A5) = 8 tr(A6) = 13
tr(A7) = 14 tr(A8) = 15 tr(A9) = 16 tr(A10) = 16 tr(A11) = 21

and it holds
tr(A�+5) = tr(A�) + [8]300i, j=1 for � ≥ 6. (7)

It follows from the construction and Corollary 3.3 that γri2(P(2�, 2) = tr(A�).
For the case P(2� + 1, 2) we need a product A(�)A(1)A(2). However, we do

not explicitly calculate matrices A(�), A(1) and A(2). For computational reasons we
rather calculate a 300× 300 matrix A(1)′ that satisfies A(�)A(1)A(2) = AA(1)′A. It
follows from the construction and Corollary 3.4 that

γri2(P(2� + 1, 2) = tr(A(�)A(1)A(2)A�−3) = tr(AA(1)′AA�−3) = tr(A(1)′A�−1).

(8)
We do not list the matrices A and A(1)′, since they are too large (the code is available
at Gabrovšek et al. (2022)).

The computed traces are:

tr(A(1)′A0) = 4, tr(A(1)′A1) = 6, tr(A(1)′A2) = 7, tr(A(1)′A3) = 8,
tr(A(1)′A4) = 12, tr(A(1)′A5) = 13, tr(A(1)′A6) = 14, tr(A(1)′A7) = 15,
tr(A(1)′A8) = 16, tr(A(1)′A9) = 20, tr(A(1)′A10) = 21.

Thus we have γri2(P(2� + 1, 2)) for � = 1, . . . , 10, or equivalently, for n =
3, 5, . . . , 21. We are ready to prove the last theorem of the article.

Theorem 4.9 For n ≥ 3 it holds

γri2(P(n, 2)) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⌈ 4n
5

⌉
, n ≡ 0, 9 mod 10

⌈ 4n
5

⌉ + 1, n ≡ 7, 8 mod 10

⌈ 4n
5

⌉ + 2, n ≡ 3, 4, 5, 6 mod 10

⌈ 4n
5

⌉ + 3, n ≡ 1, 2 mod 10

Proof In the proof we only consider the case when n is odd, n = 2� + 1, since the
case when n is even is straightforward. It holds from (8) that

γri2(P(2� + 1, 2)) = tr(A(1)′A�−1) for � ≥ 1.

Equation (7) converts to

γri2(P(2� + 11, 2)) = γri2(P(2� + 1, 2)) + 8 for � ≥ 3. (9)
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For � = 1, . . . , 10, or equivalently, n = 3, 5, . . . , 21, the theorem holds. By induc-
tion, we assume it holds for � and will prove that it holds also for � + 5.

If n ≡ 9 mod 10, or equivalenlty, � = 4 mod 5, Eq. (9) and the induction hypothesis
implies:

γri2(P(2� + 11, 2)) = γri2(P(2� + 1, 2)) + 8 =
⌈
4(2� + 1)

5

⌉

+ 8

=
⌈
4(2(� + 5) + 1)

5

⌉

.

The cases n ≡ 7 mod 10, n ≡ 3 mod 10 or n ≡ 5 mod 10, n ≡ 1 mod 10 are treated
similarly (details are omitted). Since the formula also holds for n = 3, n = 4, and
n = 5, the proof is complete. ��

Declarations

Conflict of interest The authors have no other relevant financial or non-financial interests to disclose.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References
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