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Abstract
We define a geometric transformation of Euclidean Travelling Salesman Problem
(TSP) tours that leads to a new formulation of the TSP. For every Euclidean TSP n-
city tour, it is possible to construct an inscribed n-polygon (Equivalent Cyclic Polygon,
ECP) such that the lengths of the edges are equal to the corresponding TSP tour links
and follow the same sequence order. The analysis of the ECP elicits the possibility
of defining a new objective function in terms of angles instead of distances. This
modification opens theway to identify characterizing geometric parameters of the TSP
as well as to explore new heuristics based on the inclusion of additional constraints.
The experimentation with a set of cases shows promising results compared to the
traditional compact formulations. The behavior of the ECP-based TSP formulations
is better when the nodes of the TSP are randomly or evenly distributed.

Keywords Traveling salesman problem · Euclidean TSP · Equivalent cyclic
polygon · TSP heuristic

1 Introduction

The Traveling Salesman Problem (TSP) is probably the most studied problem in
combinatorial optimization. Biggs, Lloyd and Wilson (1976) trace back the academic
attention received by the TSP to the nineteenth century. Since then, the problem has
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been extensively studied and there is a vast literature dealing with solving algorithms
(Laporte 1992; Reinelt 1994; Raman andGill 2017) and applications (Lenstra andKan
1975; Junger et al. 1995). There have also been several formulations for the problem
(Langevin et al. 1990; Orman and Williams 2007; Öncan et al. 2009).

The classic definition of the TSP can be stated as follows: Find the shortest route
(tour) for a salesman starting from a given city, visiting each of a specified group of
cities, and then returning to the original point of departure (Dantzig et al. 1954). The
conceptualization of the problem can be generalized to minimize the duration or the
total cost of the tour.

From the Graph Theory approach, the TSP can be stated as the problem of finding
the least cost Hamiltonian circuit of a given complete graph KN≡G(N, A), where N
= {1,…,n} is the set of nodes, and A = {(i,j): i,j ∈ N , i �= j} the set of arcs (Miller
et al. 1960). Usually, the cost of each arc is defined by the cost (or distance) matrix C
= {cij}. Depending on the relationship between cij and cji, the problem is defined as
Asymmetric TSP (C �= CT ) or Symmetric TSP (C = CT ).

Several formulations have been proposed to solve the ATSP (Langevin Padberg
and Sung 1991; Orman and Williams 1990; 2007). Öncan et al. (2009) provide a
thorough analysis of the ATSP formulations, including how they relate to each other.
To introduce our work and define the base model formulation, we summarize the main
formulations, their basics, and distinctive approaches, and refer to this study for an
in-depth analysis.

The work of Dantzig et al. (1954) is considered pioneer in the field. The DFJ
formulation uses binary variables to formulate and solve the TSP. The authors propose
what is called a natural formulation, in the sense that it does not include any additional
variable other than xij to signify if the arc fromi to j is selected for the tour or not.
One essential aspect of TSP formulations is how to ensure that the solution is a single
tour and not a set of independent subtours. To this purpose, in the DFJ formulation
it is necessary to add a set of constraints that cannot be considered before starting
the calculations without a sub-tour identification algorithm. Furthermore, the set of
constraints grows exponentially with the number of cities of the TSP, O(2n), and, in
practice, it is solved with delayed column generation methods.

To overcome these limitations, an alternative to the natural formulation is given by
the so-called compact formulations. The basis for this set of formulations is provided
by Miller et al. (1960). These authors propose the addition of instrumental variables
that determine the order in which the cities are visited (their formulation is even more
generic for they allow to visit all the cities in several tours, i.e., Vehicle Routing
Problem (VRP); as it is the usual in TSP literature, in the remainder of the paper we
will consider their model for the particular case of setting to one the number of tours
(Öncan et al. 2009)). Thus, theMTZ formulation allows setting the subtour elimination
constraints before solving the problem. Among the family of compact formulations,
this approach is called a compact node-ordering formulation. The number of subtour
elimination constraints compared to the DFJ formulation, is significantly reduced,
O(n2), although they lead to a weak linear programming (LP) relaxation. Desrochers
andLaporte (1991) further develop theMTZ formulation and improve the performance
of the subtour elimination constraints.
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Some other relevant compact formulations have been proposed. Gavish and Graves
(1978) develop two compact arc-ordering or flow-based formulations with the inten-
tion to propose a formulation more adaptable to other transportation scheduling
problems. They still use the same number of integer variables asMTZ, but they change
the constraints set to include flow variables. Fox et al. (1980) provide another set of
time-dependent TSP formulations. They reduce the number of linear constraints from
O(n2) to O(n) after including a set of time periods. Gouveia and Pires (2001) propose
a compact precedence-based formulation, called the disaggregated MTZmodel. They
include a new variable that represents if a node is visited in the path between two other
nodes.

As aforementioned, when the cost (distance) from one city i to another city j is
the same if the arc is reversed (cij=cji, ∀i, j ), the resulting particular case of ATSP
is called a Symmetric TSP (STSP). It is the case of the Euclidean TSPs in which
the nodes represent points, and the costs are the corresponding Euclidean distances
(symmetric by nature). The formulations for the ATSP are directly applicable to the
STSP if the costs cij and cji are considered as if they were different, i.e., with two arcs
of the same cost linking each pair of nodes. Nevertheless, for the natural formulation
it is possible to achieve a more efficient STSP formulation if the two arcs connecting
each pair of nodes are substituted by one single arc (Padberg and Sung 1991). In this
case, the set of arcs will be E = {{i,j}: i,j ∈ N, i < j}. Each arc will have a cost
(or distance) c{ij} associated as well as a decision binary variable x{ij} similar to the
ATSP formulation. The set of subtour elimination constraints is reduced in the STSP
formulation compared to the ATSP formulation, hence the performance improvement,
yet it remains exponential with the number of cities, making it necessary to include
a subtour identification algorithm. For the MTZ and other compact formulations,
“symmetrization” by means of considering one single arc linking each pair of nodes
is not possible (Padberg and Sung 1991).

In this paper,we explore a geometric transformation of theEuclideanTSP thatmight
open new possibilities of solving the TSP. The extensive literature on the problem has
led to very efficient solving procedures. Nevertheless, the problem is known to be NP-
Complete (Papadimitriou 1977), and therefore, for problems with a large number of
cities, the computation time becomes critical (Applegate et al. 2006; Dubois-Lacoste
et al. 2015). On the other hand, there are numerous optimization problems that are
variants and extensions of the TSP (Reinelt 1994; Anbuudayasankar et al. 2014). New
approaches to the TSP can then be of great interest to be explored since they might
foster applications in different problem variants.

Since the Euclidean TSP can be directly analyzed from a Euclidean geometric
perspective,with the nodes representingpoints in themapand the tours beingpolygons,
the interest of approaching the problem based on a geometric analysis has drawn the
attention of researchers. One of the main geometric characteristics of the TSP is
the fact that the optimal solution is a non-intersecting polygon (Lawler et al. 1991).
Besides the analysis of geometric properties of the optimal solution, many works
focus on the proposal of geometric-based heuristic algorithms (Lawler et al. 1991;
Reinelt 1994). Some of them, like the largest angle heuristic (Norback and Love
1977) among many others (Asani et al. 2020), are based on the convex hull, which
is the minimum convex polygon that encompasses a set of nodes. As computational
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geometry gained practical importance (Edelsbrunner 1987), there have been proposals
based on techniques and concepts from this field aimed at solving theTSP. In particular,
some of the methods are based on the application of Voronoi diagrams and Delaunay
triangulations (Edelsbrunner 2014; Reinelt 1994).

However, mathematical properties of the TSP and the optimal solution remain open
to research. Despite the great attention given to the TSP and its numerous applications
and extensions, to the best of our knowledge there has not been a previous attempt of
a geometric transformation of the tour polygon, so the problem can be formulated in
terms of angles instead of distances. Themain contribution of this paper is the proposal
of such a geometric transformation of Euclidean Travelling Salesman Problem tours
that leads to a modified formulation and new heuristic approaches, as well as to the
characterization of intrinsic geometric properties of the solution. Experimentation
with a set of problems shows that the proposed geometric transformation might lead
to performance improvement in certain problems. The proposed approach opens the
way to explore new solving strategies for this abundantly studied and applied problem.

In Sect. 2, we recall the compact node-ordering formulation from Miller et al.
(1960). In Sect. 3, the proposed geometric transformationwith the definition of equiva-
lent polygonal chains and the equivalent cyclic polygon for everyTSP tour is presented,
leading to a modified formulation of the problem and new heuristic procedures that are
presented in Sect. 4. In Sect. 5, we present the results yielded by the experimentation
using a set of cases taken from TSPLIB (Reinelt 1991), which shows the potential
practical interest of the proposed transformation. Finally, we summarize the main
conclusions in Sect. 6.

2 TSP basemodel formulation

As aforementioned, in our work we focus on the geometric transformation of the
Euclidean TSP tours and, thus, we deal with the Symmetric TSP. Based on this trans-
formation, we define a modification of the objective function and explore the interest
of adding some constraints. With the purpose of isolating the effect of the transforma-
tion and the addition of constraints, we want to compare our proposal directly solving
a linear programming model that does not involve subtour elimination algorithms.
For that reason, we do not take the symmetric DFJ as the base model formulation
for the comparison. Among the compact formulations, we select as the base model
formulation (Model A) the classic MTZ adapted to the TSP, which is widely known
and sets the basis for this group of formulations.

Let us use the classical TSP formulation on a graph G = (N , E), such that N is
the set of nodes (cities) N = {1, 2, …, n}, and E = {(i, j)| i, j ε N , i �= j} is the set
of links.1 We use a distance parameter dij for each (i, j) ε E, as the distance between
nodes i and j. We define a binary variable xij, which equals 1 if the edge {i, j} is part
of the tour, and 0 otherwise.

1 For the sake of clarity, we will use the terms nodes and links to refer to the TSP graph elements, vertices
and edges to refer to the equivalent polygon elements, and the term arc to refer to a circular arc.
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Indices:

i, j ∈ N Nodes.

Parameters:

di j Distance from node i to node j.
n = |N | Total number of nodes.

Variables:

xi j ∈ {0, 1},∀(i, j) ∈ E 1 if we go from node i to node j, 0 otherwise.
ui ≥ 0,∀i ∈ N Auxiliary variables that determine the relative order in

which node i belonging to the solution is visited.

Model A:

min z=
∑

i, j
di j · xi j (1)

such that

∑
i
xi j= 1 ∀ j (2)

∑
j
xi j = 1 ∀i (3)

ui − u j + 1 ≤ (n − 1)
(
1 − xi j

) ∀i, j = 2, ..., n, i �= j (4)

Objective function (1) minimizes the total length of the tour. Constraints (2) and
(3) guarantee that each node is visited only once. The set of constraints (4) prevents
the presence of subtours in the solution while determining the sequence of the tour
through the values of the auxiliary variables: if a link from node i to node j is in the
solution (xij = 1), then uj has to be greater than ui (for i,j > 1, i.e., taking i = 1 as
the starting city of the tour). Constraints (4) constitute the grounds of the compact
formulation.

Throughout the document, we will use the same definitions of indices, parameters,
and variables of this section, whereas the different variants will concern the objective
function and the set of constraints (which we will refer to as models, with Model A
being the base model formulation).

3 Proposed tour geometric transformation andmodified TSP
formulation

The core of our proposal is the definition of a geometric transformation of any given
feasible TSP tour. It is based on the construction of what we name “Equivalent
Inscribed Polygonal Chain” (EIPC) and “Equivalent Cyclic Polygon” (ECP), which
are described in detail in Sects. 3.1 and 3.2 respectively.
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3.1 Equivalent inscribed polygonal chain

Given a Euclidean TSP tour of n cities defined by the sequence order in which they
are visited {p1, p2, …, pn}, we define a geometric transformation such that a sequence
of vertices {v1, v2, . . . , vn, v′

1} is inscribed in a circle of a given radius such that each
link pk-1-pk (k = 2, …, n) of the TSP tour has an equivalent edge vk−1vk of the same

length, with the returning link pn-p1 equivalent to the last edge vnv
′
1. We note that

in general there will be two vertices (v1, v
′
1) corresponding to the same city p1. This

transformation defines an inscribed polygonal chain (polyline) (Levcopoulos et al.
2002). The radio of the circumscribing circle, or circumcircle, is denoted as Rc.

To construct the equivalent inscribed polygonal chain (EIPC), we start positioning
v1 in any point of the circumcircle of radius Rc. Then, we define another circle with
center in v1 and radius equal to the length of link p1-p2, and find the intersection
with the circumcircle. Since there will be two intersection points, we select v2 in
the circumcircle as the first intersection clockwise from v1. We proceed the same
way following the sequence of the remaining cities, until finding v

′
1 as the clockwise

circumcircle intersection of the circle centered in vn and radius the length pn-p1.
If we define a Cartesian coordinate system (x, y), placing the center of the cir-

cumcircle in the origin and v1 in the vertical axis (0, Rc) (or other specific point
(x1, y1)|x21 + y21 = R2

c ), the vertices vk of the inscribed polygonal chain will verify
the following (there will be two possible intersections for each vertex as abovemen-
tioned):

x2k + y2k = R2
c

(xk − xk−1)
2 + (yk − yk−1)

2 = d2k−1,k

}
∀k

and

x21′ + y21′ = R2
c

(x1′ − xn)2 + (y1′ − yn)2 = d2n,1′

}
(5)

Figure 1 shows an example of an 8-city TSP tour defined by the sequence 1–2-8–3-
7–4-5–6 (middle of the figure) and two EIPCs. Depending on the length of the radius,
the summation of all the central angles defined by the chain edges will be higher than
2π (left) or lower than 2π (right). In the first case (left), non-consecutive edges of the
chain will intersect (self-intersecting polygonal chain (Levcopoulos et al. 2002)).

3.2 Equivalent cyclic polygon

In the example of Fig. 1, if we progressively decrease the radius of the right chain
or increase the radius of the left chain, by continuity (Macnab 1981), there will be a
radius in which v′

1 will converge to v1. The polygonal chain will then close, resulting
in what we call Equivalent Cyclic Polygon (ECP) of a TSP tour. In this section, we
provide a formal definition of the ECP, a detailed algorithm for its construction as well
as for the calculation of the radius of the circumcircle.
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Fig. 1 Example of two possible geometric transformations of a TSP tour and the resulting equivalent
inscribed polygonal chains (EIPC)

The definition of the ECP of a TSP tour is a particularization of a more general
concept fromgeometry. Panina andKhimshiashvilib (2012) define a polygonal linkage
as “a set of positive numbers L = (l1, l2, …, ln) ∈ R

n+, which can be realized as
the lengths of edges of a closed polygonal line. A d-dimensional configuration of a
polygonal linkage is a set of points p1, p2, …, pn, pi ∈ R

d , satisfying the conditions
|pi pi+1| = li, | pn p1| = ln, where | · | denotes the Euclidean distance between two
points. Physically, a polygonal linkage is interpreted as a set of cyclically joined rigid
rods of length li. At the locations of joints (hinges), free bending and, thereby, self-
intersections and self-overlaps of edges are allowed.”

Among the set of possible configurations of a polygonal linkage, called the moduli
space, we focus on cyclic polygons, i.e., polygons in which all vertices are on a circle.
Pinelis (2005), extending and complementing the work of Macnab (1981), proves the
existence and isometric uniqueness of a convex cyclic polygon with edges that follow
a given sequence of lengths (in which none is larger than the sum of the others). In
the case of the proposed geometric transformation of a TSP tour, the proof of Pinelis
(2005) assures the existence and uniqueness the ECP, since a tour defines a sequence
of lengths. We define the ECP as follows.

Given a Euclidean TSP tour of n cities defined by the sequence order in which they
are visited {p1, p2, …, pn}, it is possible to construct an inscribed n-polygon with
vertices in sequence {v1, v2, …, vn} such that each link pk-1-pk (k = 2, …, n) of the
TSP tour has an equivalent polygon edge vk−1vk of the same length, with the returning
link pn-p1 equivalent to the last edge vnv1. The circumcircle of the ECP is called the
mass circle, with radius Rm called the mass radius.

Figure 2 represents the ECP of the example of Fig. 1 and illustrates the basic
relationship between Rm, the length of each edge, and the central angle that it delimits.
Let us consider the link from node i to node j belonging to a tour. Then the relation of
Eq. (7) (i = 1 and j = 2 in Fig. 2), is verified for αij ≤ π.

di j
2

= Rm sin
(αi j

2

)
, αi j = 2 · arcsin

(
di j

2 · Rm

)
, ∀(i, j) ∈ E |xi j= 1 (6)
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Fig. 2 Example of a TSP tour (left) and its ECP (right)

Summation of all the central angles of the ECP will equal 2π (Eq. 7). Thus, given
a TSP tour and the set of distances of the links {dij, xij = 1} such that all the central
angles verifyαij ≤πwith dmax = maxi j (di j ), xi j = 1,we can calculateRm by solving
the transcendental Eq. (7) either with the aid of mathematical software or through an
iterated procedure.

∑

i, j

arcsin

(
di j
2Rm

)
= π, Rm ≥ dmax

2
, ∀(i, j) ∈ E |xi j= 1 (7)

To gain insights into the existence and uniqueness of the ECP, and in an equivalent
approach to Pinelis (2005), we define the function F1 in Eq. (8), such that Eq. (7) can
be expressed as F1(Rm) = 0.

F1(Rc) =
∑

i j

arcsin

(
di j
2Rc

)
− π, Rc ≥ dmax

2
, ∀(i, j) ∈ E |xi j= 1 (8)

F1 is continuous, differentiable, and strictly decreasing in the interval [dmax/2,
∞). Besides, F1 converges asymptotically to –π as Rc tends to infinity. Then, if a =
F1(dmax/2) ≥ 0, there will be a unique value of Rm|F1(Rm) = 0. Figure 3 shows the
representation of F1(Rc) for the example of Fig. 2.

If the tour has the particularity of having avery large link, itmight happen thatEq. (7)
cannot be satisfied even for the minimum possible mass radius Rm = dmax/2. In this
case, the EIPC does not close even for the minimum Rm, for which the corresponding
edge with maximum length would be the diameter of the circumcircle. The central
angle of the longest edge would equal π, whereas the sum of the rest of the central
angles would be less than π. From Eq. (8) this case would then verify that a < 0,
implying F1 < 0 in all its domain. Conceptually, the fact that a < 0 means that, for the
ECP to be closed, all of its vertices have to belong to a semicircle. This can be stated
as the central angle of the longest link being larger than π. Figure 4 illustrates this
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Fig. 3 Plot of function F1(Rc) for the cities of Fig. 2 example

Fig. 4 Example of a TSP tour (left) and its ECP (right) for the case a < 0

fact through a very simple example (obtained by enlarging link 1–2 in the example of
Fig. 2).

For most of the TSP tours a ≥ 0 and the construction of the ECP is identical to the
procedure described in the former subsection for the construction of the EIPC. Yet,
the possibility of a < 0 requires introducing a modification as follows. For the longest
link, the vertex must be determined by taking the counterclockwise intersection. Thus,

the central angle will be 2π − 2 · arcsin
(
dmax
2Rm

)
. Subtracting the central angle from

the summation and adding the counterclockwise angle (divided by 2) in Eq. (7) yields
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the condition that must verify Rm (Eq. 9).

⎡

⎣
∑

i j

arcsin

(
di, j
2Rm

)
− arcsin

(
dmax

2Rm

)⎤

⎦+
[
π − arcsin

(
dmax

2Rm

)]
= π

∑

i, j

arcsin

(
di j
2Rm

)
− 2 · arcsin

(
dmax

2Rm

)
= 0, Rm ≥ dmax

2
, ∀(i, j) ∈ E |xi j= 1

(9)

Analogously to the case a ≥ 0, the function F2 of Eq. (10) is defined, and Eq. (9)
can be expressed as F2(Rm) = 0. We note that for Rc = (dmax/2), the second term
of F2 equals π (arcsin(dmax/2Rc) = arcsin(1) = π/2) and hence F1 and F2 have the
same expression. Therefore, a = F1(dmax/2) = F2(dmax/2).

F2(Rc) =
∑

i j

arcsin

(
di j
2Rc

)
− 2 · arcsin

(
dmax

2Rc

)
, Rc ≥ dmax

2
, ∀(i, j) ∈ E |xi, j= 1

(10)

F2 is differentiable in the interval [dmax, ∞) and converges asymptotically to 0+ as Rc

tends to infinity. A detailed analysis of the function, its first derivative and curvature,
shows that F ′

2 tends to infinity as Rc tends to dmax/2 (F2 has vertical slope for Rc =
dmax/2), and has a unique zero which corresponds to a F2 maximum. If a < 0, F2 will
have different signs in the extremes of the domain, asymptotic convergence to 0+, and
there will be a unique value of Rm | F2(Rm) = 0 (see Pinelis (2005) for an equivalent
thorough proof). Figure 5 shows the representation ofF2(Rc) for the example of Fig. 4.

Fig. 5 Plot of function F2(Rc) for the cities of Fig. 4 example in which a < 0
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We can then define the following procedure to construct the ECP of a TSP tour,
based on the EIPC construction as described in Sect. 3.1:

Step 1 Define the sequence of cities such that the link p1-p2 is the longest.
Step 2 Compute a = F1(dmax/2).
Step 3 Find Rm.

• If a ≥ 0. Find Rm | F1(Rm) = 0.
• If a < 0. Find Rm | F2(Rm) = 0.

Step 4 Construct the ECP.

• If a ≥ 0. Proceed as described in the construction of the EIPC.
• If a < 0. Proceed as described in the construction of the EIPC, but with the
followingmodification: select v2 in the circumcircle as the first intersection coun-
terclockwise from v1.

We can gain some insights on the ECP and the TSP with many nodes, analyzing
the case in which the distances between the cities of the tour are of equal length d.
The ECP in this case will be a regular polygon. Let us consider a parameter γ > 1,
that will represent the relation between the length of the mass circle and the length of
the ECP of an n-city TSP as defined by Eq. (11). As the number of number of cities
of the problem grows, the length of the tour will be closer to the length of the mass
circle (i.e., γ → 1).

2πRm = γ · n · d → γ = 2πRm

n · d (11)

The definition of the parameter γ can be generalized, so it can be applicable to any
TSP tour as the inverse relation of the length of the tour and the length of its mass
circle. In general, for a TSP with many equally distributed nodes, γ will be close to
1. A value of γ significantly higher than 1 will indicate the presence of large links in
the TSP tour. Thus, γ can be used as one parameter that characterizes the topology of
a TSP tour (Eq. 12) and, moreover, to characterize the TSP as follows. The optimal
TSP tour allows us to construct its corresponding ECP*, with mass radius Rm*. Thus,
if the parameter γ is calculated for the optimal tour, it will then be a characterizing
parameter of the TSP.

γ ∗ = 2πR∗
m∑

i j di j xi j
, ∀(i, j) ∈ E |xi j= 1 (12)

4 ECP-based TSP formulation and heuristics

The geometric transformation of the TSP tours leads to a modified formulation of the
problem. As the circumradius of a tour EIPC tends to infinity, the length of each edge
converges to the corresponding arc of the circumcircle. For a large enough circumra-
dius, the longer the tour, the greater the total central angle in its EIPC. Therefore, the
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objective function of the TSP (Eq. 1) can be substituted by the sum of EIPC half central
angles for a circumference of a large enough circumradius (RL

c ), yielding an equivalent
formulation (13). If we express the circumradius as a factor times the minimum pos-
sible radius to include any link of the TSP, it is verified that: RL

c = q ·dmax/2, q � 1.
Instead of the standard approach ofminimizing the sum of costs or distances (1), the

objective function can be formulated as a minimization of the sum of the half central
angles of a transformed tour (13). Taking the same indices, parameters, variables, and
constraints (Eqs. 2–4) of the formulation of Miller et al. (1960) included in Sect. 2,
we can define the new ECP-based TSP (ECPTSP) formulation as follows.

min z =
∑

i, j

xi j arcsin

(
di j
2RL

c

)
(13)

such that

∑

i

xi j= 1 ∀ j (2)

∑

j

xi j = 1 ∀i (3)

ui − u j + 1 ≤ (n − 1)
(
1 − xi j

) ∀i, j = 2, ..., n, i �= j (4)

The proposed modified formulation opens the way to define a new family of heuris-
tics for the TSP, through the specification of different values for the circumradius and
the addition of EPC geometric constraints. In the following subsections, we propose
three heuristics based on the geometric transformation that are modified formulations
of the MTZ base model formulation (Sect. 2).

4.1 Model B—heuristic mass radius (ECPTSP_hmR)

The first heuristic strategy consists in reducing the radius of the ECPTSP formulation
objective function (Eq. 13), so the formulation helps to guide the algorithmby avoiding
large links (both explicitly and implicitly) while aligning with the objective of the
minimum distance. This is done by solving the TSP with a fast heuristic and taking the
mass radius of the ECP of the heuristic solution (RH

m ) as the radius for the objective
function. For the experimentation of Sect. 5, we use the nearest neighbor heuristic
—starting from an arbitrary city, iteratively select the city that is closest to the last
city included in the tour—, which is simple and fast, although it is known to yield low
quality solutions with large returning links (Rosenkrantz et al. 1977). In fact, for all
cases of the experimentation (Sect. 5) it is verified that RH

m = q · dmax/2, q > 1.
To complete the modified formulation, it is also necessary to add the set of con-

straints (15) that express the impossibility for an edge to surpass the diameter of the
mass circle, assuring the range of validity of the arcsine functions in the objective
function.
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Model B:

min z=
∑

i, j

xi j arcsin

(
di j
2RH

m

)
(14)

Such that.

∑

i

xi j= 1 ∀ j (2)

∑

j

xi j = 1 ∀i (3)

ui − u j + 1 ≤ (n − 1)
(
1 − xi j

) ∀i, j = 2, ..., n, i �= j (4)

di j xi j ≤ 2RH
m ∀i, j (15)

We underline the elimination of links that derives from Eq. (15) and its practical
application to reduce the computation time for large problems. On the contrary, if
the topology of the problem is such that the optimal solution includes large links,
ECPTSP_hmR formulation might not provide quality solutions, particularly if a better
heuristic is employed. In general, as we develop in the remainder of the paper, there is
a trade-off between properly accelerating the search and leaving aside good solutions.

4.2 Model C—summation of arcs constraint (ECPTSP_summarcs)

The ECPTSP formulation also opens the possibility of adding a constraint that might
improve the calculations for complex problems. The idea behind the additional cut
lies in the fact that, in general, for problems of large size, tours in which the total
central angle of the circumcircle of the heuristic mass radius exceeds 2π are likely
to be low quality solutions. The ECPTSP_summarcs formulation (Model C) results
from the addition of constraint (16) to the ECPTSP_hmR formulation.

Model C:

min z=
∑

i, j

xi j arcsin

(
di j
2RH

m

)
(14)

such that

∑

i

xi j= 1 ∀ j (2)

∑

j

xi j = 1 ∀i (3)

ui − u j + 1 ≤ (n − 1)
(
1 − xi j

) ∀i, j = 2, ..., n, i �= j (4)
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di j xi j ≤ 2RH
m ∀i, j (15)

∑

i, j

xi j arcsin

(
di j
2RH

m

)
≤ π (16)

4.3 Model D—Small Circumradius (ECPTSP_scR)

The next step in the trade-off between reduction of the search space and not eliminating
good solutions is explored by drastically reducing the radius of the ECPTSP objective
function. Instead of using a large Rc

L in the objective function (13), we can use what
we call a small circumradius Rc

S that is smaller than half the maximum distance
RS
c = q · dmax/2, q < 1. The formulation is completed by adding a set of constraints

equivalent to (15).
Model D:

min z=
∑

i, j

xi j arcsin

(
di j
2RS

c

)
(17)

such that

∑

i

xi j= 1 ∀ j (2)

∑

j

xi j = 1 ∀i (3)

ui − u j + 1 ≤ (n − 1)
(
1 − xi j

) ∀i, j = 2, ..., n, i �= j (4)

di j xi j ≤ 2RS
c ∀i, j (18)

To have the possibility of achieving the optimal value,Rc
S can be reduced as long as

no arc of the optimal solution is unable to satisfy constraints (18). Lowering Rc
S might

also lead to avoiding the optimum yet yielding a feasible solution. The challenging
issue is how to set the value of Rc

S low enough to significantly reduce the number of
edges while not making it hard to find a feasible quality solution. It is immediate to
determine that it should never be smaller than half the minimum distance from a node
to the others, since, if it is not, any link including that node will not satisfy Eq. (18)
(it will not fit into the circumcircle). Finding a suitable value for Rc

S is an issue
that arises from the proposed ECPTSP-scR formulation and is subject to research.
Noteworthy, due to the reduced value of Rc

S , the objective function value for most
tours will likely exceed 2π (as in Fig. 1 left). For the experimentation of Sect. 5, we
take Rc

S as the longest among the minimum distances from each node to the others
RS
c = max j (minidi j ), which, for all the cases selected for experimentation verify

RS
c = q · dmax/2, q < 1.

123



Equivalent cyclic polygon of a euclidean travelling salesman problem… 1441

5 Experimentation

Aiming to assess the practical interest of the proposed geometric transformation as
well as the different heuristic formulations presented in the former section,we compare
the following 4 formulations of the TSP:

• Model A. Classical formulation ofMiller et al. (1960) (TSP base model formulation
as defined in Sect. 2).

• Model B. ECPTSP_hmR formulation, computing Rm
H with the nearest neighbor

heuristic tour (Rosenkrantz et al. 1977).
• Model C. ECPTSP_summarcs formulation with the same Rm

H of Model B.
• Model D. ECPTSP_scR formulation, with Rc

S calculated as the longest among the
minimum distances from each node to the others.

5.1 Experimental settings

To perform the above comparison, from TSPLIB (Reinelt 1991) we select the 40 TSPs
in the Euclidean plane and symmetric (Symmetric EUC_2D type) with a maximum of
400 nodes. Due to the nature of the proposed geometric transformation, it is necessary
to compute float Euclidean distances when solving the TSPs. We note that this is not
the standard stablished for the TSPLIB instances, in which distances are rounded to
integer values. In order to have a comparison benchmark, for each TSPLIB instance,
the floating Euclidean distance of the known optimal tour has been calculated, even
though for some cases those tours are not optimal.

The experimentation has been performed using a computer with Intel(R) Core (TM)
i3-8100 CPU @ 3.60 GHz. We formulate all models in Python 2.7, using the Pyomo
package to code the formulation (Hart et al. 2017), the Gurobi 9.1 solver (Gurobi
2021a) to find a solution, and the R programming language to plot the nodes and
results (R Core Team 2020). For all runs, a time limit of 10,000 s and a Gurobi opti-
mality MIPGap (Relative MIP optimality gap, Gurobi 2021b) of 0.01% was set for
each run. MIPGap provides a relative maximum distance to the optimal value. It is the
MIP primal–dual relative gap, calculated as the absolute difference between the incum-
bent objective function value (primal upper bound) and the incumbent dual objective
function value (lower bound) of aMixed Integer Programming (MIP) problem, relative
to the incumbent primal objective value (Gurobi 2021b).

5.2 Results

Table 1 shows the results divided in three groups. Table 1a includes the results for
those instances in which all formulations consumed the time limit without achieving
the MIPGap (time = 10,000 s for all runs). Table 1b includes the results in which
at least one formulation achieved the MIPGap without reaching the time limit and at
least one consumed the time limit (therefore it specifies the computation time). Finally,
Table 1c includes those cases in which all formulations reached theMIPGap of 0.01%.
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Table 1 TSPLIB experimentation results

TSPLIB case Gap (%): θ z (length) z (angle)

A B C D A B C D

a. All runs consumed 10,000 s

ch130 7.87 0.53 0.28 2.24 0.949 6,633.10 2.52 2.51 43.53

ch150 3.80 1.60 0.31 –0.31 1.133 6,810.24 2.53 2.49 38.45

d198 22.00 10.06 17.38 21.52 0.440 20,413.72 2.49 2.71 9.20

gil262 1.60 0.67 7.49 –0.58 0.994 2,439.59 2.29 2.46 62.76

kroA150 1.65 1.63 5.36 –0.41 1.019 27,080.24 2.51 2.60 45.14

kroA200 14.65 20.55 – 0.33 0.984 34,479.83 3.23 – 50.32

kroB100 –0.79 –0.79 –0.79 –0.79 1.027 22,139.07 2.28 2.28 24.53

kroB150 2.10 −0.21 –1.30 –1.30 1.004 27,043.09 2.49 2.47 37.42

kroB200 15.10 9.62 8.07 –0.32 1.003 34,804.09 2.75 2.71 59.98

kroC100 –0.79 12.57 –0.79 –0.79 1.013 20,750.76 2.81 2.41 29.99

kroD100 10.54 −0.18 –1.19 –1.19 1.003 24,101.70 2.44 2.41 27.56

lin105 0.00 7.48 9.90 4.21 0.772 14,382.99 2.21 2.27 26.95

lin318 13.57 13.56 – 2.18 0.727 48,642.09 2.78 – 76.45

linhp318 13.57 13.56 – 2.18 0.727 48,642.09 2.78 – 76.45

pr107 8.64 15.53 – – 0.554 56,210.72 3.51 – infeas

pr124 0.23 0.43 –0.27 – 0.683 59,607.74 2.54 2.53 –

pr136 7.54 12.18 7.28 – 1.255 104,570.26 2.87 2.71 infeas

pr144 28.39 33.86 – – 0.326 82,365.50 4.41 – –

pr152 24.96 30.32 – – 0.457 98,918.96 3.44 – –

pr226 37.71 30.99 – 6.80 0.462 129,178.20 3.73 – 19.42

pr264 21.14 19.56 – – 0.559 62,307.45 3.14 – –

pr299 11.92 0.48 – 2.09 1.093 54,854.60 2.60 – 62.68

rat195 10.36 2.98 0.38 0.51 1.462 2,599.84 2.70 2.63 87.23

rd400 11.00 16.17 – –0.03 1.061 17,182.49 2.98 – 93.66

ts225 0.92 –0.07 1.29 14.76 1.250 128,324.61 2.59 2.62 912.83

tsp225 7.91 10.21 – –0.36 1.271 4,216.29 2.83 – 39.66

u159 0.11 –0.07 –0.07 –0.07 1.015 42,149.71 2.23 2.23 33.53

Time
<=10,000
s

Time (s) gap best solution (%) θ : z (length) z (angle)

TSPLIB
case

A B C D A B C D

b. At least one run ended in less than 10,000 s and at least one consumed the
limit

a280 10,000 10,000 10,000 675.0 1.319 33,523.70 2.46 2.46 14.41

11.98 0.08 0.00 0.00

bier127 3,002.3 10,000 10,000 1,922.6 0.817 640.21 2.44 2.44 25.60

0.00 0.00 0.00 0.00
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Table 1 (continued)

Time
<=10,000
s

Time (s) gap best solution (%) θ : z (length) z (angle)

TSPLIB
case

A B C D A B C D

kroA100 10,000 1,524.2 1,404.0 122.75 1.028 544.36 2.35 2.35 20.69

23,17 0,08 0,08 0,08

rat99 10,000 11.5 12.2 14.03 1.455 428.87 2.56 2.56 18.29

– 0.62 −0.62 – 0.62 – 0.62

MIPGap < 0.01% time (s) θ z (length) z (angle)

TSPLIB
case

A B C D A B C D

c. All runs ended in less than 10,000 s

att48 503.45 344.39 409.06 123.53 1.075 33,523.70 2.46 2.46 14.41

berlin52 4.75 4.58 4.55 1.61 1.038 7544.36 2.54 2.54 10.59

eil101 522.25 25.56 23.95 17.63 1.500 640.21 2.44 2.44 25.60

eil51 9.46 1.16 5.11 1.09 1.617 428.87 2.56 2.56 18.29

eil76 3412.25 4.64 18.37 5.44 1.487 544.36 2.35 2.35 20.69

kroE100 460.52 2576.74 1423.86 340.26 1.034 22,068.75 2.48 2.48 24.62

pr76 633.02 793.13 851.53 637.88 1.004 108,159.43 2.02 2.02 14.10

rd100 906.42 632.54 454.44 77.64 1.127 7910.39 2.45 2.45 30.23

st70 269.06 520.42 348.42 136.38 1.096 677.10 2.57 2.57 17.54

Infeasible runs identified by Gurobi are noted as infeas
Best solution in bold

The gap (%) column represents the absolute percentage relative deviation of the
solution yielded by each model with respect to the optimal TSPLIB tours in terms of
distance. Since in general the benchmark tours are not optimal when taking floating
distances, gaps become negative in some cases, meaning the solution found is better
than the optimal tour with integer distances. Additionally, the table shows the value
of the objective function for each formulation: the length of the best solution for the
formulation A and the angle of the respective best solutions in radians for the ECPTSP
based formulations B, C, and D. In models (B) and (C), the distance of the objective
function to π provides an indicator of the improvement with respect to the heuristic
taken to calculate Rm

H . Results are complemented with the value of a parameter θ

that characterizes the degree of dispersion of the nodes that define each instance. The
details of its calculation and implications will be discussed in Sect. 4.3.

Table 2 presents the characterization of each TSP based on the parameters discussed
throughout the paper: the optimal length, optimal mass radius, parameter γ, upper
bound radius used, radius of the convex hull, small radius, and half the maximum
distance.
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Table 2 Instance characterization: parameters and coefficients

TSPLIB z* Rm* γ Heuristic
Rm

H
Convex
Hull
Rm

CV

max. min.
Rm

S
dmax/2

a280 2,586.77 411.70 1.00389 559.82 127.48 17.89 151.17

att48 33,523.70 5,343.43 1.00149 6,797.28 4,016.27 1,203.18 4,208.50

berlin52 7,544.37 1,203.19 1.00206 1,486.99 821.11 365.00 858.02

bier127 118,293.52 18,909.40 1.00129 22,323.09 9,450.44 6,078.67 9,720.67

ch130 6,110.86 972.84 1.00028 1,217.97 428.94 75.67 469.42

ch150 6,551.41 1,042.83 1.00013 1,317.32 395.82 86.70 424.72

d198 15,922.42 2,547.32 1.00520 3,553.72 2,169.58 1,138.70 2,130.12

eil101 646.00 102.25 1.00026 130.92 42.63 12.73 45.92

eil51 435.12 68.49 1.00083 83.73 36.99 12.04 42.82

eil76 546.25 86.84 1.00047 115.80 39.72 13.45 42.64

gil262 2,400.62 382.09 1.00005 527.41 124.66 19.42 133.12

kroA100 21,269.22 3,388.91 1.00036 4,363.71 1,902.75 361.33 2,074.89

kroA150 26,633.80 4,239.50 1.00014 5,392.83 1,897.38 302.79 2,108.88

kroA200 29,427.98 4,684.03 1.00009 5,732.45 1,999.86 300.54 2,146.55

kroB100 22,314.76 3,552.72 1.00034 4,848.75 1,874.92 461.09 2,083.63

kroB150 26,474.37 4,214.22 1.00016 5,288.30 1,881.04 357.95 2,093.65

kroB200 29,549.01 4,703.28 1.00009 5,927.88 1,864.96 253.24 2,085.15

kroC100 21,097.48 3,358.91 1.00034 4,289.33 1,799.1 357.95 2,093.65

kroD100 21,560.95 3,432.74 1.00035 4,409.98 1,813.93 397.13 2,014.15

kroE100 22,115.35 3,520.98 1.00034 4,442.96 1,837.11 458.15 2,068.95

lin105 14,383.00 2,290.58 1.00064 3513.01 1,404.2 292.50 1,594.70

lin318 42,042.54 6,691.67 1.00006 8,741.01 2,206.41 292.50 2,432.79

linhp318 42,042.54 6,691.67 1.00006 8,741.01 2,206.41 292.50 2,432.79

pr107 51,354.37 8,291.72 1.01449 8,714.47 5,013.32 282.84 5,345.62

pr124 59,468.74 9,473.75 1.00095 11,728.08 5,740.17 869.63 6,155.80

pr136 96,689.29 15,391.79 1.00021 19,193.94 6,367.3 1,093.77 7,038.20

pr144 58,985.22 9,403.34 1.00166 10,126.62 5,827.4 300.00 6,345.83

pr152 74,229.49 11,850.62 1.00310 15,525.87 7,305.25 607.89 8,214.65

pr226 80,470.14 12,822.22 1.00117 15,637.37 7,818.13 2,300.54 8,711.38

pr264 49,135.00 7,850.53 1.00389 9,738.35 4,249.23 651.92 4,507.84

pr299 48,313.82 7,689.77 1.00005 9,333.28 2,854.67 400.00 3,479.40

pr76 108,048.81 17,211.19 1.00085 26,695.25 11,302.76 3,905.12 11,337.11

rat195 2,330.55 370.94 1.00005 443.69 128.19 14.00 152.20

rat99 1,226.84 195.30 1.00022 253.36 91.37 17.00 109.11

rd100 7,991.66 1,272.36 1.00035 1,611.42 616.63 136.06 666.84

rd400 15,292.36 2,433.90 1.00002 3,059.77 628.98 83.12 676.52

st70 688.48 109.64 1.00061 131.76 58.38 19.70 64.36

ts225 12,7145.93 202,37.47 1.00008 24,519.08 7,640.8 500.00 8,485.28

tsp225 3,882.85 618.01 1.00005 763.24 217.59 28.50 259.35

u159 42,103.68 6,702.14 1.00017 9,429.60 3,082.95 640.31 3,342.15
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5.3 Discussion and influence of the topology of the problem

In this section, we present a general comparison of the experimentation. Then, we
explain a selected parameter to classify the dispersion of nodes, and finally, we use it
to group the sets of nodes and plot them to draw some experimentation conclusions.

In Table 3, we compare the results obtained from the forty TSPLIB selected cases
for the four formulations. For each formulation, the table shows in how many cases
it performs better than each one of the other formulations, alone or tied with another
formulation. Formulations (B) and (D) yield better results than (A) in the majority of
cases, whereas (C) and (A) are even. Model (D) shows the best performance overall,
with 23 cases yielding the best solution, yet the drastic arc elimination strategy leads
to infeasibility twice, and in other 4 cases (D) is not able to provide a solution before
reaching the time limit. It is therefore a promising approach, but further research con-
cerning the value of isRc

S needed. It isworth highlighting that the compact formulation
(A) only achieved the best results in 8 out of the 40 cases.

Table 3 Comparison of results between formulations

TSPLIB A B C D

A better than – 14 19 10

B better than 25 – 21 14

C better than 19 16 – 9

D better than 28 26 22 –

Total best (including ties) 8 8 9 23

Fig. 6 Sets of nodes from TSPLIB type EUC 2D with less than 400 nodes where 1.2 < θ
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Fig. 7 Sets of nodes from TSPLIB type EUC 2D with less than 400 nodes where 0.8 ≤ θ ≤ 1.2

In conclusion, there does not seem to be a dominant strategy although ECPTSP
based formulations show good results in the majority of cases. Nevertheless, these
new formulations do not perform well in some of the cases. With the purpose of iden-
tifying in which problems the proposed modified formulations have more potential,
we analyze the influence of the topology of the problem.

With this aim and following the work of Dry et al. (2012), we calculate a parameter
θ (R in the original) that characterizes the degree of dispersion of the nodes that
define each instance. This parameter leads to a characterization of the set of nodes
as clustered, random, or evenly distributed. The parameter adopted is proposed by
Clark and Evans (1954) who propose using the distribution of distances from each
node to its nearest neighbor as a measure of the spatial dispersion of a set of nodes. To
calculate θ , the observed mean nearest neighbor distance θo is divided by the mean θe
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Fig. 8 Sets of nodes from TSPLIB type EUC 2D with less than 400 nodes where θ < 0.8

of a Poisson process probability density function that describes the nearest neighbor
distance, as expressed in Eq. (19) where A indicates the area.

ϑo = 1

n

∑

i �= j

min
{
di j

}
, ϑe = 1

2

√
A/
n , ϑ = ϑo

ϑe
(19)

The statistic θ varies between 0 and 2.149, aiming to classify the distribution of
the sets of points from highly clustered to highly regular. It represents how long is
the average distance to the nearest neighbor compared to a random set of nodes. The
closer to 1 is θ the more randomly are the nodes distributed; if θ is close to 0, the
nodes are highly clustered; if θ is high it means the average distance to the nearest
neighbor is proportionally high, and then the nodes are evenly distributed.

We classify the 40 TSPLIB instances according to their θ value and, similarly to
Dry et al. (2012) we define three groups, respectively, {θ < 0.8}, {0.8 ≤ θ ≤ 1.2},
and {1.2 < θ}. Figures 3, 4, and 5 show the plots of the three groups ordered by their θ

value. We use a graphic code to signify the performance of the ECPTSP formulations:
if formulations (B, C, and D) obtain better results than formulation (A) in terms of
gap solution or computing time when they provide the same gap solution, the plot
rectangle edges are continuous and dots are dark green colored; dashed edges and
orange dots signify that at least one ECPTSP formulation (B, C and D) obtain better
results than formulation (A) or all four models have identical results, and dotted edges
and red color is used when formulation (A) performs the best.

Figure 6 shows that for high values of θ , ECPTSP formulations (B, C or D) yield
satisfactory results. In six of the nine instances the formulation (A) performs the worst.
In the results of Table 1 we see how in cases eil51, eil101, eil76, rat195, and rat99,
either gaps or computing times decrease substantially with these formulations.
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In Fig. 7, there are ten sets in continuous edge (green), ten sets in dashed (orange),
and only one set in dotted (red). Regarding this last case, pr76, we observe in Table 1
a similar computation time for all formulations, although (A) performs slightly better
than (B, C, and D). Sets st70, rd400, kroA150, gil262, and kroA200 behave the best
when using model (D), and ch130 solution improvement for models (B) and (C) is
significative.

Figure 8 reveals that high clusterization has a negative impact on the performance
of models (B, C, and D). The distribution of the nodes presents peculiar patterns. Only
in one of the ten instances, the three ECPTSP formulations show better behavior than
(A) and in four of the cases (A) yields the best results. Model (D) may be infeasible
by using the selected Rc

S . On the other hand, if θ>1, model (D) performs better than
model (A) in all cases except in ts225, where a regular pattern is identified, and in
pr76, where the performance of all models results in similar.

6 Conclusions

Through a geometric transformation based on polygonal linkages, we can inscribe
each transformed TSP tour as an open polygonal chain in a circle of a given radius
(Equivalent Inscribed Polygonal Chain, EIPC) as well as find its Equivalent Cyclic
Polygon (ECP). This transformation leads to a modified formulation for the exten-
sively studied classic Euclidean TSP in which the objective function is expressed as a
summation of angles instead of distances.

The modified formulation leads in turn to the definition of a new family of heuristic
models (ECPTSP formulations). Experimentation with forty cases of TSPLIB shows
that using the ECPTSP formulations may help to obtain better or optimal solutions
faster than compact formulations. Using ECP properties mixed with a drastic link
elimination shows promising results in some cases. We also verify that a parameter
based on the distribution of the nearest neighbor distances is of practical interest in
TSP topology characterization. Particularly, it shows that the formulations based on the
proposed tour geometric transformation performbetterwhen the nodes are randomlyor
evenly distributed, whereas it tends to yield worse results in highly clustered problems.

The performance of the heuristic formulation reveals the interest of exploring ways
to set the small radius parameter so that it improves the performance of the solving
procedure while not incurring in infeasibility or leading to high computation times to
provide a first feasible solution. The definition of the ECP opens the way for further
research on TSP, exploring new properties and new heuristics. The number of formu-
lations, and TSP extensions such as the Vehicle Routing Problem (VRP), also bring
the interest of investigating the applicability of the ECP transformation to achieve
efficient results in other models and variants.
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