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Abstract
This paper presents a discrete event simulation model to support decision-making for
the short-term planning of hospital resource needs, especially Intensive Care Unit
(ICU) beds, to cope with outbreaks, such as the COVID-19 pandemic. Given its
purpose as a short-term forecasting tool, the simulation model requires an accurate
representation of the current system state and high fidelity in mimicking the system
dynamics from that state. The two main components of the simulation model are
the stochastic modeling of patient admission and patient flow processes. The patient
arrival process is modelled using a Gompertz growth model, which enables the repre-
sentation of the exponential growth caused by the initial spread of the virus, followed
by a period of maximum arrival rate and then a decreasing phase until the wave sub-
sides. We conducted an empirical study concluding that the Gompertz model provides
a better fit to pandemic-related data (positive cases and hospitalization numbers) and
has superior prediction capacity than other sigmoid models based on Richards, Logis-
tic, and Stannard functions. Patient flow modelling considers different pathways and
dynamic length of stay estimation in several healthcare stages using patient-level data.
We report on the application of the simulation model in two Autonomous Regions of
Spain (Navarre and La Rioja) during the two COVID-19 waves experienced in 2020.
The simulation model was employed on a daily basis to inform the regional logistic
health care planning team, who programmed the ward and ICU beds based on the
resulting predictions.
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1 Introduction

The COVID-19 pandemic presents a major global health threat. Since the outbreak
in China in early December 2019, more than 180 million confirmed cases, and close
to four million deaths from COVID-19 infection (up to the end of June 2021 https://
coronavirus.jhu.edu/map.html) have been recorded. Regularly updated information
on the COVID-19 outbreak is also available on the websites of the European Centre
for Disease Prevention and Control (ECDC), the European Commission (EC), and
the World Health Organization (WHO). This outbreak has brought changes in health
care delivery, and in hospital systems stretched by the sudden increase in demand.
The treatment of COVID-19 patients requires dedicated resources, material, and per-
sonnel. The pandemic has had a particularly intense impact on Intensive Care Units
(ICU), which require highly specialized personnel and costly technical apparatus.
Accurate planning requires accurate prediction of resource needs. In addition, hos-
pitalized COVID-19 patients need to be isolated from other types of patients, which
makes advance preparation of wards necessary. Therefore, the management of both
ICU and ward beds for COVID-19 patients benefits from accurate short-term demand
forecasting. Other resource needs, such as personnel requirements, can be calculated
from bed demand numbers. Usually, the hospitalization bed is still widely used as a
hospital (ICU) management parameter both at the strategic and operational levels.

Hospitals are complex systems evolving in a stochastic environment with a level
of uncertainty which intensifies during pandemics due to lack of knowledge about the
spread of the disease and its consequences for those infected. In this unsettled context,
simulation emerges as a suitable tool of analysis, since it is able to reproduce both the
complexity of the systemand the variability and uncertainty of the environment, aswell
as being eligible for use in combination with other analytical techniques. The literature
contains numerous bibliographical references relating to the use of simulation models
for decision making in the healthcare context. Most applications use simulation to
support strategic decisions, usually for resource sizing, scheduling, or management.
All these cases require the design of a simulation model to reproduce stationary state
healthcare system performance and evaluate resource levels, patient flowmanagement
policies, and the long-term decision making process. The recommendations obtained
from the simulation analysis are intended for a pre-determined implementation period.

However, a simulation model designed to enable tactical decisions for the provi-
sion of specialized health resources during the current outbreak has to focus on the
transition period, if it is to generate a short-term projection of the current state of the
hospital. To achieve this goal, the simulationmodel needs to account for non-stationary
and non-periodic patient input to the hospital, a complex hospital situation at the Sim-
ulation Starting Point (SSP), variation in the patient hospital length of stay (LoS)
pattern and censored data. This paper presents a Discrete Event Simulation (DES)
model combining dynamic forecasting to predict (simulate) new patient arrivals and
the reproduction of patient flow patterns and designed to address all the issues just
raised. The simulation process yields future resource-use scenarios to inform the health
authorities of future needs and give them time to plan. In fact, the results of the simu-
lation model were used on a daily basis during the successive waves of the pandemic
(fromMarch 2020 to May 2021) by local governments of two Spanish regions and by

123

https://coronavirus.jhu.edu/map.html


Hospital preparedness during epidemics using simulation… 215

the Spanish Ministry of Health as a health resources planning instrument. Therefore,
the main feature of the simulation model presented here is its capacity to reproduce the
evolution of the health system from its current state, in a non-stationary and changing
environment, thus providing a useful forecasting tool.

The main contribution of this paper is our proposal for a new simulation framework
enabling short-term (from days to a few weeks) prediction of critical resource needs
for the care of COVID-19 patients and our account of its use by health authorities
during the COVID-19 pandemic waves. The simulation framework can be adapted
for application in potential future outbreaks. To achieve this main contribution our
research includes:

• Amethod to simulate patient arrival times based onPopulationGrowth (PG)models.
These are better suited for the prediction of hospitalization (and positive cases)
series than other mathematical alternatives such as SIR-type models, which require
detailed knowledge of the spread of the disease throughout the population and the
estimation ofmany parameters. PGmodels produce S-shape curves able to represent
the evolutionof pandemic variables, such as positive cases andhospitalizations, from
beginning to end of the outbreak.

• A statistical analysis of the accuracy of four different PG models in simulating and
forecasting the spread of the pandemic.

• The representation of the current state of the health system based on a set of state
variables and a dynamic and adaptive statistical analysis of patient flow and hospital
LoS.

• The combination of all elements in a DES model flexible enough to recreate sce-
narios based on stochastic models fitted to data (data-driven prediction), scenarios
defined by expert judgment, and a mixture of both.

• In practical terms, this paper also shows how operations research can contribute
to a rapid respond to a healthcare crisis by reporting on a successful real-world
application of the simulation model to support a decision-making process of crucial
importance to the health of patients in two Autonomous Regions of Spain (Navarre
and La Rioja).

The rest of the paper is organized as follows. Section 2 offers a review of related
literature dealing with the use of quantitative methods for the prediction and efficient
management of health care system requirements. Section 3 studies the adequacy of
PG models to predict the spread trend of a pandemic. The modeling of patient flow
through the hospital is presented in Sect. 4. The structure of the DES model and the
methodology used to set up the simulation are included in Sect. 5. Results of the
application in the Autonomous Regions of Navarre and La Rioja (Spain) are included
in Sect. 6. Finally, Sect. 7 ends the paper with the conclusions of this work.

2 Related literature

Simulation is one of the most suitable analytical tools for the analysis of complex sys-
tems, such as healthcare systems, as reflected in numerous specialist articles describing
the use of simulation models for decision-making in the healthcare context. DES has

123



216 D. Garcia-Vicuña et al.

been used to model and analyze all aspects of logistics management in healthcare,
particularly the improvement of patient flow management, bed-planning, waiting list
management, health service design, medical staff scheduling, etc. For reviews of the
use of simulation models in healthcare, see Brailsford et al. (2009); Günal and Pidd
(2010); Katsaliaki and Mustafee (2011); and Mielczarek and Uziałko-Mydlikowska
(2012). These simulation models usually focus on studying the stationary state of the
health system to support strategic decisions for resource sizing or management policy
design purposes.

The ultimate goal of these models is to match resource availability with demand
in order to provide high-quality patient care while maintaining adequate human and
technological resource provision. Some of the problems analyzed in this framework
are patient flow (Shahani et al. 2008; Kolker 2009), bed planning (Ridge et al. 1998;
Zhu et al. 2012; Rodrigues et al. 2018), health service design (Mallor et al. 2016), and
medical staff scheduling (Erhard et al. 2018), among others. Despite reports in the
medical literature of discrepancies between assumptions in mathematical simulation
models and the behavior of real healthcare systems (Azcarate et al. 2020), there is no
doubt about the usefulness of simulation models for the analysis of relevant problems
in complex healthcare systems.

However, simulation not only helps to ensure the highest quality healthcare in terms
of staff and facilities, it also improves the delivery of best practice. Since the pandemic
began, all national governments and the WHO have extensively used simulation mod-
elling to identify the best strategies for reducing the impact of COVID-19. Currie et al.
(2020) identify challenges from this disease and discuss how simulation modelling
can help decision-makers to make the best informed decisions.

The accuracy of a simulation model for the prediction of resource needs during a
pandemic is dependent upon the design of an accuratemodel to forecast patient arrivals
at the health facility. Most infectious disease prediction methods rely on differential
equation models based on population dynamics (Grassly and Fraser 2008; Brauer
and Castillo-Chavez 2012). These mathematical models are essential for understand-
ing the course of the epidemic and planning effective control strategies (Anderson
and May 1991; Diekmann and Heesterbeek 2000; Hethcote 2000). One of the most
widely used models of human-to-human transmission is the SIR model (Kermack and
McKendrick 1927). Members of the population are sorted into different status cate-
gories: S (Susceptible), I (Infected), and R (Remove). The portion of population in
each state is calculated over time by estimating the rate of transition from one state to
another. With more complex model specifications, it is possible to recreate the spread
of a specific epidemic. Extensions of the classical SIR model (Anastassopoulou et al.
2020; Giordano et al. 2020; Lin et al. 2020; Zhou et al. 2020; Casella 2021), as well
as stochastic transmission models (Hellewell et al. 2020; Kucharski et al. 2020) have
indeed been developed for the COVID-19 pandemic. However, such models are com-
plicated and need strong assumptions and simplifications, because they are based on
a set of differential equations with initial conditions and a number of adaptive param-
eters (Xia et al. 2009; Li et al. 2014; Magal et al. 2016; Li and Zhang 2017). Reliable
values of those parameters only become available at the end of the pandemic and they
depend on non-pharmaceutical interventions dictated by political decisions. There is
also a need for other mathematical models that can be adapted to daily pandemic data.
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PG models provide a simpler alternative for modelling the number of cumulative
positive cases, hospitalizations and other pandemic variables. Growth curves are used
in a wide range of research areas, such as fishery research (Oliveira Zardin et al. 2019;
Oribe-Pérez et al. 2020), biology (Sun et al. 2020), or other infectious disease outbreaks
(Horimoto et al. 1997; Roberts and Saha 1999; Viboud et al. 2016; Ghazvini et al.
2019). Specifically, Logistic, Gompertz, Rosenzweig, and Richards models have been
used to model the spread of outbreaks such as A/H1N1 and Ebola in (Liu et al. 2015).
The COVID-19 research has produced several papers describing the development of
a growth model to predict new cases in countries such as China (Shen 2020), India
(Malavika et al. 2021), Spain (Sánchez-Villegas and Daponte Codina 2020), and other
European countries (Cássaro and Pires 2020). These mathematical models present a
set of mathematical equations including adaptive parameters that can be determined
numerically based on available real data (Panovska-Griffiths 2020). The model can be
used daily (by updating the number of positive cases) and automatically adapted to
individual parameter trends.

If all the mathematical models mentioned in the previous paragraphs could be fitted
to real data, it would be possible to obtain an accurate prediction of what might happen
in the future (e.g., emergency planning, resource allocation) (He et al. 2020; Poston
et al. 2020; Steinberg et al. 2020). This is very important; especially for typically scarce
hospital resources, such as ICU beds. Manca et al. (2020) present and discuss a few
regression models built on historical ICU admissions and patient death data during the
COVID-19 pandemic. They are capable of reproducing the bed occupancy curve using
regression models with great potential for decision-making and emergency planning
in future pandemics.

In recent decades, moreover, healthcare simulation models using advanced tech-
nology have become a new experience-based learning support (Almagooshi 2015;
Persson 2017) enabling healthcare professionals to acquire new cognitive, technical,
and behavioural skills. Before working in real-world patient treatment scenarios, both
professionals and students can benefit from this experience-based form of learning in
a risk-free decision-making environment (Palominos et al. 2019). Simulation models
of the type presented in this paper also enable training in the management of health
care services during emergencies. When resources are in short supply, one of the most
critical decisions is how to allocate them to patients, especially when they can mean
the difference between survival and death, as is the case with ICU patients. This triage
becomes even more difficult during pandemics, when resources are stretched even
further. Different ICU triage protocols for use in pandemics have been suggested in
Cheung et al. (2012); Christian et al. (2014); and Zhang et al. (2020). Forecasting bed
demands is essential to avoid ethical dilemmas (Azcarate et al. 2020; Garcia-Vicuña
et al. 2020). According to Utley et al. (2011), “the impact of triage is dependent on
the level of demand and on the scale of achievable differences between included and
excluded groups in terms of anticipated LoS and critical care survival”. A simulation
model can improve critical resource planning during a pandemic; and can be used as
an off-line learning tool to test new triage protocols, which are not always as effective
as might be desired, and other hard-to-anticipate factors must be considered.
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3 Modelling the patient arrival pattern

In this section, we discuss the adequacy of PG models for case prediction purposes.
First, we perform a statistical comparison of four different models for their suitability.
We then describe the use of the Gompertz PG model to simulate daily hospitalization
series.

3.1 Population growthmodels

The simulation model needs to generate the daily patient arrivals to the hospital(s),
which is a non-stationary process highly dependent on the number of positive (active)
cases in the population. A compartmentalized epidemiological model, such as the
SEIR model, enables analysis of the spread of the disease throughout a population. It
models transition dynamics between four different states of a population: susceptible
(S), exposed (E), infective (I), and recovered (R). The model depends on epidemio-
logical parameters such as the infection rate (the number of people that an infective
person infects per day), the disease latent time (the lag between contactwith an infected
person and the appearance of symptoms), the recovery rate, and the death rate. The
basic SEIR model has been extended to categories such as the protected (P) and the
quarantined people (Q) (Godio et al. 2020) and other case detection and symptom
statuses, up to a total of eight or more compartments (Giordano et al. 2020). Stochas-
tic transmission models have also been considered (Kucharski et al. 2020). All these
extensions add details to the model but also more complexity, which does not nec-
essarily mean greater forecasting reliability, since it increases the number of model
parameters to be estimated (Roda et al. 2020). Roda et al. (2020) demonstrate a linkage
between the transmission rate and the case-infection ratio, resulting in a continuum of
best-fit parameter values. These can produce significantly different predictions for the
epidemic: the hallmark of a non-identifiability problem. These difficulties motivated
us to consider parametrically parsimonious models, such as the PG type, which are
able to generate curves of the shapes generally associated with pandemic variables
(positive (active) cases, hospitalizations, deaths): monotonic, humped, and S-shaped.
Rypdal and Rypdal (2020) found that PG models are obtained from the SIR model by
making reasonable assumptions about the SIR parameter trends over time.

Examples of growth models found in the literature include the Gompertz (Gom-
pertz 1825), the Richards (Richards 1959), the Stannard (Stannard et al. 1985), and
the Logistic model (Ricker 1979). They all start with exponential growth but each has
a specific, gradually decreasing growth rate. All produce S-shaped curves describing
the evolution of pandemic variables departing from one or a few initial cases, grow-
ing initially at an exponential rate before reaching a plateau, and then decreasing to
zero when the pandemic expires. The equations describing the number of cases in
population y, at time x, take the following form:

Gompertz : y(x) = a · exp[−exp(b − cx)
]

(1)
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Logistic : y(x) = a
[
1 + exp(b − cx)

] (2)

Richard : y(x) = a{1 + v · exp[k(τ − x)]}(−1/v) (3)

Stannard : y(x) = a

{
1 + exp

[
− (l + kx)

p

]}(−p)

(4)

We carried out two statistical analyses to elucidate the adequacy of PG models for
representing and predicting the evolution of the pandemic caused by the SARS-CoV-2
virus. The first analysis evaluates the capacity of the four PG models to fit complete
sets of real positive case data registered in the 20 most-affected countries during the
first wave of the pandemic (as recorded inWorldometer on June 15, 2020). The results
included in Appendix 1 show that the Gompertz, Richards, and Stannard models have
similar goodness of fit; with all three outperforming the Logistic model. These results
are consistent with Rypdal and Rypdal (2020) who found that the COVID-19 related
death rate curves of most countries are well described by the Gompertz growth model.
The cumulative positive case, hospitalization and death curves have similar shapes
because they are all scaled by the factor s, and translated by the factor t .

yh(x) = sh yI (x − th) (5)

yd(x) = sd yI (x − td) (6)

where yI , yh , yd are the cumulative series of positive cases, hospitalizations and deaths,
respectively; sh , sd are the scaling factors for hospitalizations and deaths, respectively,
and th , td are the time lags between infection and hospitalization, and infection and
death, respectively.

The second statistical analysis is designed to test the short-medium term predictive
capacity of the PG models. For each of the 20 countries used in the first statistical
analysis, the data up to the day on which cases exceed 25%, 40%, and 65% of the total
cases registered at the end of the pandemic wave are used to predict the cases for the
following successive 5, 10 and 15 day horizons. Thus, nine prediction exercises are
performed for each country and each PG model. The results included in Appendix 2
show that the Gompertz model surpasses the predictive capacity of the other PG
models, outperforming them in all nine cases, and being equaled by the Richards and
Stannard models in only four.

Our statistical analysis supports the use of the Gompertz for modelling series of
cumulative hospitalizations. The parameters of the original equation of this model,
presented above, are more suited to mathematical than biological interpretation, like
most equations describing sigmoidal growth curves. Therefore, before using it in our
modeling, some transformation will aid interpretation of the curve. Zwietering et al.
(1990) rewrite the Gompertz growth model as shown in Eq. (1).

G(t) = Aexp

(
−exp

(
Ke

A
(D − t) + 1

))
(7)
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where, e = exp(1), G(t) is the cumulative number of hospitalizations up to time t .
A is a growth model parameter corresponding to the total number of hospitalizations
at the end of the outbreak. It is the upper asymptote of the curve. K is the absolute
growth rate of the curve at its inflection point. D, known as the lag time, is the time at
which G(t) = Aexp(−e), which means that it always occurs at the same percentage
(6.6%) of the upper asymptote. This value is less intuitive than either of the others.

Suppose we are at pandemic day n + 1 and have recorded and denoted by
h(t), t = −n, . . . ,−1 the number of hospitalizations since the beginning and by H(t)
the cumulative number of hospitalizations H(t) = ∑t

i=−n h(i), t = −n, . . . ,−1.
Using these data, the Gompertz growth model parameters p = (A, K , D) are esti-
mated by minimizing the sum of the squared errors (SSE). The estimated parameter

vector is denoted by p̂ =
(

Â, K̂ , D̂
)
and theGompertzmodel by G p̂(t). The values of

G p̂(t) are used to predict the expected number of hospitalizations for the current and
following days, t = 1, . . . , T , as required by the simulation methodology described
in the following subsection.

3.2 Simulation of the patient arrival pattern

Once the curve G p̂(t) is fitted to the hospitalization data H(t), t = −n, . . . ,−1 of
a certain region up to the present day, it is used to predict and simulate the number
of new hospitalizations for each of the following days t = 1 . . . , T . The function
argument t is continuous and we will assume that t = 0 represents both the end of the
last day of recorded hospitalizations and the start of the current day. Therefore, t = 1
is the time at which the current day ends.

The simulation procedure is summarized in the following four steps:

1. Fit the Gompertz curve to cumulative hospitalization data series (e.g. by using the

least squares method). Record the estimated parameter vector p̂ =
(

Â, K̂ , D̂
)

and its covariance matrix Σ p̂.

2. Simulate a parameter vector p = (A, K , D) from the Multivariate Normal dis-
tribution N

(
p̂,Σ p̂

)
.

3. Calculate the expected number of arrivals N (t) for day t, t = 1, . . . , T , where
t = 1 represents the current day (start of the simulation) and T is the simulation
horizon. Use theGompertz curve G p(t)with parameters p to calculate E(N (t)) =
Gp(t) − Gp(t − 1).

4. Simulate the number of hospitalizations, for each day t, t = 1, . . . , T , in the future,
as observations from a Poisson distribution with mean λ(t) = E(N (t)):

P(N (t) = k) = e−(λ(t))(λ(t))k

k! t = 1, . . . , T (8)

5. Repeat steps 2–4 as many times as necessary for the different hospitalization
sequences to be simulated.
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This simulation procedure takes into account both variability due to uncertainty in
the estimation of the Gompertz parameters and variability in hospital arrival numbers
around the mean. Figure 1 illustrates the four steps. The upper-left hand corner of
the graph shows the Gompertz model (green curve) fitted to the available data (black
dots); the point estimator p̂ and the covariance matrix Σ p̂ are used in the second step
to sample a parameter vector p. The upper-right hand corner of the graph shows the
Gompertz curves associated with parameter vectors p in a tolerance region obtained
from the multivariate normal distribution (Dong and Mathew 2015) as

R =
{
p|( p − p̂

)′
Σ−1

p̂

(
p − p̂

) ≤ χ2
3 (q)

}
(9)

where χ2
3 (q) denotes the qth percentile of a chi-square distribution with df =

3. Clearly, R is the central 100q% region of the multivariate normal distribution
N

(
p̂,Σ p̂

)
.

Each parameter vector p in the region R is associated with a Gompertz curve G p(t)
(shown in the lower left hand corner of Fig. 1) compatible with the observed data (and
different from G p̂(t)). This Gompertz curve G p(t) provides the expected number
of hospitalizations among simulated arrivals generated by sampling from a Poisson
distribution. A sequence of trajectories with the simulated number of hospitalizations
for future days t = 1, . . . , T (shown in the lower right hand corner of Fig. 1) is
obtained by replicatimg the sampling of a vector p, the calculation of the expected
number of future arrivals λ(t), t = 1, . . . , T , from the Gompertz curve G p(t), and the

Fig. 1 The simulation procedure for the patient arrival pattern. Steps 2–4 are replicated as often as necessary
for the different patient arrival and hospitalization sequences to be simulated
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Fig. 2 Representation of COVID-19 patient flow in the health system

simulation of simulated arrivals N (t), t = 1, . . . , T , from the Poisson distribution.
TheGompertz curve is refitted after every new observation and the simulation of future
arrivals is carried out again following steps 1 to 5.

4 Modelling the patient flow

This section focuses on modelling patient flow through the health system. First, we
describe the possible patient pathways through the hospital, and then explain how the
LoS of each patient is modelled.

4.1 Hospital patient pathway

COVID-19 patients can access the health system in a variety of ways: following diag-
nosis with COVID-19 in a primary healthcare facility, hospital emergency department,
or nursing home; or after undergoing a SARS-CoV-2 test control (such as aPolymerase
chain reaction (PCR) test), etc. Depending on the severity of his/her condition, the
person is admitted to the health care system as a COVID-19 patient, either in a hospital
ward or directly in the ICU.

TheCOVID-19 patient pathway through the hospital is the same as for other hospital
patients, but, due to the highly contagious nature of the virus, COVID-19 patients
require dedicated resources and cannot bemixedwith other patients. Figure 2 shows the
patient flow through the health system, highlighting the transitions between the hospital
ward and the ICU. Patients can be admitted either to the ICU or first to a hospital ward
with potential transfer to the ICU if their condition deteriorates. Discharge from a
ward can follow either death or a health improvement. Patient transfers from the ICU
to a hospital ward occur after a health improvement.

4.2 Stochastic modelling of hospital LoS

The following variables are used to model LoS in the hospital:

• X1, the LoS in the hospital ward of a patient not needing ICU.
• Y , the LoS of a patient in the ICU.
• Z , time spent by a patient in the hospital ward before transfer to the ICU (applies
only to patients transferred to the ICU from the hospital ward).
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• X2, the LoS of a patient in the hospital ward after being discharged from the ICU.

The following probabilities determine the patient-pathway through the healthcare
facilities:

• pI , the probability of direct admission to ICU upon arrival.
• pW I , the probability of a patient initially admitted to a ward requiring transfer to
ICU.

• pI W , the probability of patient transfer from ICU to a ward. Then, 1 − pI W is the
probability of death in the ICU.

Then, the probability of ICU requirement is pI + (1 − pI )pW I .
As the pandemic progresses and more COVID-19 patients need hospitalization, the

new data collected from these patients can be used to update the probability distribu-
tion parameters estimates and patient pathway probabilities. Given that only a small
percentage of ward admissions and an even smaller percentage of ICU admissions
have been discharged after a few weeks from the start of the outbreak, the associated
information on most of them is partly unknown, that is, they constitue censored data.
For example, a patient admitted to the ICU 10 days ago provides an ICU LoS datum
x such that x > 10.

Thismotivates us to perform daily updates of the distribution parameters and proba-
bilities by adding the fresh data, thereby enlarging the sample size, reducing the degree
of censorship bias and ultimately obtaining more accurate parameter estimates. The
parameter estimation is done by the maximum likelihood method. For example, for
the estimation of θY , the parameter vector of the distribution function of variable Y is
performed by maximizing the following likelihood function:

LY (θY |y(t) ) =
nY∏

i=1

fθY (yi )

nY∗∏

i=1

(
1 − FθY

(
y∗

i

)) → θY = argmax
θY

LY (θY |y(t) ) (10)

where {yi , i = 1, . . . , nY } is the set of exact value observations, that is, those cor-
responding to the LoS of patients now discharged from the ICU, and fθY (yi ) is the
density function.

{
y∗

i , i = 1, . . . , nY ∗
}
is the set of censored values, that is, those cor-

responding to the LoS of patients remaining in the ICU at the time of the statistical
analysis, and FθY (yi ) is the cumulative distribution function.

The use of probability plots facilitates identification of the parametric probability
distribution family that best fits the data. The parameters of the selected probability
distribution family are estimated by the maximum likelihood method. Weibull and
Lognormal distribution families have proved to be good probability models for LoS
variables, as will be shown in Sect. 6.

At the beginning of a new pandemic, there is insufficient understanding of the
disease and possibly no known effective treatment, as was the case with the COVID-
19 outbreak.Asmedical and biological research progresses, the discovery of newdrugs
and therapeutic protocols improves patient care and alters lengths of stay in hospital
wards or ICUs. This observation reinforces the need to gather every possible new
piece of patient admission and discharge data for use in updating estimated distribution
parameters and branching probabilities.
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5 The discrete event simulationmodel

In this section, we present the mathematical modelling of hospital dynamics using
a DES model. We pay attention to starting the simulation from the current state of
the health system, which is one of the distinguishing features of this application of
healthcare system simulation modelling.

5.1 Entities, state variables, and events

DESmodels createmoving entities that are transformed by several processes until they
exit the modelling system. In the healthcare system that concerns us, the entities are
the COVID-19 patients and the processes are the health care received in the hospital
ward and/or ICU. The system is described by a set of state variables, which provide
at any time a complete representation of the simulated system, and the set of events,
which modify the value of the state variables. The simulation model represents patient
flow through the different hospitalization routes; that is, the area enclosed by dashed
lines in Fig. 2. In this subsection, we present two types of healthcare system state
variables and the set of events separated into two categories.

We consider two distinct types of state variables: global and patient-level. The
two global variables, B(t) = (BW (t), BI (t)), describe bed occupancy by COVID-19
patients in hospital wards and the ICU, respectively, at any time t . Total COVID-
19 hospitalizations at time t , N (t), is given by the sum of these two state variables,
N (t) = BW (t) + BI (t).

Each patient i admitted to hospital has two associated state variables. The patient-
level state variable Si (t), which records the condition of patient i at time t , can take
one of three values: W1, when patient i is admitted to a ward without a previous stay
in ICU; I , when patient i is admitted to ICU; and W2, when patient i is in a ward after
transferral from ICU. The patient-level state variable Ri (t) records the time at which
patient i enters state Si (t).

Two different types of events can affect the values of the state variables. They have
been classified by the nature of the variation in B(t): an increase or decrease in N (t),
or a variation in BW (t) and BI (t) not affecting their sum. The first set of events E A

are associated with patient arrival times. This group includes only external arrivals,
i.e., positive cases detected outside the hospital that require hospitalization. These
events are generated by the simulation methodology described in Subsection 0, and
each arrival is classified as an ICU arrival or a ward arrival with probabilities pI and
1 − pI , respectively. The last type of patients are also subdivided into two groups,
those who will require ICU admission after some time on the ward (with probability
pW I ) and those who will not (with probability 1 − pW I ).

The second category includes the events EB leading to a patient’s end of a stay in
the ICU or the ward, and altering the value of their patient-level state variables, and
also either BW (t), or BI (t) or both. As stated in Sect. 4, there are several events of
this type:
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• EB Z events dictating end of ward stay prior transfer to ICU, which are generated by
sampling from the variable Z . The variable BW (t) decreases by one unit and BI (t)
increases by one.

• EB X1 events signaling end of ward stays with no need for ICU transfer, which are
generated by sampling from the variable X1. The variable BW (t) decreases by one
unit.

• EB X2 events associated with end of ward stay for a patient transferred from ICU,
and generated by sampling from the variable X2. The variable BW (t) decreases by
one unit.

• EBY events associated with end of ICU stay and generated by sampling from the
variable Y . The variable BI (t) decreases by one unit. The patient is transferred to a
ward with probability pI W , and BW (t) increases by one unit.

The event calendar vector at time t has BW (t) + BI (t) + 1 positions. One includes
the time of the next patient arrival (associated with event E A), BW (t) positions, one
for each ward patient, containing their hospital discharge times (associated with events
EB X1 or EB X2 ) or ICU transfer times (associatedwith event EB Z ), and BI (t) positions,
one for each ICU patient, storing the discharge time from ICU.

Figure 3 outlines the DES model of the health system.

5.2 Starting the simulation run

The purpose of the simulation model is to predict short-term resource needs, with
precision strongly depending on the model’s accuracy both in representing the initial
state of the healthcare system and the initial resource utilization rate. This last aspect of
mathematical modeling is usually not very important when the aim of the simulation is
to investigate the long-term behavior of a system in its stationary state, which is usually
independent of its initial state. However, when the simulation is used as a predictive
tactical decision-making support tool, the initial state of the simulation model and the
initial dynamics of the system are the main determining factors of the state of the
healthcare system in the near future.

The simulation clock is set to zero at the time of the last update of the Electronic
Health Record (EHR)-file, which we assume to have taken place at the end of the kth
day of the pandemic. The simulation model begins to simulate future changes from
day (k + 1)th, using the information collected during the first k days of the pandemic,
taking hospitalizations at the end of the kth day as the initial state. The point of
transition from the past to the future occurs at the beginning of the simulation run, for
which the event calendar must be initialized (Law 2014). The simulation of event type
E A, a new patient arrival, was explained in Subsection 0. We will now explain how
to simulate type EB events for patients currently admitted, that is, at time zero in the
simulation model. The value of the state variables, number of ward patients, BW (0),
and number of ICU patients, BI (0), as well as times Ri (0) in the current state Si (0)
for each patient i , can be calculated from the EHR-file, which records admission,
discharge, and ward/ICU transfer dates for each patient. This set of state variables
defines the initial state of the healthcare system simulation model.
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Fig. 3 Flow diagram of the health system simulation model. Two types of events are considered, external
arrivals and ward or ICU end of stays

The discharge time of each ICU patient i is calculated by sampling from the random
variable Y conditioned to a stay longer than ri = (k + 1− Ri (0)), the number of days
already spent in the ICU. Let yi be a value sampled from the conditional distribution
Y |Y > ri , then the value yi − ri is the simulated ICU discharge date for patient i ,
which is assigned to the position EB I of the event calendar vector associated with
patient i .

A patient admitted to a ward for ri days can ultimately be discharged from the
hospital or transferred to ICU. The probability of ICU transfer for a patient hospitalized
for ri days, denoted by pI CU |ri , is calculated with Bayes theorem:

pI CU |ri = P(B|ri daysinward) = P(Z > ri |B)P(B)

P(ri daysinward)

= P(Z > ri |B)P(B)

P(Z > ri |B)P(B) + P(X1 > ri |C)P(C)

= (1 − FZ (ri ))pW I

(1 − FZ (ri ))pW I + (
1 − FX1(ri )

)
(1 − pW I )

(11)
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where B is the event of a ward patient requiring ICU transfer. C is the event of a ward
patient not requiring ICU transfer.

A hospital trajectory is simulated for each patient i already admitted to a hospital
ward. Thefirst step of the simulation concerns the decision as towhether the patientwill
be admitted to the ICU (with probability pI CU/ri ) or not (with probability 1− pI CU/ri ).
Time to ICU transfer is then simulated by sampling from the conditional distribution
Z |Z > ri , and assigning the value zi − ri to the event EB Z . If the patient i does not
require ICU care, the hospital discharge event EB X1 will occur at time xi − ri , where
xi is sampled from the conditional distribution X1|X1 > ri .

Similarly, for each ward patient i previously discharged from the ICU, the time of
discharge from the hospital is simulated by sampling a value xi from the conditional
variable X2|X2 > ri . The value xi −ri is the simulated discharge time and is assigned
to position EB X2 of the event calendar vector associated with patient i .

Once discharge times and transfer times betweenward and ICUhave been simulated
for each hospitalized patient, and recorded in the event calendar (together with the
arrival time of the next COVID-19 patient) the DES model is ready to advance the
simulation clock from time zero to the minimum of the times recorded in the event
calendar. The state variables and calendar events are then updated accordingly and the
main loop of Fig. 3 is repeated until the simulation run is complete.

The fitted Gompertz curve forecasts daily patient arrivals, which can be uniformly
distributed over the following 24 h or according to a non-stationary pattern when, for
example, arrivals drop significantly overnight.

5.3 Simulation output

TheDESmodel works by generating patient arrivals, discharges, and transfers causing
variations in ward and ICU occupancy levels, which are recorded by statistical coun-
ters. The simulation model includes two sources of randomness: the number of patient
arrivals (hospital and ICU), and patients’ LoS. Therefore, each time the DES model is
run departing from the current situation of the healthcare system (generating random-
ness based on a different seed) the ward and ICU bed requirements differ. Figure 3 in
Sect. 5.1 shows one iteration of the simulation, with which different trajectories can
be obtained with each replication of that routine. Thus, the simulation model is run
many times (thousands) to get a statistical distribution of the number of ward and ICU
beds needed each day.

The DES simulator generates percentile data, which are stored in an Excel file. The
5th percentile (P5), 50th percentile (P50), and 95th percentile (P95) are plotted on a
graph as confidence bands for future resource needs. Figure 4 shows an example of
these graphic outputs. The green line represents the real occupancy trend and the black
dot indicates the SSP, that is, the moment from which the hospital system dynamics
are simulated. The left-hand side shows four different possible ICU bed demand tra-
jectories (T1, T2, T3, and T4), while the right-hand side shows the confidence bands.
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Fig. 4 Simulation output for ICU bed demand for the following days. The left-hand side shows four different
trajectories starting from the SSP; the 3 lines on the right-hand side correspond to the 5th, 50th, and 95th
percentiles

6 Application of the DESmodel

The methodology introduced in the previous Sections, implemented in software, has
been used by the Governments of the Spanish Autonomous Regions of Navarre and
La Rioja to support bed planning in their hospitals during the two pandemic waves
experienced to date. We briefly describe how the virus has affected these two regions
globally, then explain the stochastic modelling of the hospitalized patients and their
pathway through the hospital, and then present the predictions obtained by the DES
model at different times. We conclude this Section with some observations and tips
for the practical use of this forecasting tool.

6.1 Incidence of COVID-19 disease

Navarre and La Rioja are two Regions of northern Spain with populations of about
650,000 and 350,000, respectively, more than half concentrated around the capitals
(Pamplona and Logroño). With this population distribution, Navarre Health Services
have a main hospital in Pamplona, with a bed capacity of more than 1000, and two
secondary hospitals in two of the most populated cities (Estella and Tudela) bringing
total bed capacity to 1,466 ward beds and 45 ICU beds. La Rioja has a main hospital in
Logroño with 630 hospital beds and 21 ICU beds and a secondary 80-bed hospital in
Calahorra. Both regions have the possibility of increasing bed numbers if necessary.

Navarre and La Rioja figure among the five Spanish autonomous regions with the
highest cumulative COVID-19 rates during both waves of the pandemic, according
to data collected by the Governments of Navarre and La Rioja. Daily numbers of
new admissions have important implications for hospital management teams. Figure 5
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Fig. 5 Daily recorded hospitalizations in Navarre and La Rioja from early March 2020 to mid-December
2020

shows hospital admission statistics for both regions from early March 2020 to mid-
December 2020. Two waves can be appreciated each with its own characteristics. The
first is shorter but steeper, while the second is more prolonged. By December 16, 4228
COVID-19 patients had been admitted to hospitals in Navarre (6.5 per 1,000) and 2253
COVID-19 patients in La Rioja (6.4 per 1000).

6.2 Stochastic modelling of hospitalizations and lengths of stay

As the pandemic spreads, the data load increases, making it possible to improve the
simulation model. Since March 16, 2020, the arrival pattern is calculated from the
hospital admission series. Figure 6 shows different results after fitting the Gompertz
growth model to cumulative hospitalizations in La Rioja during the first wave. As the
pandemic progresses and more data becomes available, the Gompertz curve fit usually
improves. However, due to the wide variability of the real data, minor fit deviations,
such as that of March 31, 2020, are possible. Separate curve fits are shown in Fig. 7,
along with the real daily hospitalization series. These graphs show the wide variability
of the data.

Both ward and ICU lengths of stay are estimated daily, as explained in Sect. 0.Ward
lengths of stay (X1) fit reasonably well to a lognormal distribution (L N (μ, σ )), whilst
the Weibull (W (α, β)) distribution is found to provide a better fit for ICU LoS (Y ).
During the pandemic, each time the data was analyzed, the distribution parameters
were reset for the simulation. Table 1 lists the probability distributions that best fit the
lengths of stay in the two waves for Navarre (Na) and La Rioja (Ri), sorted by gender,
male (M) and female (F). N stands for the number of patients analyzed. Differences
can be observed between regions, waves, and genders, especially in ICU lengths of
stay and the percentages of ICU admissions. Figure 8 shows two probability plots
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Fig. 6 Cumulative hospitalizations in LaRioja fromMarch 3 to June 9, 2020, and different curve fits obtained
from the Gompertz growth model

Fig. 7 Six different curve fits obtained from the Gompertz growth model compared with the daily hospital-
ization series for La Rioja from March 3 to June 30, 2020

obtained from the fits of the ward and ICU LoS distributions (regardless of gender)
during the first wave of the pandemic in Navarre.

6.3 Ward and ICU bed occupancy forecasts

Figure 9 shows the bed occupancy forecasts for the hospitals of Navarre based on
the March 21, 2020 simulation for the following days. Note that the most important
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Fig. 8 Probability plots of the fits of theward and ICULoS distributions during the first wave of the pandemic
in Navarre

Fig. 9 The prediction made on March 21, 2020 for bed occupancy in the hospitals of Navarre and the real
occupancy levels. The area shaded yellow highlights the ability of the simulator to obtain accurate 10-day
occupancy forecasts

predictions for the medical staff are for the short-medium term (yellow-colored area
in Fig. 9), and there is a close match between the simulated and the real data, plotted
in green. The simulator’s ability to obtain accurate 10-day forecasts, even in the early
stages of the pandemic, is demonstrated here. More ward and ICU bed occupancy
predictions at different moments of the second wave in Navarre, in comparison with
real occupancy can be seen in Fig. 10. Three dates have been selected to show the data
trend pattern. The first is September 20, 2020, when the occupation began to increase
significantly. The second is October 27, 2020, some days before the peak in ward and
ICU bed occupancy. The last is November 13, 2020, when peak occupancy had passed
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Fig. 10 Comparison between the predictions made in Navarre at different moments of the second wave
(2020/09/20, 2020/10/27, and 2020/11/13) for the number of beds occupied in both hospital and ICU, and
real occupancies

and a downward trend had begun. The results were derived from the 2000 simulation
runs conducted for each date.

6.4 Tips for the use of the DESmodel in practice

All results shown in the previous subsectionswere obtained byfitting the growthmodel
and probability distributions to the available data at the prediction times. However,
during the first stages of an outbreak, when patient hospitalization data are scant, it
could be hard to achieve accurate Gompertz model parameters and LoS probability
distribution estimates to feed the simulation model. The beginning of an outbreak
is usually marked by exponential growth in the data, potentially leading to a very
high upper asymptote from the Gompertz model, which, in practical terms, could be
considered as infinity (e.g. several orders of magnitude greater than the total popu-
lation of the region). Taking this estimation as a simulation input, bed demand rises
exponentially to figures much higher than the entire regional population. This is not
a realistic estimation even in the worst case scenario of the entire population being
infected. Nevertheless, in this case, the estimation would be valid for as many days as
the exponential growth holds, and, as more data is collected, the accuracy of the upper
asymptote estimate increases.

However, to avoid unlimited exponential growth, and improve the accuracy of the
estimates at the beginning of a new pandemic wave, we recommend conducting a
mixed estimation of the Gompertz parameters, combining an estimate based on expert
opinion for one parameter with statistical fit estimates for the other two. Specifically,
experts are able to estimate total hospitalizations based on the population incidence
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rate scaled by a hospitalization factor. For example, at the beginning of the first wave
of the pandemic, Navarre Health Administration professionals guessed that 1% of the
population would catch the virus (based on flu incidence), and 40% of the cases would
require hospitalization (estimating from initial data). Using values ranging around
these estimates, we could run the simulation model to obtain possible hospitalization
scenarios throughout the entire wave. These predictions overestimated total hospital-
izations by the end of the first wave by only 30%. At the beginning of the second wave,
the initial predicted maximum can be the value observed in the first wave or a per-
centage of it. However, as soon as enough data are available for an accurate parameter
estimation, the simulation model should be completely data-driven.

A similar problem arises when estimating the parameters of the LoS probability
distributions at the onset of a new wave. When insufficient data prevents the statistical
estimation of all parameters, the simulation model has to be flexible enough to allow
manual parameter input. We recommend the use of the triangular distribution to rep-
resent the LoS for different hospital status levels. The triangular distribution family is
a popular choice for the estimation of task completion times because it embodies the
idea of the ‘three-point estimation’ where subjective judgment is used to estimate a
minimum, a ‘best guess’, and a maximum value of the variable of interest (Law 2014).
Experts can rely on values reported for the countries first affected by the pandemic
(for example the cases of China and Italy are described in Grasselli et al. (2020); Guan
et al. (2020); Young et al. (2020); and Zhou et al. (2020)). For the second and succes-
sive waves, the probability distributions estimated at the end of previous waves can
be used initially. For example, during the first days of the outbreak, Navarre Health
Administration experts fixed the minimum, maximum, and most probable total LoS
as 10, 18, and 13 days respectively.

7 Conclusion

Healthcare systems are overburdened as high demand for healthcare services from
COVID-19 patients places strains on ICU capacity and creates excessive workloads
for healthcare professionals. Accurate predictions of patient care resource needs are
essential to advanced resource planning which can ease pressure on the system and
relieve stress among hospital staff. Accurate predictions optimize response times and
thus help to save lives.

Under normal circumstances, managers cope with demand surges through resource
contingency plans based on predictionsmade about oneweek in advance. In this paper,
we have developed a DES model to predict hospital resource needs, particularly in
terms of ward and ICU beds. The simulation model is fed with new hospitalization
predictions generated by a PG model. The Gompertz growth model was selected
following an analysis of the fit and forecasting properties of four PGmodels: Logistic,
Richards, Stannard, andGompertz. Forecasting improvements could be achieved using
an ensemble of these models, but such an exercise is beyond the scope of this paper
and remains for future research. Forecasting accuracy can be improved by including
other factors affecting resource consumption, such as age and the Adjusted Morbidity
Group (AMG), in LoS stochastic models.
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The structural simplicity of the simulation model makes it appropriate for general
use, i.e., it can be adapted to estimate bed needs in any geographic area. The growth
model requires only three parameter estimates, which can be obtained directly from
the observed data. Easy online parameter estimation is one of the advantages of this
model over other complex models, such as the SIR type.

It is worth mentioning the strength of simulation models in this context of uncer-
tainty, that is, their capability to run what-if scenarios enabling decision-makers to
explore the consequences of different policy choices, such as the spatial allocation
and quantity of additional healthcare resources required by COVID-19 patients in a
context of uncertain demand. The simulation model is data-driven, patient arrivals and
lengths of stay can be estimated from data, but it also has the flexibility of allowing
the use of simulation from user-determined input to explore additional scenarios.

A distinct technical/methodological feature of the simulation model is its focus on
the transition period of the health system rather than the stationary state as is usual in
simulation studies or on transition periods following regeneration points. This simu-
lated transition period is unique, given that the outbreak has no regeneration points.
Therefore, accurate representation of the initial health system status is paramount. The
simulation of remaining LoS per hospitalization has shown to be a key point to the
smooth projection of health system dynamics and the process of linking them (and
mixing them) with the new dynamics obtained from simulated new patient arrivals and
lengths of stay. However, the simulation of the remaining LoS depends on the amount
of information known about hospitalized patients. In this paper, we have considered
patient-level information (exact admission and discharge dates). In cases where only
aggregated hospital-level information is available, that is, daily numbers of admissions
and discharges, an estimated admission date per patient at time zero of the simulation
is required.

The simulationmodel can be extended to include non-COVID-19 ICUandward bed
utilization. This extension would enable the creation of hospital scenarios on which
to test the effects of decisions involving other hospital areas, such as a reduction in
elective surgeries to free more beds for COVID-19 patients during epidemic waves.
The ultimate purpose is to create a learning tool by developing an interactive simulation
model to enable the inclusion of patients from all types of pathways (ordinary and non-
ordinary, such as pandemic patients), where bed management decisions are made by
the program user.

The methodology presented in the previous Sections was implemented in software
using the Python programming language. It takes input from a data file containing a
record of six variables including sex and age of patient and four dates representing
the hospital and ICU admission and discharge times for each patient admitted to the
hospital so far. The dates for patients still awaiting discharge or ICU admission are
left blank. These four dates enable estimation of all the LoS probability distributions
and branching probabilities. The additional age and sex data enable segmentation of
the patient population. The functionalities and manner of use of the software evolved
through time and from one pandemic wave to another. Initially (from March 2020 to
June 2020), the simulation model was computationally implemented on its own, such
that a daily manual statistical analysis was required to fit probability distributions.
Throughout this period, the predictions and reports were drawn up by the research
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group and sent to the hospital’s COVID-19 logistics manager. Only one regional
government used the results of our simulation model during this period. The statistical
analysis was automatized and integrated in the software during the summer of 2020.
In addition, the user interface, output analysis and automatic reports generation were
also implemented. Then, from October 2020 and throughout the second pandemic
wave, the analyses performed by local government health administration personnel
(Govts. of Navarre and La Rioja), under the supervision of the research group. From
December 2020, and throughout the third and fourth waves, the health administration
analysts worked almost autonomously. During the last period (January to May, 2021)
the research group also assisted the Spanish Health Ministry by providing predictions
for each of the 17 Autonomous Communities in Spain.

After 15 months’ cooperation with health authorities, we have reached the conclu-
sion that the success of this operations-research support system for decision-makers
in difficult pandemic times is due to the following factors:

• Multidisciplinary teamwork and a background of cooperation with health man-
agers. The research group q-UPHS (www.unavarra.es/quphs) has been cooperating
for more than 10 years in the solving of real problems surrounding health ser-
vice improvements. Problem analysis is always addressed throughmultidisciplinary
teamwork involving academics (engineers and mathematicians) and health service
personnel (managers, medical staff, and computer scientists).

• A request for assistance from the health administration. At the beginning of the
pandemic, health managers raised the need for a a short- and medium-term bed-
demand forecasting method to improve their bed management system. Medical
space and equipment (including staff) planning is based on 10-bed modules. Prior
knowledge of bed needs therefore facilitates resource planning.

• Rapid response. Five days after the original request, the group presented the simula-
tion model and the initial results (predictions) for validation by the region’s hospital
and healthcare logistics managers.

• Joint development of themodel. Decision-makers were involved in the development
of the model and maintained continuous communication with the research team.

• Continuous improvement of the computer application. Suggestions made by health
managers and a user-friendly software interface were implemented to free users
gradually from the need for supervision by the research team.

• Joint monitoring of the results. Quality assessment and critical analysis of the pre-
dictions were performed jointly by the research team and health managers.

Thus, the simulation paradigm presented in this paper is suitable for the realistic
representation of health service processes, which makes it more credible and easier
to understand by the managers who will have to rely on the results in their decision-
making. FromMarch 2020 until the moment of writing this paper (end of June 2021),
the simulation model has been used daily to predict hospital resource needs in the
Spanish regions of Navarre and La Rioja, and all other Spanish Communities from
January, 2021. We found that the involvement and continuous improvement sugges-
tions of the hospital logistics manager in the development of the simulation model has
been crucial for obtaining a user-centered simulator and a practical forecasting tool to
enable daily updates of data from the hospital administration’s information system.
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Appendix

Statistical analysis to elucidate the suitability of PGmodels
to represent the evolution of the COVID-19 pandemic

The parameter estimation of the PGmodels is done by minimizing the sum of squared
errors. There are functions implemented in free software that perform this estimation
of parameters, for instance, the curve_fit() function in the optimize module of SciPy
in Python or the growthrates package in R. The fit quality is measured by the Mean
Absolute Errors (MAE). Table 2 includes all MAE values calculated for each country
and model. The best fits are marked in bold (differences less than 0.1% are not distin-
guished). Additional information in this table is the total population of each country
and the total number of positive cases on June 15, 2020.
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Table 2 The 20 most-affected countries by COVID-19 until June 15, 2020. The last four columns show the
MAE calculated for the fit with each of the applied models

# Country Population Total positive
cases
(2020–06-15)

Logistic Gompertz Richards Stannard

1 USA 330,922,877 2,094,069 47,128.9 21,461.2 21,464.4 21,466.7

2 Brazil 212,496,348 867,624 3182.3 3245.1 2754.7 2754.7

3 Russia 145,932,063 528,964 5667.4 1688.7 1689.0 1689.2

4 India 1,379,418,901 332,424 1392.9 537.9 538.0 538.2

5 UK 67,871,466 295,889 4758.0 1046.6 1046.9 1047.2

6 Spain 46,754,084 245,194 5676.2 2261.7 2262.1 2262.6

7 Italy 60,465,149 236,989 4928.0 1061.2 1061.6 1061.7

8 Peru 32,951,046 229,736 2399.4 1255.3 1256.6 1257.6

9 Iran 83,944,885 187,427 8105.8 6176.3 6176.6 6176.9

10 Germany 83,773,297 186,461 4091.4 1519.2 1519.5 1519.7

11 Turkey 84,299,464 178,239 5335.7 2418.3 2418.8 2419.1

12 Chile 19,109,226 174,293 1132.5 1601.2 1068.5 1068.5

13 France 65,267,844 157,220 3396.4 1547.0 1547.2 1547.3

14 Mexico 128,873,820 153,507 1418.9 1641.0 1535.5 1535.5

15 Pakistan 220,685,460 144,478 1631.5 1324.5 1301.0 1321.6

16 Saudi
Arabia

34,788,836 127,541 1709.0 814.9 814.9 814.9

17 Canada 37,728,057 98,776 1494.6 331.0 331.1 331.1

18 Bangladesh 164,618,467 87,520 655.6 315.5 315.6 315.7

19 China 1,439,323,776 84,335 1166.6 1133.0 1097.6 1097.7

20 Qatar 2,807,805 79,602 417.7 369.2 263.6 263.6

Bold values represent the best scores

Positive cases predictions for the following 5, 10, and 15 days,
at 25%, 45%, and 65% of total cases detected

The prediction of the fitted curves for the next 5, 10, and 15 days is assessed by
calculating the MAE. These time horizons are considered as sufficient for the hos-
pital managers to adapt extra resources for new needs. As new positive case data is
added every day, and predictions are refreshed also every day, the long-term predictive
capacity of the model will not be analyzed. Table 3 summarizes the relevant informa-
tion from all the tables shown at the end of this appendix. It indicates the number of
countries in which each model is the best in terms of predictive capacity (as before,
differences smaller than 0.1% have been considered equal). It is observed that the
Gompertz model is the one that more accurately predicts future values, specifically in
all time horizons analyzed. For this reason, the Gompertz model is recommended for
the prediction of new cases of COVID-19 (Tables 4, 5, 6, 7, 8 and 9).

The rest of the appendix is organized as follows. On the one hand, we present fits to
the curves until the selected days, obtaining an MAE for each model and country. On
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Table 4 MAE calculated for the fit of each model at 25% of total cases detected

# Country Date Total
positive
cases

Logistic Gompertz Richards Stannard

1 USA 2020-04-12 529,951 2,233.0 554.9 553.7 553.7

2 Brazil 2020-05-16 218,223 1497.5 1099.9 1098.4 1100.4

3 Russia 2020-05-04 134,687 564.2 381.8 357.2 357.2

4 India 2020-05-16 85,940 601.4 350.0 350.0 350.1

5 UK 2020-04-12 78,991 320.6 249.7 209.7 209.7

6 Spain 2020-03-26 66,460 297.1 147.8 147.8 147.9

7 Italy 2020-03-24 63,927 269.7 150.8 156.7 156.7

8 Peru 2020-05-08 58,526 608.4 385.0 385.1 385.1

9 Iran 2020-04-02 47,593 1192.5 969.6 969.6 969.7

10 Germany 2020-03-28 48,582 269.9 315.8 287.4 287.4

11 Turkey 2020-04-11 47,029 639.9 272.4 272.5 272.6

12 Chile 2020-05-18 43,781 741.7 732.2 735.8 735.8

13 France 2020-03-30 40,174 163.2 92.6 93.0 94.6

14 Mexico 2020-05-06 40,186 207.8 130.5 128.3 128.3

15 Pakistan 2020-05-15 37,218 304.3 223.5 223.1 223.5

16 Saudi Arabia 2020-05-07 31,938 194.3 281.4 195.2 195.2

17 Canada 2020-04-14 25,663 97.0 83.7 57.3 57.3

18 Bangladesh 2020-05-18 22,268 270.9 134.5 134.5 134.5

19 China 2020-02-05 24,320 164.3 114.1 114.1 114.1

20 Qatar 2020-05-09 20,201 147.6 206.0 139.2 139.2

Bold values represent the best scores

the other hand, the tables of the MAEs made in the predictions are shown. To facilitate
the comparison of results, MAEs are normalized by the total number of positive cases
on the selected days. From these results, we can conclude that the Gompertz model
outperforms in predictive capacity the other PG models and it is recommended to
predict new cases of COVID-19.

To abbreviate the headings in the following tables, the Logistic (L), Gompertz (G),
Richards (R), and Stannard (S) functions are concatenated with the number of days
to be predicted (5, 10, and 15) using the symbol "_". Therefore, column G_10, for
example, shows the normalized MAEs obtained for the next 10-day forecast, having
fitted the data with the Gompertz function.
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Table 6 MAE calculated for the fit of each model at 40% of total cases detected

# Country Date Total
positive
cases

Logistic Gompertz Richards Stannard

1 USA 2020-04-23 842,629 6372.8 1421.9 1422.8 1433.3

2 Brazil 2020-05-24 347,398 2085.6 1422.1 1413.6 1422.7

3 Russia 2020-05-12 221,344 1316.9 521.2 521.3 521.5

4 India 2020-05-25 138,845 882.2 480.3 480.4 480.5

5 UK 2020-04-20 120,067 617.4 320.3 257.3 257.3

6 Spain 2020-03-31 104,267 351.9 438.7 343.9 343.9

7 Italy 2020-03-30 97,689 374.7 343.5 205.8 205.8

8 Peru 2020-05-18 92,273 759.3 483.2 482.1 482.1

9 Iran 2020-04-16 76,389 1,071.3 1,201.7 1,043.0 1,043.0

10 Germany 2020-04-03 79,696 486.0 339.2 338.2 338.2

11 Turkey 2020-04-17 74,193 795.4 345.4 345.5 345.7

12 Chile 2020-05-26 73,997 854.4 858.2 854.4 854.4

13 France 2020-04-04 64,338 260.8 200.4 219.2 219.2

14 Mexico 2020-05-15 62,527 438.7 151.8 151.8 151.9

15 Pakistan 2020-05-27 59,151 335.9 276.6 285.4 285.4

16 Saudi Arabia 2020-05-17 52,016 360.6 273.4 256.6 256.6

17 Canada 2020-04-23 40,179 405.1 175.7 175.7 175.7

18 Bangladesh 2020-05-26 35,585 434.7 270.4 270.4 270.5

19 China 2020-02-08 34,625 185.9 130.2 126.6 126.6

20 Qatar 2020-05-18 32,604 274.1 216.8 216.8 216.8

Bold values represent the best scores
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Table 8 MAE calculated for the fit of each model at 65% of total cases detected

# Country Date Total
positive
cases

Logistic Gompertz Richards Stannard

1 USA 2020-05-13 1,369,964 20,036.0 7343.8 7,345.7 7,346.8

2 Brazil 2020-06-04 584,016 2,654.8 1857.5 1,908.6 1,908.4

3 Russia 2020-05-25 344,481 1,469.0 1097.0 846.3 846.3

4 India 2020-06-04 216,919 1,113.0 511.4 511.6 511.7

5 UK 2020-05-06 194,990 2,136.8 593.2 593.2 593.3

6 Spain 2020-04-10 163,472 917.7 639.9 382.2 382.2

7 Italy 2020-04-13 156,363 1,420.8 585.3 526.1 526.1

8 Peru 2020-05-31 155,671 1,757.1 792.6 792.9 793.1

9 Iran 2020-05-19 122,492 3,124.1 1912.6 1,912.7 1,912.8

10 Germany 2020-04-13 123,016 907.9 419.2 400.3 400.3

11 Turkey 2020-04-30 117,589 1,222.6 528.2 463.3 463.3

12 Chile 2020-06-04 113,628 1,011.6 1,038.2 844.2 844.2

13 France 2020-04-15 103,573 495.0 525.4 350.4 350.4

14 Mexico 2020-05-27 101,238 746.9 237.1 237.2 237.3

15 Pakistan 2020-06-06 93,983 918.8 565.8 565.8 566.0

16 Saudi Arabia 2020-05-31 83,384 683.4 453.3 430.7 430.7

17 Canada 2020-05-08 64,922 836.0 346.9 346.9 347.0

18 Bangladesh 2020-06-05 57,563 534.4 310.3 310.4 310.4

19 China 2020-02-13 59,865 841.5 556.6 556.6 556.7

20 Qatar 2020-05-30 52,907 352.0 199.7 199.6 199.6

Bold values represent the best scores
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